4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include <sys/types.h>
27 #include "qemu-common.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "hw/xen/xen.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "exec/memory.h"
38 #include "sysemu/dma.h"
39 #include "exec/address-spaces.h"
40 #if defined(CONFIG_USER_ONLY)
42 #else /* !CONFIG_USER_ONLY */
43 #include "sysemu/xen-mapcache.h"
46 #include "exec/cpu-all.h"
48 #include "exec/cputlb.h"
49 #include "translate-all.h"
51 #include "exec/memory-internal.h"
53 //#define DEBUG_SUBPAGE
55 #if !defined(CONFIG_USER_ONLY)
57 static int in_migration;
59 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
61 static MemoryRegion *system_memory;
62 static MemoryRegion *system_io;
64 AddressSpace address_space_io;
65 AddressSpace address_space_memory;
67 MemoryRegion io_mem_rom, io_mem_notdirty;
68 static MemoryRegion io_mem_unassigned;
72 CPUArchState *first_cpu;
73 /* current CPU in the current thread. It is only valid inside
75 DEFINE_TLS(CPUArchState *,cpu_single_env);
76 /* 0 = Do not count executed instructions.
77 1 = Precise instruction counting.
78 2 = Adaptive rate instruction counting. */
81 #if !defined(CONFIG_USER_ONLY)
83 typedef struct PhysPageEntry PhysPageEntry;
85 struct PhysPageEntry {
87 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
91 struct AddressSpaceDispatch {
92 /* This is a multi-level map on the physical address space.
93 * The bottom level has pointers to MemoryRegionSections.
95 PhysPageEntry phys_map;
96 MemoryListener listener;
100 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
101 typedef struct subpage_t {
105 uint16_t sub_section[TARGET_PAGE_SIZE];
108 static MemoryRegionSection *phys_sections;
109 static unsigned phys_sections_nb, phys_sections_nb_alloc;
110 static uint16_t phys_section_unassigned;
111 static uint16_t phys_section_notdirty;
112 static uint16_t phys_section_rom;
113 static uint16_t phys_section_watch;
115 /* Simple allocator for PhysPageEntry nodes */
116 static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
117 static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
119 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
121 static void io_mem_init(void);
122 static void memory_map_init(void);
123 static void *qemu_safe_ram_ptr(ram_addr_t addr);
125 static MemoryRegion io_mem_watch;
128 #if !defined(CONFIG_USER_ONLY)
130 static void phys_map_node_reserve(unsigned nodes)
132 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
133 typedef PhysPageEntry Node[L2_SIZE];
134 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
135 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
136 phys_map_nodes_nb + nodes);
137 phys_map_nodes = g_renew(Node, phys_map_nodes,
138 phys_map_nodes_nb_alloc);
142 static uint16_t phys_map_node_alloc(void)
147 ret = phys_map_nodes_nb++;
148 assert(ret != PHYS_MAP_NODE_NIL);
149 assert(ret != phys_map_nodes_nb_alloc);
150 for (i = 0; i < L2_SIZE; ++i) {
151 phys_map_nodes[ret][i].is_leaf = 0;
152 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
157 static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
158 hwaddr *nb, uint16_t leaf,
163 hwaddr step = (hwaddr)1 << (level * L2_BITS);
165 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
166 lp->ptr = phys_map_node_alloc();
167 p = phys_map_nodes[lp->ptr];
169 for (i = 0; i < L2_SIZE; i++) {
171 p[i].ptr = phys_section_unassigned;
175 p = phys_map_nodes[lp->ptr];
177 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
179 while (*nb && lp < &p[L2_SIZE]) {
180 if ((*index & (step - 1)) == 0 && *nb >= step) {
186 phys_page_set_level(lp, index, nb, leaf, level - 1);
192 static void phys_page_set(AddressSpaceDispatch *d,
193 hwaddr index, hwaddr nb,
196 /* Wildly overreserve - it doesn't matter much. */
197 phys_map_node_reserve(3 * P_L2_LEVELS);
199 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
202 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr index)
204 PhysPageEntry lp = d->phys_map;
208 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
209 if (lp.ptr == PHYS_MAP_NODE_NIL) {
210 return &phys_sections[phys_section_unassigned];
212 p = phys_map_nodes[lp.ptr];
213 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
215 return &phys_sections[lp.ptr];
218 bool memory_region_is_unassigned(MemoryRegion *mr)
220 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
221 && mr != &io_mem_watch;
224 static MemoryRegionSection *address_space_lookup_region(AddressSpace *as,
226 bool resolve_subpage)
228 MemoryRegionSection *section;
231 section = phys_page_find(as->dispatch, addr >> TARGET_PAGE_BITS);
232 if (resolve_subpage && section->mr->subpage) {
233 subpage = container_of(section->mr, subpage_t, iomem);
234 section = &phys_sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
239 static MemoryRegionSection *
240 address_space_translate_internal(AddressSpace *as, hwaddr addr, hwaddr *xlat,
241 hwaddr *plen, bool resolve_subpage)
243 MemoryRegionSection *section;
246 section = address_space_lookup_region(as, addr, resolve_subpage);
247 /* Compute offset within MemoryRegionSection */
248 addr -= section->offset_within_address_space;
250 /* Compute offset within MemoryRegion */
251 *xlat = addr + section->offset_within_region;
253 diff = int128_sub(section->mr->size, int128_make64(addr));
254 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
258 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
259 hwaddr *xlat, hwaddr *plen,
263 MemoryRegionSection *section;
268 section = address_space_translate_internal(as, addr, &addr, plen, true);
271 if (!mr->iommu_ops) {
275 iotlb = mr->iommu_ops->translate(mr, addr);
276 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
277 | (addr & iotlb.addr_mask));
278 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
279 if (!(iotlb.perm & (1 << is_write))) {
280 mr = &io_mem_unassigned;
284 as = iotlb.target_as;
292 MemoryRegionSection *
293 address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
296 MemoryRegionSection *section;
297 section = address_space_translate_internal(as, addr, xlat, plen, false);
299 assert(!section->mr->iommu_ops);
304 void cpu_exec_init_all(void)
306 #if !defined(CONFIG_USER_ONLY)
307 qemu_mutex_init(&ram_list.mutex);
313 #if !defined(CONFIG_USER_ONLY)
