Improve GLSL source program support
[platform/upstream/VK-GL-CTS.git] / external / vulkancts / modules / vulkan / sparse_resources / vktSparseResourcesMipmapSparseResidency.cpp
1 /*------------------------------------------------------------------------
2  * Vulkan Conformance Tests
3  * ------------------------
4  *
5  * Copyright (c) 2016 The Khronos Group Inc.
6  *
7  * Licensed under the Apache License, Version 2.0 (the "License");
8  * you may not use this file except in compliance with the License.
9  * You may obtain a copy of the License at
10  *
11  *      http://www.apache.org/licenses/LICENSE-2.0
12  *
13  * Unless required by applicable law or agreed to in writing, software
14  * distributed under the License is distributed on an "AS IS" BASIS,
15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  * See the License for the specific language governing permissions and
17  * limitations under the License.
18  *
19  *//*!
20  * \file  vktSparseResourcesMipmapSparseResidency.cpp
21  * \brief Sparse partially resident images with mipmaps tests
22  *//*--------------------------------------------------------------------*/
23
24 #include "vktSparseResourcesMipmapSparseResidency.hpp"
25 #include "vktSparseResourcesTestsUtil.hpp"
26 #include "vktSparseResourcesBase.hpp"
27 #include "vktTestCaseUtil.hpp"
28
29 #include "vkDefs.hpp"
30 #include "vkRef.hpp"
31 #include "vkRefUtil.hpp"
32 #include "vkPlatform.hpp"
33 #include "vkPrograms.hpp"
34 #include "vkMemUtil.hpp"
35 #include "vkBuilderUtil.hpp"
36 #include "vkImageUtil.hpp"
37 #include "vkQueryUtil.hpp"
38 #include "vkTypeUtil.hpp"
39
40 #include "deUniquePtr.hpp"
41 #include "deStringUtil.hpp"
42
43 #include <string>
44 #include <vector>
45
46 using namespace vk;
47
48 namespace vkt
49 {
50 namespace sparse
51 {
52 namespace
53 {
54
55 tcu::UVec3 alignedDivide (const VkExtent3D& extent, const VkExtent3D& divisor)
56 {
57         tcu::UVec3 result;
58
59         result.x() = extent.width  / divisor.width  + ((extent.width  % divisor.width)  ? 1u : 0u);
60         result.y() = extent.height / divisor.height + ((extent.height % divisor.height) ? 1u : 0u);
61         result.z() = extent.depth  / divisor.depth  + ((extent.depth  % divisor.depth)  ? 1u : 0u);
62
63         return result;
64 }
65
66 class MipmapSparseResidencyCase : public TestCase
67 {
68 public:
69                                         MipmapSparseResidencyCase       (tcu::TestContext&                      testCtx,
70                                                                                                  const std::string&                     name,
71                                                                                                  const std::string&                     description,
72                                                                                                  const ImageType                        imageType,
73                                                                                                  const tcu::UVec3&                      imageSize,
74                                                                                                  const tcu::TextureFormat&      format);
75
76         TestInstance*   createInstance                          (Context&                                       context) const;
77
78 private:
79         const ImageType                         m_imageType;
80         const tcu::UVec3                        m_imageSize;
81         const tcu::TextureFormat        m_format;
82 };
83
84 MipmapSparseResidencyCase::MipmapSparseResidencyCase (tcu::TestContext&                 testCtx,
85                                                                                                           const std::string&            name,
86                                                                                                           const std::string&            description,
87                                                                                                           const ImageType                       imageType,
88                                                                                                           const tcu::UVec3&                     imageSize,
89                                                                                                           const tcu::TextureFormat&     format)
90         : TestCase                              (testCtx, name, description)
91         , m_imageType                   (imageType)
92         , m_imageSize                   (imageSize)
