dump-guest-memory: Check for the correct return value
[sdk/emulator/qemu.git] / dump.c
1 /*
2  * QEMU dump
3  *
4  * Copyright Fujitsu, Corp. 2011, 2012
5  *
6  * Authors:
7  *     Wen Congyang <wency@cn.fujitsu.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13
14 #include "qemu-common.h"
15 #include "elf.h"
16 #include "cpu.h"
17 #include "exec/cpu-all.h"
18 #include "exec/hwaddr.h"
19 #include "monitor/monitor.h"
20 #include "sysemu/kvm.h"
21 #include "sysemu/dump.h"
22 #include "sysemu/sysemu.h"
23 #include "sysemu/memory_mapping.h"
24 #include "sysemu/cpus.h"
25 #include "qapi/error.h"
26 #include "qmp-commands.h"
27
28 static uint16_t cpu_convert_to_target16(uint16_t val, int endian)
29 {
30     if (endian == ELFDATA2LSB) {
31         val = cpu_to_le16(val);
32     } else {
33         val = cpu_to_be16(val);
34     }
35
36     return val;
37 }
38
39 static uint32_t cpu_convert_to_target32(uint32_t val, int endian)
40 {
41     if (endian == ELFDATA2LSB) {
42         val = cpu_to_le32(val);
43     } else {
44         val = cpu_to_be32(val);
45     }
46
47     return val;
48 }
49
50 static uint64_t cpu_convert_to_target64(uint64_t val, int endian)
51 {
52     if (endian == ELFDATA2LSB) {
53         val = cpu_to_le64(val);
54     } else {
55         val = cpu_to_be64(val);
56     }
57
58     return val;
59 }
60
61 typedef struct DumpState {
62     GuestPhysBlockList guest_phys_blocks;
63     ArchDumpInfo dump_info;
64     MemoryMappingList list;
65     uint16_t phdr_num;
66     uint32_t sh_info;
67     bool have_section;
68     bool resume;
69     ssize_t note_size;
70     hwaddr memory_offset;
71     int fd;
72
73     GuestPhysBlock *next_block;
74     ram_addr_t start;
75     bool has_filter;
76     int64_t begin;
77     int64_t length;
78     Error **errp;
79 } DumpState;
80
81 static int dump_cleanup(DumpState *s)
82 {
83     int ret = 0;
84
85     guest_phys_blocks_free(&s->guest_phys_blocks);
86     memory_mapping_list_free(&s->list);
87     if (s->fd != -1) {
88         close(s->fd);
89     }
90     if (s->resume) {
91         vm_start();
92     }
93
94     return ret;
95 }
96
97 static void dump_error(DumpState *s, const char *reason)
98 {
99     dump_cleanup(s);
100 }
101
102 static int fd_write_vmcore(void *buf, size_t size, void *opaque)
103 {
104     DumpState *s = opaque;
105     size_t written_size;
106
107     written_size = qemu_write_full(s->fd, buf, size);
108     if (written_size != size) {
109         return -1;
110     }
111
112     return 0;
113 }
114
115 static int write_elf64_header(DumpState *s)
116 {
117     Elf64_Ehdr elf_header;
118     int ret;
119     int endian = s->dump_info.d_endian;
120
121     memset(&elf_header, 0, sizeof(Elf64_Ehdr));
122     memcpy(&elf_header, ELFMAG, SELFMAG);
123     elf_header.e_ident[EI_CLASS] = ELFCLASS64;
124     elf_header.e_ident[EI_DATA] = s->dump_info.d_endian;
125     elf_header.e_ident[EI_VERSION] = EV_CURRENT;
126     elf_header.e_type = cpu_convert_to_target16(ET_CORE, endian);
127     elf_header.e_machine = cpu_convert_to_target16(s->dump_info.d_machine,
128                                                    endian);
129     elf_header.e_version = cpu_convert_to_target32(EV_CURRENT, endian);
130     elf_header.e_ehsize = cpu_convert_to_target16(sizeof(elf_header), endian);
131     elf_header.e_phoff = cpu_convert_to_target64(sizeof(Elf64_Ehdr), endian);
132     elf_header.e_phentsize = cpu_convert_to_target16(sizeof(Elf64_Phdr),
133                                                      endian);
134     elf_header.e_phnum = cpu_convert_to_target16(s->phdr_num, endian);
135     if (s->have_section) {
136         uint64_t shoff = sizeof(Elf64_Ehdr) + sizeof(Elf64_Phdr) * s->sh_info;
137
138         elf_header.e_shoff = cpu_convert_to_target64(shoff, endian);