315 static int cpu_common_post_load(void *opaque, int version_id)
317 CPUState *cpu = opaque;
319 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
320 version_id is increased. */
321 cpu->interrupt_request &= ~0x01;
322 tlb_flush(cpu->env_ptr, 1);
327 const VMStateDescription vmstate_cpu_common = {
328 .name = "cpu_common",
330 .minimum_version_id = 1,
331 .minimum_version_id_old = 1,
332 .post_load = cpu_common_post_load,
333 .fields = (VMStateField []) {
334 VMSTATE_UINT32(halted, CPUState),
335 VMSTATE_UINT32(interrupt_request, CPUState),
336 VMSTATE_END_OF_LIST()
342 CPUState *qemu_get_cpu(int index)
344 CPUArchState *env = first_cpu;
345 CPUState *cpu = NULL;
348 cpu = ENV_GET_CPU(env);
349 if (cpu->cpu_index == index) {
355 return env ? cpu : NULL;
358 void qemu_for_each_cpu(void (*func)(CPUState *cpu, void *data), void *data)
360 CPUArchState *env = first_cpu;
363 func(ENV_GET_CPU(env), data);
368 void cpu_exec_init(CPUArchState *env)
370 CPUState *cpu = ENV_GET_CPU(env);
371 CPUClass *cc = CPU_GET_CLASS(cpu);
375 #if defined(CONFIG_USER_ONLY)
378 env->next_cpu = NULL;
381 while (*penv != NULL) {
382 penv = &(*penv)->next_cpu;
385 cpu->cpu_index = cpu_index;
387 QTAILQ_INIT(&env->breakpoints);
388 QTAILQ_INIT(&env->watchpoints);
389 #ifndef CONFIG_USER_ONLY
390 cpu->thread_id = qemu_get_thread_id();
393 #if defined(CONFIG_USER_ONLY)
396 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
397 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
398 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
399 cpu_save, cpu_load, env);
400 assert(cc->vmsd == NULL);
402 if (cc->vmsd != NULL) {
403 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
407 #if defined(TARGET_HAS_ICE)
408 #if defined(CONFIG_USER_ONLY)
409 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
411 tb_invalidate_phys_page_range(pc, pc + 1, 0);
414 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
416 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
417 (pc & ~TARGET_PAGE_MASK));
420 #endif /* TARGET_HAS_ICE */
422 #if defined(CONFIG_USER_ONLY)
423 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
428 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
429 int flags, CPUWatchpoint **watchpoint)
434 /* Add a watchpoint. */
435 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
436 int flags, CPUWatchpoint **watchpoint)
438 target_ulong len_mask = ~(len - 1);
441 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
442 if ((len & (len - 1)) || (addr & ~len_mask) ||
443 len == 0 || len > TARGET_PAGE_SIZE) {
444 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
445 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
448 wp = g_malloc(sizeof(*wp));
451 wp->len_mask = len_mask;
454 /* keep all GDB-injected watchpoints in front */
456 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
458 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
460 tlb_flush_page(env, addr);
467 /* Remove a specific watchpoint. */
468 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
471 target_ulong len_mask = ~(len - 1);
474 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
475 if (addr == wp->vaddr && len_mask == wp->len_mask
476 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
477 cpu_watchpoint_remove_by_ref(env, wp);
484 /* Remove a specific watchpoint by reference. */
485 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
487 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
489 tlb_flush_page(env, watchpoint->vaddr);
494 /* Remove all matching watchpoints. */
495 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
497 CPUWatchpoint *wp, *next;
499 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
500 if (wp->flags & mask)
501 cpu_watchpoint_remove_by_ref(env, wp);
506 /* Add a breakpoint. */
507 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
508 CPUBreakpoint **breakpoint)
510 #if defined(TARGET_HAS_ICE)
513 bp = g_malloc(sizeof(*bp));
518 /* keep all GDB-injected breakpoints in front */
520 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
522 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
524 breakpoint_invalidate(env, pc);
534 /* Remove a specific breakpoint. */
535 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
537 #if defined(TARGET_HAS_ICE)
540 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
541 if (bp->pc == pc && bp->flags == flags) {
542 cpu_breakpoint_remove_by_ref(env, bp);
552 /* Remove a specific breakpoint by reference. */
553 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
555 #if defined(TARGET_HAS_ICE)
556 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
558 breakpoint_invalidate(env, breakpoint->pc);
564 /* Remove all matching breakpoints. */
565 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
567 #if defined(TARGET_HAS_ICE)
568 CPUBreakpoint *bp, *next;
570 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
571 if (bp->flags & mask)
572 cpu_breakpoint_remove_by_ref(env, bp);
577 /* enable or disable single step mode. EXCP_DEBUG is returned by the
578 CPU loop after each instruction */
579 void cpu_single_step(CPUArchState *env, int enabled)
581 #if defined(TARGET_HAS_ICE)
582 if (env->singlestep_enabled != enabled) {
583 env->singlestep_enabled = enabled;
585 kvm_update_guest_debug(env, 0);
587 /* must flush all the translated code to avoid inconsistencies */
588 /* XXX: only flush what is necessary */
595 void cpu_abort(CPUArchState *env, const char *fmt, ...)
597 CPUState *cpu = ENV_GET_CPU(env);
603 fprintf(stderr, "qemu: fatal: ");
604 vfprintf(stderr, fmt, ap);
605 fprintf(stderr, "\n");
606 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
607 if (qemu_log_enabled()) {
608 qemu_log("qemu: fatal: ");
609 qemu_log_vprintf(fmt, ap2);
611 log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP);
617 #if defined(CONFIG_USER_ONLY)
619 struct sigaction act;
620 sigfillset(&act.sa_mask);
621 act.sa_handler = SIG_DFL;
622 sigaction(SIGABRT, &act, NULL);
628 CPUArchState *cpu_copy(CPUArchState *env)
630 CPUArchState *new_env = cpu_init(env->cpu_model_str);
631 CPUArchState *next_cpu = new_env->next_cpu;
632 #if defined(TARGET_HAS_ICE)
637 memcpy(new_env, env, sizeof(CPUArchState));
639 /* Preserve chaining. */
640 new_env->next_cpu = next_cpu;
642 /* Clone all break/watchpoints.
