2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
22 #define WIN32_LEAN_AND_MEAN
25 #include <sys/types.h>
38 #include "qemu-common.h"
43 #if defined(CONFIG_USER_ONLY)
47 //#define DEBUG_TB_INVALIDATE
50 //#define DEBUG_UNASSIGNED
52 /* make various TB consistency checks */
53 //#define DEBUG_TB_CHECK
54 //#define DEBUG_TLB_CHECK
56 //#define DEBUG_IOPORT
57 //#define DEBUG_SUBPAGE
59 #if !defined(CONFIG_USER_ONLY)
60 /* TB consistency checks only implemented for usermode emulation. */
64 #define SMC_BITMAP_USE_THRESHOLD 10
66 #define MMAP_AREA_START 0x00000000
67 #define MMAP_AREA_END 0xa8000000
69 #if defined(TARGET_SPARC64)
70 #define TARGET_PHYS_ADDR_SPACE_BITS 41
71 #elif defined(TARGET_SPARC)
72 #define TARGET_PHYS_ADDR_SPACE_BITS 36
73 #elif defined(TARGET_ALPHA)
74 #define TARGET_PHYS_ADDR_SPACE_BITS 42
75 #define TARGET_VIRT_ADDR_SPACE_BITS 42
76 #elif defined(TARGET_PPC64)
77 #define TARGET_PHYS_ADDR_SPACE_BITS 42
78 #elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
79 #define TARGET_PHYS_ADDR_SPACE_BITS 42
80 #elif defined(TARGET_I386) && !defined(USE_KQEMU)
81 #define TARGET_PHYS_ADDR_SPACE_BITS 36
83 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
84 #define TARGET_PHYS_ADDR_SPACE_BITS 32
87 static TranslationBlock *tbs;
88 int code_gen_max_blocks;
89 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
91 /* any access to the tbs or the page table must use this lock */
92 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
94 #if defined(__arm__) || defined(__sparc_v9__)
95 /* The prologue must be reachable with a direct jump. ARM and Sparc64
96 have limited branch ranges (possibly also PPC) so place it in a
97 section close to code segment. */
98 #define code_gen_section \
99 __attribute__((__section__(".gen_code"))) \
100 __attribute__((aligned (32)))
102 #define code_gen_section \
103 __attribute__((aligned (32)))
106 uint8_t code_gen_prologue[1024] code_gen_section;
107 static uint8_t *code_gen_buffer;
108 static unsigned long code_gen_buffer_size;
109 /* threshold to flush the translated code buffer */
110 static unsigned long code_gen_buffer_max_size;
111 uint8_t *code_gen_ptr;
113 #if !defined(CONFIG_USER_ONLY)
114 ram_addr_t phys_ram_size;
116 uint8_t *phys_ram_base;
117 uint8_t *phys_ram_dirty;
118 static int in_migration;
119 static ram_addr_t phys_ram_alloc_offset = 0;
123 /* current CPU in the current thread. It is only valid inside
125 CPUState *cpu_single_env;
126 /* 0 = Do not count executed instructions.
127 1 = Precise instruction counting.
128 2 = Adaptive rate instruction counting. */
130 /* Current instruction counter. While executing translated code this may
131 include some instructions that have not yet been executed. */
134 typedef struct PageDesc {
135 /* list of TBs intersecting this ram page */
136 TranslationBlock *first_tb;
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count;
140 uint8_t *code_bitmap;
141 #if defined(CONFIG_USER_ONLY)
146 typedef struct PhysPageDesc {
147 /* offset in host memory of the page + io_index in the low bits */
148 ram_addr_t phys_offset;
149 ram_addr_t region_offset;
153 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
154 /* XXX: this is a temporary hack for alpha target.
155 * In the future, this is to be replaced by a multi-level table
156 * to actually be able to handle the complete 64 bits address space.
158 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
160 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
163 #define L1_SIZE (1 << L1_BITS)
164 #define L2_SIZE (1 << L2_BITS)
166 unsigned long qemu_real_host_page_size;
167 unsigned long qemu_host_page_bits;
168 unsigned long qemu_host_page_size;
169 unsigned long qemu_host_page_mask;
171 /* XXX: for system emulation, it could just be an array */
172 static PageDesc *l1_map[L1_SIZE];
173 static PhysPageDesc **l1_phys_map;
175 #if !defined(CONFIG_USER_ONLY)
176 static void io_mem_init(void);
178 /* io memory support */
179 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
180 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
181 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
182 char io_mem_used[IO_MEM_NB_ENTRIES];
183 static int io_mem_watch;
187 static const char *logfilename = "/tmp/qemu.log";
190 static int log_append = 0;
193 static int tlb_flush_count;
194 static int tb_flush_count;
195 static int tb_phys_invalidate_count;
197 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
198 typedef struct subpage_t {
199 target_phys_addr_t base;
200 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
201 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
202 void *opaque[TARGET_PAGE_SIZE][2][4];
203 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
207 static void map_exec(void *addr, long size)
210 VirtualProtect(addr, size,
211 PAGE_EXECUTE_READWRITE, &old_protect);
215 static void map_exec(void *addr, long size)
217 unsigned long start, end, page_size;
219 page_size = getpagesize();
220 start = (unsigned long)addr;
221 start &= ~(page_size - 1);
223 end = (unsigned long)addr + size;
224 end += page_size - 1;
225 end &= ~(page_size - 1);
227 mprotect((void *)start, end - start,
228 PROT_READ | PROT_WRITE | PROT_EXEC);
232 static void page_init(void)
234 /* NOTE: we can always suppose that qemu_host_page_size >=
238 SYSTEM_INFO system_info;
240 GetSystemInfo(&system_info);
241 qemu_real_host_page_size = system_info.dwPageSize;
244 qemu_real_host_page_size = getpagesize();
246 if (qemu_host_page_size == 0)
247 qemu_host_page_size = qemu_real_host_page_size;
248 if (qemu_host_page_size < TARGET_PAGE_SIZE)
249 qemu_host_page_size = TARGET_PAGE_SIZE;
250 qemu_host_page_bits = 0;
251 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
252 qemu_host_page_bits++;
253 qemu_host_page_mask = ~(qemu_host_page_size - 1);
254 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
255 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
257 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
259 long long startaddr, endaddr;
264 last_brk = (unsigned long)sbrk(0);
265 f = fopen("/proc/self/maps", "r");
268 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
270 startaddr = MIN(startaddr,
271 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
272 endaddr = MIN(endaddr,
273 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
274 page_set_flags(startaddr & TARGET_PAGE_MASK,
275 TARGET_PAGE_ALIGN(endaddr),
286 static inline PageDesc **page_l1_map(target_ulong index)
288 #if TARGET_LONG_BITS > 32
289 /* Host memory outside guest VM. For 32-bit targets we have already
290 excluded high addresses. */
291 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
294 return &l1_map[index >> L2_BITS];
297 static inline PageDesc *page_find_alloc(target_ulong index)
300 lp = page_l1_map(index);
306 /* allocate if not found */
307 #if defined(CONFIG_USER_ONLY)
308 size_t len = sizeof(PageDesc) * L2_SIZE;
309 /* Don't use qemu_malloc because it may recurse. */
310 p = mmap(0, len, PROT_READ | PROT_WRITE,
311 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
314 unsigned long addr = h2g(p);
315 page_set_flags(addr & TARGET_PAGE_MASK,
316 TARGET_PAGE_ALIGN(addr + len),
320 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
324 return p + (index & (L2_SIZE - 1));
327 static inline PageDesc *page_find(target_ulong index)
330 lp = page_l1_map(index);
337 return p + (index & (L2_SIZE - 1));
340 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
345 p = (void **)l1_phys_map;
346 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
348 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
349 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
351 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
354 /* allocate if not found */
357 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
358 memset(p, 0, sizeof(void *) * L1_SIZE);
362 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
366 /* allocate if not found */
369 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
371 for (i = 0; i < L2_SIZE; i++) {
372 pd[i].phys_offset = IO_MEM_UNASSIGNED;
373 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
376 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
379 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
381 return phys_page_find_alloc(index, 0);
384 #if !defined(CONFIG_USER_ONLY)
385 static void tlb_protect_code(ram_addr_t ram_addr);
386 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
388 #define mmap_lock() do { } while(0)
389 #define mmap_unlock() do { } while(0)
392 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
394 #if defined(CONFIG_USER_ONLY)
395 /* Currently it is not recommanded to allocate big chunks of data in
396 user mode. It will change when a dedicated libc will be used */
397 #define USE_STATIC_CODE_GEN_BUFFER
400 #ifdef USE_STATIC_CODE_GEN_BUFFER
401 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
404 static void code_gen_alloc(unsigned long tb_size)
406 #ifdef USE_STATIC_CODE_GEN_BUFFER
407 code_gen_buffer = static_code_gen_buffer;
408 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
409 map_exec(code_gen_buffer, code_gen_buffer_size);
411 code_gen_buffer_size = tb_size;
412 if (code_gen_buffer_size == 0) {
