4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include <sys/types.h>
27 #include "qemu-common.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "hw/xen/xen.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "exec/memory.h"
38 #include "sysemu/dma.h"
39 #include "exec/address-spaces.h"
40 #if defined(CONFIG_USER_ONLY)
42 #else /* !CONFIG_USER_ONLY */
43 #include "sysemu/xen-mapcache.h"
46 #include "exec/cpu-all.h"
48 #include "exec/cputlb.h"
49 #include "translate-all.h"
51 #include "exec/memory-internal.h"
53 //#define DEBUG_SUBPAGE
55 #if !defined(CONFIG_USER_ONLY)
57 static int in_migration;
59 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
61 static MemoryRegion *system_memory;
62 static MemoryRegion *system_io;
64 AddressSpace address_space_io;
65 AddressSpace address_space_memory;
67 MemoryRegion io_mem_rom, io_mem_notdirty;
68 static MemoryRegion io_mem_unassigned;
72 CPUArchState *first_cpu;
73 /* current CPU in the current thread. It is only valid inside
75 DEFINE_TLS(CPUState *, current_cpu);
76 /* 0 = Do not count executed instructions.
77 1 = Precise instruction counting.
78 2 = Adaptive rate instruction counting. */
81 #if !defined(CONFIG_USER_ONLY)
83 typedef struct PhysPageEntry PhysPageEntry;
85 struct PhysPageEntry {
87 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
91 typedef PhysPageEntry Node[L2_SIZE];
93 struct AddressSpaceDispatch {
94 /* This is a multi-level map on the physical address space.
95 * The bottom level has pointers to MemoryRegionSections.
97 PhysPageEntry phys_map;
99 MemoryRegionSection *sections;
103 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
104 typedef struct subpage_t {
108 uint16_t sub_section[TARGET_PAGE_SIZE];
111 #define PHYS_SECTION_UNASSIGNED 0
112 #define PHYS_SECTION_NOTDIRTY 1
113 #define PHYS_SECTION_ROM 2
114 #define PHYS_SECTION_WATCH 3
116 typedef struct PhysPageMap {
117 unsigned sections_nb;
118 unsigned sections_nb_alloc;
120 unsigned nodes_nb_alloc;
122 MemoryRegionSection *sections;
125 static PhysPageMap *prev_map;
126 static PhysPageMap next_map;
128 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
130 static void io_mem_init(void);
131 static void memory_map_init(void);
132 static void *qemu_safe_ram_ptr(ram_addr_t addr);
134 static MemoryRegion io_mem_watch;
137 #if !defined(CONFIG_USER_ONLY)
139 static void phys_map_node_reserve(unsigned nodes)
141 if (next_map.nodes_nb + nodes > next_map.nodes_nb_alloc) {
142 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc * 2,
144 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc,
145 next_map.nodes_nb + nodes);
146 next_map.nodes = g_renew(Node, next_map.nodes,
147 next_map.nodes_nb_alloc);
151 static uint16_t phys_map_node_alloc(void)
156 ret = next_map.nodes_nb++;
157 assert(ret != PHYS_MAP_NODE_NIL);
158 assert(ret != next_map.nodes_nb_alloc);
159 for (i = 0; i < L2_SIZE; ++i) {
160 next_map.nodes[ret][i].is_leaf = 0;
161 next_map.nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
166 static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
167 hwaddr *nb, uint16_t leaf,
172 hwaddr step = (hwaddr)1 << (level * L2_BITS);
174 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
175 lp->ptr = phys_map_node_alloc();
176 p = next_map.nodes[lp->ptr];
178 for (i = 0; i < L2_SIZE; i++) {
180 p[i].ptr = PHYS_SECTION_UNASSIGNED;
184 p = next_map.nodes[lp->ptr];
186 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
188 while (*nb && lp < &p[L2_SIZE]) {
189 if ((*index & (step - 1)) == 0 && *nb >= step) {
195 phys_page_set_level(lp, index, nb, leaf, level - 1);
201 static void phys_page_set(AddressSpaceDispatch *d,
202 hwaddr index, hwaddr nb,
205 /* Wildly overreserve - it doesn't matter much. */
206 phys_map_node_reserve(3 * P_L2_LEVELS);
208 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
211 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr index,
212 Node *nodes, MemoryRegionSection *sections)
217 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
218 if (lp.ptr == PHYS_MAP_NODE_NIL) {
219 return §ions[PHYS_SECTION_UNASSIGNED];
222 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
224 return §ions[lp.ptr];
227 bool memory_region_is_unassigned(MemoryRegion *mr)
229 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
230 && mr != &io_mem_watch;
233 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
235 bool resolve_subpage)
237 MemoryRegionSection *section;
240 section = phys_page_find(d->phys_map, addr >> TARGET_PAGE_BITS,
241 d->nodes, d->sections);
242 if (resolve_subpage && section->mr->subpage) {
243 subpage = container_of(section->mr, subpage_t, iomem);
244 section = &d->sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
249 static MemoryRegionSection *
250 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
251 hwaddr *plen, bool resolve_subpage)
253 MemoryRegionSection *section;
256 section = address_space_lookup_region(d, addr, resolve_subpage);
257 /* Compute offset within MemoryRegionSection */
258 addr -= section->offset_within_address_space;
260 /* Compute offset within MemoryRegion */
261 *xlat = addr + section->offset_within_region;
263 diff = int128_sub(section->mr->size, int128_make64(addr));
264 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
268 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
269 hwaddr *xlat, hwaddr *plen,
273 MemoryRegionSection *section;
278 section = address_space_translate_internal(as->dispatch, addr, &addr, plen, true);
281 if (!mr->iommu_ops) {
285 iotlb = mr->iommu_ops->translate(mr, addr);
286 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
287 | (addr & iotlb.addr_mask));
288 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
289 if (!(iotlb.perm & (1 << is_write))) {
290 mr = &io_mem_unassigned;
294 as = iotlb.target_as;
302 MemoryRegionSection *
303 address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
306 MemoryRegionSection *section;
307 section = address_space_translate_internal(as->dispatch, addr, xlat, plen, false);
309 assert(!section->mr->iommu_ops);
314 void cpu_exec_init_all(void)
316 #if !defined(CONFIG_USER_ONLY)
317 qemu_mutex_init(&ram_list.mutex);
323 #if !defined(CONFIG_USER_ONLY)
325 static int cpu_common_post_load(void *opaque, int version_id)