643 Note: Once we support ptrace with hw-debug register access, make sure
644 BP_CPU break/watchpoints are handled correctly on clone. */
645 QTAILQ_INIT(&env->breakpoints);
646 QTAILQ_INIT(&env->watchpoints);
647 #if defined(TARGET_HAS_ICE)
648 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
649 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
651 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
652 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
660 #if !defined(CONFIG_USER_ONLY)
661 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
666 /* we modify the TLB cache so that the dirty bit will be set again
667 when accessing the range */
668 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
669 /* Check that we don't span multiple blocks - this breaks the
670 address comparisons below. */
671 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
672 != (end - 1) - start) {
675 cpu_tlb_reset_dirty_all(start1, length);
679 /* Note: start and end must be within the same ram block. */
680 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
685 start &= TARGET_PAGE_MASK;
686 end = TARGET_PAGE_ALIGN(end);
688 length = end - start;
691 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
694 tlb_reset_dirty_range_all(start, end, length);
698 static int cpu_physical_memory_set_dirty_tracking(int enable)
701 in_migration = enable;
705 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
706 MemoryRegionSection *section,
708 hwaddr paddr, hwaddr xlat,
710 target_ulong *address)
715 if (memory_region_is_ram(section->mr)) {
717 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
719 if (!section->readonly) {
720 iotlb |= phys_section_notdirty;
722 iotlb |= phys_section_rom;
725 iotlb = section - phys_sections;
729 /* Make accesses to pages with watchpoints go via the
730 watchpoint trap routines. */
731 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
732 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
733 /* Avoid trapping reads of pages with a write breakpoint. */
734 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
735 iotlb = phys_section_watch + paddr;
736 *address |= TLB_MMIO;
744 #endif /* defined(CONFIG_USER_ONLY) */
746 #if !defined(CONFIG_USER_ONLY)
748 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
750 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
752 static uint16_t phys_section_add(MemoryRegionSection *section)
754 /* The physical section number is ORed with a page-aligned
755 * pointer to produce the iotlb entries. Thus it should
756 * never overflow into the page-aligned value.
758 assert(phys_sections_nb < TARGET_PAGE_SIZE);
760 if (phys_sections_nb == phys_sections_nb_alloc) {
761 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
762 phys_sections = g_renew(MemoryRegionSection, phys_sections,
763 phys_sections_nb_alloc);
765 phys_sections[phys_sections_nb] = *section;
766 return phys_sections_nb++;
769 static void phys_section_destroy(MemoryRegion *mr)
772 subpage_t *subpage = container_of(mr, subpage_t, iomem);
773 memory_region_destroy(&subpage->iomem);
778 static void phys_sections_clear(void)
780 while (phys_sections_nb > 0) {
781 MemoryRegionSection *section = &phys_sections[--phys_sections_nb];
782 phys_section_destroy(section->mr);
784 phys_map_nodes_nb = 0;
787 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
790 hwaddr base = section->offset_within_address_space
792 MemoryRegionSection *existing = phys_page_find(d, base >> TARGET_PAGE_BITS);
793 MemoryRegionSection subsection = {
794 .offset_within_address_space = base,
795 .size = int128_make64(TARGET_PAGE_SIZE),
799 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
801 if (!(existing->mr->subpage)) {
802 subpage = subpage_init(d->as, base);
803 subsection.mr = &subpage->iomem;
804 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
805 phys_section_add(&subsection));
807 subpage = container_of(existing->mr, subpage_t, iomem);
809 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
810 end = start + int128_get64(section->size) - 1;
811 subpage_register(subpage, start, end, phys_section_add(section));
815 static void register_multipage(AddressSpaceDispatch *d,
816 MemoryRegionSection *section)
818 hwaddr start_addr = section->offset_within_address_space;
819 uint16_t section_index = phys_section_add(section);
820 uint64_t num_pages = int128_get64(int128_rshift(section->size,
824 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
827 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
829 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
830 MemoryRegionSection now = *section, remain = *section;
831 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
833 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
834 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
835 - now.offset_within_address_space;
837 now.size = int128_min(int128_make64(left), now.size);
838 register_subpage(d, &now);
840 now.size = int128_zero();
842 while (int128_ne(remain.size, now.size)) {
843 remain.size = int128_sub(remain.size, now.size);
844 remain.offset_within_address_space += int128_get64(now.size);
845 remain.offset_within_region += int128_get64(now.size);
847 if (int128_lt(remain.size, page_size)) {
848 register_subpage(d, &now);
849 } else if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
850 now.size = page_size;
851 register_subpage(d, &now);
853 now.size = int128_and(now.size, int128_neg(page_size));
854 register_multipage(d, &now);
859 void qemu_flush_coalesced_mmio_buffer(void)
862 kvm_flush_coalesced_mmio_buffer();
865 void qemu_mutex_lock_ramlist(void)
867 qemu_mutex_lock(&ram_list.mutex);
870 void qemu_mutex_unlock_ramlist(void)
872 qemu_mutex_unlock(&ram_list.mutex);
875 #if defined(__linux__) && !defined(TARGET_S390X)
879 #define HUGETLBFS_MAGIC 0x958458f6
881 static long gethugepagesize(const char *path)
887 ret = statfs(path, &fs);
888 } while (ret != 0 && errno == EINTR);
895 if (fs.f_type != HUGETLBFS_MAGIC)
896 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
901 static void *file_ram_alloc(RAMBlock *block,
906 char *sanitized_name;
913 unsigned long hpagesize;
915 hpagesize = gethugepagesize(path);
920 if (memory < hpagesize) {
924 if (kvm_enabled() && !kvm_has_sync_mmu()) {
925 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
929 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
930 sanitized_name = g_strdup(block->mr->name);
931 for (c = sanitized_name; *c != '\0'; c++) {
936 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
938 g_free(sanitized_name);
940 fd = mkstemp(filename);
942 perror("unable to create backing store for hugepages");
949 memory = (memory+hpagesize-1) & ~(hpagesize-1);
952 * ftruncate is not supported by hugetlbfs in older
953 * hosts, so don't bother bailing out on errors.
