2 * Copyright (c) 2016 Intel Corporation
4 * Permission to use, copy, modify, distribute, and sell this software and its
5 * documentation for any purpose is hereby granted without fee, provided that
6 * the above copyright notice appear in all copies and that both that copyright
7 * notice and this permission notice appear in supporting documentation, and
8 * that the name of the copyright holders not be used in advertising or
9 * publicity pertaining to distribution of the software without specific,
10 * written prior permission. The copyright holders make no representations
11 * about the suitability of this software for any purpose. It is provided "as
12 * is" without express or implied warranty.
14 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
15 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
16 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
17 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
18 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
19 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
23 #ifndef __DRM_CONNECTOR_H__
24 #define __DRM_CONNECTOR_H__
26 #include <linux/list.h>
27 #include <linux/llist.h>
28 #include <linux/ctype.h>
29 #include <linux/hdmi.h>
30 #include <drm/drm_mode_object.h>
31 #include <drm/drm_util.h>
33 #include <uapi/drm/drm_mode.h>
35 struct drm_connector_helper_funcs;
36 struct drm_modeset_acquire_ctx;
41 struct drm_property_blob;
46 enum drm_connector_force {
47 DRM_FORCE_UNSPECIFIED,
49 DRM_FORCE_ON, /* force on analog part normally */
50 DRM_FORCE_ON_DIGITAL, /* for DVI-I use digital connector */
54 * enum drm_connector_status - status for a &drm_connector
56 * This enum is used to track the connector status. There are no separate
57 * #defines for the uapi!
59 enum drm_connector_status {
61 * @connector_status_connected: The connector is definitely connected to
62 * a sink device, and can be enabled.
64 connector_status_connected = 1,
66 * @connector_status_disconnected: The connector isn't connected to a
67 * sink device which can be autodetect. For digital outputs like DP or
68 * HDMI (which can be realiable probed) this means there's really
69 * nothing there. It is driver-dependent whether a connector with this
70 * status can be lit up or not.
72 connector_status_disconnected = 2,
74 * @connector_status_unknown: The connector's status could not be
75 * reliably detected. This happens when probing would either cause
76 * flicker (like load-detection when the connector is in use), or when a
77 * hardware resource isn't available (like when load-detection needs a
78 * free CRTC). It should be possible to light up the connector with one
79 * of the listed fallback modes. For default configuration userspace
80 * should only try to light up connectors with unknown status when
81 * there's not connector with @connector_status_connected.
83 connector_status_unknown = 3,
87 * enum drm_connector_registration_state - userspace registration status for
90 * This enum is used to track the status of initializing a connector and
91 * registering it with userspace, so that DRM can prevent bogus modesets on
92 * connectors that no longer exist.
94 enum drm_connector_registration_state {
96 * @DRM_CONNECTOR_INITIALIZING: The connector has just been created,
97 * but has yet to be exposed to userspace. There should be no
98 * additional restrictions to how the state of this connector may be
101 DRM_CONNECTOR_INITIALIZING = 0,
104 * @DRM_CONNECTOR_REGISTERED: The connector has been fully initialized
105 * and registered with sysfs, as such it has been exposed to
106 * userspace. There should be no additional restrictions to how the
107 * state of this connector may be modified.
109 DRM_CONNECTOR_REGISTERED = 1,
112 * @DRM_CONNECTOR_UNREGISTERED: The connector has either been exposed
113 * to userspace and has since been unregistered and removed from
114 * userspace, or the connector was unregistered before it had a chance
115 * to be exposed to userspace (e.g. still in the
116 * @DRM_CONNECTOR_INITIALIZING state). When a connector is
117 * unregistered, there are additional restrictions to how its state
120 * - An unregistered connector may only have its DPMS changed from
121 * On->Off. Once DPMS is changed to Off, it may not be switched back
123 * - Modesets are not allowed on unregistered connectors, unless they
124 * would result in disabling its assigned CRTCs. This means
125 * disabling a CRTC on an unregistered connector is OK, but enabling
127 * - Removing a CRTC from an unregistered connector is OK, but new
128 * CRTCs may never be assigned to an unregistered connector.
130 DRM_CONNECTOR_UNREGISTERED = 2,
133 enum subpixel_order {
135 SubPixelHorizontalRGB,
136 SubPixelHorizontalBGR,
144 * struct drm_scrambling: sink's scrambling support.
146 struct drm_scrambling {
148 * @supported: scrambling supported for rates > 340 Mhz.
152 * @low_rates: scrambling supported for rates <= 340 Mhz.
158 * struct drm_scdc - Information about scdc capabilities of a HDMI 2.0 sink
160 * Provides SCDC register support and capabilities related information on a
161 * HDMI 2.0 sink. In case of a HDMI 1.4 sink, all parameter must be 0.
165 * @supported: status control & data channel present.
169 * @read_request: sink is capable of generating scdc read request.
173 * @scrambling: sink's scrambling capabilities
175 struct drm_scrambling scrambling;
179 * struct drm_hdmi_dsc_cap - DSC capabilities of HDMI sink
181 * Describes the DSC support provided by HDMI 2.1 sink.
182 * The information is fetched fom additional HFVSDB blocks defined
185 struct drm_hdmi_dsc_cap {
186 /** @v_1p2: flag for dsc1.2 version support by sink */
189 /** @native_420: Does sink support DSC with 4:2:0 compression */
193 * @all_bpp: Does sink support all bpp with 4:4:4: or 4:2:2
199 * @bpc_supported: compressed bpc supported by sink : 10, 12 or 16 bpc
203 /** @max_slices: maximum number of Horizontal slices supported by */
206 /** @clk_per_slice : max pixel clock in MHz supported per slice */
209 /** @max_lanes : dsc max lanes supported for Fixed rate Link training */
212 /** @max_frl_rate_per_lane : maximum frl rate with DSC per lane */
213 u8 max_frl_rate_per_lane;
215 /** @total_chunk_kbytes: max size of chunks in KBs supported per line*/
216 u8 total_chunk_kbytes;
220 * struct drm_hdmi_info - runtime information about the connected HDMI sink
222 * Describes if a given display supports advanced HDMI 2.0 features.
223 * This information is available in CEA-861-F extension blocks (like HF-VSDB).
225 struct drm_hdmi_info {
226 /** @scdc: sink's scdc support and capabilities */
227 struct drm_scdc scdc;
230 * @y420_vdb_modes: bitmap of modes which can support ycbcr420
231 * output only (not normal RGB/YCBCR444/422 outputs). The max VIC
232 * defined by the CEA-861-G spec is 219, so the size is 256 bits to map
235 unsigned long y420_vdb_modes[BITS_TO_LONGS(256)];
238 * @y420_cmdb_modes: bitmap of modes which can support ycbcr420
239 * output also, along with normal HDMI outputs. The max VIC defined by
240 * the CEA-861-G spec is 219, so the size is 256 bits to map up to 256
243 unsigned long y420_cmdb_modes[BITS_TO_LONGS(256)];
245 /** @y420_cmdb_map: bitmap of SVD index, to extraxt vcb modes */
248 /** @y420_dc_modes: bitmap of deep color support index */
251 /** @max_frl_rate_per_lane: support fixed rate link */
252 u8 max_frl_rate_per_lane;
254 /** @max_lanes: supported by sink */
257 /** @dsc_cap: DSC capabilities of the sink */
258 struct drm_hdmi_dsc_cap dsc_cap;
262 * enum drm_link_status - connector's link_status property value
264 * This enum is used as the connector's link status property value.