327 CPUState *cpu = opaque;
329 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
330 version_id is increased. */
331 cpu->interrupt_request &= ~0x01;
332 tlb_flush(cpu->env_ptr, 1);
337 const VMStateDescription vmstate_cpu_common = {
338 .name = "cpu_common",
340 .minimum_version_id = 1,
341 .minimum_version_id_old = 1,
342 .post_load = cpu_common_post_load,
343 .fields = (VMStateField []) {
344 VMSTATE_UINT32(halted, CPUState),
345 VMSTATE_UINT32(interrupt_request, CPUState),
346 VMSTATE_END_OF_LIST()
352 CPUState *qemu_get_cpu(int index)
354 CPUArchState *env = first_cpu;
355 CPUState *cpu = NULL;
358 cpu = ENV_GET_CPU(env);
359 if (cpu->cpu_index == index) {
365 return env ? cpu : NULL;
368 void qemu_for_each_cpu(void (*func)(CPUState *cpu, void *data), void *data)
370 CPUArchState *env = first_cpu;
373 func(ENV_GET_CPU(env), data);
378 void cpu_exec_init(CPUArchState *env)
380 CPUState *cpu = ENV_GET_CPU(env);
381 CPUClass *cc = CPU_GET_CLASS(cpu);
385 #if defined(CONFIG_USER_ONLY)
388 env->next_cpu = NULL;
391 while (*penv != NULL) {
392 penv = &(*penv)->next_cpu;
395 cpu->cpu_index = cpu_index;
397 QTAILQ_INIT(&env->breakpoints);
398 QTAILQ_INIT(&env->watchpoints);
399 #ifndef CONFIG_USER_ONLY
400 cpu->thread_id = qemu_get_thread_id();
403 #if defined(CONFIG_USER_ONLY)
406 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
407 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
408 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
409 cpu_save, cpu_load, env);
410 assert(cc->vmsd == NULL);
412 if (cc->vmsd != NULL) {
413 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
417 #if defined(TARGET_HAS_ICE)
418 #if defined(CONFIG_USER_ONLY)
419 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
421 tb_invalidate_phys_page_range(pc, pc + 1, 0);
424 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
426 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
427 (pc & ~TARGET_PAGE_MASK));
430 #endif /* TARGET_HAS_ICE */
432 #if defined(CONFIG_USER_ONLY)
433 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
438 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
439 int flags, CPUWatchpoint **watchpoint)
444 /* Add a watchpoint. */
445 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
446 int flags, CPUWatchpoint **watchpoint)
448 target_ulong len_mask = ~(len - 1);
451 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
452 if ((len & (len - 1)) || (addr & ~len_mask) ||
453 len == 0 || len > TARGET_PAGE_SIZE) {
454 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
455 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
458 wp = g_malloc(sizeof(*wp));
461 wp->len_mask = len_mask;
464 /* keep all GDB-injected watchpoints in front */
466 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
468 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
470 tlb_flush_page(env, addr);
477 /* Remove a specific watchpoint. */
478 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
481 target_ulong len_mask = ~(len - 1);
484 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
485 if (addr == wp->vaddr && len_mask == wp->len_mask
486 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
487 cpu_watchpoint_remove_by_ref(env, wp);
494 /* Remove a specific watchpoint by reference. */
495 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
497 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
499 tlb_flush_page(env, watchpoint->vaddr);
504 /* Remove all matching watchpoints. */
505 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
507 CPUWatchpoint *wp, *next;
509 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
510 if (wp->flags & mask)
511 cpu_watchpoint_remove_by_ref(env, wp);
516 /* Add a breakpoint. */
517 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
518 CPUBreakpoint **breakpoint)
520 #if defined(TARGET_HAS_ICE)
523 bp = g_malloc(sizeof(*bp));
528 /* keep all GDB-injected breakpoints in front */
530 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
532 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
534 breakpoint_invalidate(env, pc);
544 /* Remove a specific breakpoint. */
545 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
547 #if defined(TARGET_HAS_ICE)
550 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
551 if (bp->pc == pc && bp->flags == flags) {
552 cpu_breakpoint_remove_by_ref(env, bp);
562 /* Remove a specific breakpoint by reference. */
563 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
565 #if defined(TARGET_HAS_ICE)
566 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
568 breakpoint_invalidate(env, breakpoint->pc);
574 /* Remove all matching breakpoints. */
575 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
577 #if defined(TARGET_HAS_ICE)
578 CPUBreakpoint *bp, *next;
580 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
581 if (bp->flags & mask)
582 cpu_breakpoint_remove_by_ref(env, bp);
587 /* enable or disable single step mode. EXCP_DEBUG is returned by the
588 CPU loop after each instruction */
589 void cpu_single_step(CPUArchState *env, int enabled)
591 #if defined(TARGET_HAS_ICE)
592 if (env->singlestep_enabled != enabled) {
593 env->singlestep_enabled = enabled;
595 kvm_update_guest_debug(env, 0);
597 /* must flush all the translated code to avoid inconsistencies */
598 /* XXX: only flush what is necessary */
605 void cpu_abort(CPUArchState *env, const char *fmt, ...)
607 CPUState *cpu = ENV_GET_CPU(env);
613 fprintf(stderr, "qemu: fatal: ");
614 vfprintf(stderr, fmt, ap);
615 fprintf(stderr, "\n");
616 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
617 if (qemu_log_enabled()) {
618 qemu_log("qemu: fatal: ");
619 qemu_log_vprintf(fmt, ap2);
621 log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP);
627 #if defined(CONFIG_USER_ONLY)
629 struct sigaction act;
630 sigfillset(&act.sa_mask);
631 act.sa_handler = SIG_DFL;
632 sigaction(SIGABRT, &act, NULL);
638 CPUArchState *cpu_copy(CPUArchState *env)
640 CPUArchState *new_env = cpu_init(env->cpu_model_str);
641 CPUArchState *next_cpu = new_env->next_cpu;
642 #if defined(TARGET_HAS_ICE)
647 memcpy(new_env, env, sizeof(CPUArchState));
649 /* Preserve chaining. */
650 new_env->next_cpu = next_cpu;
652 /* Clone all break/watchpoints.
