4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include <sys/types.h>
27 #include "qemu-common.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "hw/xen/xen.h"
36 #include "qemu/timer.h"
37 #include "qemu/config-file.h"
38 #include "exec/memory.h"
39 #include "sysemu/dma.h"
40 #include "exec/address-spaces.h"
41 #if defined(CONFIG_USER_ONLY)
43 #else /* !CONFIG_USER_ONLY */
44 #include "sysemu/xen-mapcache.h"
47 #include "exec/cpu-all.h"
49 #include "exec/cputlb.h"
50 #include "translate-all.h"
52 #include "exec/memory-internal.h"
54 //#define DEBUG_SUBPAGE
56 #if !defined(CONFIG_USER_ONLY)
57 static int in_migration;
59 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
61 static MemoryRegion *system_memory;
62 static MemoryRegion *system_io;
64 AddressSpace address_space_io;
65 AddressSpace address_space_memory;
67 MemoryRegion io_mem_rom, io_mem_notdirty;
68 static MemoryRegion io_mem_unassigned;
73 /* current CPU in the current thread. It is only valid inside
75 DEFINE_TLS(CPUState *, current_cpu);
76 /* 0 = Do not count executed instructions.
77 1 = Precise instruction counting.
78 2 = Adaptive rate instruction counting. */
81 #if !defined(CONFIG_USER_ONLY)
83 typedef struct PhysPageEntry PhysPageEntry;
85 struct PhysPageEntry {
87 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
91 typedef PhysPageEntry Node[L2_SIZE];
93 struct AddressSpaceDispatch {
94 /* This is a multi-level map on the physical address space.
95 * The bottom level has pointers to MemoryRegionSections.
97 PhysPageEntry phys_map;
99 MemoryRegionSection *sections;
103 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
104 typedef struct subpage_t {
108 uint16_t sub_section[TARGET_PAGE_SIZE];
111 #define PHYS_SECTION_UNASSIGNED 0
112 #define PHYS_SECTION_NOTDIRTY 1
113 #define PHYS_SECTION_ROM 2
114 #define PHYS_SECTION_WATCH 3
116 typedef struct PhysPageMap {
117 unsigned sections_nb;
118 unsigned sections_nb_alloc;
120 unsigned nodes_nb_alloc;
122 MemoryRegionSection *sections;
125 static PhysPageMap *prev_map;
126 static PhysPageMap next_map;
128 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
130 static void io_mem_init(void);
131 static void memory_map_init(void);
132 static void *qemu_safe_ram_ptr(ram_addr_t addr);
134 static MemoryRegion io_mem_watch;
137 #if !defined(CONFIG_USER_ONLY)
139 static void phys_map_node_reserve(unsigned nodes)
141 if (next_map.nodes_nb + nodes > next_map.nodes_nb_alloc) {
142 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc * 2,
144 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc,
145 next_map.nodes_nb + nodes);
146 next_map.nodes = g_renew(Node, next_map.nodes,
147 next_map.nodes_nb_alloc);
151 static uint16_t phys_map_node_alloc(void)
156 ret = next_map.nodes_nb++;
157 assert(ret != PHYS_MAP_NODE_NIL);
158 assert(ret != next_map.nodes_nb_alloc);
159 for (i = 0; i < L2_SIZE; ++i) {
160 next_map.nodes[ret][i].is_leaf = 0;
161 next_map.nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
166 static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
167 hwaddr *nb, uint16_t leaf,
172 hwaddr step = (hwaddr)1 << (level * L2_BITS);
174 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
175 lp->ptr = phys_map_node_alloc();
176 p = next_map.nodes[lp->ptr];
178 for (i = 0; i < L2_SIZE; i++) {
180 p[i].ptr = PHYS_SECTION_UNASSIGNED;
184 p = next_map.nodes[lp->ptr];
186 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
188 while (*nb && lp < &p[L2_SIZE]) {
189 if ((*index & (step - 1)) == 0 && *nb >= step) {
195 phys_page_set_level(lp, index, nb, leaf, level - 1);
201 static void phys_page_set(AddressSpaceDispatch *d,
202 hwaddr index, hwaddr nb,
205 /* Wildly overreserve - it doesn't matter much. */
206 phys_map_node_reserve(3 * P_L2_LEVELS);
208 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
211 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr index,
212 Node *nodes, MemoryRegionSection *sections)
217 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
218 if (lp.ptr == PHYS_MAP_NODE_NIL) {
219 return §ions[PHYS_SECTION_UNASSIGNED];
222 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
224 return §ions[lp.ptr];
227 bool memory_region_is_unassigned(MemoryRegion *mr)
229 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
230 && mr != &io_mem_watch;
233 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
235 bool resolve_subpage)
237 MemoryRegionSection *section;
240 section = phys_page_find(d->phys_map, addr >> TARGET_PAGE_BITS,
241 d->nodes, d->sections);
242 if (resolve_subpage && section->mr->subpage) {
243 subpage = container_of(section->mr, subpage_t, iomem);
244 section = &d->sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
249 static MemoryRegionSection *
250 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
251 hwaddr *plen, bool resolve_subpage)
253 MemoryRegionSection *section;
256 section = address_space_lookup_region(d, addr, resolve_subpage);
257 /* Compute offset within MemoryRegionSection */
258 addr -= section->offset_within_address_space;
260 /* Compute offset within MemoryRegion */
261 *xlat = addr + section->offset_within_region;
263 diff = int128_sub(section->mr->size, int128_make64(addr));
264 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
268 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
269 hwaddr *xlat, hwaddr *plen,
273 MemoryRegionSection *section;
278 section = address_space_translate_internal(as->dispatch, addr, &addr, plen, true);
281 if (!mr->iommu_ops) {
285 iotlb = mr->iommu_ops->translate(mr, addr);
286 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
287 | (addr & iotlb.addr_mask));
288 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
289 if (!(iotlb.perm & (1 << is_write))) {
290 mr = &io_mem_unassigned;
294 as = iotlb.target_as;
302 MemoryRegionSection *
303 address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
306 MemoryRegionSection *section;
307 section = address_space_translate_internal(as->dispatch, addr, xlat, plen, false);
309 assert(!section->mr->iommu_ops);
314 void cpu_exec_init_all(void)
316 #if !defined(CONFIG_USER_ONLY)
317 qemu_mutex_init(&ram_list.mutex);
323 #if !defined(CONFIG_USER_ONLY)
325 static int cpu_common_post_load(void *opaque, int version_id)