265 * It is set to the values defined in uapi.
267 * @DRM_LINK_STATUS_GOOD: DP Link is Good as a result of successful
269 * @DRM_LINK_STATUS_BAD: DP Link is BAD as a result of link training
272 enum drm_link_status {
273 DRM_LINK_STATUS_GOOD = DRM_MODE_LINK_STATUS_GOOD,
274 DRM_LINK_STATUS_BAD = DRM_MODE_LINK_STATUS_BAD,
278 * enum drm_panel_orientation - panel_orientation info for &drm_display_info
280 * This enum is used to track the (LCD) panel orientation. There are no
281 * separate #defines for the uapi!
283 * @DRM_MODE_PANEL_ORIENTATION_UNKNOWN: The drm driver has not provided any
284 * panel orientation information (normal
285 * for non panels) in this case the "panel
286 * orientation" connector prop will not be
288 * @DRM_MODE_PANEL_ORIENTATION_NORMAL: The top side of the panel matches the
289 * top side of the device's casing.
290 * @DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP: The top side of the panel matches the
291 * bottom side of the device's casing, iow
292 * the panel is mounted upside-down.
293 * @DRM_MODE_PANEL_ORIENTATION_LEFT_UP: The left side of the panel matches the
294 * top side of the device's casing.
295 * @DRM_MODE_PANEL_ORIENTATION_RIGHT_UP: The right side of the panel matches the
296 * top side of the device's casing.
298 enum drm_panel_orientation {
299 DRM_MODE_PANEL_ORIENTATION_UNKNOWN = -1,
300 DRM_MODE_PANEL_ORIENTATION_NORMAL = 0,
301 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP,
302 DRM_MODE_PANEL_ORIENTATION_LEFT_UP,
303 DRM_MODE_PANEL_ORIENTATION_RIGHT_UP,
307 * struct drm_monitor_range_info - Panel's Monitor range in EDID for
310 * This struct is used to store a frequency range supported by panel
311 * as parsed from EDID's detailed monitor range descriptor block.
313 * @min_vfreq: This is the min supported refresh rate in Hz from
314 * EDID's detailed monitor range.
315 * @max_vfreq: This is the max supported refresh rate in Hz from
316 * EDID's detailed monitor range
318 struct drm_monitor_range_info {
324 * This is a consolidated colorimetry list supported by HDMI and
325 * DP protocol standard. The respective connectors will register
326 * a property with the subset of this list (supported by that
327 * respective protocol). Userspace will set the colorspace through
328 * a colorspace property which will be created and exposed to
332 /* For Default case, driver will set the colorspace */
333 #define DRM_MODE_COLORIMETRY_DEFAULT 0
334 /* CEA 861 Normal Colorimetry options */
335 #define DRM_MODE_COLORIMETRY_NO_DATA 0
336 #define DRM_MODE_COLORIMETRY_SMPTE_170M_YCC 1
337 #define DRM_MODE_COLORIMETRY_BT709_YCC 2
338 /* CEA 861 Extended Colorimetry Options */
339 #define DRM_MODE_COLORIMETRY_XVYCC_601 3
340 #define DRM_MODE_COLORIMETRY_XVYCC_709 4
341 #define DRM_MODE_COLORIMETRY_SYCC_601 5
342 #define DRM_MODE_COLORIMETRY_OPYCC_601 6
343 #define DRM_MODE_COLORIMETRY_OPRGB 7
344 #define DRM_MODE_COLORIMETRY_BT2020_CYCC 8
345 #define DRM_MODE_COLORIMETRY_BT2020_RGB 9
346 #define DRM_MODE_COLORIMETRY_BT2020_YCC 10
347 /* Additional Colorimetry extension added as part of CTA 861.G */
348 #define DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65 11
349 #define DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER 12
350 /* Additional Colorimetry Options added for DP 1.4a VSC Colorimetry Format */
351 #define DRM_MODE_COLORIMETRY_RGB_WIDE_FIXED 13
352 #define DRM_MODE_COLORIMETRY_RGB_WIDE_FLOAT 14
353 #define DRM_MODE_COLORIMETRY_BT601_YCC 15
356 * enum drm_bus_flags - bus_flags info for &drm_display_info
358 * This enum defines signal polarities and clock edge information for signals on
359 * a bus as bitmask flags.
