Merge vk-gl-cts/vulkan-cts-1.0.1 into vk-gl-cts/vulkan-cts-1.0.2
[platform/upstream/VK-GL-CTS.git] / external / vulkancts / modules / vulkan / sparse_resources / vktSparseResourcesShaderIntrinsicsBase.cpp
1 /*------------------------------------------------------------------------
2  * Vulkan Conformance Tests
3  * ------------------------
4  *
5  * Copyright (c) 2016 The Khronos Group Inc.
6  *
7  * Licensed under the Apache License, Version 2.0 (the "License");
8  * you may not use this file except in compliance with the License.
9  * You may obtain a copy of the License at
10  *
11  *      http://www.apache.org/licenses/LICENSE-2.0
12  *
13  * Unless required by applicable law or agreed to in writing, software
14  * distributed under the License is distributed on an "AS IS" BASIS,
15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  * See the License for the specific language governing permissions and
17  * limitations under the License.
18  *
19  *//*
20  * \file  vktSparseResourcesShaderIntrinsicsBase.cpp
21  * \brief Sparse Resources Shader Intrinsics Base Classes
22  *//*--------------------------------------------------------------------*/
23
24 #include "vktSparseResourcesShaderIntrinsicsBase.hpp"
25
26 using namespace vk;
27
28 namespace vkt
29 {
30 namespace sparse
31 {
32
33 tcu::UVec3 alignedDivide (const VkExtent3D& extent, const VkExtent3D& divisor)
34 {
35         tcu::UVec3 result;
36
37         result.x() = extent.width  / divisor.width  + ((extent.width  % divisor.width)  ? 1u : 0u);
38         result.y() = extent.height / divisor.height + ((extent.height % divisor.height) ? 1u : 0u);
39         result.z() = extent.depth  / divisor.depth  + ((extent.depth  % divisor.depth)  ? 1u : 0u);
40
41         return result;
42 }
43
44 std::string getOpTypeImageComponent (const tcu::TextureFormat& format)
45 {
46         switch (tcu::getTextureChannelClass(format.type))
47         {
48                 case tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER:
49                         return "OpTypeInt 32 0";
50                 case tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER:
51                         return "OpTypeInt 32 1";
52                 default:
53                         DE_ASSERT(0);
54                         return "";
55         }
56 }
57
58 std::string getImageComponentTypeName (const tcu::TextureFormat& format)
59 {
60         switch (tcu::getTextureChannelClass(format.type))
61         {
62                 case tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER:
63                         return "%type_uint";
64                 case tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER:
65                         return "%type_int";
66                 default:
67                         DE_ASSERT(0);
68                         return "";
69         }
70 }
71
72 std::string getImageComponentVec4TypeName (const tcu::TextureFormat& format)
73 {
74         switch (tcu::getTextureChannelClass(format.type))
75         {
76                 case tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER:
77                         return "%type_uvec4";
78                 case tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER:
79                         return "%type_ivec4";
80                 default:
81                         DE_ASSERT(0);
82                         return "";
83         }
84 }
85
86 std::string getOpTypeImageSparse (const ImageType                       imageType,
87                                                                   const tcu::TextureFormat&     format,
88                                                                   const std::string&            componentType,
89                                                                   const bool                            requiresSampler)
90 {
91         std::ostringstream      src;
92
93         src << "OpTypeImage " << componentType << " ";
94
95         switch (imageType)
96         {
97                 case IMAGE_TYPE_1D :
98                         src << "1D 0 0 0 ";
99                 break;
100                 case IMAGE_TYPE_1D_ARRAY :
101                         src << "1D 0 1 0 ";
102                 break;
103                 case IMAGE_TYPE_2D :
104                         src << "2D 0 0 0 ";
105                 break;
106                 case IMAGE_TYPE_2D_ARRAY :
107                         src << "2D 0 1 0 ";
108                 break;
109                 case IMAGE_TYPE_3D :
110                         src << "3D 0 0 0 ";
111                 break;
112                 case IMAGE_TYPE_CUBE :
113                         src << "Cube 0 0 0 ";
114                 break;
115                 case IMAGE_TYPE_CUBE_ARRAY :
116                         src << "Cube 0 1 0 ";
117                 break;
118                 default :
119                         DE_ASSERT(0);