327 CPUState *cpu = opaque;
329 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
330 version_id is increased. */
331 cpu->interrupt_request &= ~0x01;
332 tlb_flush(cpu->env_ptr, 1);
337 const VMStateDescription vmstate_cpu_common = {
338 .name = "cpu_common",
340 .minimum_version_id = 1,
341 .minimum_version_id_old = 1,
342 .post_load = cpu_common_post_load,
343 .fields = (VMStateField []) {
344 VMSTATE_UINT32(halted, CPUState),
345 VMSTATE_UINT32(interrupt_request, CPUState),
346 VMSTATE_END_OF_LIST()
352 CPUState *qemu_get_cpu(int index)
354 CPUState *cpu = first_cpu;
357 if (cpu->cpu_index == index) {
366 void qemu_for_each_cpu(void (*func)(CPUState *cpu, void *data), void *data)
377 void cpu_exec_init(CPUArchState *env)
379 CPUState *cpu = ENV_GET_CPU(env);
380 CPUClass *cc = CPU_GET_CLASS(cpu);
384 #if defined(CONFIG_USER_ONLY)
387 cpu->next_cpu = NULL;
390 while (*pcpu != NULL) {
391 pcpu = &(*pcpu)->next_cpu;
394 cpu->cpu_index = cpu_index;
396 QTAILQ_INIT(&env->breakpoints);
397 QTAILQ_INIT(&env->watchpoints);
398 #ifndef CONFIG_USER_ONLY
399 cpu->thread_id = qemu_get_thread_id();
402 #if defined(CONFIG_USER_ONLY)
405 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
406 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
407 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
408 cpu_save, cpu_load, env);
409 assert(cc->vmsd == NULL);
411 if (cc->vmsd != NULL) {
412 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
416 #if defined(TARGET_HAS_ICE)
417 #if defined(CONFIG_USER_ONLY)
418 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
420 tb_invalidate_phys_page_range(pc, pc + 1, 0);
423 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
425 tb_invalidate_phys_addr(cpu_get_phys_page_debug(cpu, pc) |
426 (pc & ~TARGET_PAGE_MASK));
429 #endif /* TARGET_HAS_ICE */
431 #if defined(CONFIG_USER_ONLY)
432 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
437 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
438 int flags, CPUWatchpoint **watchpoint)
443 /* Add a watchpoint. */
444 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
445 int flags, CPUWatchpoint **watchpoint)
447 target_ulong len_mask = ~(len - 1);
450 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
451 if ((len & (len - 1)) || (addr & ~len_mask) ||
452 len == 0 || len > TARGET_PAGE_SIZE) {
453 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
454 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
457 wp = g_malloc(sizeof(*wp));
460 wp->len_mask = len_mask;
463 /* keep all GDB-injected watchpoints in front */
465 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
467 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
469 tlb_flush_page(env, addr);
476 /* Remove a specific watchpoint. */
477 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
480 target_ulong len_mask = ~(len - 1);
483 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
484 if (addr == wp->vaddr && len_mask == wp->len_mask
485 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
486 cpu_watchpoint_remove_by_ref(env, wp);
493 /* Remove a specific watchpoint by reference. */
494 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
496 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
498 tlb_flush_page(env, watchpoint->vaddr);
503 /* Remove all matching watchpoints. */
504 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
506 CPUWatchpoint *wp, *next;
508 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
509 if (wp->flags & mask)
510 cpu_watchpoint_remove_by_ref(env, wp);
515 /* Add a breakpoint. */
516 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
517 CPUBreakpoint **breakpoint)
519 #if defined(TARGET_HAS_ICE)
522 bp = g_malloc(sizeof(*bp));
527 /* keep all GDB-injected breakpoints in front */
528 if (flags & BP_GDB) {
529 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
531 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
534 breakpoint_invalidate(ENV_GET_CPU(env), pc);
545 /* Remove a specific breakpoint. */
546 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
548 #if defined(TARGET_HAS_ICE)
551 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
552 if (bp->pc == pc && bp->flags == flags) {
553 cpu_breakpoint_remove_by_ref(env, bp);
563 /* Remove a specific breakpoint by reference. */
564 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
566 #if defined(TARGET_HAS_ICE)
567 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
569 breakpoint_invalidate(ENV_GET_CPU(env), breakpoint->pc);
575 /* Remove all matching breakpoints. */
576 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
578 #if defined(TARGET_HAS_ICE)
579 CPUBreakpoint *bp, *next;
581 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
582 if (bp->flags & mask)
583 cpu_breakpoint_remove_by_ref(env, bp);
588 /* enable or disable single step mode. EXCP_DEBUG is returned by the
589 CPU loop after each instruction */
590 void cpu_single_step(CPUState *cpu, int enabled)
592 #if defined(TARGET_HAS_ICE)
593 CPUArchState *env = cpu->env_ptr;
595 if (cpu->singlestep_enabled != enabled) {
596 cpu->singlestep_enabled = enabled;
598 kvm_update_guest_debug(env, 0);
600 /* must flush all the translated code to avoid inconsistencies */
601 /* XXX: only flush what is necessary */
608 void cpu_abort(CPUArchState *env, const char *fmt, ...)
610 CPUState *cpu = ENV_GET_CPU(env);
616 fprintf(stderr, "qemu: fatal: ");
617 vfprintf(stderr, fmt, ap);
618 fprintf(stderr, "\n");
619 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
620 if (qemu_log_enabled()) {
621 qemu_log("qemu: fatal: ");
622 qemu_log_vprintf(fmt, ap2);
624 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
630 #if defined(CONFIG_USER_ONLY)
632 struct sigaction act;
633 sigfillset(&act.sa_mask);
634 act.sa_handler = SIG_DFL;
635 sigaction(SIGABRT, &act, NULL);
641 CPUArchState *cpu_copy(CPUArchState *env)
643 CPUArchState *new_env = cpu_init(env->cpu_model_str);
644 #if defined(TARGET_HAS_ICE)
649 /* Reset non arch specific state */
650 cpu_reset(ENV_GET_CPU(new_env));
652 /* Copy arch specific state into the new CPU */
653 memcpy(new_env, env, sizeof(CPUArchState));
655 /* Clone all break/watchpoints.
