4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include <sys/types.h>
27 #include "qemu-common.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "hw/xen/xen.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "exec/memory.h"
38 #include "sysemu/dma.h"
39 #include "exec/address-spaces.h"
40 #if defined(CONFIG_USER_ONLY)
42 #else /* !CONFIG_USER_ONLY */
43 #include "sysemu/xen-mapcache.h"
46 #include "exec/cpu-all.h"
48 #include "exec/cputlb.h"
49 #include "translate-all.h"
51 #include "exec/memory-internal.h"
53 //#define DEBUG_SUBPAGE
55 #if !defined(CONFIG_USER_ONLY)
57 static int in_migration;
59 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
61 static MemoryRegion *system_memory;
62 static MemoryRegion *system_io;
64 AddressSpace address_space_io;
65 AddressSpace address_space_memory;
67 MemoryRegion io_mem_rom, io_mem_notdirty;
68 static MemoryRegion io_mem_unassigned;
72 CPUArchState *first_cpu;
73 /* current CPU in the current thread. It is only valid inside
75 DEFINE_TLS(CPUArchState *,cpu_single_env);
76 /* 0 = Do not count executed instructions.
77 1 = Precise instruction counting.
78 2 = Adaptive rate instruction counting. */
81 #if !defined(CONFIG_USER_ONLY)
83 typedef struct PhysPageEntry PhysPageEntry;
85 struct PhysPageEntry {
87 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
91 typedef PhysPageEntry Node[L2_SIZE];
93 struct AddressSpaceDispatch {
94 /* This is a multi-level map on the physical address space.
95 * The bottom level has pointers to MemoryRegionSections.
97 PhysPageEntry phys_map;
99 MemoryRegionSection *sections;
103 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
104 typedef struct subpage_t {
108 uint16_t sub_section[TARGET_PAGE_SIZE];
111 #define PHYS_SECTION_UNASSIGNED 0
112 #define PHYS_SECTION_NOTDIRTY 1
113 #define PHYS_SECTION_ROM 2
114 #define PHYS_SECTION_WATCH 3
116 typedef struct PhysPageMap {
117 unsigned sections_nb;
118 unsigned sections_nb_alloc;
120 unsigned nodes_nb_alloc;
122 MemoryRegionSection *sections;
125 static PhysPageMap cur_map;
126 static PhysPageMap next_map;
128 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
130 static void io_mem_init(void);
131 static void memory_map_init(void);
132 static void *qemu_safe_ram_ptr(ram_addr_t addr);
134 static MemoryRegion io_mem_watch;
137 #if !defined(CONFIG_USER_ONLY)
139 static void phys_map_node_reserve(unsigned nodes)
141 if (next_map.nodes_nb + nodes > next_map.nodes_nb_alloc) {
142 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc * 2,
144 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc,
145 next_map.nodes_nb + nodes);
146 next_map.nodes = g_renew(Node, next_map.nodes,
147 next_map.nodes_nb_alloc);
151 static uint16_t phys_map_node_alloc(void)
156 ret = next_map.nodes_nb++;
157 assert(ret != PHYS_MAP_NODE_NIL);
158 assert(ret != next_map.nodes_nb_alloc);
159 for (i = 0; i < L2_SIZE; ++i) {
160 next_map.nodes[ret][i].is_leaf = 0;
161 next_map.nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
166 static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
167 hwaddr *nb, uint16_t leaf,
172 hwaddr step = (hwaddr)1 << (level * L2_BITS);
174 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
175 lp->ptr = phys_map_node_alloc();
176 p = next_map.nodes[lp->ptr];
178 for (i = 0; i < L2_SIZE; i++) {
180 p[i].ptr = PHYS_SECTION_UNASSIGNED;
184 p = next_map.nodes[lp->ptr];
186 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
188 while (*nb && lp < &p[L2_SIZE]) {
189 if ((*index & (step - 1)) == 0 && *nb >= step) {
195 phys_page_set_level(lp, index, nb, leaf, level - 1);
201 static void phys_page_set(AddressSpaceDispatch *d,
202 hwaddr index, hwaddr nb,
205 /* Wildly overreserve - it doesn't matter much. */
206 phys_map_node_reserve(3 * P_L2_LEVELS);
208 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
211 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr index,
212 Node *nodes, MemoryRegionSection *sections)
217 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
218 if (lp.ptr == PHYS_MAP_NODE_NIL) {
219 return §ions[PHYS_SECTION_UNASSIGNED];
222 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
224 return §ions[lp.ptr];
227 bool memory_region_is_unassigned(MemoryRegion *mr)
229 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
230 && mr != &io_mem_watch;
233 static MemoryRegionSection *address_space_lookup_region(AddressSpace *as,
235 bool resolve_subpage)
237 AddressSpaceDispatch *d = as->dispatch;
238 MemoryRegionSection *section;
241 section = phys_page_find(d->phys_map, addr >> TARGET_PAGE_BITS,
242 d->nodes, d->sections);
243 if (resolve_subpage && section->mr->subpage) {
244 subpage = container_of(section->mr, subpage_t, iomem);
245 section = &d->sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
250 static MemoryRegionSection *
251 address_space_translate_internal(AddressSpace *as, hwaddr addr, hwaddr *xlat,
252 hwaddr *plen, bool resolve_subpage)
254 MemoryRegionSection *section;
257 section = address_space_lookup_region(as, addr, resolve_subpage);
258 /* Compute offset within MemoryRegionSection */
259 addr -= section->offset_within_address_space;
261 /* Compute offset within MemoryRegion */
262 *xlat = addr + section->offset_within_region;
264 diff = int128_sub(section->mr->size, int128_make64(addr));
265 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
269 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
270 hwaddr *xlat, hwaddr *plen,
274 MemoryRegionSection *section;
279 section = address_space_translate_internal(as, addr, &addr, plen, true);
282 if (!mr->iommu_ops) {
286 iotlb = mr->iommu_ops->translate(mr, addr);
287 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
288 | (addr & iotlb.addr_mask));
289 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
290 if (!(iotlb.perm & (1 << is_write))) {
291 mr = &io_mem_unassigned;
295 as = iotlb.target_as;
303 MemoryRegionSection *
304 address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
307 MemoryRegionSection *section;
308 section = address_space_translate_internal(as, addr, xlat, plen, false);
310 assert(!section->mr->iommu_ops);
315 void cpu_exec_init_all(void)
317 #if !defined(CONFIG_USER_ONLY)
318 qemu_mutex_init(&ram_list.mutex);
324 #if !defined(CONFIG_USER_ONLY)