653 Note: Once we support ptrace with hw-debug register access, make sure
654 BP_CPU break/watchpoints are handled correctly on clone. */
655 QTAILQ_INIT(&env->breakpoints);
656 QTAILQ_INIT(&env->watchpoints);
657 #if defined(TARGET_HAS_ICE)
658 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
659 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
661 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
662 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
670 #if !defined(CONFIG_USER_ONLY)
671 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
676 /* we modify the TLB cache so that the dirty bit will be set again
677 when accessing the range */
678 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
679 /* Check that we don't span multiple blocks - this breaks the
680 address comparisons below. */
681 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
682 != (end - 1) - start) {
685 cpu_tlb_reset_dirty_all(start1, length);
689 /* Note: start and end must be within the same ram block. */
690 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
695 start &= TARGET_PAGE_MASK;
696 end = TARGET_PAGE_ALIGN(end);
698 length = end - start;
701 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
704 tlb_reset_dirty_range_all(start, end, length);
708 static int cpu_physical_memory_set_dirty_tracking(int enable)
711 in_migration = enable;
715 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
716 MemoryRegionSection *section,
718 hwaddr paddr, hwaddr xlat,
720 target_ulong *address)
725 if (memory_region_is_ram(section->mr)) {
727 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
729 if (!section->readonly) {
730 iotlb |= PHYS_SECTION_NOTDIRTY;
732 iotlb |= PHYS_SECTION_ROM;
735 iotlb = section - address_space_memory.dispatch->sections;
739 /* Make accesses to pages with watchpoints go via the
740 watchpoint trap routines. */
741 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
742 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
743 /* Avoid trapping reads of pages with a write breakpoint. */
744 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
745 iotlb = PHYS_SECTION_WATCH + paddr;
746 *address |= TLB_MMIO;
754 #endif /* defined(CONFIG_USER_ONLY) */
756 #if !defined(CONFIG_USER_ONLY)
758 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
760 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
762 static uint16_t phys_section_add(MemoryRegionSection *section)
764 /* The physical section number is ORed with a page-aligned
765 * pointer to produce the iotlb entries. Thus it should
766 * never overflow into the page-aligned value.
768 assert(next_map.sections_nb < TARGET_PAGE_SIZE);
770 if (next_map.sections_nb == next_map.sections_nb_alloc) {
771 next_map.sections_nb_alloc = MAX(next_map.sections_nb_alloc * 2,
773 next_map.sections = g_renew(MemoryRegionSection, next_map.sections,
774 next_map.sections_nb_alloc);
776 next_map.sections[next_map.sections_nb] = *section;
777 memory_region_ref(section->mr);
778 return next_map.sections_nb++;
781 static void phys_section_destroy(MemoryRegion *mr)
783 memory_region_unref(mr);
786 subpage_t *subpage = container_of(mr, subpage_t, iomem);
787 memory_region_destroy(&subpage->iomem);
792 static void phys_sections_free(PhysPageMap *map)
794 while (map->sections_nb > 0) {
795 MemoryRegionSection *section = &map->sections[--map->sections_nb];
796 phys_section_destroy(section->mr);
798 g_free(map->sections);
803 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
806 hwaddr base = section->offset_within_address_space
808 MemoryRegionSection *existing = phys_page_find(d->phys_map, base >> TARGET_PAGE_BITS,
809 next_map.nodes, next_map.sections);
810 MemoryRegionSection subsection = {
811 .offset_within_address_space = base,
812 .size = int128_make64(TARGET_PAGE_SIZE),
816 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
818 if (!(existing->mr->subpage)) {
819 subpage = subpage_init(d->as, base);
820 subsection.mr = &subpage->iomem;
821 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
822 phys_section_add(&subsection));
824 subpage = container_of(existing->mr, subpage_t, iomem);
826 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
827 end = start + int128_get64(section->size) - 1;
828 subpage_register(subpage, start, end, phys_section_add(section));
832 static void register_multipage(AddressSpaceDispatch *d,
833 MemoryRegionSection *section)
835 hwaddr start_addr = section->offset_within_address_space;
836 uint16_t section_index = phys_section_add(section);
837 uint64_t num_pages = int128_get64(int128_rshift(section->size,
841 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
844 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
846 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
847 AddressSpaceDispatch *d = as->next_dispatch;
848 MemoryRegionSection now = *section, remain = *section;
849 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
851 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
852 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
853 - now.offset_within_address_space;
855 now.size = int128_min(int128_make64(left), now.size);
856 register_subpage(d, &now);
858 now.size = int128_zero();
860 while (int128_ne(remain.size, now.size)) {
861 remain.size = int128_sub(remain.size, now.size);
862 remain.offset_within_address_space += int128_get64(now.size);
863 remain.offset_within_region += int128_get64(now.size);
865 if (int128_lt(remain.size, page_size)) {
866 register_subpage(d, &now);
867 } else if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
868 now.size = page_size;
869 register_subpage(d, &now);
871 now.size = int128_and(now.size, int128_neg(page_size));
872 register_multipage(d, &now);
877 void qemu_flush_coalesced_mmio_buffer(void)
880 kvm_flush_coalesced_mmio_buffer();
883 void qemu_mutex_lock_ramlist(void)
885 qemu_mutex_lock(&ram_list.mutex);
888 void qemu_mutex_unlock_ramlist(void)
890 qemu_mutex_unlock(&ram_list.mutex);
893 #if defined(__linux__) && !defined(TARGET_S390X)
897 #define HUGETLBFS_MAGIC 0x958458f6
899 static long gethugepagesize(const char *path)
905 ret = statfs(path, &fs);
906 } while (ret != 0 && errno == EINTR);
913 if (fs.f_type != HUGETLBFS_MAGIC)
914 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
919 static void *file_ram_alloc(RAMBlock *block,
924 char *sanitized_name;
931 unsigned long hpagesize;
933 hpagesize = gethugepagesize(path);
938 if (memory < hpagesize) {
942 if (kvm_enabled() && !kvm_has_sync_mmu()) {
943 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
947 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
948 sanitized_name = g_strdup(block->mr->name);
949 for (c = sanitized_name; *c != '\0'; c++) {
954 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
956 g_free(sanitized_name);
958 fd = mkstemp(filename);
960 perror("unable to create backing store for hugepages");
967 memory = (memory+hpagesize-1) & ~(hpagesize-1);
970 * ftruncate is not supported by hugetlbfs in older
971 * hosts, so don't bother bailing out on errors.
