Merge vk-gl-cts/vulkan-cts-1.0.0 into vk-gl-cts/vulkan-cts-1.0.1
[platform/upstream/VK-GL-CTS.git] / external / vulkancts / modules / vulkan / sparse_resources / vktSparseResourcesShaderIntrinsicsBase.cpp
1 /*------------------------------------------------------------------------
2  * Vulkan Conformance Tests
3  * ------------------------
4  *
5  * Copyright (c) 2016 The Khronos Group Inc.
6  *
7  * Licensed under the Apache License, Version 2.0 (the "License");
8  * you may not use this file except in compliance with the License.
9  * You may obtain a copy of the License at
10  *
11  *      http://www.apache.org/licenses/LICENSE-2.0
12  *
13  * Unless required by applicable law or agreed to in writing, software
14  * distributed under the License is distributed on an "AS IS" BASIS,
15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  * See the License for the specific language governing permissions and
17  * limitations under the License.
18  *
19  *//*
20  * \file  vktSparseResourcesShaderIntrinsicsBase.cpp
21  * \brief Sparse Resources Shader Intrinsics Base Classes
22  *//*--------------------------------------------------------------------*/
23
24 #include "vktSparseResourcesShaderIntrinsicsBase.hpp"
25
26 using namespace vk;
27
28 namespace vkt
29 {
30 namespace sparse
31 {
32
33 tcu::UVec3 alignedDivide (const VkExtent3D& extent, const VkExtent3D& divisor)
34 {
35         tcu::UVec3 result;
36
37         result.x() = extent.width  / divisor.width  + ((extent.width  % divisor.width)  ? 1u : 0u);
38         result.y() = extent.height / divisor.height + ((extent.height % divisor.height) ? 1u : 0u);
39         result.z() = extent.depth  / divisor.depth  + ((extent.depth  % divisor.depth)  ? 1u : 0u);
40
41         return result;
42 }
43
44 std::string getOpTypeImageComponent (const tcu::TextureFormat& format)
45 {
46         switch (tcu::getTextureChannelClass(format.type))
47         {
48                 case tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER:
49                         return "OpTypeInt 32 0";
50                 case tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER:
51                         return "OpTypeInt 32 1";
52                 default:
53                         DE_ASSERT(0);
54                         return "";
55         }
56 }
57
58 std::string getImageComponentTypeName (const tcu::TextureFormat& format)
59 {
60         switch (tcu::getTextureChannelClass(format.type))
61         {
62                 case tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER:
63                         return "%type_uint";
64                 case tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER:
65                         return "%type_int";
66                 default:
67                         DE_ASSERT(0);
68                         return "";
69         }
70 }
71
72 std::string getImageComponentVec4TypeName (const tcu::TextureFormat& format)
73 {
74         switch (tcu::getTextureChannelClass(format.type))
75         {
76                 case tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER:
77                         return "%type_uvec4";
78                 case tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER:
79                         return "%type_ivec4";
80                 default:
81                         DE_ASSERT(0);
82                         return "";
83         }
84 }
85
86 std::string getOpTypeImageSparse (const ImageType                       imageType,
87                                                                   const tcu::TextureFormat&     format,
88                                                                   const std::string&            componentType,
89                                                                   const bool                            requiresSampler)
90 {
91         std::ostringstream      src;
92
93         src << "OpTypeImage " << componentType << " ";
94
95         switch (imageType)
96         {
97                 case IMAGE_TYPE_1D :
98                         src << "1D 0 0 0 ";
99                 break;
100                 case IMAGE_TYPE_1D_ARRAY :
101                         src << "1D 0 1 0 ";
102                 break;
103                 case IMAGE_TYPE_2D :
104                         src << "2D 0 0 0 ";
105                 break;
106                 case IMAGE_TYPE_2D_ARRAY :
107                         src << "2D 0 1 0 ";
108                 break;
109                 case IMAGE_TYPE_3D :
110                         src << "3D 0 0 0 ";
111                 break;
112                 case IMAGE_TYPE_CUBE :
113                         src << "Cube 0 0 0 ";
114                 break;
115                 case IMAGE_TYPE_CUBE_ARRAY :
116                         src << "Cube 0 1 0 ";
117                 break;
118                 default :