326 static int cpu_common_post_load(void *opaque, int version_id)
328 CPUState *cpu = opaque;
330 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
331 version_id is increased. */
332 cpu->interrupt_request &= ~0x01;
333 tlb_flush(cpu->env_ptr, 1);
338 const VMStateDescription vmstate_cpu_common = {
339 .name = "cpu_common",
341 .minimum_version_id = 1,
342 .minimum_version_id_old = 1,
343 .post_load = cpu_common_post_load,
344 .fields = (VMStateField []) {
345 VMSTATE_UINT32(halted, CPUState),
346 VMSTATE_UINT32(interrupt_request, CPUState),
347 VMSTATE_END_OF_LIST()
353 CPUState *qemu_get_cpu(int index)
355 CPUArchState *env = first_cpu;
356 CPUState *cpu = NULL;
359 cpu = ENV_GET_CPU(env);
360 if (cpu->cpu_index == index) {
366 return env ? cpu : NULL;
369 void qemu_for_each_cpu(void (*func)(CPUState *cpu, void *data), void *data)
371 CPUArchState *env = first_cpu;
374 func(ENV_GET_CPU(env), data);
379 void cpu_exec_init(CPUArchState *env)
381 CPUState *cpu = ENV_GET_CPU(env);
382 CPUClass *cc = CPU_GET_CLASS(cpu);
386 #if defined(CONFIG_USER_ONLY)
389 env->next_cpu = NULL;
392 while (*penv != NULL) {
393 penv = &(*penv)->next_cpu;
396 cpu->cpu_index = cpu_index;
398 QTAILQ_INIT(&env->breakpoints);
399 QTAILQ_INIT(&env->watchpoints);
400 #ifndef CONFIG_USER_ONLY
401 cpu->thread_id = qemu_get_thread_id();
404 #if defined(CONFIG_USER_ONLY)
407 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
408 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
409 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
410 cpu_save, cpu_load, env);
411 assert(cc->vmsd == NULL);
413 if (cc->vmsd != NULL) {
414 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
418 #if defined(TARGET_HAS_ICE)
419 #if defined(CONFIG_USER_ONLY)
420 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
422 tb_invalidate_phys_page_range(pc, pc + 1, 0);
425 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
427 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
428 (pc & ~TARGET_PAGE_MASK));
431 #endif /* TARGET_HAS_ICE */
433 #if defined(CONFIG_USER_ONLY)
434 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
439 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
440 int flags, CPUWatchpoint **watchpoint)
445 /* Add a watchpoint. */
446 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
447 int flags, CPUWatchpoint **watchpoint)
449 target_ulong len_mask = ~(len - 1);
452 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
453 if ((len & (len - 1)) || (addr & ~len_mask) ||
454 len == 0 || len > TARGET_PAGE_SIZE) {
455 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
456 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
459 wp = g_malloc(sizeof(*wp));
462 wp->len_mask = len_mask;
465 /* keep all GDB-injected watchpoints in front */
467 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
469 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
471 tlb_flush_page(env, addr);
478 /* Remove a specific watchpoint. */
479 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
482 target_ulong len_mask = ~(len - 1);
485 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
486 if (addr == wp->vaddr && len_mask == wp->len_mask
487 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
488 cpu_watchpoint_remove_by_ref(env, wp);
495 /* Remove a specific watchpoint by reference. */
496 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
498 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
500 tlb_flush_page(env, watchpoint->vaddr);
505 /* Remove all matching watchpoints. */
506 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
508 CPUWatchpoint *wp, *next;
510 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
511 if (wp->flags & mask)
512 cpu_watchpoint_remove_by_ref(env, wp);
517 /* Add a breakpoint. */
518 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
519 CPUBreakpoint **breakpoint)
521 #if defined(TARGET_HAS_ICE)
524 bp = g_malloc(sizeof(*bp));
529 /* keep all GDB-injected breakpoints in front */
531 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
533 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
535 breakpoint_invalidate(env, pc);
545 /* Remove a specific breakpoint. */
546 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
548 #if defined(TARGET_HAS_ICE)
551 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
552 if (bp->pc == pc && bp->flags == flags) {
553 cpu_breakpoint_remove_by_ref(env, bp);
563 /* Remove a specific breakpoint by reference. */
564 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
566 #if defined(TARGET_HAS_ICE)
567 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
569 breakpoint_invalidate(env, breakpoint->pc);
575 /* Remove all matching breakpoints. */
576 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
578 #if defined(TARGET_HAS_ICE)
579 CPUBreakpoint *bp, *next;
581 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
582 if (bp->flags & mask)
583 cpu_breakpoint_remove_by_ref(env, bp);
588 /* enable or disable single step mode. EXCP_DEBUG is returned by the
589 CPU loop after each instruction */
590 void cpu_single_step(CPUArchState *env, int enabled)
592 #if defined(TARGET_HAS_ICE)
593 if (env->singlestep_enabled != enabled) {
594 env->singlestep_enabled = enabled;
596 kvm_update_guest_debug(env, 0);
598 /* must flush all the translated code to avoid inconsistencies */
599 /* XXX: only flush what is necessary */
606 void cpu_abort(CPUArchState *env, const char *fmt, ...)
608 CPUState *cpu = ENV_GET_CPU(env);
614 fprintf(stderr, "qemu: fatal: ");
615 vfprintf(stderr, fmt, ap);
616 fprintf(stderr, "\n");
617 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
618 if (qemu_log_enabled()) {
619 qemu_log("qemu: fatal: ");
620 qemu_log_vprintf(fmt, ap2);
622 log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP);
628 #if defined(CONFIG_USER_ONLY)
630 struct sigaction act;
631 sigfillset(&act.sa_mask);
632 act.sa_handler = SIG_DFL;
633 sigaction(SIGABRT, &act, NULL);
639 CPUArchState *cpu_copy(CPUArchState *env)
641 CPUArchState *new_env = cpu_init(env->cpu_model_str);
642 CPUArchState *next_cpu = new_env->next_cpu;
643 #if defined(TARGET_HAS_ICE)
648 memcpy(new_env, env, sizeof(CPUArchState));
650 /* Preserve chaining. */
651 new_env->next_cpu = next_cpu;
653 /* Clone all break/watchpoints.
