Merge tag 'leds-6.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/pavel/linux...
[platform/kernel/linux-starfive.git] / drivers / watchdog / dw_wdt.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2010-2011 Picochip Ltd., Jamie Iles
4  * https://www.picochip.com
5  *
6  * This file implements a driver for the Synopsys DesignWare watchdog device
7  * in the many subsystems. The watchdog has 16 different timeout periods
8  * and these are a function of the input clock frequency.
9  *
10  * The DesignWare watchdog cannot be stopped once it has been started so we
11  * do not implement a stop function. The watchdog core will continue to send
12  * heartbeat requests after the watchdog device has been closed.
13  */
14
15 #include <linux/bitops.h>
16 #include <linux/clk.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/kernel.h>
23 #include <linux/limits.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/of.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm.h>
29 #include <linux/reset.h>
30 #include <linux/watchdog.h>
31
32 #define WDOG_CONTROL_REG_OFFSET             0x00
33 #define WDOG_CONTROL_REG_WDT_EN_MASK        0x01
34 #define WDOG_CONTROL_REG_RESP_MODE_MASK     0x02
35 #define WDOG_TIMEOUT_RANGE_REG_OFFSET       0x04
36 #define WDOG_TIMEOUT_RANGE_TOPINIT_SHIFT    4
37 #define WDOG_CURRENT_COUNT_REG_OFFSET       0x08
38 #define WDOG_COUNTER_RESTART_REG_OFFSET     0x0c
39 #define WDOG_COUNTER_RESTART_KICK_VALUE     0x76
40 #define WDOG_INTERRUPT_STATUS_REG_OFFSET    0x10
41 #define WDOG_INTERRUPT_CLEAR_REG_OFFSET     0x14
42 #define WDOG_COMP_PARAMS_5_REG_OFFSET       0xe4
43 #define WDOG_COMP_PARAMS_4_REG_OFFSET       0xe8
44 #define WDOG_COMP_PARAMS_3_REG_OFFSET       0xec
45 #define WDOG_COMP_PARAMS_2_REG_OFFSET       0xf0
46 #define WDOG_COMP_PARAMS_1_REG_OFFSET       0xf4
47 #define WDOG_COMP_PARAMS_1_USE_FIX_TOP      BIT(6)
48 #define WDOG_COMP_VERSION_REG_OFFSET        0xf8
49 #define WDOG_COMP_TYPE_REG_OFFSET           0xfc
50
51 /* There are sixteen TOPs (timeout periods) that can be set in the watchdog. */
52 #define DW_WDT_NUM_TOPS         16
53 #define DW_WDT_FIX_TOP(_idx)    (1U << (16 + _idx))
54
55 #define DW_WDT_DEFAULT_SECONDS  30
56
57 static const u32 dw_wdt_fix_tops[DW_WDT_NUM_TOPS] = {
58         DW_WDT_FIX_TOP(0), DW_WDT_FIX_TOP(1), DW_WDT_FIX_TOP(2),
59         DW_WDT_FIX_TOP(3), DW_WDT_FIX_TOP(4), DW_WDT_FIX_TOP(5),
60         DW_WDT_FIX_TOP(6), DW_WDT_FIX_TOP(7), DW_WDT_FIX_TOP(8),
61         DW_WDT_FIX_TOP(9), DW_WDT_FIX_TOP(10), DW_WDT_FIX_TOP(11),
62         DW_WDT_FIX_TOP(12), DW_WDT_FIX_TOP(13), DW_WDT_FIX_TOP(14),
63         DW_WDT_FIX_TOP(15)
64 };
65
66 static bool nowayout = WATCHDOG_NOWAYOUT;
67 module_param(nowayout, bool, 0);
68 MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started "
69                  "(default=" __MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
70
71 enum dw_wdt_rmod {
72         DW_WDT_RMOD_RESET = 1,
73         DW_WDT_RMOD_IRQ = 2
74 };
75
76 struct dw_wdt_timeout {
77         u32 top_val;
78         unsigned int sec;
79         unsigned int msec;
80 };
81
82 struct dw_wdt {
83         void __iomem            *regs;
84         struct clk              *clk;
85         struct clk              *pclk;
86         unsigned long           rate;
87         enum dw_wdt_rmod        rmod;
88         struct dw_wdt_timeout   timeouts[DW_WDT_NUM_TOPS];
89         struct watchdog_device  wdd;
90         struct reset_control    *rst;
91         /* Save/restore */
92         u32                     control;
93         u32                     timeout;
94
95 #ifdef CONFIG_DEBUG_FS
96         struct dentry           *dbgfs_dir;
97 #endif
98 };
99
100 #define to_dw_wdt(wdd)  container_of(wdd, struct dw_wdt, wdd)
101
102 static inline int dw_wdt_is_enabled(struct dw_wdt *dw_wdt)