413 #if defined(CONFIG_USER_ONLY)
414 /* in user mode, phys_ram_size is not meaningful */
415 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
417 /* XXX: needs ajustments */
418 code_gen_buffer_size = (unsigned long)(phys_ram_size / 4);
421 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
422 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
423 /* The code gen buffer location may have constraints depending on
424 the host cpu and OS */
425 #if defined(__linux__)
430 flags = MAP_PRIVATE | MAP_ANONYMOUS;
431 #if defined(__x86_64__)
433 /* Cannot map more than that */
434 if (code_gen_buffer_size > (800 * 1024 * 1024))
435 code_gen_buffer_size = (800 * 1024 * 1024);
436 #elif defined(__sparc_v9__)
437 // Map the buffer below 2G, so we can use direct calls and branches
439 start = (void *) 0x60000000UL;
440 if (code_gen_buffer_size > (512 * 1024 * 1024))
441 code_gen_buffer_size = (512 * 1024 * 1024);
442 #elif defined(__arm__)
443 /* Map the buffer below 32M, so we can use direct calls and branches */
445 start = (void *) 0x01000000UL;
446 if (code_gen_buffer_size > 16 * 1024 * 1024)
447 code_gen_buffer_size = 16 * 1024 * 1024;
449 code_gen_buffer = mmap(start, code_gen_buffer_size,
450 PROT_WRITE | PROT_READ | PROT_EXEC,
452 if (code_gen_buffer == MAP_FAILED) {
453 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
457 #elif defined(__FreeBSD__)
461 flags = MAP_PRIVATE | MAP_ANONYMOUS;
462 #if defined(__x86_64__)
463 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
464 * 0x40000000 is free */
466 addr = (void *)0x40000000;
467 /* Cannot map more than that */
468 if (code_gen_buffer_size > (800 * 1024 * 1024))
469 code_gen_buffer_size = (800 * 1024 * 1024);
471 code_gen_buffer = mmap(addr, code_gen_buffer_size,
472 PROT_WRITE | PROT_READ | PROT_EXEC,
474 if (code_gen_buffer == MAP_FAILED) {
475 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
480 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
481 map_exec(code_gen_buffer, code_gen_buffer_size);
483 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
484 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
485 code_gen_buffer_max_size = code_gen_buffer_size -
486 code_gen_max_block_size();
487 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
488 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
491 /* Must be called before using the QEMU cpus. 'tb_size' is the size
492 (in bytes) allocated to the translation buffer. Zero means default
494 void cpu_exec_init_all(unsigned long tb_size)
497 code_gen_alloc(tb_size);
498 code_gen_ptr = code_gen_buffer;
500 #if !defined(CONFIG_USER_ONLY)
505 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
507 #define CPU_COMMON_SAVE_VERSION 1
509 static void cpu_common_save(QEMUFile *f, void *opaque)
511 CPUState *env = opaque;
513 qemu_put_be32s(f, &env->halted);
514 qemu_put_be32s(f, &env->interrupt_request);
517 static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
519 CPUState *env = opaque;
521 if (version_id != CPU_COMMON_SAVE_VERSION)
524 qemu_get_be32s(f, &env->halted);
525 qemu_get_be32s(f, &env->interrupt_request);
532 void cpu_exec_init(CPUState *env)
537 #if defined(CONFIG_USER_ONLY)
540 env->next_cpu = NULL;
543 while (*penv != NULL) {
544 penv = (CPUState **)&(*penv)->next_cpu;
547 env->cpu_index = cpu_index;
548 TAILQ_INIT(&env->breakpoints);
549 TAILQ_INIT(&env->watchpoints);
551 #if defined(CONFIG_USER_ONLY)
554 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
555 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
556 cpu_common_save, cpu_common_load, env);
557 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
558 cpu_save, cpu_load, env);
562 static inline void invalidate_page_bitmap(PageDesc *p)
564 if (p->code_bitmap) {
565 qemu_free(p->code_bitmap);
566 p->code_bitmap = NULL;
568 p->code_write_count = 0;
571 /* set to NULL all the 'first_tb' fields in all PageDescs */
572 static void page_flush_tb(void)
577 for(i = 0; i < L1_SIZE; i++) {
580 for(j = 0; j < L2_SIZE; j++) {
582 invalidate_page_bitmap(p);
589 /* flush all the translation blocks */
590 /* XXX: tb_flush is currently not thread safe */
591 void tb_flush(CPUState *env1)
594 #if defined(DEBUG_FLUSH)
595 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
596 (unsigned long)(code_gen_ptr - code_gen_buffer),
598 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
600 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
601 cpu_abort(env1, "Internal error: code buffer overflow\n");
605 for(env = first_cpu; env != NULL; env = env->next_cpu) {
606 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
609 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
612 code_gen_ptr = code_gen_buffer;
613 /* XXX: flush processor icache at this point if cache flush is
618 #ifdef DEBUG_TB_CHECK
620 static void tb_invalidate_check(target_ulong address)
622 TranslationBlock *tb;
624 address &= TARGET_PAGE_MASK;
625 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
626 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
627 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
628 address >= tb->pc + tb->size)) {
629 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
630 address, (long)tb->pc, tb->size);
636 /* verify that all the pages have correct rights for code */
637 static void tb_page_check(void)
639 TranslationBlock *tb;
640 int i, flags1, flags2;
642 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
643 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
644 flags1 = page_get_flags(tb->pc);
645 flags2 = page_get_flags(tb->pc + tb->size - 1);
646 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
647 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
648 (long)tb->pc, tb->size, flags1, flags2);
654 static void tb_jmp_check(TranslationBlock *tb)
656 TranslationBlock *tb1;
659 /* suppress any remaining jumps to this TB */
663 tb1 = (TranslationBlock *)((long)tb1 & ~3);
666 tb1 = tb1->jmp_next[n1];
668 /* check end of list */
670 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
676 /* invalidate one TB */
677 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
680 TranslationBlock *tb1;
684 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
687 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
691 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
693 TranslationBlock *tb1;
699 tb1 = (TranslationBlock *)((long)tb1 & ~3);
701 *ptb = tb1->page_next[n1];
704 ptb = &tb1->page_next[n1];
708 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
710 TranslationBlock *tb1, **ptb;
713 ptb = &tb->jmp_next[n];
716 /* find tb(n) in circular list */
720 tb1 = (TranslationBlock *)((long)tb1 & ~3);
721 if (n1 == n && tb1 == tb)
724 ptb = &tb1->jmp_first;
726 ptb = &tb1->jmp_next[n1];
729 /* now we can suppress tb(n) from the list */
730 *ptb = tb->jmp_next[n];
732 tb->jmp_next[n] = NULL;
736 /* reset the jump entry 'n' of a TB so that it is not chained to
738 static inline void tb_reset_jump(TranslationBlock *tb, int n)
740 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
743 void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
748 target_phys_addr_t phys_pc;
749 TranslationBlock *tb1, *tb2;
751 /* remove the TB from the hash list */
752 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
753 h = tb_phys_hash_func(phys_pc);
754 tb_remove(&tb_phys_hash[h], tb,
755 offsetof(TranslationBlock, phys_hash_next));
757 /* remove the TB from the page list */
758 if (tb->page_addr[0] != page_addr) {
759 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
760 tb_page_remove(&p->first_tb, tb);
761 invalidate_page_bitmap(p);
763 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
764 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
765 tb_page_remove(&p->first_tb, tb);
766 invalidate_page_bitmap(p);
769 tb_invalidated_flag = 1;
771 /* remove the TB from the hash list */
772 h = tb_jmp_cache_hash_func(tb->pc);
773 for(env = first_cpu; env != NULL; env = env->next_cpu) {
774 if (env->tb_jmp_cache[h] == tb)
775 env->tb_jmp_cache[h] = NULL;
778 /* suppress this TB from the two jump lists */
779 tb_jmp_remove(tb, 0);
780 tb_jmp_remove(tb, 1);
782 /* suppress any remaining jumps to this TB */
788 tb1 = (TranslationBlock *)((long)tb1 & ~3);
789 tb2 = tb1->jmp_next[n1];
790 tb_reset_jump(tb1, n1);
791 tb1->jmp_next[n1] = NULL;
794 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
796 tb_phys_invalidate_count++;
799 static inline void set_bits(uint8_t *tab, int start, int len)
805 mask = 0xff << (start & 7);
806 if ((start & ~7) == (end & ~7)) {
808 mask &= ~(0xff << (end & 7));
813 start = (start + 8) & ~7;
815 while (start < end1) {
820 mask = ~(0xff << (end & 7));
826 static void build_page_bitmap(PageDesc *p)
828 int n, tb_start, tb_end;
829 TranslationBlock *tb;
831 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
836 tb = (TranslationBlock *)((long)tb & ~3);
837 /* NOTE: this is subtle as a TB may span two physical pages */
839 /* NOTE: tb_end may be after the end of the page, but
840 it is not a problem */
841 tb_start = tb->pc & ~TARGET_PAGE_MASK;
842 tb_end = tb_start + tb->size;
843 if (tb_end > TARGET_PAGE_SIZE)
844 tb_end = TARGET_PAGE_SIZE;
847 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
