1bd76f0ad6a1ea2401f2c22e6023005a037ecd60
[platform/upstream/armcl.git] / examples / graph_resnet50.cpp
1 /*
2  * Copyright (c) 2017-2018 ARM Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/graph/Graph.h"
25 #include "arm_compute/graph/Nodes.h"
26 #include "support/ToolchainSupport.h"
27 #include "utils/GraphUtils.h"
28 #include "utils/Utils.h"
29
30 #include <cstdlib>
31
32 using namespace arm_compute::utils;
33 using namespace arm_compute::graph;
34 using namespace arm_compute::graph_utils;
35
36 /** Example demonstrating how to implement Microsoft's ResNet50 network using the Compute Library's graph API
37  *
38  * @param[in] argc Number of arguments
39  * @param[in] argv Arguments ( [optional] Target (0 = NEON, 1 = OpenCL), [optional] Path to the weights folder, [optional] image, [optional] labels )
40  */
41 class GraphResNet50Example : public Example
42 {
43 public:
44     void do_setup(int argc, char **argv) override
45     {
46         std::string data_path; /* Path to the trainable data */
47         std::string image;     /* Image data */
48         std::string label;     /* Label data */
49
50         // Create a preprocessor object
51         const std::array<float, 3> mean_rgb{ { 122.68f, 116.67f, 104.01f } };
52         std::unique_ptr<IPreprocessor> preprocessor = arm_compute::support::cpp14::make_unique<CaffePreproccessor>(mean_rgb,
53                                                                                                                    false /* Do not convert to BGR */);
54
55         // Set target. 0 (NEON), 1 (OpenCL), 2 (OpenCL with Tuner). By default it is NEON
56         const int  int_target_hint = argc > 1 ? std::strtol(argv[1], nullptr, 10) : 0;
57         TargetHint target_hint     = set_target_hint(int_target_hint);
58
59         // Parse arguments
60         if(argc < 2)
61         {
62             // Print help
63             std::cout << "Usage: " << argv[0] << " [target] [path_to_data] [image] [labels]\n\n";
64             std::cout << "No data folder provided: using random values\n\n";
65         }
66         else if(argc == 2)
67         {
68             std::cout << "Usage: " << argv[0] << " " << argv[1] << " [path_to_data] [image] [labels]\n\n";
69             std::cout << "No data folder provided: using random values\n\n";
70         }
71         else if(argc == 3)
72         {
73             data_path = argv[2];
74             std::cout << "Usage: " << argv[0] << " " << argv[1] << " " << argv[2] << " [image] [labels]\n\n";
75             std::cout << "No image provided: using random values\n\n";
76         }
77         else if(argc == 4)
78         {
79             data_path = argv[2];
80             image     = argv[3];
81             std::cout << "Usage: " << argv[0] << " " << argv[1] << " " << argv[2] << " " << argv[3] << " [labels]\n\n";
82             std::cout << "No text file with labels provided: skipping output accessor\n\n";
83         }
84         else
85         {
86             data_path = argv[2];
87             image     = argv[3];
88             label     = argv[4];
89         }
90
91         graph << target_hint
92               << Tensor(TensorInfo(TensorShape(224U, 224U, 3U, 1U), 1, DataType::F32),
93                         get_input_accessor(image, std::move(preprocessor), false /* Do not convert to BGR */))
94               << ConvolutionLayer(
95                   7U, 7U, 64U,
96                   get_weights_accessor(data_path, "/cnn_data/resnet50_model/conv1_weights.npy"),
97                   std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
98                   PadStrideInfo(2, 2, 3, 3))
99               << BatchNormalizationLayer(
100                   get_weights_accessor(data_path, "/cnn_data/resnet50_model/conv1_BatchNorm_moving_mean.npy"),
101                   get_weights_accessor(data_path, "/cnn_data/resnet50_model/conv1_BatchNorm_moving_variance.npy"),
102                   get_weights_accessor(data_path, "/cnn_data/resnet50_model/conv1_BatchNorm_gamma.npy"),
103                   get_weights_accessor(data_path, "/cnn_data/resnet50_model/conv1_BatchNorm_beta.npy"),
104                   0.0000100099996416f)
105               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
106               << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::FLOOR)));
107
108         add_residual_block(data_path, "block1", 64, 3, 2);
109         add_residual_block(data_path, "block2", 128, 4, 2);
110         add_residual_block(data_path, "block3", 256, 6, 2);
111         add_residual_block(data_path, "block4", 512, 3, 1);
112
113         graph << PoolingLayer(PoolingLayerInfo(PoolingType::AVG))
114               << ConvolutionLayer(
115                   1U, 1U, 1000U,
116                   get_weights_accessor(data_path, "/cnn_data/resnet50_model/logits_weights.npy"),
117                   get_weights_accessor(data_path, "/cnn_data/resnet50_model/logits_biases.npy"),
118                   PadStrideInfo(1, 1, 0, 0))
119               << FlattenLayer()
120               << SoftmaxLayer()
121               << Tensor(get_output_accessor(label, 5));
122
123         // In order to enable the OpenCL tuner, graph_init() has to be called only when all nodes have been instantiated
124         graph.graph_init(int_target_hint == 2);
125     }
126     void do_run() override
127     {
128         // Run graph
129         graph.run();
130     }
131
132 private:
133     Graph graph{};