954 * If anything goes wrong with it under other filesystems,
957 if (ftruncate(fd, memory))
961 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
962 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
963 * to sidestep this quirk.
965 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
966 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
968 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
970 if (area == MAP_FAILED) {
971 perror("file_ram_alloc: can't mmap RAM pages");
980 static ram_addr_t find_ram_offset(ram_addr_t size)
982 RAMBlock *block, *next_block;
983 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
985 assert(size != 0); /* it would hand out same offset multiple times */
987 if (QTAILQ_EMPTY(&ram_list.blocks))
990 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
991 ram_addr_t end, next = RAM_ADDR_MAX;
993 end = block->offset + block->length;
995 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
996 if (next_block->offset >= end) {
997 next = MIN(next, next_block->offset);
1000 if (next - end >= size && next - end < mingap) {
1002 mingap = next - end;
1006 if (offset == RAM_ADDR_MAX) {
1007 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1015 ram_addr_t last_ram_offset(void)
1018 ram_addr_t last = 0;
1020 QTAILQ_FOREACH(block, &ram_list.blocks, next)
1021 last = MAX(last, block->offset + block->length);
1026 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1029 QemuOpts *machine_opts;
1031 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1032 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1034 !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
1035 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1037 perror("qemu_madvise");
1038 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1039 "but dump_guest_core=off specified\n");
1044 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1046 RAMBlock *new_block, *block;
1049 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1050 if (block->offset == addr) {
1056 assert(!new_block->idstr[0]);
1059 char *id = qdev_get_dev_path(dev);
1061 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1065 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1067 /* This assumes the iothread lock is taken here too. */
1068 qemu_mutex_lock_ramlist();
1069 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1070 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1071 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1076 qemu_mutex_unlock_ramlist();
1079 static int memory_try_enable_merging(void *addr, size_t len)
1083 opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1084 if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
1085 /* disabled by the user */
1089 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1092 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1095 RAMBlock *block, *new_block;
1097 size = TARGET_PAGE_ALIGN(size);
1098 new_block = g_malloc0(sizeof(*new_block));
1100 /* This assumes the iothread lock is taken here too. */
1101 qemu_mutex_lock_ramlist();
1103 new_block->offset = find_ram_offset(size);
1105 new_block->host = host;
1106 new_block->flags |= RAM_PREALLOC_MASK;
1109 #if defined (__linux__) && !defined(TARGET_S390X)
1110 new_block->host = file_ram_alloc(new_block, size, mem_path);
1111 if (!new_block->host) {
1112 new_block->host = qemu_anon_ram_alloc(size);
1113 memory_try_enable_merging(new_block->host, size);
1116 fprintf(stderr, "-mem-path option unsupported\n");
1120 if (xen_enabled()) {
1121 xen_ram_alloc(new_block->offset, size, mr);
1122 } else if (kvm_enabled()) {
1123 /* some s390/kvm configurations have special constraints */
1124 new_block->host = kvm_ram_alloc(size);
1126 new_block->host = qemu_anon_ram_alloc(size);
1128 memory_try_enable_merging(new_block->host, size);
1131 new_block->length = size;
1133 /* Keep the list sorted from biggest to smallest block. */
1134 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1135 if (block->length < new_block->length) {
1140 QTAILQ_INSERT_BEFORE(block, new_block, next);
1142 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1144 ram_list.mru_block = NULL;
1147 qemu_mutex_unlock_ramlist();
1149 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
1150 last_ram_offset() >> TARGET_PAGE_BITS);
1151 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1152 0, size >> TARGET_PAGE_BITS);
1153 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
1155 qemu_ram_setup_dump(new_block->host, size);
1156 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1159 kvm_setup_guest_memory(new_block->host, size);
1161 return new_block->offset;
1164 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1166 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1169 void qemu_ram_free_from_ptr(ram_addr_t addr)
1173 /* This assumes the iothread lock is taken here too. */
1174 qemu_mutex_lock_ramlist();
1175 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1176 if (addr == block->offset) {
1177 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1178 ram_list.mru_block = NULL;
1184 qemu_mutex_unlock_ramlist();
1187 void qemu_ram_free(ram_addr_t addr)
1191 /* This assumes the iothread lock is taken here too. */
1192 qemu_mutex_lock_ramlist();
1193 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1194 if (addr == block->offset) {
1195 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1196 ram_list.mru_block = NULL;
1198 if (block->flags & RAM_PREALLOC_MASK) {
1200 } else if (mem_path) {
1201 #if defined (__linux__) && !defined(TARGET_S390X)
1203 munmap(block->host, block->length);
1206 qemu_anon_ram_free(block->host, block->length);
1212 if (xen_enabled()) {
1213 xen_invalidate_map_cache_entry(block->host);
1215 qemu_anon_ram_free(block->host, block->length);
1222 qemu_mutex_unlock_ramlist();
1227 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1234 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1235 offset = addr - block->offset;
1236 if (offset < block->length) {
1237 vaddr = block->host + offset;
1238 if (block->flags & RAM_PREALLOC_MASK) {
1242 munmap(vaddr, length);
1244 #if defined(__linux__) && !defined(TARGET_S390X)
1247 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1250 flags |= MAP_PRIVATE;
1252 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1253 flags, block->fd, offset);
1255 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1256 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1263 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1264 flags |= MAP_SHARED | MAP_ANONYMOUS;
1265 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
1268 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1269 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1273 if (area != vaddr) {
1274 fprintf(stderr, "Could not remap addr: "
1275 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1279 memory_try_enable_merging(vaddr, length);
1280 qemu_ram_setup_dump(vaddr, length);
1286 #endif /* !_WIN32 */
1288 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1289 With the exception of the softmmu code in this file, this should
1290 only be used for local memory (e.g. video ram) that the device owns,
1291 and knows it isn't going to access beyond the end of the block.