93         , m_format                              (format)
94 {
95 }
96
97 class MipmapSparseResidencyInstance : public SparseResourcesBaseInstance
98 {
99 public:
100                                         MipmapSparseResidencyInstance   (Context&                                                                        context,
101                                                                                                          const ImageType                                                         imageType,
102                                                                                                          const tcu::UVec3&                                                       imageSize,
103                                                                                                          const tcu::TextureFormat&                                       format);
104
105         tcu::TestStatus iterate                                                 (void);
106
107 private:
108
109         const ImageType                         m_imageType;
110         const tcu::UVec3                        m_imageSize;
111         const tcu::TextureFormat        m_format;
112 };
113
114 MipmapSparseResidencyInstance::MipmapSparseResidencyInstance (Context&                                  context,
115                                                                                                                           const ImageType                       imageType,
116                                                                                                                           const tcu::UVec3&                     imageSize,
117                                                                                                                           const tcu::TextureFormat&     format)
118         : SparseResourcesBaseInstance   (context)
119         , m_imageType                                   (imageType)
120         , m_imageSize                                   (imageSize)
121         , m_format                                              (format)
122 {
123 }
124
125 tcu::TestStatus MipmapSparseResidencyInstance::iterate (void)
126 {
127         const InstanceInterface&        instance                = m_context.getInstanceInterface();
128         const VkPhysicalDevice          physicalDevice  = m_context.getPhysicalDevice();
129         VkImageCreateInfo                       imageSparseInfo;
130         std::vector<DeviceMemorySp>     deviceMemUniquePtrVec;
131
132         // Check if image size does not exceed device limits
133         if (!isImageSizeSupported(instance, physicalDevice, m_imageType, m_imageSize))
134                 TCU_THROW(NotSupportedError, "Image size not supported for device");
135
136         // Check if device supports sparse operations for image type
137         if (!checkSparseSupportForImageType(instance, physicalDevice, m_imageType))
138                 TCU_THROW(NotSupportedError, "Sparse residency for image type is not supported");
139
140         imageSparseInfo.sType                                   = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
141         imageSparseInfo.pNext                                   = DE_NULL;
142         imageSparseInfo.flags                                   = VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT | VK_IMAGE_CREATE_SPARSE_BINDING_BIT;
143         imageSparseInfo.imageType                               = mapImageType(m_imageType);
144         imageSparseInfo.format                                  = mapTextureFormat(m_format);
145         imageSparseInfo.extent                                  = makeExtent3D(getLayerSize(m_imageType, m_imageSize));
146         imageSparseInfo.arrayLayers                             = getNumLayers(m_imageType, m_imageSize);
147         imageSparseInfo.samples                                 = VK_SAMPLE_COUNT_1_BIT;
148         imageSparseInfo.tiling                                  = VK_IMAGE_TILING_OPTIMAL;
149         imageSparseInfo.initialLayout                   = VK_IMAGE_LAYOUT_UNDEFINED;
150         imageSparseInfo.usage                                   = VK_IMAGE_USAGE_TRANSFER_DST_BIT |
151                                                                                           VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
152         imageSparseInfo.sharingMode                             = VK_SHARING_MODE_EXCLUSIVE;
153         imageSparseInfo.queueFamilyIndexCount   = 0u;
154         imageSparseInfo.pQueueFamilyIndices             = DE_NULL;
155
156         if (m_imageType == IMAGE_TYPE_CUBE || m_imageType == IMAGE_TYPE_CUBE_ARRAY)
