Merge tag 'for-6.6-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[platform/kernel/linux-rpi.git] / drivers / watchdog / octeon-wdt-main.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Octeon Watchdog driver
4  *
5  * Copyright (C) 2007-2017 Cavium, Inc.
6  *
7  * Converted to use WATCHDOG_CORE by Aaro Koskinen <aaro.koskinen@iki.fi>.
8  *
9  * Some parts derived from wdt.c
10  *
11  *      (c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>,
12  *                                              All Rights Reserved.
13  *
14  *      Neither Alan Cox nor CymruNet Ltd. admit liability nor provide
15  *      warranty for any of this software. This material is provided
16  *      "AS-IS" and at no charge.
17  *
18  *      (c) Copyright 1995    Alan Cox <alan@lxorguk.ukuu.org.uk>
19  *
20  * The OCTEON watchdog has a maximum timeout of 2^32 * io_clock.
21  * For most systems this is less than 10 seconds, so to allow for
22  * software to request longer watchdog heartbeats, we maintain software
23  * counters to count multiples of the base rate.  If the system locks
24  * up in such a manner that we can not run the software counters, the
25  * only result is a watchdog reset sooner than was requested.  But
26  * that is OK, because in this case userspace would likely not be able
27  * to do anything anyhow.
28  *
29  * The hardware watchdog interval we call the period.  The OCTEON
30  * watchdog goes through several stages, after the first period an
31  * irq is asserted, then if it is not reset, after the next period NMI
32  * is asserted, then after an additional period a chip wide soft reset.
33  * So for the software counters, we reset watchdog after each period
34  * and decrement the counter.  But for the last two periods we need to
35  * let the watchdog progress to the NMI stage so we disable the irq
36  * and let it proceed.  Once in the NMI, we print the register state
37  * to the serial port and then wait for the reset.
38  *
39  * A watchdog is maintained for each CPU in the system, that way if
40  * one CPU suffers a lockup, we also get a register dump and reset.
41  * The userspace ping resets the watchdog on all CPUs.
42  *
43  * Before userspace opens the watchdog device, we still run the
44  * watchdogs to catch any lockups that may be kernel related.
45  *
46  */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/interrupt.h>
51 #include <linux/watchdog.h>
52 #include <linux/cpumask.h>
53 #include <linux/module.h>
54 #include <linux/delay.h>
55 #include <linux/cpu.h>
56 #include <linux/irq.h>
57 #include <linux/irqdomain.h>
58
59 #include <asm/mipsregs.h>
60 #include <asm/uasm.h>
61
62 #include <asm/octeon/octeon.h>
63 #include <asm/octeon/cvmx-boot-vector.h>
64 #include <asm/octeon/cvmx-ciu2-defs.h>
65 #include <asm/octeon/cvmx-rst-defs.h>
66
67 /* Watchdog interrupt major block number (8 MSBs of intsn) */
68 #define WD_BLOCK_NUMBER         0x01
69
70 static int divisor;
71
72 /* The count needed to achieve timeout_sec. */
73 static unsigned int timeout_cnt;
74
75 /* The maximum period supported. */
76 static unsigned int max_timeout_sec;
77
78 /* The current period.  */
79 static unsigned int timeout_sec;
80
81 /* Set to non-zero when userspace countdown mode active */
82 static bool do_countdown;
83 static unsigned int countdown_reset;
84 static unsigned int per_cpu_countdown[NR_CPUS];
85
86 static cpumask_t irq_enabled_cpus;
87
88 #define WD_TIMO 60                      /* Default heartbeat = 60 seconds */
89
90 #define CVMX_GSERX_SCRATCH(offset) (CVMX_ADD_IO_SEG(0x0001180090000020ull) + ((offset) & 15) * 0x1000000ull)
91
92 static int heartbeat = WD_TIMO;
93 module_param(heartbeat, int, 0444);
94 MODULE_PARM_DESC(heartbeat,
95         "Watchdog heartbeat in seconds. (0 < heartbeat, default="
96                                 __MODULE_STRING(WD_TIMO) ")");
97
98 static bool nowayout = WATCHDOG_NOWAYOUT;
99 module_param(nowayout, bool, 0444);
