2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include <sys/types.h>
27 #include "qemu-common.h"
35 #include "qemu-timer.h"
36 #if defined(CONFIG_USER_ONLY)
39 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
40 #include <sys/param.h>
41 #if __FreeBSD_version >= 700104
42 #define HAVE_KINFO_GETVMMAP
43 #define sigqueue sigqueue_freebsd /* avoid redefinition */
46 #include <machine/profile.h>
56 //#define DEBUG_TB_INVALIDATE
59 //#define DEBUG_UNASSIGNED
61 /* make various TB consistency checks */
62 //#define DEBUG_TB_CHECK
63 //#define DEBUG_TLB_CHECK
65 //#define DEBUG_IOPORT
66 //#define DEBUG_SUBPAGE
68 #if !defined(CONFIG_USER_ONLY)
69 /* TB consistency checks only implemented for usermode emulation. */
73 #define SMC_BITMAP_USE_THRESHOLD 10
75 static TranslationBlock *tbs;
76 static int code_gen_max_blocks;
77 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
79 /* any access to the tbs or the page table must use this lock */
80 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
82 #if defined(__arm__) || defined(__sparc_v9__)
83 /* The prologue must be reachable with a direct jump. ARM and Sparc64
84 have limited branch ranges (possibly also PPC) so place it in a
85 section close to code segment. */
86 #define code_gen_section \
87 __attribute__((__section__(".gen_code"))) \
88 __attribute__((aligned (32)))
90 /* Maximum alignment for Win32 is 16. */
91 #define code_gen_section \
92 __attribute__((aligned (16)))
94 #define code_gen_section \
95 __attribute__((aligned (32)))
98 uint8_t code_gen_prologue[1024] code_gen_section;
99 static uint8_t *code_gen_buffer;
100 static unsigned long code_gen_buffer_size;
101 /* threshold to flush the translated code buffer */
102 static unsigned long code_gen_buffer_max_size;
103 static uint8_t *code_gen_ptr;
105 #if !defined(CONFIG_USER_ONLY)
107 static int in_migration;
109 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list) };
113 /* current CPU in the current thread. It is only valid inside
115 CPUState *cpu_single_env;
116 /* 0 = Do not count executed instructions.
117 1 = Precise instruction counting.
118 2 = Adaptive rate instruction counting. */
120 /* Current instruction counter. While executing translated code this may
121 include some instructions that have not yet been executed. */
124 typedef struct PageDesc {
125 /* list of TBs intersecting this ram page */
126 TranslationBlock *first_tb;
127 /* in order to optimize self modifying code, we count the number
128 of lookups we do to a given page to use a bitmap */
129 unsigned int code_write_count;
130 uint8_t *code_bitmap;
131 #if defined(CONFIG_USER_ONLY)
136 /* In system mode we want L1_MAP to be based on ram offsets,
137 while in user mode we want it to be based on virtual addresses. */
138 #if !defined(CONFIG_USER_ONLY)
139 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
140 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
142 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
145 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
148 /* Size of the L2 (and L3, etc) page tables. */
150 #define L2_SIZE (1 << L2_BITS)
152 /* The bits remaining after N lower levels of page tables. */
153 #define P_L1_BITS_REM \
154 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
155 #define V_L1_BITS_REM \
156 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
158 /* Size of the L1 page table. Avoid silly small sizes. */
159 #if P_L1_BITS_REM < 4
160 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
162 #define P_L1_BITS P_L1_BITS_REM
165 #if V_L1_BITS_REM < 4
166 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
168 #define V_L1_BITS V_L1_BITS_REM
171 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
172 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
174 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
175 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
177 unsigned long qemu_real_host_page_size;
178 unsigned long qemu_host_page_bits;
179 unsigned long qemu_host_page_size;
180 unsigned long qemu_host_page_mask;
182 /* This is a multi-level map on the virtual address space.
183 The bottom level has pointers to PageDesc. */
184 static void *l1_map[V_L1_SIZE];
186 #if !defined(CONFIG_USER_ONLY)
187 typedef struct PhysPageDesc {
188 /* offset in host memory of the page + io_index in the low bits */
189 ram_addr_t phys_offset;
190 ram_addr_t region_offset;
193 /* This is a multi-level map on the physical address space.
194 The bottom level has pointers to PhysPageDesc. */
195 static void *l1_phys_map[P_L1_SIZE];
197 static void io_mem_init(void);
199 /* io memory support */
200 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
201 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
202 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
203 static char io_mem_used[IO_MEM_NB_ENTRIES];
204 static int io_mem_watch;
209 static const char *logfilename = "qemu.log";
211 static const char *logfilename = "/tmp/qemu.log";
215 static int log_append = 0;
218 #if !defined(CONFIG_USER_ONLY)
219 static int tlb_flush_count;
221 static int tb_flush_count;
222 static int tb_phys_invalidate_count;
225 static void map_exec(void *addr, long size)
228 VirtualProtect(addr, size,
229 PAGE_EXECUTE_READWRITE, &old_protect);
233 static void map_exec(void *addr, long size)
235 unsigned long start, end, page_size;
237 page_size = getpagesize();
238 start = (unsigned long)addr;
239 start &= ~(page_size - 1);
241 end = (unsigned long)addr + size;
242 end += page_size - 1;
243 end &= ~(page_size - 1);
245 mprotect((void *)start, end - start,
246 PROT_READ | PROT_WRITE | PROT_EXEC);
250 static void page_init(void)
252 /* NOTE: we can always suppose that qemu_host_page_size >=
256 SYSTEM_INFO system_info;
258 GetSystemInfo(&system_info);
259 qemu_real_host_page_size = system_info.dwPageSize;
262 qemu_real_host_page_size = getpagesize();
264 if (qemu_host_page_size == 0)
265 qemu_host_page_size = qemu_real_host_page_size;
266 if (qemu_host_page_size < TARGET_PAGE_SIZE)
267 qemu_host_page_size = TARGET_PAGE_SIZE;
268 qemu_host_page_bits = 0;
269 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
270 qemu_host_page_bits++;
271 qemu_host_page_mask = ~(qemu_host_page_size - 1);
273 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
275 #ifdef HAVE_KINFO_GETVMMAP
276 struct kinfo_vmentry *freep;
279 freep = kinfo_getvmmap(getpid(), &cnt);
282 for (i = 0; i < cnt; i++) {
283 unsigned long startaddr, endaddr;
285 startaddr = freep[i].kve_start;
286 endaddr = freep[i].kve_end;
287 if (h2g_valid(startaddr)) {
288 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
290 if (h2g_valid(endaddr)) {
291 endaddr = h2g(endaddr);
292 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
294 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
296 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
307 last_brk = (unsigned long)sbrk(0);
309 f = fopen("/compat/linux/proc/self/maps", "r");
314 unsigned long startaddr, endaddr;
317 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
319 if (n == 2 && h2g_valid(startaddr)) {
320 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
322 if (h2g_valid(endaddr)) {
323 endaddr = h2g(endaddr);
327 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
339 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
345 #if defined(CONFIG_USER_ONLY)
346 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
347 # define ALLOC(P, SIZE) \
349 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
350 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
353 # define ALLOC(P, SIZE) \
354 do { P = qemu_mallocz(SIZE); } while (0)
357 /* Level 1. Always allocated. */
358 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
361 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
368 ALLOC(p, sizeof(void *) * L2_SIZE);
372 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
380 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
386 return pd + (index & (L2_SIZE - 1));
389 static inline PageDesc *page_find(tb_page_addr_t index)
391 return page_find_alloc(index, 0);
394 #if !defined(CONFIG_USER_ONLY)
395 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
401 /* Level 1. Always allocated. */
402 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
405 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
411 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
413 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
424 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
426 for (i = 0; i < L2_SIZE; i++) {
427 pd[i].phys_offset = IO_MEM_UNASSIGNED;
428 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
432 return pd + (index & (L2_SIZE - 1));
435 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
437 return phys_page_find_alloc(index, 0);
440 static void tlb_protect_code(ram_addr_t ram_addr);
441 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
443 #define mmap_lock() do { } while(0)
444 #define mmap_unlock() do { } while(0)
447 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
449 #if defined(CONFIG_USER_ONLY)
450 /* Currently it is not recommended to allocate big chunks of data in
451 user mode. It will change when a dedicated libc will be used */
452 #define USE_STATIC_CODE_GEN_BUFFER
455 #ifdef USE_STATIC_CODE_GEN_BUFFER
456 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
457 __attribute__((aligned (CODE_GEN_ALIGN)));
460 static void code_gen_alloc(unsigned long tb_size)
462 #ifdef USE_STATIC_CODE_GEN_BUFFER
463 code_gen_buffer = static_code_gen_buffer;
464 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
465 map_exec(code_gen_buffer, code_gen_buffer_size);
467 code_gen_buffer_size = tb_size;
468 if (code_gen_buffer_size == 0) {
469 #if defined(CONFIG_USER_ONLY)
470 /* in user mode, phys_ram_size is not meaningful */
471 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
473 /* XXX: needs adjustments */
474 code_gen_buffer_size = (unsigned long)(ram_size / 4);
477 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
478 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
479 /* The code gen buffer location may have constraints depending on
480 the host cpu and OS */
481 #if defined(__linux__)
486 flags = MAP_PRIVATE | MAP_ANONYMOUS;
487 #if defined(__x86_64__)
489 /* Cannot map more than that */
490 if (code_gen_buffer_size > (800 * 1024 * 1024))
491 code_gen_buffer_size = (800 * 1024 * 1024);
492 #elif defined(__sparc_v9__)
493 // Map the buffer below 2G, so we can use direct calls and branches
495 start = (void *) 0x60000000UL;
496 if (code_gen_buffer_size > (512 * 1024 * 1024))
497 code_gen_buffer_size = (512 * 1024 * 1024);
498 #elif defined(__arm__)
499 /* Map the buffer below 32M, so we can use direct calls and branches */
501 start = (void *) 0x01000000UL;
502 if (code_gen_buffer_size > 16 * 1024 * 1024)
503 code_gen_buffer_size = 16 * 1024 * 1024;
504 #elif defined(__s390x__)
505 /* Map the buffer so that we can use direct calls and branches. */
506 /* We have a +- 4GB range on the branches; leave some slop. */
507 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
508 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
510 start = (void *)0x90000000UL;
512 code_gen_buffer = mmap(start, code_gen_buffer_size,
513 PROT_WRITE | PROT_READ | PROT_EXEC,
515 if (code_gen_buffer == MAP_FAILED) {
516 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
520 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
524 flags = MAP_PRIVATE | MAP_ANONYMOUS;
525 #if defined(__x86_64__)
526 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
527 * 0x40000000 is free */
529 addr = (void *)0x40000000;
530 /* Cannot map more than that */
531 if (code_gen_buffer_size > (800 * 1024 * 1024))