139         elf_header.e_shentsize = cpu_convert_to_target16(sizeof(Elf64_Shdr),
140                                                          endian);
141         elf_header.e_shnum = cpu_convert_to_target16(1, endian);
142     }
143
144     ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s);
145     if (ret < 0) {
146         dump_error(s, "dump: failed to write elf header.\n");
147         return -1;
148     }
149
150     return 0;
151 }
152
153 static int write_elf32_header(DumpState *s)
154 {
155     Elf32_Ehdr elf_header;
156     int ret;
157     int endian = s->dump_info.d_endian;
158
159     memset(&elf_header, 0, sizeof(Elf32_Ehdr));
160     memcpy(&elf_header, ELFMAG, SELFMAG);
161     elf_header.e_ident[EI_CLASS] = ELFCLASS32;
162     elf_header.e_ident[EI_DATA] = endian;
163     elf_header.e_ident[EI_VERSION] = EV_CURRENT;
164     elf_header.e_type = cpu_convert_to_target16(ET_CORE, endian);
165     elf_header.e_machine = cpu_convert_to_target16(s->dump_info.d_machine,
166                                                    endian);
167     elf_header.e_version = cpu_convert_to_target32(EV_CURRENT, endian);
168     elf_header.e_ehsize = cpu_convert_to_target16(sizeof(elf_header), endian);
169     elf_header.e_phoff = cpu_convert_to_target32(sizeof(Elf32_Ehdr), endian);
170     elf_header.e_phentsize = cpu_convert_to_target16(sizeof(Elf32_Phdr),
171                                                      endian);
172     elf_header.e_phnum = cpu_convert_to_target16(s->phdr_num, endian);
173     if (s->have_section) {
174         uint32_t shoff = sizeof(Elf32_Ehdr) + sizeof(Elf32_Phdr) * s->sh_info;
175
176         elf_header.e_shoff = cpu_convert_to_target32(shoff, endian);
177         elf_header.e_shentsize = cpu_convert_to_target16(sizeof(Elf32_Shdr),
178                                                          endian);
179         elf_header.e_shnum = cpu_convert_to_target16(1, endian);
180     }
181
182     ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s);
183     if (ret < 0) {
184         dump_error(s, "dump: failed to write elf header.\n");
185         return -1;
186     }
187
188     return 0;
189 }
190
191 static int write_elf64_load(DumpState *s, MemoryMapping *memory_mapping,
192                             int phdr_index, hwaddr offset,
193                             hwaddr filesz)
194 {
195     Elf64_Phdr phdr;
196     int ret;
197     int endian = s->dump_info.d_endian;
198
199     memset(&phdr, 0, sizeof(Elf64_Phdr));
200     phdr.p_type = cpu_convert_to_target32(PT_LOAD, endian);
201     phdr.p_offset = cpu_convert_to_target64(offset, endian);
202     phdr.p_paddr = cpu_convert_to_target64(memory_mapping->phys_addr, endian);
203     phdr.p_filesz = cpu_convert_to_target64(filesz, endian);
204     phdr.p_memsz = cpu_convert_to_target64(memory_mapping->length, endian);
205     phdr.p_vaddr = cpu_convert_to_target64(memory_mapping->virt_addr, endian);
206
207     assert(memory_mapping->length >= filesz);
208
209     ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s);
210     if (ret < 0) {
211         dump_error(s, "dump: failed to write program header table.\n");
212         return -1;
213     }
214
215     return 0;
216 }
217
218 static int write_elf32_load(DumpState *s, MemoryMapping *memory_mapping,
219                             int phdr_index, hwaddr offset,
220                             hwaddr filesz)
221 {
222     Elf32_Phdr phdr;
223     int ret;
224     int endian = s->dump_info.d_endian;
225
226     memset(&phdr, 0, sizeof(Elf32_Phdr));
227     phdr.p_type = cpu_convert_to_target32(PT_LOAD, endian);
228     phdr.p_offset = cpu_convert_to_target32(offset, endian);
229     phdr.p_paddr = cpu_convert_to_target32(memory_mapping->phys_addr, endian);