157         {
158                 imageSparseInfo.flags |= VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
159         }
160
161         {
162                 VkImageFormatProperties imageFormatProperties;
163                 instance.getPhysicalDeviceImageFormatProperties(physicalDevice,
164                         imageSparseInfo.format,
165                         imageSparseInfo.imageType,
166                         imageSparseInfo.tiling,
167                         imageSparseInfo.usage,
168                         imageSparseInfo.flags,
169                         &imageFormatProperties);
170
171                 imageSparseInfo.mipLevels = getImageMaxMipLevels(imageFormatProperties, imageSparseInfo.extent);
172         }
173
174         // Check if device supports sparse operations for image format
175         if (!checkSparseSupportForImageFormat(instance, physicalDevice, imageSparseInfo))
176                 TCU_THROW(NotSupportedError, "The image format does not support sparse operations");
177
178         {
179                 // Create logical device supporting both sparse and compute operations
180                 QueueRequirementsVec queueRequirements;
181                 queueRequirements.push_back(QueueRequirements(VK_QUEUE_SPARSE_BINDING_BIT, 1u));
182                 queueRequirements.push_back(QueueRequirements(VK_QUEUE_COMPUTE_BIT, 1u));
183
184                 createDeviceSupportingQueues(queueRequirements);
185         }
186
187         const DeviceInterface&  deviceInterface = getDeviceInterface();
188         const Queue&                    sparseQueue             = getQueue(VK_QUEUE_SPARSE_BINDING_BIT, 0);
189         const Queue&                    computeQueue    = getQueue(VK_QUEUE_COMPUTE_BIT, 0);
190
191         // Create sparse image
192         const Unique<VkImage> imageSparse(createImage(deviceInterface, getDevice(), &imageSparseInfo));
193
194         // Create sparse image memory bind semaphore
195         const Unique<VkSemaphore> imageMemoryBindSemaphore(createSemaphore(deviceInterface, getDevice()));
196
197         {
198                 // Get sparse image general memory requirements
199                 const VkMemoryRequirements imageMemoryRequirements = getImageMemoryRequirements(deviceInterface, getDevice(), *imageSparse);
200
201                 // Check if required image memory size does not exceed device limits
202                 if (imageMemoryRequirements.size > getPhysicalDeviceProperties(instance, physicalDevice).limits.sparseAddressSpaceSize)
203                         TCU_THROW(NotSupportedError, "Required memory size for sparse resource exceeds device limits");
204
205                 DE_ASSERT((imageMemoryRequirements.size % imageMemoryRequirements.alignment) == 0);
206
207                 // Get sparse image sparse memory requirements
208                 const std::vector<VkSparseImageMemoryRequirements> sparseMemoryRequirements = getImageSparseMemoryRequirements(deviceInterface, getDevice(), *imageSparse);
209
210                 DE_ASSERT(sparseMemoryRequirements.size() != 0);
211
212                 const deUint32 colorAspectIndex = getSparseAspectRequirementsIndex(sparseMemoryRequirements, VK_IMAGE_ASPECT_COLOR_BIT);
213
214                 if (colorAspectIndex == NO_MATCH_FOUND)
215                         TCU_THROW(NotSupportedError, "Not supported image aspect - the test supports currently only VK_IMAGE_ASPECT_COLOR_BIT");
216
217                 const VkSparseImageMemoryRequirements   aspectRequirements      = sparseMemoryRequirements[colorAspectIndex];
218                 const VkImageAspectFlags                                aspectMask                      = aspectRequirements.formatProperties.aspectMask;
219                 const VkExtent3D                                                imageGranularity        = aspectRequirements.formatProperties.imageGranularity;
220
221                 DE_ASSERT((aspectRequirements.imageMipTailSize % imageMemoryRequirements.alignment) == 0);
222
223                 std::vector<VkSparseImageMemoryBind>    imageResidencyMemoryBinds;
224                 std::vector<VkSparseMemoryBind>                 imageMipTailMemoryBinds;
225
226                 const deUint32                                                  memoryType = findMatchingMemoryType(instance, physicalDevice, imageMemoryRequirements, MemoryRequirement::Any);
227
228                 if (memoryType == NO_MATCH_FOUND)
229                         return tcu::TestStatus::fail("No matching memory type found");
230
231                 // Bind memory for each layer