532 code_gen_buffer_size = (800 * 1024 * 1024);
534 code_gen_buffer = mmap(addr, code_gen_buffer_size,
535 PROT_WRITE | PROT_READ | PROT_EXEC,
537 if (code_gen_buffer == MAP_FAILED) {
538 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
543 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
544 map_exec(code_gen_buffer, code_gen_buffer_size);
546 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
547 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
548 code_gen_buffer_max_size = code_gen_buffer_size -
549 (TCG_MAX_OP_SIZE * OPC_MAX_SIZE);
550 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
551 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
554 /* Must be called before using the QEMU cpus. 'tb_size' is the size
555 (in bytes) allocated to the translation buffer. Zero means default
557 void cpu_exec_init_all(unsigned long tb_size)
560 code_gen_alloc(tb_size);
561 code_gen_ptr = code_gen_buffer;
563 #if !defined(CONFIG_USER_ONLY)
566 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
567 /* There's no guest base to take into account, so go ahead and
568 initialize the prologue now. */
569 tcg_prologue_init(&tcg_ctx);
573 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
575 static int cpu_common_post_load(void *opaque, int version_id)
577 CPUState *env = opaque;
579 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
580 version_id is increased. */
581 env->interrupt_request &= ~0x01;
587 static const VMStateDescription vmstate_cpu_common = {
588 .name = "cpu_common",
590 .minimum_version_id = 1,
591 .minimum_version_id_old = 1,
592 .post_load = cpu_common_post_load,
593 .fields = (VMStateField []) {
594 VMSTATE_UINT32(halted, CPUState),
595 VMSTATE_UINT32(interrupt_request, CPUState),
596 VMSTATE_END_OF_LIST()
601 CPUState *qemu_get_cpu(int cpu)
603 CPUState *env = first_cpu;
606 if (env->cpu_index == cpu)
614 void cpu_exec_init(CPUState *env)
619 #if defined(CONFIG_USER_ONLY)
622 env->next_cpu = NULL;
625 while (*penv != NULL) {
626 penv = &(*penv)->next_cpu;
629 env->cpu_index = cpu_index;
631 QTAILQ_INIT(&env->breakpoints);
632 QTAILQ_INIT(&env->watchpoints);
634 #if defined(CONFIG_USER_ONLY)
637 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
638 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
639 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
640 cpu_save, cpu_load, env);
644 static inline void invalidate_page_bitmap(PageDesc *p)
646 if (p->code_bitmap) {
647 qemu_free(p->code_bitmap);
648 p->code_bitmap = NULL;
650 p->code_write_count = 0;
653 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
655 static void page_flush_tb_1 (int level, void **lp)
664 for (i = 0; i < L2_SIZE; ++i) {
665 pd[i].first_tb = NULL;
666 invalidate_page_bitmap(pd + i);
670 for (i = 0; i < L2_SIZE; ++i) {
671 page_flush_tb_1 (level - 1, pp + i);
676 static void page_flush_tb(void)
679 for (i = 0; i < V_L1_SIZE; i++) {
680 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
684 /* flush all the translation blocks */
685 /* XXX: tb_flush is currently not thread safe */
686 void tb_flush(CPUState *env1)
689 #if defined(DEBUG_FLUSH)
690 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
691 (unsigned long)(code_gen_ptr - code_gen_buffer),
693 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
695 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
696 cpu_abort(env1, "Internal error: code buffer overflow\n");
700 for(env = first_cpu; env != NULL; env = env->next_cpu) {
701 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
704 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
707 code_gen_ptr = code_gen_buffer;
708 /* XXX: flush processor icache at this point if cache flush is
713 #ifdef DEBUG_TB_CHECK
715 static void tb_invalidate_check(target_ulong address)
717 TranslationBlock *tb;
719 address &= TARGET_PAGE_MASK;
720 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
721 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
722 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
723 address >= tb->pc + tb->size)) {
724 printf("ERROR invalidate: address=" TARGET_FMT_lx
725 " PC=%08lx size=%04x\n",
726 address, (long)tb->pc, tb->size);
732 /* verify that all the pages have correct rights for code */
733 static void tb_page_check(void)
735 TranslationBlock *tb;
736 int i, flags1, flags2;
738 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
739 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
740 flags1 = page_get_flags(tb->pc);
741 flags2 = page_get_flags(tb->pc + tb->size - 1);
742 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
743 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
744 (long)tb->pc, tb->size, flags1, flags2);
752 /* invalidate one TB */
753 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
756 TranslationBlock *tb1;
760 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
763 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
767 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
769 TranslationBlock *tb1;
775 tb1 = (TranslationBlock *)((long)tb1 & ~3);
777 *ptb = tb1->page_next[n1];
780 ptb = &tb1->page_next[n1];
784 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
786 TranslationBlock *tb1, **ptb;
789 ptb = &tb->jmp_next[n];
792 /* find tb(n) in circular list */
796 tb1 = (TranslationBlock *)((long)tb1 & ~3);
797 if (n1 == n && tb1 == tb)
800 ptb = &tb1->jmp_first;
802 ptb = &tb1->jmp_next[n1];
805 /* now we can suppress tb(n) from the list */
806 *ptb = tb->jmp_next[n];
808 tb->jmp_next[n] = NULL;
812 /* reset the jump entry 'n' of a TB so that it is not chained to
814 static inline void tb_reset_jump(TranslationBlock *tb, int n)
816 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
819 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
824 tb_page_addr_t phys_pc;
825 TranslationBlock *tb1, *tb2;
827 /* remove the TB from the hash list */
828 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
829 h = tb_phys_hash_func(phys_pc);
830 tb_remove(&tb_phys_hash[h], tb,
831 offsetof(TranslationBlock, phys_hash_next));
833 /* remove the TB from the page list */
834 if (tb->page_addr[0] != page_addr) {
835 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
836 tb_page_remove(&p->first_tb, tb);
837 invalidate_page_bitmap(p);
839 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
840 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
841 tb_page_remove(&p->first_tb, tb);
842 invalidate_page_bitmap(p);
845 tb_invalidated_flag = 1;
847 /* remove the TB from the hash list */
848 h = tb_jmp_cache_hash_func(tb->pc);
849 for(env = first_cpu; env != NULL; env = env->next_cpu) {
850 if (env->tb_jmp_cache[h] == tb)
851 env->tb_jmp_cache[h] = NULL;
854 /* suppress this TB from the two jump lists */
855 tb_jmp_remove(tb, 0);
856 tb_jmp_remove(tb, 1);
858 /* suppress any remaining jumps to this TB */
864 tb1 = (TranslationBlock *)((long)tb1 & ~3);
865 tb2 = tb1->jmp_next[n1];
866 tb_reset_jump(tb1, n1);
867 tb1->jmp_next[n1] = NULL;
870 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
872 tb_phys_invalidate_count++;
875 static inline void set_bits(uint8_t *tab, int start, int len)
881 mask = 0xff << (start & 7);
882 if ((start & ~7) == (end & ~7)) {
884 mask &= ~(0xff << (end & 7));
889 start = (start + 8) & ~7;
891 while (start < end1) {
896 mask = ~(0xff << (end & 7));
902 static void build_page_bitmap(PageDesc *p)
904 int n, tb_start, tb_end;
905 TranslationBlock *tb;
907 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
912 tb = (TranslationBlock *)((long)tb & ~3);
913 /* NOTE: this is subtle as a TB may span two physical pages */
915 /* NOTE: tb_end may be after the end of the page, but
916 it is not a problem */
917 tb_start = tb->pc & ~TARGET_PAGE_MASK;
918 tb_end = tb_start + tb->size;
919 if (tb_end > TARGET_PAGE_SIZE)
920 tb_end = TARGET_PAGE_SIZE;
923 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
925 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
926 tb = tb->page_next[n];
930 TranslationBlock *tb_gen_code(CPUState *env,
931 target_ulong pc, target_ulong cs_base,
932 int flags, int cflags)
934 TranslationBlock *tb;
936 tb_page_addr_t phys_pc, phys_page2;
937 target_ulong virt_page2;
940 phys_pc = get_page_addr_code(env, pc);
943 /* flush must be done */
945 /* cannot fail at this point */
947 /* Don't forget to invalidate previous TB info. */
948 tb_invalidated_flag = 1;
950 tc_ptr = code_gen_ptr;
952 tb->cs_base = cs_base;
955 cpu_gen_code(env, tb, &code_gen_size);
956 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
958 /* check next page if needed */
959 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
961 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
962 phys_page2 = get_page_addr_code(env, virt_page2);
964 tb_link_page(tb, phys_pc, phys_page2);
968 /* invalidate all TBs which intersect with the target physical page
969 starting in range [start;end[. NOTE: start and end must refer to
970 the same physical page. 'is_cpu_write_access' should be true if called
971 from a real cpu write access: the virtual CPU will exit the current
972 TB if code is modified inside this TB. */
973 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
974 int is_cpu_write_access)
976 TranslationBlock *tb, *tb_next, *saved_tb;
977 CPUState *env = cpu_single_env;
978 tb_page_addr_t tb_start, tb_end;
981 #ifdef TARGET_HAS_PRECISE_SMC
982 int current_tb_not_found = is_cpu_write_access;
983 TranslationBlock *current_tb = NULL;
984 int current_tb_modified = 0;
985 target_ulong current_pc = 0;
986 target_ulong current_cs_base = 0;
987 int current_flags = 0;
988 #endif /* TARGET_HAS_PRECISE_SMC */
990 p = page_find(start >> TARGET_PAGE_BITS);
993 if (!p->code_bitmap &&
994 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
995 is_cpu_write_access) {
996 /* build code bitmap */
997 build_page_bitmap(p);
1000 /* we remove all the TBs in the range [start, end[ */
1001 /* XXX: see if in some cases it could be faster to invalidate all the code */
1003 while (tb != NULL) {
1005 tb = (TranslationBlock *)((long)tb & ~3);
1006 tb_next = tb->page_next[n];
1007 /* NOTE: this is subtle as a TB may span two physical pages */
1009 /* NOTE: tb_end may be after the end of the page, but
1010 it is not a problem */
1011 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1012 tb_end = tb_start + tb->size;
1014 tb_start = tb->page_addr[1];
1015 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1017 if (!(tb_end <= start || tb_start >= end)) {
1018 #ifdef TARGET_HAS_PRECISE_SMC
1019 if (current_tb_not_found) {
1020 current_tb_not_found = 0;
1022 if (env->mem_io_pc) {
1023 /* now we have a real cpu fault */
1024 current_tb = tb_find_pc(env->mem_io_pc);
1027 if (current_tb == tb &&
1028 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1029 /* If we are modifying the current TB, we must stop
1030 its execution. We could be more precise by checking
1031 that the modification is after the current PC, but it
1032 would require a specialized function to partially
1033 restore the CPU state */
1035 current_tb_modified = 1;
1036 cpu_restore_state(current_tb, env,
1037 env->mem_io_pc, NULL);
1038 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
1041 #endif /* TARGET_HAS_PRECISE_SMC */
1042 /* we need to do that to handle the case where a signal
1043 occurs while doing tb_phys_invalidate() */
1046 saved_tb = env->current_tb;
1047 env->current_tb = NULL;
1049 tb_phys_invalidate(tb, -1);
1051 env->current_tb = saved_tb;
1052 if (env->interrupt_request && env->current_tb)
1053 cpu_interrupt(env, env->interrupt_request);
1058 #if !defined(CONFIG_USER_ONLY)
1059 /* if no code remaining, no need to continue to use slow writes */
1061 invalidate_page_bitmap(p);