849 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
850 tb = tb->page_next[n];
854 TranslationBlock *tb_gen_code(CPUState *env,
855 target_ulong pc, target_ulong cs_base,
856 int flags, int cflags)
858 TranslationBlock *tb;
860 target_ulong phys_pc, phys_page2, virt_page2;
863 phys_pc = get_phys_addr_code(env, pc);
866 /* flush must be done */
868 /* cannot fail at this point */
870 /* Don't forget to invalidate previous TB info. */
871 tb_invalidated_flag = 1;
873 tc_ptr = code_gen_ptr;
875 tb->cs_base = cs_base;
878 cpu_gen_code(env, tb, &code_gen_size);
879 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
881 /* check next page if needed */
882 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
884 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
885 phys_page2 = get_phys_addr_code(env, virt_page2);
887 tb_link_phys(tb, phys_pc, phys_page2);
891 /* invalidate all TBs which intersect with the target physical page
892 starting in range [start;end[. NOTE: start and end must refer to
893 the same physical page. 'is_cpu_write_access' should be true if called
894 from a real cpu write access: the virtual CPU will exit the current
895 TB if code is modified inside this TB. */
896 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
897 int is_cpu_write_access)
899 TranslationBlock *tb, *tb_next, *saved_tb;
900 CPUState *env = cpu_single_env;
901 target_ulong tb_start, tb_end;
904 #ifdef TARGET_HAS_PRECISE_SMC
905 int current_tb_not_found = is_cpu_write_access;
906 TranslationBlock *current_tb = NULL;
907 int current_tb_modified = 0;
908 target_ulong current_pc = 0;
909 target_ulong current_cs_base = 0;
910 int current_flags = 0;
911 #endif /* TARGET_HAS_PRECISE_SMC */
913 p = page_find(start >> TARGET_PAGE_BITS);
916 if (!p->code_bitmap &&
917 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
918 is_cpu_write_access) {
919 /* build code bitmap */
920 build_page_bitmap(p);
923 /* we remove all the TBs in the range [start, end[ */
924 /* XXX: see if in some cases it could be faster to invalidate all the code */
928 tb = (TranslationBlock *)((long)tb & ~3);
929 tb_next = tb->page_next[n];
930 /* NOTE: this is subtle as a TB may span two physical pages */
932 /* NOTE: tb_end may be after the end of the page, but
933 it is not a problem */
934 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
935 tb_end = tb_start + tb->size;
937 tb_start = tb->page_addr[1];
938 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
940 if (!(tb_end <= start || tb_start >= end)) {
941 #ifdef TARGET_HAS_PRECISE_SMC
942 if (current_tb_not_found) {
943 current_tb_not_found = 0;
945 if (env->mem_io_pc) {
946 /* now we have a real cpu fault */
947 current_tb = tb_find_pc(env->mem_io_pc);
950 if (current_tb == tb &&
951 (current_tb->cflags & CF_COUNT_MASK) != 1) {
952 /* If we are modifying the current TB, we must stop
953 its execution. We could be more precise by checking
954 that the modification is after the current PC, but it
955 would require a specialized function to partially
956 restore the CPU state */
958 current_tb_modified = 1;
959 cpu_restore_state(current_tb, env,
960 env->mem_io_pc, NULL);
961 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
964 #endif /* TARGET_HAS_PRECISE_SMC */
965 /* we need to do that to handle the case where a signal
966 occurs while doing tb_phys_invalidate() */
969 saved_tb = env->current_tb;
970 env->current_tb = NULL;
972 tb_phys_invalidate(tb, -1);
974 env->current_tb = saved_tb;
975 if (env->interrupt_request && env->current_tb)
976 cpu_interrupt(env, env->interrupt_request);
981 #if !defined(CONFIG_USER_ONLY)
982 /* if no code remaining, no need to continue to use slow writes */
984 invalidate_page_bitmap(p);
985 if (is_cpu_write_access) {
986 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
990 #ifdef TARGET_HAS_PRECISE_SMC
991 if (current_tb_modified) {
992 /* we generate a block containing just the instruction
993 modifying the memory. It will ensure that it cannot modify
995 env->current_tb = NULL;
996 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
997 cpu_resume_from_signal(env, NULL);
1002 /* len must be <= 8 and start must be a multiple of len */
1003 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1009 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1010 cpu_single_env->mem_io_vaddr, len,
1011 cpu_single_env->eip,
1012 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1015 p = page_find(start >> TARGET_PAGE_BITS);
1018 if (p->code_bitmap) {
1019 offset = start & ~TARGET_PAGE_MASK;
1020 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1021 if (b & ((1 << len) - 1))
1025 tb_invalidate_phys_page_range(start, start + len, 1);
1029 #if !defined(CONFIG_SOFTMMU)
1030 static void tb_invalidate_phys_page(target_phys_addr_t addr,
1031 unsigned long pc, void *puc)
1033 TranslationBlock *tb;
1036 #ifdef TARGET_HAS_PRECISE_SMC
1037 TranslationBlock *current_tb = NULL;
1038 CPUState *env = cpu_single_env;
1039 int current_tb_modified = 0;
1040 target_ulong current_pc = 0;
1041 target_ulong current_cs_base = 0;
1042 int current_flags = 0;
1045 addr &= TARGET_PAGE_MASK;
1046 p = page_find(addr >> TARGET_PAGE_BITS);
1050 #ifdef TARGET_HAS_PRECISE_SMC
1051 if (tb && pc != 0) {
1052 current_tb = tb_find_pc(pc);
1055 while (tb != NULL) {
1057 tb = (TranslationBlock *)((long)tb & ~3);
1058 #ifdef TARGET_HAS_PRECISE_SMC
1059 if (current_tb == tb &&
1060 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1061 /* If we are modifying the current TB, we must stop
1062 its execution. We could be more precise by checking
1063 that the modification is after the current PC, but it
1064 would require a specialized function to partially
1065 restore the CPU state */
1067 current_tb_modified = 1;
1068 cpu_restore_state(current_tb, env, pc, puc);
1069 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
1072 #endif /* TARGET_HAS_PRECISE_SMC */
1073 tb_phys_invalidate(tb, addr);
1074 tb = tb->page_next[n];
1077 #ifdef TARGET_HAS_PRECISE_SMC
1078 if (current_tb_modified) {
1079 /* we generate a block containing just the instruction
1080 modifying the memory. It will ensure that it cannot modify
1082 env->current_tb = NULL;
1083 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1084 cpu_resume_from_signal(env, puc);
1090 /* add the tb in the target page and protect it if necessary */
1091 static inline void tb_alloc_page(TranslationBlock *tb,
1092 unsigned int n, target_ulong page_addr)
1095 TranslationBlock *last_first_tb;
1097 tb->page_addr[n] = page_addr;
1098 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1099 tb->page_next[n] = p->first_tb;
1100 last_first_tb = p->first_tb;
1101 p->first_tb = (TranslationBlock *)((long)tb | n);
1102 invalidate_page_bitmap(p);
1104 #if defined(TARGET_HAS_SMC) || 1
1106 #if defined(CONFIG_USER_ONLY)
1107 if (p->flags & PAGE_WRITE) {
1112 /* force the host page as non writable (writes will have a
1113 page fault + mprotect overhead) */
1114 page_addr &= qemu_host_page_mask;
1116 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1117 addr += TARGET_PAGE_SIZE) {
1119 p2 = page_find (addr >> TARGET_PAGE_BITS);
1123 p2->flags &= ~PAGE_WRITE;
1124 page_get_flags(addr);
1126 mprotect(g2h(page_addr), qemu_host_page_size,
1127 (prot & PAGE_BITS) & ~PAGE_WRITE);
1128 #ifdef DEBUG_TB_INVALIDATE
1129 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1134 /* if some code is already present, then the pages are already
1135 protected. So we handle the case where only the first TB is
1136 allocated in a physical page */
1137 if (!last_first_tb) {
1138 tlb_protect_code(page_addr);
1142 #endif /* TARGET_HAS_SMC */
1145 /* Allocate a new translation block. Flush the translation buffer if
1146 too many translation blocks or too much generated code. */
1147 TranslationBlock *tb_alloc(target_ulong pc)
1149 TranslationBlock *tb;
1151 if (nb_tbs >= code_gen_max_blocks ||
1152 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1154 tb = &tbs[nb_tbs++];
1160 void tb_free(TranslationBlock *tb)
1162 /* In practice this is mostly used for single use temporary TB
1163 Ignore the hard cases and just back up if this TB happens to
1164 be the last one generated. */
1165 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1166 code_gen_ptr = tb->tc_ptr;
1171 /* add a new TB and link it to the physical page tables. phys_page2 is
1172 (-1) to indicate that only one page contains the TB. */
1173 void tb_link_phys(TranslationBlock *tb,
1174 target_ulong phys_pc, target_ulong phys_page2)
1177 TranslationBlock **ptb;
1179 /* Grab the mmap lock to stop another thread invalidating this TB
1180 before we are done. */
1182 /* add in the physical hash table */
1183 h = tb_phys_hash_func(phys_pc);
1184 ptb = &tb_phys_hash[h];
1185 tb->phys_hash_next = *ptb;
1188 /* add in the page list */
1189 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1190 if (phys_page2 != -1)
1191 tb_alloc_page(tb, 1, phys_page2);
1193 tb->page_addr[1] = -1;
1195 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1196 tb->jmp_next[0] = NULL;
1197 tb->jmp_next[1] = NULL;
1199 /* init original jump addresses */
1200 if (tb->tb_next_offset[0] != 0xffff)
1201 tb_reset_jump(tb, 0);
