4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include <sys/types.h>
27 #include "qemu-common.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "hw/xen/xen.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "exec/memory.h"
38 #include "sysemu/dma.h"
39 #include "exec/address-spaces.h"
40 #if defined(CONFIG_USER_ONLY)
42 #else /* !CONFIG_USER_ONLY */
43 #include "sysemu/xen-mapcache.h"
46 #include "exec/cpu-all.h"
48 #include "exec/cputlb.h"
49 #include "translate-all.h"
51 #include "exec/memory-internal.h"
53 //#define DEBUG_SUBPAGE
55 #if !defined(CONFIG_USER_ONLY)
57 static int in_migration;
59 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
61 static MemoryRegion *system_memory;
62 static MemoryRegion *system_io;
64 AddressSpace address_space_io;
65 AddressSpace address_space_memory;
67 MemoryRegion io_mem_rom, io_mem_notdirty;
68 static MemoryRegion io_mem_unassigned;
72 CPUArchState *first_cpu;
73 /* current CPU in the current thread. It is only valid inside
75 DEFINE_TLS(CPUArchState *,cpu_single_env);
76 /* 0 = Do not count executed instructions.
77 1 = Precise instruction counting.
78 2 = Adaptive rate instruction counting. */
81 #if !defined(CONFIG_USER_ONLY)
83 typedef struct PhysPageEntry PhysPageEntry;
85 struct PhysPageEntry {
87 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
91 typedef PhysPageEntry Node[L2_SIZE];
93 struct AddressSpaceDispatch {
94 /* This is a multi-level map on the physical address space.
95 * The bottom level has pointers to MemoryRegionSections.
97 PhysPageEntry phys_map;
99 MemoryRegionSection *sections;
103 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
104 typedef struct subpage_t {
108 uint16_t sub_section[TARGET_PAGE_SIZE];
111 #define PHYS_SECTION_UNASSIGNED 0
112 #define PHYS_SECTION_NOTDIRTY 1
113 #define PHYS_SECTION_ROM 2
114 #define PHYS_SECTION_WATCH 3
116 typedef struct PhysPageMap {
117 unsigned sections_nb;
118 unsigned sections_nb_alloc;
120 unsigned nodes_nb_alloc;
122 MemoryRegionSection *sections;
125 static PhysPageMap *prev_map;
126 static PhysPageMap next_map;
128 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
130 static void io_mem_init(void);
131 static void memory_map_init(void);
132 static void *qemu_safe_ram_ptr(ram_addr_t addr);
134 static MemoryRegion io_mem_watch;
137 #if !defined(CONFIG_USER_ONLY)
139 static void phys_map_node_reserve(unsigned nodes)
141 if (next_map.nodes_nb + nodes > next_map.nodes_nb_alloc) {
142 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc * 2,
144 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc,
145 next_map.nodes_nb + nodes);
146 next_map.nodes = g_renew(Node, next_map.nodes,
147 next_map.nodes_nb_alloc);
151 static uint16_t phys_map_node_alloc(void)
156 ret = next_map.nodes_nb++;
157 assert(ret != PHYS_MAP_NODE_NIL);
158 assert(ret != next_map.nodes_nb_alloc);
159 for (i = 0; i < L2_SIZE; ++i) {
160 next_map.nodes[ret][i].is_leaf = 0;
161 next_map.nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
166 static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
167 hwaddr *nb, uint16_t leaf,
172 hwaddr step = (hwaddr)1 << (level * L2_BITS);
174 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
175 lp->ptr = phys_map_node_alloc();
176 p = next_map.nodes[lp->ptr];
178 for (i = 0; i < L2_SIZE; i++) {
180 p[i].ptr = PHYS_SECTION_UNASSIGNED;
184 p = next_map.nodes[lp->ptr];
186 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
188 while (*nb && lp < &p[L2_SIZE]) {
189 if ((*index & (step - 1)) == 0 && *nb >= step) {
195 phys_page_set_level(lp, index, nb, leaf, level - 1);
201 static void phys_page_set(AddressSpaceDispatch *d,
202 hwaddr index, hwaddr nb,
205 /* Wildly overreserve - it doesn't matter much. */
206 phys_map_node_reserve(3 * P_L2_LEVELS);
208 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
211 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr index,
212 Node *nodes, MemoryRegionSection *sections)
217 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
218 if (lp.ptr == PHYS_MAP_NODE_NIL) {
219 return §ions[PHYS_SECTION_UNASSIGNED];
222 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
224 return §ions[lp.ptr];
227 bool memory_region_is_unassigned(MemoryRegion *mr)
229 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
230 && mr != &io_mem_watch;
233 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
235 bool resolve_subpage)
237 MemoryRegionSection *section;
240 section = phys_page_find(d->phys_map, addr >> TARGET_PAGE_BITS,
241 d->nodes, d->sections);
242 if (resolve_subpage && section->mr->subpage) {
243 subpage = container_of(section->mr, subpage_t, iomem);
244 section = &d->sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
249 static MemoryRegionSection *
250 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
251 hwaddr *plen, bool resolve_subpage)
253 MemoryRegionSection *section;
256 section = address_space_lookup_region(d, addr, resolve_subpage);
257 /* Compute offset within MemoryRegionSection */
258 addr -= section->offset_within_address_space;
260 /* Compute offset within MemoryRegion */
261 *xlat = addr + section->offset_within_region;
263 diff = int128_sub(section->mr->size, int128_make64(addr));
264 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
268 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
269 hwaddr *xlat, hwaddr *plen,
273 MemoryRegionSection *section;
278 section = address_space_translate_internal(as->dispatch, addr, &addr, plen, true);
281 if (!mr->iommu_ops) {
285 iotlb = mr->iommu_ops->translate(mr, addr);
286 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
287 | (addr & iotlb.addr_mask));
288 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
289 if (!(iotlb.perm & (1 << is_write))) {
290 mr = &io_mem_unassigned;
294 as = iotlb.target_as;
302 MemoryRegionSection *
303 address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
306 MemoryRegionSection *section;
307 section = address_space_translate_internal(as->dispatch, addr, xlat, plen, false);
309 assert(!section->mr->iommu_ops);
314 void cpu_exec_init_all(void)
316 #if !defined(CONFIG_USER_ONLY)
317 qemu_mutex_init(&ram_list.mutex);
323 #if !defined(CONFIG_USER_ONLY)
325 static int cpu_common_post_load(void *opaque, int version_id)