230     phdr.p_filesz = cpu_convert_to_target32(filesz, endian);
231     phdr.p_memsz = cpu_convert_to_target32(memory_mapping->length, endian);
232     phdr.p_vaddr = cpu_convert_to_target32(memory_mapping->virt_addr, endian);
233
234     assert(memory_mapping->length >= filesz);
235
236     ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s);
237     if (ret < 0) {
238         dump_error(s, "dump: failed to write program header table.\n");
239         return -1;
240     }
241
242     return 0;
243 }
244
245 static int write_elf64_note(DumpState *s)
246 {
247     Elf64_Phdr phdr;
248     int endian = s->dump_info.d_endian;
249     hwaddr begin = s->memory_offset - s->note_size;
250     int ret;
251
252     memset(&phdr, 0, sizeof(Elf64_Phdr));
253     phdr.p_type = cpu_convert_to_target32(PT_NOTE, endian);
254     phdr.p_offset = cpu_convert_to_target64(begin, endian);
255     phdr.p_paddr = 0;
256     phdr.p_filesz = cpu_convert_to_target64(s->note_size, endian);
257     phdr.p_memsz = cpu_convert_to_target64(s->note_size, endian);
258     phdr.p_vaddr = 0;
259
260     ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s);
261     if (ret < 0) {
262         dump_error(s, "dump: failed to write program header table.\n");
263         return -1;
264     }
265
266     return 0;
267 }
268
269 static inline int cpu_index(CPUState *cpu)
270 {
271     return cpu->cpu_index + 1;
272 }
273
274 static int write_elf64_notes(DumpState *s)
275 {
276     CPUState *cpu;
277     int ret;
278     int id;
279
280     CPU_FOREACH(cpu) {
281         id = cpu_index(cpu);
282         ret = cpu_write_elf64_note(fd_write_vmcore, cpu, id, s);
283         if (ret < 0) {
284             dump_error(s, "dump: failed to write elf notes.\n");
285             return -1;
286         }
287     }
288
289     CPU_FOREACH(cpu) {
290         ret = cpu_write_elf64_qemunote(fd_write_vmcore, cpu, s);
291         if (ret < 0) {
292             dump_error(s, "dump: failed to write CPU status.\n");
293             return -1;
294         }
295     }
296
297     return 0;
298 }
299
300 static int write_elf32_note(DumpState *s)
301 {
302     hwaddr begin = s->memory_offset - s->note_size;
303     Elf32_Phdr phdr;
304     int endian = s->dump_info.d_endian;
305     int ret;
306
307     memset(&phdr, 0, sizeof(Elf32_Phdr));
308     phdr.p_type = cpu_convert_to_target32(PT_NOTE, endian);
309     phdr.p_offset = cpu_convert_to_target32(begin, endian);
310     phdr.p_paddr = 0;
311     phdr.p_filesz = cpu_convert_to_target32(s->note_size, endian);
312     phdr.p_memsz = cpu_convert_to_target32(s->note_size, endian);
313     phdr.p_vaddr = 0;
314
315     ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s);
316     if (ret < 0) {
317         dump_error(s, "dump: failed to write program header table.\n");
318         return -1;
319     }
320
321     return 0;
322 }
323
324 static int write_elf32_notes(DumpState *s)
325 {
326     CPUState *cpu;
327     int ret;
328     int id;
329
330     CPU_FOREACH(cpu) {
331         id = cpu_index(cpu);
332         ret = cpu_write_elf32_note(fd_write_vmcore, cpu, id, s);
333         if (ret < 0) {
334             dump_error(s, "dump: failed to write elf notes.\n");
335             return -1;
336         }
337     }
338
339     CPU_FOREACH(cpu) {
340         ret = cpu_write_elf32_qemunote(fd_write_vmcore, cpu, s);
341         if (ret < 0) {
342             dump_error(s, "dump: failed to write CPU status.\n");
343             return -1;
344         }
345     }
346
347     return 0;
348 }
349
350 static int write_elf_section(DumpState *s, int type)
351 {
352     Elf32_Shdr shdr32;
353     Elf64_Shdr shdr64;
354     int endian = s->dump_info.d_endian;
355     int shdr_size;
356     void *shdr;
357     int ret;
