4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include <sys/types.h>
27 #include "qemu-common.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "hw/xen/xen.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "exec/memory.h"
38 #include "sysemu/dma.h"
39 #include "exec/address-spaces.h"
40 #if defined(CONFIG_USER_ONLY)
42 #else /* !CONFIG_USER_ONLY */
43 #include "sysemu/xen-mapcache.h"
46 #include "exec/cpu-all.h"
48 #include "exec/cputlb.h"
49 #include "translate-all.h"
51 #include "exec/memory-internal.h"
53 //#define DEBUG_SUBPAGE
55 #if !defined(CONFIG_USER_ONLY)
57 static int in_migration;
59 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
61 static MemoryRegion *system_memory;
62 static MemoryRegion *system_io;
64 AddressSpace address_space_io;
65 AddressSpace address_space_memory;
67 MemoryRegion io_mem_rom, io_mem_notdirty;
68 static MemoryRegion io_mem_unassigned;
72 CPUArchState *first_cpu;
73 /* current CPU in the current thread. It is only valid inside
75 DEFINE_TLS(CPUArchState *,cpu_single_env);
76 /* 0 = Do not count executed instructions.
77 1 = Precise instruction counting.
78 2 = Adaptive rate instruction counting. */
81 #if !defined(CONFIG_USER_ONLY)
83 typedef struct PhysPageEntry PhysPageEntry;
85 struct PhysPageEntry {
87 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
91 struct AddressSpaceDispatch {
92 /* This is a multi-level map on the physical address space.
93 * The bottom level has pointers to MemoryRegionSections.
95 PhysPageEntry phys_map;
96 MemoryListener listener;
100 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
101 typedef struct subpage_t {
105 uint16_t sub_section[TARGET_PAGE_SIZE];
108 static MemoryRegionSection *phys_sections;
109 static unsigned phys_sections_nb, phys_sections_nb_alloc;
110 static uint16_t phys_section_unassigned;
111 static uint16_t phys_section_notdirty;
112 static uint16_t phys_section_rom;
113 static uint16_t phys_section_watch;
115 /* Simple allocator for PhysPageEntry nodes */
116 static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
117 static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
119 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
121 static void io_mem_init(void);
122 static void memory_map_init(void);
123 static void *qemu_safe_ram_ptr(ram_addr_t addr);
125 static MemoryRegion io_mem_watch;
128 #if !defined(CONFIG_USER_ONLY)
130 static void phys_map_node_reserve(unsigned nodes)
132 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
133 typedef PhysPageEntry Node[L2_SIZE];
134 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
135 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
136 phys_map_nodes_nb + nodes);
137 phys_map_nodes = g_renew(Node, phys_map_nodes,
138 phys_map_nodes_nb_alloc);
142 static uint16_t phys_map_node_alloc(void)
147 ret = phys_map_nodes_nb++;
148 assert(ret != PHYS_MAP_NODE_NIL);
149 assert(ret != phys_map_nodes_nb_alloc);
150 for (i = 0; i < L2_SIZE; ++i) {
151 phys_map_nodes[ret][i].is_leaf = 0;
152 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
157 static void phys_map_nodes_reset(void)
159 phys_map_nodes_nb = 0;
163 static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
164 hwaddr *nb, uint16_t leaf,
169 hwaddr step = (hwaddr)1 << (level * L2_BITS);
171 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
172 lp->ptr = phys_map_node_alloc();
173 p = phys_map_nodes[lp->ptr];
175 for (i = 0; i < L2_SIZE; i++) {
177 p[i].ptr = phys_section_unassigned;
181 p = phys_map_nodes[lp->ptr];
183 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
185 while (*nb && lp < &p[L2_SIZE]) {
186 if ((*index & (step - 1)) == 0 && *nb >= step) {
192 phys_page_set_level(lp, index, nb, leaf, level - 1);
198 static void phys_page_set(AddressSpaceDispatch *d,
199 hwaddr index, hwaddr nb,
202 /* Wildly overreserve - it doesn't matter much. */
203 phys_map_node_reserve(3 * P_L2_LEVELS);
205 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
208 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr index)
210 PhysPageEntry lp = d->phys_map;
214 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
215 if (lp.ptr == PHYS_MAP_NODE_NIL) {
216 return &phys_sections[phys_section_unassigned];
218 p = phys_map_nodes[lp.ptr];
219 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
221 return &phys_sections[lp.ptr];
224 bool memory_region_is_unassigned(MemoryRegion *mr)
226 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
227 && mr != &io_mem_watch;
230 static MemoryRegionSection *address_space_lookup_region(AddressSpace *as,
232 bool resolve_subpage)
234 MemoryRegionSection *section;
237 section = phys_page_find(as->dispatch, addr >> TARGET_PAGE_BITS);
238 if (resolve_subpage && section->mr->subpage) {
239 subpage = container_of(section->mr, subpage_t, iomem);
240 section = &phys_sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
245 static MemoryRegionSection *
246 address_space_translate_internal(AddressSpace *as, hwaddr addr, hwaddr *xlat,
247 hwaddr *plen, bool resolve_subpage)
249 MemoryRegionSection *section;
252 section = address_space_lookup_region(as, addr, resolve_subpage);
253 /* Compute offset within MemoryRegionSection */
254 addr -= section->offset_within_address_space;
256 /* Compute offset within MemoryRegion */
257 *xlat = addr + section->offset_within_region;
259 diff = int128_sub(section->mr->size, int128_make64(addr));
260 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
264 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
265 hwaddr *xlat, hwaddr *plen,
269 MemoryRegionSection *section;
274 section = address_space_translate_internal(as, addr, &addr, plen, true);
277 if (!mr->iommu_ops) {
281 iotlb = mr->iommu_ops->translate(mr, addr);
282 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
283 | (addr & iotlb.addr_mask));
284 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
285 if (!(iotlb.perm & (1 << is_write))) {
286 mr = &io_mem_unassigned;
290 as = iotlb.target_as;
298 MemoryRegionSection *
299 address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
302 MemoryRegionSection *section;
303 section = address_space_translate_internal(as, addr, xlat, plen, false);
305 assert(!section->mr->iommu_ops);
310 void cpu_exec_init_all(void)
312 #if !defined(CONFIG_USER_ONLY)
313 qemu_mutex_init(&ram_list.mutex);