361 * The clock edge information is conveyed by two sets of symbols,
362 * DRM_BUS_FLAGS_*_DRIVE_\* and DRM_BUS_FLAGS_*_SAMPLE_\*. When this enum is
363 * used to describe a bus from the point of view of the transmitter, the
364 * \*_DRIVE_\* flags should be used. When used from the point of view of the
365 * receiver, the \*_SAMPLE_\* flags should be used. The \*_DRIVE_\* and
366 * \*_SAMPLE_\* flags alias each other, with the \*_SAMPLE_POSEDGE and
367 * \*_SAMPLE_NEGEDGE flags being equal to \*_DRIVE_NEGEDGE and \*_DRIVE_POSEDGE
368 * respectively. This simplifies code as signals are usually sampled on the
369 * opposite edge of the driving edge. Transmitters and receivers may however
370 * need to take other signal timings into account to convert between driving
375 * @DRM_BUS_FLAG_DE_LOW:
377 * The Data Enable signal is active low
379 DRM_BUS_FLAG_DE_LOW = BIT(0),
382 * @DRM_BUS_FLAG_DE_HIGH:
384 * The Data Enable signal is active high
386 DRM_BUS_FLAG_DE_HIGH = BIT(1),
389 * @DRM_BUS_FLAG_PIXDATA_DRIVE_POSEDGE:
391 * Data is driven on the rising edge of the pixel clock
393 DRM_BUS_FLAG_PIXDATA_DRIVE_POSEDGE = BIT(2),
396 * @DRM_BUS_FLAG_PIXDATA_DRIVE_NEGEDGE:
398 * Data is driven on the falling edge of the pixel clock
400 DRM_BUS_FLAG_PIXDATA_DRIVE_NEGEDGE = BIT(3),
403 * @DRM_BUS_FLAG_PIXDATA_SAMPLE_POSEDGE:
405 * Data is sampled on the rising edge of the pixel clock
407 DRM_BUS_FLAG_PIXDATA_SAMPLE_POSEDGE = DRM_BUS_FLAG_PIXDATA_DRIVE_NEGEDGE,
410 * @DRM_BUS_FLAG_PIXDATA_SAMPLE_NEGEDGE:
412 * Data is sampled on the falling edge of the pixel clock
414 DRM_BUS_FLAG_PIXDATA_SAMPLE_NEGEDGE = DRM_BUS_FLAG_PIXDATA_DRIVE_POSEDGE,
417 * @DRM_BUS_FLAG_DATA_MSB_TO_LSB:
419 * Data is transmitted MSB to LSB on the bus
421 DRM_BUS_FLAG_DATA_MSB_TO_LSB = BIT(4),
424 * @DRM_BUS_FLAG_DATA_LSB_TO_MSB:
426 * Data is transmitted LSB to MSB on the bus
428 DRM_BUS_FLAG_DATA_LSB_TO_MSB = BIT(5),
431 * @DRM_BUS_FLAG_SYNC_DRIVE_POSEDGE:
433 * Sync signals are driven on the rising edge of the pixel clock
435 DRM_BUS_FLAG_SYNC_DRIVE_POSEDGE = BIT(6),
438 * @DRM_BUS_FLAG_SYNC_DRIVE_NEGEDGE:
440 * Sync signals are driven on the falling edge of the pixel clock
442 DRM_BUS_FLAG_SYNC_DRIVE_NEGEDGE = BIT(7),
445 * @DRM_BUS_FLAG_SYNC_SAMPLE_POSEDGE:
447 * Sync signals are sampled on the rising edge of the pixel clock
449 DRM_BUS_FLAG_SYNC_SAMPLE_POSEDGE = DRM_BUS_FLAG_SYNC_DRIVE_NEGEDGE,
452 * @DRM_BUS_FLAG_SYNC_SAMPLE_NEGEDGE:
454 * Sync signals are sampled on the falling edge of the pixel clock
456 DRM_BUS_FLAG_SYNC_SAMPLE_NEGEDGE = DRM_BUS_FLAG_SYNC_DRIVE_POSEDGE,
459 * @DRM_BUS_FLAG_SHARP_SIGNALS:
461 * Set if the Sharp-specific signals (SPL, CLS, PS, REV) must be used
463 DRM_BUS_FLAG_SHARP_SIGNALS = BIT(8),
467 * struct drm_display_info - runtime data about the connected sink
469 * Describes a given display (e.g. CRT or flat panel) and its limitations. For
470 * fixed display sinks like built-in panels there's not much difference between
471 * this and &struct drm_connector. But for sinks with a real cable this
472 * structure is meant to describe all the things at the other end of the cable.
474 * For sinks which provide an EDID this can be filled out by calling
475 * drm_add_edid_modes().
477 struct drm_display_info {
479 * @width_mm: Physical width in mm.
481 unsigned int width_mm;
484 * @height_mm: Physical height in mm.
486 unsigned int height_mm;
489 * @bpc: Maximum bits per color channel. Used by HDMI and DP outputs.
494 * @subpixel_order: Subpixel order of LCD panels.
496 enum subpixel_order subpixel_order;
498 #define DRM_COLOR_FORMAT_RGB444 (1<<0)
499 #define DRM_COLOR_FORMAT_YCRCB444 (1<<1)
500 #define DRM_COLOR_FORMAT_YCRCB422 (1<<2)
501 #define DRM_COLOR_FORMAT_YCRCB420 (1<<3)
504 * @panel_orientation: Read only connector property for built-in panels,
505 * indicating the orientation of the panel vs the device's casing.
506 * drm_connector_init() sets this to DRM_MODE_PANEL_ORIENTATION_UNKNOWN.
507 * When not UNKNOWN this gets used by the drm_fb_helpers to rotate the
508 * fb to compensate and gets exported as prop to userspace.
510 int panel_orientation;
513 * @color_formats: HDMI Color formats, selects between RGB and YCrCb
514 * modes. Used DRM_COLOR_FORMAT\_ defines, which are _not_ the same ones
515 * as used to describe the pixel format in framebuffers, and also don't
516 * match the formats in @bus_formats which are shared with v4l.
521 * @bus_formats: Pixel data format on the wire, somewhat redundant with
522 * @color_formats. Array of size @num_bus_formats encoded using
523 * MEDIA_BUS_FMT\_ defines shared with v4l and media drivers.
525 const u32 *bus_formats;
527 * @num_bus_formats: Size of @bus_formats array.
529 unsigned int num_bus_formats;
532 * @bus_flags: Additional information (like pixel signal polarity) for
533 * the pixel data on the bus, using &enum drm_bus_flags values
539 * @max_tmds_clock: Maximum TMDS clock rate supported by the
540 * sink in kHz. 0 means undefined.
545 * @dvi_dual: Dual-link DVI sink?
550 * @is_hdmi: True if the sink is an HDMI device.
552 * This field shall be used instead of calling
553 * drm_detect_hdmi_monitor() when possible.
558 * @has_hdmi_infoframe: Does the sink support the HDMI infoframe?
560 bool has_hdmi_infoframe;
563 * @rgb_quant_range_selectable: Does the sink support selecting
564 * the RGB quantization range?
566 bool rgb_quant_range_selectable;
569 * @edid_hdmi_dc_modes: Mask of supported hdmi deep color modes. Even
570 * more stuff redundant with @bus_formats.
572 u8 edid_hdmi_dc_modes;
575 * @cea_rev: CEA revision of the HDMI sink.
580 * @hdmi: advance features of a HDMI sink.
582 struct drm_hdmi_info hdmi;
585 * @non_desktop: Non desktop display (HMD).
590 * @monitor_range: Frequency range supported by monitor range descriptor
592 struct drm_monitor_range_info monitor_range;
595 int drm_display_info_set_bus_formats(struct drm_display_info *info,
597 unsigned int num_formats);
600 * struct drm_connector_tv_margins - TV connector related margins
602 * Describes the margins in pixels to put around the image on TV
603 * connectors to deal with overscan.
605 struct drm_connector_tv_margins {
607 * @bottom: Bottom margin in pixels.
612 * @left: Left margin in pixels.
617 * @right: Right margin in pixels.
622 * @top: Top margin in pixels.
628 * struct drm_tv_connector_state - TV connector related states
629 * @subconnector: selected subconnector
630 * @margins: TV margins
632 * @brightness: brightness in percent
633 * @contrast: contrast in percent
634 * @flicker_reduction: flicker reduction in percent
635 * @overscan: overscan in percent
636 * @saturation: saturation in percent
637 * @hue: hue in percent
639 struct drm_tv_connector_state {
640 enum drm_mode_subconnector subconnector;
641 struct drm_connector_tv_margins margins;
643 unsigned int brightness;
644 unsigned int contrast;
645 unsigned int flicker_reduction;
646 unsigned int overscan;
647 unsigned int saturation;
652 * struct drm_connector_state - mutable connector state
654 struct drm_connector_state {
655 /** @connector: backpointer to the connector */
656 struct drm_connector *connector;
659 * @crtc: CRTC to connect connector to, NULL if disabled.