100 MODULE_PARM_DESC(nowayout,
101         "Watchdog cannot be stopped once started (default="
102                                 __MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
103
104 static int disable;
105 module_param(disable, int, 0444);
106 MODULE_PARM_DESC(disable,
107         "Disable the watchdog entirely (default=0)");
108
109 static struct cvmx_boot_vector_element *octeon_wdt_bootvector;
110
111 void octeon_wdt_nmi_stage2(void);
112
113 static int cpu2core(int cpu)
114 {
115 #ifdef CONFIG_SMP
116         return cpu_logical_map(cpu) & 0x3f;
117 #else
118         return cvmx_get_core_num();
119 #endif
120 }
121
122 /**
123  * octeon_wdt_poke_irq - Poke the watchdog when an interrupt is received
124  *
125  * @cpl:
126  * @dev_id:
127  *
128  * Returns
129  */
130 static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id)
131 {
132         int cpu = raw_smp_processor_id();
133         unsigned int core = cpu2core(cpu);
134         int node = cpu_to_node(cpu);
135
136         if (do_countdown) {
137                 if (per_cpu_countdown[cpu] > 0) {
138                         /* We're alive, poke the watchdog */
139                         cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
140                         per_cpu_countdown[cpu]--;
141                 } else {
142                         /* Bad news, you are about to reboot. */
143                         disable_irq_nosync(cpl);
144                         cpumask_clear_cpu(cpu, &irq_enabled_cpus);
145                 }
146         } else {
147                 /* Not open, just ping away... */
148                 cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
149         }
150         return IRQ_HANDLED;
151 }
152
153 /* From setup.c */
154 extern int prom_putchar(char c);
155
156 /**
157  * octeon_wdt_write_string - Write a string to the uart
158  *
159  * @str:        String to write
160  */
161 static void octeon_wdt_write_string(const char *str)
162 {
163         /* Just loop writing one byte at a time */
164         while (*str)
165                 prom_putchar(*str++);
166 }
167
168 /**
169  * octeon_wdt_write_hex() - Write a hex number out of the uart
170  *
171  * @value:      Number to display
172  * @digits:     Number of digits to print (1 to 16)
173  */
174 static void octeon_wdt_write_hex(u64 value, int digits)
175 {
176         int d;
177         int v;
178
179         for (d = 0; d < digits; d++) {
180                 v = (value >> ((digits - d - 1) * 4)) & 0xf;
181                 if (v >= 10)
182                         prom_putchar('a' + v - 10);
183                 else
184                         prom_putchar('0' + v);
185         }
186 }
187
188 static const char reg_name[][3] = {
189         "$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
190         "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
191         "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
192         "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
193 };
194
195 /**
196  * octeon_wdt_nmi_stage3:
197  *
198  * NMI stage 3 handler. NMIs are handled in the following manner:
199  * 1) The first NMI handler enables CVMSEG and transfers from
200  * the bootbus region into normal memory. It is careful to not
201  * destroy any registers.
202  * 2) The second stage handler uses CVMSEG to save the registers
203  * and create a stack for C code. It then calls the third level
204  * handler with one argument, a pointer to the register values.
205  * 3) The third, and final, level handler is the following C
206  * function that prints out some useful infomration.
207  *
208  * @reg:    Pointer to register state before the NMI
209  */
210 void octeon_wdt_nmi_stage3(u64 reg[32])
211 {
212         u64 i;
213
214         unsigned int coreid = cvmx_get_core_num();
215         /*
216          * Save status and cause early to get them before any changes
217          * might happen.