1293 It should not be used for general purpose DMA.
1294 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1296 void *qemu_get_ram_ptr(ram_addr_t addr)
1300 /* The list is protected by the iothread lock here. */
1301 block = ram_list.mru_block;
1302 if (block && addr - block->offset < block->length) {
1305 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1306 if (addr - block->offset < block->length) {
1311 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1315 ram_list.mru_block = block;
1316 if (xen_enabled()) {
1317 /* We need to check if the requested address is in the RAM
1318 * because we don't want to map the entire memory in QEMU.
1319 * In that case just map until the end of the page.
1321 if (block->offset == 0) {
1322 return xen_map_cache(addr, 0, 0);
1323 } else if (block->host == NULL) {
1325 xen_map_cache(block->offset, block->length, 1);
1328 return block->host + (addr - block->offset);
1331 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1332 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1334 * ??? Is this still necessary?
1336 static void *qemu_safe_ram_ptr(ram_addr_t addr)
1340 /* The list is protected by the iothread lock here. */
1341 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1342 if (addr - block->offset < block->length) {
1343 if (xen_enabled()) {
1344 /* We need to check if the requested address is in the RAM
1345 * because we don't want to map the entire memory in QEMU.
1346 * In that case just map until the end of the page.
1348 if (block->offset == 0) {
1349 return xen_map_cache(addr, 0, 0);
1350 } else if (block->host == NULL) {
1352 xen_map_cache(block->offset, block->length, 1);
1355 return block->host + (addr - block->offset);
1359 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1365 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1366 * but takes a size argument */
1367 static void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
1372 if (xen_enabled()) {
1373 return xen_map_cache(addr, *size, 1);
1377 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1378 if (addr - block->offset < block->length) {
1379 if (addr - block->offset + *size > block->length)
1380 *size = block->length - addr + block->offset;
1381 return block->host + (addr - block->offset);
1385 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1390 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1393 uint8_t *host = ptr;
1395 if (xen_enabled()) {
1396 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1400 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1401 /* This case append when the block is not mapped. */
1402 if (block->host == NULL) {
1405 if (host - block->host < block->length) {
1406 *ram_addr = block->offset + (host - block->host);
1414 /* Some of the softmmu routines need to translate from a host pointer
1415 (typically a TLB entry) back to a ram offset. */
1416 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
1418 ram_addr_t ram_addr;
1420 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
1421 fprintf(stderr, "Bad ram pointer %p\n", ptr);
1427 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1428 uint64_t val, unsigned size)
1431 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1432 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1433 tb_invalidate_phys_page_fast(ram_addr, size);
1434 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1438 stb_p(qemu_get_ram_ptr(ram_addr), val);
1441 stw_p(qemu_get_ram_ptr(ram_addr), val);
1444 stl_p(qemu_get_ram_ptr(ram_addr), val);
1449 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1450 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
1451 /* we remove the notdirty callback only if the code has been
1453 if (dirty_flags == 0xff)
1454 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
1457 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1458 unsigned size, bool is_write)
1463 static const MemoryRegionOps notdirty_mem_ops = {
1464 .write = notdirty_mem_write,
1465 .valid.accepts = notdirty_mem_accepts,
1466 .endianness = DEVICE_NATIVE_ENDIAN,
1469 /* Generate a debug exception if a watchpoint has been hit. */
1470 static void check_watchpoint(int offset, int len_mask, int flags)
1472 CPUArchState *env = cpu_single_env;
1473 target_ulong pc, cs_base;
1478 if (env->watchpoint_hit) {
1479 /* We re-entered the check after replacing the TB. Now raise
1480 * the debug interrupt so that is will trigger after the
1481 * current instruction. */
1482 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
1485 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1486 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1487 if ((vaddr == (wp->vaddr & len_mask) ||
1488 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1489 wp->flags |= BP_WATCHPOINT_HIT;
1490 if (!env->watchpoint_hit) {
1491 env->watchpoint_hit = wp;
1492 tb_check_watchpoint(env);
1493 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1494 env->exception_index = EXCP_DEBUG;
1497 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1498 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1499 cpu_resume_from_signal(env, NULL);
1503 wp->flags &= ~BP_WATCHPOINT_HIT;
1508 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1509 so these check for a hit then pass through to the normal out-of-line
1511 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1514 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1516 case 1: return ldub_phys(addr);
1517 case 2: return lduw_phys(addr);
1518 case 4: return ldl_phys(addr);
1523 static void watch_mem_write(void *opaque, hwaddr addr,
1524 uint64_t val, unsigned size)
1526 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1529 stb_phys(addr, val);
1532 stw_phys(addr, val);
1535 stl_phys(addr, val);
1541 static const MemoryRegionOps watch_mem_ops = {
1542 .read = watch_mem_read,
1543 .write = watch_mem_write,
1544 .endianness = DEVICE_NATIVE_ENDIAN,
1547 static uint64_t subpage_read(void *opaque, hwaddr addr,
1550 subpage_t *subpage = opaque;
1553 #if defined(DEBUG_SUBPAGE)
1554 printf("%s: subpage %p len %d addr " TARGET_FMT_plx "\n", __func__,