972 * If anything goes wrong with it under other filesystems,
975 if (ftruncate(fd, memory))
979 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
980 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
981 * to sidestep this quirk.
983 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
984 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
986 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
988 if (area == MAP_FAILED) {
989 perror("file_ram_alloc: can't mmap RAM pages");
998 static ram_addr_t find_ram_offset(ram_addr_t size)
1000 RAMBlock *block, *next_block;
1001 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1003 assert(size != 0); /* it would hand out same offset multiple times */
1005 if (QTAILQ_EMPTY(&ram_list.blocks))
1008 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1009 ram_addr_t end, next = RAM_ADDR_MAX;
1011 end = block->offset + block->length;
1013 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
1014 if (next_block->offset >= end) {
1015 next = MIN(next, next_block->offset);
1018 if (next - end >= size && next - end < mingap) {
1020 mingap = next - end;
1024 if (offset == RAM_ADDR_MAX) {
1025 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1033 ram_addr_t last_ram_offset(void)
1036 ram_addr_t last = 0;
1038 QTAILQ_FOREACH(block, &ram_list.blocks, next)
1039 last = MAX(last, block->offset + block->length);
1044 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1047 QemuOpts *machine_opts;
1049 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1050 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1052 !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
1053 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1055 perror("qemu_madvise");
1056 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1057 "but dump_guest_core=off specified\n");
1062 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1064 RAMBlock *new_block, *block;
1067 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1068 if (block->offset == addr) {
1074 assert(!new_block->idstr[0]);
1077 char *id = qdev_get_dev_path(dev);
1079 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1083 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1085 /* This assumes the iothread lock is taken here too. */
1086 qemu_mutex_lock_ramlist();
1087 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1088 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1089 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1094 qemu_mutex_unlock_ramlist();
1097 static int memory_try_enable_merging(void *addr, size_t len)
1101 opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1102 if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
1103 /* disabled by the user */
1107 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1110 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1113 RAMBlock *block, *new_block;
1115 size = TARGET_PAGE_ALIGN(size);
1116 new_block = g_malloc0(sizeof(*new_block));
1118 /* This assumes the iothread lock is taken here too. */
1119 qemu_mutex_lock_ramlist();
1121 new_block->offset = find_ram_offset(size);
1123 new_block->host = host;
1124 new_block->flags |= RAM_PREALLOC_MASK;
1127 #if defined (__linux__) && !defined(TARGET_S390X)
1128 new_block->host = file_ram_alloc(new_block, size, mem_path);
1129 if (!new_block->host) {
1130 new_block->host = qemu_anon_ram_alloc(size);
1131 memory_try_enable_merging(new_block->host, size);
1134 fprintf(stderr, "-mem-path option unsupported\n");
1138 if (xen_enabled()) {
1139 xen_ram_alloc(new_block->offset, size, mr);
1140 } else if (kvm_enabled()) {
1141 /* some s390/kvm configurations have special constraints */
1142 new_block->host = kvm_ram_alloc(size);
1144 new_block->host = qemu_anon_ram_alloc(size);
1146 memory_try_enable_merging(new_block->host, size);
1149 new_block->length = size;
1151 /* Keep the list sorted from biggest to smallest block. */
1152 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1153 if (block->length < new_block->length) {
1158 QTAILQ_INSERT_BEFORE(block, new_block, next);
1160 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1162 ram_list.mru_block = NULL;
1165 qemu_mutex_unlock_ramlist();
1167 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
1168 last_ram_offset() >> TARGET_PAGE_BITS);
1169 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1170 0, size >> TARGET_PAGE_BITS);
1171 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
1173 qemu_ram_setup_dump(new_block->host, size);
1174 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1177 kvm_setup_guest_memory(new_block->host, size);
1179 return new_block->offset;
1182 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1184 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1187 void qemu_ram_free_from_ptr(ram_addr_t addr)
1191 /* This assumes the iothread lock is taken here too. */
1192 qemu_mutex_lock_ramlist();
1193 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1194 if (addr == block->offset) {
1195 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1196 ram_list.mru_block = NULL;
1202 qemu_mutex_unlock_ramlist();
1205 void qemu_ram_free(ram_addr_t addr)
1209 /* This assumes the iothread lock is taken here too. */
1210 qemu_mutex_lock_ramlist();
1211 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1212 if (addr == block->offset) {
1213 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1214 ram_list.mru_block = NULL;
1216 if (block->flags & RAM_PREALLOC_MASK) {
1218 } else if (mem_path) {
1219 #if defined (__linux__) && !defined(TARGET_S390X)
1221 munmap(block->host, block->length);
1224 qemu_anon_ram_free(block->host, block->length);
1230 if (xen_enabled()) {
1231 xen_invalidate_map_cache_entry(block->host);
1233 qemu_anon_ram_free(block->host, block->length);
1240 qemu_mutex_unlock_ramlist();
1245 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1252 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1253 offset = addr - block->offset;
1254 if (offset < block->length) {
1255 vaddr = block->host + offset;
1256 if (block->flags & RAM_PREALLOC_MASK) {
1260 munmap(vaddr, length);
1262 #if defined(__linux__) && !defined(TARGET_S390X)
1265 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1268 flags |= MAP_PRIVATE;
1270 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1271 flags, block->fd, offset);
1273 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1274 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1281 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1282 flags |= MAP_SHARED | MAP_ANONYMOUS;
1283 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
1286 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1287 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1291 if (area != vaddr) {
1292 fprintf(stderr, "Could not remap addr: "
1293 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1297 memory_try_enable_merging(vaddr, length);
1298 qemu_ram_setup_dump(vaddr, length);
1304 #endif /* !_WIN32 */
1306 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1310 /* The list is protected by the iothread lock here. */
1311 block = ram_list.mru_block;
1312 if (block && addr - block->offset < block->length) {
1315 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1316 if (addr - block->offset < block->length) {
1321 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1325 ram_list.mru_block = block;
1329 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1330 With the exception of the softmmu code in this file, this should
1331 only be used for local memory (e.g. video ram) that the device owns,
1332 and knows it isn't going to access beyond the end of the block.