103 {
104         return readl(dw_wdt->regs + WDOG_CONTROL_REG_OFFSET) &
105                 WDOG_CONTROL_REG_WDT_EN_MASK;
106 }
107
108 static void dw_wdt_update_mode(struct dw_wdt *dw_wdt, enum dw_wdt_rmod rmod)
109 {
110         u32 val;
111
112         val = readl(dw_wdt->regs + WDOG_CONTROL_REG_OFFSET);
113         if (rmod == DW_WDT_RMOD_IRQ)
114                 val |= WDOG_CONTROL_REG_RESP_MODE_MASK;
115         else
116                 val &= ~WDOG_CONTROL_REG_RESP_MODE_MASK;
117         writel(val, dw_wdt->regs + WDOG_CONTROL_REG_OFFSET);
118
119         dw_wdt->rmod = rmod;
120 }
121
122 static unsigned int dw_wdt_find_best_top(struct dw_wdt *dw_wdt,
123                                          unsigned int timeout, u32 *top_val)
124 {
125         int idx;
126
127         /*
128          * Find a TOP with timeout greater or equal to the requested number.
129          * Note we'll select a TOP with maximum timeout if the requested
130          * timeout couldn't be reached.
131          */
132         for (idx = 0; idx < DW_WDT_NUM_TOPS; ++idx) {
133                 if (dw_wdt->timeouts[idx].sec >= timeout)
134                         break;
135         }
136
137         if (idx == DW_WDT_NUM_TOPS)
138                 --idx;
139
140         *top_val = dw_wdt->timeouts[idx].top_val;
141
142         return dw_wdt->timeouts[idx].sec;
143 }
144
145 static unsigned int dw_wdt_get_min_timeout(struct dw_wdt *dw_wdt)
146 {
147         int idx;
148
149         /*
150          * We'll find a timeout greater or equal to one second anyway because
151          * the driver probe would have failed if there was none.
152          */
153         for (idx = 0; idx < DW_WDT_NUM_TOPS; ++idx) {
154                 if (dw_wdt->timeouts[idx].sec)
155                         break;
156         }
157
158         return dw_wdt->timeouts[idx].sec;
159 }
160
161 static unsigned int dw_wdt_get_max_timeout_ms(struct dw_wdt *dw_wdt)
162 {
163         struct dw_wdt_timeout *timeout = &dw_wdt->timeouts[DW_WDT_NUM_TOPS - 1];
164         u64 msec;
165
166         msec = (u64)timeout->sec * MSEC_PER_SEC + timeout->msec;
167
168         return msec < UINT_MAX ? msec : UINT_MAX;
169 }
170
171 static unsigned int dw_wdt_get_timeout(struct dw_wdt *dw_wdt)
172 {
173         int top_val = readl(dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET) & 0xF;
174         int idx;
175
176         for (idx = 0; idx < DW_WDT_NUM_TOPS; ++idx) {
177                 if (dw_wdt->timeouts[idx].top_val == top_val)
178                         break;
179         }
180
181         /*
182          * In IRQ mode due to the two stages counter, the actual timeout is
183          * twice greater than the TOP setting.
184          */
185         return dw_wdt->timeouts[idx].sec * dw_wdt->rmod;
186 }
187
188 static int dw_wdt_ping(struct watchdog_device *wdd)
189 {
190         struct dw_wdt *dw_wdt = to_dw_wdt(wdd);
191
192         writel(WDOG_COUNTER_RESTART_KICK_VALUE, dw_wdt->regs +
193                WDOG_COUNTER_RESTART_REG_OFFSET);
194
195         return 0;
196 }
197
198 static int dw_wdt_set_timeout(struct watchdog_device *wdd, unsigned int top_s)
199 {
200         struct dw_wdt *dw_wdt = to_dw_wdt(wdd);
201         unsigned int timeout;
202         u32 top_val;
203
204         /*
205          * Note IRQ mode being enabled means having a non-zero pre-timeout
206          * setup. In this case we try to find a TOP as close to the half of the
207          * requested timeout as possible since DW Watchdog IRQ mode is designed
208          * in two stages way - first timeout rises the pre-timeout interrupt,
209          * second timeout performs the system reset. So basically the effective
210          * watchdog-caused reset happens after two watchdog TOPs elapsed.