1555 subpage, len, addr);
1557 address_space_read(subpage->as, addr + subpage->base, buf, len);
1570 static void subpage_write(void *opaque, hwaddr addr,
1571 uint64_t value, unsigned len)
1573 subpage_t *subpage = opaque;
1576 #if defined(DEBUG_SUBPAGE)
1577 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1578 " value %"PRIx64"\n",
1579 __func__, subpage, len, addr, value);
1594 address_space_write(subpage->as, addr + subpage->base, buf, len);
1597 static bool subpage_accepts(void *opaque, hwaddr addr,
1598 unsigned size, bool is_write)
1600 subpage_t *subpage = opaque;
1601 #if defined(DEBUG_SUBPAGE)
1602 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx "\n",
1603 __func__, subpage, is_write ? 'w' : 'r', len, addr);
1606 return address_space_access_valid(subpage->as, addr + subpage->base,
1610 static const MemoryRegionOps subpage_ops = {
1611 .read = subpage_read,
1612 .write = subpage_write,
1613 .valid.accepts = subpage_accepts,
1614 .endianness = DEVICE_NATIVE_ENDIAN,
1617 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1622 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1624 idx = SUBPAGE_IDX(start);
1625 eidx = SUBPAGE_IDX(end);
1626 #if defined(DEBUG_SUBPAGE)
1627 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
1628 mmio, start, end, idx, eidx, memory);
1630 for (; idx <= eidx; idx++) {
1631 mmio->sub_section[idx] = section;
1637 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
1641 mmio = g_malloc0(sizeof(subpage_t));
1645 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
1646 "subpage", TARGET_PAGE_SIZE);
1647 mmio->iomem.subpage = true;
1648 #if defined(DEBUG_SUBPAGE)
1649 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1650 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
1652 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
1657 static uint16_t dummy_section(MemoryRegion *mr)
1659 MemoryRegionSection section = {
1661 .offset_within_address_space = 0,
1662 .offset_within_region = 0,
1663 .size = int128_2_64(),
1666 return phys_section_add(§ion);
1669 MemoryRegion *iotlb_to_region(hwaddr index)
1671 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
1674 static void io_mem_init(void)
1676 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1677 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1678 "unassigned", UINT64_MAX);
1679 memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL,
1680 "notdirty", UINT64_MAX);
1681 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1682 "watch", UINT64_MAX);
1685 static void mem_begin(MemoryListener *listener)
1687 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
1689 d->phys_map.ptr = PHYS_MAP_NODE_NIL;
1692 static void core_begin(MemoryListener *listener)
1694 phys_sections_clear();
1695 phys_section_unassigned = dummy_section(&io_mem_unassigned);
1696 phys_section_notdirty = dummy_section(&io_mem_notdirty);
1697 phys_section_rom = dummy_section(&io_mem_rom);
1698 phys_section_watch = dummy_section(&io_mem_watch);
1701 static void tcg_commit(MemoryListener *listener)
1705 /* since each CPU stores ram addresses in its TLB cache, we must
1706 reset the modified entries */
1708 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1713 static void core_log_global_start(MemoryListener *listener)
1715 cpu_physical_memory_set_dirty_tracking(1);
1718 static void core_log_global_stop(MemoryListener *listener)
1720 cpu_physical_memory_set_dirty_tracking(0);
1723 static MemoryListener core_memory_listener = {
1724 .begin = core_begin,
1725 .log_global_start = core_log_global_start,
1726 .log_global_stop = core_log_global_stop,
1730 static MemoryListener tcg_memory_listener = {
1731 .commit = tcg_commit,
1734 void address_space_init_dispatch(AddressSpace *as)
1736 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1738 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1739 d->listener = (MemoryListener) {
1741 .region_add = mem_add,
1742 .region_nop = mem_add,
1747 memory_listener_register(&d->listener, as);
1750 void address_space_destroy_dispatch(AddressSpace *as)
1752 AddressSpaceDispatch *d = as->dispatch;
1754 memory_listener_unregister(&d->listener);
1756 as->dispatch = NULL;
1759 static void memory_map_init(void)
1761 system_memory = g_malloc(sizeof(*system_memory));
1762 memory_region_init(system_memory, NULL, "system", INT64_MAX);
1763 address_space_init(&address_space_memory, system_memory, "memory");
1765 system_io = g_malloc(sizeof(*system_io));
1766 memory_region_init(system_io, NULL, "io", 65536);
1767 address_space_init(&address_space_io, system_io, "I/O");
1769 memory_listener_register(&core_memory_listener, &address_space_memory);
1770 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1773 MemoryRegion *get_system_memory(void)
1775 return system_memory;
1778 MemoryRegion *get_system_io(void)
1783 #endif /* !defined(CONFIG_USER_ONLY) */
1785 /* physical memory access (slow version, mainly for debug) */
1786 #if defined(CONFIG_USER_ONLY)
1787 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
1788 uint8_t *buf, int len, int is_write)
1795 page = addr & TARGET_PAGE_MASK;
1796 l = (page + TARGET_PAGE_SIZE) - addr;
1799 flags = page_get_flags(page);
1800 if (!(flags & PAGE_VALID))
1803 if (!(flags & PAGE_WRITE))
1805 /* XXX: this code should not depend on lock_user */
1806 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1809 unlock_user(p, addr, l);
1811 if (!(flags & PAGE_READ))
1813 /* XXX: this code should not depend on lock_user */
1814 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1817 unlock_user(p, addr, 0);
1828 static void invalidate_and_set_dirty(hwaddr addr,
1831 if (!cpu_physical_memory_is_dirty(addr)) {
1832 /* invalidate code */
1833 tb_invalidate_phys_page_range(addr, addr + length, 0);
1835 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1837 xen_modified_memory(addr, length);
1840 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1842 if (memory_region_is_ram(mr)) {
1843 return !(is_write && mr->readonly);
1845 if (memory_region_is_romd(mr)) {
1852 static inline int memory_access_size(MemoryRegion *mr, int l, hwaddr addr)