120                 break;
121         };
122
123         if (requiresSampler)
124                 src << "1 ";
125         else
126                 src << "2 ";
127
128         switch (format.order)
129         {
130                 case tcu::TextureFormat::R:
131                         src << "R";
132                 break;
133                 case tcu::TextureFormat::RG:
134                         src << "Rg";
135                         break;
136                 case tcu::TextureFormat::RGB:
137                         src << "Rgb";
138                         break;
139                 case tcu::TextureFormat::RGBA:
140                         src << "Rgba";
141                 break;
142                 default:
143                         DE_ASSERT(0);
144                 break;
145         }
146
147         switch (format.type)
148         {
149                 case tcu::TextureFormat::SIGNED_INT8:
150                         src << "8i";
151                 break;
152                 case tcu::TextureFormat::SIGNED_INT16:
153                         src << "16i";
154                 break;
155                 case tcu::TextureFormat::SIGNED_INT32:
156                         src << "32i";
157                 break;
158                 case tcu::TextureFormat::UNSIGNED_INT8:
159                         src << "8ui";
160                 break;
161                 case tcu::TextureFormat::UNSIGNED_INT16:
162                         src << "16ui";
163                 break;
164                 case tcu::TextureFormat::UNSIGNED_INT32:
165                         src << "32ui";
166                 break;
167                 default:
168                         DE_ASSERT(0);
169                 break;
170         };
171
172         return src.str();
173 }
174
175 std::string getOpTypeImageResidency (const ImageType imageType)
176 {
177         std::ostringstream      src;
178
179         src << "OpTypeImage %type_uint ";
180
181         switch (imageType)
182         {
183                 case IMAGE_TYPE_1D :
184                         src << "1D 0 0 0 2 R32ui";
185                 break;
186                 case IMAGE_TYPE_1D_ARRAY :
187                         src << "1D 0 1 0 2 R32ui";
188                 break;
189                 case IMAGE_TYPE_2D :
190                         src << "2D 0 0 0 2 R32ui";
191                 break;
192                 case IMAGE_TYPE_2D_ARRAY :
193                         src << "2D 0 1 0 2 R32ui";
194                 break;
195                 case IMAGE_TYPE_3D :
196                         src << "3D 0 0 0 2 R32ui";
197                 break;
198                 case IMAGE_TYPE_CUBE :
199                         src << "Cube 0 0 0 2 R32ui";
200                 break;
201                 case IMAGE_TYPE_CUBE_ARRAY :
202                         src << "Cube 0 1 0 2 R32ui";
203                 break;
204                 default :
205                         DE_ASSERT(0);
206                 break;
207         };
208
209         return src.str();
210 }
211
212 tcu::TestStatus SparseShaderIntrinsicsInstanceBase::iterate (void)
213 {
214         const InstanceInterface&                        instance                                = m_context.getInstanceInterface();
215         const VkPhysicalDevice                          physicalDevice                  = m_context.getPhysicalDevice();
216         VkImageCreateInfo                                       imageSparseInfo;
217         VkImageCreateInfo                                       imageTexelsInfo;
218         VkImageCreateInfo                                       imageResidencyInfo;
219         VkSparseImageMemoryRequirements         aspectRequirements;
220         std::vector <deUint32>                          residencyReferenceData;
221         std::vector<DeviceMemorySp>                     deviceMemUniquePtrVec;
222
223         // Check if image size does not exceed device limits
224         if (!isImageSizeSupported(instance, physicalDevice, m_imageType, m_imageSize))
225                 TCU_THROW(NotSupportedError, "Image size not supported for device");
226
227         // Check if device supports sparse operations for image type
228         if (!checkSparseSupportForImageType(instance, physicalDevice, m_imageType))
229                 TCU_THROW(NotSupportedError, "Sparse residency for image type is not supported");
230
231         if (!getPhysicalDeviceFeatures(instance, physicalDevice).shaderResourceResidency)
232                 TCU_THROW(NotSupportedError, "Sparse resource residency information not supported in shader code.");
233
234         imageSparseInfo.sType                                   = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
235         imageSparseInfo.pNext                                   = DE_NULL;