1334 It should not be used for general purpose DMA.
1335 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1337 void *qemu_get_ram_ptr(ram_addr_t addr)
1339 RAMBlock *block = qemu_get_ram_block(addr);
1341 if (xen_enabled()) {
1342 /* We need to check if the requested address is in the RAM
1343 * because we don't want to map the entire memory in QEMU.
1344 * In that case just map until the end of the page.
1346 if (block->offset == 0) {
1347 return xen_map_cache(addr, 0, 0);
1348 } else if (block->host == NULL) {
1350 xen_map_cache(block->offset, block->length, 1);
1353 return block->host + (addr - block->offset);
1356 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1357 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1359 * ??? Is this still necessary?
1361 static void *qemu_safe_ram_ptr(ram_addr_t addr)
1365 /* The list is protected by the iothread lock here. */
1366 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1367 if (addr - block->offset < block->length) {
1368 if (xen_enabled()) {
1369 /* We need to check if the requested address is in the RAM
1370 * because we don't want to map the entire memory in QEMU.
1371 * In that case just map until the end of the page.
1373 if (block->offset == 0) {
1374 return xen_map_cache(addr, 0, 0);
1375 } else if (block->host == NULL) {
1377 xen_map_cache(block->offset, block->length, 1);
1380 return block->host + (addr - block->offset);
1384 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1390 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1391 * but takes a size argument */
1392 static void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
1397 if (xen_enabled()) {
1398 return xen_map_cache(addr, *size, 1);
1402 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1403 if (addr - block->offset < block->length) {
1404 if (addr - block->offset + *size > block->length)
1405 *size = block->length - addr + block->offset;
1406 return block->host + (addr - block->offset);
1410 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1415 /* Some of the softmmu routines need to translate from a host pointer
1416 (typically a TLB entry) back to a ram offset. */
1417 MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1420 uint8_t *host = ptr;
1422 if (xen_enabled()) {
1423 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1424 return qemu_get_ram_block(*ram_addr)->mr;
1427 block = ram_list.mru_block;
1428 if (block && block->host && host - block->host < block->length) {
1432 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1433 /* This case append when the block is not mapped. */
1434 if (block->host == NULL) {
1437 if (host - block->host < block->length) {
1445 *ram_addr = block->offset + (host - block->host);
1449 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1450 uint64_t val, unsigned size)
1453 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1454 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1455 tb_invalidate_phys_page_fast(ram_addr, size);
1456 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1460 stb_p(qemu_get_ram_ptr(ram_addr), val);
1463 stw_p(qemu_get_ram_ptr(ram_addr), val);
1466 stl_p(qemu_get_ram_ptr(ram_addr), val);
1471 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1472 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
1473 /* we remove the notdirty callback only if the code has been
1475 if (dirty_flags == 0xff) {
1476 CPUArchState *env = current_cpu->env_ptr;
1477 tlb_set_dirty(env, env->mem_io_vaddr);
1481 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1482 unsigned size, bool is_write)
1487 static const MemoryRegionOps notdirty_mem_ops = {
1488 .write = notdirty_mem_write,
1489 .valid.accepts = notdirty_mem_accepts,
1490 .endianness = DEVICE_NATIVE_ENDIAN,
1493 /* Generate a debug exception if a watchpoint has been hit. */
1494 static void check_watchpoint(int offset, int len_mask, int flags)
1496 CPUArchState *env = current_cpu->env_ptr;
1497 target_ulong pc, cs_base;
1502 if (env->watchpoint_hit) {
1503 /* We re-entered the check after replacing the TB. Now raise
1504 * the debug interrupt so that is will trigger after the
1505 * current instruction. */
1506 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
1509 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1510 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1511 if ((vaddr == (wp->vaddr & len_mask) ||
1512 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1513 wp->flags |= BP_WATCHPOINT_HIT;
1514 if (!env->watchpoint_hit) {
1515 env->watchpoint_hit = wp;
1516 tb_check_watchpoint(env);
1517 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1518 env->exception_index = EXCP_DEBUG;
1521 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1522 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1523 cpu_resume_from_signal(env, NULL);
1527 wp->flags &= ~BP_WATCHPOINT_HIT;
1532 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1533 so these check for a hit then pass through to the normal out-of-line
1535 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1538 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1540 case 1: return ldub_phys(addr);
1541 case 2: return lduw_phys(addr);
1542 case 4: return ldl_phys(addr);
1547 static void watch_mem_write(void *opaque, hwaddr addr,
1548 uint64_t val, unsigned size)
1550 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1553 stb_phys(addr, val);
1556 stw_phys(addr, val);
1559 stl_phys(addr, val);
1565 static const MemoryRegionOps watch_mem_ops = {
1566 .read = watch_mem_read,
1567 .write = watch_mem_write,
1568 .endianness = DEVICE_NATIVE_ENDIAN,
1571 static uint64_t subpage_read(void *opaque, hwaddr addr,
1574 subpage_t *subpage = opaque;
1577 #if defined(DEBUG_SUBPAGE)
1578 printf("%s: subpage %p len %d addr " TARGET_FMT_plx "\n", __func__,
1579 subpage, len, addr);
1581 address_space_read(subpage->as, addr + subpage->base, buf, len);
1594 static void subpage_write(void *opaque, hwaddr addr,
1595 uint64_t value, unsigned len)
1597 subpage_t *subpage = opaque;
1600 #if defined(DEBUG_SUBPAGE)
1601 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1602 " value %"PRIx64"\n",
1603 __func__, subpage, len, addr, value);
1618 address_space_write(subpage->as, addr + subpage->base, buf, len);
1621 static bool subpage_accepts(void *opaque, hwaddr addr,