232                 for (deUint32 layerNdx = 0; layerNdx < imageSparseInfo.arrayLayers; ++layerNdx)
233                 {
234                         for (deUint32 mipLevelNdx = 0; mipLevelNdx < aspectRequirements.imageMipTailFirstLod; ++mipLevelNdx)
235                         {
236                                 const VkExtent3D                        mipExtent                       = mipLevelExtents(imageSparseInfo.extent, mipLevelNdx);
237                                 const tcu::UVec3                        sparseBlocks            = alignedDivide(mipExtent, imageGranularity);
238                                 const deUint32                          numSparseBlocks         = sparseBlocks.x() * sparseBlocks.y() * sparseBlocks.z();
239                                 const VkImageSubresource        subresource                     = { aspectMask, mipLevelNdx, layerNdx };
240
241                                 const VkSparseImageMemoryBind imageMemoryBind = makeSparseImageMemoryBind(deviceInterface, getDevice(),
242                                         imageMemoryRequirements.alignment * numSparseBlocks, memoryType, subresource, makeOffset3D(0u, 0u, 0u), mipExtent);
243
244                                 deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
245
246                                 imageResidencyMemoryBinds.push_back(imageMemoryBind);
247                         }
248
249                         if (!(aspectRequirements.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT) && aspectRequirements.imageMipTailFirstLod < imageSparseInfo.mipLevels)
250                         {
251                                 const VkSparseMemoryBind imageMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(),
252                                         aspectRequirements.imageMipTailSize, memoryType, aspectRequirements.imageMipTailOffset + layerNdx * aspectRequirements.imageMipTailStride);
253
254                                 deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
255
256                                 imageMipTailMemoryBinds.push_back(imageMipTailMemoryBind);
257                         }
258                 }
259
260                 if ((aspectRequirements.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT) && aspectRequirements.imageMipTailFirstLod < imageSparseInfo.mipLevels)
261                 {
262                         const VkSparseMemoryBind imageMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(),
263                                 aspectRequirements.imageMipTailSize, memoryType, aspectRequirements.imageMipTailOffset);
264
265                         deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
266
267                         imageMipTailMemoryBinds.push_back(imageMipTailMemoryBind);
268                 }
269
270                 VkBindSparseInfo bindSparseInfo =
271                 {
272                         VK_STRUCTURE_TYPE_BIND_SPARSE_INFO,                     //VkStructureType                                                       sType;
273                         DE_NULL,                                                                        //const void*                                                           pNext;
274                         0u,                                                                                     //deUint32                                                                      waitSemaphoreCount;
275                         DE_NULL,                                                                        //const VkSemaphore*                                            pWaitSemaphores;
276                         0u,                                                                                     //deUint32                                                                      bufferBindCount;
277                         DE_NULL,                                                                        //const VkSparseBufferMemoryBindInfo*           pBufferBinds;
278                         0u,                                                                                     //deUint32                                                                      imageOpaqueBindCount;
279                         DE_NULL,                                                                        //const VkSparseImageOpaqueMemoryBindInfo*      pImageOpaqueBinds;
280                         0u,                                                                                     //deUint32                                                                      imageBindCount;
