Merge "Fix color change verification in dithering tests" into nougat-cts-dev am:...
[platform/upstream/VK-GL-CTS.git] / external / vulkancts / modules / vulkan / api / vktApiFeatureInfo.cpp
1 /*-------------------------------------------------------------------------
2  * Vulkan Conformance Tests
3  * ------------------------
4  *
5  * Copyright (c) 2015 Google Inc.
6  *
7  * Licensed under the Apache License, Version 2.0 (the "License");
8  * you may not use this file except in compliance with the License.
9  * You may obtain a copy of the License at
10  *
11  *      http://www.apache.org/licenses/LICENSE-2.0
12  *
13  * Unless required by applicable law or agreed to in writing, software
14  * distributed under the License is distributed on an "AS IS" BASIS,
15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  * See the License for the specific language governing permissions and
17  * limitations under the License.
18  *
19  *//*!
20  * \file
21  * \brief Api Feature Query tests
22  *//*--------------------------------------------------------------------*/
23
24 #include "vktApiFeatureInfo.hpp"
25
26 #include "vktTestCaseUtil.hpp"
27 #include "vktTestGroupUtil.hpp"
28
29 #include "vkPlatform.hpp"
30 #include "vkStrUtil.hpp"
31 #include "vkRef.hpp"
32 #include "vkDeviceUtil.hpp"
33 #include "vkQueryUtil.hpp"
34 #include "vkImageUtil.hpp"
35 #include "vkApiVersion.hpp"
36
37 #include "tcuTestLog.hpp"
38 #include "tcuFormatUtil.hpp"
39 #include "tcuTextureUtil.hpp"
40 #include "tcuResultCollector.hpp"
41
42 #include "deUniquePtr.hpp"
43 #include "deString.h"
44 #include "deStringUtil.hpp"
45 #include "deSTLUtil.hpp"
46 #include "deMemory.h"
47 #include "deMath.h"
48
49 #include <vector>
50 #include <set>
51 #include <string>
52
53 namespace vkt
54 {
55 namespace api
56 {
57 namespace
58 {
59
60 using namespace vk;
61 using std::vector;
62 using std::set;
63 using std::string;
64 using tcu::TestLog;
65 using tcu::ScopedLogSection;
66
67 enum
68 {
69         GUARD_SIZE                                                              = 0x20,                 //!< Number of bytes to check
70         GUARD_VALUE                                                             = 0xcd,                 //!< Data pattern
71 };
72
73 static const VkDeviceSize MINIMUM_REQUIRED_IMAGE_RESOURCE_SIZE =        (1LLU<<31);     //!< Minimum value for VkImageFormatProperties::maxResourceSize (2GiB)
74
75 enum LimitFormat
76 {
77         LIMIT_FORMAT_SIGNED_INT,
78         LIMIT_FORMAT_UNSIGNED_INT,
79         LIMIT_FORMAT_FLOAT,
80         LIMIT_FORMAT_DEVICE_SIZE,
81         LIMIT_FORMAT_BITMASK,
82
83         LIMIT_FORMAT_LAST
84 };
85
86 enum LimitType
87 {
88         LIMIT_TYPE_MIN,
89         LIMIT_TYPE_MAX,
90         LIMIT_TYPE_NONE,
91
92         LIMIT_TYPE_LAST
93 };
94
95 #define LIMIT(_X_)              DE_OFFSET_OF(VkPhysicalDeviceLimits, _X_), (const char*)(#_X_)
96 #define FEATURE(_X_)    DE_OFFSET_OF(VkPhysicalDeviceFeatures, _X_)
97
98 inline bool isExtensionSupported (const vector<string>& extensionStrings, const string& extensionName)
99 {
100         return de::contains(extensionStrings.begin(), extensionStrings.end(), extensionName);
101 }
102
103 bool validateFeatureLimits(VkPhysicalDeviceProperties* properties, VkPhysicalDeviceFeatures* features, TestLog& log)
104 {
105         bool                                            limitsOk        = true;
106         VkPhysicalDeviceLimits*         limits          = &properties->limits;
107         struct FeatureLimitTable
108         {
109                 deUint32                offset;
110                 const char*             name;
111                 deUint32                uintVal;                        //!< Format is UNSIGNED_INT
112                 deInt32                 intVal;                         //!< Format is SIGNED_INT
113                 deUint64                deviceSizeVal;          //!< Format is DEVICE_SIZE
114                 float                   floatVal;                       //!< Format is FLOAT
115                 LimitFormat             format;
116                 LimitType               type;
117                 deInt32                 unsuppTableNdx;
118         } featureLimitTable[] =   //!< Based on 1.0.28 Vulkan spec
119         {
120                 { LIMIT(maxImageDimension1D),                                                           4096, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
121                 { LIMIT(maxImageDimension2D),                                                           4096, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1 },
122                 { LIMIT(maxImageDimension3D),                                                           256, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
123                 { LIMIT(maxImageDimensionCube),                                                         4096, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1 },
124                 { LIMIT(maxImageArrayLayers),                                                           256, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN   , -1 },
125                 { LIMIT(maxTexelBufferElements),                                                        65536, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
126                 { LIMIT(maxUniformBufferRange),                                                         16384, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
127                 { LIMIT(maxStorageBufferRange),                                                         0, 0, 0, 0, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_NONE, -1 },
128                 { LIMIT(maxPushConstantsSize),                                                          128, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
129                 { LIMIT(maxMemoryAllocationCount),                                                      4096, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1 },
130                 { LIMIT(maxSamplerAllocationCount),                                                     0, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_NONE , -1 },
131                 { LIMIT(bufferImageGranularity),                                                        0, 0, 1, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MIN, -1 },
132                 { LIMIT(bufferImageGranularity),                                                        0, 0, 131072, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MAX, -1 },
133                 { LIMIT(sparseAddressSpaceSize),                                                        0, 0, 2UL*1024*1024*1024, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MIN, -1 },
134                 { LIMIT(maxBoundDescriptorSets),                                                        4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
135                 { LIMIT(maxPerStageDescriptorSamplers),                                         16, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
136                 { LIMIT(maxPerStageDescriptorUniformBuffers),                           12, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1 },
137                 { LIMIT(maxPerStageDescriptorStorageBuffers),                           4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1 },
138                 { LIMIT(maxPerStageDescriptorSampledImages),                            16, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1 },
139                 { LIMIT(maxPerStageDescriptorStorageImages),                            4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1 },
140                 { LIMIT(maxPerStageDescriptorInputAttachments),                         4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1 },
141                 { LIMIT(maxPerStageResources),                                                          0, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_NONE , -1 },
142                 { LIMIT(maxDescriptorSetSamplers),                                                      96, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
143                 { LIMIT(maxDescriptorSetUniformBuffers),                                        72, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1 },
144                 { LIMIT(maxDescriptorSetUniformBuffersDynamic),                         8, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
145                 { LIMIT(maxDescriptorSetStorageBuffers),                                        24, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1 },
146                 { LIMIT(maxDescriptorSetStorageBuffersDynamic),                         4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
147                 { LIMIT(maxDescriptorSetSampledImages),                                         96, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
148                 { LIMIT(maxDescriptorSetStorageImages),                                         24, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
149                 { LIMIT(maxDescriptorSetInputAttachments),                                      0, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_NONE  , -1 },
150                 { LIMIT(maxVertexInputAttributes),                                                      16, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
151                 { LIMIT(maxVertexInputBindings),                                                        16, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
152                 { LIMIT(maxVertexInputAttributeOffset),                                         2047, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
153                 { LIMIT(maxVertexInputBindingStride),                                           2048, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
154                 { LIMIT(maxVertexOutputComponents),                                                     64, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
155                 { LIMIT(maxTessellationGenerationLevel),                                        64, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
156                 { LIMIT(maxTessellationPatchSize),                                                      32, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1 },
157                 { LIMIT(maxTessellationControlPerVertexInputComponents),        64, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
158                 { LIMIT(maxTessellationControlPerVertexOutputComponents),       64, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
159                 { LIMIT(maxTessellationControlPerPatchOutputComponents),        120, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
160                 { LIMIT(maxTessellationControlTotalOutputComponents),           2048, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
161                 { LIMIT(maxTessellationEvaluationInputComponents),                      64, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
162                 { LIMIT(maxTessellationEvaluationOutputComponents),                     64, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
163                 { LIMIT(maxGeometryShaderInvocations),                                          32, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
164                 { LIMIT(maxGeometryInputComponents),                                            64, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
165                 { LIMIT(maxGeometryOutputComponents),                                           64, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
166                 { LIMIT(maxGeometryOutputVertices),                                                     256, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
167                 { LIMIT(maxGeometryTotalOutputComponents),                                      1024, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
168                 { LIMIT(maxFragmentInputComponents),                                            64, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
169                 { LIMIT(maxFragmentOutputAttachments),                                          4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
170                 { LIMIT(maxFragmentDualSrcAttachments),                                         1, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
171                 { LIMIT(maxFragmentCombinedOutputResources),                            4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN  , -1 },
172                 { LIMIT(maxComputeSharedMemorySize),                                            16384, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN   , -1 },
173                 { LIMIT(maxComputeWorkGroupCount[0]),                                           65535, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN   , -1 },
174                 { LIMIT(maxComputeWorkGroupCount[1]),                                           65535, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN   , -1 },
175                 { LIMIT(maxComputeWorkGroupCount[2]),                                           65535,  0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN   , -1 },
176                 { LIMIT(maxComputeWorkGroupInvocations),                                        128, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN    , -1 },
177                 { LIMIT(maxComputeWorkGroupSize[0]),                                            128, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN    , -1 },
178                 { LIMIT(maxComputeWorkGroupSize[1]),                                            128, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN    , -1 },
179                 { LIMIT(maxComputeWorkGroupSize[2]),                                            64, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN    , -1 },
180                 { LIMIT(subPixelPrecisionBits),                                                         4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN    , -1 },
181                 { LIMIT(subTexelPrecisionBits),                                                         4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN    , -1 },
182                 { LIMIT(mipmapPrecisionBits),                                                           4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN    , -1 },
183                 { LIMIT(maxDrawIndexedIndexValue),                                                      (deUint32)~0, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
184                 { LIMIT(maxDrawIndirectCount),                                                          65535, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN    , -1 },
185                 { LIMIT(maxSamplerLodBias),                                                                     0, 0, 0, 2.0f, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MIN, -1 },
186                 { LIMIT(maxSamplerAnisotropy),                                                          0, 0, 0, 16.0f, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MIN, -1 },
187                 { LIMIT(maxViewports),                                                                          16, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
188                 { LIMIT(maxViewportDimensions[0]),                                                      4096, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1 },
189                 { LIMIT(maxViewportDimensions[1]),                                                      4096, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN , -1 },
190                 { LIMIT(viewportBoundsRange[0]),                                                        0, 0, 0, -8192.0f, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MAX, -1 },
191                 { LIMIT(viewportBoundsRange[1]),                                                        0, 0, 0, 8191.0f, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MIN, -1 },
192                 { LIMIT(viewportSubPixelBits),                                                          0, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
193                 { LIMIT(minMemoryMapAlignment),                                                         64, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
194                 { LIMIT(minTexelBufferOffsetAlignment),                                         0, 0, 1, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MIN, -1 },
195                 { LIMIT(minTexelBufferOffsetAlignment),                                         0, 0, 256, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MAX, -1 },
196                 { LIMIT(minUniformBufferOffsetAlignment),                                       0, 0, 1, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MIN, -1 },
197                 { LIMIT(minUniformBufferOffsetAlignment),                                       0, 0, 256, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MAX, -1 },
198                 { LIMIT(minStorageBufferOffsetAlignment),                                       0, 0, 1, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MIN, -1 },
199                 { LIMIT(minStorageBufferOffsetAlignment),                                       0, 0, 256, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MAX, -1 },
200                 { LIMIT(minTexelOffset),                                                                        0, -8, 0, 0.0f, LIMIT_FORMAT_SIGNED_INT, LIMIT_TYPE_MAX, -1 },
201                 { LIMIT(maxTexelOffset),                                                                        7, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
202                 { LIMIT(minTexelGatherOffset),                                                          0, -8, 0, 0.0f, LIMIT_FORMAT_SIGNED_INT, LIMIT_TYPE_MAX, -1 },
203                 { LIMIT(maxTexelGatherOffset),                                                          7, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
204                 { LIMIT(minInterpolationOffset),                                                        0, 0, 0, -0.5f, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MAX, -1 },
205                 { LIMIT(maxInterpolationOffset),                                                        0, 0, 0, 0.5f - (1.0f/deFloatPow(2.0f, (float)limits->subPixelInterpolationOffsetBits)), LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MIN, -1 },
206                 { LIMIT(subPixelInterpolationOffsetBits),                                       4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
207                 { LIMIT(maxFramebufferWidth),                                                           4096, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
208                 { LIMIT(maxFramebufferHeight),                                                          4096, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
209                 { LIMIT(maxFramebufferLayers),                                                          0, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
210                 { LIMIT(framebufferColorSampleCounts),                                          VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT, 0, 0, 0.0f, LIMIT_FORMAT_BITMASK, LIMIT_TYPE_MIN, -1 },
211                 { LIMIT(framebufferDepthSampleCounts),                                          VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT, 0, 0, 0.0f, LIMIT_FORMAT_BITMASK, LIMIT_TYPE_MIN, -1 },
212                 { LIMIT(framebufferStencilSampleCounts),                                        VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT, 0, 0, 0.0f, LIMIT_FORMAT_BITMASK, LIMIT_TYPE_MIN, -1 },
213                 { LIMIT(framebufferNoAttachmentsSampleCounts),                          VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT, 0, 0, 0.0f, LIMIT_FORMAT_BITMASK, LIMIT_TYPE_MIN, -1 },
214                 { LIMIT(maxColorAttachments),                                                           4, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
215                 { LIMIT(sampledImageColorSampleCounts),                                         VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT, 0, 0, 0.0f, LIMIT_FORMAT_BITMASK, LIMIT_TYPE_MIN, -1 },
216                 { LIMIT(sampledImageIntegerSampleCounts),                                       VK_SAMPLE_COUNT_1_BIT, 0, 0, 0.0f, LIMIT_FORMAT_BITMASK, LIMIT_TYPE_MIN, -1 },
217                 { LIMIT(sampledImageDepthSampleCounts),                                         VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT, 0, 0, 0.0f, LIMIT_FORMAT_BITMASK, LIMIT_TYPE_MIN, -1 },
218                 { LIMIT(sampledImageStencilSampleCounts),                                       VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT, 0, 0, 0.0f, LIMIT_FORMAT_BITMASK, LIMIT_TYPE_MIN, -1 },
219                 { LIMIT(storageImageSampleCounts),                                                      VK_SAMPLE_COUNT_1_BIT|VK_SAMPLE_COUNT_4_BIT, 0, 0, 0.0f, LIMIT_FORMAT_BITMASK, LIMIT_TYPE_MIN, -1 },
220                 { LIMIT(maxSampleMaskWords),                                                            1, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
221                 { LIMIT(timestampComputeAndGraphics),                                           0, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_NONE, -1 },
222                 { LIMIT(timestampPeriod),                                                                       0, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_NONE, -1 },
223                 { LIMIT(maxClipDistances),                                                                      8, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
224                 { LIMIT(maxCullDistances),                                                                      8, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
225                 { LIMIT(maxCombinedClipAndCullDistances),                                       8, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_MIN, -1 },
226                 { LIMIT(discreteQueuePriorities),                                                       8, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_NONE, -1 },
227                 { LIMIT(pointSizeRange[0]),                                                                     0, 0, 0, 0.0f, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MIN, -1 },
228                 { LIMIT(pointSizeRange[0]),                                                                     0, 0, 0, 1.0f, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MAX, -1 },
229                 { LIMIT(pointSizeRange[1]),                                                                     0, 0, 0, 64.0f - limits->pointSizeGranularity , LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MIN, -1 },
230                 { LIMIT(lineWidthRange[0]),                                                                     0, 0, 0, 0.0f, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MIN, -1 },
231                 { LIMIT(lineWidthRange[0]),                                                                     0, 0, 0, 1.0f, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MAX, -1 },
232                 { LIMIT(lineWidthRange[1]),                                                                     0, 0, 0, 8.0f - limits->lineWidthGranularity, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MIN, -1 },
233                 { LIMIT(pointSizeGranularity),                                                          0, 0, 0, 1.0f, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MAX, -1 },
234                 { LIMIT(lineWidthGranularity),                                                          0, 0, 0, 1.0f, LIMIT_FORMAT_FLOAT, LIMIT_TYPE_MAX, -1 },
235                 { LIMIT(strictLines),                                                                           0, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_NONE, -1 },
236                 { LIMIT(standardSampleLocations),                                                       0, 0, 0, 0.0f, LIMIT_FORMAT_UNSIGNED_INT, LIMIT_TYPE_NONE, -1 },
237                 { LIMIT(optimalBufferCopyOffsetAlignment),                                      0, 0, 0, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_NONE, -1 },
238                 { LIMIT(optimalBufferCopyRowPitchAlignment),                            0, 0, 0, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_NONE, -1 },
239                 { LIMIT(nonCoherentAtomSize),                                                           0, 0, 1, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MIN, -1 },
240                 { LIMIT(nonCoherentAtomSize),                                                           0, 0, 256, 0.0f, LIMIT_FORMAT_DEVICE_SIZE, LIMIT_TYPE_MAX, -1 },
241         };
242
243         const struct UnsupportedFeatureLimitTable
244         {
245                 deUint32                limitOffset;
246                 const char*             name;
247                 deUint32                featureOffset;
248                 deUint32                uintVal;                        //!< Format is UNSIGNED_INT
249                 deInt32                 intVal;                         //!< Format is SIGNED_INT
250                 deUint64                deviceSizeVal;          //!< Format is DEVICE_SIZE
251                 float                   floatVal;                       //!< Format is FLOAT
252         } unsupportedFeatureTable[] =
253         {
254                 { LIMIT(sparseAddressSpaceSize),                                                        FEATURE(sparseBinding),                                 0, 0, 0, 0.0f },
255                 { LIMIT(maxTessellationGenerationLevel),                                        FEATURE(tessellationShader),                    0, 0, 0, 0.0f },
256                 { LIMIT(maxTessellationPatchSize),                                                      FEATURE(tessellationShader),                    0, 0, 0, 0.0f },
257                 { LIMIT(maxTessellationControlPerVertexInputComponents),        FEATURE(tessellationShader),                    0, 0, 0, 0.0f },
258                 { LIMIT(maxTessellationControlPerVertexOutputComponents),       FEATURE(tessellationShader),                    0, 0, 0, 0.0f },
259                 { LIMIT(maxTessellationControlPerPatchOutputComponents),        FEATURE(tessellationShader),                    0, 0, 0, 0.0f },
260                 { LIMIT(maxTessellationControlTotalOutputComponents),           FEATURE(tessellationShader),                    0, 0, 0, 0.0f },
261                 { LIMIT(maxTessellationEvaluationInputComponents),                      FEATURE(tessellationShader),                    0, 0, 0, 0.0f },
262                 { LIMIT(maxTessellationEvaluationOutputComponents),                     FEATURE(tessellationShader),                    0, 0, 0, 0.0f },
263                 { LIMIT(maxGeometryShaderInvocations),                                          FEATURE(geometryShader),                                0, 0, 0, 0.0f },
264                 { LIMIT(maxGeometryInputComponents),                                            FEATURE(geometryShader),                                0, 0, 0, 0.0f },