358
359     if (type == 0) {
360         shdr_size = sizeof(Elf32_Shdr);
361         memset(&shdr32, 0, shdr_size);
362         shdr32.sh_info = cpu_convert_to_target32(s->sh_info, endian);
363         shdr = &shdr32;
364     } else {
365         shdr_size = sizeof(Elf64_Shdr);
366         memset(&shdr64, 0, shdr_size);
367         shdr64.sh_info = cpu_convert_to_target32(s->sh_info, endian);
368         shdr = &shdr64;
369     }
370
371     ret = fd_write_vmcore(&shdr, shdr_size, s);
372     if (ret < 0) {
373         dump_error(s, "dump: failed to write section header table.\n");
374         return -1;
375     }
376
377     return 0;
378 }
379
380 static int write_data(DumpState *s, void *buf, int length)
381 {
382     int ret;
383
384     ret = fd_write_vmcore(buf, length, s);
385     if (ret < 0) {
386         dump_error(s, "dump: failed to save memory.\n");
387         return -1;
388     }
389
390     return 0;
391 }
392
393 /* write the memroy to vmcore. 1 page per I/O. */
394 static int write_memory(DumpState *s, GuestPhysBlock *block, ram_addr_t start,
395                         int64_t size)
396 {
397     int64_t i;
398     int ret;
399
400     for (i = 0; i < size / TARGET_PAGE_SIZE; i++) {
401         ret = write_data(s, block->host_addr + start + i * TARGET_PAGE_SIZE,
402                          TARGET_PAGE_SIZE);
403         if (ret < 0) {
404             return ret;
405         }
406     }
407
408     if ((size % TARGET_PAGE_SIZE) != 0) {
409         ret = write_data(s, block->host_addr + start + i * TARGET_PAGE_SIZE,
410                          size % TARGET_PAGE_SIZE);
411         if (ret < 0) {
412             return ret;
413         }
414     }
415
416     return 0;
417 }
418
419 /* get the memory's offset and size in the vmcore */
420 static void get_offset_range(hwaddr phys_addr,
421                              ram_addr_t mapping_length,
422                              DumpState *s,
423                              hwaddr *p_offset,
424                              hwaddr *p_filesz)
425 {
426     GuestPhysBlock *block;
427     hwaddr offset = s->memory_offset;
428     int64_t size_in_block, start;
429
430     /* When the memory is not stored into vmcore, offset will be -1 */
431     *p_offset = -1;
432     *p_filesz = 0;
433
434     if (s->has_filter) {
435         if (phys_addr < s->begin || phys_addr >= s->begin + s->length) {
436             return;
437         }
438     }
439
440     QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
441         if (s->has_filter) {
442             if (block->target_start >= s->begin + s->length ||
443                 block->target_end <= s->begin) {
444                 /* This block is out of the range */
445                 continue;
446             }
447
448             if (s->begin <= block->target_start) {
449                 start = block->target_start;
450             } else {
451                 start = s->begin;
452             }
453
454             size_in_block = block->target_end - start;
455             if (s->begin + s->length < block->target_end) {
456                 size_in_block -= block->target_end - (s->begin + s->length);
457             }
458         } else {
459             start = block->target_start;
460             size_in_block = block->target_end - block->target_start;
461         }
462
463         if (phys_addr >= start && phys_addr < start + size_in_block) {
464             *p_offset = phys_addr - start + offset;
465
466             /* The offset range mapped from the vmcore file must not spill over
467              * the GuestPhysBlock, clamp it. The rest of the mapping will be
468              * zero-filled in memory at load time; see
469              * <http://refspecs.linuxbase.org/elf/gabi4+/ch5.pheader.html>.