654 Note: Once we support ptrace with hw-debug register access, make sure
655 BP_CPU break/watchpoints are handled correctly on clone. */
656 QTAILQ_INIT(&env->breakpoints);
657 QTAILQ_INIT(&env->watchpoints);
658 #if defined(TARGET_HAS_ICE)
659 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
660 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
662 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
663 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
671 #if !defined(CONFIG_USER_ONLY)
672 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
677 /* we modify the TLB cache so that the dirty bit will be set again
678 when accessing the range */
679 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
680 /* Check that we don't span multiple blocks - this breaks the
681 address comparisons below. */
682 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
683 != (end - 1) - start) {
686 cpu_tlb_reset_dirty_all(start1, length);
690 /* Note: start and end must be within the same ram block. */
691 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
696 start &= TARGET_PAGE_MASK;
697 end = TARGET_PAGE_ALIGN(end);
699 length = end - start;
702 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
705 tlb_reset_dirty_range_all(start, end, length);
709 static int cpu_physical_memory_set_dirty_tracking(int enable)
712 in_migration = enable;
716 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
717 MemoryRegionSection *section,
719 hwaddr paddr, hwaddr xlat,
721 target_ulong *address)
726 if (memory_region_is_ram(section->mr)) {
728 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
730 if (!section->readonly) {
731 iotlb |= PHYS_SECTION_NOTDIRTY;
733 iotlb |= PHYS_SECTION_ROM;
736 iotlb = section - address_space_memory.dispatch->sections;
740 /* Make accesses to pages with watchpoints go via the
741 watchpoint trap routines. */
742 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
743 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
744 /* Avoid trapping reads of pages with a write breakpoint. */
745 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
746 iotlb = PHYS_SECTION_WATCH + paddr;
747 *address |= TLB_MMIO;
755 #endif /* defined(CONFIG_USER_ONLY) */
757 #if !defined(CONFIG_USER_ONLY)
759 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
761 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
763 static uint16_t phys_section_add(MemoryRegionSection *section)
765 /* The physical section number is ORed with a page-aligned
766 * pointer to produce the iotlb entries. Thus it should
767 * never overflow into the page-aligned value.
769 assert(next_map.sections_nb < TARGET_PAGE_SIZE);
771 if (next_map.sections_nb == next_map.sections_nb_alloc) {
772 next_map.sections_nb_alloc = MAX(next_map.sections_nb_alloc * 2,
774 next_map.sections = g_renew(MemoryRegionSection, next_map.sections,
775 next_map.sections_nb_alloc);
777 next_map.sections[next_map.sections_nb] = *section;
778 memory_region_ref(section->mr);
779 return next_map.sections_nb++;
782 static void phys_section_destroy(MemoryRegion *mr)
784 memory_region_unref(mr);
787 subpage_t *subpage = container_of(mr, subpage_t, iomem);
788 memory_region_destroy(&subpage->iomem);
793 static void phys_sections_clear(PhysPageMap *map)
795 while (map->sections_nb > 0) {
796 MemoryRegionSection *section = &map->sections[--map->sections_nb];
797 phys_section_destroy(section->mr);
799 g_free(map->sections);
803 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
806 hwaddr base = section->offset_within_address_space
808 MemoryRegionSection *existing = phys_page_find(d->phys_map, base >> TARGET_PAGE_BITS,
809 next_map.nodes, next_map.sections);
810 MemoryRegionSection subsection = {
811 .offset_within_address_space = base,
812 .size = int128_make64(TARGET_PAGE_SIZE),
816 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
818 if (!(existing->mr->subpage)) {
819 subpage = subpage_init(d->as, base);
820 subsection.mr = &subpage->iomem;
821 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
822 phys_section_add(&subsection));
824 subpage = container_of(existing->mr, subpage_t, iomem);
826 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
827 end = start + int128_get64(section->size) - 1;
828 subpage_register(subpage, start, end, phys_section_add(section));
832 static void register_multipage(AddressSpaceDispatch *d,
833 MemoryRegionSection *section)
835 hwaddr start_addr = section->offset_within_address_space;
836 uint16_t section_index = phys_section_add(section);
837 uint64_t num_pages = int128_get64(int128_rshift(section->size,
841 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
844 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
846 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
847 AddressSpaceDispatch *d = as->next_dispatch;
848 MemoryRegionSection now = *section, remain = *section;
849 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
851 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
852 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
853 - now.offset_within_address_space;
855 now.size = int128_min(int128_make64(left), now.size);
856 register_subpage(d, &now);
858 now.size = int128_zero();
860 while (int128_ne(remain.size, now.size)) {
861 remain.size = int128_sub(remain.size, now.size);
862 remain.offset_within_address_space += int128_get64(now.size);
863 remain.offset_within_region += int128_get64(now.size);
865 if (int128_lt(remain.size, page_size)) {
866 register_subpage(d, &now);
867 } else if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
868 now.size = page_size;
869 register_subpage(d, &now);
871 now.size = int128_and(now.size, int128_neg(page_size));
872 register_multipage(d, &now);
877 void qemu_flush_coalesced_mmio_buffer(void)
880 kvm_flush_coalesced_mmio_buffer();
883 void qemu_mutex_lock_ramlist(void)
885 qemu_mutex_lock(&ram_list.mutex);
888 void qemu_mutex_unlock_ramlist(void)
890 qemu_mutex_unlock(&ram_list.mutex);
893 #if defined(__linux__) && !defined(TARGET_S390X)
897 #define HUGETLBFS_MAGIC 0x958458f6
899 static long gethugepagesize(const char *path)
905 ret = statfs(path, &fs);
906 } while (ret != 0 && errno == EINTR);
913 if (fs.f_type != HUGETLBFS_MAGIC)
914 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
919 static void *file_ram_alloc(RAMBlock *block,
924 char *sanitized_name;
931 unsigned long hpagesize;
933 hpagesize = gethugepagesize(path);
938 if (memory < hpagesize) {
942 if (kvm_enabled() && !kvm_has_sync_mmu()) {
943 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
947 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
948 sanitized_name = g_strdup(block->mr->name);
949 for (c = sanitized_name; *c != '\0'; c++) {
954 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
956 g_free(sanitized_name);
958 fd = mkstemp(filename);
960 perror("unable to create backing store for hugepages");
967 memory = (memory+hpagesize-1) & ~(hpagesize-1);
970 * ftruncate is not supported by hugetlbfs in older
971 * hosts, so don't bother bailing out on errors.