265                 { LIMIT(maxGeometryOutputComponents),                                           FEATURE(geometryShader),                                0, 0, 0, 0.0f },
266                 { LIMIT(maxGeometryOutputVertices),                                                     FEATURE(geometryShader),                                0, 0, 0, 0.0f },
267                 { LIMIT(maxGeometryTotalOutputComponents),                                      FEATURE(geometryShader),                                0, 0, 0, 0.0f },
268                 { LIMIT(maxFragmentDualSrcAttachments),                                         FEATURE(dualSrcBlend),                                  0, 0, 0, 0.0f },
269                 { LIMIT(maxDrawIndexedIndexValue),                                                      FEATURE(fullDrawIndexUint32),                   (1<<24)-1, 0, 0, 0.0f },
270                 { LIMIT(maxDrawIndirectCount),                                                          FEATURE(multiDrawIndirect),                             1, 0, 0, 0.0f },
271                 { LIMIT(maxSamplerAnisotropy),                                                          FEATURE(samplerAnisotropy),                             1, 0, 0, 0.0f },
272                 { LIMIT(maxViewports),                                                                          FEATURE(multiViewport),                                 1, 0, 0, 0.0f },
273                 { LIMIT(minTexelGatherOffset),                                                          FEATURE(shaderImageGatherExtended),             0, 0, 0, 0.0f },
274                 { LIMIT(maxTexelGatherOffset),                                                          FEATURE(shaderImageGatherExtended),             0, 0, 0, 0.0f },
275                 { LIMIT(minInterpolationOffset),                                                        FEATURE(sampleRateShading),                             0, 0, 0, 0.0f },
276                 { LIMIT(maxInterpolationOffset),                                                        FEATURE(sampleRateShading),                             0, 0, 0, 0.0f },
277                 { LIMIT(subPixelInterpolationOffsetBits),                                       FEATURE(sampleRateShading),                             0, 0, 0, 0.0f },
278                 { LIMIT(storageImageSampleCounts),                                                      FEATURE(shaderStorageImageMultisample), VK_SAMPLE_COUNT_1_BIT, 0, 0, 0.0f },
279                 { LIMIT(maxClipDistances),                                                                      FEATURE(shaderClipDistance),                    0, 0, 0, 0.0f },
280                 { LIMIT(maxCullDistances),                                                                      FEATURE(shaderClipDistance),                    0, 0, 0, 0.0f },
281                 { LIMIT(maxCombinedClipAndCullDistances),                                       FEATURE(shaderClipDistance),                    0, 0, 0, 0.0f },
282                 { LIMIT(pointSizeRange[0]),                                                                     FEATURE(largePoints),                                   0, 0, 0, 1.0f },
283                 { LIMIT(pointSizeRange[1]),                                                                     FEATURE(largePoints),                                   0, 0, 0, 1.0f },
284                 { LIMIT(lineWidthRange[0]),                                                                     FEATURE(wideLines),                                             0, 0, 0, 1.0f },
285                 { LIMIT(lineWidthRange[1]),                                                                     FEATURE(wideLines),                                             0, 0, 0, 1.0f },
286                 { LIMIT(pointSizeGranularity),                                                          FEATURE(largePoints),                                   0, 0, 0, 0.0f },
287                 { LIMIT(lineWidthGranularity),                                                          FEATURE(wideLines),                                             0, 0, 0, 0.0f }
288         };
289
290         log << TestLog::Message << *limits << TestLog::EndMessage;
291
292         //!< First build a map from limit to unsupported table index
293         for (deUint32 ndx = 0; ndx < DE_LENGTH_OF_ARRAY(featureLimitTable); ndx++)
294         {
295                 for (deUint32 unsuppNdx = 0; unsuppNdx < DE_LENGTH_OF_ARRAY(unsupportedFeatureTable); unsuppNdx++)
296                 {
297                         if (unsupportedFeatureTable[unsuppNdx].limitOffset == featureLimitTable[ndx].offset)
298                         {
299                                 featureLimitTable[ndx].unsuppTableNdx = unsuppNdx;
300                                 break;
301                         }
302                 }
303         }
304
305         for (deUint32 ndx = 0; ndx < DE_LENGTH_OF_ARRAY(featureLimitTable); ndx++)
306         {
307                 switch (featureLimitTable[ndx].format)
308                 {
309                         case LIMIT_FORMAT_UNSIGNED_INT:
310                         {
311                                 deUint32 limitToCheck = featureLimitTable[ndx].uintVal;
312                                 if (featureLimitTable[ndx].unsuppTableNdx != -1)
313                                 {
314                                         if (*((VkBool32*)((deUint8*)features+unsupportedFeatureTable[featureLimitTable[ndx].unsuppTableNdx].featureOffset)) == VK_FALSE)
315                                                 limitToCheck = unsupportedFeatureTable[featureLimitTable[ndx].unsuppTableNdx].uintVal;
316                                 }
317
318                                 if (featureLimitTable[ndx].type == LIMIT_TYPE_MIN)
319                                 {
320
321                                         if (*((deUint32*)((deUint8*)limits+featureLimitTable[ndx].offset)) < limitToCheck)
322                                         {
323                                                 log << TestLog::Message << "limit Validation failed " << featureLimitTable[ndx].name
324                                                         << " not valid-limit type MIN - actual is "
325                                                         << *((deUint32*)((deUint8*)limits + featureLimitTable[ndx].offset)) << TestLog::EndMessage;
326                                                 limitsOk = false;
327                                         }
328                                 }
329                                 else if (featureLimitTable[ndx].type == LIMIT_TYPE_MAX)
330                                 {
331                                         if (*((deUint32*)((deUint8*)limits+featureLimitTable[ndx].offset)) > limitToCheck)
332                                         {
333                                                 log << TestLog::Message << "limit validation failed,  " << featureLimitTable[ndx].name
334                                                         << " not valid-limit type MAX - actual is "
335                                                         << *((deUint32*)((deUint8*)limits + featureLimitTable[ndx].offset)) << TestLog::EndMessage;
336                                                 limitsOk = false;
337                                         }
338                                 }
339                                 break;
340                         }
341
342                         case LIMIT_FORMAT_FLOAT:
343                         {
344                                 float limitToCheck = featureLimitTable[ndx].floatVal;
345                                 if (featureLimitTable[ndx].unsuppTableNdx != -1)
346                                 {
347                                         if (*((VkBool32*)((deUint8*)features+unsupportedFeatureTable[featureLimitTable[ndx].unsuppTableNdx].featureOffset)) == VK_FALSE)
348                                                 limitToCheck = unsupportedFeatureTable[featureLimitTable[ndx].unsuppTableNdx].floatVal;
349                                 }
350
351                                 if (featureLimitTable[ndx].type == LIMIT_TYPE_MIN)
352                                 {
353                                         if (*((float*)((deUint8*)limits+featureLimitTable[ndx].offset)) < limitToCheck)
354                                         {
355                                                 log << TestLog::Message << "limit validation failed, " << featureLimitTable[ndx].name
356                                                         << " not valid-limit type MIN - actual is "
357                                                         << *((float*)((deUint8*)limits + featureLimitTable[ndx].offset)) << TestLog::EndMessage;
358                                                 limitsOk = false;
359                                         }
360                                 }
361                                 else if (featureLimitTable[ndx].type == LIMIT_TYPE_MAX)
362                                 {
363                                         if (*((float*)((deUint8*)limits+featureLimitTable[ndx].offset)) > limitToCheck)
364                                         {
365                                                 log << TestLog::Message << "limit validation failed, " << featureLimitTable[ndx].name
366                                                         << " not valid-limit type MAX actual is "
367                                                         << *((float*)((deUint8*)limits + featureLimitTable[ndx].offset)) << TestLog::EndMessage;
368                                                 limitsOk = false;
369                                         }
370                                 }
371                                 break;
372                         }
373
374                         case LIMIT_FORMAT_SIGNED_INT:
375                         {
376                                 deInt32 limitToCheck = featureLimitTable[ndx].intVal;
377                                 if (featureLimitTable[ndx].unsuppTableNdx != -1)
378                                 {
379                                         if (*((VkBool32*)((deUint8*)features+unsupportedFeatureTable[featureLimitTable[ndx].unsuppTableNdx].featureOffset)) == VK_FALSE)
380                                                 limitToCheck = unsupportedFeatureTable[featureLimitTable[ndx].unsuppTableNdx].intVal;
381                                 }
382                                 if (featureLimitTable[ndx].type == LIMIT_TYPE_MIN)
383                                 {
384                                         if (*((deInt32*)((deUint8*)limits+featureLimitTable[ndx].offset)) < limitToCheck)
385                                         {
386                                                 log << TestLog::Message <<  "limit validation failed, " << featureLimitTable[ndx].name
387                                                         << " not valid-limit type MIN actual is "
388                                                         << *((deInt32*)((deUint8*)limits + featureLimitTable[ndx].offset)) << TestLog::EndMessage;
389                                                 limitsOk = false;
390                                         }
391                                 }
392                                 else if (featureLimitTable[ndx].type == LIMIT_TYPE_MAX)
393                                 {
394                                         if (*((deInt32*)((deUint8*)limits+featureLimitTable[ndx].offset)) > limitToCheck)
395                                         {
396                                                 log << TestLog::Message << "limit validation failed, " << featureLimitTable[ndx].name
397                                                         << " not valid-limit type MAX actual is "
398                                                         << *((deInt32*)((deUint8*)limits + featureLimitTable[ndx].offset)) << TestLog::EndMessage;
399                                                 limitsOk = false;
400                                         }
401                                 }
402                                 break;
403                         }
404
405                         case LIMIT_FORMAT_DEVICE_SIZE:
406                         {
407                                 deUint64 limitToCheck = featureLimitTable[ndx].deviceSizeVal;
408                                 if (featureLimitTable[ndx].unsuppTableNdx != -1)
409                                 {
410                                         if (*((VkBool32*)((deUint8*)features+unsupportedFeatureTable[featureLimitTable[ndx].unsuppTableNdx].featureOffset)) == VK_FALSE)
411                                                 limitToCheck = unsupportedFeatureTable[featureLimitTable[ndx].unsuppTableNdx].deviceSizeVal;
412                                 }
413
414                                 if (featureLimitTable[ndx].type == LIMIT_TYPE_MIN)
415                                 {
416                                         if (*((deUint64*)((deUint8*)limits+featureLimitTable[ndx].offset)) < limitToCheck)
417                                         {
418                                                 log << TestLog::Message << "limit validation failed, " << featureLimitTable[ndx].name
419                                                         << " not valid-limit type MIN actual is "
420                                                         << *((deUint64*)((deUint8*)limits + featureLimitTable[ndx].offset)) << TestLog::EndMessage;
421                                                 limitsOk = false;
422                                         }
423                                 }
424                                 else if (featureLimitTable[ndx].type == LIMIT_TYPE_MAX)
425                                 {
426                                         if (*((deUint64*)((deUint8*)limits+featureLimitTable[ndx].offset)) > limitToCheck)
427                                         {
428                                                 log << TestLog::Message << "limit validation failed, " << featureLimitTable[ndx].name
429                                                         << " not valid-limit type MAX actual is "
430                                                         << *((deUint64*)((deUint8*)limits + featureLimitTable[ndx].offset)) << TestLog::EndMessage;
431                                                 limitsOk = false;
432                                         }
433                                 }
434                                 break;
435                         }
436
437                         case LIMIT_FORMAT_BITMASK:
438                         {
439                                 deUint32 limitToCheck = featureLimitTable[ndx].uintVal;
440                                 if (featureLimitTable[ndx].unsuppTableNdx != -1)
441                                 {
442                                         if (*((VkBool32*)((deUint8*)features+unsupportedFeatureTable[featureLimitTable[ndx].unsuppTableNdx].featureOffset)) == VK_FALSE)
443                                                 limitToCheck = unsupportedFeatureTable[featureLimitTable[ndx].unsuppTableNdx].uintVal;
444                                 }
445
446                                 if (featureLimitTable[ndx].type == LIMIT_TYPE_MIN)
447                                 {
448                                         if ((*((deUint32*)((deUint8*)limits+featureLimitTable[ndx].offset)) & limitToCheck) != limitToCheck)
449                                         {
450                                                 log << TestLog::Message << "limit validation failed, " << featureLimitTable[ndx].name
451                                                         << " not valid-limit type bitmask actual is "
452                                                         << *((deUint64*)((deUint8*)limits + featureLimitTable[ndx].offset)) << TestLog::EndMessage;
453                                                 limitsOk = false;
454                                         }
455                                 }
456                                 break;
457                         }
458
459                         default:
460                                 DE_ASSERT(0);
461                                 limitsOk = false;
462                 }
463         }
464
465         for (deUint32 ndx = 0; ndx < DE_LENGTH_OF_ARRAY(limits->maxViewportDimensions); ndx++)
466         {
467                 if (limits->maxImageDimension2D > limits->maxViewportDimensions[ndx])
468                 {
469                         log << TestLog::Message << "limit validation failed, maxImageDimension2D of " << limits->maxImageDimension2D
470                                 << "is larger than maxViewportDimension[" << ndx << "] of " << limits->maxViewportDimensions[ndx] << TestLog::EndMessage;
471                         limitsOk = false;
472                 }
473         }
474
475         if (limits->viewportBoundsRange[0] > float(-2 * limits->maxViewportDimensions[0]))
476         {
477                 log << TestLog::Message << "limit validation failed, viewPortBoundsRange[0] of " << limits->viewportBoundsRange[0]
478                         << "is larger than -2*maxViewportDimension[0] of " << -2*limits->maxViewportDimensions[0] << TestLog::EndMessage;
479                 limitsOk = false;
480         }
481
482         if (limits->viewportBoundsRange[1] < float(2 * limits->maxViewportDimensions[1] - 1))
483         {
484                 log << TestLog::Message << "limit validation failed, viewportBoundsRange[1] of " << limits->viewportBoundsRange[1]
485                         << "is less than 2*maxViewportDimension[1] of " << 2*limits->maxViewportDimensions[1] << TestLog::EndMessage;
486                 limitsOk = false;
487         }
488
489         return limitsOk;
490 }
491
492 template<typename T>
493 class CheckIncompleteResult
494 {
495 public:
496         virtual                 ~CheckIncompleteResult  (void) {}
497         virtual void    getResult                               (Context& context, T* data) = 0;
498
499         void operator() (Context& context, tcu::ResultCollector& results, const std::size_t expectedCompleteSize)
500         {
501                 if (expectedCompleteSize == 0)
502                         return;
503
504                 vector<T>               outputData      (expectedCompleteSize);
505                 const deUint32  usedSize        = static_cast<deUint32>(expectedCompleteSize / 3);
506
507                 ValidateQueryBits::fillBits(outputData.begin(), outputData.end());      // unused entries should have this pattern intact
508                 m_count         = usedSize;
509                 m_result        = VK_SUCCESS;
510
511                 getResult(context, &outputData[0]);                                                                     // update m_count and m_result
512
513                 if (m_count != usedSize || m_result != VK_INCOMPLETE || !ValidateQueryBits::checkBits(outputData.begin() + m_count, outputData.end()))
514                         results.fail("Query didn't return VK_INCOMPLETE");
515         }
516
517 protected:
518         deUint32        m_count;
519         VkResult        m_result;
520 };
521
522 struct CheckEnumeratePhysicalDevicesIncompleteResult : public CheckIncompleteResult<VkPhysicalDevice>
523 {
524         void getResult (Context& context, VkPhysicalDevice* data)
525         {
526                 m_result = context.getInstanceInterface().enumeratePhysicalDevices(context.getInstance(), &m_count, data);
527         }
528 };
529
530 struct CheckEnumerateInstanceLayerPropertiesIncompleteResult : public CheckIncompleteResult<VkLayerProperties>
531 {
532         void getResult (Context& context, VkLayerProperties* data)
533         {
534                 m_result = context.getPlatformInterface().enumerateInstanceLayerProperties(&m_count, data);
535         }
536 };
537
538 struct CheckEnumerateDeviceLayerPropertiesIncompleteResult : public CheckIncompleteResult<VkLayerProperties>
539 {
540         void getResult (Context& context, VkLayerProperties* data)
541         {
542                 m_result = context.getInstanceInterface().enumerateDeviceLayerProperties(context.getPhysicalDevice(), &m_count, data);
543         }
544 };
545
546 struct CheckEnumerateInstanceExtensionPropertiesIncompleteResult : public CheckIncompleteResult<VkExtensionProperties>
547 {
548         CheckEnumerateInstanceExtensionPropertiesIncompleteResult (std::string layerName = std::string()) : m_layerName(layerName) {}
549
550         void getResult (Context& context, VkExtensionProperties* data)
551         {
552                 const char* pLayerName = (m_layerName.length() != 0 ? m_layerName.c_str() : DE_NULL);
553                 m_result = context.getPlatformInterface().enumerateInstanceExtensionProperties(pLayerName, &m_count, data);
554         }
555
556 private:
557         const std::string       m_layerName;
558 };
559
560 struct CheckEnumerateDeviceExtensionPropertiesIncompleteResult : public CheckIncompleteResult<VkExtensionProperties>
561 {
562         CheckEnumerateDeviceExtensionPropertiesIncompleteResult (std::string layerName = std::string()) : m_layerName(layerName) {}
563
564         void getResult (Context& context, VkExtensionProperties* data)
565         {
566                 const char* pLayerName = (m_layerName.length() != 0 ? m_layerName.c_str() : DE_NULL);
567                 m_result = context.getInstanceInterface().enumerateDeviceExtensionProperties(context.getPhysicalDevice(), pLayerName, &m_count, data);
568         }
569
570 private:
571         const std::string       m_layerName;
572 };
573
574 tcu::TestStatus enumeratePhysicalDevices (Context& context)
575 {
576         TestLog&                                                log             = context.getTestContext().getLog();
577         tcu::ResultCollector                    results (log);
578         const vector<VkPhysicalDevice>  devices = enumeratePhysicalDevices(context.getInstanceInterface(), context.getInstance());
579
580         log << TestLog::Integer("NumDevices", "Number of devices", "", QP_KEY_TAG_NONE, deInt64(devices.size()));
581
582         for (size_t ndx = 0; ndx < devices.size(); ndx++)
583                 log << TestLog::Message << ndx << ": " << devices[ndx] << TestLog::EndMessage;
584
585         CheckEnumeratePhysicalDevicesIncompleteResult()(context, results, devices.size());
586
587         return tcu::TestStatus(results.getResult(), results.getMessage());
588 }
589
590 template<typename T>
591 void collectDuplicates (set<T>& duplicates, const vector<T>& values)
592 {
593         set<T> seen;
594
595         for (size_t ndx = 0; ndx < values.size(); ndx++)
596         {
597                 const T& value = values[ndx];
598
599                 if (!seen.insert(value).second)
600                         duplicates.insert(value);
601         }
602 }
603
604 void checkDuplicates (tcu::ResultCollector& results, const char* what, const vector<string>& values)
605 {
606         set<string> duplicates;
607
608         collectDuplicates(duplicates, values);
609
610         for (set<string>::const_iterator iter = duplicates.begin(); iter != duplicates.end(); ++iter)
611         {
612                 std::ostringstream msg;
613                 msg << "Duplicate " << what << ": " << *iter;
614                 results.fail(msg.str());
615         }
616 }
617
618 void checkDuplicateExtensions (tcu::ResultCollector& results, const vector<string>& extensions)
619 {
620         checkDuplicates(results, "extension", extensions);
621 }
622
623 void checkDuplicateLayers (tcu::ResultCollector& results, const vector<string>& layers)
624 {
625         checkDuplicates(results, "layer", layers);
626 }
627
628 void checkKhrExtensions (tcu::ResultCollector&          results,
629                                                  const vector<string>&          extensions,
630                                                  const int                                      numAllowedKhrExtensions,
631                                                  const char* const*                     allowedKhrExtensions)
632 {
633         const set<string>       allowedExtSet           (allowedKhrExtensions, allowedKhrExtensions+numAllowedKhrExtensions);
634
635         for (vector<string>::const_iterator extIter = extensions.begin(); extIter != extensions.end(); ++extIter)
636         {
637                 // Only Khronos-controlled extensions are checked
638                 if (de::beginsWith(*extIter, "VK_KHR_") &&
639                         !de::contains(allowedExtSet, *extIter))
640                 {
641                         results.fail("Unknown KHR extension " + *extIter);
642                 }
643         }
644 }
645
646 void checkInstanceExtensions (tcu::ResultCollector& results, const vector<string>& extensions)
647 {
648         static const char* s_allowedInstanceKhrExtensions[] =
649         {
650                 "VK_KHR_surface",
651                 "VK_KHR_display",
652                 "VK_KHR_android_surface",
653                 "VK_KHR_mir_surface",
654                 "VK_KHR_wayland_surface",
655                 "VK_KHR_win32_surface",
656                 "VK_KHR_xcb_surface",
657                 "VK_KHR_xlib_surface",
658                 "VK_KHR_get_physical_device_properties2",
659         };
660
661         checkKhrExtensions(results, extensions, DE_LENGTH_OF_ARRAY(s_allowedInstanceKhrExtensions), s_allowedInstanceKhrExtensions);
662         checkDuplicateExtensions(results, extensions);
663 }
664
665 void checkDeviceExtensions (tcu::ResultCollector& results, const vector<string>& extensions)
666 {
667         static const char* s_allowedDeviceKhrExtensions[] =
668         {
669                 "VK_KHR_swapchain",
670                 "VK_KHR_display_swapchain",
671                 "VK_KHR_sampler_mirror_clamp_to_edge",
672                 "VK_KHR_shader_draw_parameters",
673                 "VK_KHR_maintenance1",
674                 "VK_KHR_push_descriptor",
675                 "VK_KHR_descriptor_update_template",
676                 "VK_KHR_incremental_present",
677         };
678
679         checkKhrExtensions(results, extensions, DE_LENGTH_OF_ARRAY(s_allowedDeviceKhrExtensions), s_allowedDeviceKhrExtensions);
680         checkDuplicateExtensions(results, extensions);
681 }
682
683 tcu::TestStatus enumerateInstanceLayers (Context& context)
684 {
685         TestLog&                                                log                                     = context.getTestContext().getLog();
686         tcu::ResultCollector                    results                         (log);
687         const vector<VkLayerProperties> properties                      = enumerateInstanceLayerProperties(context.getPlatformInterface());
688         vector<string>                                  layerNames;
689
690         for (size_t ndx = 0; ndx < properties.size(); ndx++)
691         {
692                 log << TestLog::Message << ndx << ": " << properties[ndx] << TestLog::EndMessage;
693
694                 layerNames.push_back(properties[ndx].layerName);
695         }
696
697         checkDuplicateLayers(results, layerNames);
698         CheckEnumerateInstanceLayerPropertiesIncompleteResult()(context, results, layerNames.size());
699