470              */
471             *p_filesz = phys_addr + mapping_length <= start + size_in_block ?
472                         mapping_length :
473                         size_in_block - (phys_addr - start);
474             return;
475         }
476
477         offset += size_in_block;
478     }
479 }
480
481 static int write_elf_loads(DumpState *s)
482 {
483     hwaddr offset, filesz;
484     MemoryMapping *memory_mapping;
485     uint32_t phdr_index = 1;
486     int ret;
487     uint32_t max_index;
488
489     if (s->have_section) {
490         max_index = s->sh_info;
491     } else {
492         max_index = s->phdr_num;
493     }
494
495     QTAILQ_FOREACH(memory_mapping, &s->list.head, next) {
496         get_offset_range(memory_mapping->phys_addr,
497                          memory_mapping->length,
498                          s, &offset, &filesz);
499         if (s->dump_info.d_class == ELFCLASS64) {
500             ret = write_elf64_load(s, memory_mapping, phdr_index++, offset,
501                                    filesz);
502         } else {
503             ret = write_elf32_load(s, memory_mapping, phdr_index++, offset,
504                                    filesz);
505         }
506
507         if (ret < 0) {
508             return -1;
509         }
510
511         if (phdr_index >= max_index) {
512             break;
513         }
514     }
515
516     return 0;
517 }
518
519 /* write elf header, PT_NOTE and elf note to vmcore. */
520 static int dump_begin(DumpState *s)
521 {
522     int ret;
523
524     /*
525      * the vmcore's format is:
526      *   --------------
527      *   |  elf header |
528      *   --------------
529      *   |  PT_NOTE    |
530      *   --------------
531      *   |  PT_LOAD    |
532      *   --------------
533      *   |  ......     |
534      *   --------------
535      *   |  PT_LOAD    |
536      *   --------------
537      *   |  sec_hdr    |
538      *   --------------
539      *   |  elf note   |
540      *   --------------
541      *   |  memory     |
542      *   --------------
543      *
544      * we only know where the memory is saved after we write elf note into
545      * vmcore.
546      */
547
548     /* write elf header to vmcore */
549     if (s->dump_info.d_class == ELFCLASS64) {
550         ret = write_elf64_header(s);
551     } else {
552         ret = write_elf32_header(s);
553     }
554     if (ret < 0) {
555         return -1;
556     }
557
558     if (s->dump_info.d_class == ELFCLASS64) {
559         /* write PT_NOTE to vmcore */
560         if (write_elf64_note(s) < 0) {
561             return -1;
562         }
563
564         /* write all PT_LOAD to vmcore */
565         if (write_elf_loads(s) < 0) {
566             return -1;
567         }
568
569         /* write section to vmcore */
570         if (s->have_section) {
571             if (write_elf_section(s, 1) < 0) {
572                 return -1;
573             }
574         }
575
576         /* write notes to vmcore */
577         if (write_elf64_notes(s) < 0) {
578             return -1;
579         }
580
581     } else {
582         /* write PT_NOTE to vmcore */
583         if (write_elf32_note(s) < 0) {
584             return -1;
585         }
586
587         /* write all PT_LOAD to vmcore */
588         if (write_elf_loads(s) < 0) {
589             return -1;
590         }
591
592         /* write section to vmcore */
593         if (s->have_section) {
594             if (write_elf_section(s, 0) < 0) {
595                 return -1;
596             }
597         }
598
599         /* write notes to vmcore */
600         if (write_elf32_notes(s) < 0) {
601             return -1;
602         }
603     }
604
605     return 0;
606 }
607
608 /* write PT_LOAD to vmcore */
609 static int dump_completed(DumpState *s)
610 {
611     dump_cleanup(s);
612     return 0;
613 }
614