1202 if (tb->tb_next_offset[1] != 0xffff)
1203 tb_reset_jump(tb, 1);
1205 #ifdef DEBUG_TB_CHECK
1211 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1212 tb[1].tc_ptr. Return NULL if not found */
1213 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1215 int m_min, m_max, m;
1217 TranslationBlock *tb;
1221 if (tc_ptr < (unsigned long)code_gen_buffer ||
1222 tc_ptr >= (unsigned long)code_gen_ptr)
1224 /* binary search (cf Knuth) */
1227 while (m_min <= m_max) {
1228 m = (m_min + m_max) >> 1;
1230 v = (unsigned long)tb->tc_ptr;
1233 else if (tc_ptr < v) {
1242 static void tb_reset_jump_recursive(TranslationBlock *tb);
1244 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1246 TranslationBlock *tb1, *tb_next, **ptb;
1249 tb1 = tb->jmp_next[n];
1251 /* find head of list */
1254 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1257 tb1 = tb1->jmp_next[n1];
1259 /* we are now sure now that tb jumps to tb1 */
1262 /* remove tb from the jmp_first list */
1263 ptb = &tb_next->jmp_first;
1267 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1268 if (n1 == n && tb1 == tb)
1270 ptb = &tb1->jmp_next[n1];
1272 *ptb = tb->jmp_next[n];
1273 tb->jmp_next[n] = NULL;
1275 /* suppress the jump to next tb in generated code */
1276 tb_reset_jump(tb, n);
1278 /* suppress jumps in the tb on which we could have jumped */
1279 tb_reset_jump_recursive(tb_next);
1283 static void tb_reset_jump_recursive(TranslationBlock *tb)
1285 tb_reset_jump_recursive2(tb, 0);
1286 tb_reset_jump_recursive2(tb, 1);
1289 #if defined(TARGET_HAS_ICE)
1290 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1292 target_phys_addr_t addr;
1294 ram_addr_t ram_addr;
1297 addr = cpu_get_phys_page_debug(env, pc);
1298 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1300 pd = IO_MEM_UNASSIGNED;
1302 pd = p->phys_offset;
1304 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1305 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1309 /* Add a watchpoint. */
1310 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1311 int flags, CPUWatchpoint **watchpoint)
1313 target_ulong len_mask = ~(len - 1);
1316 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1317 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1318 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1319 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1322 wp = qemu_malloc(sizeof(*wp));
1325 wp->len_mask = len_mask;
1328 /* keep all GDB-injected watchpoints in front */
1330 TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1332 TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1334 tlb_flush_page(env, addr);
1341 /* Remove a specific watchpoint. */
1342 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1345 target_ulong len_mask = ~(len - 1);
1348 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1349 if (addr == wp->vaddr && len_mask == wp->len_mask
1350 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1351 cpu_watchpoint_remove_by_ref(env, wp);
1358 /* Remove a specific watchpoint by reference. */
1359 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1361 TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1363 tlb_flush_page(env, watchpoint->vaddr);
1365 qemu_free(watchpoint);
1368 /* Remove all matching watchpoints. */
1369 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1371 CPUWatchpoint *wp, *next;
1373 TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1374 if (wp->flags & mask)
1375 cpu_watchpoint_remove_by_ref(env, wp);
1379 /* Add a breakpoint. */
1380 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1381 CPUBreakpoint **breakpoint)
1383 #if defined(TARGET_HAS_ICE)
1386 bp = qemu_malloc(sizeof(*bp));
1391 /* keep all GDB-injected breakpoints in front */
1393 TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1395 TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1397 breakpoint_invalidate(env, pc);
1407 /* Remove a specific breakpoint. */
1408 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1410 #if defined(TARGET_HAS_ICE)
1413 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1414 if (bp->pc == pc && bp->flags == flags) {
1415 cpu_breakpoint_remove_by_ref(env, bp);
1425 /* Remove a specific breakpoint by reference. */
1426 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1428 #if defined(TARGET_HAS_ICE)
1429 TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1431 breakpoint_invalidate(env, breakpoint->pc);
1433 qemu_free(breakpoint);
1437 /* Remove all matching breakpoints. */
1438 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1440 #if defined(TARGET_HAS_ICE)
1441 CPUBreakpoint *bp, *next;
1443 TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1444 if (bp->flags & mask)
1445 cpu_breakpoint_remove_by_ref(env, bp);
1450 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1451 CPU loop after each instruction */
1452 void cpu_single_step(CPUState *env, int enabled)
1454 #if defined(TARGET_HAS_ICE)
1455 if (env->singlestep_enabled != enabled) {
1456 env->singlestep_enabled = enabled;
1457 /* must flush all the translated code to avoid inconsistancies */
1458 /* XXX: only flush what is necessary */
1464 /* enable or disable low levels log */
1465 void cpu_set_log(int log_flags)
1467 loglevel = log_flags;
1468 if (loglevel && !logfile) {
1469 logfile = fopen(logfilename, log_append ? "a" : "w");
1471 perror(logfilename);
1474 #if !defined(CONFIG_SOFTMMU)
1475 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1477 static char logfile_buf[4096];
1478 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1481 setvbuf(logfile, NULL, _IOLBF, 0);
1485 if (!loglevel && logfile) {
1491 void cpu_set_log_filename(const char *filename)
1493 logfilename = strdup(filename);
1498 cpu_set_log(loglevel);
1501 /* mask must never be zero, except for A20 change call */
1502 void cpu_interrupt(CPUState *env, int mask)
1504 #if !defined(USE_NPTL)
1505 TranslationBlock *tb;
1506 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1510 if (mask & CPU_INTERRUPT_EXIT) {
1511 env->exit_request = 1;
1512 mask &= ~CPU_INTERRUPT_EXIT;
1515 old_mask = env->interrupt_request;
1516 env->interrupt_request |= mask;
1517 #if defined(USE_NPTL)
1518 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1519 problem and hope the cpu will stop of its own accord. For userspace
1520 emulation this often isn't actually as bad as it sounds. Often
1521 signals are used primarily to interrupt blocking syscalls. */
1524 env->icount_decr.u16.high = 0xffff;
1525 #ifndef CONFIG_USER_ONLY
1527 && (mask & ~old_mask) != 0) {
1528 cpu_abort(env, "Raised interrupt while not in I/O function");
1532 tb = env->current_tb;
1533 /* if the cpu is currently executing code, we must unlink it and
1534 all the potentially executing TB */
1535 if (tb && !testandset(&interrupt_lock)) {
1536 env->current_tb = NULL;
1537 tb_reset_jump_recursive(tb);
1538 resetlock(&interrupt_lock);
1544 void cpu_reset_interrupt(CPUState *env, int mask)
1546 env->interrupt_request &= ~mask;
1549 const CPULogItem cpu_log_items[] = {
1550 { CPU_LOG_TB_OUT_ASM, "out_asm",
1551 "show generated host assembly code for each compiled TB" },
1552 { CPU_LOG_TB_IN_ASM, "in_asm",
1553 "show target assembly code for each compiled TB" },
1554 { CPU_LOG_TB_OP, "op",
1555 "show micro ops for each compiled TB" },
1556 { CPU_LOG_TB_OP_OPT, "op_opt",
1559 "before eflags optimization and "
1561 "after liveness analysis" },
1562 { CPU_LOG_INT, "int",
1563 "show interrupts/exceptions in short format" },
1564 { CPU_LOG_EXEC, "exec",
1565 "show trace before each executed TB (lots of logs)" },
1566 { CPU_LOG_TB_CPU, "cpu",
1567 "show CPU state before block translation" },
1569 { CPU_LOG_PCALL, "pcall",
1570 "show protected mode far calls/returns/exceptions" },
1571 { CPU_LOG_RESET, "cpu_reset",
1572 "show CPU state before CPU resets" },
1575 { CPU_LOG_IOPORT, "ioport",
1576 "show all i/o ports accesses" },
1581 static int cmp1(const char *s1, int n, const char *s2)
1583 if (strlen(s2) != n)
1585 return memcmp(s1, s2, n) == 0;
1588 /* takes a comma separated list of log masks. Return 0 if error. */
1589 int cpu_str_to_log_mask(const char *str)
1591 const CPULogItem *item;
1598 p1 = strchr(p, ',');
1601 if(cmp1(p,p1-p,"all")) {
1602 for(item = cpu_log_items; item->mask != 0; item++) {
1606 for(item = cpu_log_items; item->mask != 0; item++) {
1607 if (cmp1(p, p1 - p, item->name))
1621 void cpu_abort(CPUState *env, const char *fmt, ...)
1628 fprintf(stderr, "qemu: fatal: ");
1629 vfprintf(stderr, fmt, ap);
1630 fprintf(stderr, "\n");
1632 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1634 cpu_dump_state(env, stderr, fprintf, 0);
1636 if (qemu_log_enabled()) {
1637 qemu_log("qemu: fatal: ");
1638 qemu_log_vprintf(fmt, ap2);
1641 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1643 log_cpu_state(env, 0);
1653 CPUState *cpu_copy(CPUState *env)
1655 CPUState *new_env = cpu_init(env->cpu_model_str);
1656 CPUState *next_cpu = new_env->next_cpu;
1657 int cpu_index = new_env->cpu_index;
1658 #if defined(TARGET_HAS_ICE)
1663 memcpy(new_env, env, sizeof(CPUState));
1665 /* Preserve chaining and index. */
1666 new_env->next_cpu = next_cpu;
1667 new_env->cpu_index = cpu_index;
1669 /* Clone all break/watchpoints.