119                         DE_ASSERT(0);
120                 break;
121         };
122
123         if (requiresSampler)
124                 src << "1 ";
125         else
126                 src << "2 ";
127
128         switch (format.order)
129         {
130                 case tcu::TextureFormat::R:
131                         src << "R";
132                 break;
133                 case tcu::TextureFormat::RG:
134                         src << "Rg";
135                         break;
136                 case tcu::TextureFormat::RGB:
137                         src << "Rgb";
138                         break;
139                 case tcu::TextureFormat::RGBA:
140                         src << "Rgba";
141                 break;
142                 default:
143                         DE_ASSERT(0);
144                 break;
145         }
146
147         switch (format.type)
148         {
149                 case tcu::TextureFormat::SIGNED_INT8:
150                         src << "8i";
151                 break;
152                 case tcu::TextureFormat::SIGNED_INT16:
153                         src << "16i";
154                 break;
155                 case tcu::TextureFormat::SIGNED_INT32:
156                         src << "32i";
157                 break;
158                 case tcu::TextureFormat::UNSIGNED_INT8:
159                         src << "8ui";
160                 break;
161                 case tcu::TextureFormat::UNSIGNED_INT16:
162                         src << "16ui";
163                 break;
164                 case tcu::TextureFormat::UNSIGNED_INT32:
165                         src << "32ui";
166                 break;
167                 default:
168                         DE_ASSERT(0);
169                 break;
170         };
171
172         return src.str();
173 }
174
175 std::string getOpTypeImageResidency (const ImageType imageType)
176 {
177         std::ostringstream      src;
178
179         src << "OpTypeImage %type_uint ";
180
181         switch (imageType)
182         {
183                 case IMAGE_TYPE_1D :
184                         src << "1D 0 0 0 2 R32ui";
185                 break;
186                 case IMAGE_TYPE_1D_ARRAY :
187                         src << "1D 0 1 0 2 R32ui";
188                 break;
189                 case IMAGE_TYPE_2D :
190                         src << "2D 0 0 0 2 R32ui";
191                 break;
192                 case IMAGE_TYPE_2D_ARRAY :
193                         src << "2D 0 1 0 2 R32ui";
194                 break;
195                 case IMAGE_TYPE_3D :
196                         src << "3D 0 0 0 2 R32ui";
197                 break;
198                 case IMAGE_TYPE_CUBE :
199                         src << "Cube 0 0 0 2 R32ui";
200                 break;
201                 case IMAGE_TYPE_CUBE_ARRAY :
202                         src << "Cube 0 1 0 2 R32ui";
203                 break;
204                 default :
205                         DE_ASSERT(0);
206                 break;
207         };
208
209         return src.str();
210 }
211
212 tcu::TestStatus SparseShaderIntrinsicsInstanceBase::iterate (void)
213 {
214         const InstanceInterface&                        instance                                = m_context.getInstanceInterface();
215         const DeviceInterface&                          deviceInterface                 = m_context.getDeviceInterface();
216         const VkPhysicalDevice                          physicalDevice                  = m_context.getPhysicalDevice();
217         VkImageCreateInfo                                       imageSparseInfo;
218         VkImageCreateInfo                                       imageTexelsInfo;
219         VkImageCreateInfo                                       imageResidencyInfo;
220         VkSparseImageMemoryRequirements         aspectRequirements;
221         std::vector <deUint32>                          residencyReferenceData;
222         std::vector<DeviceMemoryUniquePtr>      deviceMemUniquePtrVec;
223
224         // Check if image size does not exceed device limits
225         if (!isImageSizeSupported(instance, physicalDevice, m_imageType, m_imageSize))
226                 TCU_THROW(NotSupportedError, "Image size not supported for device");
227
228         // Check if device supports sparse operations for image type
229         if (!checkSparseSupportForImageType(instance, physicalDevice, m_imageType))
230                 TCU_THROW(NotSupportedError, "Sparse residency for image type is not supported");
231
232         if (!getPhysicalDeviceFeatures(instance, physicalDevice).shaderResourceResidency)
233                 TCU_THROW(NotSupportedError, "Sparse resource residency information not supported in shader code.");
234