1854 if (l >= 4 && (((addr & 3) == 0 || mr->ops->impl.unaligned))) {
1857 if (l >= 2 && (((addr & 1) == 0) || mr->ops->impl.unaligned)) {
1863 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1864 int len, bool is_write)
1875 mr = address_space_translate(as, addr, &addr1, &l, is_write);
1878 if (!memory_access_is_direct(mr, is_write)) {
1879 l = memory_access_size(mr, l, addr1);
1880 /* XXX: could force cpu_single_env to NULL to avoid
1883 /* 32 bit write access */
1885 error |= io_mem_write(mr, addr1, val, 4);
1886 } else if (l == 2) {
1887 /* 16 bit write access */
1889 error |= io_mem_write(mr, addr1, val, 2);
1891 /* 8 bit write access */
1893 error |= io_mem_write(mr, addr1, val, 1);
1896 addr1 += memory_region_get_ram_addr(mr);
1898 ptr = qemu_get_ram_ptr(addr1);
1899 memcpy(ptr, buf, l);
1900 invalidate_and_set_dirty(addr1, l);
1903 if (!memory_access_is_direct(mr, is_write)) {
1905 l = memory_access_size(mr, l, addr1);
1907 /* 32 bit read access */
1908 error |= io_mem_read(mr, addr1, &val, 4);
1910 } else if (l == 2) {
1911 /* 16 bit read access */
1912 error |= io_mem_read(mr, addr1, &val, 2);
1915 /* 8 bit read access */
1916 error |= io_mem_read(mr, addr1, &val, 1);
1921 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
1922 memcpy(buf, ptr, l);
1933 bool address_space_write(AddressSpace *as, hwaddr addr,
1934 const uint8_t *buf, int len)
1936 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
1939 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
1941 return address_space_rw(as, addr, buf, len, false);
1945 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
1946 int len, int is_write)
1948 address_space_rw(&address_space_memory, addr, buf, len, is_write);
1951 /* used for ROM loading : can write in RAM and ROM */
1952 void cpu_physical_memory_write_rom(hwaddr addr,
1953 const uint8_t *buf, int len)
1962 mr = address_space_translate(&address_space_memory,
1963 addr, &addr1, &l, true);
1965 if (!(memory_region_is_ram(mr) ||
1966 memory_region_is_romd(mr))) {
1969 addr1 += memory_region_get_ram_addr(mr);
1971 ptr = qemu_get_ram_ptr(addr1);
1972 memcpy(ptr, buf, l);
1973 invalidate_and_set_dirty(addr1, l);
1987 static BounceBuffer bounce;
1989 typedef struct MapClient {
1991 void (*callback)(void *opaque);
1992 QLIST_ENTRY(MapClient) link;
1995 static QLIST_HEAD(map_client_list, MapClient) map_client_list
1996 = QLIST_HEAD_INITIALIZER(map_client_list);
1998 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2000 MapClient *client = g_malloc(sizeof(*client));
2002 client->opaque = opaque;
2003 client->callback = callback;
2004 QLIST_INSERT_HEAD(&map_client_list, client, link);
2008 static void cpu_unregister_map_client(void *_client)
2010 MapClient *client = (MapClient *)_client;
2012 QLIST_REMOVE(client, link);
2016 static void cpu_notify_map_clients(void)
2020 while (!QLIST_EMPTY(&map_client_list)) {
2021 client = QLIST_FIRST(&map_client_list);
2022 client->callback(client->opaque);
2023 cpu_unregister_map_client(client);
2027 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2034 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2035 if (!memory_access_is_direct(mr, is_write)) {
2036 l = memory_access_size(mr, l, addr);
2037 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2048 /* Map a physical memory region into a host virtual address.
2049 * May map a subset of the requested range, given by and returned in *plen.
2050 * May return NULL if resources needed to perform the mapping are exhausted.
2051 * Use only for reads OR writes - not for read-modify-write operations.
2052 * Use cpu_register_map_client() to know when retrying the map operation is
2053 * likely to succeed.
2055 void *address_space_map(AddressSpace *as,
2064 ram_addr_t raddr = RAM_ADDR_MAX;
2070 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2072 if (!memory_access_is_direct(mr, is_write)) {
2073 if (todo || bounce.buffer) {
2076 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2080 address_space_read(as, addr, bounce.buffer, l);
2084 return bounce.buffer;
2087 raddr = memory_region_get_ram_addr(mr) + xlat;
2089 if (memory_region_get_ram_addr(mr) + xlat != raddr + todo) {
2099 ret = qemu_ram_ptr_length(raddr, &rlen);
2104 /* Unmaps a memory region previously mapped by address_space_map().
2105 * Will also mark the memory as dirty if is_write == 1. access_len gives
2106 * the amount of memory that was actually read or written by the caller.
2108 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2109 int is_write, hwaddr access_len)
2111 if (buffer != bounce.buffer) {
2113 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
2114 while (access_len) {
2116 l = TARGET_PAGE_SIZE;
2119 invalidate_and_set_dirty(addr1, l);
2124 if (xen_enabled()) {
2125 xen_invalidate_map_cache_entry(buffer);
2130 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2132 qemu_vfree(bounce.buffer);
2133 bounce.buffer = NULL;
2134 cpu_notify_map_clients();
2137 void *cpu_physical_memory_map(hwaddr addr,
2141 return address_space_map(&address_space_memory, addr, plen, is_write);
2144 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2145 int is_write, hwaddr access_len)
2147 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2150 /* warning: addr must be aligned */
2151 static inline uint32_t ldl_phys_internal(hwaddr addr,
2152 enum device_endian endian)
2160 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2162 if (l < 4 || !memory_access_is_direct(mr, false)) {
2164 io_mem_read(mr, addr1, &val, 4);
2165 #if defined(TARGET_WORDS_BIGENDIAN)
2166 if (endian == DEVICE_LITTLE_ENDIAN) {
2170 if (endian == DEVICE_BIG_ENDIAN) {
2176 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2180 case DEVICE_LITTLE_ENDIAN:
2181 val = ldl_le_p(ptr);
2183 case DEVICE_BIG_ENDIAN:
2184 val = ldl_be_p(ptr);
2194 uint32_t ldl_phys(hwaddr addr)
2196 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2199 uint32_t ldl_le_phys(hwaddr addr)
2201 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2204 uint32_t ldl_be_phys(hwaddr addr)
2206 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2209 /* warning: addr must be aligned */