1062 if (is_cpu_write_access) {
1063 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1067 #ifdef TARGET_HAS_PRECISE_SMC
1068 if (current_tb_modified) {
1069 /* we generate a block containing just the instruction
1070 modifying the memory. It will ensure that it cannot modify
1072 env->current_tb = NULL;
1073 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1074 cpu_resume_from_signal(env, NULL);
1079 /* len must be <= 8 and start must be a multiple of len */
1080 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1086 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1087 cpu_single_env->mem_io_vaddr, len,
1088 cpu_single_env->eip,
1089 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1092 p = page_find(start >> TARGET_PAGE_BITS);
1095 if (p->code_bitmap) {
1096 offset = start & ~TARGET_PAGE_MASK;
1097 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1098 if (b & ((1 << len) - 1))
1102 tb_invalidate_phys_page_range(start, start + len, 1);
1106 #if !defined(CONFIG_SOFTMMU)
1107 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1108 unsigned long pc, void *puc)
1110 TranslationBlock *tb;
1113 #ifdef TARGET_HAS_PRECISE_SMC
1114 TranslationBlock *current_tb = NULL;
1115 CPUState *env = cpu_single_env;
1116 int current_tb_modified = 0;
1117 target_ulong current_pc = 0;
1118 target_ulong current_cs_base = 0;
1119 int current_flags = 0;
1122 addr &= TARGET_PAGE_MASK;
1123 p = page_find(addr >> TARGET_PAGE_BITS);
1127 #ifdef TARGET_HAS_PRECISE_SMC
1128 if (tb && pc != 0) {
1129 current_tb = tb_find_pc(pc);
1132 while (tb != NULL) {
1134 tb = (TranslationBlock *)((long)tb & ~3);
1135 #ifdef TARGET_HAS_PRECISE_SMC
1136 if (current_tb == tb &&
1137 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1138 /* If we are modifying the current TB, we must stop
1139 its execution. We could be more precise by checking
1140 that the modification is after the current PC, but it
1141 would require a specialized function to partially
1142 restore the CPU state */
1144 current_tb_modified = 1;
1145 cpu_restore_state(current_tb, env, pc, puc);
1146 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
1149 #endif /* TARGET_HAS_PRECISE_SMC */
1150 tb_phys_invalidate(tb, addr);
1151 tb = tb->page_next[n];
1154 #ifdef TARGET_HAS_PRECISE_SMC
1155 if (current_tb_modified) {
1156 /* we generate a block containing just the instruction
1157 modifying the memory. It will ensure that it cannot modify
1159 env->current_tb = NULL;
1160 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1161 cpu_resume_from_signal(env, puc);
1167 /* add the tb in the target page and protect it if necessary */
1168 static inline void tb_alloc_page(TranslationBlock *tb,
1169 unsigned int n, tb_page_addr_t page_addr)
1172 TranslationBlock *last_first_tb;
1174 tb->page_addr[n] = page_addr;
1175 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1176 tb->page_next[n] = p->first_tb;
1177 last_first_tb = p->first_tb;
1178 p->first_tb = (TranslationBlock *)((long)tb | n);
1179 invalidate_page_bitmap(p);
1181 #if defined(TARGET_HAS_SMC) || 1
1183 #if defined(CONFIG_USER_ONLY)
1184 if (p->flags & PAGE_WRITE) {
1189 /* force the host page as non writable (writes will have a
1190 page fault + mprotect overhead) */
1191 page_addr &= qemu_host_page_mask;
1193 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1194 addr += TARGET_PAGE_SIZE) {
1196 p2 = page_find (addr >> TARGET_PAGE_BITS);
1200 p2->flags &= ~PAGE_WRITE;
1202 mprotect(g2h(page_addr), qemu_host_page_size,
1203 (prot & PAGE_BITS) & ~PAGE_WRITE);
1204 #ifdef DEBUG_TB_INVALIDATE
1205 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1210 /* if some code is already present, then the pages are already
1211 protected. So we handle the case where only the first TB is
1212 allocated in a physical page */
1213 if (!last_first_tb) {
1214 tlb_protect_code(page_addr);
1218 #endif /* TARGET_HAS_SMC */
1221 /* Allocate a new translation block. Flush the translation buffer if
1222 too many translation blocks or too much generated code. */
1223 TranslationBlock *tb_alloc(target_ulong pc)
1225 TranslationBlock *tb;
1227 if (nb_tbs >= code_gen_max_blocks ||
1228 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1230 tb = &tbs[nb_tbs++];
1236 void tb_free(TranslationBlock *tb)
1238 /* In practice this is mostly used for single use temporary TB
1239 Ignore the hard cases and just back up if this TB happens to
1240 be the last one generated. */
1241 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1242 code_gen_ptr = tb->tc_ptr;
1247 /* add a new TB and link it to the physical page tables. phys_page2 is
1248 (-1) to indicate that only one page contains the TB. */
1249 void tb_link_page(TranslationBlock *tb,
1250 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1253 TranslationBlock **ptb;
1255 /* Grab the mmap lock to stop another thread invalidating this TB
1256 before we are done. */
1258 /* add in the physical hash table */
1259 h = tb_phys_hash_func(phys_pc);
1260 ptb = &tb_phys_hash[h];
1261 tb->phys_hash_next = *ptb;
1264 /* add in the page list */
1265 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1266 if (phys_page2 != -1)
1267 tb_alloc_page(tb, 1, phys_page2);
1269 tb->page_addr[1] = -1;
1271 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1272 tb->jmp_next[0] = NULL;
1273 tb->jmp_next[1] = NULL;
1275 /* init original jump addresses */
1276 if (tb->tb_next_offset[0] != 0xffff)
1277 tb_reset_jump(tb, 0);
1278 if (tb->tb_next_offset[1] != 0xffff)
1279 tb_reset_jump(tb, 1);
1281 #ifdef DEBUG_TB_CHECK
1287 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1288 tb[1].tc_ptr. Return NULL if not found */
1289 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1291 int m_min, m_max, m;
1293 TranslationBlock *tb;
1297 if (tc_ptr < (unsigned long)code_gen_buffer ||
1298 tc_ptr >= (unsigned long)code_gen_ptr)
1300 /* binary search (cf Knuth) */
1303 while (m_min <= m_max) {
1304 m = (m_min + m_max) >> 1;
1306 v = (unsigned long)tb->tc_ptr;
1309 else if (tc_ptr < v) {
1318 static void tb_reset_jump_recursive(TranslationBlock *tb);
1320 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1322 TranslationBlock *tb1, *tb_next, **ptb;
1325 tb1 = tb->jmp_next[n];
1327 /* find head of list */
1330 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1333 tb1 = tb1->jmp_next[n1];
1335 /* we are now sure now that tb jumps to tb1 */
1338 /* remove tb from the jmp_first list */
1339 ptb = &tb_next->jmp_first;
1343 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1344 if (n1 == n && tb1 == tb)
1346 ptb = &tb1->jmp_next[n1];
1348 *ptb = tb->jmp_next[n];
1349 tb->jmp_next[n] = NULL;
1351 /* suppress the jump to next tb in generated code */
1352 tb_reset_jump(tb, n);
1354 /* suppress jumps in the tb on which we could have jumped */
1355 tb_reset_jump_recursive(tb_next);
1359 static void tb_reset_jump_recursive(TranslationBlock *tb)
1361 tb_reset_jump_recursive2(tb, 0);
1362 tb_reset_jump_recursive2(tb, 1);
1365 #if defined(TARGET_HAS_ICE)
1366 #if defined(CONFIG_USER_ONLY)
1367 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1369 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1372 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1374 target_phys_addr_t addr;
1376 ram_addr_t ram_addr;
1379 addr = cpu_get_phys_page_debug(env, pc);
1380 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1382 pd = IO_MEM_UNASSIGNED;
1384 pd = p->phys_offset;
1386 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1387 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1390 #endif /* TARGET_HAS_ICE */
1392 #if defined(CONFIG_USER_ONLY)
1393 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1398 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1399 int flags, CPUWatchpoint **watchpoint)
1404 /* Add a watchpoint. */
1405 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1406 int flags, CPUWatchpoint **watchpoint)
1408 target_ulong len_mask = ~(len - 1);
1411 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1412 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1413 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1414 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1417 wp = qemu_malloc(sizeof(*wp));
1420 wp->len_mask = len_mask;
1423 /* keep all GDB-injected watchpoints in front */
1425 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1427 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1429 tlb_flush_page(env, addr);
1436 /* Remove a specific watchpoint. */
1437 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1440 target_ulong len_mask = ~(len - 1);
1443 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1444 if (addr == wp->vaddr && len_mask == wp->len_mask
1445 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1446 cpu_watchpoint_remove_by_ref(env, wp);
1453 /* Remove a specific watchpoint by reference. */
1454 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1456 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1458 tlb_flush_page(env, watchpoint->vaddr);
1460 qemu_free(watchpoint);
1463 /* Remove all matching watchpoints. */
1464 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1466 CPUWatchpoint *wp, *next;
1468 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1469 if (wp->flags & mask)
1470 cpu_watchpoint_remove_by_ref(env, wp);
1475 /* Add a breakpoint. */
1476 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1477 CPUBreakpoint **breakpoint)
1479 #if defined(TARGET_HAS_ICE)
1482 bp = qemu_malloc(sizeof(*bp));
1487 /* keep all GDB-injected breakpoints in front */
1489 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1491 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1493 breakpoint_invalidate(env, pc);
1503 /* Remove a specific breakpoint. */
1504 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1506 #if defined(TARGET_HAS_ICE)
1509 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1510 if (bp->pc == pc && bp->flags == flags) {
1511 cpu_breakpoint_remove_by_ref(env, bp);
1521 /* Remove a specific breakpoint by reference. */
1522 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1524 #if defined(TARGET_HAS_ICE)
1525 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1527 breakpoint_invalidate(env, breakpoint->pc);
1529 qemu_free(breakpoint);
1533 /* Remove all matching breakpoints. */
1534 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1536 #if defined(TARGET_HAS_ICE)
1537 CPUBreakpoint *bp, *next;
1539 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1540 if (bp->flags & mask)
1541 cpu_breakpoint_remove_by_ref(env, bp);
1546 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1547 CPU loop after each instruction */
1548 void cpu_single_step(CPUState *env, int enabled)
1550 #if defined(TARGET_HAS_ICE)
1551 if (env->singlestep_enabled != enabled) {
1552 env->singlestep_enabled = enabled;
1554 kvm_update_guest_debug(env, 0);
1556 /* must flush all the translated code to avoid inconsistencies */
1557 /* XXX: only flush what is necessary */
1564 /* enable or disable low levels log */
1565 void cpu_set_log(int log_flags)
1567 loglevel = log_flags;
1568 if (loglevel && !logfile) {
1569 logfile = fopen(logfilename, log_append ? "a" : "w");
1571 perror(logfilename);
1574 #if !defined(CONFIG_SOFTMMU)
1575 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1577 static char logfile_buf[4096];
1578 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1580 #elif !defined(_WIN32)
1581 /* Win32 doesn't support line-buffering and requires size >= 2 */
1582 setvbuf(logfile, NULL, _IOLBF, 0);
1586 if (!loglevel && logfile) {
1592 void cpu_set_log_filename(const char *filename)
1594 logfilename = strdup(filename);
1599 cpu_set_log(loglevel);
1602 static void cpu_unlink_tb(CPUState *env)