661 * Do not change this directly, use drm_atomic_set_crtc_for_connector()
664 struct drm_crtc *crtc;
669 * Used by the atomic helpers to select the encoder, through the
670 * &drm_connector_helper_funcs.atomic_best_encoder or
671 * &drm_connector_helper_funcs.best_encoder callbacks.
673 * This is also used in the atomic helpers to map encoders to their
674 * current and previous connectors, see
675 * drm_atomic_get_old_connector_for_encoder() and
676 * drm_atomic_get_new_connector_for_encoder().
678 * NOTE: Atomic drivers must fill this out (either themselves or through
679 * helpers), for otherwise the GETCONNECTOR and GETENCODER IOCTLs will
680 * not return correct data to userspace.
682 struct drm_encoder *best_encoder;
685 * @link_status: Connector link_status to keep track of whether link is
686 * GOOD or BAD to notify userspace if retraining is necessary.
688 enum drm_link_status link_status;
690 /** @state: backpointer to global drm_atomic_state */
691 struct drm_atomic_state *state;
694 * @commit: Tracks the pending commit to prevent use-after-free conditions.
696 * Is only set when @crtc is NULL.
698 struct drm_crtc_commit *commit;
700 /** @tv: TV connector state */
701 struct drm_tv_connector_state tv;
704 * @self_refresh_aware:
706 * This tracks whether a connector is aware of the self refresh state.
707 * It should be set to true for those connector implementations which
708 * understand the self refresh state. This is needed since the crtc
709 * registers the self refresh helpers and it doesn't know if the
710 * connectors downstream have implemented self refresh entry/exit.
712 * Drivers should set this to true in atomic_check if they know how to
713 * handle self_refresh requests.
715 bool self_refresh_aware;
718 * @picture_aspect_ratio: Connector property to control the
719 * HDMI infoframe aspect ratio setting.
721 * The %DRM_MODE_PICTURE_ASPECT_\* values much match the
722 * values for &enum hdmi_picture_aspect
724 enum hdmi_picture_aspect picture_aspect_ratio;
727 * @content_type: Connector property to control the
728 * HDMI infoframe content type setting.
729 * The %DRM_MODE_CONTENT_TYPE_\* values much
732 unsigned int content_type;
735 * @hdcp_content_type: Connector property to pass the type of
736 * protected content. This is most commonly used for HDCP.
738 unsigned int hdcp_content_type;
741 * @scaling_mode: Connector property to control the
742 * upscaling, mostly used for built-in panels.
744 unsigned int scaling_mode;
747 * @content_protection: Connector property to request content
748 * protection. This is most commonly used for HDCP.
750 unsigned int content_protection;
753 * @colorspace: State variable for Connector property to request
754 * colorspace change on Sink. This is most commonly used to switch
755 * to wider color gamuts like BT2020.
760 * @writeback_job: Writeback job for writeback connectors
762 * Holds the framebuffer and out-fence for a writeback connector. As
763 * the writeback completion may be asynchronous to the normal commit
764 * cycle, the writeback job lifetime is managed separately from the
765 * normal atomic state by this object.
767 * See also: drm_writeback_queue_job() and
768 * drm_writeback_signal_completion()
770 struct drm_writeback_job *writeback_job;
773 * @max_requested_bpc: Connector property to limit the maximum bit
774 * depth of the pixels.
776 u8 max_requested_bpc;
779 * @max_bpc: Connector max_bpc based on the requested max_bpc property
780 * and the connector bpc limitations obtained from edid.
785 * @hdr_output_metadata:
786 * DRM blob property for HDR output metadata
788 struct drm_property_blob *hdr_output_metadata;
792 * struct drm_connector_funcs - control connectors on a given device
794 * Each CRTC may have one or more connectors attached to it. The functions
795 * below allow the core DRM code to control connectors, enumerate available modes,
798 struct drm_connector_funcs {
802 * Legacy entry point to set the per-connector DPMS state. Legacy DPMS
803 * is exposed as a standard property on the connector, but diverted to
804 * this callback in the drm core. Note that atomic drivers don't
805 * implement the 4 level DPMS support on the connector any more, but
806 * instead only have an on/off "ACTIVE" property on the CRTC object.
808 * This hook is not used by atomic drivers, remapping of the legacy DPMS
809 * property is entirely handled in the DRM core.
813 * 0 on success or a negative error code on failure.
815 int (*dpms)(struct drm_connector *connector, int mode);
820 * Reset connector hardware and software state to off. This function isn't
821 * called by the core directly, only through drm_mode_config_reset().
822 * It's not a helper hook only for historical reasons.
824 * Atomic drivers can use drm_atomic_helper_connector_reset() to reset
825 * atomic state using this hook.
827 void (*reset)(struct drm_connector *connector);
832 * Check to see if anything is attached to the connector. The parameter
833 * force is set to false whilst polling, true when checking the
834 * connector due to a user request. force can be used by the driver to
835 * avoid expensive, destructive operations during automated probing.
837 * This callback is optional, if not implemented the connector will be
838 * considered as always being attached.
842 * Note that this hook is only called by the probe helper. It's not in
843 * the helper library vtable purely for historical reasons. The only DRM
844 * core entry point to probe connector state is @fill_modes.
846 * Note that the helper library will already hold
847 * &drm_mode_config.connection_mutex. Drivers which need to grab additional
848 * locks to avoid races with concurrent modeset changes need to use
849 * &drm_connector_helper_funcs.detect_ctx instead.
851 * Also note that this callback can be called no matter the
852 * state the connector is in. Drivers that need the underlying
853 * device to be powered to perform the detection will first need
854 * to make sure it's been properly enabled.
858 * drm_connector_status indicating the connector's status.
860 enum drm_connector_status (*detect)(struct drm_connector *connector,
866 * This function is called to update internal encoder state when the
867 * connector is forced to a certain state by userspace, either through
868 * the sysfs interfaces or on the kernel cmdline. In that case the
869 * @detect callback isn't called.
873 * Note that this hook is only called by the probe helper. It's not in
874 * the helper library vtable purely for historical reasons. The only DRM
875 * core entry point to probe connector state is @fill_modes.
877 void (*force)(struct drm_connector *connector);
882 * Entry point for output detection and basic mode validation. The
883 * driver should reprobe the output if needed (e.g. when hotplug
884 * handling is unreliable), add all detected modes to &drm_connector.modes
885 * and filter out any the device can't support in any configuration. It
886 * also needs to filter out any modes wider or higher than the
887 * parameters max_width and max_height indicate.
889 * The drivers must also prune any modes no longer valid from
890 * &drm_connector.modes. Furthermore it must update
891 * &drm_connector.status and &drm_connector.edid. If no EDID has been
892 * received for this output connector->edid must be NULL.