972 * If anything goes wrong with it under other filesystems,
975 if (ftruncate(fd, memory))
979 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
980 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
981 * to sidestep this quirk.
983 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
984 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
986 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
988 if (area == MAP_FAILED) {
989 perror("file_ram_alloc: can't mmap RAM pages");
998 static ram_addr_t find_ram_offset(ram_addr_t size)
1000 RAMBlock *block, *next_block;
1001 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1003 assert(size != 0); /* it would hand out same offset multiple times */
1005 if (QTAILQ_EMPTY(&ram_list.blocks))
1008 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1009 ram_addr_t end, next = RAM_ADDR_MAX;
1011 end = block->offset + block->length;
1013 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
1014 if (next_block->offset >= end) {
1015 next = MIN(next, next_block->offset);
1018 if (next - end >= size && next - end < mingap) {
1020 mingap = next - end;
1024 if (offset == RAM_ADDR_MAX) {
1025 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1033 ram_addr_t last_ram_offset(void)
1036 ram_addr_t last = 0;
1038 QTAILQ_FOREACH(block, &ram_list.blocks, next)
1039 last = MAX(last, block->offset + block->length);
1044 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1047 QemuOpts *machine_opts;
1049 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1050 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1052 !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
1053 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1055 perror("qemu_madvise");
1056 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1057 "but dump_guest_core=off specified\n");
1062 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1064 RAMBlock *new_block, *block;
1067 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1068 if (block->offset == addr) {
1074 assert(!new_block->idstr[0]);
1077 char *id = qdev_get_dev_path(dev);
1079 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1083 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1085 /* This assumes the iothread lock is taken here too. */
1086 qemu_mutex_lock_ramlist();
1087 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1088 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1089 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1094 qemu_mutex_unlock_ramlist();
1097 static int memory_try_enable_merging(void *addr, size_t len)
1101 opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1102 if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
1103 /* disabled by the user */
1107 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1110 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1113 RAMBlock *block, *new_block;
1115 size = TARGET_PAGE_ALIGN(size);
1116 new_block = g_malloc0(sizeof(*new_block));
1118 /* This assumes the iothread lock is taken here too. */
1119 qemu_mutex_lock_ramlist();
1121 new_block->offset = find_ram_offset(size);
1123 new_block->host = host;
1124 new_block->flags |= RAM_PREALLOC_MASK;
1127 #if defined (__linux__) && !defined(TARGET_S390X)
1128 new_block->host = file_ram_alloc(new_block, size, mem_path);
1129 if (!new_block->host) {
1130 new_block->host = qemu_anon_ram_alloc(size);
1131 memory_try_enable_merging(new_block->host, size);
1134 fprintf(stderr, "-mem-path option unsupported\n");
1138 if (xen_enabled()) {
1139 xen_ram_alloc(new_block->offset, size, mr);
1140 } else if (kvm_enabled()) {
1141 /* some s390/kvm configurations have special constraints */
1142 new_block->host = kvm_ram_alloc(size);
1144 new_block->host = qemu_anon_ram_alloc(size);
1146 memory_try_enable_merging(new_block->host, size);
1149 new_block->length = size;
1151 /* Keep the list sorted from biggest to smallest block. */
1152 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1153 if (block->length < new_block->length) {
1158 QTAILQ_INSERT_BEFORE(block, new_block, next);
1160 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1162 ram_list.mru_block = NULL;
1165 qemu_mutex_unlock_ramlist();
1167 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
1168 last_ram_offset() >> TARGET_PAGE_BITS);
1169 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1170 0, size >> TARGET_PAGE_BITS);
1171 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
1173 qemu_ram_setup_dump(new_block->host, size);
1174 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1177 kvm_setup_guest_memory(new_block->host, size);
1179 return new_block->offset;
1182 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1184 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1187 void qemu_ram_free_from_ptr(ram_addr_t addr)
1191 /* This assumes the iothread lock is taken here too. */
1192 qemu_mutex_lock_ramlist();
1193 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1194 if (addr == block->offset) {
1195 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1196 ram_list.mru_block = NULL;
1202 qemu_mutex_unlock_ramlist();
1205 void qemu_ram_free(ram_addr_t addr)
1209 /* This assumes the iothread lock is taken here too. */
1210 qemu_mutex_lock_ramlist();
1211 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1212 if (addr == block->offset) {
1213 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1214 ram_list.mru_block = NULL;
1216 if (block->flags & RAM_PREALLOC_MASK) {
1218 } else if (mem_path) {
1219 #if defined (__linux__) && !defined(TARGET_S390X)
1221 munmap(block->host, block->length);
1224 qemu_anon_ram_free(block->host, block->length);
1230 if (xen_enabled()) {
1231 xen_invalidate_map_cache_entry(block->host);
1233 qemu_anon_ram_free(block->host, block->length);
1240 qemu_mutex_unlock_ramlist();
1245 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1252 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1253 offset = addr - block->offset;
1254 if (offset < block->length) {
1255 vaddr = block->host + offset;
1256 if (block->flags & RAM_PREALLOC_MASK) {
1260 munmap(vaddr, length);
1262 #if defined(__linux__) && !defined(TARGET_S390X)
1265 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1268 flags |= MAP_PRIVATE;
1270 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1271 flags, block->fd, offset);
1273 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1274 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1281 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1282 flags |= MAP_SHARED | MAP_ANONYMOUS;
1283 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
1286 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1287 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1291 if (area != vaddr) {
1292 fprintf(stderr, "Could not remap addr: "
1293 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1297 memory_try_enable_merging(vaddr, length);
1298 qemu_ram_setup_dump(vaddr, length);
1304 #endif /* !_WIN32 */
1306 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1310 /* The list is protected by the iothread lock here. */
1311 block = ram_list.mru_block;
1312 if (block && addr - block->offset < block->length) {
1315 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1316 if (addr - block->offset < block->length) {
1321 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1325 ram_list.mru_block = block;
1329 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1330 With the exception of the softmmu code in this file, this should
1331 only be used for local memory (e.g. video ram) that the device owns,
1332 and knows it isn't going to access beyond the end of the block.