656 Note: Once we support ptrace with hw-debug register access, make sure
657 BP_CPU break/watchpoints are handled correctly on clone. */
658 QTAILQ_INIT(&env->breakpoints);
659 QTAILQ_INIT(&env->watchpoints);
660 #if defined(TARGET_HAS_ICE)
661 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
662 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
664 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
665 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
673 #if !defined(CONFIG_USER_ONLY)
674 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
679 /* we modify the TLB cache so that the dirty bit will be set again
680 when accessing the range */
681 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
682 /* Check that we don't span multiple blocks - this breaks the
683 address comparisons below. */
684 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
685 != (end - 1) - start) {
688 cpu_tlb_reset_dirty_all(start1, length);
692 /* Note: start and end must be within the same ram block. */
693 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
698 start &= TARGET_PAGE_MASK;
699 end = TARGET_PAGE_ALIGN(end);
701 length = end - start;
704 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
707 tlb_reset_dirty_range_all(start, end, length);
711 static int cpu_physical_memory_set_dirty_tracking(int enable)
714 in_migration = enable;
718 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
719 MemoryRegionSection *section,
721 hwaddr paddr, hwaddr xlat,
723 target_ulong *address)
728 if (memory_region_is_ram(section->mr)) {
730 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
732 if (!section->readonly) {
733 iotlb |= PHYS_SECTION_NOTDIRTY;
735 iotlb |= PHYS_SECTION_ROM;
738 iotlb = section - address_space_memory.dispatch->sections;
742 /* Make accesses to pages with watchpoints go via the
743 watchpoint trap routines. */
744 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
745 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
746 /* Avoid trapping reads of pages with a write breakpoint. */
747 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
748 iotlb = PHYS_SECTION_WATCH + paddr;
749 *address |= TLB_MMIO;
757 #endif /* defined(CONFIG_USER_ONLY) */
759 #if !defined(CONFIG_USER_ONLY)
761 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
763 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
765 static uint16_t phys_section_add(MemoryRegionSection *section)
767 /* The physical section number is ORed with a page-aligned
768 * pointer to produce the iotlb entries. Thus it should
769 * never overflow into the page-aligned value.
771 assert(next_map.sections_nb < TARGET_PAGE_SIZE);
773 if (next_map.sections_nb == next_map.sections_nb_alloc) {
774 next_map.sections_nb_alloc = MAX(next_map.sections_nb_alloc * 2,
776 next_map.sections = g_renew(MemoryRegionSection, next_map.sections,
777 next_map.sections_nb_alloc);
779 next_map.sections[next_map.sections_nb] = *section;
780 memory_region_ref(section->mr);
781 return next_map.sections_nb++;
784 static void phys_section_destroy(MemoryRegion *mr)
786 memory_region_unref(mr);
789 subpage_t *subpage = container_of(mr, subpage_t, iomem);
790 memory_region_destroy(&subpage->iomem);
795 static void phys_sections_free(PhysPageMap *map)
797 while (map->sections_nb > 0) {
798 MemoryRegionSection *section = &map->sections[--map->sections_nb];
799 phys_section_destroy(section->mr);
801 g_free(map->sections);
806 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
809 hwaddr base = section->offset_within_address_space
811 MemoryRegionSection *existing = phys_page_find(d->phys_map, base >> TARGET_PAGE_BITS,
812 next_map.nodes, next_map.sections);
813 MemoryRegionSection subsection = {
814 .offset_within_address_space = base,
815 .size = int128_make64(TARGET_PAGE_SIZE),
819 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
821 if (!(existing->mr->subpage)) {
822 subpage = subpage_init(d->as, base);
823 subsection.mr = &subpage->iomem;
824 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
825 phys_section_add(&subsection));
827 subpage = container_of(existing->mr, subpage_t, iomem);
829 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
830 end = start + int128_get64(section->size) - 1;
831 subpage_register(subpage, start, end, phys_section_add(section));
835 static void register_multipage(AddressSpaceDispatch *d,
836 MemoryRegionSection *section)
838 hwaddr start_addr = section->offset_within_address_space;
839 uint16_t section_index = phys_section_add(section);
840 uint64_t num_pages = int128_get64(int128_rshift(section->size,
844 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
847 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
849 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
850 AddressSpaceDispatch *d = as->next_dispatch;
851 MemoryRegionSection now = *section, remain = *section;
852 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
854 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
855 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
856 - now.offset_within_address_space;
858 now.size = int128_min(int128_make64(left), now.size);
859 register_subpage(d, &now);
861 now.size = int128_zero();
863 while (int128_ne(remain.size, now.size)) {
864 remain.size = int128_sub(remain.size, now.size);
865 remain.offset_within_address_space += int128_get64(now.size);
866 remain.offset_within_region += int128_get64(now.size);
868 if (int128_lt(remain.size, page_size)) {
869 register_subpage(d, &now);
870 } else if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
871 now.size = page_size;
872 register_subpage(d, &now);
874 now.size = int128_and(now.size, int128_neg(page_size));
875 register_multipage(d, &now);
880 void qemu_flush_coalesced_mmio_buffer(void)
883 kvm_flush_coalesced_mmio_buffer();
886 void qemu_mutex_lock_ramlist(void)
888 qemu_mutex_lock(&ram_list.mutex);
891 void qemu_mutex_unlock_ramlist(void)
893 qemu_mutex_unlock(&ram_list.mutex);
896 #if defined(__linux__) && !defined(TARGET_S390X)
900 #define HUGETLBFS_MAGIC 0x958458f6
902 static long gethugepagesize(const char *path)
908 ret = statfs(path, &fs);
909 } while (ret != 0 && errno == EINTR);
916 if (fs.f_type != HUGETLBFS_MAGIC)
917 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
922 static void *file_ram_alloc(RAMBlock *block,
927 char *sanitized_name;
934 unsigned long hpagesize;
936 hpagesize = gethugepagesize(path);
941 if (memory < hpagesize) {
945 if (kvm_enabled() && !kvm_has_sync_mmu()) {
946 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
950 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
951 sanitized_name = g_strdup(block->mr->name);
952 for (c = sanitized_name; *c != '\0'; c++) {
957 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
959 g_free(sanitized_name);
961 fd = mkstemp(filename);
963 perror("unable to create backing store for hugepages");
970 memory = (memory+hpagesize-1) & ~(hpagesize-1);
973 * ftruncate is not supported by hugetlbfs in older
974 * hosts, so don't bother bailing out on errors.