218          */
219         u64 cp0_cause = read_c0_cause();
220         u64 cp0_status = read_c0_status();
221         u64 cp0_error_epc = read_c0_errorepc();
222         u64 cp0_epc = read_c0_epc();
223
224         /* Delay so output from all cores output is not jumbled together. */
225         udelay(85000 * coreid);
226
227         octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x");
228         octeon_wdt_write_hex(coreid, 2);
229         octeon_wdt_write_string(" ***\r\n");
230         for (i = 0; i < 32; i++) {
231                 octeon_wdt_write_string("\t");
232                 octeon_wdt_write_string(reg_name[i]);
233                 octeon_wdt_write_string("\t0x");
234                 octeon_wdt_write_hex(reg[i], 16);
235                 if (i & 1)
236                         octeon_wdt_write_string("\r\n");
237         }
238         octeon_wdt_write_string("\terr_epc\t0x");
239         octeon_wdt_write_hex(cp0_error_epc, 16);
240
241         octeon_wdt_write_string("\tepc\t0x");
242         octeon_wdt_write_hex(cp0_epc, 16);
243         octeon_wdt_write_string("\r\n");
244
245         octeon_wdt_write_string("\tstatus\t0x");
246         octeon_wdt_write_hex(cp0_status, 16);
247         octeon_wdt_write_string("\tcause\t0x");
248         octeon_wdt_write_hex(cp0_cause, 16);
249         octeon_wdt_write_string("\r\n");
250
251         /* The CIU register is different for each Octeon model. */
252         if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
253                 octeon_wdt_write_string("\tsrc_wd\t0x");
254                 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SRC_PPX_IP2_WDOG(coreid)), 16);
255                 octeon_wdt_write_string("\ten_wd\t0x");
256                 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_EN_PPX_IP2_WDOG(coreid)), 16);
257                 octeon_wdt_write_string("\r\n");
258                 octeon_wdt_write_string("\tsrc_rml\t0x");
259                 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SRC_PPX_IP2_RML(coreid)), 16);
260                 octeon_wdt_write_string("\ten_rml\t0x");
261                 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_EN_PPX_IP2_RML(coreid)), 16);
262                 octeon_wdt_write_string("\r\n");
263                 octeon_wdt_write_string("\tsum\t0x");
264                 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SUM_PPX_IP2(coreid)), 16);
265                 octeon_wdt_write_string("\r\n");
266         } else if (!octeon_has_feature(OCTEON_FEATURE_CIU3)) {
267                 octeon_wdt_write_string("\tsum0\t0x");
268                 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16);
269                 octeon_wdt_write_string("\ten0\t0x");
270                 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16);
271                 octeon_wdt_write_string("\r\n");
272         }
273
274         octeon_wdt_write_string("*** Chip soft reset soon ***\r\n");
275
276         /*
277          * G-30204: We must trigger a soft reset before watchdog
278          * does an incomplete job of doing it.
279          */
280         if (OCTEON_IS_OCTEON3() && !OCTEON_IS_MODEL(OCTEON_CN70XX)) {
281                 u64 scr;
282                 unsigned int node = cvmx_get_node_num();
283                 unsigned int lcore = cvmx_get_local_core_num();
284                 union cvmx_ciu_wdogx ciu_wdog;
285
286                 /*
287                  * Wait for other cores to print out information, but
288                  * not too long.  Do the soft reset before watchdog
289                  * can trigger it.
290                  */
291                 do {
292                         ciu_wdog.u64 = cvmx_read_csr_node(node, CVMX_CIU_WDOGX(lcore));
293                 } while (ciu_wdog.s.cnt > 0x10000);
294
295                 scr = cvmx_read_csr_node(0, CVMX_GSERX_SCRATCH(0));
296                 scr |= 1 << 11; /* Indicate watchdog in bit 11 */
297                 cvmx_write_csr_node(0, CVMX_GSERX_SCRATCH(0), scr);
298                 cvmx_write_csr_node(0, CVMX_RST_SOFT_RST, 1);
299         }
300 }
301
302 static int octeon_wdt_cpu_to_irq(int cpu)
303 {
304         unsigned int coreid;
305         int node;
306         int irq;
307
308         coreid = cpu2core(cpu);
309         node = cpu_to_node(cpu);
310
311         if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
312                 struct irq_domain *domain;
313                 int hwirq;
314
315                 domain = octeon_irq_get_block_domain(node,
316                                                      WD_BLOCK_NUMBER);