615 static int get_next_block(DumpState *s, GuestPhysBlock *block)
616 {
617     while (1) {
618         block = QTAILQ_NEXT(block, next);
619         if (!block) {
620             /* no more block */
621             return 1;
622         }
623
624         s->start = 0;
625         s->next_block = block;
626         if (s->has_filter) {
627             if (block->target_start >= s->begin + s->length ||
628                 block->target_end <= s->begin) {
629                 /* This block is out of the range */
630                 continue;
631             }
632
633             if (s->begin > block->target_start) {
634                 s->start = s->begin - block->target_start;
635             }
636         }
637
638         return 0;
639     }
640 }
641
642 /* write all memory to vmcore */
643 static int dump_iterate(DumpState *s)
644 {
645     GuestPhysBlock *block;
646     int64_t size;
647     int ret;
648
649     while (1) {
650         block = s->next_block;
651
652         size = block->target_end - block->target_start;
653         if (s->has_filter) {
654             size -= s->start;
655             if (s->begin + s->length < block->target_end) {
656                 size -= block->target_end - (s->begin + s->length);
657             }
658         }
659         ret = write_memory(s, block, s->start, size);
660         if (ret == -1) {
661             return ret;
662         }
663
664         ret = get_next_block(s, block);
665         if (ret == 1) {
666             dump_completed(s);
667             return 0;
668         }
669     }
670 }
671
672 static int create_vmcore(DumpState *s)
673 {
674     int ret;
675
676     ret = dump_begin(s);
677     if (ret < 0) {
678         return -1;
679     }
680
681     ret = dump_iterate(s);
682     if (ret < 0) {
683         return -1;
684     }
685
686     return 0;
687 }
688
689 static ram_addr_t get_start_block(DumpState *s)
690 {
691     GuestPhysBlock *block;
692
693     if (!s->has_filter) {
694         s->next_block = QTAILQ_FIRST(&s->guest_phys_blocks.head);
695         return 0;
696     }
697
698     QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
699         if (block->target_start >= s->begin + s->length ||
700             block->target_end <= s->begin) {
701             /* This block is out of the range */
702             continue;
703         }
704
705         s->next_block = block;
706         if (s->begin > block->target_start) {
707             s->start = s->begin - block->target_start;
708         } else {
709             s->start = 0;
710         }
711         return s->start;
712     }
713
714     return -1;
715 }
716
717 static int dump_init(DumpState *s, int fd, bool paging, bool has_filter,
718                      int64_t begin, int64_t length, Error **errp)
719 {
720     CPUState *cpu;
721     int nr_cpus;
722     Error *err = NULL;
723     int ret;
724
725     if (runstate_is_running()) {
726         vm_stop(RUN_STATE_SAVE_VM);
727         s->resume = true;
728     } else {
729         s->resume = false;
730     }
731
732     /* If we use KVM, we should synchronize the registers before we get dump
733      * info or physmap info.
734      */
735     cpu_synchronize_all_states();
736     nr_cpus = 0;
737     CPU_FOREACH(cpu) {
738         nr_cpus++;
739     }
740
741     s->errp = errp;
742     s->fd = fd;
743     s->has_filter = has_filter;
744     s->begin = begin;
745     s->length = length;
746
747     guest_phys_blocks_init(&s->guest_phys_blocks);
748     guest_phys_blocks_append(&s->guest_phys_blocks);
749
750     s->start = get_start_block(s);
751     if (s->start == -1) {
752         error_set(errp, QERR_INVALID_PARAMETER, "begin");
753         goto cleanup;
754     }
755
756     /* get dump info: endian, class and architecture.
757      * If the target architecture is not supported, cpu_get_dump_info() will
758      * return -1.