211          */
212         timeout = dw_wdt_find_best_top(dw_wdt, DIV_ROUND_UP(top_s, dw_wdt->rmod),
213                                        &top_val);
214         if (dw_wdt->rmod == DW_WDT_RMOD_IRQ)
215                 wdd->pretimeout = timeout;
216         else
217                 wdd->pretimeout = 0;
218
219         /*
220          * Set the new value in the watchdog.  Some versions of dw_wdt
221          * have TOPINIT in the TIMEOUT_RANGE register (as per
222          * CP_WDT_DUAL_TOP in WDT_COMP_PARAMS_1).  On those we
223          * effectively get a pat of the watchdog right here.
224          */
225         writel(top_val | top_val << WDOG_TIMEOUT_RANGE_TOPINIT_SHIFT,
226                dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET);
227
228         /* Kick new TOP value into the watchdog counter if activated. */
229         if (watchdog_active(wdd))
230                 dw_wdt_ping(wdd);
231
232         /*
233          * In case users set bigger timeout value than HW can support,
234          * kernel(watchdog_dev.c) helps to feed watchdog before
235          * wdd->max_hw_heartbeat_ms
236          */
237         if (top_s * 1000 <= wdd->max_hw_heartbeat_ms)
238                 wdd->timeout = timeout * dw_wdt->rmod;
239         else
240                 wdd->timeout = top_s;
241
242         return 0;
243 }
244
245 static int dw_wdt_set_pretimeout(struct watchdog_device *wdd, unsigned int req)
246 {
247         struct dw_wdt *dw_wdt = to_dw_wdt(wdd);
248
249         /*
250          * We ignore actual value of the timeout passed from user-space
251          * using it as a flag whether the pretimeout functionality is intended
252          * to be activated.
253          */
254         dw_wdt_update_mode(dw_wdt, req ? DW_WDT_RMOD_IRQ : DW_WDT_RMOD_RESET);
255         dw_wdt_set_timeout(wdd, wdd->timeout);
256
257         return 0;
258 }
259
260 static void dw_wdt_arm_system_reset(struct dw_wdt *dw_wdt)
261 {
262         u32 val = readl(dw_wdt->regs + WDOG_CONTROL_REG_OFFSET);
263
264         /* Disable/enable interrupt mode depending on the RMOD flag. */
265         if (dw_wdt->rmod == DW_WDT_RMOD_IRQ)
266                 val |= WDOG_CONTROL_REG_RESP_MODE_MASK;
267         else
268                 val &= ~WDOG_CONTROL_REG_RESP_MODE_MASK;
269         /* Enable watchdog. */
270         val |= WDOG_CONTROL_REG_WDT_EN_MASK;
271         writel(val, dw_wdt->regs + WDOG_CONTROL_REG_OFFSET);
272 }
273
274 static int dw_wdt_start(struct watchdog_device *wdd)
275 {
276         struct dw_wdt *dw_wdt = to_dw_wdt(wdd);
277
278         dw_wdt_set_timeout(wdd, wdd->timeout);
279         dw_wdt_ping(&dw_wdt->wdd);
280         dw_wdt_arm_system_reset(dw_wdt);
281
282         return 0;
283 }
284
285 static int dw_wdt_stop(struct watchdog_device *wdd)
286 {
287         struct dw_wdt *dw_wdt = to_dw_wdt(wdd);
288
289         if (!dw_wdt->rst) {
290                 set_bit(WDOG_HW_RUNNING, &wdd->status);
291                 return 0;
292         }
293
294         reset_control_assert(dw_wdt->rst);
295         reset_control_deassert(dw_wdt->rst);
296
297         return 0;
298 }
299
300 static int dw_wdt_restart(struct watchdog_device *wdd,
301                           unsigned long action, void *data)
302 {
303         struct dw_wdt *dw_wdt = to_dw_wdt(wdd);
304
305         writel(0, dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET);
306         dw_wdt_update_mode(dw_wdt, DW_WDT_RMOD_RESET);
307         if (dw_wdt_is_enabled(dw_wdt))
308                 writel(WDOG_COUNTER_RESTART_KICK_VALUE,
309                        dw_wdt->regs + WDOG_COUNTER_RESTART_REG_OFFSET);
310         else
311                 dw_wdt_arm_system_reset(dw_wdt);
312