319 #if !defined(CONFIG_USER_ONLY)
321 static int cpu_common_post_load(void *opaque, int version_id)
323 CPUState *cpu = opaque;
325 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
326 version_id is increased. */
327 cpu->interrupt_request &= ~0x01;
328 tlb_flush(cpu->env_ptr, 1);
333 const VMStateDescription vmstate_cpu_common = {
334 .name = "cpu_common",
336 .minimum_version_id = 1,
337 .minimum_version_id_old = 1,
338 .post_load = cpu_common_post_load,
339 .fields = (VMStateField []) {
340 VMSTATE_UINT32(halted, CPUState),
341 VMSTATE_UINT32(interrupt_request, CPUState),
342 VMSTATE_END_OF_LIST()
348 CPUState *qemu_get_cpu(int index)
350 CPUArchState *env = first_cpu;
351 CPUState *cpu = NULL;
354 cpu = ENV_GET_CPU(env);
355 if (cpu->cpu_index == index) {
361 return env ? cpu : NULL;
364 void qemu_for_each_cpu(void (*func)(CPUState *cpu, void *data), void *data)
366 CPUArchState *env = first_cpu;
369 func(ENV_GET_CPU(env), data);
374 void cpu_exec_init(CPUArchState *env)
376 CPUState *cpu = ENV_GET_CPU(env);
377 CPUClass *cc = CPU_GET_CLASS(cpu);
381 #if defined(CONFIG_USER_ONLY)
384 env->next_cpu = NULL;
387 while (*penv != NULL) {
388 penv = &(*penv)->next_cpu;
391 cpu->cpu_index = cpu_index;
393 QTAILQ_INIT(&env->breakpoints);
394 QTAILQ_INIT(&env->watchpoints);
395 #ifndef CONFIG_USER_ONLY
396 cpu->thread_id = qemu_get_thread_id();
399 #if defined(CONFIG_USER_ONLY)
402 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
403 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
404 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
405 cpu_save, cpu_load, env);
406 assert(cc->vmsd == NULL);
408 if (cc->vmsd != NULL) {
409 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
413 #if defined(TARGET_HAS_ICE)
414 #if defined(CONFIG_USER_ONLY)
415 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
417 tb_invalidate_phys_page_range(pc, pc + 1, 0);
420 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
422 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
423 (pc & ~TARGET_PAGE_MASK));
426 #endif /* TARGET_HAS_ICE */
428 #if defined(CONFIG_USER_ONLY)
429 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
434 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
435 int flags, CPUWatchpoint **watchpoint)
440 /* Add a watchpoint. */
441 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
442 int flags, CPUWatchpoint **watchpoint)
444 target_ulong len_mask = ~(len - 1);
447 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
448 if ((len & (len - 1)) || (addr & ~len_mask) ||
449 len == 0 || len > TARGET_PAGE_SIZE) {
450 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
451 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
454 wp = g_malloc(sizeof(*wp));
457 wp->len_mask = len_mask;
460 /* keep all GDB-injected watchpoints in front */
462 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
464 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
466 tlb_flush_page(env, addr);
473 /* Remove a specific watchpoint. */
474 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
477 target_ulong len_mask = ~(len - 1);
480 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
481 if (addr == wp->vaddr && len_mask == wp->len_mask
482 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
483 cpu_watchpoint_remove_by_ref(env, wp);
490 /* Remove a specific watchpoint by reference. */
491 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
493 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
495 tlb_flush_page(env, watchpoint->vaddr);
500 /* Remove all matching watchpoints. */
501 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
503 CPUWatchpoint *wp, *next;
505 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
506 if (wp->flags & mask)
507 cpu_watchpoint_remove_by_ref(env, wp);
512 /* Add a breakpoint. */
513 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
514 CPUBreakpoint **breakpoint)
516 #if defined(TARGET_HAS_ICE)
519 bp = g_malloc(sizeof(*bp));
524 /* keep all GDB-injected breakpoints in front */
526 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
528 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
530 breakpoint_invalidate(env, pc);
540 /* Remove a specific breakpoint. */
541 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
543 #if defined(TARGET_HAS_ICE)
546 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
547 if (bp->pc == pc && bp->flags == flags) {
548 cpu_breakpoint_remove_by_ref(env, bp);
558 /* Remove a specific breakpoint by reference. */
559 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
561 #if defined(TARGET_HAS_ICE)
562 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
564 breakpoint_invalidate(env, breakpoint->pc);
570 /* Remove all matching breakpoints. */
571 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
573 #if defined(TARGET_HAS_ICE)
574 CPUBreakpoint *bp, *next;
576 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
577 if (bp->flags & mask)
578 cpu_breakpoint_remove_by_ref(env, bp);
583 /* enable or disable single step mode. EXCP_DEBUG is returned by the
584 CPU loop after each instruction */
585 void cpu_single_step(CPUArchState *env, int enabled)
587 #if defined(TARGET_HAS_ICE)
588 if (env->singlestep_enabled != enabled) {
589 env->singlestep_enabled = enabled;
591 kvm_update_guest_debug(env, 0);
593 /* must flush all the translated code to avoid inconsistencies */
594 /* XXX: only flush what is necessary */
601 void cpu_abort(CPUArchState *env, const char *fmt, ...)
603 CPUState *cpu = ENV_GET_CPU(env);
609 fprintf(stderr, "qemu: fatal: ");
610 vfprintf(stderr, fmt, ap);
611 fprintf(stderr, "\n");
612 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
613 if (qemu_log_enabled()) {
614 qemu_log("qemu: fatal: ");
615 qemu_log_vprintf(fmt, ap2);
617 log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP);
623 #if defined(CONFIG_USER_ONLY)
625 struct sigaction act;
626 sigfillset(&act.sa_mask);
627 act.sa_handler = SIG_DFL;
628 sigaction(SIGABRT, &act, NULL);
634 CPUArchState *cpu_copy(CPUArchState *env)
636 CPUArchState *new_env = cpu_init(env->cpu_model_str);
637 CPUArchState *next_cpu = new_env->next_cpu;
638 #if defined(TARGET_HAS_ICE)
643 memcpy(new_env, env, sizeof(CPUArchState));
645 /* Preserve chaining. */
646 new_env->next_cpu = next_cpu;
648 /* Clone all break/watchpoints.