975 * If anything goes wrong with it under other filesystems,
978 if (ftruncate(fd, memory))
982 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
983 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
984 * to sidestep this quirk.
986 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
987 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
989 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
991 if (area == MAP_FAILED) {
992 perror("file_ram_alloc: can't mmap RAM pages");
1001 static ram_addr_t find_ram_offset(ram_addr_t size)
1003 RAMBlock *block, *next_block;
1004 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1006 assert(size != 0); /* it would hand out same offset multiple times */
1008 if (QTAILQ_EMPTY(&ram_list.blocks))
1011 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1012 ram_addr_t end, next = RAM_ADDR_MAX;
1014 end = block->offset + block->length;
1016 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
1017 if (next_block->offset >= end) {
1018 next = MIN(next, next_block->offset);
1021 if (next - end >= size && next - end < mingap) {
1023 mingap = next - end;
1027 if (offset == RAM_ADDR_MAX) {
1028 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1036 ram_addr_t last_ram_offset(void)
1039 ram_addr_t last = 0;
1041 QTAILQ_FOREACH(block, &ram_list.blocks, next)
1042 last = MAX(last, block->offset + block->length);
1047 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1051 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1052 if (!qemu_opt_get_bool(qemu_get_machine_opts(),
1053 "dump-guest-core", true)) {
1054 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1056 perror("qemu_madvise");
1057 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1058 "but dump_guest_core=off specified\n");
1063 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1065 RAMBlock *new_block, *block;
1068 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1069 if (block->offset == addr) {
1075 assert(!new_block->idstr[0]);
1078 char *id = qdev_get_dev_path(dev);
1080 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1084 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1086 /* This assumes the iothread lock is taken here too. */
1087 qemu_mutex_lock_ramlist();
1088 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1089 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1090 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1095 qemu_mutex_unlock_ramlist();
1098 static int memory_try_enable_merging(void *addr, size_t len)
1100 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
1101 /* disabled by the user */
1105 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1108 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1111 RAMBlock *block, *new_block;
1113 size = TARGET_PAGE_ALIGN(size);
1114 new_block = g_malloc0(sizeof(*new_block));
1116 /* This assumes the iothread lock is taken here too. */
1117 qemu_mutex_lock_ramlist();
1119 new_block->offset = find_ram_offset(size);
1121 new_block->host = host;
1122 new_block->flags |= RAM_PREALLOC_MASK;
1125 #if defined (__linux__) && !defined(TARGET_S390X)
1126 new_block->host = file_ram_alloc(new_block, size, mem_path);
1127 if (!new_block->host) {
1128 new_block->host = qemu_anon_ram_alloc(size);
1129 memory_try_enable_merging(new_block->host, size);
1132 fprintf(stderr, "-mem-path option unsupported\n");
1136 if (xen_enabled()) {
1137 xen_ram_alloc(new_block->offset, size, mr);
1138 } else if (kvm_enabled()) {
1139 /* some s390/kvm configurations have special constraints */
1140 new_block->host = kvm_ram_alloc(size);
1142 new_block->host = qemu_anon_ram_alloc(size);
1144 memory_try_enable_merging(new_block->host, size);
1147 new_block->length = size;
1149 /* Keep the list sorted from biggest to smallest block. */
1150 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1151 if (block->length < new_block->length) {
1156 QTAILQ_INSERT_BEFORE(block, new_block, next);
1158 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1160 ram_list.mru_block = NULL;
1163 qemu_mutex_unlock_ramlist();
1165 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
1166 last_ram_offset() >> TARGET_PAGE_BITS);
1167 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1168 0, size >> TARGET_PAGE_BITS);
1169 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
1171 qemu_ram_setup_dump(new_block->host, size);
1172 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1175 kvm_setup_guest_memory(new_block->host, size);
1177 return new_block->offset;
1180 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1182 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1185 void qemu_ram_free_from_ptr(ram_addr_t addr)
1189 /* This assumes the iothread lock is taken here too. */
1190 qemu_mutex_lock_ramlist();
1191 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1192 if (addr == block->offset) {
1193 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1194 ram_list.mru_block = NULL;
1200 qemu_mutex_unlock_ramlist();
1203 void qemu_ram_free(ram_addr_t addr)
1207 /* This assumes the iothread lock is taken here too. */
1208 qemu_mutex_lock_ramlist();
1209 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1210 if (addr == block->offset) {
1211 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1212 ram_list.mru_block = NULL;
1214 if (block->flags & RAM_PREALLOC_MASK) {
1216 } else if (mem_path) {
1217 #if defined (__linux__) && !defined(TARGET_S390X)
1219 munmap(block->host, block->length);
1222 qemu_anon_ram_free(block->host, block->length);
1228 if (xen_enabled()) {
1229 xen_invalidate_map_cache_entry(block->host);
1231 qemu_anon_ram_free(block->host, block->length);
1238 qemu_mutex_unlock_ramlist();
1243 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1250 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1251 offset = addr - block->offset;
1252 if (offset < block->length) {
1253 vaddr = block->host + offset;
1254 if (block->flags & RAM_PREALLOC_MASK) {
1258 munmap(vaddr, length);
1260 #if defined(__linux__) && !defined(TARGET_S390X)
1263 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1266 flags |= MAP_PRIVATE;
1268 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1269 flags, block->fd, offset);
1271 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1272 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1279 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1280 flags |= MAP_SHARED | MAP_ANONYMOUS;
1281 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
1284 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1285 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1289 if (area != vaddr) {
1290 fprintf(stderr, "Could not remap addr: "
1291 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1295 memory_try_enable_merging(vaddr, length);
1296 qemu_ram_setup_dump(vaddr, length);
1302 #endif /* !_WIN32 */
1304 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1308 /* The list is protected by the iothread lock here. */
1309 block = ram_list.mru_block;
1310 if (block && addr - block->offset < block->length) {
1313 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1314 if (addr - block->offset < block->length) {
1319 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1323 ram_list.mru_block = block;
1327 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1328 With the exception of the softmmu code in this file, this should
1329 only be used for local memory (e.g. video ram) that the device owns,
1330 and knows it isn't going to access beyond the end of the block.
1332 It should not be used for general purpose DMA.
1333 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1335 void *qemu_get_ram_ptr(ram_addr_t addr)
1337 RAMBlock *block = qemu_get_ram_block(addr);
1339 if (xen_enabled()) {
1340 /* We need to check if the requested address is in the RAM
1341 * because we don't want to map the entire memory in QEMU.