327 CPUState *cpu = opaque;
329 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
330 version_id is increased. */
331 cpu->interrupt_request &= ~0x01;
332 tlb_flush(cpu->env_ptr, 1);
337 const VMStateDescription vmstate_cpu_common = {
338 .name = "cpu_common",
340 .minimum_version_id = 1,
341 .minimum_version_id_old = 1,
342 .post_load = cpu_common_post_load,
343 .fields = (VMStateField []) {
344 VMSTATE_UINT32(halted, CPUState),
345 VMSTATE_UINT32(interrupt_request, CPUState),
346 VMSTATE_END_OF_LIST()
352 CPUState *qemu_get_cpu(int index)
354 CPUArchState *env = first_cpu;
355 CPUState *cpu = NULL;
358 cpu = ENV_GET_CPU(env);
359 if (cpu->cpu_index == index) {
365 return env ? cpu : NULL;
368 void qemu_for_each_cpu(void (*func)(CPUState *cpu, void *data), void *data)
370 CPUArchState *env = first_cpu;
373 func(ENV_GET_CPU(env), data);
378 void cpu_exec_init(CPUArchState *env)
380 CPUState *cpu = ENV_GET_CPU(env);
381 CPUClass *cc = CPU_GET_CLASS(cpu);
385 #if defined(CONFIG_USER_ONLY)
388 env->next_cpu = NULL;
391 while (*penv != NULL) {
392 penv = &(*penv)->next_cpu;
395 cpu->cpu_index = cpu_index;
397 QTAILQ_INIT(&env->breakpoints);
398 QTAILQ_INIT(&env->watchpoints);
399 #ifndef CONFIG_USER_ONLY
400 cpu->thread_id = qemu_get_thread_id();
403 #if defined(CONFIG_USER_ONLY)
406 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
407 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
408 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
409 cpu_save, cpu_load, env);
410 assert(cc->vmsd == NULL);
412 if (cc->vmsd != NULL) {
413 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
417 #if defined(TARGET_HAS_ICE)
418 #if defined(CONFIG_USER_ONLY)
419 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
421 tb_invalidate_phys_page_range(pc, pc + 1, 0);
424 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
426 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
427 (pc & ~TARGET_PAGE_MASK));
430 #endif /* TARGET_HAS_ICE */
432 #if defined(CONFIG_USER_ONLY)
433 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
438 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
439 int flags, CPUWatchpoint **watchpoint)
444 /* Add a watchpoint. */
445 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
446 int flags, CPUWatchpoint **watchpoint)
448 target_ulong len_mask = ~(len - 1);
451 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
452 if ((len & (len - 1)) || (addr & ~len_mask) ||
453 len == 0 || len > TARGET_PAGE_SIZE) {
454 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
455 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
458 wp = g_malloc(sizeof(*wp));
461 wp->len_mask = len_mask;
464 /* keep all GDB-injected watchpoints in front */
466 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
468 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
470 tlb_flush_page(env, addr);
477 /* Remove a specific watchpoint. */
478 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
481 target_ulong len_mask = ~(len - 1);
484 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
485 if (addr == wp->vaddr && len_mask == wp->len_mask
486 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
487 cpu_watchpoint_remove_by_ref(env, wp);
494 /* Remove a specific watchpoint by reference. */
495 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
497 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
499 tlb_flush_page(env, watchpoint->vaddr);
504 /* Remove all matching watchpoints. */
505 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
507 CPUWatchpoint *wp, *next;
509 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
510 if (wp->flags & mask)
511 cpu_watchpoint_remove_by_ref(env, wp);
516 /* Add a breakpoint. */
517 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
518 CPUBreakpoint **breakpoint)
520 #if defined(TARGET_HAS_ICE)
523 bp = g_malloc(sizeof(*bp));
528 /* keep all GDB-injected breakpoints in front */
530 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
532 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
534 breakpoint_invalidate(env, pc);
544 /* Remove a specific breakpoint. */
545 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
547 #if defined(TARGET_HAS_ICE)
550 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
551 if (bp->pc == pc && bp->flags == flags) {
552 cpu_breakpoint_remove_by_ref(env, bp);
562 /* Remove a specific breakpoint by reference. */
563 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
565 #if defined(TARGET_HAS_ICE)
566 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
568 breakpoint_invalidate(env, breakpoint->pc);
574 /* Remove all matching breakpoints. */
575 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
577 #if defined(TARGET_HAS_ICE)
578 CPUBreakpoint *bp, *next;
580 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
581 if (bp->flags & mask)
582 cpu_breakpoint_remove_by_ref(env, bp);
587 /* enable or disable single step mode. EXCP_DEBUG is returned by the
588 CPU loop after each instruction */
589 void cpu_single_step(CPUArchState *env, int enabled)
591 #if defined(TARGET_HAS_ICE)
592 if (env->singlestep_enabled != enabled) {
593 env->singlestep_enabled = enabled;
595 kvm_update_guest_debug(env, 0);
597 /* must flush all the translated code to avoid inconsistencies */
598 /* XXX: only flush what is necessary */
605 void cpu_abort(CPUArchState *env, const char *fmt, ...)
607 CPUState *cpu = ENV_GET_CPU(env);
613 fprintf(stderr, "qemu: fatal: ");
614 vfprintf(stderr, fmt, ap);
615 fprintf(stderr, "\n");
616 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
617 if (qemu_log_enabled()) {
618 qemu_log("qemu: fatal: ");
619 qemu_log_vprintf(fmt, ap2);
621 log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP);
627 #if defined(CONFIG_USER_ONLY)
629 struct sigaction act;
630 sigfillset(&act.sa_mask);
631 act.sa_handler = SIG_DFL;
632 sigaction(SIGABRT, &act, NULL);
638 CPUArchState *cpu_copy(CPUArchState *env)
640 CPUArchState *new_env = cpu_init(env->cpu_model_str);
641 CPUArchState *next_cpu = new_env->next_cpu;
642 #if defined(TARGET_HAS_ICE)
647 memcpy(new_env, env, sizeof(CPUArchState));
649 /* Preserve chaining. */
650 new_env->next_cpu = next_cpu;
652 /* Clone all break/watchpoints.