894 * Drivers using the probe helpers should use
895 * drm_helper_probe_single_connector_modes() to implement this
900 * The number of modes detected and filled into &drm_connector.modes.
902 int (*fill_modes)(struct drm_connector *connector, uint32_t max_width, uint32_t max_height);
907 * This is the legacy entry point to update a property attached to the
910 * This callback is optional if the driver does not support any legacy
911 * driver-private properties. For atomic drivers it is not used because
912 * property handling is done entirely in the DRM core.
916 * 0 on success or a negative error code on failure.
918 int (*set_property)(struct drm_connector *connector, struct drm_property *property,
924 * This optional hook can be used to register additional userspace
925 * interfaces attached to the connector, light backlight control, i2c,
926 * DP aux or similar interfaces. It is called late in the driver load
927 * sequence from drm_connector_register() when registering all the
928 * core drm connector interfaces. Everything added from this callback
929 * should be unregistered in the early_unregister callback.
931 * This is called while holding &drm_connector.mutex.
935 * 0 on success, or a negative error code on failure.
937 int (*late_register)(struct drm_connector *connector);
942 * This optional hook should be used to unregister the additional
943 * userspace interfaces attached to the connector from
944 * late_register(). It is called from drm_connector_unregister(),
945 * early in the driver unload sequence to disable userspace access
946 * before data structures are torndown.
948 * This is called while holding &drm_connector.mutex.
950 void (*early_unregister)(struct drm_connector *connector);
955 * Clean up connector resources. This is called at driver unload time
956 * through drm_mode_config_cleanup(). It can also be called at runtime
957 * when a connector is being hot-unplugged for drivers that support
958 * connector hotplugging (e.g. DisplayPort MST).
960 void (*destroy)(struct drm_connector *connector);
963 * @atomic_duplicate_state:
965 * Duplicate the current atomic state for this connector and return it.
966 * The core and helpers guarantee that any atomic state duplicated with
967 * this hook and still owned by the caller (i.e. not transferred to the
968 * driver by calling &drm_mode_config_funcs.atomic_commit) will be
969 * cleaned up by calling the @atomic_destroy_state hook in this
972 * This callback is mandatory for atomic drivers.
974 * Atomic drivers which don't subclass &struct drm_connector_state should use
975 * drm_atomic_helper_connector_duplicate_state(). Drivers that subclass the
976 * state structure to extend it with driver-private state should use
977 * __drm_atomic_helper_connector_duplicate_state() to make sure shared state is
978 * duplicated in a consistent fashion across drivers.
980 * It is an error to call this hook before &drm_connector.state has been
981 * initialized correctly.
985 * If the duplicate state references refcounted resources this hook must
986 * acquire a reference for each of them. The driver must release these
987 * references again in @atomic_destroy_state.
991 * Duplicated atomic state or NULL when the allocation failed.
993 struct drm_connector_state *(*atomic_duplicate_state)(struct drm_connector *connector);
996 * @atomic_destroy_state:
998 * Destroy a state duplicated with @atomic_duplicate_state and release
999 * or unreference all resources it references
1001 * This callback is mandatory for atomic drivers.
1003 void (*atomic_destroy_state)(struct drm_connector *connector,
1004 struct drm_connector_state *state);
1007 * @atomic_set_property:
1009 * Decode a driver-private property value and store the decoded value
1010 * into the passed-in state structure. Since the atomic core decodes all
1011 * standardized properties (even for extensions beyond the core set of
1012 * properties which might not be implemented by all drivers) this
1013 * requires drivers to subclass the state structure.
1015 * Such driver-private properties should really only be implemented for
1016 * truly hardware/vendor specific state. Instead it is preferred to
1017 * standardize atomic extension and decode the properties used to expose
1018 * such an extension in the core.
1020 * Do not call this function directly, use
1021 * drm_atomic_connector_set_property() instead.
1023 * This callback is optional if the driver does not support any
1024 * driver-private atomic properties.
1028 * This function is called in the state assembly phase of atomic
1029 * modesets, which can be aborted for any reason (including on
1030 * userspace's request to just check whether a configuration would be
1031 * possible). Drivers MUST NOT touch any persistent state (hardware or
1032 * software) or data structures except the passed in @state parameter.
1034 * Also since userspace controls in which order properties are set this
1035 * function must not do any input validation (since the state update is
1036 * incomplete and hence likely inconsistent). Instead any such input
1037 * validation must be done in the various atomic_check callbacks.
1041 * 0 if the property has been found, -EINVAL if the property isn't
1042 * implemented by the driver (which shouldn't ever happen, the core only
1043 * asks for properties attached to this connector). No other validation
1044 * is allowed by the driver. The core already checks that the property
1045 * value is within the range (integer, valid enum value, ...) the driver
1046 * set when registering the property.
1048 int (*atomic_set_property)(struct drm_connector *connector,
1049 struct drm_connector_state *state,
1050 struct drm_property *property,
1054 * @atomic_get_property:
1056 * Reads out the decoded driver-private property. This is used to
1057 * implement the GETCONNECTOR IOCTL.
1059 * Do not call this function directly, use
1060 * drm_atomic_connector_get_property() instead.
1062 * This callback is optional if the driver does not support any
1063 * driver-private atomic properties.
1067 * 0 on success, -EINVAL if the property isn't implemented by the
1068 * driver (which shouldn't ever happen, the core only asks for
1069 * properties attached to this connector).
1071 int (*atomic_get_property)(struct drm_connector *connector,
1072 const struct drm_connector_state *state,
1073 struct drm_property *property,
1077 * @atomic_print_state:
1079 * If driver subclasses &struct drm_connector_state, it should implement
1080 * this optional hook for printing additional driver specific state.
1082 * Do not call this directly, use drm_atomic_connector_print_state()
1085 void (*atomic_print_state)(struct drm_printer *p,
1086 const struct drm_connector_state *state);
1090 * struct drm_cmdline_mode - DRM Mode passed through the kernel command-line
1092 * Each connector can have an initial mode with additional options
1093 * passed through the kernel command line. This structure allows to
1094 * express those parameters and will be filled by the command-line
1097 struct drm_cmdline_mode {
1103 char name[DRM_DISPLAY_MODE_LEN];
1108 * Has a mode been read from the command-line?
1113 * @refresh_specified:
1115 * Did the mode have a preferred refresh rate?
1117 bool refresh_specified;
1122 * Did the mode have a preferred BPP?
1129 * Active resolution on the X axis, in pixels.
1136 * Active resolution on the Y axis, in pixels.
1143 * Bits per pixels for the mode.
1150 * Refresh rate, in Hertz.
1157 * Do we need to use reduced blanking?
1164 * The mode is interlaced.
1171 * The timings will be calculated using the VESA Coordinated
1172 * Video Timings instead of looking up the mode from a table.
1179 * Add margins to the mode calculation (1.8% of xres rounded
1180 * down to 8 pixels and 1.8% of yres).
1187 * Ignore the hotplug state of the connector, and force its
1188 * state to one of the DRM_FORCE_* values.