700         return tcu::TestStatus(results.getResult(), results.getMessage());
701 }
702
703 tcu::TestStatus enumerateInstanceExtensions (Context& context)
704 {
705         TestLog&                                log             = context.getTestContext().getLog();
706         tcu::ResultCollector    results (log);
707
708         {
709                 const ScopedLogSection                          section         (log, "Global", "Global Extensions");
710                 const vector<VkExtensionProperties>     properties      = enumerateInstanceExtensionProperties(context.getPlatformInterface(), DE_NULL);
711                 vector<string>                                          extensionNames;
712
713                 for (size_t ndx = 0; ndx < properties.size(); ndx++)
714                 {
715                         log << TestLog::Message << ndx << ": " << properties[ndx] << TestLog::EndMessage;
716
717                         extensionNames.push_back(properties[ndx].extensionName);
718                 }
719
720                 checkInstanceExtensions(results, extensionNames);
721                 CheckEnumerateInstanceExtensionPropertiesIncompleteResult()(context, results, properties.size());
722         }
723
724         {
725                 const vector<VkLayerProperties> layers  = enumerateInstanceLayerProperties(context.getPlatformInterface());
726
727                 for (vector<VkLayerProperties>::const_iterator layer = layers.begin(); layer != layers.end(); ++layer)
728                 {
729                         const ScopedLogSection                          section                         (log, layer->layerName, string("Layer: ") + layer->layerName);
730                         const vector<VkExtensionProperties>     properties                      = enumerateInstanceExtensionProperties(context.getPlatformInterface(), layer->layerName);
731                         vector<string>                                          extensionNames;
732
733                         for (size_t extNdx = 0; extNdx < properties.size(); extNdx++)
734                         {
735                                 log << TestLog::Message << extNdx << ": " << properties[extNdx] << TestLog::EndMessage;
736
737                                 extensionNames.push_back(properties[extNdx].extensionName);
738                         }
739
740                         checkInstanceExtensions(results, extensionNames);
741                         CheckEnumerateInstanceExtensionPropertiesIncompleteResult(layer->layerName)(context, results, properties.size());
742                 }
743         }
744
745         return tcu::TestStatus(results.getResult(), results.getMessage());
746 }
747
748 tcu::TestStatus enumerateDeviceLayers (Context& context)
749 {
750         TestLog&                                                log                     = context.getTestContext().getLog();
751         tcu::ResultCollector                    results         (log);
752         const vector<VkLayerProperties> properties      = enumerateDeviceLayerProperties(context.getInstanceInterface(), context.getPhysicalDevice());
753         vector<string>                                  layerNames;
754
755         for (size_t ndx = 0; ndx < properties.size(); ndx++)
756         {
757                 log << TestLog::Message << ndx << ": " << properties[ndx] << TestLog::EndMessage;
758
759                 layerNames.push_back(properties[ndx].layerName);
760         }
761
762         checkDuplicateLayers(results, layerNames);
763         CheckEnumerateDeviceLayerPropertiesIncompleteResult()(context, results, layerNames.size());
764
765         return tcu::TestStatus(results.getResult(), results.getMessage());
766 }
767
768 tcu::TestStatus enumerateDeviceExtensions (Context& context)
769 {
770         TestLog&                                log             = context.getTestContext().getLog();
771         tcu::ResultCollector    results (log);
772
773         {
774                 const ScopedLogSection                          section         (log, "Global", "Global Extensions");
775                 const vector<VkExtensionProperties>     properties      = enumerateDeviceExtensionProperties(context.getInstanceInterface(), context.getPhysicalDevice(), DE_NULL);
776                 vector<string>                                          extensionNames;
777
778                 for (size_t ndx = 0; ndx < properties.size(); ndx++)
779                 {
780                         log << TestLog::Message << ndx << ": " << properties[ndx] << TestLog::EndMessage;
781
782                         extensionNames.push_back(properties[ndx].extensionName);
783                 }
784
785                 checkDeviceExtensions(results, extensionNames);
786                 CheckEnumerateDeviceExtensionPropertiesIncompleteResult()(context, results, properties.size());
787         }
788
789         {
790                 const vector<VkLayerProperties> layers  = enumerateDeviceLayerProperties(context.getInstanceInterface(), context.getPhysicalDevice());
791
792                 for (vector<VkLayerProperties>::const_iterator layer = layers.begin(); layer != layers.end(); ++layer)
793                 {
794                         const ScopedLogSection                          section         (log, layer->layerName, string("Layer: ") + layer->layerName);
795                         const vector<VkExtensionProperties>     properties      = enumerateDeviceExtensionProperties(context.getInstanceInterface(), context.getPhysicalDevice(), layer->layerName);
796                         vector<string>                                          extensionNames;
797
798                         for (size_t extNdx = 0; extNdx < properties.size(); extNdx++)
799                         {
800                                 log << TestLog::Message << extNdx << ": " << properties[extNdx] << TestLog::EndMessage;
801
802
803                                 extensionNames.push_back(properties[extNdx].extensionName);
804                         }
805
806                         checkDeviceExtensions(results, extensionNames);
807                         CheckEnumerateDeviceExtensionPropertiesIncompleteResult(layer->layerName)(context, results, properties.size());
808                 }
809         }
810
811         return tcu::TestStatus(results.getResult(), results.getMessage());
812 }
813
814 #define VK_SIZE_OF(STRUCT, MEMBER)                                      (sizeof(((STRUCT*)0)->MEMBER))
815 #define OFFSET_TABLE_ENTRY(STRUCT, MEMBER)                      { (size_t)DE_OFFSET_OF(STRUCT, MEMBER), VK_SIZE_OF(STRUCT, MEMBER) }
816
817 tcu::TestStatus deviceFeatures (Context& context)
818 {
819         using namespace ValidateQueryBits;
820
821         TestLog&                                                log                     = context.getTestContext().getLog();
822         VkPhysicalDeviceFeatures*               features;
823         deUint8                                                 buffer[sizeof(VkPhysicalDeviceFeatures) + GUARD_SIZE];
824
825         const QueryMemberTableEntry featureOffsetTable[] =
826         {
827                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, robustBufferAccess),
828                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, fullDrawIndexUint32),
829                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, imageCubeArray),
830                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, independentBlend),
831                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, geometryShader),
832                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, tessellationShader),
833                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, sampleRateShading),
834                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, dualSrcBlend),
835                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, logicOp),
836                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, multiDrawIndirect),
837                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, drawIndirectFirstInstance),
838                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, depthClamp),
839                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, depthBiasClamp),
840                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, fillModeNonSolid),
841                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, depthBounds),
842                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, wideLines),
843                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, largePoints),
844                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, alphaToOne),
845                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, multiViewport),
846                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, samplerAnisotropy),
847                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, textureCompressionETC2),
848                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, textureCompressionASTC_LDR),
849                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, textureCompressionBC),
850                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, occlusionQueryPrecise),
851                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, pipelineStatisticsQuery),
852                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, vertexPipelineStoresAndAtomics),
853                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, fragmentStoresAndAtomics),
854                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderTessellationAndGeometryPointSize),
855                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderImageGatherExtended),
856                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderStorageImageExtendedFormats),
857                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderStorageImageMultisample),
858                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderStorageImageReadWithoutFormat),
859                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderStorageImageWriteWithoutFormat),
860                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderUniformBufferArrayDynamicIndexing),
861                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderSampledImageArrayDynamicIndexing),
862                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderStorageBufferArrayDynamicIndexing),
863                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderStorageImageArrayDynamicIndexing),
864                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderClipDistance),
865                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderCullDistance),
866                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderFloat64),
867                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderInt64),
868                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderInt16),
869                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderResourceResidency),
870                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, shaderResourceMinLod),
871                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, sparseBinding),
872                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, sparseResidencyBuffer),
873                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, sparseResidencyImage2D),
874                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, sparseResidencyImage3D),
875                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, sparseResidency2Samples),
876                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, sparseResidency4Samples),
877                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, sparseResidency8Samples),
878                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, sparseResidency16Samples),
879                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, sparseResidencyAliased),
880                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, variableMultisampleRate),
881                 OFFSET_TABLE_ENTRY(VkPhysicalDeviceFeatures, inheritedQueries),
882                 { 0, 0 }
883         };
884
885         deMemset(buffer, GUARD_VALUE, sizeof(buffer));
886         features = reinterpret_cast<VkPhysicalDeviceFeatures*>(buffer);
887
888         context.getInstanceInterface().getPhysicalDeviceFeatures(context.getPhysicalDevice(), features);
889
890         log << TestLog::Message << "device = " << context.getPhysicalDevice() << TestLog::EndMessage
891                 << TestLog::Message << *features << TestLog::EndMessage;
892
893         // Requirements and dependencies
894         {
895                 if (!features->robustBufferAccess)
896                         return tcu::TestStatus::fail("robustBufferAccess is not supported");
897
898                 // multiViewport requires MultiViewport (SPIR-V capability) support, which depends on Geometry
899                 if (features->multiViewport && !features->geometryShader)
900                         return tcu::TestStatus::fail("multiViewport is supported but geometryShader is not");
901         }
902
903         for (int ndx = 0; ndx < GUARD_SIZE; ndx++)
904         {
905                 if (buffer[ndx + sizeof(VkPhysicalDeviceFeatures)] != GUARD_VALUE)
906                 {
907                         log << TestLog::Message << "deviceFeatures - Guard offset " << ndx << " not valid" << TestLog::EndMessage;
908                         return tcu::TestStatus::fail("deviceFeatures buffer overflow");
909                 }
910         }
911
912         if (!validateInitComplete(context.getPhysicalDevice(), &InstanceInterface::getPhysicalDeviceFeatures, context.getInstanceInterface(), featureOffsetTable))
913         {
914                 log << TestLog::Message << "deviceFeatures - VkPhysicalDeviceFeatures not completely initialized" << TestLog::EndMessage;
915                 return tcu::TestStatus::fail("deviceFeatures incomplete initialization");
916         }
917
918         return tcu::TestStatus::pass("Query succeeded");
919 }
920
921 static const ValidateQueryBits::QueryMemberTableEntry s_physicalDevicePropertiesOffsetTable[] =
922 {
923         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, apiVersion),
924         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, driverVersion),
925         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, vendorID),
926         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, deviceID),
927         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, deviceType),
928         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, pipelineCacheUUID),
929         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxImageDimension1D),
930         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxImageDimension2D),
931         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxImageDimension3D),
932         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxImageDimensionCube),
933         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxImageArrayLayers),
934         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxTexelBufferElements),
935         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxUniformBufferRange),
936         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxStorageBufferRange),
937         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxPushConstantsSize),
938         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxMemoryAllocationCount),
939         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxSamplerAllocationCount),
940         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.bufferImageGranularity),
941         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.sparseAddressSpaceSize),
942         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxBoundDescriptorSets),
943         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxPerStageDescriptorSamplers),
944         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxPerStageDescriptorUniformBuffers),
945         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxPerStageDescriptorStorageBuffers),
946         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxPerStageDescriptorSampledImages),
947         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxPerStageDescriptorStorageImages),
948         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxPerStageDescriptorInputAttachments),
949         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxPerStageResources),
950         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxDescriptorSetSamplers),
951         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxDescriptorSetUniformBuffers),
952         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxDescriptorSetUniformBuffersDynamic),
953         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxDescriptorSetStorageBuffers),
954         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxDescriptorSetStorageBuffersDynamic),
955         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxDescriptorSetSampledImages),
956         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxDescriptorSetStorageImages),
957         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxDescriptorSetInputAttachments),
958         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxVertexInputAttributes),
959         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxVertexInputBindings),
960         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxVertexInputAttributeOffset),
961         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxVertexInputBindingStride),
962         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxVertexOutputComponents),
963         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxTessellationGenerationLevel),
964         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxTessellationPatchSize),
965         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxTessellationControlPerVertexInputComponents),
966         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxTessellationControlPerVertexOutputComponents),
967         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxTessellationControlPerPatchOutputComponents),
968         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxTessellationControlTotalOutputComponents),
969         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxTessellationEvaluationInputComponents),
970         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxTessellationEvaluationOutputComponents),
971         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxGeometryShaderInvocations),
972         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxGeometryInputComponents),
973         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxGeometryOutputComponents),
974         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxGeometryOutputVertices),
975         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxGeometryTotalOutputComponents),
976         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxFragmentInputComponents),
977         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxFragmentOutputAttachments),
978         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxFragmentDualSrcAttachments),
979         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxFragmentCombinedOutputResources),
980         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxComputeSharedMemorySize),
981         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxComputeWorkGroupCount[3]),
982         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxComputeWorkGroupInvocations),
983         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxComputeWorkGroupSize[3]),
984         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.subPixelPrecisionBits),
985         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.subTexelPrecisionBits),
986         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.mipmapPrecisionBits),
987         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxDrawIndexedIndexValue),
988         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxDrawIndirectCount),
989         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxSamplerLodBias),
990         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxSamplerAnisotropy),
991         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxViewports),
992         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxViewportDimensions[2]),
993         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.viewportBoundsRange[2]),
994         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.viewportSubPixelBits),
995         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.minMemoryMapAlignment),
996         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.minTexelBufferOffsetAlignment),
997         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.minUniformBufferOffsetAlignment),
998         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.minStorageBufferOffsetAlignment),
999         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.minTexelOffset),
1000         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxTexelOffset),
1001         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.minTexelGatherOffset),
1002         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxTexelGatherOffset),
1003         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.minInterpolationOffset),
1004         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxInterpolationOffset),
1005         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.subPixelInterpolationOffsetBits),
1006         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxFramebufferWidth),
1007         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxFramebufferHeight),
1008         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxFramebufferLayers),
1009         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.framebufferColorSampleCounts),
1010         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.framebufferDepthSampleCounts),
1011         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.framebufferStencilSampleCounts),
1012         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.framebufferNoAttachmentsSampleCounts),
1013         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxColorAttachments),
1014         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.sampledImageColorSampleCounts),
1015         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.sampledImageIntegerSampleCounts),
1016         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.sampledImageDepthSampleCounts),
1017         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.sampledImageStencilSampleCounts),
1018         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.storageImageSampleCounts),
1019         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxSampleMaskWords),
1020         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.timestampComputeAndGraphics),
1021         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.timestampPeriod),
1022         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxClipDistances),
1023         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxCullDistances),
1024         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.maxCombinedClipAndCullDistances),
1025         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.discreteQueuePriorities),
1026         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.pointSizeRange[2]),
1027         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.lineWidthRange[2]),
1028         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.pointSizeGranularity),
1029         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.lineWidthGranularity),
1030         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.strictLines),
1031         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.standardSampleLocations),
1032         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.optimalBufferCopyOffsetAlignment),
1033         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.optimalBufferCopyRowPitchAlignment),
1034         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, limits.nonCoherentAtomSize),
1035         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, sparseProperties.residencyStandard2DBlockShape),
1036         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, sparseProperties.residencyStandard2DMultisampleBlockShape),
1037         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, sparseProperties.residencyStandard3DBlockShape),
1038         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, sparseProperties.residencyAlignedMipSize),
1039         OFFSET_TABLE_ENTRY(VkPhysicalDeviceProperties, sparseProperties.residencyNonResidentStrict),
1040         { 0, 0 }
1041 };
1042
1043 tcu::TestStatus deviceProperties (Context& context)
1044 {
1045         using namespace ValidateQueryBits;
1046
1047         TestLog&                                                log                     = context.getTestContext().getLog();
1048         VkPhysicalDeviceProperties*             props;
1049         VkPhysicalDeviceFeatures                features;
1050         deUint8                                                 buffer[sizeof(VkPhysicalDeviceProperties) + GUARD_SIZE];
1051
1052         props = reinterpret_cast<VkPhysicalDeviceProperties*>(buffer);
1053         deMemset(props, GUARD_VALUE, sizeof(buffer));
1054
1055         context.getInstanceInterface().getPhysicalDeviceProperties(context.getPhysicalDevice(), props);
1056         context.getInstanceInterface().getPhysicalDeviceFeatures(context.getPhysicalDevice(), &features);
1057
1058         log << TestLog::Message << "device = " << context.getPhysicalDevice() << TestLog::EndMessage
1059                 << TestLog::Message << *props << TestLog::EndMessage;
1060
1061         if (!validateFeatureLimits(props, &features, log))
1062                 return tcu::TestStatus::fail("deviceProperties - feature limits failed");
1063
1064         for (int ndx = 0; ndx < GUARD_SIZE; ndx++)
1065         {
1066                 if (buffer[ndx + sizeof(VkPhysicalDeviceProperties)] != GUARD_VALUE)
1067                 {
1068                         log << TestLog::Message << "deviceProperties - Guard offset " << ndx << " not valid" << TestLog::EndMessage;
1069                         return tcu::TestStatus::fail("deviceProperties buffer overflow");
1070                 }
1071         }
1072
1073         if (!validateInitComplete(context.getPhysicalDevice(), &InstanceInterface::getPhysicalDeviceProperties, context.getInstanceInterface(), s_physicalDevicePropertiesOffsetTable))
1074         {
1075                 log << TestLog::Message << "deviceProperties - VkPhysicalDeviceProperties not completely initialized" << TestLog::EndMessage;
1076                 return tcu::TestStatus::fail("deviceProperties incomplete initialization");
1077         }
1078
1079         // Check if deviceName string is properly terminated.