2210 static inline uint64_t ldq_phys_internal(hwaddr addr,
2211 enum device_endian endian)
2219 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2221 if (l < 8 || !memory_access_is_direct(mr, false)) {
2223 io_mem_read(mr, addr1, &val, 8);
2224 #if defined(TARGET_WORDS_BIGENDIAN)
2225 if (endian == DEVICE_LITTLE_ENDIAN) {
2229 if (endian == DEVICE_BIG_ENDIAN) {
2235 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2239 case DEVICE_LITTLE_ENDIAN:
2240 val = ldq_le_p(ptr);
2242 case DEVICE_BIG_ENDIAN:
2243 val = ldq_be_p(ptr);
2253 uint64_t ldq_phys(hwaddr addr)
2255 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2258 uint64_t ldq_le_phys(hwaddr addr)
2260 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2263 uint64_t ldq_be_phys(hwaddr addr)
2265 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2269 uint32_t ldub_phys(hwaddr addr)
2272 cpu_physical_memory_read(addr, &val, 1);
2276 /* warning: addr must be aligned */
2277 static inline uint32_t lduw_phys_internal(hwaddr addr,
2278 enum device_endian endian)
2286 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2288 if (l < 2 || !memory_access_is_direct(mr, false)) {
2290 io_mem_read(mr, addr1, &val, 2);
2291 #if defined(TARGET_WORDS_BIGENDIAN)
2292 if (endian == DEVICE_LITTLE_ENDIAN) {
2296 if (endian == DEVICE_BIG_ENDIAN) {
2302 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2306 case DEVICE_LITTLE_ENDIAN:
2307 val = lduw_le_p(ptr);
2309 case DEVICE_BIG_ENDIAN:
2310 val = lduw_be_p(ptr);
2320 uint32_t lduw_phys(hwaddr addr)
2322 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2325 uint32_t lduw_le_phys(hwaddr addr)
2327 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2330 uint32_t lduw_be_phys(hwaddr addr)
2332 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2335 /* warning: addr must be aligned. The ram page is not masked as dirty
2336 and the code inside is not invalidated. It is useful if the dirty
2337 bits are used to track modified PTEs */
2338 void stl_phys_notdirty(hwaddr addr, uint32_t val)
2345 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2347 if (l < 4 || !memory_access_is_direct(mr, true)) {
2348 io_mem_write(mr, addr1, val, 4);
2350 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2351 ptr = qemu_get_ram_ptr(addr1);
2354 if (unlikely(in_migration)) {
2355 if (!cpu_physical_memory_is_dirty(addr1)) {
2356 /* invalidate code */
2357 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2359 cpu_physical_memory_set_dirty_flags(
2360 addr1, (0xff & ~CODE_DIRTY_FLAG));
2366 /* warning: addr must be aligned */
2367 static inline void stl_phys_internal(hwaddr addr, uint32_t val,
2368 enum device_endian endian)
2375 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2377 if (l < 4 || !memory_access_is_direct(mr, true)) {
2378 #if defined(TARGET_WORDS_BIGENDIAN)
2379 if (endian == DEVICE_LITTLE_ENDIAN) {
2383 if (endian == DEVICE_BIG_ENDIAN) {
2387 io_mem_write(mr, addr1, val, 4);
2390 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2391 ptr = qemu_get_ram_ptr(addr1);
2393 case DEVICE_LITTLE_ENDIAN:
2396 case DEVICE_BIG_ENDIAN:
2403 invalidate_and_set_dirty(addr1, 4);
2407 void stl_phys(hwaddr addr, uint32_t val)
2409 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2412 void stl_le_phys(hwaddr addr, uint32_t val)
2414 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2417 void stl_be_phys(hwaddr addr, uint32_t val)
2419 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2423 void stb_phys(hwaddr addr, uint32_t val)
2426 cpu_physical_memory_write(addr, &v, 1);
2429 /* warning: addr must be aligned */
2430 static inline void stw_phys_internal(hwaddr addr, uint32_t val,
2431 enum device_endian endian)
2438 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2440 if (l < 2 || !memory_access_is_direct(mr, true)) {
2441 #if defined(TARGET_WORDS_BIGENDIAN)
2442 if (endian == DEVICE_LITTLE_ENDIAN) {
2446 if (endian == DEVICE_BIG_ENDIAN) {
2450 io_mem_write(mr, addr1, val, 2);
2453 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2454 ptr = qemu_get_ram_ptr(addr1);
2456 case DEVICE_LITTLE_ENDIAN:
2459 case DEVICE_BIG_ENDIAN:
2466 invalidate_and_set_dirty(addr1, 2);
2470 void stw_phys(hwaddr addr, uint32_t val)
2472 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2475 void stw_le_phys(hwaddr addr, uint32_t val)
2477 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2480 void stw_be_phys(hwaddr addr, uint32_t val)
2482 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2486 void stq_phys(hwaddr addr, uint64_t val)
2489 cpu_physical_memory_write(addr, &val, 8);
2492 void stq_le_phys(hwaddr addr, uint64_t val)
2494 val = cpu_to_le64(val);
2495 cpu_physical_memory_write(addr, &val, 8);
2498 void stq_be_phys(hwaddr addr, uint64_t val)
2500 val = cpu_to_be64(val);
2501 cpu_physical_memory_write(addr, &val, 8);
2504 /* virtual memory access for debug (includes writing to ROM) */
2505 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
2506 uint8_t *buf, int len, int is_write)
2513 page = addr & TARGET_PAGE_MASK;
2514 phys_addr = cpu_get_phys_page_debug(env, page);
2515 /* if no physical page mapped, return an error */
2516 if (phys_addr == -1)
2518 l = (page + TARGET_PAGE_SIZE) - addr;
2521 phys_addr += (addr & ~TARGET_PAGE_MASK);
2523 cpu_physical_memory_write_rom(phys_addr, buf, l);
2525 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
2534 #if !defined(CONFIG_USER_ONLY)
2537 * A helper function for the _utterly broken_ virtio device model to find out if
2538 * it's running on a big endian machine. Don't do this at home kids!
2540 bool virtio_is_big_endian(void);
2541 bool virtio_is_big_endian(void)
2543 #if defined(TARGET_WORDS_BIGENDIAN)
2552 #ifndef CONFIG_USER_ONLY
2553 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2558 mr = address_space_translate(&address_space_memory,
2559 phys_addr, &phys_addr, &l, false);
2561 return !(memory_region_is_ram(mr) ||
2562 memory_region_is_romd(mr));
2565 void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2569 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2570 func(block->host, block->offset, block->length, opaque);