235         imageSparseInfo.sType                                   = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
236         imageSparseInfo.pNext                                   = DE_NULL;
237         imageSparseInfo.flags                                   = VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT | VK_IMAGE_CREATE_SPARSE_BINDING_BIT;
238         imageSparseInfo.imageType                               = mapImageType(m_imageType);
239         imageSparseInfo.format                                  = mapTextureFormat(m_format);
240         imageSparseInfo.extent                                  = makeExtent3D(getLayerSize(m_imageType, m_imageSize));
241         imageSparseInfo.arrayLayers                             = getNumLayers(m_imageType, m_imageSize);
242         imageSparseInfo.samples                                 = VK_SAMPLE_COUNT_1_BIT;
243         imageSparseInfo.tiling                                  = VK_IMAGE_TILING_OPTIMAL;
244         imageSparseInfo.initialLayout                   = VK_IMAGE_LAYOUT_UNDEFINED;
245         imageSparseInfo.usage                                   = VK_IMAGE_USAGE_TRANSFER_DST_BIT | imageSparseUsageFlags();
246         imageSparseInfo.sharingMode                             = VK_SHARING_MODE_EXCLUSIVE;
247         imageSparseInfo.queueFamilyIndexCount   = 0u;
248         imageSparseInfo.pQueueFamilyIndices             = DE_NULL;
249
250         if (m_imageType == IMAGE_TYPE_CUBE || m_imageType == IMAGE_TYPE_CUBE_ARRAY)
251         {
252                 imageSparseInfo.flags |= VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
253         }
254
255         {
256                 // Assign maximum allowed mipmap levels to image
257                 VkImageFormatProperties imageFormatProperties;
258                 instance.getPhysicalDeviceImageFormatProperties(physicalDevice,
259                         imageSparseInfo.format,
260                         imageSparseInfo.imageType,
261                         imageSparseInfo.tiling,
262                         imageSparseInfo.usage,
263                         imageSparseInfo.flags,
264                         &imageFormatProperties);
265
266                 imageSparseInfo.mipLevels = getImageMaxMipLevels(imageFormatProperties, imageSparseInfo.extent);
267         }
268
269         // Check if device supports sparse operations for image format
270         if (!checkSparseSupportForImageFormat(instance, physicalDevice, imageSparseInfo))
271                 TCU_THROW(NotSupportedError, "The image format does not support sparse operations");
272
273         {
274                 // Create logical device supporting both sparse and compute/graphics queues
275                 QueueRequirementsVec queueRequirements;
276                 queueRequirements.push_back(QueueRequirements(VK_QUEUE_SPARSE_BINDING_BIT, 1u));
277                 queueRequirements.push_back(QueueRequirements(getQueueFlags(), 1u));
278
279                 createDeviceSupportingQueues(queueRequirements);
280         }
281
282         // Create queues supporting sparse binding operations and compute/graphics operations
283         const Queue& sparseQueue        = getQueue(VK_QUEUE_SPARSE_BINDING_BIT, 0);
284         const Queue& extractQueue       = getQueue(getQueueFlags(), 0);
285
286         // Create memory allocator for logical device
287         const de::UniquePtr<Allocator> allocator(new SimpleAllocator(deviceInterface, *m_logicalDevice, getPhysicalDeviceMemoryProperties(instance, physicalDevice)));
288
289         // Create sparse image
290         const Unique<VkImage> imageSparse(createImage(deviceInterface, *m_logicalDevice, &imageSparseInfo));
291
292         // Create sparse image memory bind semaphore
293         const Unique<VkSemaphore> memoryBindSemaphore(makeSemaphore(deviceInterface, *m_logicalDevice));
294
295         const deUint32                    imageSparseSizeInBytes                = getImageSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, m_format, imageSparseInfo.mipLevels, MEM_ALIGN_BUFFERIMAGECOPY_OFFSET);
296         const deUint32                    imageSizeInPixels                             = getImageSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, m_format, imageSparseInfo.mipLevels) / tcu::getPixelSize(m_format);
297
298         residencyReferenceData.assign(imageSizeInPixels, MEMORY_BLOCK_NOT_BOUND_VALUE);
299
300         {
301                 // Get sparse image general memory requirements
302                 const VkMemoryRequirements imageMemoryRequirements = getImageMemoryRequirements(deviceInterface, *m_logicalDevice, *imageSparse);
303
304                 // Check if required image memory size does not exceed device limits
305                 if (imageMemoryRequirements.size > getPhysicalDeviceProperties(instance, physicalDevice).limits.sparseAddressSpaceSize)