1080         if (deStrnlen(props->deviceName, VK_MAX_PHYSICAL_DEVICE_NAME_SIZE) == VK_MAX_PHYSICAL_DEVICE_NAME_SIZE)
1081         {
1082                 log << TestLog::Message << "deviceProperties - VkPhysicalDeviceProperties deviceName not properly initialized" << TestLog::EndMessage;
1083                 return tcu::TestStatus::fail("deviceProperties incomplete initialization");
1084         }
1085
1086         {
1087                 const ApiVersion deviceVersion = unpackVersion(props->apiVersion);
1088                 const ApiVersion deqpVersion = unpackVersion(VK_API_VERSION);
1089
1090                 if (deviceVersion.majorNum != deqpVersion.majorNum)
1091                 {
1092                         log << TestLog::Message << "deviceProperties - API Major Version " << deviceVersion.majorNum << " is not valid" << TestLog::EndMessage;
1093                         return tcu::TestStatus::fail("deviceProperties apiVersion not valid");
1094                 }
1095
1096                 if (deviceVersion.minorNum > deqpVersion.minorNum)
1097                 {
1098                         log << TestLog::Message << "deviceProperties - API Minor Version " << deviceVersion.minorNum << " is not valid for this version of dEQP" << TestLog::EndMessage;
1099                         return tcu::TestStatus::fail("deviceProperties apiVersion not valid");
1100                 }
1101         }
1102
1103         return tcu::TestStatus::pass("DeviceProperites query succeeded");
1104 }
1105
1106 tcu::TestStatus deviceQueueFamilyProperties (Context& context)
1107 {
1108         TestLog&                                                                log                                     = context.getTestContext().getLog();
1109         const vector<VkQueueFamilyProperties>   queueProperties         = getPhysicalDeviceQueueFamilyProperties(context.getInstanceInterface(), context.getPhysicalDevice());
1110
1111         log << TestLog::Message << "device = " << context.getPhysicalDevice() << TestLog::EndMessage;
1112
1113         for (size_t queueNdx = 0; queueNdx < queueProperties.size(); queueNdx++)
1114                 log << TestLog::Message << queueNdx << ": " << queueProperties[queueNdx] << TestLog::EndMessage;
1115
1116         return tcu::TestStatus::pass("Querying queue properties succeeded");
1117 }
1118
1119 tcu::TestStatus deviceMemoryProperties (Context& context)
1120 {
1121         TestLog&                                                        log                     = context.getTestContext().getLog();
1122         VkPhysicalDeviceMemoryProperties*       memProps;
1123         deUint8                                                         buffer[sizeof(VkPhysicalDeviceMemoryProperties) + GUARD_SIZE];
1124
1125         memProps = reinterpret_cast<VkPhysicalDeviceMemoryProperties*>(buffer);
1126         deMemset(buffer, GUARD_VALUE, sizeof(buffer));
1127
1128         context.getInstanceInterface().getPhysicalDeviceMemoryProperties(context.getPhysicalDevice(), memProps);
1129
1130         log << TestLog::Message << "device = " << context.getPhysicalDevice() << TestLog::EndMessage
1131                 << TestLog::Message << *memProps << TestLog::EndMessage;
1132
1133         for (deInt32 ndx = 0; ndx < GUARD_SIZE; ndx++)
1134         {
1135                 if (buffer[ndx + sizeof(VkPhysicalDeviceMemoryProperties)] != GUARD_VALUE)
1136                 {
1137                         log << TestLog::Message << "deviceMemoryProperties - Guard offset " << ndx << " not valid" << TestLog::EndMessage;
1138                         return tcu::TestStatus::fail("deviceMemoryProperties buffer overflow");
1139                 }
1140         }
1141
1142         if (memProps->memoryHeapCount >= VK_MAX_MEMORY_HEAPS)
1143         {
1144                 log << TestLog::Message << "deviceMemoryProperties - HeapCount larger than " << (deUint32)VK_MAX_MEMORY_HEAPS << TestLog::EndMessage;
1145                 return tcu::TestStatus::fail("deviceMemoryProperties HeapCount too large");
1146         }
1147
1148         if (memProps->memoryHeapCount == 1)
1149         {
1150                 if ((memProps->memoryHeaps[0].flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) == 0)
1151                 {
1152                         log << TestLog::Message << "deviceMemoryProperties - Single heap is not marked DEVICE_LOCAL" << TestLog::EndMessage;
1153                         return tcu::TestStatus::fail("deviceMemoryProperties invalid HeapFlags");
1154                 }
1155         }
1156
1157         const VkMemoryPropertyFlags validPropertyFlags[] =
1158         {
1159                 0,
1160                 VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
1161                 VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT|VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
1162                 VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT|VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
1163                 VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT|VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_CACHED_BIT|VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
1164                 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
1165                 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
1166                 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_CACHED_BIT|VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
1167                 VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT|VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT
1168         };
1169
1170         const VkMemoryPropertyFlags requiredPropertyFlags[] =
1171         {
1172                 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_COHERENT_BIT
1173         };
1174
1175         bool requiredFlagsFound[DE_LENGTH_OF_ARRAY(requiredPropertyFlags)];
1176         std::fill(DE_ARRAY_BEGIN(requiredFlagsFound), DE_ARRAY_END(requiredFlagsFound), false);
1177
1178         for (deUint32 memoryNdx = 0; memoryNdx < memProps->memoryTypeCount; memoryNdx++)
1179         {
1180                 bool validPropTypeFound = false;
1181
1182                 if (memProps->memoryTypes[memoryNdx].heapIndex >= memProps->memoryHeapCount)
1183                 {
1184                         log << TestLog::Message << "deviceMemoryProperties - heapIndex " << memProps->memoryTypes[memoryNdx].heapIndex << " larger than heapCount" << TestLog::EndMessage;
1185                         return tcu::TestStatus::fail("deviceMemoryProperties - invalid heapIndex");
1186                 }
1187
1188                 const VkMemoryPropertyFlags bitsToCheck = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT|VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT|VK_MEMORY_PROPERTY_HOST_COHERENT_BIT|VK_MEMORY_PROPERTY_HOST_CACHED_BIT|VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT;
1189
1190                 for (const VkMemoryPropertyFlags* requiredFlagsIterator = DE_ARRAY_BEGIN(requiredPropertyFlags); requiredFlagsIterator != DE_ARRAY_END(requiredPropertyFlags); requiredFlagsIterator++)
1191                         if ((memProps->memoryTypes[memoryNdx].propertyFlags & *requiredFlagsIterator) == *requiredFlagsIterator)
1192                                 requiredFlagsFound[requiredFlagsIterator - DE_ARRAY_BEGIN(requiredPropertyFlags)] = true;
1193
1194                 if (de::contains(DE_ARRAY_BEGIN(validPropertyFlags), DE_ARRAY_END(validPropertyFlags), memProps->memoryTypes[memoryNdx].propertyFlags & bitsToCheck))
1195                         validPropTypeFound = true;
1196
1197                 if (!validPropTypeFound)
1198                 {
1199                         log << TestLog::Message << "deviceMemoryProperties - propertyFlags "
1200                                 << memProps->memoryTypes[memoryNdx].propertyFlags << " not valid" << TestLog::EndMessage;
1201                         return tcu::TestStatus::fail("deviceMemoryProperties propertyFlags not valid");
1202                 }
1203
1204                 if (memProps->memoryTypes[memoryNdx].propertyFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT)
1205                 {
1206                         if ((memProps->memoryHeaps[memProps->memoryTypes[memoryNdx].heapIndex].flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) == 0)
1207                         {
1208                                 log << TestLog::Message << "deviceMemoryProperties - DEVICE_LOCAL memory type references heap which is not DEVICE_LOCAL" << TestLog::EndMessage;
1209                                 return tcu::TestStatus::fail("deviceMemoryProperties inconsistent memoryType and HeapFlags");
1210                         }
1211                 }
1212                 else
1213                 {
1214                         if (memProps->memoryHeaps[memProps->memoryTypes[memoryNdx].heapIndex].flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT)
1215                         {
1216                                 log << TestLog::Message << "deviceMemoryProperties - non-DEVICE_LOCAL memory type references heap with is DEVICE_LOCAL" << TestLog::EndMessage;
1217                                 return tcu::TestStatus::fail("deviceMemoryProperties inconsistent memoryType and HeapFlags");
1218                         }
1219                 }
1220         }
1221
1222         bool* requiredFlagsFoundIterator = std::find(DE_ARRAY_BEGIN(requiredFlagsFound), DE_ARRAY_END(requiredFlagsFound), false);
1223         if (requiredFlagsFoundIterator != DE_ARRAY_END(requiredFlagsFound))
1224         {
1225                 DE_ASSERT(requiredFlagsFoundIterator - DE_ARRAY_BEGIN(requiredFlagsFound) <= DE_LENGTH_OF_ARRAY(requiredPropertyFlags));
1226                 log << TestLog::Message << "deviceMemoryProperties - required property flags "
1227                         << getMemoryPropertyFlagsStr(requiredPropertyFlags[requiredFlagsFoundIterator - DE_ARRAY_BEGIN(requiredFlagsFound)]) << " not found" << TestLog::EndMessage;
1228
1229                 return tcu::TestStatus::fail("deviceMemoryProperties propertyFlags not valid");
1230         }
1231
1232         return tcu::TestStatus::pass("Querying memory properties succeeded");
1233 }
1234
1235 // \todo [2016-01-22 pyry] Optimize by doing format -> flags mapping instead
1236
1237 VkFormatFeatureFlags getRequiredOptimalTilingFeatures (VkFormat format)
1238 {
1239         static const VkFormat s_requiredSampledImageBlitSrcFormats[] =
1240         {
1241                 VK_FORMAT_B4G4R4A4_UNORM_PACK16,
1242                 VK_FORMAT_R5G6B5_UNORM_PACK16,
1243                 VK_FORMAT_A1R5G5B5_UNORM_PACK16,
1244                 VK_FORMAT_R8_UNORM,
1245                 VK_FORMAT_R8_SNORM,
1246                 VK_FORMAT_R8_UINT,
1247                 VK_FORMAT_R8_SINT,
1248                 VK_FORMAT_R8G8_UNORM,
1249                 VK_FORMAT_R8G8_SNORM,
1250                 VK_FORMAT_R8G8_UINT,
1251                 VK_FORMAT_R8G8_SINT,
1252                 VK_FORMAT_R8G8B8A8_UNORM,
1253                 VK_FORMAT_R8G8B8A8_SNORM,
1254                 VK_FORMAT_R8G8B8A8_UINT,
1255                 VK_FORMAT_R8G8B8A8_SINT,
1256                 VK_FORMAT_R8G8B8A8_SRGB,
1257                 VK_FORMAT_B8G8R8A8_UNORM,
1258                 VK_FORMAT_B8G8R8A8_SRGB,
1259                 VK_FORMAT_A8B8G8R8_UNORM_PACK32,
1260                 VK_FORMAT_A8B8G8R8_SNORM_PACK32,
1261                 VK_FORMAT_A8B8G8R8_UINT_PACK32,
1262                 VK_FORMAT_A8B8G8R8_SINT_PACK32,
1263                 VK_FORMAT_A8B8G8R8_SRGB_PACK32,
1264                 VK_FORMAT_A2B10G10R10_UNORM_PACK32,
1265                 VK_FORMAT_A2B10G10R10_UINT_PACK32,
1266                 VK_FORMAT_R16_UINT,
1267                 VK_FORMAT_R16_SINT,
1268                 VK_FORMAT_R16_SFLOAT,
1269                 VK_FORMAT_R16G16_UINT,
1270                 VK_FORMAT_R16G16_SINT,
1271                 VK_FORMAT_R16G16_SFLOAT,
1272                 VK_FORMAT_R16G16B16A16_UINT,
1273                 VK_FORMAT_R16G16B16A16_SINT,
1274                 VK_FORMAT_R16G16B16A16_SFLOAT,
1275                 VK_FORMAT_R32_UINT,
1276                 VK_FORMAT_R32_SINT,
1277                 VK_FORMAT_R32_SFLOAT,
1278                 VK_FORMAT_R32G32_UINT,
1279                 VK_FORMAT_R32G32_SINT,
1280                 VK_FORMAT_R32G32_SFLOAT,
1281                 VK_FORMAT_R32G32B32A32_UINT,
1282                 VK_FORMAT_R32G32B32A32_SINT,
1283                 VK_FORMAT_R32G32B32A32_SFLOAT,
1284                 VK_FORMAT_B10G11R11_UFLOAT_PACK32,
1285                 VK_FORMAT_E5B9G9R9_UFLOAT_PACK32,
1286                 VK_FORMAT_D16_UNORM,
1287                 VK_FORMAT_D32_SFLOAT
1288         };
1289         static const VkFormat s_requiredSampledImageFilterLinearFormats[] =
1290         {
1291                 VK_FORMAT_B4G4R4A4_UNORM_PACK16,
1292                 VK_FORMAT_R5G6B5_UNORM_PACK16,
1293                 VK_FORMAT_A1R5G5B5_UNORM_PACK16,
1294                 VK_FORMAT_R8_UNORM,
1295                 VK_FORMAT_R8_SNORM,
1296                 VK_FORMAT_R8G8_UNORM,
1297                 VK_FORMAT_R8G8_SNORM,
1298                 VK_FORMAT_R8G8B8A8_UNORM,
1299                 VK_FORMAT_R8G8B8A8_SNORM,
1300                 VK_FORMAT_R8G8B8A8_SRGB,
1301                 VK_FORMAT_B8G8R8A8_UNORM,
1302                 VK_FORMAT_B8G8R8A8_SRGB,
1303                 VK_FORMAT_A8B8G8R8_UNORM_PACK32,
1304                 VK_FORMAT_A8B8G8R8_SNORM_PACK32,
1305                 VK_FORMAT_A8B8G8R8_SRGB_PACK32,
1306                 VK_FORMAT_A2B10G10R10_UNORM_PACK32,
1307                 VK_FORMAT_R16_SFLOAT,
1308                 VK_FORMAT_R16G16_SFLOAT,
1309                 VK_FORMAT_R16G16B16A16_SFLOAT,
1310                 VK_FORMAT_B10G11R11_UFLOAT_PACK32,
1311                 VK_FORMAT_E5B9G9R9_UFLOAT_PACK32,
1312         };
1313         static const VkFormat s_requiredStorageImageFormats[] =
1314         {
1315                 VK_FORMAT_R8G8B8A8_UNORM,
1316                 VK_FORMAT_R8G8B8A8_SNORM,
1317                 VK_FORMAT_R8G8B8A8_UINT,
1318                 VK_FORMAT_R8G8B8A8_SINT,
1319                 VK_FORMAT_R16G16B16A16_UINT,
1320                 VK_FORMAT_R16G16B16A16_SINT,
1321                 VK_FORMAT_R16G16B16A16_SFLOAT,
1322                 VK_FORMAT_R32_UINT,
1323                 VK_FORMAT_R32_SINT,
1324                 VK_FORMAT_R32_SFLOAT,
1325                 VK_FORMAT_R32G32_UINT,
1326                 VK_FORMAT_R32G32_SINT,
1327                 VK_FORMAT_R32G32_SFLOAT,
1328                 VK_FORMAT_R32G32B32A32_UINT,
1329                 VK_FORMAT_R32G32B32A32_SINT,
1330                 VK_FORMAT_R32G32B32A32_SFLOAT
1331         };
1332         static const VkFormat s_requiredStorageImageAtomicFormats[] =
1333         {
1334                 VK_FORMAT_R32_UINT,
1335                 VK_FORMAT_R32_SINT
1336         };
1337         static const VkFormat s_requiredColorAttachmentBlitDstFormats[] =
1338         {
1339                 VK_FORMAT_R5G6B5_UNORM_PACK16,
1340                 VK_FORMAT_A1R5G5B5_UNORM_PACK16,
1341                 VK_FORMAT_R8_UNORM,
1342                 VK_FORMAT_R8_UINT,
1343                 VK_FORMAT_R8_SINT,
1344                 VK_FORMAT_R8G8_UNORM,
1345                 VK_FORMAT_R8G8_UINT,
1346                 VK_FORMAT_R8G8_SINT,
1347                 VK_FORMAT_R8G8B8A8_UNORM,
1348                 VK_FORMAT_R8G8B8A8_UINT,
1349                 VK_FORMAT_R8G8B8A8_SINT,
1350                 VK_FORMAT_R8G8B8A8_SRGB,
1351                 VK_FORMAT_B8G8R8A8_UNORM,
1352                 VK_FORMAT_B8G8R8A8_SRGB,
1353                 VK_FORMAT_A8B8G8R8_UNORM_PACK32,
1354                 VK_FORMAT_A8B8G8R8_UINT_PACK32,
1355                 VK_FORMAT_A8B8G8R8_SINT_PACK32,
1356                 VK_FORMAT_A8B8G8R8_SRGB_PACK32,
1357                 VK_FORMAT_A2B10G10R10_UNORM_PACK32,
1358                 VK_FORMAT_A2B10G10R10_UINT_PACK32,
1359                 VK_FORMAT_R16_UINT,
1360                 VK_FORMAT_R16_SINT,
1361                 VK_FORMAT_R16_SFLOAT,
1362                 VK_FORMAT_R16G16_UINT,
1363                 VK_FORMAT_R16G16_SINT,
1364                 VK_FORMAT_R16G16_SFLOAT,
1365                 VK_FORMAT_R16G16B16A16_UINT,
1366                 VK_FORMAT_R16G16B16A16_SINT,
1367                 VK_FORMAT_R16G16B16A16_SFLOAT,
1368                 VK_FORMAT_R32_UINT,
1369                 VK_FORMAT_R32_SINT,
1370                 VK_FORMAT_R32_SFLOAT,
1371                 VK_FORMAT_R32G32_UINT,
1372                 VK_FORMAT_R32G32_SINT,
1373                 VK_FORMAT_R32G32_SFLOAT,
1374                 VK_FORMAT_R32G32B32A32_UINT,
1375                 VK_FORMAT_R32G32B32A32_SINT,
1376                 VK_FORMAT_R32G32B32A32_SFLOAT
1377         };
1378         static const VkFormat s_requiredColorAttachmentBlendFormats[] =
1379         {
1380                 VK_FORMAT_R5G6B5_UNORM_PACK16,
1381                 VK_FORMAT_A1R5G5B5_UNORM_PACK16,
1382                 VK_FORMAT_R8_UNORM,
1383                 VK_FORMAT_R8G8_UNORM,
1384                 VK_FORMAT_R8G8B8A8_UNORM,
1385                 VK_FORMAT_R8G8B8A8_SRGB,
1386                 VK_FORMAT_B8G8R8A8_UNORM,
1387                 VK_FORMAT_B8G8R8A8_SRGB,
1388                 VK_FORMAT_A8B8G8R8_UNORM_PACK32,
1389                 VK_FORMAT_A8B8G8R8_SRGB_PACK32,
1390                 VK_FORMAT_A2B10G10R10_UNORM_PACK32,
1391                 VK_FORMAT_R16_SFLOAT,
1392                 VK_FORMAT_R16G16_SFLOAT,
1393                 VK_FORMAT_R16G16B16A16_SFLOAT
1394         };
1395         static const VkFormat s_requiredDepthStencilAttachmentFormats[] =
1396         {
1397                 VK_FORMAT_D16_UNORM
1398         };
1399
1400         VkFormatFeatureFlags    flags   = (VkFormatFeatureFlags)0;
1401
1402         if (de::contains(DE_ARRAY_BEGIN(s_requiredSampledImageBlitSrcFormats), DE_ARRAY_END(s_requiredSampledImageBlitSrcFormats), format))
1403                 flags |= VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT|VK_FORMAT_FEATURE_BLIT_SRC_BIT;
1404
1405         if (de::contains(DE_ARRAY_BEGIN(s_requiredSampledImageFilterLinearFormats), DE_ARRAY_END(s_requiredSampledImageFilterLinearFormats), format))
1406                 flags |= VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT;
1407
1408         if (de::contains(DE_ARRAY_BEGIN(s_requiredStorageImageFormats), DE_ARRAY_END(s_requiredStorageImageFormats), format))
1409                 flags |= VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT;
1410
1411         if (de::contains(DE_ARRAY_BEGIN(s_requiredStorageImageAtomicFormats), DE_ARRAY_END(s_requiredStorageImageAtomicFormats), format))
1412                 flags |= VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT;
1413
1414         if (de::contains(DE_ARRAY_BEGIN(s_requiredColorAttachmentBlitDstFormats), DE_ARRAY_END(s_requiredColorAttachmentBlitDstFormats), format))
1415                 flags |= VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT|VK_FORMAT_FEATURE_BLIT_DST_BIT;
1416
1417         if (de::contains(DE_ARRAY_BEGIN(s_requiredColorAttachmentBlendFormats), DE_ARRAY_END(s_requiredColorAttachmentBlendFormats), format))
1418                 flags |= VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT;
1419
1420         if (de::contains(DE_ARRAY_BEGIN(s_requiredDepthStencilAttachmentFormats), DE_ARRAY_END(s_requiredDepthStencilAttachmentFormats), format))
1421                 flags |= VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT;
1422
1423         return flags;
1424 }
1425
1426 VkFormatFeatureFlags getRequiredBufferFeatures (VkFormat format)
1427 {
1428         static const VkFormat s_requiredVertexBufferFormats[] =
1429         {
1430                 VK_FORMAT_R8_UNORM,
1431                 VK_FORMAT_R8_SNORM,
1432                 VK_FORMAT_R8_UINT,
1433                 VK_FORMAT_R8_SINT,
1434                 VK_FORMAT_R8G8_UNORM,
1435                 VK_FORMAT_R8G8_SNORM,
1436                 VK_FORMAT_R8G8_UINT,
1437                 VK_FORMAT_R8G8_SINT,
1438                 VK_FORMAT_R8G8B8A8_UNORM,
1439                 VK_FORMAT_R8G8B8A8_SNORM,
1440                 VK_FORMAT_R8G8B8A8_UINT,
1441                 VK_FORMAT_R8G8B8A8_SINT,
1442                 VK_FORMAT_B8G8R8A8_UNORM,
1443                 VK_FORMAT_A8B8G8R8_UNORM_PACK32,
1444                 VK_FORMAT_A8B8G8R8_SNORM_PACK32,
1445                 VK_FORMAT_A8B8G8R8_UINT_PACK32,
1446                 VK_FORMAT_A8B8G8R8_SINT_PACK32,
1447                 VK_FORMAT_A2B10G10R10_UNORM_PACK32,
1448                 VK_FORMAT_R16_UNORM,
1449                 VK_FORMAT_R16_SNORM,
1450                 VK_FORMAT_R16_UINT,
1451                 VK_FORMAT_R16_SINT,
1452                 VK_FORMAT_R16_SFLOAT,
1453                 VK_FORMAT_R16G16_UNORM,
1454                 VK_FORMAT_R16G16_SNORM,
1455                 VK_FORMAT_R16G16_UINT,
1456                 VK_FORMAT_R16G16_SINT,
1457                 VK_FORMAT_R16G16_SFLOAT,
1458                 VK_FORMAT_R16G16B16A16_UNORM,
1459                 VK_FORMAT_R16G16B16A16_SNORM,
1460                 VK_FORMAT_R16G16B16A16_UINT,
1461                 VK_FORMAT_R16G16B16A16_SINT,
1462                 VK_FORMAT_R16G16B16A16_SFLOAT,
1463                 VK_FORMAT_R32_UINT,
1464                 VK_FORMAT_R32_SINT,
1465                 VK_FORMAT_R32_SFLOAT,
1466                 VK_FORMAT_R32G32_UINT,
1467                 VK_FORMAT_R32G32_SINT,
1468                 VK_FORMAT_R32G32_SFLOAT,
1469                 VK_FORMAT_R32G32B32_UINT,