1604 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1605 problem and hope the cpu will stop of its own accord. For userspace
1606 emulation this often isn't actually as bad as it sounds. Often
1607 signals are used primarily to interrupt blocking syscalls. */
1608 TranslationBlock *tb;
1609 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1611 spin_lock(&interrupt_lock);
1612 tb = env->current_tb;
1613 /* if the cpu is currently executing code, we must unlink it and
1614 all the potentially executing TB */
1616 env->current_tb = NULL;
1617 tb_reset_jump_recursive(tb);
1619 spin_unlock(&interrupt_lock);
1622 /* mask must never be zero, except for A20 change call */
1623 void cpu_interrupt(CPUState *env, int mask)
1627 old_mask = env->interrupt_request;
1628 env->interrupt_request |= mask;
1630 #ifndef CONFIG_USER_ONLY
1632 * If called from iothread context, wake the target cpu in
1635 if (!qemu_cpu_self(env)) {
1642 env->icount_decr.u16.high = 0xffff;
1643 #ifndef CONFIG_USER_ONLY
1645 && (mask & ~old_mask) != 0) {
1646 cpu_abort(env, "Raised interrupt while not in I/O function");
1654 void cpu_reset_interrupt(CPUState *env, int mask)
1656 env->interrupt_request &= ~mask;
1659 void cpu_exit(CPUState *env)
1661 env->exit_request = 1;
1665 const CPULogItem cpu_log_items[] = {
1666 { CPU_LOG_TB_OUT_ASM, "out_asm",
1667 "show generated host assembly code for each compiled TB" },
1668 { CPU_LOG_TB_IN_ASM, "in_asm",
1669 "show target assembly code for each compiled TB" },
1670 { CPU_LOG_TB_OP, "op",
1671 "show micro ops for each compiled TB" },
1672 { CPU_LOG_TB_OP_OPT, "op_opt",
1675 "before eflags optimization and "
1677 "after liveness analysis" },
1678 { CPU_LOG_INT, "int",
1679 "show interrupts/exceptions in short format" },
1680 { CPU_LOG_EXEC, "exec",
1681 "show trace before each executed TB (lots of logs)" },
1682 { CPU_LOG_TB_CPU, "cpu",
1683 "show CPU state before block translation" },
1685 { CPU_LOG_PCALL, "pcall",
1686 "show protected mode far calls/returns/exceptions" },
1687 { CPU_LOG_RESET, "cpu_reset",
1688 "show CPU state before CPU resets" },
1691 { CPU_LOG_IOPORT, "ioport",
1692 "show all i/o ports accesses" },
1697 #ifndef CONFIG_USER_ONLY
1698 static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1699 = QLIST_HEAD_INITIALIZER(memory_client_list);
1701 static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1703 ram_addr_t phys_offset)
1705 CPUPhysMemoryClient *client;
1706 QLIST_FOREACH(client, &memory_client_list, list) {
1707 client->set_memory(client, start_addr, size, phys_offset);
1711 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1712 target_phys_addr_t end)
1714 CPUPhysMemoryClient *client;
1715 QLIST_FOREACH(client, &memory_client_list, list) {
1716 int r = client->sync_dirty_bitmap(client, start, end);
1723 static int cpu_notify_migration_log(int enable)
1725 CPUPhysMemoryClient *client;
1726 QLIST_FOREACH(client, &memory_client_list, list) {
1727 int r = client->migration_log(client, enable);
1734 static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1735 int level, void **lp)
1743 PhysPageDesc *pd = *lp;
1744 for (i = 0; i < L2_SIZE; ++i) {
1745 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1746 client->set_memory(client, pd[i].region_offset,
1747 TARGET_PAGE_SIZE, pd[i].phys_offset);
1752 for (i = 0; i < L2_SIZE; ++i) {
1753 phys_page_for_each_1(client, level - 1, pp + i);
1758 static void phys_page_for_each(CPUPhysMemoryClient *client)
1761 for (i = 0; i < P_L1_SIZE; ++i) {
1762 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1767 void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1769 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1770 phys_page_for_each(client);
1773 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1775 QLIST_REMOVE(client, list);
1779 static int cmp1(const char *s1, int n, const char *s2)
1781 if (strlen(s2) != n)
1783 return memcmp(s1, s2, n) == 0;
1786 /* takes a comma separated list of log masks. Return 0 if error. */
1787 int cpu_str_to_log_mask(const char *str)
1789 const CPULogItem *item;
1796 p1 = strchr(p, ',');
1799 if(cmp1(p,p1-p,"all")) {
1800 for(item = cpu_log_items; item->mask != 0; item++) {
1804 for(item = cpu_log_items; item->mask != 0; item++) {
1805 if (cmp1(p, p1 - p, item->name))
1819 void cpu_abort(CPUState *env, const char *fmt, ...)
1826 fprintf(stderr, "qemu: fatal: ");
1827 vfprintf(stderr, fmt, ap);
1828 fprintf(stderr, "\n");
1830 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1832 cpu_dump_state(env, stderr, fprintf, 0);
1834 if (qemu_log_enabled()) {
1835 qemu_log("qemu: fatal: ");
1836 qemu_log_vprintf(fmt, ap2);
1839 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1841 log_cpu_state(env, 0);
1848 #if defined(CONFIG_USER_ONLY)
1850 struct sigaction act;
1851 sigfillset(&act.sa_mask);
1852 act.sa_handler = SIG_DFL;
1853 sigaction(SIGABRT, &act, NULL);
1859 CPUState *cpu_copy(CPUState *env)
1861 CPUState *new_env = cpu_init(env->cpu_model_str);
1862 CPUState *next_cpu = new_env->next_cpu;
1863 int cpu_index = new_env->cpu_index;
1864 #if defined(TARGET_HAS_ICE)
1869 memcpy(new_env, env, sizeof(CPUState));
1871 /* Preserve chaining and index. */
1872 new_env->next_cpu = next_cpu;
1873 new_env->cpu_index = cpu_index;
1875 /* Clone all break/watchpoints.
1876 Note: Once we support ptrace with hw-debug register access, make sure
1877 BP_CPU break/watchpoints are handled correctly on clone. */
1878 QTAILQ_INIT(&env->breakpoints);
1879 QTAILQ_INIT(&env->watchpoints);
1880 #if defined(TARGET_HAS_ICE)
1881 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1882 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1884 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1885 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1893 #if !defined(CONFIG_USER_ONLY)
1895 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1899 /* Discard jump cache entries for any tb which might potentially
1900 overlap the flushed page. */
1901 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1902 memset (&env->tb_jmp_cache[i], 0,
1903 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1905 i = tb_jmp_cache_hash_page(addr);
1906 memset (&env->tb_jmp_cache[i], 0,
1907 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1910 static CPUTLBEntry s_cputlb_empty_entry = {
1917 /* NOTE: if flush_global is true, also flush global entries (not
1919 void tlb_flush(CPUState *env, int flush_global)
1923 #if defined(DEBUG_TLB)
1924 printf("tlb_flush:\n");
1926 /* must reset current TB so that interrupts cannot modify the
1927 links while we are modifying them */
1928 env->current_tb = NULL;
1930 for(i = 0; i < CPU_TLB_SIZE; i++) {
1932 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1933 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1937 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1939 env->tlb_flush_addr = -1;
1940 env->tlb_flush_mask = 0;
1944 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1946 if (addr == (tlb_entry->addr_read &
1947 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1948 addr == (tlb_entry->addr_write &
1949 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1950 addr == (tlb_entry->addr_code &
1951 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1952 *tlb_entry = s_cputlb_empty_entry;
1956 void tlb_flush_page(CPUState *env, target_ulong addr)
1961 #if defined(DEBUG_TLB)
1962 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1964 /* Check if we need to flush due to large pages. */
1965 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1966 #if defined(DEBUG_TLB)
1967 printf("tlb_flush_page: forced full flush ("
1968 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1969 env->tlb_flush_addr, env->tlb_flush_mask);
1974 /* must reset current TB so that interrupts cannot modify the
1975 links while we are modifying them */
1976 env->current_tb = NULL;
1978 addr &= TARGET_PAGE_MASK;
1979 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1980 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1981 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1983 tlb_flush_jmp_cache(env, addr);
1986 /* update the TLBs so that writes to code in the virtual page 'addr'
1988 static void tlb_protect_code(ram_addr_t ram_addr)
1990 cpu_physical_memory_reset_dirty(ram_addr,
1991 ram_addr + TARGET_PAGE_SIZE,
1995 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1996 tested for self modifying code */
1997 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
2000 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
2003 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
2004 unsigned long start, unsigned long length)
2007 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2008 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
2009 if ((addr - start) < length) {
2010 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
2015 /* Note: start and end must be within the same ram block. */
2016 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
2020 unsigned long length, start1;
2023 start &= TARGET_PAGE_MASK;
2024 end = TARGET_PAGE_ALIGN(end);
2026 length = end - start;
2029 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
2031 /* we modify the TLB cache so that the dirty bit will be set again
2032 when accessing the range */
2033 start1 = (unsigned long)qemu_safe_ram_ptr(start);
2034 /* Chek that we don't span multiple blocks - this breaks the
2035 address comparisons below. */
2036 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
2037 != (end - 1) - start) {
2041 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2043 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2044 for(i = 0; i < CPU_TLB_SIZE; i++)
2045 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2051 int cpu_physical_memory_set_dirty_tracking(int enable)
2054 in_migration = enable;
2055 ret = cpu_notify_migration_log(!!enable);
2059 int cpu_physical_memory_get_dirty_tracking(void)
2061 return in_migration;
2064 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2065 target_phys_addr_t end_addr)
2069 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
2073 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2075 ram_addr_t ram_addr;
2078 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2079 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2080 + tlb_entry->addend);
2081 ram_addr = qemu_ram_addr_from_host_nofail(p);
2082 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2083 tlb_entry->addr_write |= TLB_NOTDIRTY;
2088 /* update the TLB according to the current state of the dirty bits */
2089 void cpu_tlb_update_dirty(CPUState *env)
2093 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2094 for(i = 0; i < CPU_TLB_SIZE; i++)
2095 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2099 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2101 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2102 tlb_entry->addr_write = vaddr;
2105 /* update the TLB corresponding to virtual page vaddr
2106 so that it is no longer dirty */
2107 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2112 vaddr &= TARGET_PAGE_MASK;
2113 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2114 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2115 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2118 /* Our TLB does not support large pages, so remember the area covered by
2119 large pages and trigger a full TLB flush if these are invalidated. */
2120 static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2123 target_ulong mask = ~(size - 1);
2125 if (env->tlb_flush_addr == (target_ulong)-1) {
2126 env->tlb_flush_addr = vaddr & mask;
2127 env->tlb_flush_mask = mask;
2130 /* Extend the existing region to include the new page.
