x86/efistub: Avoid placing the kernel below LOAD_PHYSICAL_ADDR
[platform/kernel/linux-starfive.git] / drivers / watchdog / aspeed_wdt.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2016 IBM Corporation
4  *
5  * Joel Stanley <joel@jms.id.au>
6  */
7
8 #include <linux/bits.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/kernel.h>
13 #include <linux/kstrtox.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/of_irq.h>
17 #include <linux/platform_device.h>
18 #include <linux/watchdog.h>
19
20 static bool nowayout = WATCHDOG_NOWAYOUT;
21 module_param(nowayout, bool, 0);
22 MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default="
23                                 __MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
24
25 struct aspeed_wdt_config {
26         u32 ext_pulse_width_mask;
27         u32 irq_shift;
28         u32 irq_mask;
29 };
30
31 struct aspeed_wdt {
32         struct watchdog_device  wdd;
33         void __iomem            *base;
34         u32                     ctrl;
35         const struct aspeed_wdt_config *cfg;
36 };
37
38 static const struct aspeed_wdt_config ast2400_config = {
39         .ext_pulse_width_mask = 0xff,
40         .irq_shift = 0,
41         .irq_mask = 0,
42 };
43
44 static const struct aspeed_wdt_config ast2500_config = {
45         .ext_pulse_width_mask = 0xfffff,
46         .irq_shift = 12,
47         .irq_mask = GENMASK(31, 12),
48 };
49
50 static const struct aspeed_wdt_config ast2600_config = {
51         .ext_pulse_width_mask = 0xfffff,
52         .irq_shift = 0,
53         .irq_mask = GENMASK(31, 10),
54 };
55
56 static const struct of_device_id aspeed_wdt_of_table[] = {
57         { .compatible = "aspeed,ast2400-wdt", .data = &ast2400_config },
58         { .compatible = "aspeed,ast2500-wdt", .data = &ast2500_config },
59         { .compatible = "aspeed,ast2600-wdt", .data = &ast2600_config },
60         { },
61 };
62 MODULE_DEVICE_TABLE(of, aspeed_wdt_of_table);
63
64 #define WDT_STATUS              0x00
65 #define WDT_RELOAD_VALUE        0x04
66 #define WDT_RESTART             0x08
67 #define WDT_CTRL                0x0C
68 #define   WDT_CTRL_BOOT_SECONDARY       BIT(7)
69 #define   WDT_CTRL_RESET_MODE_SOC       (0x00 << 5)
70 #define   WDT_CTRL_RESET_MODE_FULL_CHIP (0x01 << 5)
71 #define   WDT_CTRL_RESET_MODE_ARM_CPU   (0x10 << 5)
72 #define   WDT_CTRL_1MHZ_CLK             BIT(4)
73 #define   WDT_CTRL_WDT_EXT              BIT(3)
74 #define   WDT_CTRL_WDT_INTR             BIT(2)
75 #define   WDT_CTRL_RESET_SYSTEM         BIT(1)
76 #define   WDT_CTRL_ENABLE               BIT(0)
77 #define WDT_TIMEOUT_STATUS      0x10
78 #define   WDT_TIMEOUT_STATUS_IRQ                BIT(2)
79 #define   WDT_TIMEOUT_STATUS_BOOT_SECONDARY     BIT(1)
80 #define WDT_CLEAR_TIMEOUT_STATUS        0x14
81 #define   WDT_CLEAR_TIMEOUT_AND_BOOT_CODE_SELECTION     BIT(0)
82
83 /*
84  * WDT_RESET_WIDTH controls the characteristics of the external pulse (if
85  * enabled), specifically:
86  *
87  * * Pulse duration
88  * * Drive mode: push-pull vs open-drain
89  * * Polarity: Active high or active low
90  *
91  * Pulse duration configuration is available on both the AST2400 and AST2500,
92  * though the field changes between SoCs:
93  *
94  * AST2400: Bits 7:0
95  * AST2500: Bits 19:0
96  *
97  * This difference is captured in struct aspeed_wdt_config.
98  *
99  * The AST2500 exposes the drive mode and polarity options, but not in a
100  * regular fashion. For read purposes, bit 31 represents active high or low,
101  * and bit 30 represents push-pull or open-drain. With respect to write, magic
102  * values need to be written to the top byte to change the state of the drive
103  * mode and polarity bits. Any other value written to the top byte has no
104  * effect on the state of the drive mode or polarity bits. However, the pulse
105  * width value must be preserved (as desired) if written.