1470                 VK_FORMAT_R32G32B32_SINT,
1471                 VK_FORMAT_R32G32B32_SFLOAT,
1472                 VK_FORMAT_R32G32B32A32_UINT,
1473                 VK_FORMAT_R32G32B32A32_SINT,
1474                 VK_FORMAT_R32G32B32A32_SFLOAT
1475         };
1476         static const VkFormat s_requiredUniformTexelBufferFormats[] =
1477         {
1478                 VK_FORMAT_R8_UNORM,
1479                 VK_FORMAT_R8_SNORM,
1480                 VK_FORMAT_R8_UINT,
1481                 VK_FORMAT_R8_SINT,
1482                 VK_FORMAT_R8G8_UNORM,
1483                 VK_FORMAT_R8G8_SNORM,
1484                 VK_FORMAT_R8G8_UINT,
1485                 VK_FORMAT_R8G8_SINT,
1486                 VK_FORMAT_R8G8B8A8_UNORM,
1487                 VK_FORMAT_R8G8B8A8_SNORM,
1488                 VK_FORMAT_R8G8B8A8_UINT,
1489                 VK_FORMAT_R8G8B8A8_SINT,
1490                 VK_FORMAT_B8G8R8A8_UNORM,
1491                 VK_FORMAT_A8B8G8R8_UNORM_PACK32,
1492                 VK_FORMAT_A8B8G8R8_SNORM_PACK32,
1493                 VK_FORMAT_A8B8G8R8_UINT_PACK32,
1494                 VK_FORMAT_A8B8G8R8_SINT_PACK32,
1495                 VK_FORMAT_A2B10G10R10_UNORM_PACK32,
1496                 VK_FORMAT_A2B10G10R10_UINT_PACK32,
1497                 VK_FORMAT_R16_UINT,
1498                 VK_FORMAT_R16_SINT,
1499                 VK_FORMAT_R16_SFLOAT,
1500                 VK_FORMAT_R16G16_UINT,
1501                 VK_FORMAT_R16G16_SINT,
1502                 VK_FORMAT_R16G16_SFLOAT,
1503                 VK_FORMAT_R16G16B16A16_UINT,
1504                 VK_FORMAT_R16G16B16A16_SINT,
1505                 VK_FORMAT_R16G16B16A16_SFLOAT,
1506                 VK_FORMAT_R32_UINT,
1507                 VK_FORMAT_R32_SINT,
1508                 VK_FORMAT_R32_SFLOAT,
1509                 VK_FORMAT_R32G32_UINT,
1510                 VK_FORMAT_R32G32_SINT,
1511                 VK_FORMAT_R32G32_SFLOAT,
1512                 VK_FORMAT_R32G32B32A32_UINT,
1513                 VK_FORMAT_R32G32B32A32_SINT,
1514                 VK_FORMAT_R32G32B32A32_SFLOAT,
1515                 VK_FORMAT_B10G11R11_UFLOAT_PACK32
1516         };
1517         static const VkFormat s_requiredStorageTexelBufferFormats[] =
1518         {
1519                 VK_FORMAT_R8G8B8A8_UNORM,
1520                 VK_FORMAT_R8G8B8A8_SNORM,
1521                 VK_FORMAT_R8G8B8A8_UINT,
1522                 VK_FORMAT_R8G8B8A8_SINT,
1523                 VK_FORMAT_A8B8G8R8_UNORM_PACK32,
1524                 VK_FORMAT_A8B8G8R8_SNORM_PACK32,
1525                 VK_FORMAT_A8B8G8R8_UINT_PACK32,
1526                 VK_FORMAT_A8B8G8R8_SINT_PACK32,
1527                 VK_FORMAT_R16G16B16A16_UINT,
1528                 VK_FORMAT_R16G16B16A16_SINT,
1529                 VK_FORMAT_R16G16B16A16_SFLOAT,
1530                 VK_FORMAT_R32_UINT,
1531                 VK_FORMAT_R32_SINT,
1532                 VK_FORMAT_R32_SFLOAT,
1533                 VK_FORMAT_R32G32_UINT,
1534                 VK_FORMAT_R32G32_SINT,
1535                 VK_FORMAT_R32G32_SFLOAT,
1536                 VK_FORMAT_R32G32B32A32_UINT,
1537                 VK_FORMAT_R32G32B32A32_SINT,
1538                 VK_FORMAT_R32G32B32A32_SFLOAT
1539         };
1540         static const VkFormat s_requiredStorageTexelBufferAtomicFormats[] =
1541         {
1542                 VK_FORMAT_R32_UINT,
1543                 VK_FORMAT_R32_SINT
1544         };
1545
1546         VkFormatFeatureFlags    flags   = (VkFormatFeatureFlags)0;
1547
1548         if (de::contains(DE_ARRAY_BEGIN(s_requiredVertexBufferFormats), DE_ARRAY_END(s_requiredVertexBufferFormats), format))
1549                 flags |= VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT;
1550
1551         if (de::contains(DE_ARRAY_BEGIN(s_requiredUniformTexelBufferFormats), DE_ARRAY_END(s_requiredUniformTexelBufferFormats), format))
1552                 flags |= VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT;
1553
1554         if (de::contains(DE_ARRAY_BEGIN(s_requiredStorageTexelBufferFormats), DE_ARRAY_END(s_requiredStorageTexelBufferFormats), format))
1555                 flags |= VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT;
1556
1557         if (de::contains(DE_ARRAY_BEGIN(s_requiredStorageTexelBufferAtomicFormats), DE_ARRAY_END(s_requiredStorageTexelBufferAtomicFormats), format))
1558                 flags |= VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT;
1559
1560         return flags;
1561 }
1562
1563 tcu::TestStatus formatProperties (Context& context, VkFormat format)
1564 {
1565         TestLog&                                        log                             = context.getTestContext().getLog();
1566         const VkFormatProperties        properties              = getPhysicalDeviceFormatProperties(context.getInstanceInterface(), context.getPhysicalDevice(), format);
1567         bool                                            allOk                   = true;
1568
1569         const struct
1570         {
1571                 VkFormatFeatureFlags VkFormatProperties::*      field;
1572                 const char*                                                                     fieldName;
1573                 VkFormatFeatureFlags                                            requiredFeatures;
1574         } fields[] =
1575         {
1576                 { &VkFormatProperties::linearTilingFeatures,    "linearTilingFeatures",         (VkFormatFeatureFlags)0                                         },
1577                 { &VkFormatProperties::optimalTilingFeatures,   "optimalTilingFeatures",        getRequiredOptimalTilingFeatures(format)        },
1578                 { &VkFormatProperties::bufferFeatures,                  "buffeFeatures",                        getRequiredBufferFeatures(format)                       }
1579         };
1580
1581         log << TestLog::Message << properties << TestLog::EndMessage;
1582
1583         for (int fieldNdx = 0; fieldNdx < DE_LENGTH_OF_ARRAY(fields); fieldNdx++)
1584         {
1585                 const char* const                               fieldName       = fields[fieldNdx].fieldName;
1586                 const VkFormatFeatureFlags              supported       = properties.*fields[fieldNdx].field;
1587                 const VkFormatFeatureFlags              required        = fields[fieldNdx].requiredFeatures;
1588
1589                 if ((supported & required) != required)
1590                 {
1591                         log << TestLog::Message << "ERROR in " << fieldName << ":\n"
1592                                                                     << "  required: " << getFormatFeatureFlagsStr(required) << "\n  "
1593                                                                         << "  missing: " << getFormatFeatureFlagsStr(~supported & required)
1594                                 << TestLog::EndMessage;
1595                         allOk = false;
1596                 }
1597         }
1598
1599         if (allOk)
1600                 return tcu::TestStatus::pass("Query and validation passed");
1601         else
1602                 return tcu::TestStatus::fail("Required features not supported");
1603 }
1604
1605 bool optimalTilingFeaturesSupported (Context& context, VkFormat format, VkFormatFeatureFlags features)
1606 {
1607         const VkFormatProperties        properties      = getPhysicalDeviceFormatProperties(context.getInstanceInterface(), context.getPhysicalDevice(), format);
1608
1609         return (properties.optimalTilingFeatures & features) == features;
1610 }
1611
1612 bool optimalTilingFeaturesSupportedForAll (Context& context, const VkFormat* begin, const VkFormat* end, VkFormatFeatureFlags features)
1613 {
1614         for (const VkFormat* cur = begin; cur != end; ++cur)
1615         {
1616                 if (!optimalTilingFeaturesSupported(context, *cur, features))
1617                         return false;
1618         }
1619
1620         return true;
1621 }
1622
1623 tcu::TestStatus testDepthStencilSupported (Context& context)
1624 {
1625         if (!optimalTilingFeaturesSupported(context, VK_FORMAT_X8_D24_UNORM_PACK32, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) &&
1626                 !optimalTilingFeaturesSupported(context, VK_FORMAT_D32_SFLOAT, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT))
1627                 return tcu::TestStatus::fail("Doesn't support one of VK_FORMAT_X8_D24_UNORM_PACK32 or VK_FORMAT_D32_SFLOAT");
1628
1629         if (!optimalTilingFeaturesSupported(context, VK_FORMAT_D24_UNORM_S8_UINT, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) &&
1630                 !optimalTilingFeaturesSupported(context, VK_FORMAT_D32_SFLOAT_S8_UINT, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT))
1631                 return tcu::TestStatus::fail("Doesn't support one of VK_FORMAT_D24_UNORM_S8_UINT or VK_FORMAT_D32_SFLOAT_S8_UINT");
1632
1633         return tcu::TestStatus::pass("Required depth/stencil formats supported");
1634 }
1635
1636 tcu::TestStatus testCompressedFormatsSupported (Context& context)
1637 {
1638         static const VkFormat s_allBcFormats[] =
1639         {
1640                 VK_FORMAT_BC1_RGB_UNORM_BLOCK,
1641                 VK_FORMAT_BC1_RGB_SRGB_BLOCK,
1642                 VK_FORMAT_BC1_RGBA_UNORM_BLOCK,
1643                 VK_FORMAT_BC1_RGBA_SRGB_BLOCK,
1644                 VK_FORMAT_BC2_UNORM_BLOCK,
1645                 VK_FORMAT_BC2_SRGB_BLOCK,
1646                 VK_FORMAT_BC3_UNORM_BLOCK,
1647                 VK_FORMAT_BC3_SRGB_BLOCK,
1648                 VK_FORMAT_BC4_UNORM_BLOCK,
1649                 VK_FORMAT_BC4_SNORM_BLOCK,
1650                 VK_FORMAT_BC5_UNORM_BLOCK,
1651                 VK_FORMAT_BC5_SNORM_BLOCK,
1652                 VK_FORMAT_BC6H_UFLOAT_BLOCK,
1653                 VK_FORMAT_BC6H_SFLOAT_BLOCK,
1654                 VK_FORMAT_BC7_UNORM_BLOCK,
1655                 VK_FORMAT_BC7_SRGB_BLOCK,
1656         };
1657         static const VkFormat s_allEtc2Formats[] =
1658         {
1659                 VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK,
1660                 VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK,
1661                 VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK,
1662                 VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK,
1663                 VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK,
1664                 VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK,
1665                 VK_FORMAT_EAC_R11_UNORM_BLOCK,
1666                 VK_FORMAT_EAC_R11_SNORM_BLOCK,
1667                 VK_FORMAT_EAC_R11G11_UNORM_BLOCK,
1668                 VK_FORMAT_EAC_R11G11_SNORM_BLOCK,
1669         };
1670         static const VkFormat s_allAstcLdrFormats[] =
1671         {
1672                 VK_FORMAT_ASTC_4x4_UNORM_BLOCK,
1673                 VK_FORMAT_ASTC_4x4_SRGB_BLOCK,
1674                 VK_FORMAT_ASTC_5x4_UNORM_BLOCK,
1675                 VK_FORMAT_ASTC_5x4_SRGB_BLOCK,
1676                 VK_FORMAT_ASTC_5x5_UNORM_BLOCK,
1677                 VK_FORMAT_ASTC_5x5_SRGB_BLOCK,
1678                 VK_FORMAT_ASTC_6x5_UNORM_BLOCK,
1679                 VK_FORMAT_ASTC_6x5_SRGB_BLOCK,
1680                 VK_FORMAT_ASTC_6x6_UNORM_BLOCK,
1681                 VK_FORMAT_ASTC_6x6_SRGB_BLOCK,
1682                 VK_FORMAT_ASTC_8x5_UNORM_BLOCK,
1683                 VK_FORMAT_ASTC_8x5_SRGB_BLOCK,
1684                 VK_FORMAT_ASTC_8x6_UNORM_BLOCK,
1685                 VK_FORMAT_ASTC_8x6_SRGB_BLOCK,
1686                 VK_FORMAT_ASTC_8x8_UNORM_BLOCK,
1687                 VK_FORMAT_ASTC_8x8_SRGB_BLOCK,
1688                 VK_FORMAT_ASTC_10x5_UNORM_BLOCK,
1689                 VK_FORMAT_ASTC_10x5_SRGB_BLOCK,
1690                 VK_FORMAT_ASTC_10x6_UNORM_BLOCK,
1691                 VK_FORMAT_ASTC_10x6_SRGB_BLOCK,
1692                 VK_FORMAT_ASTC_10x8_UNORM_BLOCK,
1693                 VK_FORMAT_ASTC_10x8_SRGB_BLOCK,
1694                 VK_FORMAT_ASTC_10x10_UNORM_BLOCK,
1695                 VK_FORMAT_ASTC_10x10_SRGB_BLOCK,
1696                 VK_FORMAT_ASTC_12x10_UNORM_BLOCK,
1697                 VK_FORMAT_ASTC_12x10_SRGB_BLOCK,
1698                 VK_FORMAT_ASTC_12x12_UNORM_BLOCK,
1699                 VK_FORMAT_ASTC_12x12_SRGB_BLOCK,
1700         };
1701
1702         static const struct
1703         {
1704                 const char*                                                                     setName;
1705                 const char*                                                                     featureName;
1706                 const VkBool32 VkPhysicalDeviceFeatures::*      feature;
1707                 const VkFormat*                                                         formatsBegin;
1708                 const VkFormat*                                                         formatsEnd;
1709         } s_compressedFormatSets[] =
1710         {
1711                 { "BC",                 "textureCompressionBC",                 &VkPhysicalDeviceFeatures::textureCompressionBC,                DE_ARRAY_BEGIN(s_allBcFormats),                 DE_ARRAY_END(s_allBcFormats)            },
1712                 { "ETC2",               "textureCompressionETC2",               &VkPhysicalDeviceFeatures::textureCompressionETC2,              DE_ARRAY_BEGIN(s_allEtc2Formats),               DE_ARRAY_END(s_allEtc2Formats)          },
1713                 { "ASTC LDR",   "textureCompressionASTC_LDR",   &VkPhysicalDeviceFeatures::textureCompressionASTC_LDR,  DE_ARRAY_BEGIN(s_allAstcLdrFormats),    DE_ARRAY_END(s_allAstcLdrFormats)       },
1714         };
1715
1716         TestLog&                                                log                                     = context.getTestContext().getLog();
1717         const VkPhysicalDeviceFeatures& features                        = context.getDeviceFeatures();
1718         int                                                             numSupportedSets        = 0;
1719         int                                                             numErrors                       = 0;
1720         int                                                             numWarnings                     = 0;
1721
1722         for (int setNdx = 0; setNdx < DE_LENGTH_OF_ARRAY(s_compressedFormatSets); ++setNdx)
1723         {
1724                 const char* const       setName                 = s_compressedFormatSets[setNdx].setName;
1725                 const char* const       featureName             = s_compressedFormatSets[setNdx].featureName;
1726                 const bool                      featureBitSet   = features.*s_compressedFormatSets[setNdx].feature == VK_TRUE;
1727                 const bool                      allSupported    = optimalTilingFeaturesSupportedForAll(context,
1728                                                                                                                                                                    s_compressedFormatSets[setNdx].formatsBegin,
1729                                                                                                                                                                    s_compressedFormatSets[setNdx].formatsEnd,
1730                                                                                                                                                                    VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT);
1731
1732                 if (featureBitSet && !allSupported)
1733                 {
1734                         log << TestLog::Message << "ERROR: " << featureName << " = VK_TRUE but " << setName << " formats not supported" << TestLog::EndMessage;
1735                         numErrors += 1;
1736                 }
1737                 else if (allSupported && !featureBitSet)
1738                 {
1739                         log << TestLog::Message << "WARNING: " << setName << " formats supported but " << featureName << " = VK_FALSE" << TestLog::EndMessage;
1740                         numWarnings += 1;
1741                 }
1742
1743                 if (featureBitSet)
1744                 {
1745                         log << TestLog::Message << "All " << setName << " formats are supported" << TestLog::EndMessage;
1746                         numSupportedSets += 1;
1747                 }
1748                 else
1749                         log << TestLog::Message << setName << " formats are not supported" << TestLog::EndMessage;
1750         }
1751
1752         if (numSupportedSets == 0)
1753         {
1754                 log << TestLog::Message << "No compressed format sets supported" << TestLog::EndMessage;
1755                 numErrors += 1;
1756         }
1757
1758         if (numErrors > 0)
1759                 return tcu::TestStatus::fail("Compressed format support not valid");
1760         else if (numWarnings > 0)
1761                 return tcu::TestStatus(QP_TEST_RESULT_QUALITY_WARNING, "Found inconsistencies in compressed format support");
1762         else
1763                 return tcu::TestStatus::pass("Compressed texture format support is valid");
1764 }
1765
1766 void createFormatTests (tcu::TestCaseGroup* testGroup)
1767 {
1768         DE_STATIC_ASSERT(VK_FORMAT_UNDEFINED == 0);
1769
1770         for (deUint32 formatNdx = VK_FORMAT_UNDEFINED+1; formatNdx < VK_CORE_FORMAT_LAST; ++formatNdx)
1771         {
1772                 const VkFormat          format                  = (VkFormat)formatNdx;
1773                 const char* const       enumName                = getFormatName(format);
1774                 const string            caseName                = de::toLower(string(enumName).substr(10));
1775
1776                 addFunctionCase(testGroup, caseName, enumName, formatProperties, format);
1777         }
1778
1779         addFunctionCase(testGroup, "depth_stencil",                     "",     testDepthStencilSupported);
1780         addFunctionCase(testGroup, "compressed_formats",        "",     testCompressedFormatsSupported);
1781 }
1782
1783 VkImageUsageFlags getValidImageUsageFlags (const VkFormatFeatureFlags supportedFeatures, const bool useKhrMaintenance1Semantics)
1784 {
1785         VkImageUsageFlags       flags   = (VkImageUsageFlags)0;
1786
1787         if (useKhrMaintenance1Semantics)
1788         {
1789                 if ((supportedFeatures & VK_FORMAT_FEATURE_TRANSFER_SRC_BIT_KHR) != 0)
1790                         flags |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
1791
1792                 if ((supportedFeatures & VK_FORMAT_FEATURE_TRANSFER_DST_BIT_KHR) != 0)
1793                         flags |= VK_IMAGE_USAGE_TRANSFER_DST_BIT;
1794         }
1795         else
1796         {
1797                 // If format is supported at all, it must be valid transfer src+dst
1798                 if (supportedFeatures != 0)
1799                         flags |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT|VK_IMAGE_USAGE_TRANSFER_DST_BIT;
1800         }
1801
1802         if ((supportedFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT) != 0)
1803                 flags |= VK_IMAGE_USAGE_SAMPLED_BIT;
1804
1805         if ((supportedFeatures & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT) != 0)
1806                 flags |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT|VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT|VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT;
1807
1808         if ((supportedFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) != 0)
1809                 flags |= VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
1810
1811         if ((supportedFeatures & VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT) != 0)
1812                 flags |= VK_IMAGE_USAGE_STORAGE_BIT;
1813
1814         return flags;
1815 }
1816
1817 bool isValidImageUsageFlagCombination (VkImageUsageFlags usage)
1818 {
1819         if ((usage & VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT) != 0)
1820         {
1821                 const VkImageUsageFlags         allowedFlags    = VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT
1822                                                                                                         | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT
1823                                                                                                         | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT
1824                                                                                                         | VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT;
1825
1826                 // Only *_ATTACHMENT_BIT flags can be combined with TRANSIENT_ATTACHMENT_BIT
1827                 if ((usage & ~allowedFlags) != 0)
1828                         return false;
1829
1830                 // TRANSIENT_ATTACHMENT_BIT is not valid without COLOR_ or DEPTH_STENCIL_ATTACHMENT_BIT
1831                 if ((usage & (VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT|VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) == 0)
1832                         return false;
1833         }
1834
1835         return usage != 0;
1836 }
1837
1838 VkImageCreateFlags getValidImageCreateFlags (const VkPhysicalDeviceFeatures& deviceFeatures, VkFormat, VkFormatFeatureFlags, VkImageType type, VkImageUsageFlags usage)
1839 {
1840         VkImageCreateFlags      flags   = (VkImageCreateFlags)0;
1841
1842         if ((usage & VK_IMAGE_USAGE_SAMPLED_BIT) != 0)
1843         {