649 Note: Once we support ptrace with hw-debug register access, make sure
650 BP_CPU break/watchpoints are handled correctly on clone. */
651 QTAILQ_INIT(&env->breakpoints);
652 QTAILQ_INIT(&env->watchpoints);
653 #if defined(TARGET_HAS_ICE)
654 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
655 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
657 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
658 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
666 #if !defined(CONFIG_USER_ONLY)
667 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
672 /* we modify the TLB cache so that the dirty bit will be set again
673 when accessing the range */
674 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
675 /* Check that we don't span multiple blocks - this breaks the
676 address comparisons below. */
677 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
678 != (end - 1) - start) {
681 cpu_tlb_reset_dirty_all(start1, length);
685 /* Note: start and end must be within the same ram block. */
686 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
691 start &= TARGET_PAGE_MASK;
692 end = TARGET_PAGE_ALIGN(end);
694 length = end - start;
697 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
700 tlb_reset_dirty_range_all(start, end, length);
704 static int cpu_physical_memory_set_dirty_tracking(int enable)
707 in_migration = enable;
711 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
712 MemoryRegionSection *section,
714 hwaddr paddr, hwaddr xlat,
716 target_ulong *address)
721 if (memory_region_is_ram(section->mr)) {
723 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
725 if (!section->readonly) {
726 iotlb |= phys_section_notdirty;
728 iotlb |= phys_section_rom;
731 iotlb = section - phys_sections;
735 /* Make accesses to pages with watchpoints go via the
736 watchpoint trap routines. */
737 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
738 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
739 /* Avoid trapping reads of pages with a write breakpoint. */
740 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
741 iotlb = phys_section_watch + paddr;
742 *address |= TLB_MMIO;
750 #endif /* defined(CONFIG_USER_ONLY) */
752 #if !defined(CONFIG_USER_ONLY)
754 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
756 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
758 static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
763 if (lp->ptr == PHYS_MAP_NODE_NIL) {
767 p = phys_map_nodes[lp->ptr];
768 for (i = 0; i < L2_SIZE; ++i) {
770 destroy_l2_mapping(&p[i], level - 1);
774 lp->ptr = PHYS_MAP_NODE_NIL;
777 static void destroy_all_mappings(AddressSpaceDispatch *d)
779 destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1);
780 phys_map_nodes_reset();
783 static uint16_t phys_section_add(MemoryRegionSection *section)
785 /* The physical section number is ORed with a page-aligned
786 * pointer to produce the iotlb entries. Thus it should
787 * never overflow into the page-aligned value.
789 assert(phys_sections_nb < TARGET_PAGE_SIZE);
791 if (phys_sections_nb == phys_sections_nb_alloc) {
792 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
793 phys_sections = g_renew(MemoryRegionSection, phys_sections,
794 phys_sections_nb_alloc);
796 phys_sections[phys_sections_nb] = *section;
797 return phys_sections_nb++;
800 static void phys_section_destroy(MemoryRegion *mr)
803 subpage_t *subpage = container_of(mr, subpage_t, iomem);
804 memory_region_destroy(&subpage->iomem);
809 static void phys_sections_clear(void)
811 while (phys_sections_nb > 0) {
812 MemoryRegionSection *section = &phys_sections[--phys_sections_nb];
813 phys_section_destroy(section->mr);
817 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
820 hwaddr base = section->offset_within_address_space
822 MemoryRegionSection *existing = phys_page_find(d, base >> TARGET_PAGE_BITS);
823 MemoryRegionSection subsection = {
824 .offset_within_address_space = base,
825 .size = int128_make64(TARGET_PAGE_SIZE),
829 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
831 if (!(existing->mr->subpage)) {
832 subpage = subpage_init(d->as, base);
833 subsection.mr = &subpage->iomem;
834 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
835 phys_section_add(&subsection));
837 subpage = container_of(existing->mr, subpage_t, iomem);
839 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
840 end = start + int128_get64(section->size) - 1;
841 subpage_register(subpage, start, end, phys_section_add(section));
845 static void register_multipage(AddressSpaceDispatch *d,
846 MemoryRegionSection *section)
848 hwaddr start_addr = section->offset_within_address_space;
849 uint16_t section_index = phys_section_add(section);
850 uint64_t num_pages = int128_get64(int128_rshift(section->size,
854 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
857 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
859 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
860 MemoryRegionSection now = *section, remain = *section;
861 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
863 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
864 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
865 - now.offset_within_address_space;
867 now.size = int128_min(int128_make64(left), now.size);
868 register_subpage(d, &now);
870 now.size = int128_zero();
872 while (int128_ne(remain.size, now.size)) {
873 remain.size = int128_sub(remain.size, now.size);
874 remain.offset_within_address_space += int128_get64(now.size);
875 remain.offset_within_region += int128_get64(now.size);
877 if (int128_lt(remain.size, page_size)) {
878 register_subpage(d, &now);
879 } else if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
880 now.size = page_size;
881 register_subpage(d, &now);
883 now.size = int128_and(now.size, int128_neg(page_size));
884 register_multipage(d, &now);
889 void qemu_flush_coalesced_mmio_buffer(void)
892 kvm_flush_coalesced_mmio_buffer();
895 void qemu_mutex_lock_ramlist(void)
897 qemu_mutex_lock(&ram_list.mutex);
900 void qemu_mutex_unlock_ramlist(void)
902 qemu_mutex_unlock(&ram_list.mutex);
905 #if defined(__linux__) && !defined(TARGET_S390X)
909 #define HUGETLBFS_MAGIC 0x958458f6
911 static long gethugepagesize(const char *path)
917 ret = statfs(path, &fs);
918 } while (ret != 0 && errno == EINTR);
925 if (fs.f_type != HUGETLBFS_MAGIC)
926 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
931 static void *file_ram_alloc(RAMBlock *block,
936 char *sanitized_name;
943 unsigned long hpagesize;
945 hpagesize = gethugepagesize(path);
950 if (memory < hpagesize) {
954 if (kvm_enabled() && !kvm_has_sync_mmu()) {
955 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
959 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
960 sanitized_name = g_strdup(block->mr->name);
961 for (c = sanitized_name; *c != '\0'; c++) {
966 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
968 g_free(sanitized_name);
970 fd = mkstemp(filename);
972 perror("unable to create backing store for hugepages");
979 memory = (memory+hpagesize-1) & ~(hpagesize-1);
982 * ftruncate is not supported by hugetlbfs in older
983 * hosts, so don't bother bailing out on errors.