759      */
760     ret = cpu_get_dump_info(&s->dump_info, &s->guest_phys_blocks);
761     if (ret < 0) {
762         error_set(errp, QERR_UNSUPPORTED);
763         goto cleanup;
764     }
765
766     s->note_size = cpu_get_note_size(s->dump_info.d_class,
767                                      s->dump_info.d_machine, nr_cpus);
768     if (s->note_size < 0) {
769         error_set(errp, QERR_UNSUPPORTED);
770         goto cleanup;
771     }
772
773     /* get memory mapping */
774     memory_mapping_list_init(&s->list);
775     if (paging) {
776         qemu_get_guest_memory_mapping(&s->list, &s->guest_phys_blocks, &err);
777         if (err != NULL) {
778             error_propagate(errp, err);
779             goto cleanup;
780         }
781     } else {
782         qemu_get_guest_simple_memory_mapping(&s->list, &s->guest_phys_blocks);
783     }
784
785     if (s->has_filter) {
786         memory_mapping_filter(&s->list, s->begin, s->length);
787     }
788
789     /*
790      * calculate phdr_num
791      *
792      * the type of ehdr->e_phnum is uint16_t, so we should avoid overflow
793      */
794     s->phdr_num = 1; /* PT_NOTE */
795     if (s->list.num < UINT16_MAX - 2) {
796         s->phdr_num += s->list.num;
797         s->have_section = false;
798     } else {
799         s->have_section = true;
800         s->phdr_num = PN_XNUM;
801         s->sh_info = 1; /* PT_NOTE */
802
803         /* the type of shdr->sh_info is uint32_t, so we should avoid overflow */
804         if (s->list.num <= UINT32_MAX - 1) {
805             s->sh_info += s->list.num;
806         } else {
807             s->sh_info = UINT32_MAX;
808         }
809     }
810
811     if (s->dump_info.d_class == ELFCLASS64) {
812         if (s->have_section) {
813             s->memory_offset = sizeof(Elf64_Ehdr) +
814                                sizeof(Elf64_Phdr) * s->sh_info +
815                                sizeof(Elf64_Shdr) + s->note_size;
816         } else {
817             s->memory_offset = sizeof(Elf64_Ehdr) +
818                                sizeof(Elf64_Phdr) * s->phdr_num + s->note_size;
819         }
820     } else {
821         if (s->have_section) {
822             s->memory_offset = sizeof(Elf32_Ehdr) +
823                                sizeof(Elf32_Phdr) * s->sh_info +
824                                sizeof(Elf32_Shdr) + s->note_size;
825         } else {
826             s->memory_offset = sizeof(Elf32_Ehdr) +
827                                sizeof(Elf32_Phdr) * s->phdr_num + s->note_size;
828         }
829     }
830
831     return 0;
832
833 cleanup:
834     guest_phys_blocks_free(&s->guest_phys_blocks);
835
836     if (s->resume) {
837         vm_start();
838     }
839
840     return -1;
841 }
842
843 void qmp_dump_guest_memory(bool paging, const char *file, bool has_begin,
844                            int64_t begin, bool has_length, int64_t length,
845                            Error **errp)
846 {
847     const char *p;
848     int fd = -1;
849     DumpState *s;
850     int ret;
851
852     if (has_begin && !has_length) {
853         error_set(errp, QERR_MISSING_PARAMETER, "length");
854         return;
855     }
856     if (!has_begin && has_length) {
857         error_set(errp, QERR_MISSING_PARAMETER, "begin");
858         return;
859     }
860
861 #if !defined(WIN32)
862     if (strstart(file, "fd:", &p)) {
863         fd = monitor_get_fd(cur_mon, p, errp);
864         if (fd == -1) {
865             return;
866         }
867     }
868 #endif
869
870     if  (strstart(file, "file:", &p)) {
871         fd = qemu_open(p, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, S_IRUSR);
872         if (fd < 0) {
873             error_setg_file_open(errp, errno, p);
874             return;
875         }
876     }
877
878     if (fd == -1) {
879         error_set(errp, QERR_INVALID_PARAMETER, "protocol");
880         return;
881     }
882
883     s = g_malloc0(sizeof(DumpState));
884
885     ret = dump_init(s, fd, paging, has_begin, begin, length, errp);
886     if (ret < 0) {
887         g_free(s);
888         return;
889     }
890
891     if (create_vmcore(s) < 0 && !error_is_set(s->errp)) {
892         error_set(errp, QERR_IO_ERROR);
893     }
894
895     g_free(s);
896 }