313         /* wait for reset to assert... */
314         mdelay(500);
315
316         return 0;
317 }
318
319 static unsigned int dw_wdt_get_timeleft(struct watchdog_device *wdd)
320 {
321         struct dw_wdt *dw_wdt = to_dw_wdt(wdd);
322         unsigned int sec;
323         u32 val;
324
325         val = readl(dw_wdt->regs + WDOG_CURRENT_COUNT_REG_OFFSET);
326         sec = val / dw_wdt->rate;
327
328         if (dw_wdt->rmod == DW_WDT_RMOD_IRQ) {
329                 val = readl(dw_wdt->regs + WDOG_INTERRUPT_STATUS_REG_OFFSET);
330                 if (!val)
331                         sec += wdd->pretimeout;
332         }
333
334         return sec;
335 }
336
337 static const struct watchdog_info dw_wdt_ident = {
338         .options        = WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT |
339                           WDIOF_MAGICCLOSE,
340         .identity       = "Synopsys DesignWare Watchdog",
341 };
342
343 static const struct watchdog_info dw_wdt_pt_ident = {
344         .options        = WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT |
345                           WDIOF_PRETIMEOUT | WDIOF_MAGICCLOSE,
346         .identity       = "Synopsys DesignWare Watchdog",
347 };
348
349 static const struct watchdog_ops dw_wdt_ops = {
350         .owner          = THIS_MODULE,
351         .start          = dw_wdt_start,
352         .stop           = dw_wdt_stop,
353         .ping           = dw_wdt_ping,
354         .set_timeout    = dw_wdt_set_timeout,
355         .set_pretimeout = dw_wdt_set_pretimeout,
356         .get_timeleft   = dw_wdt_get_timeleft,
357         .restart        = dw_wdt_restart,
358 };
359
360 static irqreturn_t dw_wdt_irq(int irq, void *devid)
361 {
362         struct dw_wdt *dw_wdt = devid;
363         u32 val;
364
365         /*
366          * We don't clear the IRQ status. It's supposed to be done by the
367          * following ping operations.
368          */
369         val = readl(dw_wdt->regs + WDOG_INTERRUPT_STATUS_REG_OFFSET);
370         if (!val)
371                 return IRQ_NONE;
372
373         watchdog_notify_pretimeout(&dw_wdt->wdd);
374
375         return IRQ_HANDLED;
376 }
377
378 static int dw_wdt_suspend(struct device *dev)
379 {
380         struct dw_wdt *dw_wdt = dev_get_drvdata(dev);
381
382         dw_wdt->control = readl(dw_wdt->regs + WDOG_CONTROL_REG_OFFSET);
383         dw_wdt->timeout = readl(dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET);
384
385         clk_disable_unprepare(dw_wdt->pclk);
386         clk_disable_unprepare(dw_wdt->clk);
387
388         return 0;
389 }
390
391 static int dw_wdt_resume(struct device *dev)
392 {
393         struct dw_wdt *dw_wdt = dev_get_drvdata(dev);
394         int err = clk_prepare_enable(dw_wdt->clk);
395
396         if (err)
397                 return err;
398
399         err = clk_prepare_enable(dw_wdt->pclk);
400         if (err) {
401                 clk_disable_unprepare(dw_wdt->clk);
402                 return err;
403         }
404
405         writel(dw_wdt->timeout, dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET);
406         writel(dw_wdt->control, dw_wdt->regs + WDOG_CONTROL_REG_OFFSET);
407
408         dw_wdt_ping(&dw_wdt->wdd);
409
410         return 0;
411 }
412
413 static DEFINE_SIMPLE_DEV_PM_OPS(dw_wdt_pm_ops, dw_wdt_suspend, dw_wdt_resume);
414
415 /*
416  * In case if DW WDT IP core is synthesized with fixed TOP feature disabled the
417  * TOPs array can be arbitrary ordered with nearly any sixteen uint numbers
418  * depending on the system engineer imagination. The next method handles the
419  * passed TOPs array to pre-calculate the effective timeouts and to sort the
420  * TOP items out in the ascending order with respect to the timeouts.