984 * If anything goes wrong with it under other filesystems,
987 if (ftruncate(fd, memory))
991 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
992 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
993 * to sidestep this quirk.
995 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
996 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
998 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
1000 if (area == MAP_FAILED) {
1001 perror("file_ram_alloc: can't mmap RAM pages");
1010 static ram_addr_t find_ram_offset(ram_addr_t size)
1012 RAMBlock *block, *next_block;
1013 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1015 assert(size != 0); /* it would hand out same offset multiple times */
1017 if (QTAILQ_EMPTY(&ram_list.blocks))
1020 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1021 ram_addr_t end, next = RAM_ADDR_MAX;
1023 end = block->offset + block->length;
1025 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
1026 if (next_block->offset >= end) {
1027 next = MIN(next, next_block->offset);
1030 if (next - end >= size && next - end < mingap) {
1032 mingap = next - end;
1036 if (offset == RAM_ADDR_MAX) {
1037 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1045 ram_addr_t last_ram_offset(void)
1048 ram_addr_t last = 0;
1050 QTAILQ_FOREACH(block, &ram_list.blocks, next)
1051 last = MAX(last, block->offset + block->length);
1056 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1059 QemuOpts *machine_opts;
1061 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1062 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1064 !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
1065 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1067 perror("qemu_madvise");
1068 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1069 "but dump_guest_core=off specified\n");
1074 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1076 RAMBlock *new_block, *block;
1079 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1080 if (block->offset == addr) {
1086 assert(!new_block->idstr[0]);
1089 char *id = qdev_get_dev_path(dev);
1091 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1095 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1097 /* This assumes the iothread lock is taken here too. */
1098 qemu_mutex_lock_ramlist();
1099 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1100 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1101 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1106 qemu_mutex_unlock_ramlist();
1109 static int memory_try_enable_merging(void *addr, size_t len)
1113 opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1114 if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
1115 /* disabled by the user */
1119 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1122 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1125 RAMBlock *block, *new_block;
1127 size = TARGET_PAGE_ALIGN(size);
1128 new_block = g_malloc0(sizeof(*new_block));
1130 /* This assumes the iothread lock is taken here too. */
1131 qemu_mutex_lock_ramlist();
1133 new_block->offset = find_ram_offset(size);
1135 new_block->host = host;
1136 new_block->flags |= RAM_PREALLOC_MASK;
1139 #if defined (__linux__) && !defined(TARGET_S390X)
1140 new_block->host = file_ram_alloc(new_block, size, mem_path);
1141 if (!new_block->host) {
1142 new_block->host = qemu_anon_ram_alloc(size);
1143 memory_try_enable_merging(new_block->host, size);
1146 fprintf(stderr, "-mem-path option unsupported\n");
1150 if (xen_enabled()) {
1151 xen_ram_alloc(new_block->offset, size, mr);
1152 } else if (kvm_enabled()) {
1153 /* some s390/kvm configurations have special constraints */
1154 new_block->host = kvm_ram_alloc(size);
1156 new_block->host = qemu_anon_ram_alloc(size);
1158 memory_try_enable_merging(new_block->host, size);
1161 new_block->length = size;
1163 /* Keep the list sorted from biggest to smallest block. */
1164 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1165 if (block->length < new_block->length) {
1170 QTAILQ_INSERT_BEFORE(block, new_block, next);
1172 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1174 ram_list.mru_block = NULL;
1177 qemu_mutex_unlock_ramlist();
1179 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
1180 last_ram_offset() >> TARGET_PAGE_BITS);
1181 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1182 0, size >> TARGET_PAGE_BITS);
1183 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
1185 qemu_ram_setup_dump(new_block->host, size);
1186 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1189 kvm_setup_guest_memory(new_block->host, size);
1191 return new_block->offset;
1194 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1196 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1199 void qemu_ram_free_from_ptr(ram_addr_t addr)
1203 /* This assumes the iothread lock is taken here too. */
1204 qemu_mutex_lock_ramlist();
1205 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1206 if (addr == block->offset) {
1207 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1208 ram_list.mru_block = NULL;
1214 qemu_mutex_unlock_ramlist();
1217 void qemu_ram_free(ram_addr_t addr)
1221 /* This assumes the iothread lock is taken here too. */
1222 qemu_mutex_lock_ramlist();
1223 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1224 if (addr == block->offset) {
1225 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1226 ram_list.mru_block = NULL;
1228 if (block->flags & RAM_PREALLOC_MASK) {
1230 } else if (mem_path) {
1231 #if defined (__linux__) && !defined(TARGET_S390X)
1233 munmap(block->host, block->length);
1236 qemu_anon_ram_free(block->host, block->length);
1242 if (xen_enabled()) {
1243 xen_invalidate_map_cache_entry(block->host);
1245 qemu_anon_ram_free(block->host, block->length);
1252 qemu_mutex_unlock_ramlist();
1257 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1264 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1265 offset = addr - block->offset;
1266 if (offset < block->length) {
1267 vaddr = block->host + offset;
1268 if (block->flags & RAM_PREALLOC_MASK) {
1272 munmap(vaddr, length);
1274 #if defined(__linux__) && !defined(TARGET_S390X)
1277 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1280 flags |= MAP_PRIVATE;
1282 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1283 flags, block->fd, offset);
1285 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1286 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1293 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1294 flags |= MAP_SHARED | MAP_ANONYMOUS;
1295 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
1298 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1299 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1303 if (area != vaddr) {
1304 fprintf(stderr, "Could not remap addr: "
1305 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1309 memory_try_enable_merging(vaddr, length);
1310 qemu_ram_setup_dump(vaddr, length);
1316 #endif /* !_WIN32 */
1318 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1319 With the exception of the softmmu code in this file, this should
1320 only be used for local memory (e.g. video ram) that the device owns,
1321 and knows it isn't going to access beyond the end of the block.