306                         TCU_THROW(NotSupportedError, "Required memory size for sparse resource exceeds device limits");
307
308                 DE_ASSERT((imageMemoryRequirements.size % imageMemoryRequirements.alignment) == 0);
309
310                 // Get sparse image sparse memory requirements
311                 const std::vector<VkSparseImageMemoryRequirements> sparseMemoryRequirements = getImageSparseMemoryRequirements(deviceInterface, *m_logicalDevice, *imageSparse);
312
313                 DE_ASSERT(sparseMemoryRequirements.size() != 0);
314
315                 const deUint32 colorAspectIndex = getSparseAspectRequirementsIndex(sparseMemoryRequirements, VK_IMAGE_ASPECT_COLOR_BIT);
316
317                 if (colorAspectIndex == NO_MATCH_FOUND)
318                         TCU_THROW(NotSupportedError, "Not supported image aspect - the test supports currently only VK_IMAGE_ASPECT_COLOR_BIT");
319
320                 aspectRequirements = sparseMemoryRequirements[colorAspectIndex];
321
322                 DE_ASSERT((aspectRequirements.imageMipTailSize % imageMemoryRequirements.alignment) == 0);
323
324                 const VkImageAspectFlags aspectMask                     = aspectRequirements.formatProperties.aspectMask;
325                 const VkExtent3D                 imageGranularity       = aspectRequirements.formatProperties.imageGranularity;
326                 const deUint32                   memoryType                     = findMatchingMemoryType(instance, physicalDevice, imageMemoryRequirements, MemoryRequirement::Any);
327
328                 if (memoryType == NO_MATCH_FOUND)
329                         return tcu::TestStatus::fail("No matching memory type found");
330
331                 deUint32 pixelOffset = 0u;
332
333                 std::vector<VkSparseImageMemoryBind>  imageResidencyMemoryBinds;
334                 std::vector<VkSparseMemoryBind>           imageMipTailBinds;
335
336                 // Bind memory for each mipmap level
337                 for (deUint32 mipLevelNdx = 0; mipLevelNdx < aspectRequirements.imageMipTailFirstLod; ++mipLevelNdx)
338                 {
339                         const deUint32 mipLevelSizeInPixels = getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, m_format, mipLevelNdx) / tcu::getPixelSize(m_format);
340
341                         if (mipLevelNdx % MEMORY_BLOCK_TYPE_COUNT == MEMORY_BLOCK_NOT_BOUND)
342                         {
343                                 pixelOffset += mipLevelSizeInPixels;
344                                 continue;
345                         }
346
347                         for (deUint32 pixelNdx = 0u; pixelNdx < mipLevelSizeInPixels; ++pixelNdx)
348                         {
349                                 residencyReferenceData[pixelOffset + pixelNdx] = MEMORY_BLOCK_BOUND_VALUE;
350                         }
351
352                         pixelOffset += mipLevelSizeInPixels;
353
354                         for (deUint32 layerNdx = 0; layerNdx < imageSparseInfo.arrayLayers; ++layerNdx)
355                         {
356                                 const VkExtent3D                 mipExtent                      = mipLevelExtents(imageSparseInfo.extent, mipLevelNdx);
357                                 const tcu::UVec3                 sparseBlocks           = alignedDivide(mipExtent, imageGranularity);
358                                 const deUint32                   numSparseBlocks        = sparseBlocks.x() * sparseBlocks.y() * sparseBlocks.z();
359                                 const VkImageSubresource subresource            = { aspectMask, mipLevelNdx, layerNdx };
360
361                                 const VkSparseImageMemoryBind imageMemoryBind = makeSparseImageMemoryBind(deviceInterface, *m_logicalDevice,
362                                         imageMemoryRequirements.alignment * numSparseBlocks, memoryType, subresource, makeOffset3D(0u, 0u, 0u), mipExtent);
363
364                                 deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, *m_logicalDevice, DE_NULL))));
365
366                                 imageResidencyMemoryBinds.push_back(imageMemoryBind);
367                         }
368                 }
369
370                 if (aspectRequirements.imageMipTailFirstLod < imageSparseInfo.mipLevels)
371                 {
372                         if (aspectRequirements.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT)
373                         {
374                                 const VkSparseMemoryBind imageMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, *m_logicalDevice,
375                                         aspectRequirements.imageMipTailSize, memoryType, aspectRequirements.imageMipTailOffset);
376
377                                 deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, *m_logicalDevice, DE_NULL))));