281                         DE_NULL,                                                                        //const VkSparseImageMemoryBindInfo*            pImageBinds;
282                         1u,                                                                                     //deUint32                                                                      signalSemaphoreCount;
283                         &imageMemoryBindSemaphore.get()                         //const VkSemaphore*                                            pSignalSemaphores;
284                 };
285
286                 VkSparseImageMemoryBindInfo                     imageResidencyBindInfo;
287                 VkSparseImageOpaqueMemoryBindInfo       imageMipTailBindInfo;
288
289                 if (imageResidencyMemoryBinds.size() > 0)
290                 {
291                         imageResidencyBindInfo.image            = *imageSparse;
292                         imageResidencyBindInfo.bindCount        = static_cast<deUint32>(imageResidencyMemoryBinds.size());
293                         imageResidencyBindInfo.pBinds           = &imageResidencyMemoryBinds[0];
294
295                         bindSparseInfo.imageBindCount           = 1u;
296                         bindSparseInfo.pImageBinds                      = &imageResidencyBindInfo;
297                 }
298
299                 if (imageMipTailMemoryBinds.size() > 0)
300                 {
301                         imageMipTailBindInfo.image                      = *imageSparse;
302                         imageMipTailBindInfo.bindCount          = static_cast<deUint32>(imageMipTailMemoryBinds.size());
303                         imageMipTailBindInfo.pBinds                     = &imageMipTailMemoryBinds[0];
304
305                         bindSparseInfo.imageOpaqueBindCount     = 1u;
306                         bindSparseInfo.pImageOpaqueBinds        = &imageMipTailBindInfo;
307                 }
308
309                 // Submit sparse bind commands for execution
310                 VK_CHECK(deviceInterface.queueBindSparse(sparseQueue.queueHandle, 1u, &bindSparseInfo, DE_NULL));
311         }
312
313         // Create command buffer for compute and transfer oparations
314         const Unique<VkCommandPool>       commandPool(makeCommandPool(deviceInterface, getDevice(), computeQueue.queueFamilyIndex));
315         const Unique<VkCommandBuffer> commandBuffer(allocateCommandBuffer(deviceInterface, getDevice(), *commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY));
316
317         std::vector <VkBufferImageCopy> bufferImageCopy(imageSparseInfo.mipLevels);
318
319         {
320                 deUint32 bufferOffset = 0;
321                 for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; mipmapNdx++)
322                 {
323                         bufferImageCopy[mipmapNdx] = makeBufferImageCopy(mipLevelExtents(imageSparseInfo.extent, mipmapNdx), imageSparseInfo.arrayLayers, mipmapNdx, static_cast<VkDeviceSize>(bufferOffset));
324                         bufferOffset += getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, m_format, mipmapNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY);
325                 }
326         }
327
328         // Start recording commands
329         beginCommandBuffer(deviceInterface, *commandBuffer);
330
331         const deUint32                                  imageSizeInBytes                = getImageSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, m_format, imageSparseInfo.mipLevels, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY);
332         const VkBufferCreateInfo                inputBufferCreateInfo   = makeBufferCreateInfo(imageSizeInBytes, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
333         const Unique<VkBuffer>                  inputBuffer                             (createBuffer(deviceInterface, getDevice(), &inputBufferCreateInfo));
334         const de::UniquePtr<Allocation> inputBufferAlloc                (bindBuffer(deviceInterface, getDevice(), getAllocator(), *inputBuffer, MemoryRequirement::HostVisible));
335
336         std::vector<deUint8> referenceData(imageSizeInBytes);
337
338         const VkMemoryRequirements imageMemoryRequirements = getImageMemoryRequirements(deviceInterface, getDevice(), *imageSparse);
339
340         for (deUint32 valueNdx = 0; valueNdx < imageSizeInBytes; ++valueNdx)
341         {
342                 referenceData[valueNdx] = static_cast<deUint8>((valueNdx % imageMemoryRequirements.alignment) + 1u);
343         }
344