1323 It should not be used for general purpose DMA.
1324 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1326 void *qemu_get_ram_ptr(ram_addr_t addr)
1330 /* The list is protected by the iothread lock here. */
1331 block = ram_list.mru_block;
1332 if (block && addr - block->offset < block->length) {
1335 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1336 if (addr - block->offset < block->length) {
1341 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1345 ram_list.mru_block = block;
1346 if (xen_enabled()) {
1347 /* We need to check if the requested address is in the RAM
1348 * because we don't want to map the entire memory in QEMU.
1349 * In that case just map until the end of the page.
1351 if (block->offset == 0) {
1352 return xen_map_cache(addr, 0, 0);
1353 } else if (block->host == NULL) {
1355 xen_map_cache(block->offset, block->length, 1);
1358 return block->host + (addr - block->offset);
1361 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1362 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1364 * ??? Is this still necessary?
1366 static void *qemu_safe_ram_ptr(ram_addr_t addr)
1370 /* The list is protected by the iothread lock here. */
1371 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1372 if (addr - block->offset < block->length) {
1373 if (xen_enabled()) {
1374 /* We need to check if the requested address is in the RAM
1375 * because we don't want to map the entire memory in QEMU.
1376 * In that case just map until the end of the page.
1378 if (block->offset == 0) {
1379 return xen_map_cache(addr, 0, 0);
1380 } else if (block->host == NULL) {
1382 xen_map_cache(block->offset, block->length, 1);
1385 return block->host + (addr - block->offset);
1389 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1395 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1396 * but takes a size argument */
1397 static void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
1402 if (xen_enabled()) {
1403 return xen_map_cache(addr, *size, 1);
1407 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1408 if (addr - block->offset < block->length) {
1409 if (addr - block->offset + *size > block->length)
1410 *size = block->length - addr + block->offset;
1411 return block->host + (addr - block->offset);
1415 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1420 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1423 uint8_t *host = ptr;
1425 if (xen_enabled()) {
1426 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1430 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1431 /* This case append when the block is not mapped. */
1432 if (block->host == NULL) {
1435 if (host - block->host < block->length) {
1436 *ram_addr = block->offset + (host - block->host);
1444 /* Some of the softmmu routines need to translate from a host pointer
1445 (typically a TLB entry) back to a ram offset. */
1446 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
1448 ram_addr_t ram_addr;
1450 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
1451 fprintf(stderr, "Bad ram pointer %p\n", ptr);
1457 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1458 uint64_t val, unsigned size)
1461 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1462 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1463 tb_invalidate_phys_page_fast(ram_addr, size);
1464 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1468 stb_p(qemu_get_ram_ptr(ram_addr), val);
1471 stw_p(qemu_get_ram_ptr(ram_addr), val);
1474 stl_p(qemu_get_ram_ptr(ram_addr), val);
1479 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1480 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
1481 /* we remove the notdirty callback only if the code has been
1483 if (dirty_flags == 0xff)
1484 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
1487 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1488 unsigned size, bool is_write)
1493 static const MemoryRegionOps notdirty_mem_ops = {
1494 .write = notdirty_mem_write,
1495 .valid.accepts = notdirty_mem_accepts,
1496 .endianness = DEVICE_NATIVE_ENDIAN,
1499 /* Generate a debug exception if a watchpoint has been hit. */
1500 static void check_watchpoint(int offset, int len_mask, int flags)
1502 CPUArchState *env = cpu_single_env;
1503 target_ulong pc, cs_base;
1508 if (env->watchpoint_hit) {
1509 /* We re-entered the check after replacing the TB. Now raise
1510 * the debug interrupt so that is will trigger after the
1511 * current instruction. */
1512 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
1515 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1516 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1517 if ((vaddr == (wp->vaddr & len_mask) ||
1518 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1519 wp->flags |= BP_WATCHPOINT_HIT;
1520 if (!env->watchpoint_hit) {
1521 env->watchpoint_hit = wp;
1522 tb_check_watchpoint(env);
1523 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1524 env->exception_index = EXCP_DEBUG;
1527 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1528 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1529 cpu_resume_from_signal(env, NULL);
1533 wp->flags &= ~BP_WATCHPOINT_HIT;
1538 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1539 so these check for a hit then pass through to the normal out-of-line
1541 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1544 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1546 case 1: return ldub_phys(addr);
1547 case 2: return lduw_phys(addr);
1548 case 4: return ldl_phys(addr);
1553 static void watch_mem_write(void *opaque, hwaddr addr,
1554 uint64_t val, unsigned size)
1556 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1559 stb_phys(addr, val);
1562 stw_phys(addr, val);
1565 stl_phys(addr, val);
1571 static const MemoryRegionOps watch_mem_ops = {
1572 .read = watch_mem_read,
1573 .write = watch_mem_write,
1574 .endianness = DEVICE_NATIVE_ENDIAN,
1577 static uint64_t subpage_read(void *opaque, hwaddr addr,
1580 subpage_t *subpage = opaque;
1583 #if defined(DEBUG_SUBPAGE)
1584 printf("%s: subpage %p len %d addr " TARGET_FMT_plx "\n", __func__,
1585 subpage, len, addr);