2131 This is a compromise between unnecessary flushes and the cost
2132 of maintaining a full variable size TLB. */
2133 mask &= env->tlb_flush_mask;
2134 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2137 env->tlb_flush_addr &= mask;
2138 env->tlb_flush_mask = mask;
2141 /* Add a new TLB entry. At most one entry for a given virtual address
2142 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2143 supplied size is only used by tlb_flush_page. */
2144 void tlb_set_page(CPUState *env, target_ulong vaddr,
2145 target_phys_addr_t paddr, int prot,
2146 int mmu_idx, target_ulong size)
2151 target_ulong address;
2152 target_ulong code_address;
2153 unsigned long addend;
2156 target_phys_addr_t iotlb;
2158 assert(size >= TARGET_PAGE_SIZE);
2159 if (size != TARGET_PAGE_SIZE) {
2160 tlb_add_large_page(env, vaddr, size);
2162 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2164 pd = IO_MEM_UNASSIGNED;
2166 pd = p->phys_offset;
2168 #if defined(DEBUG_TLB)
2169 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2170 " prot=%x idx=%d pd=0x%08lx\n",
2171 vaddr, paddr, prot, mmu_idx, pd);
2175 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2176 /* IO memory case (romd handled later) */
2177 address |= TLB_MMIO;
2179 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2180 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2182 iotlb = pd & TARGET_PAGE_MASK;
2183 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2184 iotlb |= IO_MEM_NOTDIRTY;
2186 iotlb |= IO_MEM_ROM;
2188 /* IO handlers are currently passed a physical address.
2189 It would be nice to pass an offset from the base address
2190 of that region. This would avoid having to special case RAM,
2191 and avoid full address decoding in every device.
2192 We can't use the high bits of pd for this because
2193 IO_MEM_ROMD uses these as a ram address. */
2194 iotlb = (pd & ~TARGET_PAGE_MASK);
2196 iotlb += p->region_offset;
2202 code_address = address;
2203 /* Make accesses to pages with watchpoints go via the
2204 watchpoint trap routines. */
2205 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2206 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2207 /* Avoid trapping reads of pages with a write breakpoint. */
2208 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2209 iotlb = io_mem_watch + paddr;
2210 address |= TLB_MMIO;
2216 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2217 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2218 te = &env->tlb_table[mmu_idx][index];
2219 te->addend = addend - vaddr;
2220 if (prot & PAGE_READ) {
2221 te->addr_read = address;
2226 if (prot & PAGE_EXEC) {
2227 te->addr_code = code_address;
2231 if (prot & PAGE_WRITE) {
2232 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2233 (pd & IO_MEM_ROMD)) {
2234 /* Write access calls the I/O callback. */
2235 te->addr_write = address | TLB_MMIO;
2236 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2237 !cpu_physical_memory_is_dirty(pd)) {
2238 te->addr_write = address | TLB_NOTDIRTY;
2240 te->addr_write = address;
2243 te->addr_write = -1;
2249 void tlb_flush(CPUState *env, int flush_global)
2253 void tlb_flush_page(CPUState *env, target_ulong addr)
2258 * Walks guest process memory "regions" one by one
2259 * and calls callback function 'fn' for each region.
2262 struct walk_memory_regions_data
2264 walk_memory_regions_fn fn;
2266 unsigned long start;
2270 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2271 abi_ulong end, int new_prot)
2273 if (data->start != -1ul) {
2274 int rc = data->fn(data->priv, data->start, end, data->prot);
2280 data->start = (new_prot ? end : -1ul);
2281 data->prot = new_prot;
2286 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2287 abi_ulong base, int level, void **lp)
2293 return walk_memory_regions_end(data, base, 0);
2298 for (i = 0; i < L2_SIZE; ++i) {
2299 int prot = pd[i].flags;
2301 pa = base | (i << TARGET_PAGE_BITS);
2302 if (prot != data->prot) {
2303 rc = walk_memory_regions_end(data, pa, prot);
2311 for (i = 0; i < L2_SIZE; ++i) {
2312 pa = base | ((abi_ulong)i <<
2313 (TARGET_PAGE_BITS + L2_BITS * level));
2314 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2324 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2326 struct walk_memory_regions_data data;
2334 for (i = 0; i < V_L1_SIZE; i++) {
2335 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
2336 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2342 return walk_memory_regions_end(&data, 0, 0);
2345 static int dump_region(void *priv, abi_ulong start,
2346 abi_ulong end, unsigned long prot)
2348 FILE *f = (FILE *)priv;
2350 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2351 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2352 start, end, end - start,
2353 ((prot & PAGE_READ) ? 'r' : '-'),
2354 ((prot & PAGE_WRITE) ? 'w' : '-'),
2355 ((prot & PAGE_EXEC) ? 'x' : '-'));
2360 /* dump memory mappings */
2361 void page_dump(FILE *f)
2363 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2364 "start", "end", "size", "prot");
2365 walk_memory_regions(f, dump_region);
2368 int page_get_flags(target_ulong address)
2372 p = page_find(address >> TARGET_PAGE_BITS);
2378 /* Modify the flags of a page and invalidate the code if necessary.
2379 The flag PAGE_WRITE_ORG is positioned automatically depending
2380 on PAGE_WRITE. The mmap_lock should already be held. */
2381 void page_set_flags(target_ulong start, target_ulong end, int flags)
2383 target_ulong addr, len;
2385 /* This function should never be called with addresses outside the
2386 guest address space. If this assert fires, it probably indicates
2387 a missing call to h2g_valid. */
2388 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2389 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2391 assert(start < end);
2393 start = start & TARGET_PAGE_MASK;
2394 end = TARGET_PAGE_ALIGN(end);
2396 if (flags & PAGE_WRITE) {
2397 flags |= PAGE_WRITE_ORG;
2400 for (addr = start, len = end - start;
2402 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2403 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2405 /* If the write protection bit is set, then we invalidate
2407 if (!(p->flags & PAGE_WRITE) &&
2408 (flags & PAGE_WRITE) &&
2410 tb_invalidate_phys_page(addr, 0, NULL);
2416 int page_check_range(target_ulong start, target_ulong len, int flags)
2422 /* This function should never be called with addresses outside the
2423 guest address space. If this assert fires, it probably indicates
2424 a missing call to h2g_valid. */
2425 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2426 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2432 if (start + len - 1 < start) {
2433 /* We've wrapped around. */
2437 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2438 start = start & TARGET_PAGE_MASK;
2440 for (addr = start, len = end - start;
2442 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2443 p = page_find(addr >> TARGET_PAGE_BITS);
2446 if( !(p->flags & PAGE_VALID) )
2449 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2451 if (flags & PAGE_WRITE) {
2452 if (!(p->flags & PAGE_WRITE_ORG))
2454 /* unprotect the page if it was put read-only because it
2455 contains translated code */
2456 if (!(p->flags & PAGE_WRITE)) {
2457 if (!page_unprotect(addr, 0, NULL))
2466 /* called from signal handler: invalidate the code and unprotect the
2467 page. Return TRUE if the fault was successfully handled. */
2468 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2472 target_ulong host_start, host_end, addr;
2474 /* Technically this isn't safe inside a signal handler. However we
2475 know this only ever happens in a synchronous SEGV handler, so in
2476 practice it seems to be ok. */
2479 p = page_find(address >> TARGET_PAGE_BITS);
2485 /* if the page was really writable, then we change its
2486 protection back to writable */
2487 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2488 host_start = address & qemu_host_page_mask;
2489 host_end = host_start + qemu_host_page_size;
2492 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2493 p = page_find(addr >> TARGET_PAGE_BITS);
2494 p->flags |= PAGE_WRITE;
2497 /* and since the content will be modified, we must invalidate
2498 the corresponding translated code. */
2499 tb_invalidate_phys_page(addr, pc, puc);
2500 #ifdef DEBUG_TB_CHECK
2501 tb_invalidate_check(addr);
2504 mprotect((void *)g2h(host_start), qemu_host_page_size,
2514 static inline void tlb_set_dirty(CPUState *env,
2515 unsigned long addr, target_ulong vaddr)
2518 #endif /* defined(CONFIG_USER_ONLY) */
2520 #if !defined(CONFIG_USER_ONLY)
2522 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2523 typedef struct subpage_t {
2524 target_phys_addr_t base;
2525 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2526 ram_addr_t region_offset[TARGET_PAGE_SIZE];
2529 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2530 ram_addr_t memory, ram_addr_t region_offset);
2531 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2532 ram_addr_t orig_memory,
2533 ram_addr_t region_offset);
2534 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2537 if (addr > start_addr) \
2540 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2541 if (start_addr2 > 0) \
2545 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2546 end_addr2 = TARGET_PAGE_SIZE - 1; \
2548 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2549 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2554 /* register physical memory.