653 Note: Once we support ptrace with hw-debug register access, make sure
654 BP_CPU break/watchpoints are handled correctly on clone. */
655 QTAILQ_INIT(&env->breakpoints);
656 QTAILQ_INIT(&env->watchpoints);
657 #if defined(TARGET_HAS_ICE)
658 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
659 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
661 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
662 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
670 #if !defined(CONFIG_USER_ONLY)
671 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
676 /* we modify the TLB cache so that the dirty bit will be set again
677 when accessing the range */
678 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
679 /* Check that we don't span multiple blocks - this breaks the
680 address comparisons below. */
681 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
682 != (end - 1) - start) {
685 cpu_tlb_reset_dirty_all(start1, length);
689 /* Note: start and end must be within the same ram block. */
690 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
695 start &= TARGET_PAGE_MASK;
696 end = TARGET_PAGE_ALIGN(end);
698 length = end - start;
701 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
704 tlb_reset_dirty_range_all(start, end, length);
708 static int cpu_physical_memory_set_dirty_tracking(int enable)
711 in_migration = enable;
715 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
716 MemoryRegionSection *section,
718 hwaddr paddr, hwaddr xlat,
720 target_ulong *address)
725 if (memory_region_is_ram(section->mr)) {
727 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
729 if (!section->readonly) {
730 iotlb |= PHYS_SECTION_NOTDIRTY;
732 iotlb |= PHYS_SECTION_ROM;
735 iotlb = section - address_space_memory.dispatch->sections;
739 /* Make accesses to pages with watchpoints go via the
740 watchpoint trap routines. */
741 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
742 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
743 /* Avoid trapping reads of pages with a write breakpoint. */
744 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
745 iotlb = PHYS_SECTION_WATCH + paddr;
746 *address |= TLB_MMIO;
754 #endif /* defined(CONFIG_USER_ONLY) */
756 #if !defined(CONFIG_USER_ONLY)
758 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
760 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
762 static uint16_t phys_section_add(MemoryRegionSection *section)
764 /* The physical section number is ORed with a page-aligned
765 * pointer to produce the iotlb entries. Thus it should
766 * never overflow into the page-aligned value.
768 assert(next_map.sections_nb < TARGET_PAGE_SIZE);
770 if (next_map.sections_nb == next_map.sections_nb_alloc) {
771 next_map.sections_nb_alloc = MAX(next_map.sections_nb_alloc * 2,
773 next_map.sections = g_renew(MemoryRegionSection, next_map.sections,
774 next_map.sections_nb_alloc);
776 next_map.sections[next_map.sections_nb] = *section;
777 memory_region_ref(section->mr);
778 return next_map.sections_nb++;
781 static void phys_section_destroy(MemoryRegion *mr)
783 memory_region_unref(mr);
786 subpage_t *subpage = container_of(mr, subpage_t, iomem);
787 memory_region_destroy(&subpage->iomem);
792 static void phys_sections_free(PhysPageMap *map)
794 while (map->sections_nb > 0) {
795 MemoryRegionSection *section = &map->sections[--map->sections_nb];
796 phys_section_destroy(section->mr);
798 g_free(map->sections);
803 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
806 hwaddr base = section->offset_within_address_space
808 MemoryRegionSection *existing = phys_page_find(d->phys_map, base >> TARGET_PAGE_BITS,
809 next_map.nodes, next_map.sections);
810 MemoryRegionSection subsection = {
811 .offset_within_address_space = base,
812 .size = int128_make64(TARGET_PAGE_SIZE),
816 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
818 if (!(existing->mr->subpage)) {
819 subpage = subpage_init(d->as, base);
820 subsection.mr = &subpage->iomem;
821 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
822 phys_section_add(&subsection));
824 subpage = container_of(existing->mr, subpage_t, iomem);
826 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
827 end = start + int128_get64(section->size) - 1;
828 subpage_register(subpage, start, end, phys_section_add(section));
832 static void register_multipage(AddressSpaceDispatch *d,
833 MemoryRegionSection *section)
835 hwaddr start_addr = section->offset_within_address_space;
836 uint16_t section_index = phys_section_add(section);
837 uint64_t num_pages = int128_get64(int128_rshift(section->size,
841 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
844 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
846 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
847 AddressSpaceDispatch *d = as->next_dispatch;
848 MemoryRegionSection now = *section, remain = *section;
849 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
851 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
852 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
853 - now.offset_within_address_space;
855 now.size = int128_min(int128_make64(left), now.size);
856 register_subpage(d, &now);
858 now.size = int128_zero();
860 while (int128_ne(remain.size, now.size)) {
861 remain.size = int128_sub(remain.size, now.size);
862 remain.offset_within_address_space += int128_get64(now.size);
863 remain.offset_within_region += int128_get64(now.size);
865 if (int128_lt(remain.size, page_size)) {
866 register_subpage(d, &now);
867 } else if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
868 now.size = page_size;
869 register_subpage(d, &now);
871 now.size = int128_and(now.size, int128_neg(page_size));
872 register_multipage(d, &now);
877 void qemu_flush_coalesced_mmio_buffer(void)
880 kvm_flush_coalesced_mmio_buffer();
883 void qemu_mutex_lock_ramlist(void)
885 qemu_mutex_lock(&ram_list.mutex);
888 void qemu_mutex_unlock_ramlist(void)
890 qemu_mutex_unlock(&ram_list.mutex);
893 #if defined(__linux__) && !defined(TARGET_S390X)
897 #define HUGETLBFS_MAGIC 0x958458f6
899 static long gethugepagesize(const char *path)
905 ret = statfs(path, &fs);
906 } while (ret != 0 && errno == EINTR);
913 if (fs.f_type != HUGETLBFS_MAGIC)
914 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
919 static void *file_ram_alloc(RAMBlock *block,
924 char *sanitized_name;
931 unsigned long hpagesize;
933 hpagesize = gethugepagesize(path);
938 if (memory < hpagesize) {
942 if (kvm_enabled() && !kvm_has_sync_mmu()) {
943 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
947 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
948 sanitized_name = g_strdup(block->mr->name);
949 for (c = sanitized_name; *c != '\0'; c++) {
954 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
956 g_free(sanitized_name);
958 fd = mkstemp(filename);
960 perror("unable to create backing store for hugepages");
967 memory = (memory+hpagesize-1) & ~(hpagesize-1);
970 * ftruncate is not supported by hugetlbfs in older
971 * hosts, so don't bother bailing out on errors.