1587 address_space_read(subpage->as, addr + subpage->base, buf, len);
1600 static void subpage_write(void *opaque, hwaddr addr,
1601 uint64_t value, unsigned len)
1603 subpage_t *subpage = opaque;
1606 #if defined(DEBUG_SUBPAGE)
1607 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1608 " value %"PRIx64"\n",
1609 __func__, subpage, len, addr, value);
1624 address_space_write(subpage->as, addr + subpage->base, buf, len);
1627 static bool subpage_accepts(void *opaque, hwaddr addr,
1628 unsigned size, bool is_write)
1630 subpage_t *subpage = opaque;
1631 #if defined(DEBUG_SUBPAGE)
1632 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx "\n",
1633 __func__, subpage, is_write ? 'w' : 'r', len, addr);
1636 return address_space_access_valid(subpage->as, addr + subpage->base,
1640 static const MemoryRegionOps subpage_ops = {
1641 .read = subpage_read,
1642 .write = subpage_write,
1643 .valid.accepts = subpage_accepts,
1644 .endianness = DEVICE_NATIVE_ENDIAN,
1647 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1652 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1654 idx = SUBPAGE_IDX(start);
1655 eidx = SUBPAGE_IDX(end);
1656 #if defined(DEBUG_SUBPAGE)
1657 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
1658 mmio, start, end, idx, eidx, memory);
1660 for (; idx <= eidx; idx++) {
1661 mmio->sub_section[idx] = section;
1667 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
1671 mmio = g_malloc0(sizeof(subpage_t));
1675 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
1676 "subpage", TARGET_PAGE_SIZE);
1677 mmio->iomem.subpage = true;
1678 #if defined(DEBUG_SUBPAGE)
1679 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1680 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
1682 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
1687 static uint16_t dummy_section(MemoryRegion *mr)
1689 MemoryRegionSection section = {
1691 .offset_within_address_space = 0,
1692 .offset_within_region = 0,
1693 .size = int128_2_64(),
1696 return phys_section_add(§ion);
1699 MemoryRegion *iotlb_to_region(hwaddr index)
1701 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
1704 static void io_mem_init(void)
1706 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1707 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1708 "unassigned", UINT64_MAX);
1709 memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL,
1710 "notdirty", UINT64_MAX);
1711 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1712 "watch", UINT64_MAX);
1715 static void mem_begin(MemoryListener *listener)
1717 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
1719 destroy_all_mappings(d);
1720 d->phys_map.ptr = PHYS_MAP_NODE_NIL;
1723 static void core_begin(MemoryListener *listener)
1725 phys_sections_clear();
1726 phys_section_unassigned = dummy_section(&io_mem_unassigned);
1727 phys_section_notdirty = dummy_section(&io_mem_notdirty);
1728 phys_section_rom = dummy_section(&io_mem_rom);
1729 phys_section_watch = dummy_section(&io_mem_watch);
1732 static void tcg_commit(MemoryListener *listener)
1736 /* since each CPU stores ram addresses in its TLB cache, we must
1737 reset the modified entries */
1739 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1744 static void core_log_global_start(MemoryListener *listener)
1746 cpu_physical_memory_set_dirty_tracking(1);
1749 static void core_log_global_stop(MemoryListener *listener)
1751 cpu_physical_memory_set_dirty_tracking(0);
1754 static MemoryListener core_memory_listener = {
1755 .begin = core_begin,
1756 .log_global_start = core_log_global_start,
1757 .log_global_stop = core_log_global_stop,
1761 static MemoryListener tcg_memory_listener = {
1762 .commit = tcg_commit,
1765 void address_space_init_dispatch(AddressSpace *as)
1767 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1769 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1770 d->listener = (MemoryListener) {
1772 .region_add = mem_add,
1773 .region_nop = mem_add,
1778 memory_listener_register(&d->listener, as);
1781 void address_space_destroy_dispatch(AddressSpace *as)
1783 AddressSpaceDispatch *d = as->dispatch;
1785 memory_listener_unregister(&d->listener);
1786 destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1);
1788 as->dispatch = NULL;
1791 static void memory_map_init(void)
1793 system_memory = g_malloc(sizeof(*system_memory));
1794 memory_region_init(system_memory, NULL, "system", INT64_MAX);
1795 address_space_init(&address_space_memory, system_memory, "memory");
1797 system_io = g_malloc(sizeof(*system_io));
1798 memory_region_init(system_io, NULL, "io", 65536);
1799 address_space_init(&address_space_io, system_io, "I/O");
1801 memory_listener_register(&core_memory_listener, &address_space_memory);
1802 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1805 MemoryRegion *get_system_memory(void)
1807 return system_memory;
1810 MemoryRegion *get_system_io(void)
1815 #endif /* !defined(CONFIG_USER_ONLY) */
1817 /* physical memory access (slow version, mainly for debug) */
1818 #if defined(CONFIG_USER_ONLY)
1819 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
1820 uint8_t *buf, int len, int is_write)
1827 page = addr & TARGET_PAGE_MASK;
1828 l = (page + TARGET_PAGE_SIZE) - addr;
1831 flags = page_get_flags(page);
1832 if (!(flags & PAGE_VALID))
1835 if (!(flags & PAGE_WRITE))
1837 /* XXX: this code should not depend on lock_user */
1838 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1841 unlock_user(p, addr, l);
1843 if (!(flags & PAGE_READ))
1845 /* XXX: this code should not depend on lock_user */
1846 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1849 unlock_user(p, addr, 0);
1860 static void invalidate_and_set_dirty(hwaddr addr,
1863 if (!cpu_physical_memory_is_dirty(addr)) {
1864 /* invalidate code */
1865 tb_invalidate_phys_page_range(addr, addr + length, 0);
1867 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1869 xen_modified_memory(addr, length);
1872 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1874 if (memory_region_is_ram(mr)) {
1875 return !(is_write && mr->readonly);
1877 if (memory_region_is_romd(mr)) {
1884 static inline int memory_access_size(MemoryRegion *mr, int l, hwaddr addr)