345         deMemcpy(inputBufferAlloc->getHostPtr(), &referenceData[0], imageSizeInBytes);
346
347         flushMappedMemoryRange(deviceInterface, getDevice(), inputBufferAlloc->getMemory(), inputBufferAlloc->getOffset(), imageSizeInBytes);
348
349         {
350                 const VkBufferMemoryBarrier inputBufferBarrier = makeBufferMemoryBarrier
351                 (
352                         VK_ACCESS_HOST_WRITE_BIT,
353                         VK_ACCESS_TRANSFER_READ_BIT,
354                         *inputBuffer,
355                         0u,
356                         imageSizeInBytes
357                 );
358
359                 deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 1u, &inputBufferBarrier, 0u, DE_NULL);
360         }
361
362         {
363                 const VkImageMemoryBarrier imageSparseTransferDstBarrier = makeImageMemoryBarrier
364                 (
365                         0u,
366                         VK_ACCESS_TRANSFER_WRITE_BIT,
367                         VK_IMAGE_LAYOUT_UNDEFINED,
368                         VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
369                         sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex ? sparseQueue.queueFamilyIndex : VK_QUEUE_FAMILY_IGNORED,
370                         sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex ? computeQueue.queueFamilyIndex : VK_QUEUE_FAMILY_IGNORED,
371                         *imageSparse,
372                         makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers)
373                 );
374
375                 deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, 1u, &imageSparseTransferDstBarrier);
376         }
377
378         deviceInterface.cmdCopyBufferToImage(*commandBuffer, *inputBuffer, *imageSparse, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, static_cast<deUint32>(bufferImageCopy.size()), &bufferImageCopy[0]);
379
380         {
381                 const VkImageMemoryBarrier imageSparseTransferSrcBarrier = makeImageMemoryBarrier
382                 (
383                         VK_ACCESS_TRANSFER_WRITE_BIT,
384                         VK_ACCESS_TRANSFER_READ_BIT,
385                         VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
386                         VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
387                         *imageSparse,
388                         makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers)
389                 );
390
391                 deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, 1u, &imageSparseTransferSrcBarrier);
392         }
393
394         const VkBufferCreateInfo                outputBufferCreateInfo  = makeBufferCreateInfo(imageSizeInBytes, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
395         const Unique<VkBuffer>                  outputBuffer                    (createBuffer(deviceInterface, getDevice(), &outputBufferCreateInfo));
396         const de::UniquePtr<Allocation> outputBufferAlloc               (bindBuffer(deviceInterface, getDevice(), getAllocator(), *outputBuffer, MemoryRequirement::HostVisible));
397
398         deviceInterface.cmdCopyImageToBuffer(*commandBuffer, *imageSparse, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *outputBuffer, static_cast<deUint32>(bufferImageCopy.size()), &bufferImageCopy[0]);
399
400         {
401                 const VkBufferMemoryBarrier outputBufferBarrier = makeBufferMemoryBarrier
402                 (
403                         VK_ACCESS_TRANSFER_WRITE_BIT,
404                         VK_ACCESS_HOST_READ_BIT,
405                         *outputBuffer,
406                         0u,
407                         imageSizeInBytes
408                 );
409
410                 deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0u, 0u, DE_NULL, 1u, &outputBufferBarrier, 0u, DE_NULL);
411         }
412
413         // End recording commands
414         endCommandBuffer(deviceInterface, *commandBuffer);
415
416         const VkPipelineStageFlags stageBits[] = { VK_PIPELINE_STAGE_TRANSFER_BIT };
417
418         // Submit commands for execution and wait for completion
419         submitCommandsAndWait(deviceInterface, getDevice(), computeQueue.queueHandle, *commandBuffer, 1u, &imageMemoryBindSemaphore.get(), stageBits);
420
421         // Retrieve data from buffer to host memory
422         invalidateMappedMemoryRange(deviceInterface, getDevice(), outputBufferAlloc->getMemory(), outputBufferAlloc->getOffset(), imageSizeInBytes);
423
424         const deUint8* outputData = static_cast<const deUint8*>(outputBufferAlloc->getHostPtr());
425