236         imageSparseInfo.flags                                   = VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT | VK_IMAGE_CREATE_SPARSE_BINDING_BIT;
237         imageSparseInfo.imageType                               = mapImageType(m_imageType);
238         imageSparseInfo.format                                  = mapTextureFormat(m_format);
239         imageSparseInfo.extent                                  = makeExtent3D(getLayerSize(m_imageType, m_imageSize));
240         imageSparseInfo.arrayLayers                             = getNumLayers(m_imageType, m_imageSize);
241         imageSparseInfo.samples                                 = VK_SAMPLE_COUNT_1_BIT;
242         imageSparseInfo.tiling                                  = VK_IMAGE_TILING_OPTIMAL;
243         imageSparseInfo.initialLayout                   = VK_IMAGE_LAYOUT_UNDEFINED;
244         imageSparseInfo.usage                                   = VK_IMAGE_USAGE_TRANSFER_DST_BIT | imageSparseUsageFlags();
245         imageSparseInfo.sharingMode                             = VK_SHARING_MODE_EXCLUSIVE;
246         imageSparseInfo.queueFamilyIndexCount   = 0u;
247         imageSparseInfo.pQueueFamilyIndices             = DE_NULL;
248
249         if (m_imageType == IMAGE_TYPE_CUBE || m_imageType == IMAGE_TYPE_CUBE_ARRAY)
250         {
251                 imageSparseInfo.flags |= VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
252         }
253
254         {
255                 // Assign maximum allowed mipmap levels to image
256                 VkImageFormatProperties imageFormatProperties;
257                 instance.getPhysicalDeviceImageFormatProperties(physicalDevice,
258                         imageSparseInfo.format,
259                         imageSparseInfo.imageType,
260                         imageSparseInfo.tiling,
261                         imageSparseInfo.usage,
262                         imageSparseInfo.flags,
263                         &imageFormatProperties);
264
265                 imageSparseInfo.mipLevels = getImageMaxMipLevels(imageFormatProperties, imageSparseInfo.extent);
266         }
267
268         // Check if device supports sparse operations for image format
269         if (!checkSparseSupportForImageFormat(instance, physicalDevice, imageSparseInfo))
270                 TCU_THROW(NotSupportedError, "The image format does not support sparse operations");
271
272         {
273                 // Create logical device supporting both sparse and compute/graphics queues
274                 QueueRequirementsVec queueRequirements;
275                 queueRequirements.push_back(QueueRequirements(VK_QUEUE_SPARSE_BINDING_BIT, 1u));
276                 queueRequirements.push_back(QueueRequirements(getQueueFlags(), 1u));
277
278                 createDeviceSupportingQueues(queueRequirements);
279         }
280
281         const DeviceInterface&  deviceInterface = getDeviceInterface();
282
283         // Create queues supporting sparse binding operations and compute/graphics operations
284         const Queue&                    sparseQueue             = getQueue(VK_QUEUE_SPARSE_BINDING_BIT, 0);
285         const Queue&                    extractQueue    = getQueue(getQueueFlags(), 0);
286
287         // Create sparse image
288         const Unique<VkImage> imageSparse(createImage(deviceInterface, getDevice(), &imageSparseInfo));
289
290         // Create sparse image memory bind semaphore
291         const Unique<VkSemaphore> memoryBindSemaphore(makeSemaphore(deviceInterface, getDevice()));
292
293         const deUint32                    imageSparseSizeInBytes                = getImageSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, m_format, imageSparseInfo.mipLevels, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY);
294         const deUint32                    imageSizeInPixels                             = getImageSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, m_format, imageSparseInfo.mipLevels) / tcu::getPixelSize(m_format);
295
296         residencyReferenceData.assign(imageSizeInPixels, MEMORY_BLOCK_NOT_BOUND_VALUE);
297
298         {
299                 // Get sparse image general memory requirements
300                 const VkMemoryRequirements imageMemoryRequirements = getImageMemoryRequirements(deviceInterface, getDevice(), *imageSparse);
301
302                 // Check if required image memory size does not exceed device limits
303                 if (imageMemoryRequirements.size > getPhysicalDeviceProperties(instance, physicalDevice).limits.sparseAddressSpaceSize)
304                         TCU_THROW(NotSupportedError, "Required memory size for sparse resource exceeds device limits");
305
306                 DE_ASSERT((imageMemoryRequirements.size % imageMemoryRequirements.alignment) == 0);
307
308                 // Get sparse image sparse memory requirements