1886 if (l >= 4 && (((addr & 3) == 0 || mr->ops->impl.unaligned))) {
1889 if (l >= 2 && (((addr & 1) == 0) || mr->ops->impl.unaligned)) {
1895 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1896 int len, bool is_write)
1907 mr = address_space_translate(as, addr, &addr1, &l, is_write);
1910 if (!memory_access_is_direct(mr, is_write)) {
1911 l = memory_access_size(mr, l, addr1);
1912 /* XXX: could force cpu_single_env to NULL to avoid
1915 /* 32 bit write access */
1917 error |= io_mem_write(mr, addr1, val, 4);
1918 } else if (l == 2) {
1919 /* 16 bit write access */
1921 error |= io_mem_write(mr, addr1, val, 2);
1923 /* 8 bit write access */
1925 error |= io_mem_write(mr, addr1, val, 1);
1928 addr1 += memory_region_get_ram_addr(mr);
1930 ptr = qemu_get_ram_ptr(addr1);
1931 memcpy(ptr, buf, l);
1932 invalidate_and_set_dirty(addr1, l);
1935 if (!memory_access_is_direct(mr, is_write)) {
1937 l = memory_access_size(mr, l, addr1);
1939 /* 32 bit read access */
1940 error |= io_mem_read(mr, addr1, &val, 4);
1942 } else if (l == 2) {
1943 /* 16 bit read access */
1944 error |= io_mem_read(mr, addr1, &val, 2);
1947 /* 8 bit read access */
1948 error |= io_mem_read(mr, addr1, &val, 1);
1953 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
1954 memcpy(buf, ptr, l);
1965 bool address_space_write(AddressSpace *as, hwaddr addr,
1966 const uint8_t *buf, int len)
1968 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
1971 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
1973 return address_space_rw(as, addr, buf, len, false);
1977 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
1978 int len, int is_write)
1980 address_space_rw(&address_space_memory, addr, buf, len, is_write);
1983 /* used for ROM loading : can write in RAM and ROM */
1984 void cpu_physical_memory_write_rom(hwaddr addr,
1985 const uint8_t *buf, int len)
1994 mr = address_space_translate(&address_space_memory,
1995 addr, &addr1, &l, true);
1997 if (!(memory_region_is_ram(mr) ||
1998 memory_region_is_romd(mr))) {
2001 addr1 += memory_region_get_ram_addr(mr);
2003 ptr = qemu_get_ram_ptr(addr1);
2004 memcpy(ptr, buf, l);
2005 invalidate_and_set_dirty(addr1, l);
2019 static BounceBuffer bounce;
2021 typedef struct MapClient {
2023 void (*callback)(void *opaque);
2024 QLIST_ENTRY(MapClient) link;
2027 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2028 = QLIST_HEAD_INITIALIZER(map_client_list);
2030 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2032 MapClient *client = g_malloc(sizeof(*client));
2034 client->opaque = opaque;
2035 client->callback = callback;
2036 QLIST_INSERT_HEAD(&map_client_list, client, link);
2040 static void cpu_unregister_map_client(void *_client)
2042 MapClient *client = (MapClient *)_client;
2044 QLIST_REMOVE(client, link);
2048 static void cpu_notify_map_clients(void)
2052 while (!QLIST_EMPTY(&map_client_list)) {
2053 client = QLIST_FIRST(&map_client_list);
2054 client->callback(client->opaque);
2055 cpu_unregister_map_client(client);
2059 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2066 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2067 if (!memory_access_is_direct(mr, is_write)) {
2068 l = memory_access_size(mr, l, addr);
2069 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2080 /* Map a physical memory region into a host virtual address.
2081 * May map a subset of the requested range, given by and returned in *plen.
2082 * May return NULL if resources needed to perform the mapping are exhausted.
2083 * Use only for reads OR writes - not for read-modify-write operations.
2084 * Use cpu_register_map_client() to know when retrying the map operation is
2085 * likely to succeed.
2087 void *address_space_map(AddressSpace *as,
2096 ram_addr_t raddr = RAM_ADDR_MAX;
2102 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2104 if (!memory_access_is_direct(mr, is_write)) {
2105 if (todo || bounce.buffer) {
2108 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2112 address_space_read(as, addr, bounce.buffer, l);
2116 return bounce.buffer;
2119 raddr = memory_region_get_ram_addr(mr) + xlat;
2121 if (memory_region_get_ram_addr(mr) + xlat != raddr + todo) {
2131 ret = qemu_ram_ptr_length(raddr, &rlen);
2136 /* Unmaps a memory region previously mapped by address_space_map().
2137 * Will also mark the memory as dirty if is_write == 1. access_len gives
2138 * the amount of memory that was actually read or written by the caller.
2140 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2141 int is_write, hwaddr access_len)
2143 if (buffer != bounce.buffer) {
2145 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
2146 while (access_len) {
2148 l = TARGET_PAGE_SIZE;
2151 invalidate_and_set_dirty(addr1, l);
2156 if (xen_enabled()) {
2157 xen_invalidate_map_cache_entry(buffer);
2162 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2164 qemu_vfree(bounce.buffer);
2165 bounce.buffer = NULL;
2166 cpu_notify_map_clients();
2169 void *cpu_physical_memory_map(hwaddr addr,
2173 return address_space_map(&address_space_memory, addr, plen, is_write);
2176 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2177 int is_write, hwaddr access_len)
2179 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2182 /* warning: addr must be aligned */
2183 static inline uint32_t ldl_phys_internal(hwaddr addr,
2184 enum device_endian endian)
2192 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2194 if (l < 4 || !memory_access_is_direct(mr, false)) {
2196 io_mem_read(mr, addr1, &val, 4);
2197 #if defined(TARGET_WORDS_BIGENDIAN)
2198 if (endian == DEVICE_LITTLE_ENDIAN) {
2202 if (endian == DEVICE_BIG_ENDIAN) {
2208 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2212 case DEVICE_LITTLE_ENDIAN:
2213 val = ldl_le_p(ptr);
2215 case DEVICE_BIG_ENDIAN:
2216 val = ldl_be_p(ptr);
2226 uint32_t ldl_phys(hwaddr addr)
2228 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2231 uint32_t ldl_le_phys(hwaddr addr)
2233 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2236 uint32_t ldl_be_phys(hwaddr addr)
2238 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2241 /* warning: addr must be aligned */