1190 enum drm_connector_force force;
1193 * @rotation_reflection:
1195 * Initial rotation and reflection of the mode setup from the
1196 * command line. See DRM_MODE_ROTATE_* and
1197 * DRM_MODE_REFLECT_*. The only rotations supported are
1198 * DRM_MODE_ROTATE_0 and DRM_MODE_ROTATE_180.
1200 unsigned int rotation_reflection;
1203 * @panel_orientation:
1205 * drm-connector "panel orientation" property override value,
1206 * DRM_MODE_PANEL_ORIENTATION_UNKNOWN if not set.
1208 enum drm_panel_orientation panel_orientation;
1211 * @tv_margins: TV margins to apply to the mode.
1213 struct drm_connector_tv_margins tv_margins;
1217 * struct drm_connector - central DRM connector control structure
1219 * Each connector may be connected to one or more CRTCs, or may be clonable by
1220 * another connector if they can share a CRTC. Each connector also has a specific
1221 * position in the broader display (referred to as a 'screen' though it could
1222 * span multiple monitors).
1224 struct drm_connector {
1225 /** @dev: parent DRM device */
1226 struct drm_device *dev;
1227 /** @kdev: kernel device for sysfs attributes */
1228 struct device *kdev;
1229 /** @attr: sysfs attributes */
1230 struct device_attribute *attr;
1235 * List of all connectors on a @dev, linked from
1236 * &drm_mode_config.connector_list. Protected by
1237 * &drm_mode_config.connector_list_lock, but please only use
1238 * &drm_connector_list_iter to walk this list.
1240 struct list_head head;
1242 /** @base: base KMS object */
1243 struct drm_mode_object base;
1245 /** @name: human readable name, can be overwritten by the driver */
1249 * @mutex: Lock for general connector state, but currently only protects
1250 * @registered. Most of the connector state is still protected by
1251 * &drm_mode_config.mutex.
1256 * @index: Compacted connector index, which matches the position inside
1257 * the mode_config.list for drivers not supporting hot-add/removing. Can
1258 * be used as an array index. It is invariant over the lifetime of the
1265 * one of the DRM_MODE_CONNECTOR_<foo> types from drm_mode.h
1268 /** @connector_type_id: index into connector type enum */
1269 int connector_type_id;
1271 * @interlace_allowed:
1272 * Can this connector handle interlaced modes? Only used by
1273 * drm_helper_probe_single_connector_modes() for mode filtering.
1275 bool interlace_allowed;
1277 * @doublescan_allowed:
1278 * Can this connector handle doublescan? Only used by
1279 * drm_helper_probe_single_connector_modes() for mode filtering.
1281 bool doublescan_allowed;
1284 * Can this connector handle stereo modes? Only used by
1285 * drm_helper_probe_single_connector_modes() for mode filtering.
1287 bool stereo_allowed;
1290 * @ycbcr_420_allowed : This bool indicates if this connector is
1291 * capable of handling YCBCR 420 output. While parsing the EDID
1292 * blocks it's very helpful to know if the source is capable of
1293 * handling YCBCR 420 outputs.
1295 bool ycbcr_420_allowed;
1298 * @registration_state: Is this connector initializing, exposed
1299 * (registered) with userspace, or unregistered?
1301 * Protected by @mutex.
1303 enum drm_connector_registration_state registration_state;
1307 * Modes available on this connector (from fill_modes() + user).
1308 * Protected by &drm_mode_config.mutex.
1310 struct list_head modes;
1314 * One of the drm_connector_status enums (connected, not, or unknown).
1315 * Protected by &drm_mode_config.mutex.
1317 enum drm_connector_status status;
1321 * These are modes added by probing with DDC or the BIOS, before
1322 * filtering is applied. Used by the probe helpers. Protected by
1323 * &drm_mode_config.mutex.
1325 struct list_head probed_modes;
1328 * @display_info: Display information is filled from EDID information
1329 * when a display is detected. For non hot-pluggable displays such as
1330 * flat panels in embedded systems, the driver should initialize the
1331 * &drm_display_info.width_mm and &drm_display_info.height_mm fields
1332 * with the physical size of the display.
1334 * Protected by &drm_mode_config.mutex.
1336 struct drm_display_info display_info;
1338 /** @funcs: connector control functions */
1339 const struct drm_connector_funcs *funcs;
1342 * @edid_blob_ptr: DRM property containing EDID if present. Protected by
1343 * &drm_mode_config.mutex. This should be updated only by calling
1344 * drm_connector_update_edid_property().
1346 struct drm_property_blob *edid_blob_ptr;
1348 /** @properties: property tracking for this connector */
1349 struct drm_object_properties properties;
1352 * @scaling_mode_property: Optional atomic property to control the
1353 * upscaling. See drm_connector_attach_content_protection_property().
1355 struct drm_property *scaling_mode_property;
1358 * @vrr_capable_property: Optional property to help userspace
1359 * query hardware support for variable refresh rate on a connector.
1360 * connector. Drivers can add the property to a connector by
1361 * calling drm_connector_attach_vrr_capable_property().
1363 * This should be updated only by calling
1364 * drm_connector_set_vrr_capable_property().
1366 struct drm_property *vrr_capable_property;
1369 * @colorspace_property: Connector property to set the suitable
1370 * colorspace supported by the sink.
1372 struct drm_property *colorspace_property;
1377 * DRM blob property data for the DP MST path property. This should only
1378 * be updated by calling drm_connector_set_path_property().
1380 struct drm_property_blob *path_blob_ptr;
1383 * @max_bpc_property: Default connector property for the max bpc to be
1384 * driven out of the connector.
1386 struct drm_property *max_bpc_property;
1388 #define DRM_CONNECTOR_POLL_HPD (1 << 0)
1389 #define DRM_CONNECTOR_POLL_CONNECT (1 << 1)
1390 #define DRM_CONNECTOR_POLL_DISCONNECT (1 << 2)
1395 * Connector polling mode, a combination of
1397 * DRM_CONNECTOR_POLL_HPD
1398 * The connector generates hotplug events and doesn't need to be
1399 * periodically polled. The CONNECT and DISCONNECT flags must not
1400 * be set together with the HPD flag.
1402 * DRM_CONNECTOR_POLL_CONNECT
1403 * Periodically poll the connector for connection.
1405 * DRM_CONNECTOR_POLL_DISCONNECT
1406 * Periodically poll the connector for disconnection, without
1407 * causing flickering even when the connector is in use. DACs should
1408 * rarely do this without a lot of testing.
1410 * Set to 0 for connectors that don't support connection status
1416 * @dpms: Current dpms state. For legacy drivers the
1417 * &drm_connector_funcs.dpms callback must update this. For atomic
1418 * drivers, this is handled by the core atomic code, and drivers must
1419 * only take &drm_crtc_state.active into account.