1342 * In that case just map until the end of the page.
1344 if (block->offset == 0) {
1345 return xen_map_cache(addr, 0, 0);
1346 } else if (block->host == NULL) {
1348 xen_map_cache(block->offset, block->length, 1);
1351 return block->host + (addr - block->offset);
1354 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1355 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1357 * ??? Is this still necessary?
1359 static void *qemu_safe_ram_ptr(ram_addr_t addr)
1363 /* The list is protected by the iothread lock here. */
1364 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1365 if (addr - block->offset < block->length) {
1366 if (xen_enabled()) {
1367 /* We need to check if the requested address is in the RAM
1368 * because we don't want to map the entire memory in QEMU.
1369 * In that case just map until the end of the page.
1371 if (block->offset == 0) {
1372 return xen_map_cache(addr, 0, 0);
1373 } else if (block->host == NULL) {
1375 xen_map_cache(block->offset, block->length, 1);
1378 return block->host + (addr - block->offset);
1382 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1388 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1389 * but takes a size argument */
1390 static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
1395 if (xen_enabled()) {
1396 return xen_map_cache(addr, *size, 1);
1400 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1401 if (addr - block->offset < block->length) {
1402 if (addr - block->offset + *size > block->length)
1403 *size = block->length - addr + block->offset;
1404 return block->host + (addr - block->offset);
1408 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1413 /* Some of the softmmu routines need to translate from a host pointer
1414 (typically a TLB entry) back to a ram offset. */
1415 MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1418 uint8_t *host = ptr;
1420 if (xen_enabled()) {
1421 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1422 return qemu_get_ram_block(*ram_addr)->mr;
1425 block = ram_list.mru_block;
1426 if (block && block->host && host - block->host < block->length) {
1430 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1431 /* This case append when the block is not mapped. */
1432 if (block->host == NULL) {
1435 if (host - block->host < block->length) {
1443 *ram_addr = block->offset + (host - block->host);
1447 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1448 uint64_t val, unsigned size)
1451 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1452 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1453 tb_invalidate_phys_page_fast(ram_addr, size);
1454 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1458 stb_p(qemu_get_ram_ptr(ram_addr), val);
1461 stw_p(qemu_get_ram_ptr(ram_addr), val);
1464 stl_p(qemu_get_ram_ptr(ram_addr), val);
1469 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1470 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
1471 /* we remove the notdirty callback only if the code has been
1473 if (dirty_flags == 0xff) {
1474 CPUArchState *env = current_cpu->env_ptr;
1475 tlb_set_dirty(env, env->mem_io_vaddr);
1479 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1480 unsigned size, bool is_write)
1485 static const MemoryRegionOps notdirty_mem_ops = {
1486 .write = notdirty_mem_write,
1487 .valid.accepts = notdirty_mem_accepts,
1488 .endianness = DEVICE_NATIVE_ENDIAN,
1491 /* Generate a debug exception if a watchpoint has been hit. */
1492 static void check_watchpoint(int offset, int len_mask, int flags)
1494 CPUArchState *env = current_cpu->env_ptr;
1495 target_ulong pc, cs_base;
1500 if (env->watchpoint_hit) {
1501 /* We re-entered the check after replacing the TB. Now raise
1502 * the debug interrupt so that is will trigger after the
1503 * current instruction. */
1504 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
1507 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1508 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1509 if ((vaddr == (wp->vaddr & len_mask) ||
1510 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1511 wp->flags |= BP_WATCHPOINT_HIT;
1512 if (!env->watchpoint_hit) {
1513 env->watchpoint_hit = wp;
1514 tb_check_watchpoint(env);
1515 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1516 env->exception_index = EXCP_DEBUG;
1519 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1520 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1521 cpu_resume_from_signal(env, NULL);
1525 wp->flags &= ~BP_WATCHPOINT_HIT;
1530 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1531 so these check for a hit then pass through to the normal out-of-line
1533 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1536 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1538 case 1: return ldub_phys(addr);
1539 case 2: return lduw_phys(addr);
1540 case 4: return ldl_phys(addr);
1545 static void watch_mem_write(void *opaque, hwaddr addr,
1546 uint64_t val, unsigned size)
1548 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1551 stb_phys(addr, val);
1554 stw_phys(addr, val);
1557 stl_phys(addr, val);
1563 static const MemoryRegionOps watch_mem_ops = {
1564 .read = watch_mem_read,
1565 .write = watch_mem_write,
1566 .endianness = DEVICE_NATIVE_ENDIAN,
1569 static uint64_t subpage_read(void *opaque, hwaddr addr,
1572 subpage_t *subpage = opaque;
1575 #if defined(DEBUG_SUBPAGE)
1576 printf("%s: subpage %p len %d addr " TARGET_FMT_plx "\n", __func__,
1577 subpage, len, addr);
1579 address_space_read(subpage->as, addr + subpage->base, buf, len);
1592 static void subpage_write(void *opaque, hwaddr addr,
1593 uint64_t value, unsigned len)
1595 subpage_t *subpage = opaque;
1598 #if defined(DEBUG_SUBPAGE)
1599 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1600 " value %"PRIx64"\n",
1601 __func__, subpage, len, addr, value);
1616 address_space_write(subpage->as, addr + subpage->base, buf, len);
1619 static bool subpage_accepts(void *opaque, hwaddr addr,
1620 unsigned size, bool is_write)
1622 subpage_t *subpage = opaque;
1623 #if defined(DEBUG_SUBPAGE)
1624 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx "\n",
1625 __func__, subpage, is_write ? 'w' : 'r', len, addr);
1628 return address_space_access_valid(subpage->as, addr + subpage->base,
1632 static const MemoryRegionOps subpage_ops = {
1633 .read = subpage_read,