421  */
422
423 static void dw_wdt_handle_tops(struct dw_wdt *dw_wdt, const u32 *tops)
424 {
425         struct dw_wdt_timeout tout, *dst;
426         int val, tidx;
427         u64 msec;
428
429         /*
430          * We walk over the passed TOPs array and calculate corresponding
431          * timeouts in seconds and milliseconds. The milliseconds granularity
432          * is needed to distinguish the TOPs with very close timeouts and to
433          * set the watchdog max heartbeat setting further.
434          */
435         for (val = 0; val < DW_WDT_NUM_TOPS; ++val) {
436                 tout.top_val = val;
437                 tout.sec = tops[val] / dw_wdt->rate;
438                 msec = (u64)tops[val] * MSEC_PER_SEC;
439                 do_div(msec, dw_wdt->rate);
440                 tout.msec = msec - ((u64)tout.sec * MSEC_PER_SEC);
441
442                 /*
443                  * Find a suitable place for the current TOP in the timeouts
444                  * array so that the list is remained in the ascending order.
445                  */
446                 for (tidx = 0; tidx < val; ++tidx) {
447                         dst = &dw_wdt->timeouts[tidx];
448                         if (tout.sec > dst->sec || (tout.sec == dst->sec &&
449                             tout.msec >= dst->msec))
450                                 continue;
451                         else
452                                 swap(*dst, tout);
453                 }
454
455                 dw_wdt->timeouts[val] = tout;
456         }
457 }
458
459 static int dw_wdt_init_timeouts(struct dw_wdt *dw_wdt, struct device *dev)
460 {
461         u32 data, of_tops[DW_WDT_NUM_TOPS];
462         const u32 *tops;
463         int ret;
464
465         /*
466          * Retrieve custom or fixed counter values depending on the
467          * WDT_USE_FIX_TOP flag found in the component specific parameters
468          * #1 register.
469          */
470         data = readl(dw_wdt->regs + WDOG_COMP_PARAMS_1_REG_OFFSET);
471         if (data & WDOG_COMP_PARAMS_1_USE_FIX_TOP) {
472                 tops = dw_wdt_fix_tops;
473         } else {
474                 ret = of_property_read_variable_u32_array(dev_of_node(dev),
475                         "snps,watchdog-tops", of_tops, DW_WDT_NUM_TOPS,
476                         DW_WDT_NUM_TOPS);
477                 if (ret < 0) {
478                         dev_warn(dev, "No valid TOPs array specified\n");
479                         tops = dw_wdt_fix_tops;
480                 } else {
481                         tops = of_tops;
482                 }
483         }
484
485         /* Convert the specified TOPs into an array of watchdog timeouts. */
486         dw_wdt_handle_tops(dw_wdt, tops);
487         if (!dw_wdt->timeouts[DW_WDT_NUM_TOPS - 1].sec) {
488                 dev_err(dev, "No any valid TOP detected\n");
489                 return -EINVAL;
490         }
491
492         return 0;
493 }
494
495 #ifdef CONFIG_DEBUG_FS
496
497 #define DW_WDT_DBGFS_REG(_name, _off) \
498 {                                     \
499         .name = _name,                \
500         .offset = _off                \
501 }
502
503 static const struct debugfs_reg32 dw_wdt_dbgfs_regs[] = {
504         DW_WDT_DBGFS_REG("cr", WDOG_CONTROL_REG_OFFSET),
505         DW_WDT_DBGFS_REG("torr", WDOG_TIMEOUT_RANGE_REG_OFFSET),
506         DW_WDT_DBGFS_REG("ccvr", WDOG_CURRENT_COUNT_REG_OFFSET),
507         DW_WDT_DBGFS_REG("crr", WDOG_COUNTER_RESTART_REG_OFFSET),
508         DW_WDT_DBGFS_REG("stat", WDOG_INTERRUPT_STATUS_REG_OFFSET),
509         DW_WDT_DBGFS_REG("param5", WDOG_COMP_PARAMS_5_REG_OFFSET),
510         DW_WDT_DBGFS_REG("param4", WDOG_COMP_PARAMS_4_REG_OFFSET),
511         DW_WDT_DBGFS_REG("param3", WDOG_COMP_PARAMS_3_REG_OFFSET),
512         DW_WDT_DBGFS_REG("param2", WDOG_COMP_PARAMS_2_REG_OFFSET),
513         DW_WDT_DBGFS_REG("param1", WDOG_COMP_PARAMS_1_REG_OFFSET),