1423 /** @helper_private: mid-layer private data */
1424 const struct drm_connector_helper_funcs *helper_private;
1426 /** @cmdline_mode: mode line parsed from the kernel cmdline for this connector */
1427 struct drm_cmdline_mode cmdline_mode;
1428 /** @force: a DRM_FORCE_<foo> state for forced mode sets */
1429 enum drm_connector_force force;
1430 /** @override_edid: has the EDID been overwritten through debugfs for testing? */
1432 /** @epoch_counter: used to detect any other changes in connector, besides status */
1436 * @possible_encoders: Bit mask of encoders that can drive this
1437 * connector, drm_encoder_index() determines the index into the bitfield
1438 * and the bits are set with drm_connector_attach_encoder().
1440 u32 possible_encoders;
1443 * @encoder: Currently bound encoder driving this connector, if any.
1444 * Only really meaningful for non-atomic drivers. Atomic drivers should
1445 * instead look at &drm_connector_state.best_encoder, and in case they
1446 * need the CRTC driving this output, &drm_connector_state.crtc.
1448 struct drm_encoder *encoder;
1450 #define MAX_ELD_BYTES 128
1451 /** @eld: EDID-like data, if present */
1452 uint8_t eld[MAX_ELD_BYTES];
1453 /** @latency_present: AV delay info from ELD, if found */
1454 bool latency_present[2];
1456 * @video_latency: Video latency info from ELD, if found.
1457 * [0]: progressive, [1]: interlaced
1459 int video_latency[2];
1461 * @audio_latency: audio latency info from ELD, if found
1462 * [0]: progressive, [1]: interlaced
1464 int audio_latency[2];
1467 * @ddc: associated ddc adapter.
1468 * A connector usually has its associated ddc adapter. If a driver uses
1469 * this field, then an appropriate symbolic link is created in connector
1470 * sysfs directory to make it easy for the user to tell which i2c
1471 * adapter is for a particular display.
1473 * The field should be set by calling drm_connector_init_with_ddc().
1475 struct i2c_adapter *ddc;
1478 * @null_edid_counter: track sinks that give us all zeros for the EDID.
1479 * Needed to workaround some HW bugs where we get all 0s
1481 int null_edid_counter;
1483 /** @bad_edid_counter: track sinks that give us an EDID with invalid checksum */
1484 unsigned bad_edid_counter;
1487 * @edid_corrupt: Indicates whether the last read EDID was corrupt. Used
1488 * in Displayport compliance testing - Displayport Link CTS Core 1.2
1493 * @real_edid_checksum: real edid checksum for corrupted edid block.
1494 * Required in Displayport 1.4 compliance testing
1497 u8 real_edid_checksum;
1499 /** @debugfs_entry: debugfs directory for this connector */
1500 struct dentry *debugfs_entry;
1505 * Current atomic state for this connector.
1507 * This is protected by &drm_mode_config.connection_mutex. Note that
1508 * nonblocking atomic commits access the current connector state without
1509 * taking locks. Either by going through the &struct drm_atomic_state
1510 * pointers, see for_each_oldnew_connector_in_state(),
1511 * for_each_old_connector_in_state() and
1512 * for_each_new_connector_in_state(). Or through careful ordering of
1513 * atomic commit operations as implemented in the atomic helpers, see
1514 * &struct drm_crtc_commit.
1516 struct drm_connector_state *state;
1518 /* DisplayID bits. FIXME: Extract into a substruct? */
1523 * DRM blob property data for the tile property (used mostly by DP MST).
1524 * This is meant for screens which are driven through separate display
1525 * pipelines represented by &drm_crtc, which might not be running with
1526 * genlocked clocks. For tiled panels which are genlocked, like
1527 * dual-link LVDS or dual-link DSI, the driver should try to not expose
1528 * the tiling and virtualize both &drm_crtc and &drm_plane if needed.
1530 * This should only be updated by calling
1531 * drm_connector_set_tile_property().
1533 struct drm_property_blob *tile_blob_ptr;
1535 /** @has_tile: is this connector connected to a tiled monitor */
1537 /** @tile_group: tile group for the connected monitor */
1538 struct drm_tile_group *tile_group;
1539 /** @tile_is_single_monitor: whether the tile is one monitor housing */
1540 bool tile_is_single_monitor;
1542 /** @num_h_tile: number of horizontal tiles in the tile group */
1543 /** @num_v_tile: number of vertical tiles in the tile group */
1544 uint8_t num_h_tile, num_v_tile;
1545 /** @tile_h_loc: horizontal location of this tile */
1546 /** @tile_v_loc: vertical location of this tile */
1547 uint8_t tile_h_loc, tile_v_loc;
1548 /** @tile_h_size: horizontal size of this tile. */
1549 /** @tile_v_size: vertical size of this tile. */
1550 uint16_t tile_h_size, tile_v_size;
1555 * List used only by &drm_connector_list_iter to be able to clean up a
1556 * connector from any context, in conjunction with
1557 * &drm_mode_config.connector_free_work.
1559 struct llist_node free_node;
1561 /** @hdr_sink_metadata: HDR Metadata Information read from sink */
1562 struct hdr_sink_metadata hdr_sink_metadata;
1565 #define obj_to_connector(x) container_of(x, struct drm_connector, base)
1567 int drm_connector_init(struct drm_device *dev,
1568 struct drm_connector *connector,
1569 const struct drm_connector_funcs *funcs,
1570 int connector_type);
1571 int drm_connector_init_with_ddc(struct drm_device *dev,
1572 struct drm_connector *connector,
1573 const struct drm_connector_funcs *funcs,
1575 struct i2c_adapter *ddc);
1576 void drm_connector_attach_edid_property(struct drm_connector *connector);
1577 int drm_connector_register(struct drm_connector *connector);
1578 void drm_connector_unregister(struct drm_connector *connector);
1579 int drm_connector_attach_encoder(struct drm_connector *connector,
1580 struct drm_encoder *encoder);
1582 void drm_connector_cleanup(struct drm_connector *connector);
1584 static inline unsigned int drm_connector_index(const struct drm_connector *connector)
1586 return connector->index;
1589 static inline u32 drm_connector_mask(const struct drm_connector *connector)
1591 return 1 << connector->index;
1595 * drm_connector_lookup - lookup connector object
1597 * @file_priv: drm file to check for lease against.
1598 * @id: connector object id
1600 * This function looks up the connector object specified by id
1601 * add takes a reference to it.
1603 static inline struct drm_connector *drm_connector_lookup(struct drm_device *dev,
1604 struct drm_file *file_priv,
1607 struct drm_mode_object *mo;
1608 mo = drm_mode_object_find(dev, file_priv, id, DRM_MODE_OBJECT_CONNECTOR);
1609 return mo ? obj_to_connector(mo) : NULL;
1613 * drm_connector_get - acquire a connector reference
1614 * @connector: DRM connector
1616 * This function increments the connector's refcount.