378
379                                 imageMipTailBinds.push_back(imageMipTailMemoryBind);
380                         }
381                         else
382                         {
383                                 for (deUint32 layerNdx = 0; layerNdx < imageSparseInfo.arrayLayers; ++layerNdx)
384                                 {
385                                         const VkSparseMemoryBind imageMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, *m_logicalDevice,
386                                                 aspectRequirements.imageMipTailSize, memoryType, aspectRequirements.imageMipTailOffset + layerNdx * aspectRequirements.imageMipTailStride);
387
388                                         deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, *m_logicalDevice, DE_NULL))));
389
390                                         imageMipTailBinds.push_back(imageMipTailMemoryBind);
391                                 }
392                         }
393
394                         for (deUint32 pixelNdx = pixelOffset; pixelNdx < residencyReferenceData.size(); ++pixelNdx)
395                         {
396                                 residencyReferenceData[pixelNdx] = MEMORY_BLOCK_BOUND_VALUE;
397                         }
398                 }
399
400                 VkBindSparseInfo bindSparseInfo =
401                 {
402                         VK_STRUCTURE_TYPE_BIND_SPARSE_INFO,     //VkStructureType                                                       sType;
403                         DE_NULL,                                                        //const void*                                                           pNext;
404                         0u,                                                                     //deUint32                                                                      waitSemaphoreCount;
405                         DE_NULL,                                                        //const VkSemaphore*                                            pWaitSemaphores;
406                         0u,                                                                     //deUint32                                                                      bufferBindCount;
407                         DE_NULL,                                                        //const VkSparseBufferMemoryBindInfo*           pBufferBinds;
408                         0u,                                                                     //deUint32                                                                      imageOpaqueBindCount;
409                         DE_NULL,                                                        //const VkSparseImageOpaqueMemoryBindInfo*      pImageOpaqueBinds;
410                         0u,                                                                     //deUint32                                                                      imageBindCount;
411                         DE_NULL,                                                        //const VkSparseImageMemoryBindInfo*            pImageBinds;
412                         1u,                                                                     //deUint32                                                                      signalSemaphoreCount;
413                         &memoryBindSemaphore.get()                      //const VkSemaphore*                                            pSignalSemaphores;
414                 };
415
416                 VkSparseImageMemoryBindInfo               imageResidencyBindInfo;
417                 VkSparseImageOpaqueMemoryBindInfo imageMipTailBindInfo;
418
419                 if (imageResidencyMemoryBinds.size() > 0)
420                 {
421                         imageResidencyBindInfo.image            = *imageSparse;
422                         imageResidencyBindInfo.bindCount        = static_cast<deUint32>(imageResidencyMemoryBinds.size());
423                         imageResidencyBindInfo.pBinds           = &imageResidencyMemoryBinds[0];
424
425                         bindSparseInfo.imageBindCount           = 1u;
426                         bindSparseInfo.pImageBinds                      = &imageResidencyBindInfo;
427                 }
428
429                 if (imageMipTailBinds.size() > 0)
430                 {
431                         imageMipTailBindInfo.image                      = *imageSparse;
432                         imageMipTailBindInfo.bindCount          = static_cast<deUint32>(imageMipTailBinds.size());
433                         imageMipTailBindInfo.pBinds                     = &imageMipTailBinds[0];
434
435                         bindSparseInfo.imageOpaqueBindCount = 1u;
436                         bindSparseInfo.pImageOpaqueBinds        = &imageMipTailBindInfo;