317                 hwirq = WD_BLOCK_NUMBER << 12 | 0x200 | coreid;
318                 irq = irq_find_mapping(domain, hwirq);
319         } else {
320                 irq = OCTEON_IRQ_WDOG0 + coreid;
321         }
322         return irq;
323 }
324
325 static int octeon_wdt_cpu_pre_down(unsigned int cpu)
326 {
327         unsigned int core;
328         int node;
329         union cvmx_ciu_wdogx ciu_wdog;
330
331         core = cpu2core(cpu);
332
333         node = cpu_to_node(cpu);
334
335         /* Poke the watchdog to clear out its state */
336         cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
337
338         /* Disable the hardware. */
339         ciu_wdog.u64 = 0;
340         cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
341
342         free_irq(octeon_wdt_cpu_to_irq(cpu), octeon_wdt_poke_irq);
343         return 0;
344 }
345
346 static int octeon_wdt_cpu_online(unsigned int cpu)
347 {
348         unsigned int core;
349         unsigned int irq;
350         union cvmx_ciu_wdogx ciu_wdog;
351         int node;
352         struct irq_domain *domain;
353         int hwirq;
354
355         core = cpu2core(cpu);
356         node = cpu_to_node(cpu);
357
358         octeon_wdt_bootvector[core].target_ptr = (u64)octeon_wdt_nmi_stage2;
359
360         /* Disable it before doing anything with the interrupts. */
361         ciu_wdog.u64 = 0;
362         cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
363
364         per_cpu_countdown[cpu] = countdown_reset;
365
366         if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
367                 /* Must get the domain for the watchdog block */
368                 domain = octeon_irq_get_block_domain(node, WD_BLOCK_NUMBER);
369
370                 /* Get a irq for the wd intsn (hardware interrupt) */
371                 hwirq = WD_BLOCK_NUMBER << 12 | 0x200 | core;
372                 irq = irq_create_mapping(domain, hwirq);
373                 irqd_set_trigger_type(irq_get_irq_data(irq),
374                                       IRQ_TYPE_EDGE_RISING);
375         } else
376                 irq = OCTEON_IRQ_WDOG0 + core;
377
378         if (request_irq(irq, octeon_wdt_poke_irq,
379                         IRQF_NO_THREAD, "octeon_wdt", octeon_wdt_poke_irq))
380                 panic("octeon_wdt: Couldn't obtain irq %d", irq);
381
382         /* Must set the irq affinity here */
383         if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
384                 cpumask_t mask;
385
386                 cpumask_clear(&mask);
387                 cpumask_set_cpu(cpu, &mask);
388                 irq_set_affinity(irq, &mask);
389         }
390
391         cpumask_set_cpu(cpu, &irq_enabled_cpus);
392
393         /* Poke the watchdog to clear out its state */
394         cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
395
396         /* Finally enable the watchdog now that all handlers are installed */
397         ciu_wdog.u64 = 0;
398         ciu_wdog.s.len = timeout_cnt;
399         ciu_wdog.s.mode = 3;    /* 3 = Interrupt + NMI + Soft-Reset */
400         cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
401
402         return 0;
403 }
404
405 static int octeon_wdt_ping(struct watchdog_device __always_unused *wdog)
406 {
407         int cpu;
408         int coreid;
409         int node;
410
411         if (disable)
412                 return 0;
413
414         for_each_online_cpu(cpu) {
415                 coreid = cpu2core(cpu);
416                 node = cpu_to_node(cpu);
417                 cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
418                 per_cpu_countdown[cpu] = countdown_reset;
419                 if ((countdown_reset || !do_countdown) &&
420                     !cpumask_test_cpu(cpu, &irq_enabled_cpus)) {
421                         /* We have to enable the irq */
422                         enable_irq(octeon_wdt_cpu_to_irq(cpu));
423                         cpumask_set_cpu(cpu, &irq_enabled_cpus);
424                 }
425         }
426         return 0;
427 }
428
429 static void octeon_wdt_calc_parameters(int t)
430 {
431         unsigned int periods;
432
433         timeout_sec = max_timeout_sec;
434
435
436         /*
437          * Find the largest interrupt period, that can evenly divide
438          * the requested heartbeat time.
439          */
440         while ((t % timeout_sec) != 0)
441                 timeout_sec--;
442
443         periods = t / timeout_sec;
444
445         /*
446          * The last two periods are after the irq is disabled, and
447          * then to the nmi, so we subtract them off.