2242 static inline uint64_t ldq_phys_internal(hwaddr addr,
2243 enum device_endian endian)
2251 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2253 if (l < 8 || !memory_access_is_direct(mr, false)) {
2255 io_mem_read(mr, addr1, &val, 8);
2256 #if defined(TARGET_WORDS_BIGENDIAN)
2257 if (endian == DEVICE_LITTLE_ENDIAN) {
2261 if (endian == DEVICE_BIG_ENDIAN) {
2267 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2271 case DEVICE_LITTLE_ENDIAN:
2272 val = ldq_le_p(ptr);
2274 case DEVICE_BIG_ENDIAN:
2275 val = ldq_be_p(ptr);
2285 uint64_t ldq_phys(hwaddr addr)
2287 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2290 uint64_t ldq_le_phys(hwaddr addr)
2292 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2295 uint64_t ldq_be_phys(hwaddr addr)
2297 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2301 uint32_t ldub_phys(hwaddr addr)
2304 cpu_physical_memory_read(addr, &val, 1);
2308 /* warning: addr must be aligned */
2309 static inline uint32_t lduw_phys_internal(hwaddr addr,
2310 enum device_endian endian)
2318 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2320 if (l < 2 || !memory_access_is_direct(mr, false)) {
2322 io_mem_read(mr, addr1, &val, 2);
2323 #if defined(TARGET_WORDS_BIGENDIAN)
2324 if (endian == DEVICE_LITTLE_ENDIAN) {
2328 if (endian == DEVICE_BIG_ENDIAN) {
2334 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2338 case DEVICE_LITTLE_ENDIAN:
2339 val = lduw_le_p(ptr);
2341 case DEVICE_BIG_ENDIAN:
2342 val = lduw_be_p(ptr);
2352 uint32_t lduw_phys(hwaddr addr)
2354 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2357 uint32_t lduw_le_phys(hwaddr addr)
2359 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2362 uint32_t lduw_be_phys(hwaddr addr)
2364 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2367 /* warning: addr must be aligned. The ram page is not masked as dirty
2368 and the code inside is not invalidated. It is useful if the dirty
2369 bits are used to track modified PTEs */
2370 void stl_phys_notdirty(hwaddr addr, uint32_t val)
2377 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2379 if (l < 4 || !memory_access_is_direct(mr, true)) {
2380 io_mem_write(mr, addr1, val, 4);
2382 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2383 ptr = qemu_get_ram_ptr(addr1);
2386 if (unlikely(in_migration)) {
2387 if (!cpu_physical_memory_is_dirty(addr1)) {
2388 /* invalidate code */
2389 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2391 cpu_physical_memory_set_dirty_flags(
2392 addr1, (0xff & ~CODE_DIRTY_FLAG));
2398 /* warning: addr must be aligned */
2399 static inline void stl_phys_internal(hwaddr addr, uint32_t val,
2400 enum device_endian endian)
2407 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2409 if (l < 4 || !memory_access_is_direct(mr, true)) {
2410 #if defined(TARGET_WORDS_BIGENDIAN)
2411 if (endian == DEVICE_LITTLE_ENDIAN) {
2415 if (endian == DEVICE_BIG_ENDIAN) {
2419 io_mem_write(mr, addr1, val, 4);
2422 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2423 ptr = qemu_get_ram_ptr(addr1);
2425 case DEVICE_LITTLE_ENDIAN:
2428 case DEVICE_BIG_ENDIAN:
2435 invalidate_and_set_dirty(addr1, 4);
2439 void stl_phys(hwaddr addr, uint32_t val)
2441 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2444 void stl_le_phys(hwaddr addr, uint32_t val)
2446 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2449 void stl_be_phys(hwaddr addr, uint32_t val)
2451 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2455 void stb_phys(hwaddr addr, uint32_t val)
2458 cpu_physical_memory_write(addr, &v, 1);
2461 /* warning: addr must be aligned */
2462 static inline void stw_phys_internal(hwaddr addr, uint32_t val,
2463 enum device_endian endian)
2470 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2472 if (l < 2 || !memory_access_is_direct(mr, true)) {
2473 #if defined(TARGET_WORDS_BIGENDIAN)
2474 if (endian == DEVICE_LITTLE_ENDIAN) {
2478 if (endian == DEVICE_BIG_ENDIAN) {
2482 io_mem_write(mr, addr1, val, 2);
2485 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2486 ptr = qemu_get_ram_ptr(addr1);
2488 case DEVICE_LITTLE_ENDIAN:
2491 case DEVICE_BIG_ENDIAN:
2498 invalidate_and_set_dirty(addr1, 2);
2502 void stw_phys(hwaddr addr, uint32_t val)
2504 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2507 void stw_le_phys(hwaddr addr, uint32_t val)
2509 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2512 void stw_be_phys(hwaddr addr, uint32_t val)
2514 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2518 void stq_phys(hwaddr addr, uint64_t val)
2521 cpu_physical_memory_write(addr, &val, 8);
2524 void stq_le_phys(hwaddr addr, uint64_t val)
2526 val = cpu_to_le64(val);
2527 cpu_physical_memory_write(addr, &val, 8);
2530 void stq_be_phys(hwaddr addr, uint64_t val)
2532 val = cpu_to_be64(val);
2533 cpu_physical_memory_write(addr, &val, 8);
2536 /* virtual memory access for debug (includes writing to ROM) */
2537 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
2538 uint8_t *buf, int len, int is_write)
2545 page = addr & TARGET_PAGE_MASK;
2546 phys_addr = cpu_get_phys_page_debug(env, page);
2547 /* if no physical page mapped, return an error */
2548 if (phys_addr == -1)
2550 l = (page + TARGET_PAGE_SIZE) - addr;
2553 phys_addr += (addr & ~TARGET_PAGE_MASK);
2555 cpu_physical_memory_write_rom(phys_addr, buf, l);
2557 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
2566 #if !defined(CONFIG_USER_ONLY)
2569 * A helper function for the _utterly broken_ virtio device model to find out if
2570 * it's running on a big endian machine. Don't do this at home kids!
2572 bool virtio_is_big_endian(void);
2573 bool virtio_is_big_endian(void)
2575 #if defined(TARGET_WORDS_BIGENDIAN)
2584 #ifndef CONFIG_USER_ONLY
2585 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2590 mr = address_space_translate(&address_space_memory,
2591 phys_addr, &phys_addr, &l, false);
2593 return !(memory_region_is_ram(mr) ||
2594 memory_region_is_romd(mr));
2597 void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2601 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2602 func(block->host, block->offset, block->length, opaque);