1844                 flags |= VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT;
1845
1846                 if (type == VK_IMAGE_TYPE_2D)
1847                         flags |= VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
1848         }
1849
1850         if ((usage & (VK_IMAGE_USAGE_SAMPLED_BIT|VK_IMAGE_USAGE_STORAGE_BIT)) != 0 &&
1851                 (usage & VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT) == 0)
1852         {
1853                 if (deviceFeatures.sparseBinding)
1854                         flags |= VK_IMAGE_CREATE_SPARSE_BINDING_BIT|VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT;
1855
1856                 if (deviceFeatures.sparseResidencyAliased)
1857                         flags |= VK_IMAGE_CREATE_SPARSE_ALIASED_BIT;
1858         }
1859
1860         return flags;
1861 }
1862
1863 bool isValidImageCreateFlagCombination (VkImageCreateFlags)
1864 {
1865         return true;
1866 }
1867
1868 bool isRequiredImageParameterCombination (const VkPhysicalDeviceFeatures&       deviceFeatures,
1869                                                                                   const VkFormat                                        format,
1870                                                                                   const VkFormatProperties&                     formatProperties,
1871                                                                                   const VkImageType                                     imageType,
1872                                                                                   const VkImageTiling                           imageTiling,
1873                                                                                   const VkImageUsageFlags                       usageFlags,
1874                                                                                   const VkImageCreateFlags                      createFlags)
1875 {
1876         DE_UNREF(deviceFeatures);
1877         DE_UNREF(formatProperties);
1878         DE_UNREF(createFlags);
1879
1880         // Linear images can have arbitrary limitations
1881         if (imageTiling == VK_IMAGE_TILING_LINEAR)
1882                 return false;
1883
1884         // Support for other usages for compressed formats is optional
1885         if (isCompressedFormat(format) &&
1886                 (usageFlags & ~(VK_IMAGE_USAGE_SAMPLED_BIT|VK_IMAGE_USAGE_TRANSFER_SRC_BIT|VK_IMAGE_USAGE_TRANSFER_DST_BIT)) != 0)
1887                 return false;
1888
1889         // Support for 1D, and sliced 3D compressed formats is optional
1890         if (isCompressedFormat(format) && (imageType == VK_IMAGE_TYPE_1D || imageType == VK_IMAGE_TYPE_3D))
1891                 return false;
1892
1893         // Support for 1D and 3D depth/stencil textures is optional
1894         if (isDepthStencilFormat(format) && (imageType == VK_IMAGE_TYPE_1D || imageType == VK_IMAGE_TYPE_3D))
1895                 return false;
1896
1897         DE_ASSERT(deviceFeatures.sparseBinding || (createFlags & (VK_IMAGE_CREATE_SPARSE_BINDING_BIT|VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT)) == 0);
1898         DE_ASSERT(deviceFeatures.sparseResidencyAliased || (createFlags & VK_IMAGE_CREATE_SPARSE_ALIASED_BIT) == 0);
1899
1900         if (createFlags & VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT)
1901         {
1902                 if (isCompressedFormat(format))
1903                         return false;
1904
1905                 if (isDepthStencilFormat(format))
1906                         return false;
1907
1908                 if (!deIsPowerOfTwo32(mapVkFormat(format).getPixelSize()))
1909                         return false;
1910
1911                 switch (imageType)
1912                 {
1913                         case VK_IMAGE_TYPE_2D:
1914                                 return (deviceFeatures.sparseResidencyImage2D == VK_TRUE);
1915                         case VK_IMAGE_TYPE_3D:
1916                                 return (deviceFeatures.sparseResidencyImage3D == VK_TRUE);
1917                         default:
1918                                 return false;
1919                 }
1920         }
1921
1922         return true;
1923 }
1924
1925 VkSampleCountFlags getRequiredOptimalTilingSampleCounts (const VkPhysicalDeviceLimits&  deviceLimits,
1926                                                                                                                  const VkFormat                                 format,
1927                                                                                                                  const VkImageUsageFlags                usageFlags)
1928 {
1929         if (!isCompressedFormat(format))
1930         {
1931                 const tcu::TextureFormat                tcuFormat               = mapVkFormat(format);
1932                 const bool                                              hasDepthComp    = (tcuFormat.order == tcu::TextureFormat::D || tcuFormat.order == tcu::TextureFormat::DS);
1933                 const bool                                              hasStencilComp  = (tcuFormat.order == tcu::TextureFormat::S || tcuFormat.order == tcu::TextureFormat::DS);
1934                 const bool                                              isColorFormat   = !hasDepthComp && !hasStencilComp;
1935                 VkSampleCountFlags                              sampleCounts    = ~(VkSampleCountFlags)0;
1936
1937                 DE_ASSERT((hasDepthComp || hasStencilComp) != isColorFormat);
1938
1939                 if ((usageFlags & VK_IMAGE_USAGE_STORAGE_BIT) != 0)
1940                         sampleCounts &= deviceLimits.storageImageSampleCounts;
1941
1942                 if ((usageFlags & VK_IMAGE_USAGE_SAMPLED_BIT) != 0)
1943                 {
1944                         if (hasDepthComp)
1945                                 sampleCounts &= deviceLimits.sampledImageDepthSampleCounts;
1946
1947                         if (hasStencilComp)
1948                                 sampleCounts &= deviceLimits.sampledImageStencilSampleCounts;
1949
1950                         if (isColorFormat)
1951                         {
1952                                 const tcu::TextureChannelClass  chnClass        = tcu::getTextureChannelClass(tcuFormat.type);
1953
1954                                 if (chnClass == tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER ||
1955                                         chnClass == tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER)
1956                                         sampleCounts &= deviceLimits.sampledImageIntegerSampleCounts;
1957                                 else
1958                                         sampleCounts &= deviceLimits.sampledImageColorSampleCounts;
1959                         }
1960                 }
1961
1962                 if ((usageFlags & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) != 0)
1963                         sampleCounts &= deviceLimits.framebufferColorSampleCounts;
1964
1965                 if ((usageFlags & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) != 0)
1966                 {
1967                         if (hasDepthComp)
1968                                 sampleCounts &= deviceLimits.framebufferDepthSampleCounts;
1969
1970                         if (hasStencilComp)
1971                                 sampleCounts &= deviceLimits.framebufferStencilSampleCounts;
1972                 }
1973
1974                 // If there is no usage flag set that would have corresponding device limit,
1975                 // only VK_SAMPLE_COUNT_1_BIT is required.
1976                 if (sampleCounts == ~(VkSampleCountFlags)0)
1977                         sampleCounts &= VK_SAMPLE_COUNT_1_BIT;
1978
1979                 return sampleCounts;
1980         }
1981         else
1982                 return VK_SAMPLE_COUNT_1_BIT;
1983 }
1984
1985 struct ImageFormatPropertyCase
1986 {
1987         typedef tcu::TestStatus (*Function) (Context& context, const VkFormat format, const VkImageType imageType, const VkImageTiling tiling);
1988
1989         Function                testFunction;
1990         VkFormat                format;
1991         VkImageType             imageType;
1992         VkImageTiling   tiling;
1993
1994         ImageFormatPropertyCase (Function testFunction_, VkFormat format_, VkImageType imageType_, VkImageTiling tiling_)
1995                 : testFunction  (testFunction_)
1996                 , format                (format_)
1997                 , imageType             (imageType_)
1998                 , tiling                (tiling_)
1999         {}
2000
2001         ImageFormatPropertyCase (void)
2002                 : testFunction  ((Function)DE_NULL)
2003                 , format                (VK_FORMAT_UNDEFINED)
2004                 , imageType             (VK_IMAGE_TYPE_LAST)
2005                 , tiling                (VK_IMAGE_TILING_LAST)
2006         {}
2007 };
2008
2009 tcu::TestStatus execImageFormatTest (Context& context, ImageFormatPropertyCase testCase)
2010 {
2011         return testCase.testFunction(context, testCase.format, testCase.imageType, testCase.tiling);
2012 }
2013
2014 void createImageFormatTypeTilingTests (tcu::TestCaseGroup* testGroup, ImageFormatPropertyCase params)
2015 {
2016         DE_ASSERT(params.format == VK_FORMAT_UNDEFINED);
2017
2018         for (deUint32 formatNdx = VK_FORMAT_UNDEFINED+1; formatNdx < VK_CORE_FORMAT_LAST; ++formatNdx)
2019         {
2020                 const VkFormat          format                  = (VkFormat)formatNdx;
2021                 const char* const       enumName                = getFormatName(format);
2022                 const string            caseName                = de::toLower(string(enumName).substr(10));
2023
2024                 params.format = format;
2025
2026                 addFunctionCase(testGroup, caseName, enumName, execImageFormatTest, params);
2027         }
2028 }
2029
2030 void createImageFormatTypeTests (tcu::TestCaseGroup* testGroup, ImageFormatPropertyCase params)
2031 {
2032         DE_ASSERT(params.tiling == VK_IMAGE_TILING_LAST);
2033
2034         testGroup->addChild(createTestGroup(testGroup->getTestContext(), "optimal",     "",     createImageFormatTypeTilingTests, ImageFormatPropertyCase(params.testFunction, VK_FORMAT_UNDEFINED, params.imageType, VK_IMAGE_TILING_OPTIMAL)));
2035         testGroup->addChild(createTestGroup(testGroup->getTestContext(), "linear",      "",     createImageFormatTypeTilingTests, ImageFormatPropertyCase(params.testFunction, VK_FORMAT_UNDEFINED, params.imageType, VK_IMAGE_TILING_LINEAR)));
2036 }
2037
2038 void createImageFormatTests (tcu::TestCaseGroup* testGroup, ImageFormatPropertyCase::Function testFunction)
2039 {
2040         testGroup->addChild(createTestGroup(testGroup->getTestContext(), "1d", "", createImageFormatTypeTests, ImageFormatPropertyCase(testFunction, VK_FORMAT_UNDEFINED, VK_IMAGE_TYPE_1D, VK_IMAGE_TILING_LAST)));
2041         testGroup->addChild(createTestGroup(testGroup->getTestContext(), "2d", "", createImageFormatTypeTests, ImageFormatPropertyCase(testFunction, VK_FORMAT_UNDEFINED, VK_IMAGE_TYPE_2D, VK_IMAGE_TILING_LAST)));
2042         testGroup->addChild(createTestGroup(testGroup->getTestContext(), "3d", "", createImageFormatTypeTests, ImageFormatPropertyCase(testFunction, VK_FORMAT_UNDEFINED, VK_IMAGE_TYPE_3D, VK_IMAGE_TILING_LAST)));
2043 }
2044
2045 tcu::TestStatus imageFormatProperties (Context& context, const VkFormat format, const VkImageType imageType, const VkImageTiling tiling)
2046 {
2047         TestLog&                                                log                                     = context.getTestContext().getLog();
2048         const VkPhysicalDeviceFeatures& deviceFeatures          = context.getDeviceFeatures();
2049         const VkPhysicalDeviceLimits&   deviceLimits            = context.getDeviceProperties().limits;
2050         const VkFormatProperties                formatProperties        = getPhysicalDeviceFormatProperties(context.getInstanceInterface(), context.getPhysicalDevice(), format);
2051         const bool                                              hasKhrMaintenance1      = isExtensionSupported(context.getDeviceExtensions(), "VK_KHR_maintenance1");
2052
2053         const VkFormatFeatureFlags              supportedFeatures       = tiling == VK_IMAGE_TILING_LINEAR ? formatProperties.linearTilingFeatures : formatProperties.optimalTilingFeatures;
2054         const VkImageUsageFlags                 usageFlagSet            = getValidImageUsageFlags(supportedFeatures, hasKhrMaintenance1);
2055
2056         tcu::ResultCollector                    results                         (log, "ERROR: ");
2057
2058         if (hasKhrMaintenance1 && (supportedFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT) != 0)
2059         {
2060                 results.check((supportedFeatures & (VK_FORMAT_FEATURE_TRANSFER_SRC_BIT_KHR | VK_FORMAT_FEATURE_TRANSFER_DST_BIT_KHR)) != 0,
2061                                           "A sampled image format must have VK_FORMAT_FEATURE_TRANSFER_SRC_BIT_KHR and VK_FORMAT_FEATURE_TRANSFER_DST_BIT_KHR format feature flags set");
2062         }
2063
2064         for (VkImageUsageFlags curUsageFlags = 0; curUsageFlags <= usageFlagSet; curUsageFlags++)
2065         {
2066                 if ((curUsageFlags & ~usageFlagSet) != 0 ||
2067                         !isValidImageUsageFlagCombination(curUsageFlags))
2068                         continue;
2069
2070                 const VkImageCreateFlags        createFlagSet           = getValidImageCreateFlags(deviceFeatures, format, supportedFeatures, imageType, curUsageFlags);
2071
2072                 for (VkImageCreateFlags curCreateFlags = 0; curCreateFlags <= createFlagSet; curCreateFlags++)
2073                 {
2074                         if ((curCreateFlags & ~createFlagSet) != 0 ||
2075                                 !isValidImageCreateFlagCombination(curCreateFlags))
2076                                 continue;
2077
2078                         const bool                              isRequiredCombination   = isRequiredImageParameterCombination(deviceFeatures,
2079                                                                                                                                                                                                   format,
2080                                                                                                                                                                                                   formatProperties,
2081                                                                                                                                                                                                   imageType,
2082                                                                                                                                                                                                   tiling,
2083                                                                                                                                                                                                   curUsageFlags,
2084                                                                                                                                                                                                   curCreateFlags);
2085                         VkImageFormatProperties properties;
2086                         VkResult                                queryResult;
2087
2088                         log << TestLog::Message << "Testing " << getImageTypeStr(imageType) << ", "
2089                                                                         << getImageTilingStr(tiling) << ", "
2090                                                                         << getImageUsageFlagsStr(curUsageFlags) << ", "
2091                                                                         << getImageCreateFlagsStr(curCreateFlags)
2092                                 << TestLog::EndMessage;
2093
2094                         // Set return value to known garbage
2095                         deMemset(&properties, 0xcd, sizeof(properties));
2096
2097                         queryResult = context.getInstanceInterface().getPhysicalDeviceImageFormatProperties(context.getPhysicalDevice(),
2098                                                                                                                                                                                                 format,
2099                                                                                                                                                                                                 imageType,
2100                                                                                                                                                                                                 tiling,
2101                                                                                                                                                                                                 curUsageFlags,
2102                                                                                                                                                                                                 curCreateFlags,
2103                                                                                                                                                                                                 &properties);
2104
2105                         if (queryResult == VK_SUCCESS)
2106                         {
2107                                 const deUint32  fullMipPyramidSize      = de::max(de::max(deLog2Ceil32(properties.maxExtent.width),
2108                                                                                                                                           deLog2Ceil32(properties.maxExtent.height)),
2109                                                                                                                           deLog2Ceil32(properties.maxExtent.depth)) + 1;
2110
2111                                 log << TestLog::Message << properties << "\n" << TestLog::EndMessage;
2112
2113                                 results.check(imageType != VK_IMAGE_TYPE_1D || (properties.maxExtent.width >= 1 && properties.maxExtent.height == 1 && properties.maxExtent.depth == 1), "Invalid dimensions for 1D image");
2114                                 results.check(imageType != VK_IMAGE_TYPE_2D || (properties.maxExtent.width >= 1 && properties.maxExtent.height >= 1 && properties.maxExtent.depth == 1), "Invalid dimensions for 2D image");
2115                                 results.check(imageType != VK_IMAGE_TYPE_3D || (properties.maxExtent.width >= 1 && properties.maxExtent.height >= 1 && properties.maxExtent.depth >= 1), "Invalid dimensions for 3D image");
2116                                 results.check(imageType != VK_IMAGE_TYPE_3D || properties.maxArrayLayers == 1, "Invalid maxArrayLayers for 3D image");
2117
2118                                 if (tiling == VK_IMAGE_TILING_OPTIMAL && imageType == VK_IMAGE_TYPE_2D && !(curCreateFlags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT) &&
2119                                          ((supportedFeatures & (VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT)) ||
2120                                          ((supportedFeatures & VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT) && deviceFeatures.shaderStorageImageMultisample)))
2121                                 {
2122                                         const VkSampleCountFlags        requiredSampleCounts    = getRequiredOptimalTilingSampleCounts(deviceLimits, format, curUsageFlags);
2123                                         results.check((properties.sampleCounts & requiredSampleCounts) == requiredSampleCounts, "Required sample counts not supported");
2124                                 }
2125                                 else
2126                                         results.check(properties.sampleCounts == VK_SAMPLE_COUNT_1_BIT, "sampleCounts != VK_SAMPLE_COUNT_1_BIT");
2127
2128                                 if (isRequiredCombination)
2129                                 {
2130                                         results.check(imageType != VK_IMAGE_TYPE_1D || (properties.maxExtent.width      >= deviceLimits.maxImageDimension1D),
2131                                                                   "Reported dimensions smaller than device limits");
2132                                         results.check(imageType != VK_IMAGE_TYPE_2D || (properties.maxExtent.width      >= deviceLimits.maxImageDimension2D &&
2133                                                                                                                                         properties.maxExtent.height     >= deviceLimits.maxImageDimension2D),
2134                                                                   "Reported dimensions smaller than device limits");
2135                                         results.check(imageType != VK_IMAGE_TYPE_3D || (properties.maxExtent.width      >= deviceLimits.maxImageDimension3D &&
2136                                                                                                                                         properties.maxExtent.height     >= deviceLimits.maxImageDimension3D &&