448          */
449
450         countdown_reset = periods > 2 ? periods - 2 : 0;
451         heartbeat = t;
452         timeout_cnt = ((octeon_get_io_clock_rate() / divisor) * timeout_sec) >> 8;
453 }
454
455 static int octeon_wdt_set_timeout(struct watchdog_device *wdog,
456                                   unsigned int t)
457 {
458         int cpu;
459         int coreid;
460         union cvmx_ciu_wdogx ciu_wdog;
461         int node;
462
463         if (t <= 0)
464                 return -1;
465
466         octeon_wdt_calc_parameters(t);
467
468         if (disable)
469                 return 0;
470
471         for_each_online_cpu(cpu) {
472                 coreid = cpu2core(cpu);
473                 node = cpu_to_node(cpu);
474                 cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
475                 ciu_wdog.u64 = 0;
476                 ciu_wdog.s.len = timeout_cnt;
477                 ciu_wdog.s.mode = 3;    /* 3 = Interrupt + NMI + Soft-Reset */
478                 cvmx_write_csr_node(node, CVMX_CIU_WDOGX(coreid), ciu_wdog.u64);
479                 cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
480         }
481         octeon_wdt_ping(wdog); /* Get the irqs back on. */
482         return 0;
483 }
484
485 static int octeon_wdt_start(struct watchdog_device *wdog)
486 {
487         octeon_wdt_ping(wdog);
488         do_countdown = 1;
489         return 0;
490 }
491
492 static int octeon_wdt_stop(struct watchdog_device *wdog)
493 {
494         do_countdown = 0;
495         octeon_wdt_ping(wdog);
496         return 0;
497 }
498
499 static const struct watchdog_info octeon_wdt_info = {
500         .options = WDIOF_SETTIMEOUT | WDIOF_MAGICCLOSE | WDIOF_KEEPALIVEPING,
501         .identity = "OCTEON",
502 };
503
504 static const struct watchdog_ops octeon_wdt_ops = {
505         .owner          = THIS_MODULE,
506         .start          = octeon_wdt_start,
507         .stop           = octeon_wdt_stop,
508         .ping           = octeon_wdt_ping,
509         .set_timeout    = octeon_wdt_set_timeout,
510 };
511
512 static struct watchdog_device octeon_wdt = {
513         .info   = &octeon_wdt_info,
514         .ops    = &octeon_wdt_ops,
515 };
516
517 static enum cpuhp_state octeon_wdt_online;
518 /**
519  * octeon_wdt_init - Module/ driver initialization.
520  *
521  * Returns Zero on success
522  */
523 static int __init octeon_wdt_init(void)
524 {
525         int ret;
526
527         octeon_wdt_bootvector = cvmx_boot_vector_get();
528         if (!octeon_wdt_bootvector) {
529                 pr_err("Error: Cannot allocate boot vector.\n");
530                 return -ENOMEM;
531         }
532
533         if (OCTEON_IS_MODEL(OCTEON_CN68XX))
534                 divisor = 0x200;
535         else if (OCTEON_IS_MODEL(OCTEON_CN78XX))
536                 divisor = 0x400;
537         else
538                 divisor = 0x100;
539
540         /*
541          * Watchdog time expiration length = The 16 bits of LEN
542          * represent the most significant bits of a 24 bit decrementer
543          * that decrements every divisor cycle.
544          *
545          * Try for a timeout of 5 sec, if that fails a smaller number
546          * of even seconds,
547          */
548         max_timeout_sec = 6;
549         do {
550                 max_timeout_sec--;
551                 timeout_cnt = ((octeon_get_io_clock_rate() / divisor) * max_timeout_sec) >> 8;
552         } while (timeout_cnt > 65535);
553
554         BUG_ON(timeout_cnt == 0);
555
556         octeon_wdt_calc_parameters(heartbeat);
557
558         pr_info("Initial granularity %d Sec\n", timeout_sec);
559
560         octeon_wdt.timeout      = timeout_sec;
561         octeon_wdt.max_timeout  = UINT_MAX;
562
563         watchdog_set_nowayout(&octeon_wdt, nowayout);
564
565         ret = watchdog_register_device(&octeon_wdt);
566         if (ret) {
567                 pr_err("watchdog_register_device() failed: %d\n", ret);
568                 return ret;
569         }
570
571         if (disable) {
572                 pr_notice("disabled\n");
573                 return 0;
574         }
575
576         cpumask_clear(&irq_enabled_cpus);
577
578         ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "watchdog/octeon:online",
579                                 octeon_wdt_cpu_online, octeon_wdt_cpu_pre_down);
580         if (ret < 0)
581                 goto err;
582         octeon_wdt_online = ret;
583         return 0;
584 err:
585         cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
586         watchdog_unregister_device(&octeon_wdt);
587         return ret;
588 }
589
590 /**
591  * octeon_wdt_cleanup - Module / driver shutdown
592  */
593 static void __exit octeon_wdt_cleanup(void)
594 {
595         watchdog_unregister_device(&octeon_wdt);
596
597         if (disable)
598                 return;
599
600         cpuhp_remove_state(octeon_wdt_online);
601
602         /*
603          * Disable the boot-bus memory, the code it points to is soon
604          * to go missing.
605          */
606         cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
607 }
608
609 MODULE_LICENSE("GPL");
610 MODULE_AUTHOR("Cavium Inc. <support@cavium.com>");
611 MODULE_DESCRIPTION("Cavium Inc. OCTEON Watchdog driver.");
612 module_init(octeon_wdt_init);
613 module_exit(octeon_wdt_cleanup);