1618 static inline void drm_connector_get(struct drm_connector *connector)
1620 drm_mode_object_get(&connector->base);
1624 * drm_connector_put - release a connector reference
1625 * @connector: DRM connector
1627 * This function decrements the connector's reference count and frees the
1628 * object if the reference count drops to zero.
1630 static inline void drm_connector_put(struct drm_connector *connector)
1632 drm_mode_object_put(&connector->base);
1636 * drm_connector_is_unregistered - has the connector been unregistered from
1638 * @connector: DRM connector
1640 * Checks whether or not @connector has been unregistered from userspace.
1643 * True if the connector was unregistered, false if the connector is
1644 * registered or has not yet been registered with userspace.
1647 drm_connector_is_unregistered(struct drm_connector *connector)
1649 return READ_ONCE(connector->registration_state) ==
1650 DRM_CONNECTOR_UNREGISTERED;
1653 const char *drm_get_connector_type_name(unsigned int connector_type);
1654 const char *drm_get_connector_status_name(enum drm_connector_status status);
1655 const char *drm_get_subpixel_order_name(enum subpixel_order order);
1656 const char *drm_get_dpms_name(int val);
1657 const char *drm_get_dvi_i_subconnector_name(int val);
1658 const char *drm_get_dvi_i_select_name(int val);
1659 const char *drm_get_tv_subconnector_name(int val);
1660 const char *drm_get_tv_select_name(int val);
1661 const char *drm_get_dp_subconnector_name(int val);
1662 const char *drm_get_content_protection_name(int val);
1663 const char *drm_get_hdcp_content_type_name(int val);
1665 int drm_mode_create_dvi_i_properties(struct drm_device *dev);
1666 void drm_connector_attach_dp_subconnector_property(struct drm_connector *connector);
1668 int drm_mode_create_tv_margin_properties(struct drm_device *dev);
1669 int drm_mode_create_tv_properties(struct drm_device *dev,
1670 unsigned int num_modes,
1671 const char * const modes[]);
1672 void drm_connector_attach_tv_margin_properties(struct drm_connector *conn);
1673 int drm_mode_create_scaling_mode_property(struct drm_device *dev);
1674 int drm_connector_attach_content_type_property(struct drm_connector *dev);
1675 int drm_connector_attach_scaling_mode_property(struct drm_connector *connector,
1676 u32 scaling_mode_mask);
1677 int drm_connector_attach_vrr_capable_property(
1678 struct drm_connector *connector);
1679 int drm_connector_attach_colorspace_property(struct drm_connector *connector);
1680 int drm_connector_attach_hdr_output_metadata_property(struct drm_connector *connector);
1681 bool drm_connector_atomic_hdr_metadata_equal(struct drm_connector_state *old_state,
1682 struct drm_connector_state *new_state);
1683 int drm_mode_create_aspect_ratio_property(struct drm_device *dev);
1684 int drm_mode_create_hdmi_colorspace_property(struct drm_connector *connector);
1685 int drm_mode_create_dp_colorspace_property(struct drm_connector *connector);
1686 int drm_mode_create_content_type_property(struct drm_device *dev);
1687 void drm_hdmi_avi_infoframe_content_type(struct hdmi_avi_infoframe *frame,
1688 const struct drm_connector_state *conn_state);
1690 int drm_mode_create_suggested_offset_properties(struct drm_device *dev);
1692 int drm_connector_set_path_property(struct drm_connector *connector,
1694 int drm_connector_set_tile_property(struct drm_connector *connector);
1695 int drm_connector_update_edid_property(struct drm_connector *connector,
1696 const struct edid *edid);
1697 void drm_connector_set_link_status_property(struct drm_connector *connector,
1698 uint64_t link_status);
1699 void drm_connector_set_vrr_capable_property(
1700 struct drm_connector *connector, bool capable);
1701 int drm_connector_set_panel_orientation(
1702 struct drm_connector *connector,
1703 enum drm_panel_orientation panel_orientation);
1704 int drm_connector_set_panel_orientation_with_quirk(
1705 struct drm_connector *connector,
1706 enum drm_panel_orientation panel_orientation,
1707 int width, int height);
1708 int drm_connector_attach_max_bpc_property(struct drm_connector *connector,
1712 * struct drm_tile_group - Tile group metadata
1713 * @refcount: reference count
1715 * @id: tile group id exposed to userspace
1716 * @group_data: Sink-private data identifying this group
1718 * @group_data corresponds to displayid vend/prod/serial for external screens
1721 struct drm_tile_group {
1722 struct kref refcount;
1723 struct drm_device *dev;
1728 struct drm_tile_group *drm_mode_create_tile_group(struct drm_device *dev,
1729 const char topology[8]);
1730 struct drm_tile_group *drm_mode_get_tile_group(struct drm_device *dev,
1731 const char topology[8]);
1732 void drm_mode_put_tile_group(struct drm_device *dev,
1733 struct drm_tile_group *tg);
1736 * struct drm_connector_list_iter - connector_list iterator
1738 * This iterator tracks state needed to be able to walk the connector_list
1739 * within struct drm_mode_config. Only use together with
1740 * drm_connector_list_iter_begin(), drm_connector_list_iter_end() and
1741 * drm_connector_list_iter_next() respectively the convenience macro
1742 * drm_for_each_connector_iter().
1744 * Note that the return value of drm_connector_list_iter_next() is only valid
1745 * up to the next drm_connector_list_iter_next() or
1746 * drm_connector_list_iter_end() call. If you want to use the connector later,
1747 * then you need to grab your own reference first using drm_connector_get().
1749 struct drm_connector_list_iter {
1751 struct drm_device *dev;
1752 struct drm_connector *conn;
1755 void drm_connector_list_iter_begin(struct drm_device *dev,
1756 struct drm_connector_list_iter *iter);
1757 struct drm_connector *
1758 drm_connector_list_iter_next(struct drm_connector_list_iter *iter);
1759 void drm_connector_list_iter_end(struct drm_connector_list_iter *iter);
1761 bool drm_connector_has_possible_encoder(struct drm_connector *connector,
1762 struct drm_encoder *encoder);
1765 * drm_for_each_connector_iter - connector_list iterator macro
1766 * @connector: &struct drm_connector pointer used as cursor
1767 * @iter: &struct drm_connector_list_iter
1769 * Note that @connector is only valid within the list body, if you want to use
1770 * @connector after calling drm_connector_list_iter_end() then you need to grab
1771 * your own reference first using drm_connector_get().
1773 #define drm_for_each_connector_iter(connector, iter) \
1774 while ((connector = drm_connector_list_iter_next(iter)))
1777 * drm_connector_for_each_possible_encoder - iterate connector's possible encoders
1778 * @connector: &struct drm_connector pointer
1779 * @encoder: &struct drm_encoder pointer used as cursor
1781 #define drm_connector_for_each_possible_encoder(connector, encoder) \
1782 drm_for_each_encoder_mask(encoder, (connector)->dev, \
1783 (connector)->possible_encoders)