437                 }
438
439                 // Submit sparse bind commands for execution
440                 VK_CHECK(deviceInterface.queueBindSparse(sparseQueue.queueHandle, 1u, &bindSparseInfo, DE_NULL));
441         }
442
443         // Create image to store texels copied from sparse image
444         imageTexelsInfo.sType                                   = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
445         imageTexelsInfo.pNext                                   = DE_NULL;
446         imageTexelsInfo.flags                                   = 0u;
447         imageTexelsInfo.imageType                               = imageSparseInfo.imageType;
448         imageTexelsInfo.format                                  = imageSparseInfo.format;
449         imageTexelsInfo.extent                                  = imageSparseInfo.extent;
450         imageTexelsInfo.arrayLayers                             = imageSparseInfo.arrayLayers;
451         imageTexelsInfo.mipLevels                               = imageSparseInfo.mipLevels;
452         imageTexelsInfo.samples                                 = imageSparseInfo.samples;
453         imageTexelsInfo.tiling                                  = VK_IMAGE_TILING_OPTIMAL;
454         imageTexelsInfo.initialLayout                   = VK_IMAGE_LAYOUT_UNDEFINED;
455         imageTexelsInfo.usage                                   = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | imageOutputUsageFlags();
456         imageTexelsInfo.sharingMode                             = VK_SHARING_MODE_EXCLUSIVE;
457         imageTexelsInfo.queueFamilyIndexCount   = 0u;
458         imageTexelsInfo.pQueueFamilyIndices             = DE_NULL;
459
460         if (m_imageType == IMAGE_TYPE_CUBE || m_imageType == IMAGE_TYPE_CUBE_ARRAY)
461         {
462                 imageTexelsInfo.flags |= VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
463         }
464
465         const de::UniquePtr<Image> imageTexels(new Image(deviceInterface, *m_logicalDevice, *allocator, imageTexelsInfo, MemoryRequirement::Any));
466
467         // Create image to store residency info copied from sparse image
468         imageResidencyInfo                      = imageTexelsInfo;
469         imageResidencyInfo.format       = mapTextureFormat(m_residencyFormat);
470
471         const de::UniquePtr<Image> imageResidency(new Image(deviceInterface, *m_logicalDevice, *allocator, imageResidencyInfo, MemoryRequirement::Any));
472
473         // Create command buffer for compute and transfer oparations
474         const Unique<VkCommandPool>       commandPool(makeCommandPool(deviceInterface, *m_logicalDevice, extractQueue.queueFamilyIndex));
475         const Unique<VkCommandBuffer> commandBuffer(makeCommandBuffer(deviceInterface, *m_logicalDevice, *commandPool));
476
477         std::vector <VkBufferImageCopy> bufferImageSparseCopy(imageSparseInfo.mipLevels);
478
479         {
480                 deUint32 bufferOffset = 0u;
481                 for (deUint32 mipLevelNdx = 0u; mipLevelNdx < imageSparseInfo.mipLevels; ++mipLevelNdx)
482                 {
483                         bufferImageSparseCopy[mipLevelNdx] = makeBufferImageCopy(mipLevelExtents(imageSparseInfo.extent, mipLevelNdx), imageSparseInfo.arrayLayers, mipLevelNdx, static_cast<VkDeviceSize>(bufferOffset));
484                         bufferOffset += getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, m_format, mipLevelNdx, MEM_ALIGN_BUFFERIMAGECOPY_OFFSET);
485                 }
486         }
487
488         // Start recording commands
489         beginCommandBuffer(deviceInterface, *commandBuffer);
490
491         // Create input buffer
492         const VkBufferCreateInfo        inputBufferCreateInfo = makeBufferCreateInfo(imageSparseSizeInBytes, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
493         const de::UniquePtr<Buffer>     inputBuffer(new Buffer(deviceInterface, *m_logicalDevice, *allocator, inputBufferCreateInfo, MemoryRequirement::HostVisible));
494
495         // Fill input buffer with reference data
496         std::vector<deUint8> referenceData(imageSparseSizeInBytes);
497
498         for (deUint32 mipLevelNdx = 0u; mipLevelNdx < imageSparseInfo.mipLevels; ++mipLevelNdx)
499         {
500                 const deUint32 mipLevelSizeinBytes      = getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, m_format, mipLevelNdx);
501                 const deUint32 bufferOffset                     = static_cast<deUint32>(bufferImageSparseCopy[mipLevelNdx].bufferOffset);
502
503                 for (deUint32 byteNdx = 0u; byteNdx < mipLevelSizeinBytes; ++byteNdx)
504                 {
505                         referenceData[bufferOffset + byteNdx] = (deUint8)(mipLevelNdx + byteNdx);
506                 }
507         }
508