1334 It should not be used for general purpose DMA.
1335 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1337 void *qemu_get_ram_ptr(ram_addr_t addr)
1339 RAMBlock *block = qemu_get_ram_block(addr);
1341 if (xen_enabled()) {
1342 /* We need to check if the requested address is in the RAM
1343 * because we don't want to map the entire memory in QEMU.
1344 * In that case just map until the end of the page.
1346 if (block->offset == 0) {
1347 return xen_map_cache(addr, 0, 0);
1348 } else if (block->host == NULL) {
1350 xen_map_cache(block->offset, block->length, 1);
1353 return block->host + (addr - block->offset);
1356 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1357 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1359 * ??? Is this still necessary?
1361 static void *qemu_safe_ram_ptr(ram_addr_t addr)
1365 /* The list is protected by the iothread lock here. */
1366 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1367 if (addr - block->offset < block->length) {
1368 if (xen_enabled()) {
1369 /* We need to check if the requested address is in the RAM
1370 * because we don't want to map the entire memory in QEMU.
1371 * In that case just map until the end of the page.
1373 if (block->offset == 0) {
1374 return xen_map_cache(addr, 0, 0);
1375 } else if (block->host == NULL) {
1377 xen_map_cache(block->offset, block->length, 1);
1380 return block->host + (addr - block->offset);
1384 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1390 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1391 * but takes a size argument */
1392 static void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
1397 if (xen_enabled()) {
1398 return xen_map_cache(addr, *size, 1);
1402 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1403 if (addr - block->offset < block->length) {
1404 if (addr - block->offset + *size > block->length)
1405 *size = block->length - addr + block->offset;
1406 return block->host + (addr - block->offset);
1410 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1415 /* Some of the softmmu routines need to translate from a host pointer
1416 (typically a TLB entry) back to a ram offset. */
1417 MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1420 uint8_t *host = ptr;
1422 if (xen_enabled()) {
1423 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1424 return qemu_get_ram_block(*ram_addr)->mr;
1427 block = ram_list.mru_block;
1428 if (block && block->host && host - block->host < block->length) {
1432 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1433 /* This case append when the block is not mapped. */
1434 if (block->host == NULL) {
1437 if (host - block->host < block->length) {
1445 *ram_addr = block->offset + (host - block->host);
1449 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1450 uint64_t val, unsigned size)
1453 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1454 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1455 tb_invalidate_phys_page_fast(ram_addr, size);
1456 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1460 stb_p(qemu_get_ram_ptr(ram_addr), val);
1463 stw_p(qemu_get_ram_ptr(ram_addr), val);
1466 stl_p(qemu_get_ram_ptr(ram_addr), val);
1471 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1472 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
1473 /* we remove the notdirty callback only if the code has been
1475 if (dirty_flags == 0xff)
1476 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
1479 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1480 unsigned size, bool is_write)
1485 static const MemoryRegionOps notdirty_mem_ops = {
1486 .write = notdirty_mem_write,
1487 .valid.accepts = notdirty_mem_accepts,
1488 .endianness = DEVICE_NATIVE_ENDIAN,
1491 /* Generate a debug exception if a watchpoint has been hit. */
1492 static void check_watchpoint(int offset, int len_mask, int flags)
1494 CPUArchState *env = cpu_single_env;
1495 target_ulong pc, cs_base;
1500 if (env->watchpoint_hit) {
1501 /* We re-entered the check after replacing the TB. Now raise
1502 * the debug interrupt so that is will trigger after the
1503 * current instruction. */
1504 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
1507 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1508 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1509 if ((vaddr == (wp->vaddr & len_mask) ||
1510 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1511 wp->flags |= BP_WATCHPOINT_HIT;
1512 if (!env->watchpoint_hit) {
1513 env->watchpoint_hit = wp;
1514 tb_check_watchpoint(env);
1515 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1516 env->exception_index = EXCP_DEBUG;
1519 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1520 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1521 cpu_resume_from_signal(env, NULL);
1525 wp->flags &= ~BP_WATCHPOINT_HIT;
1530 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1531 so these check for a hit then pass through to the normal out-of-line
1533 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1536 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1538 case 1: return ldub_phys(addr);
1539 case 2: return lduw_phys(addr);
1540 case 4: return ldl_phys(addr);
1545 static void watch_mem_write(void *opaque, hwaddr addr,
1546 uint64_t val, unsigned size)
1548 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1551 stb_phys(addr, val);
1554 stw_phys(addr, val);
1557 stl_phys(addr, val);
1563 static const MemoryRegionOps watch_mem_ops = {
1564 .read = watch_mem_read,
1565 .write = watch_mem_write,
1566 .endianness = DEVICE_NATIVE_ENDIAN,
1569 static uint64_t subpage_read(void *opaque, hwaddr addr,
1572 subpage_t *subpage = opaque;
1575 #if defined(DEBUG_SUBPAGE)
1576 printf("%s: subpage %p len %d addr " TARGET_FMT_plx "\n", __func__,
1577 subpage, len, addr);
1579 address_space_read(subpage->as, addr + subpage->base, buf, len);
1592 static void subpage_write(void *opaque, hwaddr addr,
1593 uint64_t value, unsigned len)
1595 subpage_t *subpage = opaque;
1598 #if defined(DEBUG_SUBPAGE)
1599 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1600 " value %"PRIx64"\n",
1601 __func__, subpage, len, addr, value);
1616 address_space_write(subpage->as, addr + subpage->base, buf, len);
1619 static bool subpage_accepts(void *opaque, hwaddr addr,