2137                                                                                                                                         properties.maxExtent.depth      >= deviceLimits.maxImageDimension3D),
2138                                                                   "Reported dimensions smaller than device limits");
2139                                         results.check(properties.maxMipLevels == fullMipPyramidSize, "maxMipLevels is not full mip pyramid size");
2140                                         results.check(imageType == VK_IMAGE_TYPE_3D || properties.maxArrayLayers >= deviceLimits.maxImageArrayLayers,
2141                                                                   "maxArrayLayers smaller than device limits");
2142                                 }
2143                                 else
2144                                 {
2145                                         results.check(properties.maxMipLevels == 1 || properties.maxMipLevels == fullMipPyramidSize, "Invalid mip pyramid size");
2146                                         results.check(properties.maxArrayLayers >= 1, "Invalid maxArrayLayers");
2147                                 }
2148
2149                                 results.check(properties.maxResourceSize >= (VkDeviceSize)MINIMUM_REQUIRED_IMAGE_RESOURCE_SIZE,
2150                                                           "maxResourceSize smaller than minimum required size");
2151                         }
2152                         else if (queryResult == VK_ERROR_FORMAT_NOT_SUPPORTED)
2153                         {
2154                                 log << TestLog::Message << "Got VK_ERROR_FORMAT_NOT_SUPPORTED" << TestLog::EndMessage;
2155
2156                                 if (isRequiredCombination)
2157                                         results.fail("VK_ERROR_FORMAT_NOT_SUPPORTED returned for required image parameter combination");
2158
2159                                 // Specification requires that all fields are set to 0
2160                                 results.check(properties.maxExtent.width        == 0, "maxExtent.width != 0");
2161                                 results.check(properties.maxExtent.height       == 0, "maxExtent.height != 0");
2162                                 results.check(properties.maxExtent.depth        == 0, "maxExtent.depth != 0");
2163                                 results.check(properties.maxMipLevels           == 0, "maxMipLevels != 0");
2164                                 results.check(properties.maxArrayLayers         == 0, "maxArrayLayers != 0");
2165                                 results.check(properties.sampleCounts           == 0, "sampleCounts != 0");
2166                                 results.check(properties.maxResourceSize        == 0, "maxResourceSize != 0");
2167                         }
2168                         else
2169                         {
2170                                 results.fail("Got unexpected error" + de::toString(queryResult));
2171                         }
2172                 }
2173         }
2174
2175         return tcu::TestStatus(results.getResult(), results.getMessage());
2176 }
2177
2178 // VK_KHR_get_physical_device_properties2
2179
2180 Move<VkInstance> createInstanceWithExtension (const PlatformInterface& vkp, const char* extensionName)
2181 {
2182         const vector<VkExtensionProperties>     instanceExts    = enumerateInstanceExtensionProperties(vkp, DE_NULL);
2183         vector<string>                                          enabledExts;
2184
2185         if (!isExtensionSupported(instanceExts, RequiredExtension(extensionName)))
2186                 TCU_THROW(NotSupportedError, (string(extensionName) + " is not supported").c_str());
2187
2188         enabledExts.push_back(extensionName);
2189
2190         return createDefaultInstance(vkp, vector<string>() /* layers */, enabledExts);
2191 }
2192
2193 tcu::TestStatus deviceFeatures2 (Context& context)
2194 {
2195         const PlatformInterface&                vkp                     = context.getPlatformInterface();
2196         const Unique<VkInstance>                instance        (createInstanceWithExtension(vkp, "VK_KHR_get_physical_device_properties2"));
2197         const InstanceDriver                    vki                     (vkp, *instance);
2198         const vector<VkPhysicalDevice>  devices         = enumeratePhysicalDevices(vki, *instance);
2199
2200         for (size_t deviceNdx = 0; deviceNdx < devices.size(); ++deviceNdx)
2201         {
2202                 VkPhysicalDeviceFeatures                coreFeatures;
2203                 VkPhysicalDeviceFeatures2KHR    extFeatures;
2204
2205                 deMemset(&coreFeatures, 0xcd, sizeof(coreFeatures));
2206                 deMemset(&extFeatures.features, 0xcd, sizeof(extFeatures.features));
2207
2208                 extFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2_KHR;
2209                 extFeatures.pNext = DE_NULL;
2210
2211                 vki.getPhysicalDeviceFeatures(devices[deviceNdx], &coreFeatures);
2212                 vki.getPhysicalDeviceFeatures2KHR(devices[deviceNdx], &extFeatures);
2213
2214                 TCU_CHECK(extFeatures.sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2_KHR);
2215                 TCU_CHECK(extFeatures.pNext == DE_NULL);
2216
2217                 if (deMemCmp(&coreFeatures, &extFeatures.features, sizeof(VkPhysicalDeviceFeatures)) != 0)
2218                         TCU_FAIL("Mismatch between features reported by vkGetPhysicalDeviceFeatures and vkGetPhysicalDeviceFeatures2KHR");
2219         }
2220
2221         return tcu::TestStatus::pass("Querying device features succeeded");
2222 }
2223
2224 tcu::TestStatus deviceProperties2 (Context& context)
2225 {
2226         const PlatformInterface&                vkp                     = context.getPlatformInterface();
2227         const Unique<VkInstance>                instance        (createInstanceWithExtension(vkp, "VK_KHR_get_physical_device_properties2"));
2228         const InstanceDriver                    vki                     (vkp, *instance);
2229         const vector<VkPhysicalDevice>  devices         = enumeratePhysicalDevices(vki, *instance);
2230
2231         for (size_t deviceNdx = 0; deviceNdx < devices.size(); ++deviceNdx)
2232         {
2233                 VkPhysicalDeviceProperties              coreProperties;
2234                 VkPhysicalDeviceProperties2KHR  extProperties;
2235
2236                 extProperties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2_KHR;
2237                 extProperties.pNext = DE_NULL;
2238
2239                 vki.getPhysicalDeviceProperties(devices[deviceNdx], &coreProperties);
2240                 vki.getPhysicalDeviceProperties2KHR(devices[deviceNdx], &extProperties);
2241
2242                 TCU_CHECK(extProperties.sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2_KHR);
2243                 TCU_CHECK(extProperties.pNext == DE_NULL);
2244
2245                 // We can't use memcmp() here because the structs may contain padding bytes that drivers may or may not
2246                 // have written while writing the data and memcmp will compare them anyway, so we iterate through the
2247                 // valid bytes for each field in the struct and compare only the valid bytes for each one.
2248                 for (int propNdx = 0; propNdx < DE_LENGTH_OF_ARRAY(s_physicalDevicePropertiesOffsetTable); propNdx++)
2249                 {
2250                         const size_t offset                                     = s_physicalDevicePropertiesOffsetTable[propNdx].offset;
2251                         const size_t size                                       = s_physicalDevicePropertiesOffsetTable[propNdx].size;
2252
2253                         const deUint8* corePropertyBytes        = reinterpret_cast<deUint8*>(&coreProperties) + offset;
2254                         const deUint8* extPropertyBytes         = reinterpret_cast<deUint8*>(&extProperties.properties) + offset;
2255
2256                         if (deMemCmp(corePropertyBytes, extPropertyBytes, size) != 0)
2257                                 TCU_FAIL("Mismatch between properties reported by vkGetPhysicalDeviceProperties and vkGetPhysicalDeviceProperties2KHR");
2258                 }
2259         }
2260
2261         return tcu::TestStatus::pass("Querying device properties succeeded");
2262 }
2263
2264 tcu::TestStatus deviceFormatProperties2 (Context& context)
2265 {
2266         const PlatformInterface&                vkp                     = context.getPlatformInterface();
2267         const Unique<VkInstance>                instance        (createInstanceWithExtension(vkp, "VK_KHR_get_physical_device_properties2"));
2268         const InstanceDriver                    vki                     (vkp, *instance);
2269         const vector<VkPhysicalDevice>  devices         = enumeratePhysicalDevices(vki, *instance);
2270
2271         for (size_t deviceNdx = 0; deviceNdx < devices.size(); ++deviceNdx)
2272         {
2273                 const VkPhysicalDevice  physicalDevice  = devices[deviceNdx];
2274
2275                 for (int formatNdx = 0; formatNdx < VK_CORE_FORMAT_LAST; ++formatNdx)
2276                 {
2277                         const VkFormat                  format                  = (VkFormat)formatNdx;
2278                         VkFormatProperties              coreProperties;
2279                         VkFormatProperties2KHR  extProperties;
2280
2281                         deMemset(&coreProperties, 0xcd, sizeof(VkFormatProperties));
2282                         deMemset(&extProperties, 0xcd, sizeof(VkFormatProperties2KHR));
2283
2284                         extProperties.sType     = VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2_KHR;
2285                         extProperties.pNext = DE_NULL;
2286
2287                         vki.getPhysicalDeviceFormatProperties(physicalDevice, format, &coreProperties);
2288                         vki.getPhysicalDeviceFormatProperties2KHR(physicalDevice, format, &extProperties);
2289
2290                         TCU_CHECK(extProperties.sType == VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2_KHR);
2291                         TCU_CHECK(extProperties.pNext == DE_NULL);
2292
2293                 if (deMemCmp(&coreProperties, &extProperties.formatProperties, sizeof(VkFormatProperties)) != 0)
2294                         TCU_FAIL("Mismatch between format properties reported by vkGetPhysicalDeviceFormatProperties and vkGetPhysicalDeviceFormatProperties2KHR");
2295                 }
2296         }
2297
2298         return tcu::TestStatus::pass("Querying device format properties succeeded");
2299 }
2300
2301 tcu::TestStatus deviceQueueFamilyProperties2 (Context& context)
2302 {
2303         const PlatformInterface&                vkp                     = context.getPlatformInterface();
2304         const Unique<VkInstance>                instance        (createInstanceWithExtension(vkp, "VK_KHR_get_physical_device_properties2"));
2305         const InstanceDriver                    vki                     (vkp, *instance);
2306         const vector<VkPhysicalDevice>  devices         = enumeratePhysicalDevices(vki, *instance);
2307
2308         for (size_t deviceNdx = 0; deviceNdx < devices.size(); ++deviceNdx)
2309         {
2310                 const VkPhysicalDevice  physicalDevice                  = devices[deviceNdx];
2311                 deUint32                                numCoreQueueFamilies    = ~0u;
2312                 deUint32                                numExtQueueFamilies             = ~0u;
2313
2314                 vki.getPhysicalDeviceQueueFamilyProperties(physicalDevice, &numCoreQueueFamilies, DE_NULL);
2315                 vki.getPhysicalDeviceQueueFamilyProperties2KHR(physicalDevice, &numExtQueueFamilies, DE_NULL);
2316
2317                 TCU_CHECK_MSG(numCoreQueueFamilies == numExtQueueFamilies, "Different number of queue family properties reported");
2318                 TCU_CHECK(numCoreQueueFamilies > 0);
2319
2320                 {
2321                         std::vector<VkQueueFamilyProperties>            coreProperties  (numCoreQueueFamilies);
2322                         std::vector<VkQueueFamilyProperties2KHR>        extProperties   (numExtQueueFamilies);
2323
2324                         deMemset(&coreProperties[0], 0xcd, sizeof(VkQueueFamilyProperties)*numCoreQueueFamilies);
2325                         deMemset(&extProperties[0], 0xcd, sizeof(VkQueueFamilyProperties2KHR)*numExtQueueFamilies);
2326
2327                         for (size_t ndx = 0; ndx < extProperties.size(); ++ndx)
2328                         {
2329                                 extProperties[ndx].sType = VK_STRUCTURE_TYPE_QUEUE_FAMILY_PROPERTIES_2_KHR;
2330                                 extProperties[ndx].pNext = DE_NULL;
2331                         }
2332
2333                         vki.getPhysicalDeviceQueueFamilyProperties(physicalDevice, &numCoreQueueFamilies, &coreProperties[0]);
2334                         vki.getPhysicalDeviceQueueFamilyProperties2KHR(physicalDevice, &numExtQueueFamilies, &extProperties[0]);
2335
2336                         TCU_CHECK((size_t)numCoreQueueFamilies == coreProperties.size());
2337                         TCU_CHECK((size_t)numExtQueueFamilies == extProperties.size());
2338                         DE_ASSERT(numCoreQueueFamilies == numExtQueueFamilies);
2339
2340                         for (size_t ndx = 0; ndx < extProperties.size(); ++ndx)
2341                         {
2342                                 TCU_CHECK(extProperties[ndx].sType == VK_STRUCTURE_TYPE_QUEUE_FAMILY_PROPERTIES_2_KHR);
2343                                 TCU_CHECK(extProperties[ndx].pNext == DE_NULL);
2344
2345                                 if (deMemCmp(&coreProperties[ndx], &extProperties[ndx].queueFamilyProperties, sizeof(VkQueueFamilyProperties)) != 0)
2346                                         TCU_FAIL("Mismatch between format properties reported by vkGetPhysicalDeviceQueueFamilyProperties and vkGetPhysicalDeviceQueueFamilyProperties2KHR");
2347                         }
2348                 }
2349         }
2350
2351         return tcu::TestStatus::pass("Querying device queue family properties succeeded");
2352 }
2353
2354 tcu::TestStatus deviceMemoryProperties2 (Context& context)
2355 {
2356         const PlatformInterface&                vkp                     = context.getPlatformInterface();
2357         const Unique<VkInstance>                instance        (createInstanceWithExtension(vkp, "VK_KHR_get_physical_device_properties2"));
2358         const InstanceDriver                    vki                     (vkp, *instance);
2359         const vector<VkPhysicalDevice>  devices         = enumeratePhysicalDevices(vki, *instance);
2360
2361         for (size_t deviceNdx = 0; deviceNdx < devices.size(); ++deviceNdx)
2362         {
2363                 VkPhysicalDeviceMemoryProperties                coreProperties;
2364                 VkPhysicalDeviceMemoryProperties2KHR    extProperties;
2365
2366                 deMemset(&coreProperties, 0xcd, sizeof(VkPhysicalDeviceMemoryProperties));
2367                 deMemset(&extProperties, 0xcd, sizeof(VkPhysicalDeviceMemoryProperties2KHR));
2368
2369                 extProperties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2_KHR;
2370                 extProperties.pNext = DE_NULL;
2371
2372                 vki.getPhysicalDeviceMemoryProperties(devices[deviceNdx], &coreProperties);
2373                 vki.getPhysicalDeviceMemoryProperties2KHR(devices[deviceNdx], &extProperties);
2374
2375                 TCU_CHECK(extProperties.sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2_KHR);
2376                 TCU_CHECK(extProperties.pNext == DE_NULL);
2377
2378                 if (deMemCmp(&coreProperties, &extProperties.memoryProperties, sizeof(VkPhysicalDeviceMemoryProperties)) != 0)
2379                         TCU_FAIL("Mismatch between properties reported by vkGetPhysicalDeviceMemoryProperties and vkGetPhysicalDeviceMemoryProperties2KHR");
2380         }
2381
2382         return tcu::TestStatus::pass("Querying device memory properties succeeded");
2383 }
2384
2385 tcu::TestStatus imageFormatProperties2 (Context& context, const VkFormat format, const VkImageType imageType, const VkImageTiling tiling)
2386 {
2387         TestLog&                                                log                             = context.getTestContext().getLog();
2388
2389         const PlatformInterface&                vkp                             = context.getPlatformInterface();
2390         const Unique<VkInstance>                instance                (createInstanceWithExtension(vkp, "VK_KHR_get_physical_device_properties2"));
2391         const InstanceDriver                    vki                             (vkp, *instance);
2392         const vector<VkPhysicalDevice>  devices                 = enumeratePhysicalDevices(vki, *instance);
2393
2394         const VkImageUsageFlags                 allUsageFlags   = VK_IMAGE_USAGE_TRANSFER_SRC_BIT
2395                                                                                                         | VK_IMAGE_USAGE_TRANSFER_DST_BIT
2396                                                                                                         | VK_IMAGE_USAGE_SAMPLED_BIT
2397                                                                                                         | VK_IMAGE_USAGE_STORAGE_BIT
2398                                                                                                         | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT
2399                                                                                                         | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT
2400                                                                                                         | VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT
2401                                                                                                         | VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT;
2402         const VkImageCreateFlags                allCreateFlags  = VK_IMAGE_CREATE_SPARSE_BINDING_BIT
2403                                                                                                         | VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT
2404                                                                                                         | VK_IMAGE_CREATE_SPARSE_ALIASED_BIT
2405                                                                                                         | VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT
2406                                                                                                         | VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
2407
2408         for (size_t deviceNdx = 0; deviceNdx < devices.size(); ++deviceNdx)
2409         {
2410                 const VkPhysicalDevice  physicalDevice  = devices[deviceNdx];
2411
2412                 for (VkImageUsageFlags curUsageFlags = (VkImageUsageFlags)1; curUsageFlags <= allUsageFlags; curUsageFlags++)
2413                 {
2414                         for (VkImageCreateFlags curCreateFlags = 0; curCreateFlags <= allCreateFlags; curCreateFlags++)
2415                         {
2416                                 const VkPhysicalDeviceImageFormatInfo2KHR       imageFormatInfo =
2417                                 {
2418                                         VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2_KHR,
2419                                         DE_NULL,
2420                                         format,
2421                                         imageType,
2422                                         tiling,
2423                                         curUsageFlags,
2424                                         curCreateFlags
2425                                 };
2426
2427                                 VkImageFormatProperties                                         coreProperties;
2428                                 VkImageFormatProperties2KHR                                     extProperties;
2429                                 VkResult                                                                        coreResult;
2430                                 VkResult                                                                        extResult;
2431
2432                                 deMemset(&coreProperties, 0xcd, sizeof(VkImageFormatProperties));
2433                                 deMemset(&extProperties, 0xcd, sizeof(VkImageFormatProperties2KHR));
2434
2435                                 extProperties.sType = VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2_KHR;
2436                                 extProperties.pNext = DE_NULL;
2437
2438                                 coreResult      = vki.getPhysicalDeviceImageFormatProperties(physicalDevice, imageFormatInfo.format, imageFormatInfo.type, imageFormatInfo.tiling, imageFormatInfo.usage, imageFormatInfo.flags, &coreProperties);
2439                                 extResult       = vki.getPhysicalDeviceImageFormatProperties2KHR(physicalDevice, &imageFormatInfo, &extProperties);
2440