309                 const std::vector<VkSparseImageMemoryRequirements> sparseMemoryRequirements = getImageSparseMemoryRequirements(deviceInterface, getDevice(), *imageSparse);
310
311                 DE_ASSERT(sparseMemoryRequirements.size() != 0);
312
313                 const deUint32 colorAspectIndex = getSparseAspectRequirementsIndex(sparseMemoryRequirements, VK_IMAGE_ASPECT_COLOR_BIT);
314
315                 if (colorAspectIndex == NO_MATCH_FOUND)
316                         TCU_THROW(NotSupportedError, "Not supported image aspect - the test supports currently only VK_IMAGE_ASPECT_COLOR_BIT");
317
318                 aspectRequirements = sparseMemoryRequirements[colorAspectIndex];
319
320                 DE_ASSERT((aspectRequirements.imageMipTailSize % imageMemoryRequirements.alignment) == 0);
321
322                 const VkImageAspectFlags aspectMask                     = aspectRequirements.formatProperties.aspectMask;
323                 const VkExtent3D                 imageGranularity       = aspectRequirements.formatProperties.imageGranularity;
324                 const deUint32                   memoryType                     = findMatchingMemoryType(instance, physicalDevice, imageMemoryRequirements, MemoryRequirement::Any);
325
326                 if (memoryType == NO_MATCH_FOUND)
327                         return tcu::TestStatus::fail("No matching memory type found");
328
329                 deUint32 pixelOffset = 0u;
330
331                 std::vector<VkSparseImageMemoryBind>  imageResidencyMemoryBinds;
332                 std::vector<VkSparseMemoryBind>           imageMipTailBinds;
333
334                 // Bind memory for each mipmap level
335                 for (deUint32 mipLevelNdx = 0; mipLevelNdx < aspectRequirements.imageMipTailFirstLod; ++mipLevelNdx)
336                 {
337                         const deUint32 mipLevelSizeInPixels = getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, m_format, mipLevelNdx) / tcu::getPixelSize(m_format);
338
339                         if (mipLevelNdx % MEMORY_BLOCK_TYPE_COUNT == MEMORY_BLOCK_NOT_BOUND)
340                         {
341                                 pixelOffset += mipLevelSizeInPixels;
342                                 continue;
343                         }
344
345                         for (deUint32 pixelNdx = 0u; pixelNdx < mipLevelSizeInPixels; ++pixelNdx)
346                         {
347                                 residencyReferenceData[pixelOffset + pixelNdx] = MEMORY_BLOCK_BOUND_VALUE;
348                         }
349
350                         pixelOffset += mipLevelSizeInPixels;
351
352                         for (deUint32 layerNdx = 0; layerNdx < imageSparseInfo.arrayLayers; ++layerNdx)
353                         {
354                                 const VkExtent3D                 mipExtent                      = mipLevelExtents(imageSparseInfo.extent, mipLevelNdx);
355                                 const tcu::UVec3                 sparseBlocks           = alignedDivide(mipExtent, imageGranularity);
356                                 const deUint32                   numSparseBlocks        = sparseBlocks.x() * sparseBlocks.y() * sparseBlocks.z();
357                                 const VkImageSubresource subresource            = { aspectMask, mipLevelNdx, layerNdx };
358
359                                 const VkSparseImageMemoryBind imageMemoryBind = makeSparseImageMemoryBind(deviceInterface, getDevice(),
360                                         imageMemoryRequirements.alignment * numSparseBlocks, memoryType, subresource, makeOffset3D(0u, 0u, 0u), mipExtent);
361
362                                 deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
363
364                                 imageResidencyMemoryBinds.push_back(imageMemoryBind);
365                         }
366                 }
367
368                 if (aspectRequirements.imageMipTailFirstLod < imageSparseInfo.mipLevels)
369                 {
370                         if (aspectRequirements.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT)
371                         {
372                                 const VkSparseMemoryBind imageMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(),
373                                         aspectRequirements.imageMipTailSize, memoryType, aspectRequirements.imageMipTailOffset);
374
375                                 deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
376
377                                 imageMipTailBinds.push_back(imageMipTailMemoryBind);
378                         }
379                         else
380                         {
381                                 for (deUint32 layerNdx = 0; layerNdx < imageSparseInfo.arrayLayers; ++layerNdx)
382                                 {
383                                         const VkSparseMemoryBind imageMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(),