1620 unsigned size, bool is_write)
1622 subpage_t *subpage = opaque;
1623 #if defined(DEBUG_SUBPAGE)
1624 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx "\n",
1625 __func__, subpage, is_write ? 'w' : 'r', len, addr);
1628 return address_space_access_valid(subpage->as, addr + subpage->base,
1632 static const MemoryRegionOps subpage_ops = {
1633 .read = subpage_read,
1634 .write = subpage_write,
1635 .valid.accepts = subpage_accepts,
1636 .endianness = DEVICE_NATIVE_ENDIAN,
1639 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1644 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1646 idx = SUBPAGE_IDX(start);
1647 eidx = SUBPAGE_IDX(end);
1648 #if defined(DEBUG_SUBPAGE)
1649 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
1650 mmio, start, end, idx, eidx, memory);
1652 for (; idx <= eidx; idx++) {
1653 mmio->sub_section[idx] = section;
1659 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
1663 mmio = g_malloc0(sizeof(subpage_t));
1667 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
1668 "subpage", TARGET_PAGE_SIZE);
1669 mmio->iomem.subpage = true;
1670 #if defined(DEBUG_SUBPAGE)
1671 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1672 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
1674 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
1679 static uint16_t dummy_section(MemoryRegion *mr)
1681 MemoryRegionSection section = {
1683 .offset_within_address_space = 0,
1684 .offset_within_region = 0,
1685 .size = int128_2_64(),
1688 return phys_section_add(§ion);
1691 MemoryRegion *iotlb_to_region(hwaddr index)
1693 return address_space_memory.dispatch->sections[index & ~TARGET_PAGE_MASK].mr;
1696 static void io_mem_init(void)
1698 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1699 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1700 "unassigned", UINT64_MAX);
1701 memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL,
1702 "notdirty", UINT64_MAX);
1703 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1704 "watch", UINT64_MAX);
1707 static void mem_begin(MemoryListener *listener)
1709 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1710 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1712 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1714 as->next_dispatch = d;
1717 static void mem_commit(MemoryListener *listener)
1719 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1720 AddressSpaceDispatch *cur = as->dispatch;
1721 AddressSpaceDispatch *next = as->next_dispatch;
1723 next->nodes = next_map.nodes;
1724 next->sections = next_map.sections;
1726 as->dispatch = next;
1730 static void core_begin(MemoryListener *listener)
1734 memset(&next_map, 0, sizeof(next_map));
1735 n = dummy_section(&io_mem_unassigned);
1736 assert(n == PHYS_SECTION_UNASSIGNED);
1737 n = dummy_section(&io_mem_notdirty);
1738 assert(n == PHYS_SECTION_NOTDIRTY);
1739 n = dummy_section(&io_mem_rom);
1740 assert(n == PHYS_SECTION_ROM);
1741 n = dummy_section(&io_mem_watch);
1742 assert(n == PHYS_SECTION_WATCH);
1745 /* This listener's commit run after the other AddressSpaceDispatch listeners'.
1746 * All AddressSpaceDispatch instances have switched to the next map.
1748 static void core_commit(MemoryListener *listener)
1750 PhysPageMap info = cur_map;
1752 phys_sections_clear(&info);
1755 static void tcg_commit(MemoryListener *listener)
1759 /* since each CPU stores ram addresses in its TLB cache, we must
1760 reset the modified entries */
1762 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1767 static void core_log_global_start(MemoryListener *listener)
1769 cpu_physical_memory_set_dirty_tracking(1);
1772 static void core_log_global_stop(MemoryListener *listener)
1774 cpu_physical_memory_set_dirty_tracking(0);
1777 static MemoryListener core_memory_listener = {
1778 .begin = core_begin,
1779 .commit = core_commit,
1780 .log_global_start = core_log_global_start,
1781 .log_global_stop = core_log_global_stop,
1785 static MemoryListener tcg_memory_listener = {
1786 .commit = tcg_commit,
1789 void address_space_init_dispatch(AddressSpace *as)
1791 as->dispatch = NULL;
1792 as->dispatch_listener = (MemoryListener) {
1794 .commit = mem_commit,
1795 .region_add = mem_add,
1796 .region_nop = mem_add,
1799 memory_listener_register(&as->dispatch_listener, as);
1802 void address_space_destroy_dispatch(AddressSpace *as)
1804 AddressSpaceDispatch *d = as->dispatch;
1806 memory_listener_unregister(&as->dispatch_listener);
1808 as->dispatch = NULL;
1811 static void memory_map_init(void)
1813 system_memory = g_malloc(sizeof(*system_memory));
1814 memory_region_init(system_memory, NULL, "system", INT64_MAX);
1815 address_space_init(&address_space_memory, system_memory, "memory");
1817 system_io = g_malloc(sizeof(*system_io));
1818 memory_region_init(system_io, NULL, "io", 65536);
1819 address_space_init(&address_space_io, system_io, "I/O");
1821 memory_listener_register(&core_memory_listener, &address_space_memory);
1822 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1825 MemoryRegion *get_system_memory(void)
1827 return system_memory;
1830 MemoryRegion *get_system_io(void)
1835 #endif /* !defined(CONFIG_USER_ONLY) */
1837 /* physical memory access (slow version, mainly for debug) */
1838 #if defined(CONFIG_USER_ONLY)
1839 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
1840 uint8_t *buf, int len, int is_write)
1847 page = addr & TARGET_PAGE_MASK;
1848 l = (page + TARGET_PAGE_SIZE) - addr;
1851 flags = page_get_flags(page);
1852 if (!(flags & PAGE_VALID))
1855 if (!(flags & PAGE_WRITE))
1857 /* XXX: this code should not depend on lock_user */
1858 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1861 unlock_user(p, addr, l);
1863 if (!(flags & PAGE_READ))
1865 /* XXX: this code should not depend on lock_user */
1866 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1869 unlock_user(p, addr, 0);
1880 static void invalidate_and_set_dirty(hwaddr addr,
1883 if (!cpu_physical_memory_is_dirty(addr)) {
1884 /* invalidate code */
1885 tb_invalidate_phys_page_range(addr, addr + length, 0);
1887 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1889 xen_modified_memory(addr, length);
1892 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1894 if (memory_region_is_ram(mr)) {
1895 return !(is_write && mr->readonly);