1670 Note: Once we support ptrace with hw-debug register access, make sure
1671 BP_CPU break/watchpoints are handled correctly on clone. */
1672 TAILQ_INIT(&env->breakpoints);
1673 TAILQ_INIT(&env->watchpoints);
1674 #if defined(TARGET_HAS_ICE)
1675 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1676 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1678 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1679 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1687 #if !defined(CONFIG_USER_ONLY)
1689 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1693 /* Discard jump cache entries for any tb which might potentially
1694 overlap the flushed page. */
1695 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1696 memset (&env->tb_jmp_cache[i], 0,
1697 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1699 i = tb_jmp_cache_hash_page(addr);
1700 memset (&env->tb_jmp_cache[i], 0,
1701 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1704 /* NOTE: if flush_global is true, also flush global entries (not
1706 void tlb_flush(CPUState *env, int flush_global)
1710 #if defined(DEBUG_TLB)
1711 printf("tlb_flush:\n");
1713 /* must reset current TB so that interrupts cannot modify the
1714 links while we are modifying them */
1715 env->current_tb = NULL;
1717 for(i = 0; i < CPU_TLB_SIZE; i++) {
1718 env->tlb_table[0][i].addr_read = -1;
1719 env->tlb_table[0][i].addr_write = -1;
1720 env->tlb_table[0][i].addr_code = -1;
1721 env->tlb_table[1][i].addr_read = -1;
1722 env->tlb_table[1][i].addr_write = -1;
1723 env->tlb_table[1][i].addr_code = -1;
1724 #if (NB_MMU_MODES >= 3)
1725 env->tlb_table[2][i].addr_read = -1;
1726 env->tlb_table[2][i].addr_write = -1;
1727 env->tlb_table[2][i].addr_code = -1;
1728 #if (NB_MMU_MODES == 4)
1729 env->tlb_table[3][i].addr_read = -1;
1730 env->tlb_table[3][i].addr_write = -1;
1731 env->tlb_table[3][i].addr_code = -1;
1736 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1739 if (env->kqemu_enabled) {
1740 kqemu_flush(env, flush_global);
1746 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1748 if (addr == (tlb_entry->addr_read &
1749 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1750 addr == (tlb_entry->addr_write &
1751 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1752 addr == (tlb_entry->addr_code &
1753 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1754 tlb_entry->addr_read = -1;
1755 tlb_entry->addr_write = -1;
1756 tlb_entry->addr_code = -1;
1760 void tlb_flush_page(CPUState *env, target_ulong addr)
1764 #if defined(DEBUG_TLB)
1765 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1767 /* must reset current TB so that interrupts cannot modify the
1768 links while we are modifying them */
1769 env->current_tb = NULL;
1771 addr &= TARGET_PAGE_MASK;
1772 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1773 tlb_flush_entry(&env->tlb_table[0][i], addr);
1774 tlb_flush_entry(&env->tlb_table[1][i], addr);
1775 #if (NB_MMU_MODES >= 3)
1776 tlb_flush_entry(&env->tlb_table[2][i], addr);
1777 #if (NB_MMU_MODES == 4)
1778 tlb_flush_entry(&env->tlb_table[3][i], addr);
1782 tlb_flush_jmp_cache(env, addr);
1785 if (env->kqemu_enabled) {
1786 kqemu_flush_page(env, addr);
1791 /* update the TLBs so that writes to code in the virtual page 'addr'
1793 static void tlb_protect_code(ram_addr_t ram_addr)
1795 cpu_physical_memory_reset_dirty(ram_addr,
1796 ram_addr + TARGET_PAGE_SIZE,
1800 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1801 tested for self modifying code */
1802 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1805 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1808 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1809 unsigned long start, unsigned long length)
1812 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1813 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1814 if ((addr - start) < length) {
1815 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1820 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1824 unsigned long length, start1;
1828 start &= TARGET_PAGE_MASK;
1829 end = TARGET_PAGE_ALIGN(end);
1831 length = end - start;
1834 len = length >> TARGET_PAGE_BITS;
1836 /* XXX: should not depend on cpu context */
1838 if (env->kqemu_enabled) {
1841 for(i = 0; i < len; i++) {
1842 kqemu_set_notdirty(env, addr);
1843 addr += TARGET_PAGE_SIZE;
1847 mask = ~dirty_flags;
1848 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1849 for(i = 0; i < len; i++)
1852 /* we modify the TLB cache so that the dirty bit will be set again
1853 when accessing the range */
1854 start1 = start + (unsigned long)phys_ram_base;
1855 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1856 for(i = 0; i < CPU_TLB_SIZE; i++)
1857 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
1858 for(i = 0; i < CPU_TLB_SIZE; i++)
1859 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
1860 #if (NB_MMU_MODES >= 3)
1861 for(i = 0; i < CPU_TLB_SIZE; i++)
1862 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1863 #if (NB_MMU_MODES == 4)
1864 for(i = 0; i < CPU_TLB_SIZE; i++)
1865 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1871 int cpu_physical_memory_set_dirty_tracking(int enable)
1873 in_migration = enable;
1877 int cpu_physical_memory_get_dirty_tracking(void)
1879 return in_migration;
1882 void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr)
1885 kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1888 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1890 ram_addr_t ram_addr;
1892 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1893 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
1894 tlb_entry->addend - (unsigned long)phys_ram_base;
1895 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1896 tlb_entry->addr_write |= TLB_NOTDIRTY;
1901 /* update the TLB according to the current state of the dirty bits */
1902 void cpu_tlb_update_dirty(CPUState *env)
1905 for(i = 0; i < CPU_TLB_SIZE; i++)
1906 tlb_update_dirty(&env->tlb_table[0][i]);
1907 for(i = 0; i < CPU_TLB_SIZE; i++)
1908 tlb_update_dirty(&env->tlb_table[1][i]);
1909 #if (NB_MMU_MODES >= 3)
1910 for(i = 0; i < CPU_TLB_SIZE; i++)
1911 tlb_update_dirty(&env->tlb_table[2][i]);
1912 #if (NB_MMU_MODES == 4)
1913 for(i = 0; i < CPU_TLB_SIZE; i++)
1914 tlb_update_dirty(&env->tlb_table[3][i]);
1919 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1921 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1922 tlb_entry->addr_write = vaddr;
1925 /* update the TLB corresponding to virtual page vaddr
1926 so that it is no longer dirty */
1927 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1931 vaddr &= TARGET_PAGE_MASK;
1932 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1933 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
1934 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
1935 #if (NB_MMU_MODES >= 3)
1936 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
1937 #if (NB_MMU_MODES == 4)
1938 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
1943 /* add a new TLB entry. At most one entry for a given virtual address
1944 is permitted. Return 0 if OK or 2 if the page could not be mapped
1945 (can only happen in non SOFTMMU mode for I/O pages or pages
1946 conflicting with the host address space). */
1947 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1948 target_phys_addr_t paddr, int prot,
1949 int mmu_idx, int is_softmmu)
1954 target_ulong address;
1955 target_ulong code_address;
1956 target_phys_addr_t addend;
1960 target_phys_addr_t iotlb;
1962 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1964 pd = IO_MEM_UNASSIGNED;
1966 pd = p->phys_offset;
1968 #if defined(DEBUG_TLB)
1969 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1970 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
1975 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1976 /* IO memory case (romd handled later) */
1977 address |= TLB_MMIO;
1979 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1980 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1982 iotlb = pd & TARGET_PAGE_MASK;
1983 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1984 iotlb |= IO_MEM_NOTDIRTY;
1986 iotlb |= IO_MEM_ROM;
1988 /* IO handlers are currently passed a phsical address.
1989 It would be nice to pass an offset from the base address
1990 of that region. This would avoid having to special case RAM,
1991 and avoid full address decoding in every device.