972 * If anything goes wrong with it under other filesystems,
975 if (ftruncate(fd, memory))
979 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
980 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
981 * to sidestep this quirk.
983 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
984 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
986 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
988 if (area == MAP_FAILED) {
989 perror("file_ram_alloc: can't mmap RAM pages");
998 static ram_addr_t find_ram_offset(ram_addr_t size)
1000 RAMBlock *block, *next_block;
1001 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1003 assert(size != 0); /* it would hand out same offset multiple times */
1005 if (QTAILQ_EMPTY(&ram_list.blocks))
1008 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1009 ram_addr_t end, next = RAM_ADDR_MAX;
1011 end = block->offset + block->length;
1013 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
1014 if (next_block->offset >= end) {
1015 next = MIN(next, next_block->offset);
1018 if (next - end >= size && next - end < mingap) {
1020 mingap = next - end;
1024 if (offset == RAM_ADDR_MAX) {
1025 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1033 ram_addr_t last_ram_offset(void)
1036 ram_addr_t last = 0;
1038 QTAILQ_FOREACH(block, &ram_list.blocks, next)
1039 last = MAX(last, block->offset + block->length);
1044 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1047 QemuOpts *machine_opts;
1049 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1050 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1052 !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
1053 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1055 perror("qemu_madvise");
1056 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1057 "but dump_guest_core=off specified\n");
1062 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1064 RAMBlock *new_block, *block;
1067 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1068 if (block->offset == addr) {
1074 assert(!new_block->idstr[0]);
1077 char *id = qdev_get_dev_path(dev);
1079 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1083 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1085 /* This assumes the iothread lock is taken here too. */
1086 qemu_mutex_lock_ramlist();
1087 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1088 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1089 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1094 qemu_mutex_unlock_ramlist();
1097 static int memory_try_enable_merging(void *addr, size_t len)
1101 opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1102 if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
1103 /* disabled by the user */
1107 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1110 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1113 RAMBlock *block, *new_block;
1115 size = TARGET_PAGE_ALIGN(size);
1116 new_block = g_malloc0(sizeof(*new_block));
1118 /* This assumes the iothread lock is taken here too. */
1119 qemu_mutex_lock_ramlist();
1121 new_block->offset = find_ram_offset(size);
1123 new_block->host = host;
1124 new_block->flags |= RAM_PREALLOC_MASK;
1127 #if defined (__linux__) && !defined(TARGET_S390X)
1128 new_block->host = file_ram_alloc(new_block, size, mem_path);
1129 if (!new_block->host) {
1130 new_block->host = qemu_anon_ram_alloc(size);
1131 memory_try_enable_merging(new_block->host, size);
1134 fprintf(stderr, "-mem-path option unsupported\n");
1138 if (xen_enabled()) {
1139 xen_ram_alloc(new_block->offset, size, mr);
1140 } else if (kvm_enabled()) {
1141 /* some s390/kvm configurations have special constraints */
1142 new_block->host = kvm_ram_alloc(size);
1144 new_block->host = qemu_anon_ram_alloc(size);
1146 memory_try_enable_merging(new_block->host, size);
1149 new_block->length = size;
1151 /* Keep the list sorted from biggest to smallest block. */
1152 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1153 if (block->length < new_block->length) {
1158 QTAILQ_INSERT_BEFORE(block, new_block, next);
1160 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1162 ram_list.mru_block = NULL;
1165 qemu_mutex_unlock_ramlist();
1167 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
1168 last_ram_offset() >> TARGET_PAGE_BITS);
1169 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1170 0, size >> TARGET_PAGE_BITS);
1171 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
1173 qemu_ram_setup_dump(new_block->host, size);
1174 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1177 kvm_setup_guest_memory(new_block->host, size);
1179 return new_block->offset;
1182 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1184 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1187 void qemu_ram_free_from_ptr(ram_addr_t addr)
1191 /* This assumes the iothread lock is taken here too. */
1192 qemu_mutex_lock_ramlist();
1193 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1194 if (addr == block->offset) {
1195 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1196 ram_list.mru_block = NULL;
1202 qemu_mutex_unlock_ramlist();
1205 void qemu_ram_free(ram_addr_t addr)
1209 /* This assumes the iothread lock is taken here too. */
1210 qemu_mutex_lock_ramlist();
1211 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1212 if (addr == block->offset) {
1213 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1214 ram_list.mru_block = NULL;
1216 if (block->flags & RAM_PREALLOC_MASK) {
1218 } else if (mem_path) {
1219 #if defined (__linux__) && !defined(TARGET_S390X)
1221 munmap(block->host, block->length);
1224 qemu_anon_ram_free(block->host, block->length);
1230 if (xen_enabled()) {
1231 xen_invalidate_map_cache_entry(block->host);
1233 qemu_anon_ram_free(block->host, block->length);
1240 qemu_mutex_unlock_ramlist();
1245 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1252 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1253 offset = addr - block->offset;
1254 if (offset < block->length) {
1255 vaddr = block->host + offset;
1256 if (block->flags & RAM_PREALLOC_MASK) {
1260 munmap(vaddr, length);
1262 #if defined(__linux__) && !defined(TARGET_S390X)
1265 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1268 flags |= MAP_PRIVATE;
1270 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1271 flags, block->fd, offset);
1273 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1274 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1281 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1282 flags |= MAP_SHARED | MAP_ANONYMOUS;
1283 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
1286 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1287 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1291 if (area != vaddr) {
1292 fprintf(stderr, "Could not remap addr: "
1293 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1297 memory_try_enable_merging(vaddr, length);
1298 qemu_ram_setup_dump(vaddr, length);
1304 #endif /* !_WIN32 */
1306 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1310 /* The list is protected by the iothread lock here. */
1311 block = ram_list.mru_block;
1312 if (block && addr - block->offset < block->length) {
1315 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1316 if (addr - block->offset < block->length) {
1321 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1325 ram_list.mru_block = block;
1329 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1330 With the exception of the softmmu code in this file, this should
1331 only be used for local memory (e.g. video ram) that the device owns,
1332 and knows it isn't going to access beyond the end of the block.