1634 .write = subpage_write,
1635 .valid.accepts = subpage_accepts,
1636 .endianness = DEVICE_NATIVE_ENDIAN,
1639 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1644 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1646 idx = SUBPAGE_IDX(start);
1647 eidx = SUBPAGE_IDX(end);
1648 #if defined(DEBUG_SUBPAGE)
1649 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
1650 mmio, start, end, idx, eidx, memory);
1652 for (; idx <= eidx; idx++) {
1653 mmio->sub_section[idx] = section;
1659 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
1663 mmio = g_malloc0(sizeof(subpage_t));
1667 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
1668 "subpage", TARGET_PAGE_SIZE);
1669 mmio->iomem.subpage = true;
1670 #if defined(DEBUG_SUBPAGE)
1671 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1672 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
1674 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
1679 static uint16_t dummy_section(MemoryRegion *mr)
1681 MemoryRegionSection section = {
1683 .offset_within_address_space = 0,
1684 .offset_within_region = 0,
1685 .size = int128_2_64(),
1688 return phys_section_add(§ion);
1691 MemoryRegion *iotlb_to_region(hwaddr index)
1693 return address_space_memory.dispatch->sections[index & ~TARGET_PAGE_MASK].mr;
1696 static void io_mem_init(void)
1698 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1699 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1700 "unassigned", UINT64_MAX);
1701 memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL,
1702 "notdirty", UINT64_MAX);
1703 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1704 "watch", UINT64_MAX);
1707 static void mem_begin(MemoryListener *listener)
1709 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1710 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1712 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1714 as->next_dispatch = d;
1717 static void mem_commit(MemoryListener *listener)
1719 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1720 AddressSpaceDispatch *cur = as->dispatch;
1721 AddressSpaceDispatch *next = as->next_dispatch;
1723 next->nodes = next_map.nodes;
1724 next->sections = next_map.sections;
1726 as->dispatch = next;
1730 static void core_begin(MemoryListener *listener)
1734 prev_map = g_new(PhysPageMap, 1);
1735 *prev_map = next_map;
1737 memset(&next_map, 0, sizeof(next_map));
1738 n = dummy_section(&io_mem_unassigned);
1739 assert(n == PHYS_SECTION_UNASSIGNED);
1740 n = dummy_section(&io_mem_notdirty);
1741 assert(n == PHYS_SECTION_NOTDIRTY);
1742 n = dummy_section(&io_mem_rom);
1743 assert(n == PHYS_SECTION_ROM);
1744 n = dummy_section(&io_mem_watch);
1745 assert(n == PHYS_SECTION_WATCH);
1748 /* This listener's commit run after the other AddressSpaceDispatch listeners'.
1749 * All AddressSpaceDispatch instances have switched to the next map.
1751 static void core_commit(MemoryListener *listener)
1753 phys_sections_free(prev_map);
1756 static void tcg_commit(MemoryListener *listener)
1760 /* since each CPU stores ram addresses in its TLB cache, we must
1761 reset the modified entries */
1763 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
1764 CPUArchState *env = cpu->env_ptr;
1770 static void core_log_global_start(MemoryListener *listener)
1772 cpu_physical_memory_set_dirty_tracking(1);
1775 static void core_log_global_stop(MemoryListener *listener)
1777 cpu_physical_memory_set_dirty_tracking(0);
1780 static MemoryListener core_memory_listener = {
1781 .begin = core_begin,
1782 .commit = core_commit,
1783 .log_global_start = core_log_global_start,
1784 .log_global_stop = core_log_global_stop,
1788 static MemoryListener tcg_memory_listener = {
1789 .commit = tcg_commit,
1792 void address_space_init_dispatch(AddressSpace *as)
1794 as->dispatch = NULL;
1795 as->dispatch_listener = (MemoryListener) {
1797 .commit = mem_commit,
1798 .region_add = mem_add,
1799 .region_nop = mem_add,
1802 memory_listener_register(&as->dispatch_listener, as);
1805 void address_space_destroy_dispatch(AddressSpace *as)
1807 AddressSpaceDispatch *d = as->dispatch;
1809 memory_listener_unregister(&as->dispatch_listener);
1811 as->dispatch = NULL;
1814 static void memory_map_init(void)
1816 system_memory = g_malloc(sizeof(*system_memory));
1817 memory_region_init(system_memory, NULL, "system", INT64_MAX);
1818 address_space_init(&address_space_memory, system_memory, "memory");
1820 system_io = g_malloc(sizeof(*system_io));
1821 memory_region_init(system_io, NULL, "io", 65536);
1822 address_space_init(&address_space_io, system_io, "I/O");
1824 memory_listener_register(&core_memory_listener, &address_space_memory);
1825 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1828 MemoryRegion *get_system_memory(void)
1830 return system_memory;
1833 MemoryRegion *get_system_io(void)
1838 #endif /* !defined(CONFIG_USER_ONLY) */
1840 /* physical memory access (slow version, mainly for debug) */
1841 #if defined(CONFIG_USER_ONLY)
1842 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
1843 uint8_t *buf, int len, int is_write)
1850 page = addr & TARGET_PAGE_MASK;
1851 l = (page + TARGET_PAGE_SIZE) - addr;
1854 flags = page_get_flags(page);
1855 if (!(flags & PAGE_VALID))
1858 if (!(flags & PAGE_WRITE))
1860 /* XXX: this code should not depend on lock_user */
1861 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1864 unlock_user(p, addr, l);
1866 if (!(flags & PAGE_READ))
1868 /* XXX: this code should not depend on lock_user */
1869 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1872 unlock_user(p, addr, 0);
1883 static void invalidate_and_set_dirty(hwaddr addr,
1886 if (!cpu_physical_memory_is_dirty(addr)) {
1887 /* invalidate code */
1888 tb_invalidate_phys_page_range(addr, addr + length, 0);
1890 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1892 xen_modified_memory(addr, length);
1895 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1897 if (memory_region_is_ram(mr)) {
1898 return !(is_write && mr->readonly);
1900 if (memory_region_is_romd(mr)) {
1907 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
1909 unsigned access_size_max = mr->ops->valid.max_access_size;
1911 /* Regions are assumed to support 1-4 byte accesses unless
1912 otherwise specified. */
1913 if (access_size_max == 0) {
1914 access_size_max = 4;
1917 /* Bound the maximum access by the alignment of the address. */