514         DW_WDT_DBGFS_REG("version", WDOG_COMP_VERSION_REG_OFFSET),
515         DW_WDT_DBGFS_REG("type", WDOG_COMP_TYPE_REG_OFFSET)
516 };
517
518 static void dw_wdt_dbgfs_init(struct dw_wdt *dw_wdt)
519 {
520         struct device *dev = dw_wdt->wdd.parent;
521         struct debugfs_regset32 *regset;
522
523         regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL);
524         if (!regset)
525                 return;
526
527         regset->regs = dw_wdt_dbgfs_regs;
528         regset->nregs = ARRAY_SIZE(dw_wdt_dbgfs_regs);
529         regset->base = dw_wdt->regs;
530
531         dw_wdt->dbgfs_dir = debugfs_create_dir(dev_name(dev), NULL);
532
533         debugfs_create_regset32("registers", 0444, dw_wdt->dbgfs_dir, regset);
534 }
535
536 static void dw_wdt_dbgfs_clear(struct dw_wdt *dw_wdt)
537 {
538         debugfs_remove_recursive(dw_wdt->dbgfs_dir);
539 }
540
541 #else /* !CONFIG_DEBUG_FS */
542
543 static void dw_wdt_dbgfs_init(struct dw_wdt *dw_wdt) {}
544 static void dw_wdt_dbgfs_clear(struct dw_wdt *dw_wdt) {}
545
546 #endif /* !CONFIG_DEBUG_FS */
547
548 static int dw_wdt_drv_probe(struct platform_device *pdev)
549 {
550         struct device *dev = &pdev->dev;
551         struct watchdog_device *wdd;
552         struct dw_wdt *dw_wdt;
553         int ret;
554
555         dw_wdt = devm_kzalloc(dev, sizeof(*dw_wdt), GFP_KERNEL);
556         if (!dw_wdt)
557                 return -ENOMEM;
558
559         dw_wdt->regs = devm_platform_ioremap_resource(pdev, 0);
560         if (IS_ERR(dw_wdt->regs))
561                 return PTR_ERR(dw_wdt->regs);
562
563         /*
564          * Try to request the watchdog dedicated timer clock source. It must
565          * be supplied if asynchronous mode is enabled. Otherwise fallback
566          * to the common timer/bus clocks configuration, in which the very
567          * first found clock supply both timer and APB signals.
568          */
569         dw_wdt->clk = devm_clk_get(dev, "tclk");
570         if (IS_ERR(dw_wdt->clk)) {
571                 dw_wdt->clk = devm_clk_get(dev, NULL);
572                 if (IS_ERR(dw_wdt->clk))
573                         return PTR_ERR(dw_wdt->clk);
574         }
575
576         ret = clk_prepare_enable(dw_wdt->clk);
577         if (ret)
578                 return ret;
579
580         dw_wdt->rate = clk_get_rate(dw_wdt->clk);
581         if (dw_wdt->rate == 0) {
582                 ret = -EINVAL;
583                 goto out_disable_clk;
584         }
585
586         /*
587          * Request APB clock if device is configured with async clocks mode.
588          * In this case both tclk and pclk clocks are supposed to be specified.
589          * Alas we can't know for sure whether async mode was really activated,
590          * so the pclk phandle reference is left optional. If it couldn't be
591          * found we consider the device configured in synchronous clocks mode.
592          */
593         dw_wdt->pclk = devm_clk_get_optional(dev, "pclk");
594         if (IS_ERR(dw_wdt->pclk)) {
595                 ret = PTR_ERR(dw_wdt->pclk);
596                 goto out_disable_clk;
597         }
598
599         ret = clk_prepare_enable(dw_wdt->pclk);
600         if (ret)
601                 goto out_disable_clk;
602
603         dw_wdt->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
604         if (IS_ERR(dw_wdt->rst)) {
605                 ret = PTR_ERR(dw_wdt->rst);
606                 goto out_disable_pclk;
607         }
608
609         /* Enable normal reset without pre-timeout by default. */
610         dw_wdt_update_mode(dw_wdt, DW_WDT_RMOD_RESET);
611
612         /*
613          * Pre-timeout IRQ is optional, since some hardware may lack support
614          * of it. Note we must request rising-edge IRQ, since the lane is left
615          * pending either until the next watchdog kick event or up to the
616          * system reset.