2555 For RAM, 'size' must be a multiple of the target page size.
2556 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2557 io memory page. The address used when calling the IO function is
2558 the offset from the start of the region, plus region_offset. Both
2559 start_addr and region_offset are rounded down to a page boundary
2560 before calculating this offset. This should not be a problem unless
2561 the low bits of start_addr and region_offset differ. */
2562 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2564 ram_addr_t phys_offset,
2565 ram_addr_t region_offset)
2567 target_phys_addr_t addr, end_addr;
2570 ram_addr_t orig_size = size;
2573 cpu_notify_set_memory(start_addr, size, phys_offset);
2575 if (phys_offset == IO_MEM_UNASSIGNED) {
2576 region_offset = start_addr;
2578 region_offset &= TARGET_PAGE_MASK;
2579 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2580 end_addr = start_addr + (target_phys_addr_t)size;
2581 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2582 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2583 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2584 ram_addr_t orig_memory = p->phys_offset;
2585 target_phys_addr_t start_addr2, end_addr2;
2586 int need_subpage = 0;
2588 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2591 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2592 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2593 &p->phys_offset, orig_memory,
2596 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2599 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2601 p->region_offset = 0;
2603 p->phys_offset = phys_offset;
2604 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2605 (phys_offset & IO_MEM_ROMD))
2606 phys_offset += TARGET_PAGE_SIZE;
2609 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2610 p->phys_offset = phys_offset;
2611 p->region_offset = region_offset;
2612 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2613 (phys_offset & IO_MEM_ROMD)) {
2614 phys_offset += TARGET_PAGE_SIZE;
2616 target_phys_addr_t start_addr2, end_addr2;
2617 int need_subpage = 0;
2619 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2620 end_addr2, need_subpage);
2623 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2624 &p->phys_offset, IO_MEM_UNASSIGNED,
2625 addr & TARGET_PAGE_MASK);
2626 subpage_register(subpage, start_addr2, end_addr2,
2627 phys_offset, region_offset);
2628 p->region_offset = 0;
2632 region_offset += TARGET_PAGE_SIZE;
2635 /* since each CPU stores ram addresses in its TLB cache, we must
2636 reset the modified entries */
2638 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2643 /* XXX: temporary until new memory mapping API */
2644 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2648 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2650 return IO_MEM_UNASSIGNED;
2651 return p->phys_offset;
2654 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2657 kvm_coalesce_mmio_region(addr, size);
2660 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2663 kvm_uncoalesce_mmio_region(addr, size);
2666 void qemu_flush_coalesced_mmio_buffer(void)
2669 kvm_flush_coalesced_mmio_buffer();
2672 #if defined(__linux__) && !defined(TARGET_S390X)
2674 #include <sys/vfs.h>
2676 #define HUGETLBFS_MAGIC 0x958458f6
2678 static long gethugepagesize(const char *path)
2684 ret = statfs(path, &fs);
2685 } while (ret != 0 && errno == EINTR);
2692 if (fs.f_type != HUGETLBFS_MAGIC)
2693 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2698 static void *file_ram_alloc(RAMBlock *block,
2708 unsigned long hpagesize;
2710 hpagesize = gethugepagesize(path);
2715 if (memory < hpagesize) {
2719 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2720 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2724 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2728 fd = mkstemp(filename);
2730 perror("unable to create backing store for hugepages");
2737 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2740 * ftruncate is not supported by hugetlbfs in older
2741 * hosts, so don't bother bailing out on errors.
2742 * If anything goes wrong with it under other filesystems,
2745 if (ftruncate(fd, memory))
2746 perror("ftruncate");
2749 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2750 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2751 * to sidestep this quirk.
2753 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2754 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2756 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2758 if (area == MAP_FAILED) {
2759 perror("file_ram_alloc: can't mmap RAM pages");
2768 static ram_addr_t find_ram_offset(ram_addr_t size)
2770 RAMBlock *block, *next_block;
2771 ram_addr_t offset = 0, mingap = ULONG_MAX;
2773 if (QLIST_EMPTY(&ram_list.blocks))
2776 QLIST_FOREACH(block, &ram_list.blocks, next) {
2777 ram_addr_t end, next = ULONG_MAX;
2779 end = block->offset + block->length;
2781 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2782 if (next_block->offset >= end) {
2783 next = MIN(next, next_block->offset);
2786 if (next - end >= size && next - end < mingap) {
2788 mingap = next - end;
2794 static ram_addr_t last_ram_offset(void)
2797 ram_addr_t last = 0;
2799 QLIST_FOREACH(block, &ram_list.blocks, next)
2800 last = MAX(last, block->offset + block->length);
2805 ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
2806 ram_addr_t size, void *host)
2808 RAMBlock *new_block, *block;
2810 size = TARGET_PAGE_ALIGN(size);
2811 new_block = qemu_mallocz(sizeof(*new_block));
2813 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2814 char *id = dev->parent_bus->info->get_dev_path(dev);
2816 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2820 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2822 QLIST_FOREACH(block, &ram_list.blocks, next) {
2823 if (!strcmp(block->idstr, new_block->idstr)) {
2824 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2831 new_block->host = host;
2834 #if defined (__linux__) && !defined(TARGET_S390X)
2835 new_block->host = file_ram_alloc(new_block, size, mem_path);
2836 if (!new_block->host) {
2837 new_block->host = qemu_vmalloc(size);
2838 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2841 fprintf(stderr, "-mem-path option unsupported\n");
2845 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2846 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2847 new_block->host = mmap((void*)0x1000000, size,
2848 PROT_EXEC|PROT_READ|PROT_WRITE,
2849 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2851 new_block->host = qemu_vmalloc(size);
2853 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2857 new_block->offset = find_ram_offset(size);
2858 new_block->length = size;
2860 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
2862 ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty,
2863 last_ram_offset() >> TARGET_PAGE_BITS);
2864 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
2865 0xff, size >> TARGET_PAGE_BITS);
2868 kvm_setup_guest_memory(new_block->host, size);
2870 return new_block->offset;
2873 ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size)
2875 return qemu_ram_alloc_from_ptr(dev, name, size, NULL);
2878 void qemu_ram_free(ram_addr_t addr)
2882 QLIST_FOREACH(block, &ram_list.blocks, next) {
2883 if (addr == block->offset) {
2884 QLIST_REMOVE(block, next);
2886 #if defined (__linux__) && !defined(TARGET_S390X)
2888 munmap(block->host, block->length);
2891 qemu_vfree(block->host);
2895 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2896 munmap(block->host, block->length);
2898 qemu_vfree(block->host);
2908 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2909 With the exception of the softmmu code in this file, this should
2910 only be used for local memory (e.g. video ram) that the device owns,
2911 and knows it isn't going to access beyond the end of the block.
2913 It should not be used for general purpose DMA.
2914 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2916 void *qemu_get_ram_ptr(ram_addr_t addr)
2920 QLIST_FOREACH(block, &ram_list.blocks, next) {
2921 if (addr - block->offset < block->length) {
2922 QLIST_REMOVE(block, next);
2923 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
2924 return block->host + (addr - block->offset);
2928 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2934 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2935 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
2937 void *qemu_safe_ram_ptr(ram_addr_t addr)
2941 QLIST_FOREACH(block, &ram_list.blocks, next) {
2942 if (addr - block->offset < block->length) {
2943 return block->host + (addr - block->offset);
2947 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2953 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
2956 uint8_t *host = ptr;
2958 QLIST_FOREACH(block, &ram_list.blocks, next) {
2959 if (host - block->host < block->length) {
2960 *ram_addr = block->offset + (host - block->host);
2967 /* Some of the softmmu routines need to translate from a host pointer
2968 (typically a TLB entry) back to a ram offset. */
2969 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2971 ram_addr_t ram_addr;
2973 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
2974 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2980 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2982 #ifdef DEBUG_UNASSIGNED
2983 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2985 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2986 do_unassigned_access(addr, 0, 0, 0, 1);
2991 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2993 #ifdef DEBUG_UNASSIGNED
2994 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2996 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2997 do_unassigned_access(addr, 0, 0, 0, 2);
3002 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
3004 #ifdef DEBUG_UNASSIGNED
3005 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3007 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3008 do_unassigned_access(addr, 0, 0, 0, 4);
3013 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
3015 #ifdef DEBUG_UNASSIGNED
3016 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3018 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3019 do_unassigned_access(addr, 1, 0, 0, 1);
3023 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
3025 #ifdef DEBUG_UNASSIGNED
3026 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3028 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3029 do_unassigned_access(addr, 1, 0, 0, 2);
3033 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
3035 #ifdef DEBUG_UNASSIGNED
3036 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3038 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3039 do_unassigned_access(addr, 1, 0, 0, 4);
3043 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
3044 unassigned_mem_readb,
3045 unassigned_mem_readw,
3046 unassigned_mem_readl,
3049 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
3050 unassigned_mem_writeb,
3051 unassigned_mem_writew,
3052 unassigned_mem_writel,
3055 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
3059 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3060 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3061 #if !defined(CONFIG_USER_ONLY)
3062 tb_invalidate_phys_page_fast(ram_addr, 1);
3063 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3066 stb_p(qemu_get_ram_ptr(ram_addr), val);
3067 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3068 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3069 /* we remove the notdirty callback only if the code has been
3071 if (dirty_flags == 0xff)
3072 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3075 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
3079 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3080 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3081 #if !defined(CONFIG_USER_ONLY)
3082 tb_invalidate_phys_page_fast(ram_addr, 2);
3083 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3086 stw_p(qemu_get_ram_ptr(ram_addr), val);
3087 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3088 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3089 /* we remove the notdirty callback only if the code has been
3091 if (dirty_flags == 0xff)
3092 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3095 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
3099 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3100 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3101 #if !defined(CONFIG_USER_ONLY)
3102 tb_invalidate_phys_page_fast(ram_addr, 4);
3103 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3106 stl_p(qemu_get_ram_ptr(ram_addr), val);
3107 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3108 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3109 /* we remove the notdirty callback only if the code has been
3111 if (dirty_flags == 0xff)
3112 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3115 static CPUReadMemoryFunc * const error_mem_read[3] = {
3116 NULL, /* never used */
3117 NULL, /* never used */
3118 NULL, /* never used */
3121 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
3122 notdirty_mem_writeb,
3123 notdirty_mem_writew,
3124 notdirty_mem_writel,
3127 /* Generate a debug exception if a watchpoint has been hit. */
3128 static void check_watchpoint(int offset, int len_mask, int flags)
3130 CPUState *env = cpu_single_env;
3131 target_ulong pc, cs_base;
3132 TranslationBlock *tb;
3137 if (env->watchpoint_hit) {
3138 /* We re-entered the check after replacing the TB. Now raise
3139 * the debug interrupt so that is will trigger after the
3140 * current instruction. */
3141 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3144 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
3145 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
3146 if ((vaddr == (wp->vaddr & len_mask) ||
3147 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
3148 wp->flags |= BP_WATCHPOINT_HIT;
3149 if (!env->watchpoint_hit) {
3150 env->watchpoint_hit = wp;
3151 tb = tb_find_pc(env->mem_io_pc);
3153 cpu_abort(env, "check_watchpoint: could not find TB for "
3154 "pc=%p", (void *)env->mem_io_pc);
3156 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3157 tb_phys_invalidate(tb, -1);
3158 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3159 env->exception_index = EXCP_DEBUG;
3161 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3162 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3164 cpu_resume_from_signal(env, NULL);
3167 wp->flags &= ~BP_WATCHPOINT_HIT;
3172 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3173 so these check for a hit then pass through to the normal out-of-line
3175 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
3177 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
3178 return ldub_phys(addr);
3181 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
3183 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
3184 return lduw_phys(addr);
3187 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
3189 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
3190 return ldl_phys(addr);
3193 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
3196 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
3197 stb_phys(addr, val);
3200 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
3203 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
3204 stw_phys(addr, val);
3207 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
3210 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
3211 stl_phys(addr, val);
3214 static CPUReadMemoryFunc * const watch_mem_read[3] = {
3220 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
3226 static inline uint32_t subpage_readlen (subpage_t *mmio,
3227 target_phys_addr_t addr,
3230 unsigned int idx = SUBPAGE_IDX(addr);
3231 #if defined(DEBUG_SUBPAGE)
3232 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3233 mmio, len, addr, idx);
3236 addr += mmio->region_offset[idx];
3237 idx = mmio->sub_io_index[idx];
3238 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
3241 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
3242 uint32_t value, unsigned int len)
3244 unsigned int idx = SUBPAGE_IDX(addr);
3245 #if defined(DEBUG_SUBPAGE)
3246 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3247 __func__, mmio, len, addr, idx, value);
3250 addr += mmio->region_offset[idx];
3251 idx = mmio->sub_io_index[idx];
3252 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
3255 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
3257 return subpage_readlen(opaque, addr, 0);
3260 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
3263 subpage_writelen(opaque, addr, value, 0);
3266 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
3268 return subpage_readlen(opaque, addr, 1);
3271 static void subpage_writew (void *opaque, target_phys_addr_t addr,
3274 subpage_writelen(opaque, addr, value, 1);
3277 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
3279 return subpage_readlen(opaque, addr, 2);
3282 static void subpage_writel (void *opaque, target_phys_addr_t addr,
3285 subpage_writelen(opaque, addr, value, 2);
3288 static CPUReadMemoryFunc * const subpage_read[] = {
3294 static CPUWriteMemoryFunc * const subpage_write[] = {
3300 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3301 ram_addr_t memory, ram_addr_t region_offset)
3305 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3307 idx = SUBPAGE_IDX(start);
3308 eidx = SUBPAGE_IDX(end);
3309 #if defined(DEBUG_SUBPAGE)
3310 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3311 mmio, start, end, idx, eidx, memory);
3313 if ((memory & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
3314 memory = IO_MEM_UNASSIGNED;
3315 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3316 for (; idx <= eidx; idx++) {
3317 mmio->sub_io_index[idx] = memory;
3318 mmio->region_offset[idx] = region_offset;
3324 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3325 ram_addr_t orig_memory,
3326 ram_addr_t region_offset)
3331 mmio = qemu_mallocz(sizeof(subpage_t));
3334 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
3335 #if defined(DEBUG_SUBPAGE)
3336 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3337 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3339 *phys = subpage_memory | IO_MEM_SUBPAGE;
3340 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
3345 static int get_free_io_mem_idx(void)
3349 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3350 if (!io_mem_used[i]) {
3354 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3359 * Usually, devices operate in little endian mode. There are devices out
3360 * there that operate in big endian too. Each device gets byte swapped
3361 * mmio if plugged onto a CPU that does the other endianness.