1918 if (!mr->ops->impl.unaligned) {
1919 unsigned align_size_max = addr & -addr;
1920 if (align_size_max != 0 && align_size_max < access_size_max) {
1921 access_size_max = align_size_max;
1925 /* Don't attempt accesses larger than the maximum. */
1926 if (l > access_size_max) {
1927 l = access_size_max;
1933 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1934 int len, bool is_write)
1945 mr = address_space_translate(as, addr, &addr1, &l, is_write);
1948 if (!memory_access_is_direct(mr, is_write)) {
1949 l = memory_access_size(mr, l, addr1);
1950 /* XXX: could force current_cpu to NULL to avoid
1954 /* 64 bit write access */
1956 error |= io_mem_write(mr, addr1, val, 8);
1959 /* 32 bit write access */
1961 error |= io_mem_write(mr, addr1, val, 4);
1964 /* 16 bit write access */
1966 error |= io_mem_write(mr, addr1, val, 2);
1969 /* 8 bit write access */
1971 error |= io_mem_write(mr, addr1, val, 1);
1977 addr1 += memory_region_get_ram_addr(mr);
1979 ptr = qemu_get_ram_ptr(addr1);
1980 memcpy(ptr, buf, l);
1981 invalidate_and_set_dirty(addr1, l);
1984 if (!memory_access_is_direct(mr, is_write)) {
1986 l = memory_access_size(mr, l, addr1);
1989 /* 64 bit read access */
1990 error |= io_mem_read(mr, addr1, &val, 8);
1994 /* 32 bit read access */
1995 error |= io_mem_read(mr, addr1, &val, 4);
1999 /* 16 bit read access */
2000 error |= io_mem_read(mr, addr1, &val, 2);
2004 /* 8 bit read access */
2005 error |= io_mem_read(mr, addr1, &val, 1);
2013 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
2014 memcpy(buf, ptr, l);
2025 bool address_space_write(AddressSpace *as, hwaddr addr,
2026 const uint8_t *buf, int len)
2028 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
2031 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
2033 return address_space_rw(as, addr, buf, len, false);
2037 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
2038 int len, int is_write)
2040 address_space_rw(&address_space_memory, addr, buf, len, is_write);
2043 /* used for ROM loading : can write in RAM and ROM */
2044 void cpu_physical_memory_write_rom(hwaddr addr,
2045 const uint8_t *buf, int len)
2054 mr = address_space_translate(&address_space_memory,
2055 addr, &addr1, &l, true);
2057 if (!(memory_region_is_ram(mr) ||
2058 memory_region_is_romd(mr))) {
2061 addr1 += memory_region_get_ram_addr(mr);
2063 ptr = qemu_get_ram_ptr(addr1);
2064 memcpy(ptr, buf, l);
2065 invalidate_and_set_dirty(addr1, l);
2080 static BounceBuffer bounce;
2082 typedef struct MapClient {
2084 void (*callback)(void *opaque);
2085 QLIST_ENTRY(MapClient) link;
2088 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2089 = QLIST_HEAD_INITIALIZER(map_client_list);
2091 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2093 MapClient *client = g_malloc(sizeof(*client));
2095 client->opaque = opaque;
2096 client->callback = callback;
2097 QLIST_INSERT_HEAD(&map_client_list, client, link);
2101 static void cpu_unregister_map_client(void *_client)
2103 MapClient *client = (MapClient *)_client;
2105 QLIST_REMOVE(client, link);
2109 static void cpu_notify_map_clients(void)
2113 while (!QLIST_EMPTY(&map_client_list)) {
2114 client = QLIST_FIRST(&map_client_list);
2115 client->callback(client->opaque);
2116 cpu_unregister_map_client(client);
2120 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2127 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2128 if (!memory_access_is_direct(mr, is_write)) {
2129 l = memory_access_size(mr, l, addr);
2130 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2141 /* Map a physical memory region into a host virtual address.
2142 * May map a subset of the requested range, given by and returned in *plen.
2143 * May return NULL if resources needed to perform the mapping are exhausted.
2144 * Use only for reads OR writes - not for read-modify-write operations.
2145 * Use cpu_register_map_client() to know when retrying the map operation is
2146 * likely to succeed.
2148 void *address_space_map(AddressSpace *as,
2155 hwaddr l, xlat, base;
2156 MemoryRegion *mr, *this_mr;
2164 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2165 if (!memory_access_is_direct(mr, is_write)) {
2166 if (bounce.buffer) {
2169 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2173 memory_region_ref(mr);
2176 address_space_read(as, addr, bounce.buffer, l);
2180 return bounce.buffer;
2184 raddr = memory_region_get_ram_addr(mr);
2195 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2196 if (this_mr != mr || xlat != base + done) {
2201 memory_region_ref(mr);
2203 return qemu_ram_ptr_length(raddr + base, plen);
2206 /* Unmaps a memory region previously mapped by address_space_map().
2207 * Will also mark the memory as dirty if is_write == 1. access_len gives
2208 * the amount of memory that was actually read or written by the caller.
2210 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2211 int is_write, hwaddr access_len)
2213 if (buffer != bounce.buffer) {
2217 mr = qemu_ram_addr_from_host(buffer, &addr1);
2220 while (access_len) {
2222 l = TARGET_PAGE_SIZE;
2225 invalidate_and_set_dirty(addr1, l);
2230 if (xen_enabled()) {
2231 xen_invalidate_map_cache_entry(buffer);
2233 memory_region_unref(mr);
2237 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2239 qemu_vfree(bounce.buffer);
2240 bounce.buffer = NULL;
2241 memory_region_unref(bounce.mr);
2242 cpu_notify_map_clients();
2245 void *cpu_physical_memory_map(hwaddr addr,
2249 return address_space_map(&address_space_memory, addr, plen, is_write);
2252 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2253 int is_write, hwaddr access_len)
2255 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2258 /* warning: addr must be aligned */
2259 static inline uint32_t ldl_phys_internal(hwaddr addr,
2260 enum device_endian endian)
2268 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2270 if (l < 4 || !memory_access_is_direct(mr, false)) {
2272 io_mem_read(mr, addr1, &val, 4);
2273 #if defined(TARGET_WORDS_BIGENDIAN)
2274 if (endian == DEVICE_LITTLE_ENDIAN) {
2278 if (endian == DEVICE_BIG_ENDIAN) {
2284 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2288 case DEVICE_LITTLE_ENDIAN:
2289 val = ldl_le_p(ptr);
2291 case DEVICE_BIG_ENDIAN:
2292 val = ldl_be_p(ptr);
2302 uint32_t ldl_phys(hwaddr addr)
2304 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2307 uint32_t ldl_le_phys(hwaddr addr)