1334 It should not be used for general purpose DMA.
1335 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1337 void *qemu_get_ram_ptr(ram_addr_t addr)
1339 RAMBlock *block = qemu_get_ram_block(addr);
1341 if (xen_enabled()) {
1342 /* We need to check if the requested address is in the RAM
1343 * because we don't want to map the entire memory in QEMU.
1344 * In that case just map until the end of the page.
1346 if (block->offset == 0) {
1347 return xen_map_cache(addr, 0, 0);
1348 } else if (block->host == NULL) {
1350 xen_map_cache(block->offset, block->length, 1);
1353 return block->host + (addr - block->offset);
1356 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1357 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1359 * ??? Is this still necessary?
1361 static void *qemu_safe_ram_ptr(ram_addr_t addr)
1365 /* The list is protected by the iothread lock here. */
1366 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1367 if (addr - block->offset < block->length) {
1368 if (xen_enabled()) {
1369 /* We need to check if the requested address is in the RAM
1370 * because we don't want to map the entire memory in QEMU.
1371 * In that case just map until the end of the page.
1373 if (block->offset == 0) {
1374 return xen_map_cache(addr, 0, 0);
1375 } else if (block->host == NULL) {
1377 xen_map_cache(block->offset, block->length, 1);
1380 return block->host + (addr - block->offset);
1384 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1390 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1391 * but takes a size argument */
1392 static void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
1397 if (xen_enabled()) {
1398 return xen_map_cache(addr, *size, 1);
1402 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1403 if (addr - block->offset < block->length) {
1404 if (addr - block->offset + *size > block->length)
1405 *size = block->length - addr + block->offset;
1406 return block->host + (addr - block->offset);
1410 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1415 /* Some of the softmmu routines need to translate from a host pointer
1416 (typically a TLB entry) back to a ram offset. */
1417 MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1420 uint8_t *host = ptr;
1422 if (xen_enabled()) {
1423 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1424 return qemu_get_ram_block(*ram_addr)->mr;
1427 block = ram_list.mru_block;
1428 if (block && block->host && host - block->host < block->length) {
1432 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1433 /* This case append when the block is not mapped. */
1434 if (block->host == NULL) {
1437 if (host - block->host < block->length) {
1445 *ram_addr = block->offset + (host - block->host);
1449 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1450 uint64_t val, unsigned size)
1453 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1454 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1455 tb_invalidate_phys_page_fast(ram_addr, size);
1456 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1460 stb_p(qemu_get_ram_ptr(ram_addr), val);
1463 stw_p(qemu_get_ram_ptr(ram_addr), val);
1466 stl_p(qemu_get_ram_ptr(ram_addr), val);
1471 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1472 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
1473 /* we remove the notdirty callback only if the code has been
1475 if (dirty_flags == 0xff)
1476 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
1479 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1480 unsigned size, bool is_write)
1485 static const MemoryRegionOps notdirty_mem_ops = {
1486 .write = notdirty_mem_write,
1487 .valid.accepts = notdirty_mem_accepts,
1488 .endianness = DEVICE_NATIVE_ENDIAN,
1491 /* Generate a debug exception if a watchpoint has been hit. */
1492 static void check_watchpoint(int offset, int len_mask, int flags)
1494 CPUArchState *env = cpu_single_env;
1495 target_ulong pc, cs_base;
1500 if (env->watchpoint_hit) {
1501 /* We re-entered the check after replacing the TB. Now raise
1502 * the debug interrupt so that is will trigger after the
1503 * current instruction. */
1504 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
1507 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1508 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1509 if ((vaddr == (wp->vaddr & len_mask) ||
1510 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1511 wp->flags |= BP_WATCHPOINT_HIT;
1512 if (!env->watchpoint_hit) {
1513 env->watchpoint_hit = wp;
1514 tb_check_watchpoint(env);
1515 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1516 env->exception_index = EXCP_DEBUG;
1519 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1520 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1521 cpu_resume_from_signal(env, NULL);
1525 wp->flags &= ~BP_WATCHPOINT_HIT;
1530 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1531 so these check for a hit then pass through to the normal out-of-line
1533 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1536 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1538 case 1: return ldub_phys(addr);
1539 case 2: return lduw_phys(addr);
1540 case 4: return ldl_phys(addr);
1545 static void watch_mem_write(void *opaque, hwaddr addr,
1546 uint64_t val, unsigned size)
1548 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1551 stb_phys(addr, val);
1554 stw_phys(addr, val);
1557 stl_phys(addr, val);
1563 static const MemoryRegionOps watch_mem_ops = {
1564 .read = watch_mem_read,
1565 .write = watch_mem_write,
1566 .endianness = DEVICE_NATIVE_ENDIAN,
1569 static uint64_t subpage_read(void *opaque, hwaddr addr,
1572 subpage_t *subpage = opaque;
1575 #if defined(DEBUG_SUBPAGE)
1576 printf("%s: subpage %p len %d addr " TARGET_FMT_plx "\n", __func__,
1577 subpage, len, addr);
1579 address_space_read(subpage->as, addr + subpage->base, buf, len);
1592 static void subpage_write(void *opaque, hwaddr addr,
1593 uint64_t value, unsigned len)
1595 subpage_t *subpage = opaque;
1598 #if defined(DEBUG_SUBPAGE)
1599 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1600 " value %"PRIx64"\n",
1601 __func__, subpage, len, addr, value);
1616 address_space_write(subpage->as, addr + subpage->base, buf, len);
1619 static bool subpage_accepts(void *opaque, hwaddr addr,