3371 typedef struct SwapEndianContainer {
3372 CPUReadMemoryFunc *read[3];
3373 CPUWriteMemoryFunc *write[3];
3375 } SwapEndianContainer;
3377 static uint32_t swapendian_mem_readb (void *opaque, target_phys_addr_t addr)
3380 SwapEndianContainer *c = opaque;
3381 val = c->read[0](c->opaque, addr);
3385 static uint32_t swapendian_mem_readw(void *opaque, target_phys_addr_t addr)
3388 SwapEndianContainer *c = opaque;
3389 val = bswap16(c->read[1](c->opaque, addr));
3393 static uint32_t swapendian_mem_readl(void *opaque, target_phys_addr_t addr)
3396 SwapEndianContainer *c = opaque;
3397 val = bswap32(c->read[2](c->opaque, addr));
3401 static CPUReadMemoryFunc * const swapendian_readfn[3]={
3402 swapendian_mem_readb,
3403 swapendian_mem_readw,
3404 swapendian_mem_readl
3407 static void swapendian_mem_writeb(void *opaque, target_phys_addr_t addr,
3410 SwapEndianContainer *c = opaque;
3411 c->write[0](c->opaque, addr, val);
3414 static void swapendian_mem_writew(void *opaque, target_phys_addr_t addr,
3417 SwapEndianContainer *c = opaque;
3418 c->write[1](c->opaque, addr, bswap16(val));
3421 static void swapendian_mem_writel(void *opaque, target_phys_addr_t addr,
3424 SwapEndianContainer *c = opaque;
3425 c->write[2](c->opaque, addr, bswap32(val));
3428 static CPUWriteMemoryFunc * const swapendian_writefn[3]={
3429 swapendian_mem_writeb,
3430 swapendian_mem_writew,
3431 swapendian_mem_writel
3434 static void swapendian_init(int io_index)
3436 SwapEndianContainer *c = qemu_malloc(sizeof(SwapEndianContainer));
3439 /* Swap mmio for big endian targets */
3440 c->opaque = io_mem_opaque[io_index];
3441 for (i = 0; i < 3; i++) {
3442 c->read[i] = io_mem_read[io_index][i];
3443 c->write[i] = io_mem_write[io_index][i];
3445 io_mem_read[io_index][i] = swapendian_readfn[i];
3446 io_mem_write[io_index][i] = swapendian_writefn[i];
3448 io_mem_opaque[io_index] = c;
3451 static void swapendian_del(int io_index)
3453 if (io_mem_read[io_index][0] == swapendian_readfn[0]) {
3454 qemu_free(io_mem_opaque[io_index]);
3458 /* mem_read and mem_write are arrays of functions containing the
3459 function to access byte (index 0), word (index 1) and dword (index
3460 2). Functions can be omitted with a NULL function pointer.
3461 If io_index is non zero, the corresponding io zone is
3462 modified. If it is zero, a new io zone is allocated. The return
3463 value can be used with cpu_register_physical_memory(). (-1) is
3464 returned if error. */
3465 static int cpu_register_io_memory_fixed(int io_index,
3466 CPUReadMemoryFunc * const *mem_read,
3467 CPUWriteMemoryFunc * const *mem_write,
3468 void *opaque, enum device_endian endian)
3471 int endian = DEVICE_NATIVE_ENDIAN;
3473 if (io_index <= 0) {
3474 io_index = get_free_io_mem_idx();
3478 io_index >>= IO_MEM_SHIFT;
3479 if (io_index >= IO_MEM_NB_ENTRIES)
3483 for (i = 0; i < 3; ++i) {
3484 io_mem_read[io_index][i]
3485 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3487 for (i = 0; i < 3; ++i) {
3488 io_mem_write[io_index][i]
3489 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3491 io_mem_opaque[io_index] = opaque;
3494 case DEVICE_BIG_ENDIAN:
3495 #ifndef TARGET_WORDS_BIGENDIAN
3496 swapendian_init(io_index);
3499 case DEVICE_LITTLE_ENDIAN:
3500 #ifdef TARGET_WORDS_BIGENDIAN
3501 swapendian_init(io_index);
3504 case DEVICE_NATIVE_ENDIAN:
3509 return (io_index << IO_MEM_SHIFT);
3512 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3513 CPUWriteMemoryFunc * const *mem_write,
3514 void *opaque, enum device_endian endian)
3516 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3519 void cpu_unregister_io_memory(int io_table_address)
3522 int io_index = io_table_address >> IO_MEM_SHIFT;
3524 swapendian_del(io_index);
3526 for (i=0;i < 3; i++) {
3527 io_mem_read[io_index][i] = unassigned_mem_read[i];
3528 io_mem_write[io_index][i] = unassigned_mem_write[i];
3530 io_mem_opaque[io_index] = NULL;
3531 io_mem_used[io_index] = 0;
3534 static void io_mem_init(void)
3538 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3539 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3540 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3544 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3545 watch_mem_write, NULL);
3548 #endif /* !defined(CONFIG_USER_ONLY) */
3550 /* physical memory access (slow version, mainly for debug) */
3551 #if defined(CONFIG_USER_ONLY)
3552 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3553 uint8_t *buf, int len, int is_write)
3560 page = addr & TARGET_PAGE_MASK;
3561 l = (page + TARGET_PAGE_SIZE) - addr;
3564 flags = page_get_flags(page);
3565 if (!(flags & PAGE_VALID))
3568 if (!(flags & PAGE_WRITE))
3570 /* XXX: this code should not depend on lock_user */
3571 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3574 unlock_user(p, addr, l);
3576 if (!(flags & PAGE_READ))
3578 /* XXX: this code should not depend on lock_user */
3579 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3582 unlock_user(p, addr, 0);
3592 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3593 int len, int is_write)
3598 target_phys_addr_t page;
3603 page = addr & TARGET_PAGE_MASK;
3604 l = (page + TARGET_PAGE_SIZE) - addr;
3607 p = phys_page_find(page >> TARGET_PAGE_BITS);
3609 pd = IO_MEM_UNASSIGNED;
3611 pd = p->phys_offset;
3615 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3616 target_phys_addr_t addr1 = addr;
3617 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3619 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3620 /* XXX: could force cpu_single_env to NULL to avoid
3622 if (l >= 4 && ((addr1 & 3) == 0)) {
3623 /* 32 bit write access */
3625 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3627 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3628 /* 16 bit write access */
3630 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3633 /* 8 bit write access */
3635 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3639 unsigned long addr1;
3640 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3642 ptr = qemu_get_ram_ptr(addr1);
3643 memcpy(ptr, buf, l);
3644 if (!cpu_physical_memory_is_dirty(addr1)) {
3645 /* invalidate code */
3646 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3648 cpu_physical_memory_set_dirty_flags(
3649 addr1, (0xff & ~CODE_DIRTY_FLAG));
3653 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3654 !(pd & IO_MEM_ROMD)) {
3655 target_phys_addr_t addr1 = addr;
3657 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3659 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3660 if (l >= 4 && ((addr1 & 3) == 0)) {
3661 /* 32 bit read access */
3662 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3665 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3666 /* 16 bit read access */
3667 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3671 /* 8 bit read access */
3672 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3678 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3679 (addr & ~TARGET_PAGE_MASK);
3680 memcpy(buf, ptr, l);
3689 /* used for ROM loading : can write in RAM and ROM */
3690 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3691 const uint8_t *buf, int len)
3695 target_phys_addr_t page;
3700 page = addr & TARGET_PAGE_MASK;
3701 l = (page + TARGET_PAGE_SIZE) - addr;
3704 p = phys_page_find(page >> TARGET_PAGE_BITS);
3706 pd = IO_MEM_UNASSIGNED;
3708 pd = p->phys_offset;
3711 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3712 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3713 !(pd & IO_MEM_ROMD)) {
3716 unsigned long addr1;
3717 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3719 ptr = qemu_get_ram_ptr(addr1);
3720 memcpy(ptr, buf, l);
3730 target_phys_addr_t addr;
3731 target_phys_addr_t len;
3734 static BounceBuffer bounce;
3736 typedef struct MapClient {
3738 void (*callback)(void *opaque);
3739 QLIST_ENTRY(MapClient) link;
3742 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3743 = QLIST_HEAD_INITIALIZER(map_client_list);
3745 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3747 MapClient *client = qemu_malloc(sizeof(*client));
3749 client->opaque = opaque;
3750 client->callback = callback;
3751 QLIST_INSERT_HEAD(&map_client_list, client, link);
3755 void cpu_unregister_map_client(void *_client)
3757 MapClient *client = (MapClient *)_client;
3759 QLIST_REMOVE(client, link);
3763 static void cpu_notify_map_clients(void)
3767 while (!QLIST_EMPTY(&map_client_list)) {
3768 client = QLIST_FIRST(&map_client_list);
3769 client->callback(client->opaque);
3770 cpu_unregister_map_client(client);
3774 /* Map a physical memory region into a host virtual address.