426         // Wait for sparse queue to become idle
427         deviceInterface.queueWaitIdle(sparseQueue.queueHandle);
428
429         for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx)
430         {
431                 const deUint32 mipLevelSizeInBytes      = getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, m_format, mipmapNdx);
432                 const deUint32 bufferOffset                     = static_cast<deUint32>(bufferImageCopy[mipmapNdx].bufferOffset);
433
434                 if (deMemCmp(outputData + bufferOffset, &referenceData[bufferOffset], mipLevelSizeInBytes) != 0)
435                         return tcu::TestStatus::fail("Failed");
436         }
437
438         return tcu::TestStatus::pass("Passed");
439 }
440
441 TestInstance* MipmapSparseResidencyCase::createInstance (Context& context) const
442 {
443         return new MipmapSparseResidencyInstance(context, m_imageType, m_imageSize, m_format);
444 }
445
446 } // anonymous ns
447
448 tcu::TestCaseGroup* createMipmapSparseResidencyTests (tcu::TestContext& testCtx)
449 {
450         de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "mipmap_sparse_residency", "Mipmap Sparse Residency"));
451
452         static const deUint32 sizeCountPerImageType = 3u;
453
454         struct ImageParameters
455         {
456                 ImageType       imageType;
457                 tcu::UVec3      imageSizes[sizeCountPerImageType];
458         };
459
460         static const ImageParameters imageParametersArray[] =
461         {
462                 { IMAGE_TYPE_2D,                 { tcu::UVec3(512u, 256u, 1u),  tcu::UVec3(1024u, 128u, 1u), tcu::UVec3(11u,  137u, 1u) } },
463                 { IMAGE_TYPE_2D_ARRAY,   { tcu::UVec3(512u, 256u, 6u),  tcu::UVec3(1024u, 128u, 8u), tcu::UVec3(11u,  137u, 3u) } },
464                 { IMAGE_TYPE_CUBE,               { tcu::UVec3(256u, 256u, 1u),  tcu::UVec3(128u,  128u, 1u), tcu::UVec3(137u, 137u, 1u) } },
465                 { IMAGE_TYPE_CUBE_ARRAY, { tcu::UVec3(256u, 256u, 6u),  tcu::UVec3(128u,  128u, 8u), tcu::UVec3(137u, 137u, 3u) } },
466                 { IMAGE_TYPE_3D,                 { tcu::UVec3(256u, 256u, 16u), tcu::UVec3(1024u, 128u, 8u), tcu::UVec3(11u,  137u, 3u) } }
467         };
468
469         static const tcu::TextureFormat formats[] =
470         {
471                 tcu::TextureFormat(tcu::TextureFormat::R,        tcu::TextureFormat::SIGNED_INT32),
472                 tcu::TextureFormat(tcu::TextureFormat::R,        tcu::TextureFormat::SIGNED_INT16),
473                 tcu::TextureFormat(tcu::TextureFormat::R,        tcu::TextureFormat::SIGNED_INT8),
474                 tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNSIGNED_INT32),
475                 tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNSIGNED_INT16),
476                 tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNSIGNED_INT8)
477         };
478
479         for (deInt32 imageTypeNdx = 0; imageTypeNdx < DE_LENGTH_OF_ARRAY(imageParametersArray); ++imageTypeNdx)
480         {
481                 const ImageType                                 imageType = imageParametersArray[imageTypeNdx].imageType;
482                 de::MovePtr<tcu::TestCaseGroup> imageTypeGroup(new tcu::TestCaseGroup(testCtx, getImageTypeName(imageType).c_str(), ""));
483
484                 for (deInt32 formatNdx = 0; formatNdx < DE_LENGTH_OF_ARRAY(formats); ++formatNdx)
485                 {
486                         const tcu::TextureFormat&               format = formats[formatNdx];
487                         de::MovePtr<tcu::TestCaseGroup> formatGroup(new tcu::TestCaseGroup(testCtx, getShaderImageFormatQualifier(format).c_str(), ""));
488
489                         for (deInt32 imageSizeNdx = 0; imageSizeNdx < DE_LENGTH_OF_ARRAY(imageParametersArray[imageTypeNdx].imageSizes); ++imageSizeNdx)
490                         {
491                                 const tcu::UVec3 imageSize = imageParametersArray[imageTypeNdx].imageSizes[imageSizeNdx];
492
493                                 std::ostringstream stream;
494                                 stream << imageSize.x() << "_" << imageSize.y() << "_" << imageSize.z();
495
496                                 formatGroup->addChild(new MipmapSparseResidencyCase(testCtx, stream.str(), "", imageType, imageSize, format));
497                         }
498                         imageTypeGroup->addChild(formatGroup.release());
499                 }
500                 testGroup->addChild(imageTypeGroup.release());
501         }
502
503         return testGroup.release();
504 }
505
506 } // sparse
507 } // vkt