1620 unsigned size, bool is_write)
1622 subpage_t *subpage = opaque;
1623 #if defined(DEBUG_SUBPAGE)
1624 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx "\n",
1625 __func__, subpage, is_write ? 'w' : 'r', len, addr);
1628 return address_space_access_valid(subpage->as, addr + subpage->base,
1632 static const MemoryRegionOps subpage_ops = {
1633 .read = subpage_read,
1634 .write = subpage_write,
1635 .valid.accepts = subpage_accepts,
1636 .endianness = DEVICE_NATIVE_ENDIAN,
1639 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1644 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1646 idx = SUBPAGE_IDX(start);
1647 eidx = SUBPAGE_IDX(end);
1648 #if defined(DEBUG_SUBPAGE)
1649 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
1650 mmio, start, end, idx, eidx, memory);
1652 for (; idx <= eidx; idx++) {
1653 mmio->sub_section[idx] = section;
1659 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
1663 mmio = g_malloc0(sizeof(subpage_t));
1667 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
1668 "subpage", TARGET_PAGE_SIZE);
1669 mmio->iomem.subpage = true;
1670 #if defined(DEBUG_SUBPAGE)
1671 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1672 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
1674 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
1679 static uint16_t dummy_section(MemoryRegion *mr)
1681 MemoryRegionSection section = {
1683 .offset_within_address_space = 0,
1684 .offset_within_region = 0,
1685 .size = int128_2_64(),
1688 return phys_section_add(§ion);
1691 MemoryRegion *iotlb_to_region(hwaddr index)
1693 return address_space_memory.dispatch->sections[index & ~TARGET_PAGE_MASK].mr;
1696 static void io_mem_init(void)
1698 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1699 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1700 "unassigned", UINT64_MAX);
1701 memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL,
1702 "notdirty", UINT64_MAX);
1703 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1704 "watch", UINT64_MAX);
1707 static void mem_begin(MemoryListener *listener)
1709 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1710 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1712 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1714 as->next_dispatch = d;
1717 static void mem_commit(MemoryListener *listener)
1719 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1720 AddressSpaceDispatch *cur = as->dispatch;
1721 AddressSpaceDispatch *next = as->next_dispatch;
1723 next->nodes = next_map.nodes;
1724 next->sections = next_map.sections;
1726 as->dispatch = next;
1730 static void core_begin(MemoryListener *listener)
1734 prev_map = g_new(PhysPageMap, 1);
1735 *prev_map = next_map;
1737 memset(&next_map, 0, sizeof(next_map));
1738 n = dummy_section(&io_mem_unassigned);
1739 assert(n == PHYS_SECTION_UNASSIGNED);
1740 n = dummy_section(&io_mem_notdirty);
1741 assert(n == PHYS_SECTION_NOTDIRTY);
1742 n = dummy_section(&io_mem_rom);
1743 assert(n == PHYS_SECTION_ROM);
1744 n = dummy_section(&io_mem_watch);
1745 assert(n == PHYS_SECTION_WATCH);
1748 /* This listener's commit run after the other AddressSpaceDispatch listeners'.
1749 * All AddressSpaceDispatch instances have switched to the next map.
1751 static void core_commit(MemoryListener *listener)
1753 phys_sections_free(prev_map);
1756 static void tcg_commit(MemoryListener *listener)
1760 /* since each CPU stores ram addresses in its TLB cache, we must
1761 reset the modified entries */
1763 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1768 static void core_log_global_start(MemoryListener *listener)
1770 cpu_physical_memory_set_dirty_tracking(1);
1773 static void core_log_global_stop(MemoryListener *listener)
1775 cpu_physical_memory_set_dirty_tracking(0);
1778 static MemoryListener core_memory_listener = {
1779 .begin = core_begin,
1780 .commit = core_commit,
1781 .log_global_start = core_log_global_start,
1782 .log_global_stop = core_log_global_stop,
1786 static MemoryListener tcg_memory_listener = {
1787 .commit = tcg_commit,
1790 void address_space_init_dispatch(AddressSpace *as)
1792 as->dispatch = NULL;
1793 as->dispatch_listener = (MemoryListener) {
1795 .commit = mem_commit,
1796 .region_add = mem_add,
1797 .region_nop = mem_add,
1800 memory_listener_register(&as->dispatch_listener, as);
1803 void address_space_destroy_dispatch(AddressSpace *as)
1805 AddressSpaceDispatch *d = as->dispatch;
1807 memory_listener_unregister(&as->dispatch_listener);
1809 as->dispatch = NULL;
1812 static void memory_map_init(void)
1814 system_memory = g_malloc(sizeof(*system_memory));
1815 memory_region_init(system_memory, NULL, "system", INT64_MAX);
1816 address_space_init(&address_space_memory, system_memory, "memory");
1818 system_io = g_malloc(sizeof(*system_io));
1819 memory_region_init(system_io, NULL, "io", 65536);
1820 address_space_init(&address_space_io, system_io, "I/O");
1822 memory_listener_register(&core_memory_listener, &address_space_memory);
1823 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1826 MemoryRegion *get_system_memory(void)
1828 return system_memory;
1831 MemoryRegion *get_system_io(void)
1836 #endif /* !defined(CONFIG_USER_ONLY) */
1838 /* physical memory access (slow version, mainly for debug) */
1839 #if defined(CONFIG_USER_ONLY)
1840 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
1841 uint8_t *buf, int len, int is_write)
1848 page = addr & TARGET_PAGE_MASK;
1849 l = (page + TARGET_PAGE_SIZE) - addr;
1852 flags = page_get_flags(page);
1853 if (!(flags & PAGE_VALID))
1856 if (!(flags & PAGE_WRITE))
1858 /* XXX: this code should not depend on lock_user */
1859 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1862 unlock_user(p, addr, l);
1864 if (!(flags & PAGE_READ))
1866 /* XXX: this code should not depend on lock_user */
1867 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1870 unlock_user(p, addr, 0);
1881 static void invalidate_and_set_dirty(hwaddr addr,
1884 if (!cpu_physical_memory_is_dirty(addr)) {
1885 /* invalidate code */
1886 tb_invalidate_phys_page_range(addr, addr + length, 0);
1888 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1890 xen_modified_memory(addr, length);
1893 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1895 if (memory_region_is_ram(mr)) {