384                                                 aspectRequirements.imageMipTailSize, memoryType, aspectRequirements.imageMipTailOffset + layerNdx * aspectRequirements.imageMipTailStride);
385
386                                         deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
387
388                                         imageMipTailBinds.push_back(imageMipTailMemoryBind);
389                                 }
390                         }
391
392                         for (deUint32 pixelNdx = pixelOffset; pixelNdx < residencyReferenceData.size(); ++pixelNdx)
393                         {
394                                 residencyReferenceData[pixelNdx] = MEMORY_BLOCK_BOUND_VALUE;
395                         }
396                 }
397
398                 VkBindSparseInfo bindSparseInfo =
399                 {
400                         VK_STRUCTURE_TYPE_BIND_SPARSE_INFO,     //VkStructureType                                                       sType;
401                         DE_NULL,                                                        //const void*                                                           pNext;
402                         0u,                                                                     //deUint32                                                                      waitSemaphoreCount;
403                         DE_NULL,                                                        //const VkSemaphore*                                            pWaitSemaphores;
404                         0u,                                                                     //deUint32                                                                      bufferBindCount;
405                         DE_NULL,                                                        //const VkSparseBufferMemoryBindInfo*           pBufferBinds;
406                         0u,                                                                     //deUint32                                                                      imageOpaqueBindCount;
407                         DE_NULL,                                                        //const VkSparseImageOpaqueMemoryBindInfo*      pImageOpaqueBinds;
408                         0u,                                                                     //deUint32                                                                      imageBindCount;
409                         DE_NULL,                                                        //const VkSparseImageMemoryBindInfo*            pImageBinds;
410                         1u,                                                                     //deUint32                                                                      signalSemaphoreCount;
411                         &memoryBindSemaphore.get()                      //const VkSemaphore*                                            pSignalSemaphores;
412                 };
413
414                 VkSparseImageMemoryBindInfo               imageResidencyBindInfo;
415                 VkSparseImageOpaqueMemoryBindInfo imageMipTailBindInfo;
416
417                 if (imageResidencyMemoryBinds.size() > 0)
418                 {
419                         imageResidencyBindInfo.image            = *imageSparse;
420                         imageResidencyBindInfo.bindCount        = static_cast<deUint32>(imageResidencyMemoryBinds.size());
421                         imageResidencyBindInfo.pBinds           = &imageResidencyMemoryBinds[0];
422
423                         bindSparseInfo.imageBindCount           = 1u;
424                         bindSparseInfo.pImageBinds                      = &imageResidencyBindInfo;
425                 }
426
427                 if (imageMipTailBinds.size() > 0)
428                 {
429                         imageMipTailBindInfo.image                      = *imageSparse;
430                         imageMipTailBindInfo.bindCount          = static_cast<deUint32>(imageMipTailBinds.size());
431                         imageMipTailBindInfo.pBinds                     = &imageMipTailBinds[0];
432
433                         bindSparseInfo.imageOpaqueBindCount = 1u;
434                         bindSparseInfo.pImageOpaqueBinds        = &imageMipTailBindInfo;
435                 }
436
437                 // Submit sparse bind commands for execution
438                 VK_CHECK(deviceInterface.queueBindSparse(sparseQueue.queueHandle, 1u, &bindSparseInfo, DE_NULL));
439         }
440
441         // Create image to store texels copied from sparse image
442         imageTexelsInfo.sType                                   = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
443         imageTexelsInfo.pNext                                   = DE_NULL;