509         deMemcpy(inputBuffer->getAllocation().getHostPtr(), &referenceData[0], imageSparseSizeInBytes);
510         flushMappedMemoryRange(deviceInterface, *m_logicalDevice, inputBuffer->getAllocation().getMemory(), inputBuffer->getAllocation().getOffset(), imageSparseSizeInBytes);
511
512         {
513                 // Prepare input buffer for data transfer operation
514                 const VkBufferMemoryBarrier inputBufferBarrier = makeBufferMemoryBarrier
515                 (
516                         VK_ACCESS_HOST_WRITE_BIT,
517                         VK_ACCESS_TRANSFER_READ_BIT,
518                         inputBuffer->get(),
519                         0u,
520                         imageSparseSizeInBytes
521                 );
522
523                 deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 1u, &inputBufferBarrier, 0u, DE_NULL);
524         }
525
526         const VkImageSubresourceRange fullImageSubresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers);
527
528         {
529                 // Prepare sparse image for data transfer operation
530                 const VkImageMemoryBarrier imageSparseTransferDstBarrier = makeImageMemoryBarrier
531                 (
532                         0u,
533                         VK_ACCESS_TRANSFER_WRITE_BIT,
534                         VK_IMAGE_LAYOUT_UNDEFINED,
535                         VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
536                         sparseQueue.queueFamilyIndex != extractQueue.queueFamilyIndex ? sparseQueue.queueFamilyIndex  : VK_QUEUE_FAMILY_IGNORED,
537                         sparseQueue.queueFamilyIndex != extractQueue.queueFamilyIndex ? extractQueue.queueFamilyIndex : VK_QUEUE_FAMILY_IGNORED,
538                         *imageSparse,
539                         fullImageSubresourceRange
540                 );
541
542                 deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, 1u, &imageSparseTransferDstBarrier);
543         }
544
545         // Copy reference data from input buffer to sparse image
546         deviceInterface.cmdCopyBufferToImage(*commandBuffer, inputBuffer->get(), *imageSparse, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, static_cast<deUint32>(bufferImageSparseCopy.size()), &bufferImageSparseCopy[0]);
547
548         recordCommands(*allocator, *commandBuffer, imageSparseInfo, *imageSparse, imageTexels->get(), imageResidency->get());
549
550         const VkBufferCreateInfo        bufferTexelsInfo = makeBufferCreateInfo(imageSparseSizeInBytes, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
551         const de::UniquePtr<Buffer>     bufferTexels(new Buffer(deviceInterface, *m_logicalDevice, *allocator, bufferTexelsInfo, MemoryRequirement::HostVisible));
552
553         // Copy data from texels image to buffer
554         deviceInterface.cmdCopyImageToBuffer(*commandBuffer, imageTexels->get(), VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, bufferTexels->get(), static_cast<deUint32>(bufferImageSparseCopy.size()), &bufferImageSparseCopy[0]);
555
556         const deUint32                          imageResidencySizeInBytes = getImageSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, m_residencyFormat, imageSparseInfo.mipLevels, MEM_ALIGN_BUFFERIMAGECOPY_OFFSET);
557
558         const VkBufferCreateInfo        bufferResidencyInfo = makeBufferCreateInfo(imageResidencySizeInBytes, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
559         const de::UniquePtr<Buffer>     bufferResidency(new Buffer(deviceInterface, *m_logicalDevice, *allocator, bufferResidencyInfo, MemoryRequirement::HostVisible));
560
561         // Copy data from residency image to buffer
562         std::vector <VkBufferImageCopy> bufferImageResidencyCopy(imageSparseInfo.mipLevels);
563
564         {
565                 deUint32 bufferOffset = 0u;
566                 for (deUint32 mipLevelNdx = 0u; mipLevelNdx < imageSparseInfo.mipLevels; ++mipLevelNdx)
567                 {
568                         bufferImageResidencyCopy[mipLevelNdx] = makeBufferImageCopy(mipLevelExtents(imageSparseInfo.extent, mipLevelNdx), imageSparseInfo.arrayLayers, mipLevelNdx, static_cast<VkDeviceSize>(bufferOffset));
569                         bufferOffset += getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, m_residencyFormat, mipLevelNdx, MEM_ALIGN_BUFFERIMAGECOPY_OFFSET);
570                 }
571         }
572
573         deviceInterface.cmdCopyImageToBuffer(*commandBuffer, imageResidency->get(), VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, bufferResidency->get(), static_cast<deUint32>(bufferImageResidencyCopy.size()), &bufferImageResidencyCopy[0]);
574
575         {
576                 VkBufferMemoryBarrier bufferOutputHostReadBarriers[2];
577
578                 bufferOutputHostReadBarriers[0] = makeBufferMemoryBarrier
579                 (