1896 return !(is_write && mr->readonly);
1898 if (memory_region_is_romd(mr)) {
1905 static inline int memory_access_size(MemoryRegion *mr, int l, hwaddr addr)
1907 if (l >= 4 && (((addr & 3) == 0 || mr->ops->impl.unaligned))) {
1910 if (l >= 2 && (((addr & 1) == 0) || mr->ops->impl.unaligned)) {
1916 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1917 int len, bool is_write)
1928 mr = address_space_translate(as, addr, &addr1, &l, is_write);
1931 if (!memory_access_is_direct(mr, is_write)) {
1932 l = memory_access_size(mr, l, addr1);
1933 /* XXX: could force cpu_single_env to NULL to avoid
1936 /* 32 bit write access */
1938 error |= io_mem_write(mr, addr1, val, 4);
1939 } else if (l == 2) {
1940 /* 16 bit write access */
1942 error |= io_mem_write(mr, addr1, val, 2);
1944 /* 8 bit write access */
1946 error |= io_mem_write(mr, addr1, val, 1);
1949 addr1 += memory_region_get_ram_addr(mr);
1951 ptr = qemu_get_ram_ptr(addr1);
1952 memcpy(ptr, buf, l);
1953 invalidate_and_set_dirty(addr1, l);
1956 if (!memory_access_is_direct(mr, is_write)) {
1958 l = memory_access_size(mr, l, addr1);
1960 /* 32 bit read access */
1961 error |= io_mem_read(mr, addr1, &val, 4);
1963 } else if (l == 2) {
1964 /* 16 bit read access */
1965 error |= io_mem_read(mr, addr1, &val, 2);
1968 /* 8 bit read access */
1969 error |= io_mem_read(mr, addr1, &val, 1);
1974 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
1975 memcpy(buf, ptr, l);
1986 bool address_space_write(AddressSpace *as, hwaddr addr,
1987 const uint8_t *buf, int len)
1989 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
1992 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
1994 return address_space_rw(as, addr, buf, len, false);
1998 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
1999 int len, int is_write)
2001 address_space_rw(&address_space_memory, addr, buf, len, is_write);
2004 /* used for ROM loading : can write in RAM and ROM */
2005 void cpu_physical_memory_write_rom(hwaddr addr,
2006 const uint8_t *buf, int len)
2015 mr = address_space_translate(&address_space_memory,
2016 addr, &addr1, &l, true);
2018 if (!(memory_region_is_ram(mr) ||
2019 memory_region_is_romd(mr))) {
2022 addr1 += memory_region_get_ram_addr(mr);
2024 ptr = qemu_get_ram_ptr(addr1);
2025 memcpy(ptr, buf, l);
2026 invalidate_and_set_dirty(addr1, l);
2041 static BounceBuffer bounce;
2043 typedef struct MapClient {
2045 void (*callback)(void *opaque);
2046 QLIST_ENTRY(MapClient) link;
2049 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2050 = QLIST_HEAD_INITIALIZER(map_client_list);
2052 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2054 MapClient *client = g_malloc(sizeof(*client));
2056 client->opaque = opaque;
2057 client->callback = callback;
2058 QLIST_INSERT_HEAD(&map_client_list, client, link);
2062 static void cpu_unregister_map_client(void *_client)
2064 MapClient *client = (MapClient *)_client;
2066 QLIST_REMOVE(client, link);
2070 static void cpu_notify_map_clients(void)
2074 while (!QLIST_EMPTY(&map_client_list)) {
2075 client = QLIST_FIRST(&map_client_list);
2076 client->callback(client->opaque);
2077 cpu_unregister_map_client(client);
2081 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2088 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2089 if (!memory_access_is_direct(mr, is_write)) {
2090 l = memory_access_size(mr, l, addr);
2091 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2102 /* Map a physical memory region into a host virtual address.
2103 * May map a subset of the requested range, given by and returned in *plen.
2104 * May return NULL if resources needed to perform the mapping are exhausted.
2105 * Use only for reads OR writes - not for read-modify-write operations.
2106 * Use cpu_register_map_client() to know when retrying the map operation is
2107 * likely to succeed.
2109 void *address_space_map(AddressSpace *as,
2116 hwaddr l, xlat, base;
2117 MemoryRegion *mr, *this_mr;
2125 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2126 if (!memory_access_is_direct(mr, is_write)) {
2127 if (bounce.buffer) {
2130 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2134 memory_region_ref(mr);
2137 address_space_read(as, addr, bounce.buffer, l);
2141 return bounce.buffer;
2145 raddr = memory_region_get_ram_addr(mr);
2156 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2157 if (this_mr != mr || xlat != base + done) {
2162 memory_region_ref(mr);
2164 return qemu_ram_ptr_length(raddr + base, plen);
2167 /* Unmaps a memory region previously mapped by address_space_map().
2168 * Will also mark the memory as dirty if is_write == 1. access_len gives
2169 * the amount of memory that was actually read or written by the caller.
2171 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2172 int is_write, hwaddr access_len)
2174 if (buffer != bounce.buffer) {
2178 mr = qemu_ram_addr_from_host(buffer, &addr1);
2181 while (access_len) {
2183 l = TARGET_PAGE_SIZE;
2186 invalidate_and_set_dirty(addr1, l);
2191 if (xen_enabled()) {
2192 xen_invalidate_map_cache_entry(buffer);
2194 memory_region_unref(mr);
2198 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2200 qemu_vfree(bounce.buffer);
2201 bounce.buffer = NULL;
2202 memory_region_unref(bounce.mr);
2203 cpu_notify_map_clients();
2206 void *cpu_physical_memory_map(hwaddr addr,
2210 return address_space_map(&address_space_memory, addr, plen, is_write);
2213 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2214 int is_write, hwaddr access_len)
2216 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2219 /* warning: addr must be aligned */
2220 static inline uint32_t ldl_phys_internal(hwaddr addr,
2221 enum device_endian endian)
2229 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2231 if (l < 4 || !memory_access_is_direct(mr, false)) {
2233 io_mem_read(mr, addr1, &val, 4);
2234 #if defined(TARGET_WORDS_BIGENDIAN)
2235 if (endian == DEVICE_LITTLE_ENDIAN) {
2239 if (endian == DEVICE_BIG_ENDIAN) {
2245 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2249 case DEVICE_LITTLE_ENDIAN:
2250 val = ldl_le_p(ptr);
2252 case DEVICE_BIG_ENDIAN:
2253 val = ldl_be_p(ptr);
2263 uint32_t ldl_phys(hwaddr addr)
2265 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2268 uint32_t ldl_le_phys(hwaddr addr)