444         imageTexelsInfo.flags                                   = 0u;
445         imageTexelsInfo.imageType                               = imageSparseInfo.imageType;
446         imageTexelsInfo.format                                  = imageSparseInfo.format;
447         imageTexelsInfo.extent                                  = imageSparseInfo.extent;
448         imageTexelsInfo.arrayLayers                             = imageSparseInfo.arrayLayers;
449         imageTexelsInfo.mipLevels                               = imageSparseInfo.mipLevels;
450         imageTexelsInfo.samples                                 = imageSparseInfo.samples;
451         imageTexelsInfo.tiling                                  = VK_IMAGE_TILING_OPTIMAL;
452         imageTexelsInfo.initialLayout                   = VK_IMAGE_LAYOUT_UNDEFINED;
453         imageTexelsInfo.usage                                   = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | imageOutputUsageFlags();
454         imageTexelsInfo.sharingMode                             = VK_SHARING_MODE_EXCLUSIVE;
455         imageTexelsInfo.queueFamilyIndexCount   = 0u;
456         imageTexelsInfo.pQueueFamilyIndices             = DE_NULL;
457
458         if (m_imageType == IMAGE_TYPE_CUBE || m_imageType == IMAGE_TYPE_CUBE_ARRAY)
459         {
460                 imageTexelsInfo.flags |= VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
461         }
462
463         const Unique<VkImage>                   imageTexels                     (createImage(deviceInterface, getDevice(), &imageTexelsInfo));
464         const de::UniquePtr<Allocation> imageTexelsAlloc        (bindImage(deviceInterface, getDevice(), getAllocator(), *imageTexels, MemoryRequirement::Any));
465
466         // Create image to store residency info copied from sparse image
467         imageResidencyInfo                      = imageTexelsInfo;
468         imageResidencyInfo.format       = mapTextureFormat(m_residencyFormat);
469
470         const Unique<VkImage>                   imageResidency          (createImage(deviceInterface, getDevice(), &imageResidencyInfo));
471         const de::UniquePtr<Allocation> imageResidencyAlloc     (bindImage(deviceInterface, getDevice(), getAllocator(), *imageResidency, MemoryRequirement::Any));
472
473         // Create command buffer for compute and transfer oparations
474         const Unique<VkCommandPool>       commandPool(makeCommandPool(deviceInterface, getDevice(), extractQueue.queueFamilyIndex));
475         const Unique<VkCommandBuffer> commandBuffer(makeCommandBuffer(deviceInterface, getDevice(), *commandPool));
476
477         std::vector <VkBufferImageCopy> bufferImageSparseCopy(imageSparseInfo.mipLevels);
478
479         {
480                 deUint32 bufferOffset = 0u;
481                 for (deUint32 mipLevelNdx = 0u; mipLevelNdx < imageSparseInfo.mipLevels; ++mipLevelNdx)
482                 {
483                         bufferImageSparseCopy[mipLevelNdx] = makeBufferImageCopy(mipLevelExtents(imageSparseInfo.extent, mipLevelNdx), imageSparseInfo.arrayLayers, mipLevelNdx, static_cast<VkDeviceSize>(bufferOffset));
484                         bufferOffset += getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, m_format, mipLevelNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY);
485                 }
486         }
487
488         // Start recording commands
489         beginCommandBuffer(deviceInterface, *commandBuffer);
490
491         // Create input buffer
492         const VkBufferCreateInfo                inputBufferCreateInfo   = makeBufferCreateInfo(imageSparseSizeInBytes, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
493         const Unique<VkBuffer>                  inputBuffer                             (createBuffer(deviceInterface, getDevice(), &inputBufferCreateInfo));
494         const de::UniquePtr<Allocation> inputBufferAlloc                (bindBuffer(deviceInterface, getDevice(), getAllocator(), *inputBuffer, MemoryRequirement::HostVisible));
495
496         // Fill input buffer with reference data
497         std::vector<deUint8> referenceData(imageSparseSizeInBytes);
498
499         for (deUint32 mipLevelNdx = 0u; mipLevelNdx < imageSparseInfo.mipLevels; ++mipLevelNdx)
500         {
501                 const deUint32 mipLevelSizeinBytes      = getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, m_format, mipLevelNdx);
502                 const deUint32 bufferOffset                     = static_cast<deUint32>(bufferImageSparseCopy[mipLevelNdx].bufferOffset);
503
504                 for (deUint32 byteNdx = 0u; byteNdx < mipLevelSizeinBytes; ++byteNdx)
505                 {
506                         referenceData[bufferOffset + byteNdx] = (deUint8)(mipLevelNdx + byteNdx);
507                 }
508         }
509
510         deMemcpy(inputBufferAlloc->getHostPtr(), &referenceData[0], imageSparseSizeInBytes);