2309 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2312 uint32_t ldl_be_phys(hwaddr addr)
2314 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2317 /* warning: addr must be aligned */
2318 static inline uint64_t ldq_phys_internal(hwaddr addr,
2319 enum device_endian endian)
2327 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2329 if (l < 8 || !memory_access_is_direct(mr, false)) {
2331 io_mem_read(mr, addr1, &val, 8);
2332 #if defined(TARGET_WORDS_BIGENDIAN)
2333 if (endian == DEVICE_LITTLE_ENDIAN) {
2337 if (endian == DEVICE_BIG_ENDIAN) {
2343 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2347 case DEVICE_LITTLE_ENDIAN:
2348 val = ldq_le_p(ptr);
2350 case DEVICE_BIG_ENDIAN:
2351 val = ldq_be_p(ptr);
2361 uint64_t ldq_phys(hwaddr addr)
2363 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2366 uint64_t ldq_le_phys(hwaddr addr)
2368 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2371 uint64_t ldq_be_phys(hwaddr addr)
2373 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2377 uint32_t ldub_phys(hwaddr addr)
2380 cpu_physical_memory_read(addr, &val, 1);
2384 /* warning: addr must be aligned */
2385 static inline uint32_t lduw_phys_internal(hwaddr addr,
2386 enum device_endian endian)
2394 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2396 if (l < 2 || !memory_access_is_direct(mr, false)) {
2398 io_mem_read(mr, addr1, &val, 2);
2399 #if defined(TARGET_WORDS_BIGENDIAN)
2400 if (endian == DEVICE_LITTLE_ENDIAN) {
2404 if (endian == DEVICE_BIG_ENDIAN) {
2410 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2414 case DEVICE_LITTLE_ENDIAN:
2415 val = lduw_le_p(ptr);
2417 case DEVICE_BIG_ENDIAN:
2418 val = lduw_be_p(ptr);
2428 uint32_t lduw_phys(hwaddr addr)
2430 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2433 uint32_t lduw_le_phys(hwaddr addr)
2435 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2438 uint32_t lduw_be_phys(hwaddr addr)
2440 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2443 /* warning: addr must be aligned. The ram page is not masked as dirty
2444 and the code inside is not invalidated. It is useful if the dirty
2445 bits are used to track modified PTEs */
2446 void stl_phys_notdirty(hwaddr addr, uint32_t val)
2453 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2455 if (l < 4 || !memory_access_is_direct(mr, true)) {
2456 io_mem_write(mr, addr1, val, 4);
2458 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2459 ptr = qemu_get_ram_ptr(addr1);
2462 if (unlikely(in_migration)) {
2463 if (!cpu_physical_memory_is_dirty(addr1)) {
2464 /* invalidate code */
2465 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2467 cpu_physical_memory_set_dirty_flags(
2468 addr1, (0xff & ~CODE_DIRTY_FLAG));
2474 /* warning: addr must be aligned */
2475 static inline void stl_phys_internal(hwaddr addr, uint32_t val,
2476 enum device_endian endian)
2483 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2485 if (l < 4 || !memory_access_is_direct(mr, true)) {
2486 #if defined(TARGET_WORDS_BIGENDIAN)
2487 if (endian == DEVICE_LITTLE_ENDIAN) {
2491 if (endian == DEVICE_BIG_ENDIAN) {
2495 io_mem_write(mr, addr1, val, 4);
2498 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2499 ptr = qemu_get_ram_ptr(addr1);
2501 case DEVICE_LITTLE_ENDIAN:
2504 case DEVICE_BIG_ENDIAN:
2511 invalidate_and_set_dirty(addr1, 4);
2515 void stl_phys(hwaddr addr, uint32_t val)
2517 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2520 void stl_le_phys(hwaddr addr, uint32_t val)
2522 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2525 void stl_be_phys(hwaddr addr, uint32_t val)
2527 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2531 void stb_phys(hwaddr addr, uint32_t val)
2534 cpu_physical_memory_write(addr, &v, 1);
2537 /* warning: addr must be aligned */
2538 static inline void stw_phys_internal(hwaddr addr, uint32_t val,
2539 enum device_endian endian)
2546 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2548 if (l < 2 || !memory_access_is_direct(mr, true)) {
2549 #if defined(TARGET_WORDS_BIGENDIAN)
2550 if (endian == DEVICE_LITTLE_ENDIAN) {
2554 if (endian == DEVICE_BIG_ENDIAN) {
2558 io_mem_write(mr, addr1, val, 2);
2561 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2562 ptr = qemu_get_ram_ptr(addr1);
2564 case DEVICE_LITTLE_ENDIAN:
2567 case DEVICE_BIG_ENDIAN:
2574 invalidate_and_set_dirty(addr1, 2);
2578 void stw_phys(hwaddr addr, uint32_t val)
2580 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2583 void stw_le_phys(hwaddr addr, uint32_t val)
2585 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2588 void stw_be_phys(hwaddr addr, uint32_t val)
2590 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2594 void stq_phys(hwaddr addr, uint64_t val)
2597 cpu_physical_memory_write(addr, &val, 8);
2600 void stq_le_phys(hwaddr addr, uint64_t val)
2602 val = cpu_to_le64(val);
2603 cpu_physical_memory_write(addr, &val, 8);
2606 void stq_be_phys(hwaddr addr, uint64_t val)
2608 val = cpu_to_be64(val);
2609 cpu_physical_memory_write(addr, &val, 8);
2612 /* virtual memory access for debug (includes writing to ROM) */
2613 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2614 uint8_t *buf, int len, int is_write)
2621 page = addr & TARGET_PAGE_MASK;
2622 phys_addr = cpu_get_phys_page_debug(cpu, page);
2623 /* if no physical page mapped, return an error */
2624 if (phys_addr == -1)
2626 l = (page + TARGET_PAGE_SIZE) - addr;
2629 phys_addr += (addr & ~TARGET_PAGE_MASK);
2631 cpu_physical_memory_write_rom(phys_addr, buf, l);
2633 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
2642 #if !defined(CONFIG_USER_ONLY)
2645 * A helper function for the _utterly broken_ virtio device model to find out if
2646 * it's running on a big endian machine. Don't do this at home kids!
2648 bool virtio_is_big_endian(void);
2649 bool virtio_is_big_endian(void)
2651 #if defined(TARGET_WORDS_BIGENDIAN)
2660 #ifndef CONFIG_USER_ONLY
2661 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2666 mr = address_space_translate(&address_space_memory,
2667 phys_addr, &phys_addr, &l, false);
2669 return !(memory_region_is_ram(mr) ||
2670 memory_region_is_romd(mr));
2673 void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2677 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2678 func(block->host, block->offset, block->length, opaque);