3775 * May map a subset of the requested range, given by and returned in *plen.
3776 * May return NULL if resources needed to perform the mapping are exhausted.
3777 * Use only for reads OR writes - not for read-modify-write operations.
3778 * Use cpu_register_map_client() to know when retrying the map operation is
3779 * likely to succeed.
3781 void *cpu_physical_memory_map(target_phys_addr_t addr,
3782 target_phys_addr_t *plen,
3785 target_phys_addr_t len = *plen;
3786 target_phys_addr_t done = 0;
3788 uint8_t *ret = NULL;
3790 target_phys_addr_t page;
3793 unsigned long addr1;
3796 page = addr & TARGET_PAGE_MASK;
3797 l = (page + TARGET_PAGE_SIZE) - addr;
3800 p = phys_page_find(page >> TARGET_PAGE_BITS);
3802 pd = IO_MEM_UNASSIGNED;
3804 pd = p->phys_offset;
3807 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3808 if (done || bounce.buffer) {
3811 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3815 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3817 ptr = bounce.buffer;
3819 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3820 ptr = qemu_get_ram_ptr(addr1);
3824 } else if (ret + done != ptr) {
3836 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3837 * Will also mark the memory as dirty if is_write == 1. access_len gives
3838 * the amount of memory that was actually read or written by the caller.
3840 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3841 int is_write, target_phys_addr_t access_len)
3843 if (buffer != bounce.buffer) {
3845 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
3846 while (access_len) {
3848 l = TARGET_PAGE_SIZE;
3851 if (!cpu_physical_memory_is_dirty(addr1)) {
3852 /* invalidate code */
3853 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3855 cpu_physical_memory_set_dirty_flags(
3856 addr1, (0xff & ~CODE_DIRTY_FLAG));
3865 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3867 qemu_vfree(bounce.buffer);
3868 bounce.buffer = NULL;
3869 cpu_notify_map_clients();
3872 /* warning: addr must be aligned */
3873 uint32_t ldl_phys(target_phys_addr_t addr)
3881 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3883 pd = IO_MEM_UNASSIGNED;
3885 pd = p->phys_offset;
3888 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3889 !(pd & IO_MEM_ROMD)) {
3891 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3893 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3894 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3897 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3898 (addr & ~TARGET_PAGE_MASK);
3904 /* warning: addr must be aligned */
3905 uint64_t ldq_phys(target_phys_addr_t addr)
3913 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3915 pd = IO_MEM_UNASSIGNED;
3917 pd = p->phys_offset;
3920 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3921 !(pd & IO_MEM_ROMD)) {
3923 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3925 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3926 #ifdef TARGET_WORDS_BIGENDIAN
3927 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3928 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3930 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3931 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3935 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3936 (addr & ~TARGET_PAGE_MASK);
3943 uint32_t ldub_phys(target_phys_addr_t addr)
3946 cpu_physical_memory_read(addr, &val, 1);
3950 /* warning: addr must be aligned */
3951 uint32_t lduw_phys(target_phys_addr_t addr)
3959 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3961 pd = IO_MEM_UNASSIGNED;
3963 pd = p->phys_offset;
3966 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3967 !(pd & IO_MEM_ROMD)) {
3969 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3971 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3972 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
3975 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3976 (addr & ~TARGET_PAGE_MASK);
3982 /* warning: addr must be aligned. The ram page is not masked as dirty
3983 and the code inside is not invalidated. It is useful if the dirty
3984 bits are used to track modified PTEs */
3985 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3992 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3994 pd = IO_MEM_UNASSIGNED;
3996 pd = p->phys_offset;
3999 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4000 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4002 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4003 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4005 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4006 ptr = qemu_get_ram_ptr(addr1);
4009 if (unlikely(in_migration)) {
4010 if (!cpu_physical_memory_is_dirty(addr1)) {
4011 /* invalidate code */
4012 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4014 cpu_physical_memory_set_dirty_flags(
4015 addr1, (0xff & ~CODE_DIRTY_FLAG));
4021 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
4028 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4030 pd = IO_MEM_UNASSIGNED;
4032 pd = p->phys_offset;
4035 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4036 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4038 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4039 #ifdef TARGET_WORDS_BIGENDIAN
4040 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
4041 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
4043 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4044 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
4047 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4048 (addr & ~TARGET_PAGE_MASK);
4053 /* warning: addr must be aligned */
4054 void stl_phys(target_phys_addr_t addr, uint32_t val)
4061 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4063 pd = IO_MEM_UNASSIGNED;
4065 pd = p->phys_offset;
4068 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4069 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4071 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4072 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4074 unsigned long addr1;
4075 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4077 ptr = qemu_get_ram_ptr(addr1);
4079 if (!cpu_physical_memory_is_dirty(addr1)) {
4080 /* invalidate code */
4081 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4083 cpu_physical_memory_set_dirty_flags(addr1,
4084 (0xff & ~CODE_DIRTY_FLAG));
4090 void stb_phys(target_phys_addr_t addr, uint32_t val)
4093 cpu_physical_memory_write(addr, &v, 1);
4096 /* warning: addr must be aligned */
4097 void stw_phys(target_phys_addr_t addr, uint32_t val)
4104 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4106 pd = IO_MEM_UNASSIGNED;
4108 pd = p->phys_offset;
4111 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4112 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4114 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4115 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
4117 unsigned long addr1;
4118 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4120 ptr = qemu_get_ram_ptr(addr1);
4122 if (!cpu_physical_memory_is_dirty(addr1)) {
4123 /* invalidate code */
4124 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4126 cpu_physical_memory_set_dirty_flags(addr1,
4127 (0xff & ~CODE_DIRTY_FLAG));
4133 void stq_phys(target_phys_addr_t addr, uint64_t val)
4136 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
4139 /* virtual memory access for debug (includes writing to ROM) */
4140 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
4141 uint8_t *buf, int len, int is_write)
4144 target_phys_addr_t phys_addr;
4148 page = addr & TARGET_PAGE_MASK;
4149 phys_addr = cpu_get_phys_page_debug(env, page);
4150 /* if no physical page mapped, return an error */
4151 if (phys_addr == -1)
4153 l = (page + TARGET_PAGE_SIZE) - addr;
4156 phys_addr += (addr & ~TARGET_PAGE_MASK);
4158 cpu_physical_memory_write_rom(phys_addr, buf, l);
4160 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
4169 /* in deterministic execution mode, instructions doing device I/Os
4170 must be at the end of the TB */
4171 void cpu_io_recompile(CPUState *env, void *retaddr)
4173 TranslationBlock *tb;
4175 target_ulong pc, cs_base;
4178 tb = tb_find_pc((unsigned long)retaddr);
4180 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4183 n = env->icount_decr.u16.low + tb->icount;
4184 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
4185 /* Calculate how many instructions had been executed before the fault
4187 n = n - env->icount_decr.u16.low;
4188 /* Generate a new TB ending on the I/O insn. */
4190 /* On MIPS and SH, delay slot instructions can only be restarted if
4191 they were already the first instruction in the TB. If this is not
4192 the first instruction in a TB then re-execute the preceding
4194 #if defined(TARGET_MIPS)
4195 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4196 env->active_tc.PC -= 4;
4197 env->icount_decr.u16.low++;
4198 env->hflags &= ~MIPS_HFLAG_BMASK;
4200 #elif defined(TARGET_SH4)
4201 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4204 env->icount_decr.u16.low++;
4205 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4208 /* This should never happen. */
4209 if (n > CF_COUNT_MASK)
4210 cpu_abort(env, "TB too big during recompile");
4212 cflags = n | CF_LAST_IO;
4214 cs_base = tb->cs_base;
4216 tb_phys_invalidate(tb, -1);
4217 /* FIXME: In theory this could raise an exception. In practice
4218 we have already translated the block once so it's probably ok. */
4219 tb_gen_code(env, pc, cs_base, flags, cflags);
4220 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4221 the first in the TB) then we end up generating a whole new TB and
4222 repeating the fault, which is horribly inefficient.
4223 Better would be to execute just this insn uncached, or generate a
4225 cpu_resume_from_signal(env, NULL);
4228 #if !defined(CONFIG_USER_ONLY)
4230 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
4232 int i, target_code_size, max_target_code_size;
4233 int direct_jmp_count, direct_jmp2_count, cross_page;
4234 TranslationBlock *tb;
4236 target_code_size = 0;
4237 max_target_code_size = 0;
4239 direct_jmp_count = 0;
4240 direct_jmp2_count = 0;
4241 for(i = 0; i < nb_tbs; i++) {
4243 target_code_size += tb->size;
4244 if (tb->size > max_target_code_size)
4245 max_target_code_size = tb->size;
4246 if (tb->page_addr[1] != -1)
4248 if (tb->tb_next_offset[0] != 0xffff) {
4250 if (tb->tb_next_offset[1] != 0xffff) {
4251 direct_jmp2_count++;
4255 /* XXX: avoid using doubles ? */
4256 cpu_fprintf(f, "Translation buffer state:\n");
4257 cpu_fprintf(f, "gen code size %td/%ld\n",
4258 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4259 cpu_fprintf(f, "TB count %d/%d\n",
4260 nb_tbs, code_gen_max_blocks);
4261 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4262 nb_tbs ? target_code_size / nb_tbs : 0,
4263 max_target_code_size);
4264 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4265 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4266 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4267 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4269 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4270 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4272 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4274 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4275 cpu_fprintf(f, "\nStatistics:\n");
4276 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4277 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4278 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4279 tcg_dump_info(f, cpu_fprintf);
4282 #define MMUSUFFIX _cmmu
4283 #define GETPC() NULL
4284 #define env cpu_single_env
4285 #define SOFTMMU_CODE_ACCESS
4288 #include "softmmu_template.h"
4291 #include "softmmu_template.h"
4294 #include "softmmu_template.h"
4297 #include "softmmu_template.h"