1992 We can't use the high bits of pd for this because
1993 IO_MEM_ROMD uses these as a ram address. */
1994 iotlb = (pd & ~TARGET_PAGE_MASK);
1996 iotlb += p->region_offset;
2002 code_address = address;
2003 /* Make accesses to pages with watchpoints go via the
2004 watchpoint trap routines. */
2005 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2006 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2007 iotlb = io_mem_watch + paddr;
2008 /* TODO: The memory case can be optimized by not trapping
2009 reads of pages with a write breakpoint. */
2010 address |= TLB_MMIO;
2014 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2015 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2016 te = &env->tlb_table[mmu_idx][index];
2017 te->addend = addend - vaddr;
2018 if (prot & PAGE_READ) {
2019 te->addr_read = address;
2024 if (prot & PAGE_EXEC) {
2025 te->addr_code = code_address;
2029 if (prot & PAGE_WRITE) {
2030 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2031 (pd & IO_MEM_ROMD)) {
2032 /* Write access calls the I/O callback. */
2033 te->addr_write = address | TLB_MMIO;
2034 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2035 !cpu_physical_memory_is_dirty(pd)) {
2036 te->addr_write = address | TLB_NOTDIRTY;
2038 te->addr_write = address;
2041 te->addr_write = -1;
2048 void tlb_flush(CPUState *env, int flush_global)
2052 void tlb_flush_page(CPUState *env, target_ulong addr)
2056 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2057 target_phys_addr_t paddr, int prot,
2058 int mmu_idx, int is_softmmu)
2063 /* dump memory mappings */
2064 void page_dump(FILE *f)
2066 unsigned long start, end;
2067 int i, j, prot, prot1;
2070 fprintf(f, "%-8s %-8s %-8s %s\n",
2071 "start", "end", "size", "prot");
2075 for(i = 0; i <= L1_SIZE; i++) {
2080 for(j = 0;j < L2_SIZE; j++) {
2085 if (prot1 != prot) {
2086 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2088 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2089 start, end, end - start,
2090 prot & PAGE_READ ? 'r' : '-',
2091 prot & PAGE_WRITE ? 'w' : '-',
2092 prot & PAGE_EXEC ? 'x' : '-');
2106 int page_get_flags(target_ulong address)
2110 p = page_find(address >> TARGET_PAGE_BITS);
2116 /* modify the flags of a page and invalidate the code if
2117 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2118 depending on PAGE_WRITE */
2119 void page_set_flags(target_ulong start, target_ulong end, int flags)
2124 /* mmap_lock should already be held. */
2125 start = start & TARGET_PAGE_MASK;
2126 end = TARGET_PAGE_ALIGN(end);
2127 if (flags & PAGE_WRITE)
2128 flags |= PAGE_WRITE_ORG;
2129 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2130 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2131 /* We may be called for host regions that are outside guest
2135 /* if the write protection is set, then we invalidate the code
2137 if (!(p->flags & PAGE_WRITE) &&
2138 (flags & PAGE_WRITE) &&
2140 tb_invalidate_phys_page(addr, 0, NULL);
2146 int page_check_range(target_ulong start, target_ulong len, int flags)
2152 if (start + len < start)
2153 /* we've wrapped around */
2156 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2157 start = start & TARGET_PAGE_MASK;
2159 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2160 p = page_find(addr >> TARGET_PAGE_BITS);
2163 if( !(p->flags & PAGE_VALID) )
2166 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2168 if (flags & PAGE_WRITE) {
2169 if (!(p->flags & PAGE_WRITE_ORG))
2171 /* unprotect the page if it was put read-only because it
2172 contains translated code */
2173 if (!(p->flags & PAGE_WRITE)) {
2174 if (!page_unprotect(addr, 0, NULL))
2183 /* called from signal handler: invalidate the code and unprotect the
2184 page. Return TRUE if the fault was succesfully handled. */
2185 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2187 unsigned int page_index, prot, pindex;
2189 target_ulong host_start, host_end, addr;
2191 /* Technically this isn't safe inside a signal handler. However we
2192 know this only ever happens in a synchronous SEGV handler, so in
2193 practice it seems to be ok. */
2196 host_start = address & qemu_host_page_mask;
2197 page_index = host_start >> TARGET_PAGE_BITS;
2198 p1 = page_find(page_index);
2203 host_end = host_start + qemu_host_page_size;
2206 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2210 /* if the page was really writable, then we change its
2211 protection back to writable */
2212 if (prot & PAGE_WRITE_ORG) {
2213 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2214 if (!(p1[pindex].flags & PAGE_WRITE)) {
2215 mprotect((void *)g2h(host_start), qemu_host_page_size,
2216 (prot & PAGE_BITS) | PAGE_WRITE);
2217 p1[pindex].flags |= PAGE_WRITE;
2218 /* and since the content will be modified, we must invalidate
2219 the corresponding translated code. */
2220 tb_invalidate_phys_page(address, pc, puc);
2221 #ifdef DEBUG_TB_CHECK
2222 tb_invalidate_check(address);
2232 static inline void tlb_set_dirty(CPUState *env,
2233 unsigned long addr, target_ulong vaddr)
2236 #endif /* defined(CONFIG_USER_ONLY) */
2238 #if !defined(CONFIG_USER_ONLY)
2240 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2241 ram_addr_t memory, ram_addr_t region_offset);
2242 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2243 ram_addr_t orig_memory, ram_addr_t region_offset);
2244 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2247 if (addr > start_addr) \
2250 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2251 if (start_addr2 > 0) \
2255 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2256 end_addr2 = TARGET_PAGE_SIZE - 1; \
2258 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2259 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2264 /* register physical memory. 'size' must be a multiple of the target
2265 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2266 io memory page. The address used when calling the IO function is
2267 the offset from the start of the region, plus region_offset. Both
2268 start_region and regon_offset are rounded down to a page boundary
2269 before calculating this offset. This should not be a problem unless
2270 the low bits of start_addr and region_offset differ. */
2271 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2273 ram_addr_t phys_offset,
2274 ram_addr_t region_offset)
2276 target_phys_addr_t addr, end_addr;
2279 ram_addr_t orig_size = size;
2283 /* XXX: should not depend on cpu context */
2285 if (env->kqemu_enabled) {
2286 kqemu_set_phys_mem(start_addr, size, phys_offset);
2290 kvm_set_phys_mem(start_addr, size, phys_offset);
2292 if (phys_offset == IO_MEM_UNASSIGNED) {
2293 region_offset = start_addr;
2295 region_offset &= TARGET_PAGE_MASK;
2296 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2297 end_addr = start_addr + (target_phys_addr_t)size;
2298 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2299 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2300 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2301 ram_addr_t orig_memory = p->phys_offset;
2302 target_phys_addr_t start_addr2, end_addr2;
2303 int need_subpage = 0;
2305 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2307 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2308 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2309 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2310 &p->phys_offset, orig_memory,
2313 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2316 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2318 p->region_offset = 0;
2320 p->phys_offset = phys_offset;
2321 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2322 (phys_offset & IO_MEM_ROMD))
2323 phys_offset += TARGET_PAGE_SIZE;
2326 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2327 p->phys_offset = phys_offset;
2328 p->region_offset = region_offset;
2329 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2330 (phys_offset & IO_MEM_ROMD)) {
2331 phys_offset += TARGET_PAGE_SIZE;
2333 target_phys_addr_t start_addr2, end_addr2;
2334 int need_subpage = 0;
2336 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2337 end_addr2, need_subpage);
2339 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2340 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2341 &p->phys_offset, IO_MEM_UNASSIGNED,
2342 addr & TARGET_PAGE_MASK);
2343 subpage_register(subpage, start_addr2, end_addr2,
2344 phys_offset, region_offset);
2345 p->region_offset = 0;
2349 region_offset += TARGET_PAGE_SIZE;
2352 /* since each CPU stores ram addresses in its TLB cache, we must
2353 reset the modified entries */
2355 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2360 /* XXX: temporary until new memory mapping API */
2361 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2365 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2367 return IO_MEM_UNASSIGNED;
2368 return p->phys_offset;
2371 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2374 kvm_coalesce_mmio_region(addr, size);
2377 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2380 kvm_uncoalesce_mmio_region(addr, size);
2383 /* XXX: better than nothing */
2384 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2387 if ((phys_ram_alloc_offset + size) > phys_ram_size) {
2388 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
2389 (uint64_t)size, (uint64_t)phys_ram_size);
2392 addr = phys_ram_alloc_offset;
2393 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2397 void qemu_ram_free(ram_addr_t addr)
2401 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2403 #ifdef DEBUG_UNASSIGNED
2404 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2406 #if defined(TARGET_SPARC)
2407 do_unassigned_access(addr, 0, 0, 0, 1);
2412 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2414 #ifdef DEBUG_UNASSIGNED
2415 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2417 #if defined(TARGET_SPARC)
2418 do_unassigned_access(addr, 0, 0, 0, 2);
2423 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2425 #ifdef DEBUG_UNASSIGNED
2426 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2428 #if defined(TARGET_SPARC)
2429 do_unassigned_access(addr, 0, 0, 0, 4);
2434 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2436 #ifdef DEBUG_UNASSIGNED
2437 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2439 #if defined(TARGET_SPARC)
2440 do_unassigned_access(addr, 1, 0, 0, 1);
2444 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2446 #ifdef DEBUG_UNASSIGNED
2447 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2449 #if defined(TARGET_SPARC)
2450 do_unassigned_access(addr, 1, 0, 0, 2);
2454 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2456 #ifdef DEBUG_UNASSIGNED
2457 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2459 #if defined(TARGET_SPARC)
2460 do_unassigned_access(addr, 1, 0, 0, 4);
2464 static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2465 unassigned_mem_readb,
2466 unassigned_mem_readw,
2467 unassigned_mem_readl,
2470 static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2471 unassigned_mem_writeb,
2472 unassigned_mem_writew,
2473 unassigned_mem_writel,
2476 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2480 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2481 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2482 #if !defined(CONFIG_USER_ONLY)
2483 tb_invalidate_phys_page_fast(ram_addr, 1);
2484 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2487 stb_p(phys_ram_base + ram_addr, val);
2489 if (cpu_single_env->kqemu_enabled &&
2490 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2491 kqemu_modify_page(cpu_single_env, ram_addr);
2493 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2494 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2495 /* we remove the notdirty callback only if the code has been
2497 if (dirty_flags == 0xff)
2498 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2501 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2505 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2506 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2507 #if !defined(CONFIG_USER_ONLY)
2508 tb_invalidate_phys_page_fast(ram_addr, 2);
2509 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2512 stw_p(phys_ram_base + ram_addr, val);
2514 if (cpu_single_env->kqemu_enabled &&
2515 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2516 kqemu_modify_page(cpu_single_env, ram_addr);
2518 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2519 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2520 /* we remove the notdirty callback only if the code has been
2522 if (dirty_flags == 0xff)
2523 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2526 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2530 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2531 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2532 #if !defined(CONFIG_USER_ONLY)
2533 tb_invalidate_phys_page_fast(ram_addr, 4);
2534 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2537 stl_p(phys_ram_base + ram_addr, val);
2539 if (cpu_single_env->kqemu_enabled &&