580                         VK_ACCESS_TRANSFER_WRITE_BIT,
581                         VK_ACCESS_HOST_READ_BIT,
582                         bufferTexels->get(),
583                         0u,
584                         imageSparseSizeInBytes
585                 );
586
587                 bufferOutputHostReadBarriers[1] = makeBufferMemoryBarrier
588                 (
589                         VK_ACCESS_TRANSFER_WRITE_BIT,
590                         VK_ACCESS_HOST_READ_BIT,
591                         bufferResidency->get(),
592                         0u,
593                         imageResidencySizeInBytes
594                 );
595
596                 deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0u, 0u, DE_NULL, 2u, bufferOutputHostReadBarriers, 0u, DE_NULL);
597         }
598
599         // End recording commands
600         endCommandBuffer(deviceInterface, *commandBuffer);
601
602         const VkPipelineStageFlags stageBits[] = { VK_PIPELINE_STAGE_TRANSFER_BIT };
603
604         // Submit commands for execution and wait for completion
605         submitCommandsAndWait(deviceInterface, *m_logicalDevice, extractQueue.queueHandle, *commandBuffer, 1u, &memoryBindSemaphore.get(), stageBits);
606
607         // Wait for sparse queue to become idle
608         deviceInterface.queueWaitIdle(sparseQueue.queueHandle);
609
610         // Retrieve data from residency buffer to host memory
611         const Allocation& bufferResidencyAllocation = bufferResidency->getAllocation();
612         invalidateMappedMemoryRange(deviceInterface, *m_logicalDevice, bufferResidencyAllocation.getMemory(), bufferResidencyAllocation.getOffset(), imageResidencySizeInBytes);
613
614         const deUint32* bufferResidencyData = static_cast<const deUint32*>(bufferResidencyAllocation.getHostPtr());
615
616         deUint32 pixelOffsetNotAligned = 0u;
617         for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx)
618         {
619                 const deUint32 mipLevelSizeInBytes      = getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, m_residencyFormat, mipmapNdx);
620                 const deUint32 pixelOffsetAligned       = static_cast<deUint32>(bufferImageResidencyCopy[mipmapNdx].bufferOffset) / tcu::getPixelSize(m_residencyFormat);
621
622                 if (deMemCmp(&bufferResidencyData[pixelOffsetAligned], &residencyReferenceData[pixelOffsetNotAligned], mipLevelSizeInBytes) != 0)
623                         return tcu::TestStatus::fail("Failed");
624
625                 pixelOffsetNotAligned += mipLevelSizeInBytes / tcu::getPixelSize(m_residencyFormat);
626         }
627
628         // Retrieve data from texels buffer to host memory
629         const Allocation& bufferTexelsAllocation = bufferTexels->getAllocation();
630         invalidateMappedMemoryRange(deviceInterface, *m_logicalDevice, bufferTexelsAllocation.getMemory(), bufferTexelsAllocation.getOffset(), imageSparseSizeInBytes);
631
632         const deUint8* bufferTexelsData = static_cast<const deUint8*>(bufferTexelsAllocation.getHostPtr());
633
634         for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx)
635         {
636                 const deUint32 mipLevelSizeInBytes      = getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, m_format, mipmapNdx);
637                 const deUint32 bufferOffset                     = static_cast<deUint32>(bufferImageSparseCopy[mipmapNdx].bufferOffset);
638
639                 if (mipmapNdx < aspectRequirements.imageMipTailFirstLod)
640                 {
641                         if (mipmapNdx % MEMORY_BLOCK_TYPE_COUNT == MEMORY_BLOCK_BOUND)
642                         {
643                                 if (deMemCmp(&bufferTexelsData[bufferOffset], &referenceData[bufferOffset], mipLevelSizeInBytes) != 0)
644                                         return tcu::TestStatus::fail("Failed");
645                         }
646                         else if (getPhysicalDeviceProperties(instance, physicalDevice).sparseProperties.residencyNonResidentStrict)
647                         {
648                                 std::vector<deUint8> zeroData;
649                                 zeroData.assign(mipLevelSizeInBytes, 0u);
650
651                                 if (deMemCmp(&bufferTexelsData[bufferOffset], &zeroData[0], mipLevelSizeInBytes) != 0)
652                                         return tcu::TestStatus::fail("Failed");
653                         }
654                 }
655                 else
656                 {
657                         if (deMemCmp(&bufferTexelsData[bufferOffset], &referenceData[bufferOffset], mipLevelSizeInBytes) != 0)
658                                 return tcu::TestStatus::fail("Failed");
659                 }
660         }
661
662         return tcu::TestStatus::pass("Passed");
663 }
664
665 } // sparse
666 } // vkt