511         flushMappedMemoryRange(deviceInterface, getDevice(), inputBufferAlloc->getMemory(), inputBufferAlloc->getOffset(), imageSparseSizeInBytes);
512
513         {
514                 // Prepare input buffer for data transfer operation
515                 const VkBufferMemoryBarrier inputBufferBarrier = makeBufferMemoryBarrier
516                 (
517                         VK_ACCESS_HOST_WRITE_BIT,
518                         VK_ACCESS_TRANSFER_READ_BIT,
519                         *inputBuffer,
520                         0u,
521                         imageSparseSizeInBytes
522                 );
523
524                 deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 1u, &inputBufferBarrier, 0u, DE_NULL);
525         }
526
527         const VkImageSubresourceRange fullImageSubresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers);
528
529         {
530                 // Prepare sparse image for data transfer operation
531                 const VkImageMemoryBarrier imageSparseTransferDstBarrier = makeImageMemoryBarrier
532                 (
533                         0u,
534                         VK_ACCESS_TRANSFER_WRITE_BIT,
535                         VK_IMAGE_LAYOUT_UNDEFINED,
536                         VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
537                         sparseQueue.queueFamilyIndex != extractQueue.queueFamilyIndex ? sparseQueue.queueFamilyIndex  : VK_QUEUE_FAMILY_IGNORED,
538                         sparseQueue.queueFamilyIndex != extractQueue.queueFamilyIndex ? extractQueue.queueFamilyIndex : VK_QUEUE_FAMILY_IGNORED,
539                         *imageSparse,
540                         fullImageSubresourceRange
541                 );
542
543                 deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, 1u, &imageSparseTransferDstBarrier);
544         }
545
546         // Copy reference data from input buffer to sparse image
547         deviceInterface.cmdCopyBufferToImage(*commandBuffer, *inputBuffer, *imageSparse, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, static_cast<deUint32>(bufferImageSparseCopy.size()), &bufferImageSparseCopy[0]);
548
549         recordCommands(*commandBuffer, imageSparseInfo, *imageSparse, *imageTexels, *imageResidency);
550
551         const VkBufferCreateInfo                bufferTexelsCreateInfo  = makeBufferCreateInfo(imageSparseSizeInBytes, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
552         const Unique<VkBuffer>                  bufferTexels                    (createBuffer(deviceInterface, getDevice(), &bufferTexelsCreateInfo));
553         const de::UniquePtr<Allocation> bufferTexelsAlloc               (bindBuffer(deviceInterface, getDevice(), getAllocator(), *bufferTexels, MemoryRequirement::HostVisible));
554
555         // Copy data from texels image to buffer
556         deviceInterface.cmdCopyImageToBuffer(*commandBuffer, *imageTexels, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *bufferTexels, static_cast<deUint32>(bufferImageSparseCopy.size()), &bufferImageSparseCopy[0]);
557
558         const deUint32                          imageResidencySizeInBytes = getImageSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, m_residencyFormat, imageSparseInfo.mipLevels, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY);
559
560         const VkBufferCreateInfo                bufferResidencyCreateInfo       = makeBufferCreateInfo(imageResidencySizeInBytes, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
561         const Unique<VkBuffer>                  bufferResidency                         (createBuffer(deviceInterface, getDevice(), &bufferResidencyCreateInfo));
562         const de::UniquePtr<Allocation> bufferResidencyAlloc            (bindBuffer(deviceInterface, getDevice(), getAllocator(), *bufferResidency, MemoryRequirement::HostVisible));
563
564         // Copy data from residency image to buffer
565         std::vector <VkBufferImageCopy> bufferImageResidencyCopy(imageSparseInfo.mipLevels);
566
567         {
568                 deUint32 bufferOffset = 0u;
569                 for (deUint32 mipLevelNdx = 0u; mipLevelNdx < imageSparseInfo.mipLevels; ++mipLevelNdx)
570                 {
571                         bufferImageResidencyCopy[mipLevelNdx] = makeBufferImageCopy(mipLevelExtents(imageSparseInfo.extent, mipLevelNdx), imageSparseInfo.arrayLayers, mipLevelNdx, static_cast<VkDeviceSize>(bufferOffset));
572                         bufferOffset += getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, m_residencyFormat, mipLevelNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY);
573                 }
574         }
575
576         deviceInterface.cmdCopyImageToBuffer(*commandBuffer, *imageResidency, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *bufferResidency, static_cast<deUint32>(bufferImageResidencyCopy.size()), &bufferImageResidencyCopy[0]);