617          */
618         ret = platform_get_irq_optional(pdev, 0);
619         if (ret > 0) {
620                 ret = devm_request_irq(dev, ret, dw_wdt_irq,
621                                        IRQF_SHARED | IRQF_TRIGGER_RISING,
622                                        pdev->name, dw_wdt);
623                 if (ret)
624                         goto out_disable_pclk;
625
626                 dw_wdt->wdd.info = &dw_wdt_pt_ident;
627         } else {
628                 if (ret == -EPROBE_DEFER)
629                         goto out_disable_pclk;
630
631                 dw_wdt->wdd.info = &dw_wdt_ident;
632         }
633
634         reset_control_deassert(dw_wdt->rst);
635
636         ret = dw_wdt_init_timeouts(dw_wdt, dev);
637         if (ret)
638                 goto out_disable_clk;
639
640         wdd = &dw_wdt->wdd;
641         wdd->ops = &dw_wdt_ops;
642         wdd->min_timeout = dw_wdt_get_min_timeout(dw_wdt);
643         wdd->max_hw_heartbeat_ms = dw_wdt_get_max_timeout_ms(dw_wdt);
644         wdd->parent = dev;
645
646         watchdog_set_drvdata(wdd, dw_wdt);
647         watchdog_set_nowayout(wdd, nowayout);
648         watchdog_init_timeout(wdd, 0, dev);
649
650         /*
651          * If the watchdog is already running, use its already configured
652          * timeout. Otherwise use the default or the value provided through
653          * devicetree.
654          */
655         if (dw_wdt_is_enabled(dw_wdt)) {
656                 wdd->timeout = dw_wdt_get_timeout(dw_wdt);
657                 set_bit(WDOG_HW_RUNNING, &wdd->status);
658         } else {
659                 wdd->timeout = DW_WDT_DEFAULT_SECONDS;
660                 watchdog_init_timeout(wdd, 0, dev);
661         }
662
663         platform_set_drvdata(pdev, dw_wdt);
664
665         watchdog_set_restart_priority(wdd, 128);
666
667         ret = watchdog_register_device(wdd);
668         if (ret)
669                 goto out_disable_pclk;
670
671         dw_wdt_dbgfs_init(dw_wdt);
672
673         return 0;
674
675 out_disable_pclk:
676         clk_disable_unprepare(dw_wdt->pclk);
677
678 out_disable_clk:
679         clk_disable_unprepare(dw_wdt->clk);
680         return ret;
681 }
682
683 static int dw_wdt_drv_remove(struct platform_device *pdev)
684 {
685         struct dw_wdt *dw_wdt = platform_get_drvdata(pdev);
686
687         dw_wdt_dbgfs_clear(dw_wdt);
688
689         watchdog_unregister_device(&dw_wdt->wdd);
690         reset_control_assert(dw_wdt->rst);
691         clk_disable_unprepare(dw_wdt->pclk);
692         clk_disable_unprepare(dw_wdt->clk);
693
694         return 0;
695 }
696
697 #ifdef CONFIG_OF
698 static const struct of_device_id dw_wdt_of_match[] = {
699         { .compatible = "snps,dw-wdt", },
700         { /* sentinel */ }
701 };
702 MODULE_DEVICE_TABLE(of, dw_wdt_of_match);
703 #endif
704
705 static struct platform_driver dw_wdt_driver = {
706         .probe          = dw_wdt_drv_probe,
707         .remove         = dw_wdt_drv_remove,
708         .driver         = {
709                 .name   = "dw_wdt",
710                 .of_match_table = of_match_ptr(dw_wdt_of_match),
711                 .pm     = pm_sleep_ptr(&dw_wdt_pm_ops),
712         },
713 };
714
715 module_platform_driver(dw_wdt_driver);
716
717 MODULE_AUTHOR("Jamie Iles");
718 MODULE_DESCRIPTION("Synopsys DesignWare Watchdog Driver");
719 MODULE_LICENSE("GPL");