1622 unsigned size, bool is_write)
1624 subpage_t *subpage = opaque;
1625 #if defined(DEBUG_SUBPAGE)
1626 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx "\n",
1627 __func__, subpage, is_write ? 'w' : 'r', len, addr);
1630 return address_space_access_valid(subpage->as, addr + subpage->base,
1634 static const MemoryRegionOps subpage_ops = {
1635 .read = subpage_read,
1636 .write = subpage_write,
1637 .valid.accepts = subpage_accepts,
1638 .endianness = DEVICE_NATIVE_ENDIAN,
1641 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1646 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1648 idx = SUBPAGE_IDX(start);
1649 eidx = SUBPAGE_IDX(end);
1650 #if defined(DEBUG_SUBPAGE)
1651 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
1652 mmio, start, end, idx, eidx, memory);
1654 for (; idx <= eidx; idx++) {
1655 mmio->sub_section[idx] = section;
1661 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
1665 mmio = g_malloc0(sizeof(subpage_t));
1669 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
1670 "subpage", TARGET_PAGE_SIZE);
1671 mmio->iomem.subpage = true;
1672 #if defined(DEBUG_SUBPAGE)
1673 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1674 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
1676 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
1681 static uint16_t dummy_section(MemoryRegion *mr)
1683 MemoryRegionSection section = {
1685 .offset_within_address_space = 0,
1686 .offset_within_region = 0,
1687 .size = int128_2_64(),
1690 return phys_section_add(§ion);
1693 MemoryRegion *iotlb_to_region(hwaddr index)
1695 return address_space_memory.dispatch->sections[index & ~TARGET_PAGE_MASK].mr;
1698 static void io_mem_init(void)
1700 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1701 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1702 "unassigned", UINT64_MAX);
1703 memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL,
1704 "notdirty", UINT64_MAX);
1705 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1706 "watch", UINT64_MAX);
1709 static void mem_begin(MemoryListener *listener)
1711 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1712 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1714 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1716 as->next_dispatch = d;
1719 static void mem_commit(MemoryListener *listener)
1721 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1722 AddressSpaceDispatch *cur = as->dispatch;
1723 AddressSpaceDispatch *next = as->next_dispatch;
1725 next->nodes = next_map.nodes;
1726 next->sections = next_map.sections;
1728 as->dispatch = next;
1732 static void core_begin(MemoryListener *listener)
1736 prev_map = g_new(PhysPageMap, 1);
1737 *prev_map = next_map;
1739 memset(&next_map, 0, sizeof(next_map));
1740 n = dummy_section(&io_mem_unassigned);
1741 assert(n == PHYS_SECTION_UNASSIGNED);
1742 n = dummy_section(&io_mem_notdirty);
1743 assert(n == PHYS_SECTION_NOTDIRTY);
1744 n = dummy_section(&io_mem_rom);
1745 assert(n == PHYS_SECTION_ROM);
1746 n = dummy_section(&io_mem_watch);
1747 assert(n == PHYS_SECTION_WATCH);
1750 /* This listener's commit run after the other AddressSpaceDispatch listeners'.
1751 * All AddressSpaceDispatch instances have switched to the next map.
1753 static void core_commit(MemoryListener *listener)
1755 phys_sections_free(prev_map);
1758 static void tcg_commit(MemoryListener *listener)
1762 /* since each CPU stores ram addresses in its TLB cache, we must
1763 reset the modified entries */
1765 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1770 static void core_log_global_start(MemoryListener *listener)
1772 cpu_physical_memory_set_dirty_tracking(1);
1775 static void core_log_global_stop(MemoryListener *listener)
1777 cpu_physical_memory_set_dirty_tracking(0);
1780 static MemoryListener core_memory_listener = {
1781 .begin = core_begin,
1782 .commit = core_commit,
1783 .log_global_start = core_log_global_start,
1784 .log_global_stop = core_log_global_stop,
1788 static MemoryListener tcg_memory_listener = {
1789 .commit = tcg_commit,
1792 void address_space_init_dispatch(AddressSpace *as)
1794 as->dispatch = NULL;
1795 as->dispatch_listener = (MemoryListener) {
1797 .commit = mem_commit,
1798 .region_add = mem_add,
1799 .region_nop = mem_add,
1802 memory_listener_register(&as->dispatch_listener, as);
1805 void address_space_destroy_dispatch(AddressSpace *as)
1807 AddressSpaceDispatch *d = as->dispatch;
1809 memory_listener_unregister(&as->dispatch_listener);
1811 as->dispatch = NULL;
1814 static void memory_map_init(void)
1816 system_memory = g_malloc(sizeof(*system_memory));
1817 memory_region_init(system_memory, NULL, "system", INT64_MAX);
1818 address_space_init(&address_space_memory, system_memory, "memory");
1820 system_io = g_malloc(sizeof(*system_io));
1821 memory_region_init(system_io, NULL, "io", 65536);
1822 address_space_init(&address_space_io, system_io, "I/O");
1824 memory_listener_register(&core_memory_listener, &address_space_memory);
1825 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1828 MemoryRegion *get_system_memory(void)
1830 return system_memory;
1833 MemoryRegion *get_system_io(void)
1838 #endif /* !defined(CONFIG_USER_ONLY) */
1840 /* physical memory access (slow version, mainly for debug) */
1841 #if defined(CONFIG_USER_ONLY)
1842 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
1843 uint8_t *buf, int len, int is_write)
1850 page = addr & TARGET_PAGE_MASK;
1851 l = (page + TARGET_PAGE_SIZE) - addr;
1854 flags = page_get_flags(page);
1855 if (!(flags & PAGE_VALID))
1858 if (!(flags & PAGE_WRITE))
1860 /* XXX: this code should not depend on lock_user */
1861 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1864 unlock_user(p, addr, l);
1866 if (!(flags & PAGE_READ))
1868 /* XXX: this code should not depend on lock_user */
1869 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1872 unlock_user(p, addr, 0);
1883 static void invalidate_and_set_dirty(hwaddr addr,
1886 if (!cpu_physical_memory_is_dirty(addr)) {
1887 /* invalidate code */
1888 tb_invalidate_phys_page_range(addr, addr + length, 0);
1890 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1892 xen_modified_memory(addr, length);
1895 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1897 if (memory_region_is_ram(mr)) {