1897 if (memory_region_is_romd(mr)) {
1904 static inline int memory_access_size(MemoryRegion *mr, int l, hwaddr addr)
1906 if (l >= 4 && (((addr & 3) == 0 || mr->ops->impl.unaligned))) {
1909 if (l >= 2 && (((addr & 1) == 0) || mr->ops->impl.unaligned)) {
1915 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1916 int len, bool is_write)
1927 mr = address_space_translate(as, addr, &addr1, &l, is_write);
1930 if (!memory_access_is_direct(mr, is_write)) {
1931 l = memory_access_size(mr, l, addr1);
1932 /* XXX: could force cpu_single_env to NULL to avoid
1935 /* 32 bit write access */
1937 error |= io_mem_write(mr, addr1, val, 4);
1938 } else if (l == 2) {
1939 /* 16 bit write access */
1941 error |= io_mem_write(mr, addr1, val, 2);
1943 /* 8 bit write access */
1945 error |= io_mem_write(mr, addr1, val, 1);
1948 addr1 += memory_region_get_ram_addr(mr);
1950 ptr = qemu_get_ram_ptr(addr1);
1951 memcpy(ptr, buf, l);
1952 invalidate_and_set_dirty(addr1, l);
1955 if (!memory_access_is_direct(mr, is_write)) {
1957 l = memory_access_size(mr, l, addr1);
1959 /* 32 bit read access */
1960 error |= io_mem_read(mr, addr1, &val, 4);
1962 } else if (l == 2) {
1963 /* 16 bit read access */
1964 error |= io_mem_read(mr, addr1, &val, 2);
1967 /* 8 bit read access */
1968 error |= io_mem_read(mr, addr1, &val, 1);
1973 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
1974 memcpy(buf, ptr, l);
1985 bool address_space_write(AddressSpace *as, hwaddr addr,
1986 const uint8_t *buf, int len)
1988 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
1991 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
1993 return address_space_rw(as, addr, buf, len, false);
1997 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
1998 int len, int is_write)
2000 address_space_rw(&address_space_memory, addr, buf, len, is_write);
2003 /* used for ROM loading : can write in RAM and ROM */
2004 void cpu_physical_memory_write_rom(hwaddr addr,
2005 const uint8_t *buf, int len)
2014 mr = address_space_translate(&address_space_memory,
2015 addr, &addr1, &l, true);
2017 if (!(memory_region_is_ram(mr) ||
2018 memory_region_is_romd(mr))) {
2021 addr1 += memory_region_get_ram_addr(mr);
2023 ptr = qemu_get_ram_ptr(addr1);
2024 memcpy(ptr, buf, l);
2025 invalidate_and_set_dirty(addr1, l);
2040 static BounceBuffer bounce;
2042 typedef struct MapClient {
2044 void (*callback)(void *opaque);
2045 QLIST_ENTRY(MapClient) link;
2048 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2049 = QLIST_HEAD_INITIALIZER(map_client_list);
2051 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2053 MapClient *client = g_malloc(sizeof(*client));
2055 client->opaque = opaque;
2056 client->callback = callback;
2057 QLIST_INSERT_HEAD(&map_client_list, client, link);
2061 static void cpu_unregister_map_client(void *_client)
2063 MapClient *client = (MapClient *)_client;
2065 QLIST_REMOVE(client, link);
2069 static void cpu_notify_map_clients(void)
2073 while (!QLIST_EMPTY(&map_client_list)) {
2074 client = QLIST_FIRST(&map_client_list);
2075 client->callback(client->opaque);
2076 cpu_unregister_map_client(client);
2080 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2087 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2088 if (!memory_access_is_direct(mr, is_write)) {
2089 l = memory_access_size(mr, l, addr);
2090 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2101 /* Map a physical memory region into a host virtual address.
2102 * May map a subset of the requested range, given by and returned in *plen.
2103 * May return NULL if resources needed to perform the mapping are exhausted.
2104 * Use only for reads OR writes - not for read-modify-write operations.
2105 * Use cpu_register_map_client() to know when retrying the map operation is
2106 * likely to succeed.
2108 void *address_space_map(AddressSpace *as,
2115 hwaddr l, xlat, base;
2116 MemoryRegion *mr, *this_mr;
2124 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2125 if (!memory_access_is_direct(mr, is_write)) {
2126 if (bounce.buffer) {
2129 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2133 memory_region_ref(mr);
2136 address_space_read(as, addr, bounce.buffer, l);
2140 return bounce.buffer;
2144 raddr = memory_region_get_ram_addr(mr);
2155 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2156 if (this_mr != mr || xlat != base + done) {
2161 memory_region_ref(mr);
2163 return qemu_ram_ptr_length(raddr + base, plen);
2166 /* Unmaps a memory region previously mapped by address_space_map().
2167 * Will also mark the memory as dirty if is_write == 1. access_len gives
2168 * the amount of memory that was actually read or written by the caller.
2170 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2171 int is_write, hwaddr access_len)
2173 if (buffer != bounce.buffer) {
2177 mr = qemu_ram_addr_from_host(buffer, &addr1);
2180 while (access_len) {
2182 l = TARGET_PAGE_SIZE;
2185 invalidate_and_set_dirty(addr1, l);
2190 if (xen_enabled()) {
2191 xen_invalidate_map_cache_entry(buffer);
2193 memory_region_unref(mr);
2197 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2199 qemu_vfree(bounce.buffer);
2200 bounce.buffer = NULL;
2201 memory_region_unref(bounce.mr);
2202 cpu_notify_map_clients();
2205 void *cpu_physical_memory_map(hwaddr addr,
2209 return address_space_map(&address_space_memory, addr, plen, is_write);
2212 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2213 int is_write, hwaddr access_len)
2215 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2218 /* warning: addr must be aligned */
2219 static inline uint32_t ldl_phys_internal(hwaddr addr,
2220 enum device_endian endian)
2228 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2230 if (l < 4 || !memory_access_is_direct(mr, false)) {
2232 io_mem_read(mr, addr1, &val, 4);
2233 #if defined(TARGET_WORDS_BIGENDIAN)
2234 if (endian == DEVICE_LITTLE_ENDIAN) {
2238 if (endian == DEVICE_BIG_ENDIAN) {
2244 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2248 case DEVICE_LITTLE_ENDIAN:
2249 val = ldl_le_p(ptr);
2251 case DEVICE_BIG_ENDIAN:
2252 val = ldl_be_p(ptr);
2262 uint32_t ldl_phys(hwaddr addr)
2264 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2267 uint32_t ldl_le_phys(hwaddr addr)