2270 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2273 uint32_t ldl_be_phys(hwaddr addr)
2275 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2278 /* warning: addr must be aligned */
2279 static inline uint64_t ldq_phys_internal(hwaddr addr,
2280 enum device_endian endian)
2288 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2290 if (l < 8 || !memory_access_is_direct(mr, false)) {
2292 io_mem_read(mr, addr1, &val, 8);
2293 #if defined(TARGET_WORDS_BIGENDIAN)
2294 if (endian == DEVICE_LITTLE_ENDIAN) {
2298 if (endian == DEVICE_BIG_ENDIAN) {
2304 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2308 case DEVICE_LITTLE_ENDIAN:
2309 val = ldq_le_p(ptr);
2311 case DEVICE_BIG_ENDIAN:
2312 val = ldq_be_p(ptr);
2322 uint64_t ldq_phys(hwaddr addr)
2324 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2327 uint64_t ldq_le_phys(hwaddr addr)
2329 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2332 uint64_t ldq_be_phys(hwaddr addr)
2334 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2338 uint32_t ldub_phys(hwaddr addr)
2341 cpu_physical_memory_read(addr, &val, 1);
2345 /* warning: addr must be aligned */
2346 static inline uint32_t lduw_phys_internal(hwaddr addr,
2347 enum device_endian endian)
2355 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2357 if (l < 2 || !memory_access_is_direct(mr, false)) {
2359 io_mem_read(mr, addr1, &val, 2);
2360 #if defined(TARGET_WORDS_BIGENDIAN)
2361 if (endian == DEVICE_LITTLE_ENDIAN) {
2365 if (endian == DEVICE_BIG_ENDIAN) {
2371 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2375 case DEVICE_LITTLE_ENDIAN:
2376 val = lduw_le_p(ptr);
2378 case DEVICE_BIG_ENDIAN:
2379 val = lduw_be_p(ptr);
2389 uint32_t lduw_phys(hwaddr addr)
2391 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2394 uint32_t lduw_le_phys(hwaddr addr)
2396 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2399 uint32_t lduw_be_phys(hwaddr addr)
2401 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2404 /* warning: addr must be aligned. The ram page is not masked as dirty
2405 and the code inside is not invalidated. It is useful if the dirty
2406 bits are used to track modified PTEs */
2407 void stl_phys_notdirty(hwaddr addr, uint32_t val)
2414 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2416 if (l < 4 || !memory_access_is_direct(mr, true)) {
2417 io_mem_write(mr, addr1, val, 4);
2419 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2420 ptr = qemu_get_ram_ptr(addr1);
2423 if (unlikely(in_migration)) {
2424 if (!cpu_physical_memory_is_dirty(addr1)) {
2425 /* invalidate code */
2426 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2428 cpu_physical_memory_set_dirty_flags(
2429 addr1, (0xff & ~CODE_DIRTY_FLAG));
2435 /* warning: addr must be aligned */
2436 static inline void stl_phys_internal(hwaddr addr, uint32_t val,
2437 enum device_endian endian)
2444 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2446 if (l < 4 || !memory_access_is_direct(mr, true)) {
2447 #if defined(TARGET_WORDS_BIGENDIAN)
2448 if (endian == DEVICE_LITTLE_ENDIAN) {
2452 if (endian == DEVICE_BIG_ENDIAN) {
2456 io_mem_write(mr, addr1, val, 4);
2459 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2460 ptr = qemu_get_ram_ptr(addr1);
2462 case DEVICE_LITTLE_ENDIAN:
2465 case DEVICE_BIG_ENDIAN:
2472 invalidate_and_set_dirty(addr1, 4);
2476 void stl_phys(hwaddr addr, uint32_t val)
2478 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2481 void stl_le_phys(hwaddr addr, uint32_t val)
2483 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2486 void stl_be_phys(hwaddr addr, uint32_t val)
2488 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2492 void stb_phys(hwaddr addr, uint32_t val)
2495 cpu_physical_memory_write(addr, &v, 1);
2498 /* warning: addr must be aligned */
2499 static inline void stw_phys_internal(hwaddr addr, uint32_t val,
2500 enum device_endian endian)
2507 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2509 if (l < 2 || !memory_access_is_direct(mr, true)) {
2510 #if defined(TARGET_WORDS_BIGENDIAN)
2511 if (endian == DEVICE_LITTLE_ENDIAN) {
2515 if (endian == DEVICE_BIG_ENDIAN) {
2519 io_mem_write(mr, addr1, val, 2);
2522 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2523 ptr = qemu_get_ram_ptr(addr1);
2525 case DEVICE_LITTLE_ENDIAN:
2528 case DEVICE_BIG_ENDIAN:
2535 invalidate_and_set_dirty(addr1, 2);
2539 void stw_phys(hwaddr addr, uint32_t val)
2541 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2544 void stw_le_phys(hwaddr addr, uint32_t val)
2546 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2549 void stw_be_phys(hwaddr addr, uint32_t val)
2551 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2555 void stq_phys(hwaddr addr, uint64_t val)
2558 cpu_physical_memory_write(addr, &val, 8);
2561 void stq_le_phys(hwaddr addr, uint64_t val)
2563 val = cpu_to_le64(val);
2564 cpu_physical_memory_write(addr, &val, 8);
2567 void stq_be_phys(hwaddr addr, uint64_t val)
2569 val = cpu_to_be64(val);
2570 cpu_physical_memory_write(addr, &val, 8);
2573 /* virtual memory access for debug (includes writing to ROM) */
2574 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
2575 uint8_t *buf, int len, int is_write)
2582 page = addr & TARGET_PAGE_MASK;
2583 phys_addr = cpu_get_phys_page_debug(env, page);
2584 /* if no physical page mapped, return an error */
2585 if (phys_addr == -1)
2587 l = (page + TARGET_PAGE_SIZE) - addr;
2590 phys_addr += (addr & ~TARGET_PAGE_MASK);
2592 cpu_physical_memory_write_rom(phys_addr, buf, l);
2594 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
2603 #if !defined(CONFIG_USER_ONLY)
2606 * A helper function for the _utterly broken_ virtio device model to find out if
2607 * it's running on a big endian machine. Don't do this at home kids!
2609 bool virtio_is_big_endian(void);
2610 bool virtio_is_big_endian(void)
2612 #if defined(TARGET_WORDS_BIGENDIAN)
2621 #ifndef CONFIG_USER_ONLY
2622 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2627 mr = address_space_translate(&address_space_memory,
2628 phys_addr, &phys_addr, &l, false);
2630 return !(memory_region_is_ram(mr) ||
2631 memory_region_is_romd(mr));
2634 void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2638 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2639 func(block->host, block->offset, block->length, opaque);