2441                                 TCU_CHECK(extProperties.sType == VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2_KHR);
2442                                 TCU_CHECK(extProperties.pNext == DE_NULL);
2443
2444                                 if ((coreResult != extResult) ||
2445                                         (deMemCmp(&coreProperties, &extProperties.imageFormatProperties, sizeof(VkImageFormatProperties)) != 0))
2446                                 {
2447                                         log << TestLog::Message << "ERROR: device " << deviceNdx << ": mismatch with query " << imageFormatInfo << TestLog::EndMessage
2448                                                 << TestLog::Message << "vkGetPhysicalDeviceImageFormatProperties() returned " << coreResult << ", " << coreProperties << TestLog::EndMessage
2449                                                 << TestLog::Message << "vkGetPhysicalDeviceImageFormatProperties2KHR() returned " << extResult << ", " << extProperties << TestLog::EndMessage;
2450                                         TCU_FAIL("Mismatch between image format properties reported by vkGetPhysicalDeviceImageFormatProperties and vkGetPhysicalDeviceImageFormatProperties2KHR");
2451                                 }
2452                         }
2453                 }
2454         }
2455
2456         return tcu::TestStatus::pass("Querying image format properties succeeded");
2457 }
2458
2459 tcu::TestStatus sparseImageFormatProperties2 (Context& context, const VkFormat format, const VkImageType imageType, const VkImageTiling tiling)
2460 {
2461         TestLog&                                                log                             = context.getTestContext().getLog();
2462
2463         const PlatformInterface&                vkp                             = context.getPlatformInterface();
2464         const Unique<VkInstance>                instance                (createInstanceWithExtension(vkp, "VK_KHR_get_physical_device_properties2"));
2465         const InstanceDriver                    vki                             (vkp, *instance);
2466         const vector<VkPhysicalDevice>  devices                 = enumeratePhysicalDevices(vki, *instance);
2467
2468         const VkImageUsageFlags                 allUsageFlags   = VK_IMAGE_USAGE_TRANSFER_SRC_BIT
2469                                                                                                         | VK_IMAGE_USAGE_TRANSFER_DST_BIT
2470                                                                                                         | VK_IMAGE_USAGE_SAMPLED_BIT
2471                                                                                                         | VK_IMAGE_USAGE_STORAGE_BIT
2472                                                                                                         | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT
2473                                                                                                         | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT
2474                                                                                                         | VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT
2475                                                                                                         | VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT;
2476
2477         for (size_t deviceNdx = 0; deviceNdx < devices.size(); ++deviceNdx)
2478         {
2479                 const VkPhysicalDevice  physicalDevice  = devices[deviceNdx];
2480
2481                 for (deUint32 sampleCountBit = VK_SAMPLE_COUNT_1_BIT; sampleCountBit <= VK_SAMPLE_COUNT_64_BIT; sampleCountBit = (sampleCountBit << 1u))
2482                 {
2483                         for (VkImageUsageFlags curUsageFlags = (VkImageUsageFlags)1; curUsageFlags <= allUsageFlags; curUsageFlags++)
2484                         {
2485                                 const VkPhysicalDeviceSparseImageFormatInfo2KHR imageFormatInfo =
2486                                 {
2487                                         VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SPARSE_IMAGE_FORMAT_INFO_2_KHR,
2488                                         DE_NULL,
2489                                         format,
2490                                         imageType,
2491                                         (VkSampleCountFlagBits)sampleCountBit,
2492                                         curUsageFlags,
2493                                         tiling,
2494                                 };
2495
2496                                 deUint32                                                                                numCoreProperties       = ~0u;
2497                                 deUint32                                                                                numExtProperties        = ~0u;
2498
2499                                 // Query count
2500                                 vki.getPhysicalDeviceSparseImageFormatProperties(physicalDevice, imageFormatInfo.format, imageFormatInfo.type, imageFormatInfo.samples, imageFormatInfo.usage, imageFormatInfo.tiling, &numCoreProperties, DE_NULL);
2501                                 vki.getPhysicalDeviceSparseImageFormatProperties2KHR(physicalDevice, &imageFormatInfo, &numExtProperties, DE_NULL);
2502
2503                                 if (numCoreProperties != numExtProperties)
2504                                 {
2505                                         log << TestLog::Message << "ERROR: device " << deviceNdx << ": different number of properties reported for " << imageFormatInfo << TestLog::EndMessage;
2506                                         TCU_FAIL("Mismatch in reported property count");
2507                                 }
2508
2509                                 if (numCoreProperties > 0)
2510                                 {
2511                                         std::vector<VkSparseImageFormatProperties>              coreProperties  (numCoreProperties);
2512                                         std::vector<VkSparseImageFormatProperties2KHR>  extProperties   (numExtProperties);
2513
2514                                         deMemset(&coreProperties[0], 0xcd, sizeof(VkSparseImageFormatProperties)*numCoreProperties);
2515                                         deMemset(&extProperties[0], 0xcd, sizeof(VkSparseImageFormatProperties2KHR)*numExtProperties);
2516
2517                                         for (deUint32 ndx = 0; ndx < numExtProperties; ++ndx)
2518                                         {
2519                                                 extProperties[ndx].sType = VK_STRUCTURE_TYPE_SPARSE_IMAGE_FORMAT_PROPERTIES_2_KHR;
2520                                                 extProperties[ndx].pNext = DE_NULL;
2521                                         }
2522
2523                                         vki.getPhysicalDeviceSparseImageFormatProperties(physicalDevice, imageFormatInfo.format, imageFormatInfo.type, imageFormatInfo.samples, imageFormatInfo.usage, imageFormatInfo.tiling, &numCoreProperties, &coreProperties[0]);
2524                                         vki.getPhysicalDeviceSparseImageFormatProperties2KHR(physicalDevice, &imageFormatInfo, &numExtProperties, &extProperties[0]);
2525
2526                                         TCU_CHECK((size_t)numCoreProperties == coreProperties.size());
2527                                         TCU_CHECK((size_t)numExtProperties == extProperties.size());
2528
2529                                         for (deUint32 ndx = 0; ndx < numCoreProperties; ++ndx)
2530                                         {
2531                                                 TCU_CHECK(extProperties[ndx].sType == VK_STRUCTURE_TYPE_SPARSE_IMAGE_FORMAT_PROPERTIES_2_KHR);
2532                                                 TCU_CHECK(extProperties[ndx].pNext == DE_NULL);
2533
2534                                                 if ((deMemCmp(&coreProperties[ndx], &extProperties[ndx].properties, sizeof(VkSparseImageFormatProperties)) != 0))
2535                                                 {
2536                                                         log << TestLog::Message << "ERROR: device " << deviceNdx << ": mismatch with query " << imageFormatInfo << " property " << ndx << TestLog::EndMessage
2537                                                                 << TestLog::Message << "vkGetPhysicalDeviceSparseImageFormatProperties() returned " << coreProperties[ndx] << TestLog::EndMessage
2538                                                                 << TestLog::Message << "vkGetPhysicalDeviceSparseImageFormatProperties2KHR() returned " << extProperties[ndx] << TestLog::EndMessage;
2539                                                         TCU_FAIL("Mismatch between image format properties reported by vkGetPhysicalDeviceSparseImageFormatProperties and vkGetPhysicalDeviceSparseImageFormatProperties2KHR");
2540                                                 }
2541                                         }
2542                                 }
2543                         }
2544                 }
2545         }
2546
2547         return tcu::TestStatus::pass("Querying sparse image format properties succeeded");
2548 }
2549
2550 // Android CTS -specific tests
2551
2552 namespace android
2553 {
2554
2555 void checkExtensions (tcu::ResultCollector& results, const set<string>& allowedExtensions, const vector<VkExtensionProperties>& reportedExtensions)
2556 {
2557         for (vector<VkExtensionProperties>::const_iterator extension = reportedExtensions.begin(); extension != reportedExtensions.end(); ++extension)
2558         {
2559                 const string    extensionName   (extension->extensionName);
2560                 const bool              mustBeKnown             = de::beginsWith(extensionName, "VK_KHX_")              ||
2561                                                                                   de::beginsWith(extensionName, "VK_GOOGLE_")   ||
2562                                                                                   de::beginsWith(extensionName, "VK_ANDROID_");
2563
2564                 if (mustBeKnown && !de::contains(allowedExtensions, extensionName))
2565                         results.fail("Unknown extension: " + extensionName);
2566         }
2567 }
2568
2569 tcu::TestStatus testNoUnknownExtensions (Context& context)
2570 {
2571         TestLog&                                log                                     = context.getTestContext().getLog();
2572         tcu::ResultCollector    results                         (log);
2573         set<string>                             allowedInstanceExtensions;
2574         set<string>                             allowedDeviceExtensions;
2575
2576         // All known extensions should be added to allowedExtensions:
2577         // allowedExtensions.insert("VK_GOOGLE_extension1");
2578         allowedDeviceExtensions.insert("VK_GOOGLE_display_timing");
2579
2580         // Instance extensions
2581         checkExtensions(results,
2582                                         allowedInstanceExtensions,
2583                                         enumerateInstanceExtensionProperties(context.getPlatformInterface(), DE_NULL));
2584
2585         // Extensions exposed by instance layers
2586         {
2587                 const vector<VkLayerProperties> layers  = enumerateInstanceLayerProperties(context.getPlatformInterface());
2588
2589                 for (vector<VkLayerProperties>::const_iterator layer = layers.begin(); layer != layers.end(); ++layer)
2590                 {
2591                         checkExtensions(results,
2592                                                         allowedInstanceExtensions,
2593                                                         enumerateInstanceExtensionProperties(context.getPlatformInterface(), layer->layerName));
2594                 }
2595         }
2596
2597         // Device extensions
2598         checkExtensions(results,
2599                                         allowedDeviceExtensions,
2600                                         enumerateDeviceExtensionProperties(context.getInstanceInterface(), context.getPhysicalDevice(), DE_NULL));
2601
2602         // Extensions exposed by device layers
2603         {
2604                 const vector<VkLayerProperties> layers  = enumerateDeviceLayerProperties(context.getInstanceInterface(), context.getPhysicalDevice());
2605
2606                 for (vector<VkLayerProperties>::const_iterator layer = layers.begin(); layer != layers.end(); ++layer)
2607                 {
2608                         checkExtensions(results,
2609                                                         allowedDeviceExtensions,
2610                                                         enumerateDeviceExtensionProperties(context.getInstanceInterface(), context.getPhysicalDevice(), layer->layerName));
2611                 }
2612         }
2613
2614         return tcu::TestStatus(results.getResult(), results.getMessage());
2615 }
2616
2617 tcu::TestStatus testNoLayers (Context& context)
2618 {
2619         TestLog&                                log             = context.getTestContext().getLog();
2620         tcu::ResultCollector    results (log);
2621
2622         {
2623                 const vector<VkLayerProperties> layers  = enumerateInstanceLayerProperties(context.getPlatformInterface());
2624
2625                 for (vector<VkLayerProperties>::const_iterator layer = layers.begin(); layer != layers.end(); ++layer)
2626                         results.fail(string("Instance layer enumerated: ") + layer->layerName);
2627         }
2628
2629         {
2630                 const vector<VkLayerProperties> layers  = enumerateDeviceLayerProperties(context.getInstanceInterface(), context.getPhysicalDevice());
2631
2632                 for (vector<VkLayerProperties>::const_iterator layer = layers.begin(); layer != layers.end(); ++layer)
2633                         results.fail(string("Device layer enumerated: ") + layer->layerName);
2634         }
2635
2636         return tcu::TestStatus(results.getResult(), results.getMessage());
2637 }
2638
2639 tcu::TestStatus testMandatoryExtensions (Context& context)
2640 {
2641         TestLog&                                log             = context.getTestContext().getLog();
2642         tcu::ResultCollector    results (log);
2643
2644         // Instance extensions
2645         {
2646                 static const char*                                      mandatoryExtensions[]   =
2647                 {
2648                         "VK_KHR_get_physical_device_properties2",
2649                 };
2650                 const vector<VkExtensionProperties>     extensions                              = enumerateInstanceExtensionProperties(context.getPlatformInterface(), DE_NULL);
2651
2652                 for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(mandatoryExtensions); ++ndx)
2653                 {
2654                         if (!isExtensionSupported(extensions, RequiredExtension(mandatoryExtensions[ndx])))
2655                                 results.fail(string(mandatoryExtensions[ndx]) + " is not supported");
2656                 }
2657         }
2658
2659         // Device extensions
2660         {
2661                 static const char*                                      mandatoryExtensions[]   =
2662                 {
2663                         "VK_KHR_maintenance1",
2664                 };
2665                 const vector<VkExtensionProperties>     extensions                              = enumerateDeviceExtensionProperties(context.getInstanceInterface(), context.getPhysicalDevice(), DE_NULL);
2666
2667                 for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(mandatoryExtensions); ++ndx)
2668                 {
2669                         if (!isExtensionSupported(extensions, RequiredExtension(mandatoryExtensions[ndx])))
2670                                 results.fail(string(mandatoryExtensions[ndx]) + " is not supported");
2671                 }
2672         }
2673
2674         return tcu::TestStatus(results.getResult(), results.getMessage());
2675 }
2676
2677 } // android
2678
2679 } // anonymous
2680
2681 tcu::TestCaseGroup* createFeatureInfoTests (tcu::TestContext& testCtx)
2682 {
2683         de::MovePtr<tcu::TestCaseGroup> infoTests       (new tcu::TestCaseGroup(testCtx, "info", "Platform Information Tests"));
2684
2685         {
2686                 de::MovePtr<tcu::TestCaseGroup> instanceInfoTests       (new tcu::TestCaseGroup(testCtx, "instance", "Instance Information Tests"));
2687
2688                 addFunctionCase(instanceInfoTests.get(), "physical_devices",            "Physical devices",                     enumeratePhysicalDevices);
2689                 addFunctionCase(instanceInfoTests.get(), "layers",                                      "Layers",                                       enumerateInstanceLayers);
2690                 addFunctionCase(instanceInfoTests.get(), "extensions",                          "Extensions",                           enumerateInstanceExtensions);
2691
2692                 infoTests->addChild(instanceInfoTests.release());
2693         }
2694
2695         {
2696                 de::MovePtr<tcu::TestCaseGroup> deviceInfoTests (new tcu::TestCaseGroup(testCtx, "device", "Device Information Tests"));
2697
2698                 addFunctionCase(deviceInfoTests.get(), "features",                                      "Device Features",                      deviceFeatures);
2699                 addFunctionCase(deviceInfoTests.get(), "properties",                            "Device Properties",            deviceProperties);
2700                 addFunctionCase(deviceInfoTests.get(), "queue_family_properties",       "Queue family properties",      deviceQueueFamilyProperties);
2701                 addFunctionCase(deviceInfoTests.get(), "memory_properties",                     "Memory properties",            deviceMemoryProperties);
2702                 addFunctionCase(deviceInfoTests.get(), "layers",                                        "Layers",                                       enumerateDeviceLayers);
2703                 addFunctionCase(deviceInfoTests.get(), "extensions",                            "Extensions",                           enumerateDeviceExtensions);
2704
2705                 infoTests->addChild(deviceInfoTests.release());
2706         }
2707
2708         infoTests->addChild(createTestGroup(testCtx, "format_properties",               "VkGetPhysicalDeviceFormatProperties() Tests",          createFormatTests));
2709         infoTests->addChild(createTestGroup(testCtx, "image_format_properties", "VkGetPhysicalDeviceImageFormatProperties() Tests",     createImageFormatTests, imageFormatProperties));
2710
2711         {
2712                 de::MovePtr<tcu::TestCaseGroup> extendedPropertiesTests (new tcu::TestCaseGroup(testCtx, "get_physical_device_properties2", "VK_KHR_get_physical_device_properties2"));
2713
2714                 addFunctionCase(extendedPropertiesTests.get(), "features",                                      "Extended Device Features",                                     deviceFeatures2);
2715                 addFunctionCase(extendedPropertiesTests.get(), "properties",                            "Extended Device Properties",                           deviceProperties2);
2716                 addFunctionCase(extendedPropertiesTests.get(), "format_properties",                     "Extended Device Format Properties",            deviceFormatProperties2);
2717                 addFunctionCase(extendedPropertiesTests.get(), "queue_family_properties",       "Extended Device Queue Family Properties",      deviceQueueFamilyProperties2);
2718                 addFunctionCase(extendedPropertiesTests.get(), "memory_properties",                     "Extended Device Memory Properties",            deviceMemoryProperties2);
2719
2720                 infoTests->addChild(extendedPropertiesTests.release());
2721         }
2722
2723         infoTests->addChild(createTestGroup(testCtx, "image_format_properties2",                "VkGetPhysicalDeviceImageFormatProperties2KHR() Tests",                 createImageFormatTests, imageFormatProperties2));
2724         infoTests->addChild(createTestGroup(testCtx, "sparse_image_format_properties2", "VkGetPhysicalDeviceSparseImageFormatProperties2KHR() Tests",   createImageFormatTests, sparseImageFormatProperties2));
2725
2726         {
2727                 de::MovePtr<tcu::TestCaseGroup> androidTests    (new tcu::TestCaseGroup(testCtx, "android", "Android CTS Tests"));
2728
2729                 addFunctionCase(androidTests.get(),     "mandatory_extensions",         "Test that all mandatory extensions are supported",     android::testMandatoryExtensions);
2730                 addFunctionCase(androidTests.get(), "no_unknown_extensions",    "Test for unknown device or instance extensions",       android::testNoUnknownExtensions);
2731                 addFunctionCase(androidTests.get(), "no_layers",                                "Test that no layers are enumerated",                           android::testNoLayers);
2732
2733                 infoTests->addChild(androidTests.release());
2734         }
2735
2736         return infoTests.release();
2737 }
2738
2739 } // api
2740 } // vkt