2269 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2272 uint32_t ldl_be_phys(hwaddr addr)
2274 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2277 /* warning: addr must be aligned */
2278 static inline uint64_t ldq_phys_internal(hwaddr addr,
2279 enum device_endian endian)
2287 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2289 if (l < 8 || !memory_access_is_direct(mr, false)) {
2291 io_mem_read(mr, addr1, &val, 8);
2292 #if defined(TARGET_WORDS_BIGENDIAN)
2293 if (endian == DEVICE_LITTLE_ENDIAN) {
2297 if (endian == DEVICE_BIG_ENDIAN) {
2303 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2307 case DEVICE_LITTLE_ENDIAN:
2308 val = ldq_le_p(ptr);
2310 case DEVICE_BIG_ENDIAN:
2311 val = ldq_be_p(ptr);
2321 uint64_t ldq_phys(hwaddr addr)
2323 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2326 uint64_t ldq_le_phys(hwaddr addr)
2328 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2331 uint64_t ldq_be_phys(hwaddr addr)
2333 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2337 uint32_t ldub_phys(hwaddr addr)
2340 cpu_physical_memory_read(addr, &val, 1);
2344 /* warning: addr must be aligned */
2345 static inline uint32_t lduw_phys_internal(hwaddr addr,
2346 enum device_endian endian)
2354 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2356 if (l < 2 || !memory_access_is_direct(mr, false)) {
2358 io_mem_read(mr, addr1, &val, 2);
2359 #if defined(TARGET_WORDS_BIGENDIAN)
2360 if (endian == DEVICE_LITTLE_ENDIAN) {
2364 if (endian == DEVICE_BIG_ENDIAN) {
2370 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2374 case DEVICE_LITTLE_ENDIAN:
2375 val = lduw_le_p(ptr);
2377 case DEVICE_BIG_ENDIAN:
2378 val = lduw_be_p(ptr);
2388 uint32_t lduw_phys(hwaddr addr)
2390 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2393 uint32_t lduw_le_phys(hwaddr addr)
2395 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2398 uint32_t lduw_be_phys(hwaddr addr)
2400 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2403 /* warning: addr must be aligned. The ram page is not masked as dirty
2404 and the code inside is not invalidated. It is useful if the dirty
2405 bits are used to track modified PTEs */
2406 void stl_phys_notdirty(hwaddr addr, uint32_t val)
2413 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2415 if (l < 4 || !memory_access_is_direct(mr, true)) {
2416 io_mem_write(mr, addr1, val, 4);
2418 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2419 ptr = qemu_get_ram_ptr(addr1);
2422 if (unlikely(in_migration)) {
2423 if (!cpu_physical_memory_is_dirty(addr1)) {
2424 /* invalidate code */
2425 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2427 cpu_physical_memory_set_dirty_flags(
2428 addr1, (0xff & ~CODE_DIRTY_FLAG));
2434 /* warning: addr must be aligned */
2435 static inline void stl_phys_internal(hwaddr addr, uint32_t val,
2436 enum device_endian endian)
2443 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2445 if (l < 4 || !memory_access_is_direct(mr, true)) {
2446 #if defined(TARGET_WORDS_BIGENDIAN)
2447 if (endian == DEVICE_LITTLE_ENDIAN) {
2451 if (endian == DEVICE_BIG_ENDIAN) {
2455 io_mem_write(mr, addr1, val, 4);
2458 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2459 ptr = qemu_get_ram_ptr(addr1);
2461 case DEVICE_LITTLE_ENDIAN:
2464 case DEVICE_BIG_ENDIAN:
2471 invalidate_and_set_dirty(addr1, 4);
2475 void stl_phys(hwaddr addr, uint32_t val)
2477 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2480 void stl_le_phys(hwaddr addr, uint32_t val)
2482 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2485 void stl_be_phys(hwaddr addr, uint32_t val)
2487 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2491 void stb_phys(hwaddr addr, uint32_t val)
2494 cpu_physical_memory_write(addr, &v, 1);
2497 /* warning: addr must be aligned */
2498 static inline void stw_phys_internal(hwaddr addr, uint32_t val,
2499 enum device_endian endian)
2506 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2508 if (l < 2 || !memory_access_is_direct(mr, true)) {
2509 #if defined(TARGET_WORDS_BIGENDIAN)
2510 if (endian == DEVICE_LITTLE_ENDIAN) {
2514 if (endian == DEVICE_BIG_ENDIAN) {
2518 io_mem_write(mr, addr1, val, 2);
2521 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2522 ptr = qemu_get_ram_ptr(addr1);
2524 case DEVICE_LITTLE_ENDIAN:
2527 case DEVICE_BIG_ENDIAN:
2534 invalidate_and_set_dirty(addr1, 2);
2538 void stw_phys(hwaddr addr, uint32_t val)
2540 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2543 void stw_le_phys(hwaddr addr, uint32_t val)
2545 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2548 void stw_be_phys(hwaddr addr, uint32_t val)
2550 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2554 void stq_phys(hwaddr addr, uint64_t val)
2557 cpu_physical_memory_write(addr, &val, 8);
2560 void stq_le_phys(hwaddr addr, uint64_t val)
2562 val = cpu_to_le64(val);
2563 cpu_physical_memory_write(addr, &val, 8);
2566 void stq_be_phys(hwaddr addr, uint64_t val)
2568 val = cpu_to_be64(val);
2569 cpu_physical_memory_write(addr, &val, 8);
2572 /* virtual memory access for debug (includes writing to ROM) */
2573 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
2574 uint8_t *buf, int len, int is_write)
2581 page = addr & TARGET_PAGE_MASK;
2582 phys_addr = cpu_get_phys_page_debug(env, page);
2583 /* if no physical page mapped, return an error */
2584 if (phys_addr == -1)
2586 l = (page + TARGET_PAGE_SIZE) - addr;
2589 phys_addr += (addr & ~TARGET_PAGE_MASK);
2591 cpu_physical_memory_write_rom(phys_addr, buf, l);
2593 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
2602 #if !defined(CONFIG_USER_ONLY)
2605 * A helper function for the _utterly broken_ virtio device model to find out if
2606 * it's running on a big endian machine. Don't do this at home kids!
2608 bool virtio_is_big_endian(void);
2609 bool virtio_is_big_endian(void)
2611 #if defined(TARGET_WORDS_BIGENDIAN)
2620 #ifndef CONFIG_USER_ONLY
2621 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2626 mr = address_space_translate(&address_space_memory,
2627 phys_addr, &phys_addr, &l, false);
2629 return !(memory_region_is_ram(mr) ||
2630 memory_region_is_romd(mr));
2633 void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2637 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2638 func(block->host, block->offset, block->length, opaque);