134
135     void add_residual_block(const std::string &data_path, const std::string &name, unsigned int base_depth, unsigned int num_units, unsigned int stride)
136     {
137         for(unsigned int i = 0; i < num_units; ++i)
138         {
139             std::stringstream unit;
140             unit << "/cnn_data/resnet50_model/" << name << "_unit_" << (i + 1) << "_bottleneck_v1_";
141             std::string unit_name = unit.str();
142
143             unsigned int middle_stride = 1;
144
145             if(i == (num_units - 1))
146             {
147                 middle_stride = stride;
148             }
149
150             SubGraph right;
151             right << ConvolutionLayer(
152                       1U, 1U, base_depth,
153                       get_weights_accessor(data_path, unit_name + "conv1_weights.npy"),
154                       std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
155                       PadStrideInfo(1, 1, 0, 0))
156                   << BatchNormalizationLayer(
157                       get_weights_accessor(data_path, unit_name + "conv1_BatchNorm_moving_mean.npy"),
158                       get_weights_accessor(data_path, unit_name + "conv1_BatchNorm_moving_variance.npy"),
159                       get_weights_accessor(data_path, unit_name + "conv1_BatchNorm_gamma.npy"),
160                       get_weights_accessor(data_path, unit_name + "conv1_BatchNorm_beta.npy"),
161                       0.0000100099996416f)
162                   << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
163
164                   << ConvolutionLayer(
165                       3U, 3U, base_depth,
166                       get_weights_accessor(data_path, unit_name + "conv2_weights.npy"),
167                       std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
168                       PadStrideInfo(middle_stride, middle_stride, 1, 1))
169                   << BatchNormalizationLayer(
170                       get_weights_accessor(data_path, unit_name + "conv2_BatchNorm_moving_mean.npy"),
171                       get_weights_accessor(data_path, unit_name + "conv2_BatchNorm_moving_variance.npy"),
172                       get_weights_accessor(data_path, unit_name + "conv2_BatchNorm_gamma.npy"),
173                       get_weights_accessor(data_path, unit_name + "conv2_BatchNorm_beta.npy"),
174                       0.0000100099996416f)
175                   << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
176
177                   << ConvolutionLayer(
178                       1U, 1U, base_depth * 4,
179                       get_weights_accessor(data_path, unit_name + "conv3_weights.npy"),
180                       std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
181                       PadStrideInfo(1, 1, 0, 0))
182                   << BatchNormalizationLayer(
183                       get_weights_accessor(data_path, unit_name + "conv3_BatchNorm_moving_mean.npy"),
184                       get_weights_accessor(data_path, unit_name + "conv3_BatchNorm_moving_variance.npy"),
185                       get_weights_accessor(data_path, unit_name + "conv3_BatchNorm_gamma.npy"),
186                       get_weights_accessor(data_path, unit_name + "conv3_BatchNorm_beta.npy"),
187                       0.0000100099996416f);
188
189             if(i == 0)
190             {
191                 SubGraph left;
192                 left << ConvolutionLayer(
193                          1U, 1U, base_depth * 4,
194                          get_weights_accessor(data_path, unit_name + "shortcut_weights.npy"),
195                          std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
196                          PadStrideInfo(1, 1, 0, 0))
197                      << BatchNormalizationLayer(
198                          get_weights_accessor(data_path, unit_name + "shortcut_BatchNorm_moving_mean.npy"),
199                          get_weights_accessor(data_path, unit_name + "shortcut_BatchNorm_moving_variance.npy"),
200                          get_weights_accessor(data_path, unit_name + "shortcut_BatchNorm_gamma.npy"),
201                          get_weights_accessor(data_path, unit_name + "shortcut_BatchNorm_beta.npy"),
202                          0.0000100099996416f);
203
204                 graph << ResidualLayer(std::move(left), std::move(right));
205             }
206             else if(middle_stride > 1)
207             {
208                 SubGraph left;
209                 left << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 1, PadStrideInfo(middle_stride, middle_stride, 0, 0), true))
210                      << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LINEAR, 1.f, 0.f));
211
212                 graph << ResidualLayer(std::move(left), std::move(right));
213             }
214             else
215             {
216                 graph << ResidualLayer(std::move(right));
217             }
218
219             graph << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
220         }
221     }
222 };
223
224 /** Main program for ResNet50
225  *
226  * @param[in] argc Number of arguments
227  * @param[in] argv Arguments ( [optional] Target (0 = NEON, 1 = OpenCL), [optional] Path to the weights folder, [optional] image, [optional] labels )
228  */
229 int main(int argc, char **argv)
230 {
231     return arm_compute::utils::run_example<GraphResNet50Example>(argc, argv);
232 }