577
578         {
579                 VkBufferMemoryBarrier bufferOutputHostReadBarriers[2];
580
581                 bufferOutputHostReadBarriers[0] = makeBufferMemoryBarrier
582                 (
583                         VK_ACCESS_TRANSFER_WRITE_BIT,
584                         VK_ACCESS_HOST_READ_BIT,
585                         *bufferTexels,
586                         0u,
587                         imageSparseSizeInBytes
588                 );
589
590                 bufferOutputHostReadBarriers[1] = makeBufferMemoryBarrier
591                 (
592                         VK_ACCESS_TRANSFER_WRITE_BIT,
593                         VK_ACCESS_HOST_READ_BIT,
594                         *bufferResidency,
595                         0u,
596                         imageResidencySizeInBytes
597                 );
598
599                 deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0u, 0u, DE_NULL, 2u, bufferOutputHostReadBarriers, 0u, DE_NULL);
600         }
601
602         // End recording commands
603         endCommandBuffer(deviceInterface, *commandBuffer);
604
605         const VkPipelineStageFlags stageBits[] = { VK_PIPELINE_STAGE_TRANSFER_BIT };
606
607         // Submit commands for execution and wait for completion
608         submitCommandsAndWait(deviceInterface, getDevice(), extractQueue.queueHandle, *commandBuffer, 1u, &memoryBindSemaphore.get(), stageBits);
609
610         // Wait for sparse queue to become idle
611         deviceInterface.queueWaitIdle(sparseQueue.queueHandle);
612
613         // Retrieve data from residency buffer to host memory
614         invalidateMappedMemoryRange(deviceInterface, getDevice(), bufferResidencyAlloc->getMemory(), bufferResidencyAlloc->getOffset(), imageResidencySizeInBytes);
615
616         const deUint32* bufferResidencyData = static_cast<const deUint32*>(bufferResidencyAlloc->getHostPtr());
617
618         deUint32 pixelOffsetNotAligned = 0u;
619         for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx)
620         {
621                 const deUint32 mipLevelSizeInBytes      = getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, m_residencyFormat, mipmapNdx);
622                 const deUint32 pixelOffsetAligned       = static_cast<deUint32>(bufferImageResidencyCopy[mipmapNdx].bufferOffset) / tcu::getPixelSize(m_residencyFormat);
623
624                 if (deMemCmp(&bufferResidencyData[pixelOffsetAligned], &residencyReferenceData[pixelOffsetNotAligned], mipLevelSizeInBytes) != 0)
625                         return tcu::TestStatus::fail("Failed");
626
627                 pixelOffsetNotAligned += mipLevelSizeInBytes / tcu::getPixelSize(m_residencyFormat);
628         }
629
630         // Retrieve data from texels buffer to host memory
631         invalidateMappedMemoryRange(deviceInterface, getDevice(), bufferTexelsAlloc->getMemory(), bufferTexelsAlloc->getOffset(), imageSparseSizeInBytes);
632
633         const deUint8* bufferTexelsData = static_cast<const deUint8*>(bufferTexelsAlloc->getHostPtr());
634
635         for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx)
636         {
637                 const deUint32 mipLevelSizeInBytes      = getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, m_format, mipmapNdx);
638                 const deUint32 bufferOffset                     = static_cast<deUint32>(bufferImageSparseCopy[mipmapNdx].bufferOffset);
639
640                 if (mipmapNdx < aspectRequirements.imageMipTailFirstLod)
641                 {
642                         if (mipmapNdx % MEMORY_BLOCK_TYPE_COUNT == MEMORY_BLOCK_BOUND)
643                         {
644                                 if (deMemCmp(&bufferTexelsData[bufferOffset], &referenceData[bufferOffset], mipLevelSizeInBytes) != 0)
645                                         return tcu::TestStatus::fail("Failed");
646                         }
647                         else if (getPhysicalDeviceProperties(instance, physicalDevice).sparseProperties.residencyNonResidentStrict)
648                         {
649                                 std::vector<deUint8> zeroData;
650                                 zeroData.assign(mipLevelSizeInBytes, 0u);
651
652                                 if (deMemCmp(&bufferTexelsData[bufferOffset], &zeroData[0], mipLevelSizeInBytes) != 0)
653                                         return tcu::TestStatus::fail("Failed");
654                         }
655                 }
656                 else
657                 {
658                         if (deMemCmp(&bufferTexelsData[bufferOffset], &referenceData[bufferOffset], mipLevelSizeInBytes) != 0)
659                                 return tcu::TestStatus::fail("Failed");
660                 }
661         }
662
663         return tcu::TestStatus::pass("Passed");
664 }
665
666 } // sparse
667 } // vkt