1898 return !(is_write && mr->readonly);
1900 if (memory_region_is_romd(mr)) {
1907 static inline int memory_access_size(MemoryRegion *mr, int l, hwaddr addr)
1909 if (l >= 4 && (((addr & 3) == 0 || mr->ops->impl.unaligned))) {
1912 if (l >= 2 && (((addr & 1) == 0) || mr->ops->impl.unaligned)) {
1918 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1919 int len, bool is_write)
1930 mr = address_space_translate(as, addr, &addr1, &l, is_write);
1933 if (!memory_access_is_direct(mr, is_write)) {
1934 l = memory_access_size(mr, l, addr1);
1935 /* XXX: could force current_cpu to NULL to avoid
1938 /* 32 bit write access */
1940 error |= io_mem_write(mr, addr1, val, 4);
1941 } else if (l == 2) {
1942 /* 16 bit write access */
1944 error |= io_mem_write(mr, addr1, val, 2);
1946 /* 8 bit write access */
1948 error |= io_mem_write(mr, addr1, val, 1);
1951 addr1 += memory_region_get_ram_addr(mr);
1953 ptr = qemu_get_ram_ptr(addr1);
1954 memcpy(ptr, buf, l);
1955 invalidate_and_set_dirty(addr1, l);
1958 if (!memory_access_is_direct(mr, is_write)) {
1960 l = memory_access_size(mr, l, addr1);
1962 /* 32 bit read access */
1963 error |= io_mem_read(mr, addr1, &val, 4);
1965 } else if (l == 2) {
1966 /* 16 bit read access */
1967 error |= io_mem_read(mr, addr1, &val, 2);
1970 /* 8 bit read access */
1971 error |= io_mem_read(mr, addr1, &val, 1);
1976 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
1977 memcpy(buf, ptr, l);
1988 bool address_space_write(AddressSpace *as, hwaddr addr,
1989 const uint8_t *buf, int len)
1991 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
1994 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
1996 return address_space_rw(as, addr, buf, len, false);
2000 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
2001 int len, int is_write)
2003 address_space_rw(&address_space_memory, addr, buf, len, is_write);
2006 /* used for ROM loading : can write in RAM and ROM */
2007 void cpu_physical_memory_write_rom(hwaddr addr,
2008 const uint8_t *buf, int len)
2017 mr = address_space_translate(&address_space_memory,
2018 addr, &addr1, &l, true);
2020 if (!(memory_region_is_ram(mr) ||
2021 memory_region_is_romd(mr))) {
2024 addr1 += memory_region_get_ram_addr(mr);
2026 ptr = qemu_get_ram_ptr(addr1);
2027 memcpy(ptr, buf, l);
2028 invalidate_and_set_dirty(addr1, l);
2043 static BounceBuffer bounce;
2045 typedef struct MapClient {
2047 void (*callback)(void *opaque);
2048 QLIST_ENTRY(MapClient) link;
2051 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2052 = QLIST_HEAD_INITIALIZER(map_client_list);
2054 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2056 MapClient *client = g_malloc(sizeof(*client));
2058 client->opaque = opaque;
2059 client->callback = callback;
2060 QLIST_INSERT_HEAD(&map_client_list, client, link);
2064 static void cpu_unregister_map_client(void *_client)
2066 MapClient *client = (MapClient *)_client;
2068 QLIST_REMOVE(client, link);
2072 static void cpu_notify_map_clients(void)
2076 while (!QLIST_EMPTY(&map_client_list)) {
2077 client = QLIST_FIRST(&map_client_list);
2078 client->callback(client->opaque);
2079 cpu_unregister_map_client(client);
2083 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2090 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2091 if (!memory_access_is_direct(mr, is_write)) {
2092 l = memory_access_size(mr, l, addr);
2093 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2104 /* Map a physical memory region into a host virtual address.
2105 * May map a subset of the requested range, given by and returned in *plen.
2106 * May return NULL if resources needed to perform the mapping are exhausted.
2107 * Use only for reads OR writes - not for read-modify-write operations.
2108 * Use cpu_register_map_client() to know when retrying the map operation is
2109 * likely to succeed.
2111 void *address_space_map(AddressSpace *as,
2118 hwaddr l, xlat, base;
2119 MemoryRegion *mr, *this_mr;
2127 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2128 if (!memory_access_is_direct(mr, is_write)) {
2129 if (bounce.buffer) {
2132 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2136 memory_region_ref(mr);
2139 address_space_read(as, addr, bounce.buffer, l);
2143 return bounce.buffer;
2147 raddr = memory_region_get_ram_addr(mr);
2158 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2159 if (this_mr != mr || xlat != base + done) {
2164 memory_region_ref(mr);
2166 return qemu_ram_ptr_length(raddr + base, plen);
2169 /* Unmaps a memory region previously mapped by address_space_map().
2170 * Will also mark the memory as dirty if is_write == 1. access_len gives
2171 * the amount of memory that was actually read or written by the caller.
2173 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2174 int is_write, hwaddr access_len)
2176 if (buffer != bounce.buffer) {
2180 mr = qemu_ram_addr_from_host(buffer, &addr1);
2183 while (access_len) {
2185 l = TARGET_PAGE_SIZE;
2188 invalidate_and_set_dirty(addr1, l);
2193 if (xen_enabled()) {
2194 xen_invalidate_map_cache_entry(buffer);
2196 memory_region_unref(mr);
2200 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2202 qemu_vfree(bounce.buffer);
2203 bounce.buffer = NULL;
2204 memory_region_unref(bounce.mr);
2205 cpu_notify_map_clients();
2208 void *cpu_physical_memory_map(hwaddr addr,
2212 return address_space_map(&address_space_memory, addr, plen, is_write);
2215 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2216 int is_write, hwaddr access_len)
2218 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2221 /* warning: addr must be aligned */
2222 static inline uint32_t ldl_phys_internal(hwaddr addr,
2223 enum device_endian endian)
2231 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2233 if (l < 4 || !memory_access_is_direct(mr, false)) {
2235 io_mem_read(mr, addr1, &val, 4);
2236 #if defined(TARGET_WORDS_BIGENDIAN)
2237 if (endian == DEVICE_LITTLE_ENDIAN) {
2241 if (endian == DEVICE_BIG_ENDIAN) {
2247 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2251 case DEVICE_LITTLE_ENDIAN:
2252 val = ldl_le_p(ptr);
2254 case DEVICE_BIG_ENDIAN:
2255 val = ldl_be_p(ptr);
2265 uint32_t ldl_phys(hwaddr addr)
2267 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2270 uint32_t ldl_le_phys(hwaddr addr)