2540 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2541 kqemu_modify_page(cpu_single_env, ram_addr);
2543 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2544 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2545 /* we remove the notdirty callback only if the code has been
2547 if (dirty_flags == 0xff)
2548 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2551 static CPUReadMemoryFunc *error_mem_read[3] = {
2552 NULL, /* never used */
2553 NULL, /* never used */
2554 NULL, /* never used */
2557 static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2558 notdirty_mem_writeb,
2559 notdirty_mem_writew,
2560 notdirty_mem_writel,
2563 /* Generate a debug exception if a watchpoint has been hit. */
2564 static void check_watchpoint(int offset, int len_mask, int flags)
2566 CPUState *env = cpu_single_env;
2567 target_ulong pc, cs_base;
2568 TranslationBlock *tb;
2573 if (env->watchpoint_hit) {
2574 /* We re-entered the check after replacing the TB. Now raise
2575 * the debug interrupt so that is will trigger after the
2576 * current instruction. */
2577 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2580 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2581 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2582 if ((vaddr == (wp->vaddr & len_mask) ||
2583 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2584 wp->flags |= BP_WATCHPOINT_HIT;
2585 if (!env->watchpoint_hit) {
2586 env->watchpoint_hit = wp;
2587 tb = tb_find_pc(env->mem_io_pc);
2589 cpu_abort(env, "check_watchpoint: could not find TB for "
2590 "pc=%p", (void *)env->mem_io_pc);
2592 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2593 tb_phys_invalidate(tb, -1);
2594 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2595 env->exception_index = EXCP_DEBUG;
2597 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2598 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2600 cpu_resume_from_signal(env, NULL);
2603 wp->flags &= ~BP_WATCHPOINT_HIT;
2608 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2609 so these check for a hit then pass through to the normal out-of-line
2611 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2613 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
2614 return ldub_phys(addr);
2617 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2619 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
2620 return lduw_phys(addr);
2623 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2625 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
2626 return ldl_phys(addr);
2629 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2632 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
2633 stb_phys(addr, val);
2636 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2639 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
2640 stw_phys(addr, val);
2643 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2646 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
2647 stl_phys(addr, val);
2650 static CPUReadMemoryFunc *watch_mem_read[3] = {
2656 static CPUWriteMemoryFunc *watch_mem_write[3] = {
2662 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2668 idx = SUBPAGE_IDX(addr);
2669 #if defined(DEBUG_SUBPAGE)
2670 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2671 mmio, len, addr, idx);
2673 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2674 addr + mmio->region_offset[idx][0][len]);
2679 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2680 uint32_t value, unsigned int len)
2684 idx = SUBPAGE_IDX(addr);
2685 #if defined(DEBUG_SUBPAGE)
2686 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2687 mmio, len, addr, idx, value);
2689 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2690 addr + mmio->region_offset[idx][1][len],
2694 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2696 #if defined(DEBUG_SUBPAGE)
2697 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2700 return subpage_readlen(opaque, addr, 0);
2703 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2706 #if defined(DEBUG_SUBPAGE)
2707 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2709 subpage_writelen(opaque, addr, value, 0);
2712 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2714 #if defined(DEBUG_SUBPAGE)
2715 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2718 return subpage_readlen(opaque, addr, 1);
2721 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2724 #if defined(DEBUG_SUBPAGE)
2725 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2727 subpage_writelen(opaque, addr, value, 1);
2730 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2732 #if defined(DEBUG_SUBPAGE)
2733 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2736 return subpage_readlen(opaque, addr, 2);
2739 static void subpage_writel (void *opaque,
2740 target_phys_addr_t addr, uint32_t value)
2742 #if defined(DEBUG_SUBPAGE)
2743 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2745 subpage_writelen(opaque, addr, value, 2);
2748 static CPUReadMemoryFunc *subpage_read[] = {
2754 static CPUWriteMemoryFunc *subpage_write[] = {
2760 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2761 ram_addr_t memory, ram_addr_t region_offset)
2766 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2768 idx = SUBPAGE_IDX(start);
2769 eidx = SUBPAGE_IDX(end);
2770 #if defined(DEBUG_SUBPAGE)
2771 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2772 mmio, start, end, idx, eidx, memory);
2774 memory >>= IO_MEM_SHIFT;
2775 for (; idx <= eidx; idx++) {
2776 for (i = 0; i < 4; i++) {
2777 if (io_mem_read[memory][i]) {
2778 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2779 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2780 mmio->region_offset[idx][0][i] = region_offset;
2782 if (io_mem_write[memory][i]) {
2783 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2784 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2785 mmio->region_offset[idx][1][i] = region_offset;
2793 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2794 ram_addr_t orig_memory, ram_addr_t region_offset)
2799 mmio = qemu_mallocz(sizeof(subpage_t));
2802 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2803 #if defined(DEBUG_SUBPAGE)
2804 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2805 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2807 *phys = subpage_memory | IO_MEM_SUBPAGE;
2808 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
2814 static int get_free_io_mem_idx(void)
2818 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
2819 if (!io_mem_used[i]) {
2827 static void io_mem_init(void)
2831 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
2832 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
2833 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
2837 io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
2838 watch_mem_write, NULL);
2839 /* alloc dirty bits array */
2840 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
2841 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
2844 /* mem_read and mem_write are arrays of functions containing the
2845 function to access byte (index 0), word (index 1) and dword (index
2846 2). Functions can be omitted with a NULL function pointer. The
2847 registered functions may be modified dynamically later.
2848 If io_index is non zero, the corresponding io zone is
2849 modified. If it is zero, a new io zone is allocated. The return
2850 value can be used with cpu_register_physical_memory(). (-1) is
2851 returned if error. */
2852 int cpu_register_io_memory(int io_index,
2853 CPUReadMemoryFunc **mem_read,
2854 CPUWriteMemoryFunc **mem_write,
2857 int i, subwidth = 0;
2859 if (io_index <= 0) {
2860 io_index = get_free_io_mem_idx();
2864 if (io_index >= IO_MEM_NB_ENTRIES)
2868 for(i = 0;i < 3; i++) {
2869 if (!mem_read[i] || !mem_write[i])
2870 subwidth = IO_MEM_SUBWIDTH;
2871 io_mem_read[io_index][i] = mem_read[i];
2872 io_mem_write[io_index][i] = mem_write[i];
2874 io_mem_opaque[io_index] = opaque;
2875 return (io_index << IO_MEM_SHIFT) | subwidth;
2878 void cpu_unregister_io_memory(int io_table_address)
2881 int io_index = io_table_address >> IO_MEM_SHIFT;
2883 for (i=0;i < 3; i++) {
2884 io_mem_read[io_index][i] = unassigned_mem_read[i];
2885 io_mem_write[io_index][i] = unassigned_mem_write[i];
2887 io_mem_opaque[io_index] = NULL;
2888 io_mem_used[io_index] = 0;
2891 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2893 return io_mem_write[io_index >> IO_MEM_SHIFT];
2896 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2898 return io_mem_read[io_index >> IO_MEM_SHIFT];
2901 #endif /* !defined(CONFIG_USER_ONLY) */
2903 /* physical memory access (slow version, mainly for debug) */
2904 #if defined(CONFIG_USER_ONLY)
2905 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2906 int len, int is_write)
2913 page = addr & TARGET_PAGE_MASK;
2914 l = (page + TARGET_PAGE_SIZE) - addr;
2917 flags = page_get_flags(page);
2918 if (!(flags & PAGE_VALID))
2921 if (!(flags & PAGE_WRITE))
2923 /* XXX: this code should not depend on lock_user */
2924 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2925 /* FIXME - should this return an error rather than just fail? */
2928 unlock_user(p, addr, l);
2930 if (!(flags & PAGE_READ))
2932 /* XXX: this code should not depend on lock_user */
2933 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2934 /* FIXME - should this return an error rather than just fail? */
2937 unlock_user(p, addr, 0);
2946 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2947 int len, int is_write)
2952 target_phys_addr_t page;
2957 page = addr & TARGET_PAGE_MASK;
2958 l = (page + TARGET_PAGE_SIZE) - addr;
2961 p = phys_page_find(page >> TARGET_PAGE_BITS);
2963 pd = IO_MEM_UNASSIGNED;
2965 pd = p->phys_offset;
2969 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2970 target_phys_addr_t addr1 = addr;
2971 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2973 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
2974 /* XXX: could force cpu_single_env to NULL to avoid
2976 if (l >= 4 && ((addr1 & 3) == 0)) {
2977 /* 32 bit write access */
2979 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
2981 } else if (l >= 2 && ((addr1 & 1) == 0)) {
2982 /* 16 bit write access */
2984 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
2987 /* 8 bit write access */
2989 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
2993 unsigned long addr1;
2994 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2996 ptr = phys_ram_base + addr1;
2997 memcpy(ptr, buf, l);
2998 if (!cpu_physical_memory_is_dirty(addr1)) {
2999 /* invalidate code */
3000 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3002 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3003 (0xff & ~CODE_DIRTY_FLAG);
3007 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3008 !(pd & IO_MEM_ROMD)) {
3009 target_phys_addr_t addr1 = addr;
3011 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3013 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3014 if (l >= 4 && ((addr1 & 3) == 0)) {
3015 /* 32 bit read access */
3016 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3019 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3020 /* 16 bit read access */
3021 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3025 /* 8 bit read access */
3026 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3032 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3033 (addr & ~TARGET_PAGE_MASK);
3034 memcpy(buf, ptr, l);
3043 /* used for ROM loading : can write in RAM and ROM */
3044 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3045 const uint8_t *buf, int len)
3049 target_phys_addr_t page;
3054 page = addr & TARGET_PAGE_MASK;
3055 l = (page + TARGET_PAGE_SIZE) - addr;
3058 p = phys_page_find(page >> TARGET_PAGE_BITS);
3060 pd = IO_MEM_UNASSIGNED;
3062 pd = p->phys_offset;
3065 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3066 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3067 !(pd & IO_MEM_ROMD)) {
3070 unsigned long addr1;
3071 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3073 ptr = phys_ram_base + addr1;
3074 memcpy(ptr, buf, l);
3084 target_phys_addr_t addr;
3085 target_phys_addr_t len;
3088 static BounceBuffer bounce;
3090 typedef struct MapClient {
3092 void (*callback)(void *opaque);
3093 LIST_ENTRY(MapClient) link;
3096 static LIST_HEAD(map_client_list, MapClient) map_client_list
3097 = LIST_HEAD_INITIALIZER(map_client_list);
3099 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3101 MapClient *client = qemu_malloc(sizeof(*client));
3103 client->opaque = opaque;
3104 client->callback = callback;
3105 LIST_INSERT_HEAD(&map_client_list, client, link);
3109 void cpu_unregister_map_client(void *_client)
3111 MapClient *client = (MapClient *)_client;
3113 LIST_REMOVE(client, link);
3116 static void cpu_notify_map_clients(void)
3120 while (!LIST_EMPTY(&map_client_list)) {
3121 client = LIST_FIRST(&map_client_list);
3122 client->callback(client->opaque);
3123 LIST_REMOVE(client, link);
3127 /* Map a physical memory region into a host virtual address.