2272 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2275 uint32_t ldl_be_phys(hwaddr addr)
2277 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2280 /* warning: addr must be aligned */
2281 static inline uint64_t ldq_phys_internal(hwaddr addr,
2282 enum device_endian endian)
2290 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2292 if (l < 8 || !memory_access_is_direct(mr, false)) {
2294 io_mem_read(mr, addr1, &val, 8);
2295 #if defined(TARGET_WORDS_BIGENDIAN)
2296 if (endian == DEVICE_LITTLE_ENDIAN) {
2300 if (endian == DEVICE_BIG_ENDIAN) {
2306 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2310 case DEVICE_LITTLE_ENDIAN:
2311 val = ldq_le_p(ptr);
2313 case DEVICE_BIG_ENDIAN:
2314 val = ldq_be_p(ptr);
2324 uint64_t ldq_phys(hwaddr addr)
2326 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2329 uint64_t ldq_le_phys(hwaddr addr)
2331 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2334 uint64_t ldq_be_phys(hwaddr addr)
2336 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2340 uint32_t ldub_phys(hwaddr addr)
2343 cpu_physical_memory_read(addr, &val, 1);
2347 /* warning: addr must be aligned */
2348 static inline uint32_t lduw_phys_internal(hwaddr addr,
2349 enum device_endian endian)
2357 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2359 if (l < 2 || !memory_access_is_direct(mr, false)) {
2361 io_mem_read(mr, addr1, &val, 2);
2362 #if defined(TARGET_WORDS_BIGENDIAN)
2363 if (endian == DEVICE_LITTLE_ENDIAN) {
2367 if (endian == DEVICE_BIG_ENDIAN) {
2373 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2377 case DEVICE_LITTLE_ENDIAN:
2378 val = lduw_le_p(ptr);
2380 case DEVICE_BIG_ENDIAN:
2381 val = lduw_be_p(ptr);
2391 uint32_t lduw_phys(hwaddr addr)
2393 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2396 uint32_t lduw_le_phys(hwaddr addr)
2398 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2401 uint32_t lduw_be_phys(hwaddr addr)
2403 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2406 /* warning: addr must be aligned. The ram page is not masked as dirty
2407 and the code inside is not invalidated. It is useful if the dirty
2408 bits are used to track modified PTEs */
2409 void stl_phys_notdirty(hwaddr addr, uint32_t val)
2416 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2418 if (l < 4 || !memory_access_is_direct(mr, true)) {
2419 io_mem_write(mr, addr1, val, 4);
2421 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2422 ptr = qemu_get_ram_ptr(addr1);
2425 if (unlikely(in_migration)) {
2426 if (!cpu_physical_memory_is_dirty(addr1)) {
2427 /* invalidate code */
2428 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2430 cpu_physical_memory_set_dirty_flags(
2431 addr1, (0xff & ~CODE_DIRTY_FLAG));
2437 /* warning: addr must be aligned */
2438 static inline void stl_phys_internal(hwaddr addr, uint32_t val,
2439 enum device_endian endian)
2446 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2448 if (l < 4 || !memory_access_is_direct(mr, true)) {
2449 #if defined(TARGET_WORDS_BIGENDIAN)
2450 if (endian == DEVICE_LITTLE_ENDIAN) {
2454 if (endian == DEVICE_BIG_ENDIAN) {
2458 io_mem_write(mr, addr1, val, 4);
2461 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2462 ptr = qemu_get_ram_ptr(addr1);
2464 case DEVICE_LITTLE_ENDIAN:
2467 case DEVICE_BIG_ENDIAN:
2474 invalidate_and_set_dirty(addr1, 4);
2478 void stl_phys(hwaddr addr, uint32_t val)
2480 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2483 void stl_le_phys(hwaddr addr, uint32_t val)
2485 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2488 void stl_be_phys(hwaddr addr, uint32_t val)
2490 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2494 void stb_phys(hwaddr addr, uint32_t val)
2497 cpu_physical_memory_write(addr, &v, 1);
2500 /* warning: addr must be aligned */
2501 static inline void stw_phys_internal(hwaddr addr, uint32_t val,
2502 enum device_endian endian)
2509 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2511 if (l < 2 || !memory_access_is_direct(mr, true)) {
2512 #if defined(TARGET_WORDS_BIGENDIAN)
2513 if (endian == DEVICE_LITTLE_ENDIAN) {
2517 if (endian == DEVICE_BIG_ENDIAN) {
2521 io_mem_write(mr, addr1, val, 2);
2524 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2525 ptr = qemu_get_ram_ptr(addr1);
2527 case DEVICE_LITTLE_ENDIAN:
2530 case DEVICE_BIG_ENDIAN:
2537 invalidate_and_set_dirty(addr1, 2);
2541 void stw_phys(hwaddr addr, uint32_t val)
2543 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2546 void stw_le_phys(hwaddr addr, uint32_t val)
2548 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2551 void stw_be_phys(hwaddr addr, uint32_t val)
2553 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2557 void stq_phys(hwaddr addr, uint64_t val)
2560 cpu_physical_memory_write(addr, &val, 8);
2563 void stq_le_phys(hwaddr addr, uint64_t val)
2565 val = cpu_to_le64(val);
2566 cpu_physical_memory_write(addr, &val, 8);
2569 void stq_be_phys(hwaddr addr, uint64_t val)
2571 val = cpu_to_be64(val);
2572 cpu_physical_memory_write(addr, &val, 8);
2575 /* virtual memory access for debug (includes writing to ROM) */
2576 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
2577 uint8_t *buf, int len, int is_write)
2584 page = addr & TARGET_PAGE_MASK;
2585 phys_addr = cpu_get_phys_page_debug(env, page);
2586 /* if no physical page mapped, return an error */
2587 if (phys_addr == -1)
2589 l = (page + TARGET_PAGE_SIZE) - addr;
2592 phys_addr += (addr & ~TARGET_PAGE_MASK);
2594 cpu_physical_memory_write_rom(phys_addr, buf, l);
2596 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
2605 #if !defined(CONFIG_USER_ONLY)
2608 * A helper function for the _utterly broken_ virtio device model to find out if
2609 * it's running on a big endian machine. Don't do this at home kids!
2611 bool virtio_is_big_endian(void);
2612 bool virtio_is_big_endian(void)
2614 #if defined(TARGET_WORDS_BIGENDIAN)
2623 #ifndef CONFIG_USER_ONLY
2624 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2629 mr = address_space_translate(&address_space_memory,
2630 phys_addr, &phys_addr, &l, false);
2632 return !(memory_region_is_ram(mr) ||
2633 memory_region_is_romd(mr));
2636 void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2640 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2641 func(block->host, block->offset, block->length, opaque);