3128 * May map a subset of the requested range, given by and returned in *plen.
3129 * May return NULL if resources needed to perform the mapping are exhausted.
3130 * Use only for reads OR writes - not for read-modify-write operations.
3131 * Use cpu_register_map_client() to know when retrying the map operation is
3132 * likely to succeed.
3134 void *cpu_physical_memory_map(target_phys_addr_t addr,
3135 target_phys_addr_t *plen,
3138 target_phys_addr_t len = *plen;
3139 target_phys_addr_t done = 0;
3141 uint8_t *ret = NULL;
3143 target_phys_addr_t page;
3146 unsigned long addr1;
3149 page = addr & TARGET_PAGE_MASK;
3150 l = (page + TARGET_PAGE_SIZE) - addr;
3153 p = phys_page_find(page >> TARGET_PAGE_BITS);
3155 pd = IO_MEM_UNASSIGNED;
3157 pd = p->phys_offset;
3160 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3161 if (done || bounce.buffer) {
3164 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3168 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3170 ptr = bounce.buffer;
3172 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3173 ptr = phys_ram_base + addr1;
3177 } else if (ret + done != ptr) {
3189 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3190 * Will also mark the memory as dirty if is_write == 1. access_len gives
3191 * the amount of memory that was actually read or written by the caller.
3193 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3194 int is_write, target_phys_addr_t access_len)
3196 if (buffer != bounce.buffer) {
3198 unsigned long addr1 = (uint8_t *)buffer - phys_ram_base;
3199 while (access_len) {
3201 l = TARGET_PAGE_SIZE;
3204 if (!cpu_physical_memory_is_dirty(addr1)) {
3205 /* invalidate code */
3206 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3208 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3209 (0xff & ~CODE_DIRTY_FLAG);
3218 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3220 qemu_free(bounce.buffer);
3221 bounce.buffer = NULL;
3222 cpu_notify_map_clients();
3225 /* warning: addr must be aligned */
3226 uint32_t ldl_phys(target_phys_addr_t addr)
3234 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3236 pd = IO_MEM_UNASSIGNED;
3238 pd = p->phys_offset;
3241 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3242 !(pd & IO_MEM_ROMD)) {
3244 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3246 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3247 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3250 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3251 (addr & ~TARGET_PAGE_MASK);
3257 /* warning: addr must be aligned */
3258 uint64_t ldq_phys(target_phys_addr_t addr)
3266 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3268 pd = IO_MEM_UNASSIGNED;
3270 pd = p->phys_offset;
3273 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3274 !(pd & IO_MEM_ROMD)) {
3276 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3278 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3279 #ifdef TARGET_WORDS_BIGENDIAN
3280 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3281 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3283 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3284 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3288 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3289 (addr & ~TARGET_PAGE_MASK);
3296 uint32_t ldub_phys(target_phys_addr_t addr)
3299 cpu_physical_memory_read(addr, &val, 1);
3304 uint32_t lduw_phys(target_phys_addr_t addr)
3307 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3308 return tswap16(val);
3311 /* warning: addr must be aligned. The ram page is not masked as dirty
3312 and the code inside is not invalidated. It is useful if the dirty
3313 bits are used to track modified PTEs */
3314 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3321 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3323 pd = IO_MEM_UNASSIGNED;
3325 pd = p->phys_offset;
3328 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3329 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3331 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3332 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3334 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3335 ptr = phys_ram_base + addr1;
3338 if (unlikely(in_migration)) {
3339 if (!cpu_physical_memory_is_dirty(addr1)) {
3340 /* invalidate code */
3341 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3343 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3344 (0xff & ~CODE_DIRTY_FLAG);
3350 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3357 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3359 pd = IO_MEM_UNASSIGNED;
3361 pd = p->phys_offset;
3364 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3365 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3367 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3368 #ifdef TARGET_WORDS_BIGENDIAN
3369 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3370 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3372 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3373 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3376 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3377 (addr & ~TARGET_PAGE_MASK);
3382 /* warning: addr must be aligned */
3383 void stl_phys(target_phys_addr_t addr, uint32_t val)
3390 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3392 pd = IO_MEM_UNASSIGNED;
3394 pd = p->phys_offset;
3397 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3398 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3400 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3401 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3403 unsigned long addr1;
3404 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3406 ptr = phys_ram_base + addr1;
3408 if (!cpu_physical_memory_is_dirty(addr1)) {
3409 /* invalidate code */
3410 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3412 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3413 (0xff & ~CODE_DIRTY_FLAG);
3419 void stb_phys(target_phys_addr_t addr, uint32_t val)
3422 cpu_physical_memory_write(addr, &v, 1);
3426 void stw_phys(target_phys_addr_t addr, uint32_t val)
3428 uint16_t v = tswap16(val);
3429 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3433 void stq_phys(target_phys_addr_t addr, uint64_t val)
3436 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3441 /* virtual memory access for debug */
3442 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3443 uint8_t *buf, int len, int is_write)
3446 target_phys_addr_t phys_addr;
3450 page = addr & TARGET_PAGE_MASK;
3451 phys_addr = cpu_get_phys_page_debug(env, page);
3452 /* if no physical page mapped, return an error */
3453 if (phys_addr == -1)
3455 l = (page + TARGET_PAGE_SIZE) - addr;
3458 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
3467 /* in deterministic execution mode, instructions doing device I/Os
3468 must be at the end of the TB */
3469 void cpu_io_recompile(CPUState *env, void *retaddr)
3471 TranslationBlock *tb;
3473 target_ulong pc, cs_base;
3476 tb = tb_find_pc((unsigned long)retaddr);
3478 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3481 n = env->icount_decr.u16.low + tb->icount;
3482 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3483 /* Calculate how many instructions had been executed before the fault
3485 n = n - env->icount_decr.u16.low;
3486 /* Generate a new TB ending on the I/O insn. */
3488 /* On MIPS and SH, delay slot instructions can only be restarted if
3489 they were already the first instruction in the TB. If this is not
3490 the first instruction in a TB then re-execute the preceding
3492 #if defined(TARGET_MIPS)
3493 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3494 env->active_tc.PC -= 4;
3495 env->icount_decr.u16.low++;
3496 env->hflags &= ~MIPS_HFLAG_BMASK;
3498 #elif defined(TARGET_SH4)
3499 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3502 env->icount_decr.u16.low++;
3503 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3506 /* This should never happen. */
3507 if (n > CF_COUNT_MASK)
3508 cpu_abort(env, "TB too big during recompile");
3510 cflags = n | CF_LAST_IO;
3512 cs_base = tb->cs_base;
3514 tb_phys_invalidate(tb, -1);
3515 /* FIXME: In theory this could raise an exception. In practice
3516 we have already translated the block once so it's probably ok. */
3517 tb_gen_code(env, pc, cs_base, flags, cflags);
3518 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3519 the first in the TB) then we end up generating a whole new TB and
3520 repeating the fault, which is horribly inefficient.
3521 Better would be to execute just this insn uncached, or generate a
3523 cpu_resume_from_signal(env, NULL);
3526 void dump_exec_info(FILE *f,
3527 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3529 int i, target_code_size, max_target_code_size;
3530 int direct_jmp_count, direct_jmp2_count, cross_page;
3531 TranslationBlock *tb;
3533 target_code_size = 0;
3534 max_target_code_size = 0;
3536 direct_jmp_count = 0;
3537 direct_jmp2_count = 0;
3538 for(i = 0; i < nb_tbs; i++) {
3540 target_code_size += tb->size;
3541 if (tb->size > max_target_code_size)
3542 max_target_code_size = tb->size;
3543 if (tb->page_addr[1] != -1)
3545 if (tb->tb_next_offset[0] != 0xffff) {
3547 if (tb->tb_next_offset[1] != 0xffff) {
3548 direct_jmp2_count++;
3552 /* XXX: avoid using doubles ? */
3553 cpu_fprintf(f, "Translation buffer state:\n");
3554 cpu_fprintf(f, "gen code size %ld/%ld\n",
3555 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3556 cpu_fprintf(f, "TB count %d/%d\n",
3557 nb_tbs, code_gen_max_blocks);
3558 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3559 nb_tbs ? target_code_size / nb_tbs : 0,
3560 max_target_code_size);
3561 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3562 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3563 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3564 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3566 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3567 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3569 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3571 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3572 cpu_fprintf(f, "\nStatistics:\n");
3573 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3574 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3575 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3576 tcg_dump_info(f, cpu_fprintf);
3579 #if !defined(CONFIG_USER_ONLY)
3581 #define MMUSUFFIX _cmmu
3582 #define GETPC() NULL
3583 #define env cpu_single_env
3584 #define SOFTMMU_CODE_ACCESS
3587 #include "softmmu_template.h"
3590 #include "softmmu_template.h"
3593 #include "softmmu_template.h"
3596 #include "softmmu_template.h"