106  */
107 #define WDT_RESET_WIDTH         0x18
108 #define   WDT_RESET_WIDTH_ACTIVE_HIGH   BIT(31)
109 #define     WDT_ACTIVE_HIGH_MAGIC       (0xA5 << 24)
110 #define     WDT_ACTIVE_LOW_MAGIC        (0x5A << 24)
111 #define   WDT_RESET_WIDTH_PUSH_PULL     BIT(30)
112 #define     WDT_PUSH_PULL_MAGIC         (0xA8 << 24)
113 #define     WDT_OPEN_DRAIN_MAGIC        (0x8A << 24)
114
115 #define WDT_RESTART_MAGIC       0x4755
116
117 /* 32 bits at 1MHz, in milliseconds */
118 #define WDT_MAX_TIMEOUT_MS      4294967
119 #define WDT_DEFAULT_TIMEOUT     30
120 #define WDT_RATE_1MHZ           1000000
121
122 static struct aspeed_wdt *to_aspeed_wdt(struct watchdog_device *wdd)
123 {
124         return container_of(wdd, struct aspeed_wdt, wdd);
125 }
126
127 static void aspeed_wdt_enable(struct aspeed_wdt *wdt, int count)
128 {
129         wdt->ctrl |= WDT_CTRL_ENABLE;
130
131         writel(0, wdt->base + WDT_CTRL);
132         writel(count, wdt->base + WDT_RELOAD_VALUE);
133         writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
134         writel(wdt->ctrl, wdt->base + WDT_CTRL);
135 }
136
137 static int aspeed_wdt_start(struct watchdog_device *wdd)
138 {
139         struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
140
141         aspeed_wdt_enable(wdt, wdd->timeout * WDT_RATE_1MHZ);
142
143         return 0;
144 }
145
146 static int aspeed_wdt_stop(struct watchdog_device *wdd)
147 {
148         struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
149
150         wdt->ctrl &= ~WDT_CTRL_ENABLE;
151         writel(wdt->ctrl, wdt->base + WDT_CTRL);
152
153         return 0;
154 }
155
156 static int aspeed_wdt_ping(struct watchdog_device *wdd)
157 {
158         struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
159
160         writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
161
162         return 0;
163 }
164
165 static int aspeed_wdt_set_timeout(struct watchdog_device *wdd,
166                                   unsigned int timeout)
167 {
168         struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
169         u32 actual;
170
171         wdd->timeout = timeout;
172
173         actual = min(timeout, wdd->max_hw_heartbeat_ms / 1000);
174
175         writel(actual * WDT_RATE_1MHZ, wdt->base + WDT_RELOAD_VALUE);
176         writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
177
178         return 0;
179 }
180
181 static int aspeed_wdt_set_pretimeout(struct watchdog_device *wdd,
182                                      unsigned int pretimeout)
183 {
184         struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
185         u32 actual = pretimeout * WDT_RATE_1MHZ;
186         u32 s = wdt->cfg->irq_shift;
187         u32 m = wdt->cfg->irq_mask;
188
189         wdd->pretimeout = pretimeout;
190         wdt->ctrl &= ~m;
191         if (pretimeout)
192                 wdt->ctrl |= ((actual << s) & m) | WDT_CTRL_WDT_INTR;
193         else
194                 wdt->ctrl &= ~WDT_CTRL_WDT_INTR;
195
196         writel(wdt->ctrl, wdt->base + WDT_CTRL);
197
198         return 0;
199 }
200
201 static int aspeed_wdt_restart(struct watchdog_device *wdd,
202                               unsigned long action, void *data)
203 {
204         struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
205
206         wdt->ctrl &= ~WDT_CTRL_BOOT_SECONDARY;
207         aspeed_wdt_enable(wdt, 128 * WDT_RATE_1MHZ / 1000);
208
209         mdelay(1000);
210
211         return 0;
212 }
213
214 /* access_cs0 shows if cs0 is accessible, hence the reverted bit */
215 static ssize_t access_cs0_show(struct device *dev,
216                                struct device_attribute *attr, char *buf)
217 {
218         struct aspeed_wdt *wdt = dev_get_drvdata(dev);
219         u32 status = readl(wdt->base + WDT_TIMEOUT_STATUS);
220
221         return sysfs_emit(buf, "%u\n",
222                           !(status & WDT_TIMEOUT_STATUS_BOOT_SECONDARY));
223 }
224
225 static ssize_t access_cs0_store(struct device *dev,
226                                 struct device_attribute *attr, const char *buf,
227                                 size_t size)
228 {
229         struct aspeed_wdt *wdt = dev_get_drvdata(dev);
230         unsigned long val;
231
232         if (kstrtoul(buf, 10, &val))
233                 return -EINVAL;
234
235         if (val)
236                 writel(WDT_CLEAR_TIMEOUT_AND_BOOT_CODE_SELECTION,
237                        wdt->base + WDT_CLEAR_TIMEOUT_STATUS);
238
239         return size;
240 }
241
242 /*
243  * This attribute exists only if the system has booted from the alternate
244  * flash with 'alt-boot' option.
245  *
246  * At alternate flash the 'access_cs0' sysfs node provides:
247  *   ast2400: a way to get access to the primary SPI flash chip at CS0
248  *            after booting from the alternate chip at CS1.
249  *   ast2500: a way to restore the normal address mapping from
250  *            (CS0->CS1, CS1->CS0) to (CS0->CS0, CS1->CS1).
251  *
252  * Clearing the boot code selection and timeout counter also resets to the
253  * initial state the chip select line mapping. When the SoC is in normal
254  * mapping state (i.e. booted from CS0), clearing those bits does nothing for
255  * both versions of the SoC. For alternate boot mode (booted from CS1 due to
256  * wdt2 expiration) the behavior differs as described above.
257  *
258  * This option can be used with wdt2 (watchdog1) only.
259  */
260 static DEVICE_ATTR_RW(access_cs0);
261
262 static struct attribute *bswitch_attrs[] = {
263         &dev_attr_access_cs0.attr,
264         NULL
265 };
266 ATTRIBUTE_GROUPS(bswitch);
267
268 static const struct watchdog_ops aspeed_wdt_ops = {
269         .start          = aspeed_wdt_start,
270         .stop           = aspeed_wdt_stop,
271         .ping           = aspeed_wdt_ping,
272         .set_timeout    = aspeed_wdt_set_timeout,
273         .set_pretimeout = aspeed_wdt_set_pretimeout,
274         .restart        = aspeed_wdt_restart,
275         .owner          = THIS_MODULE,
276 };
277
278 static const struct watchdog_info aspeed_wdt_info = {
279         .options        = WDIOF_KEEPALIVEPING
280                         | WDIOF_MAGICCLOSE
281                         | WDIOF_SETTIMEOUT,
282         .identity       = KBUILD_MODNAME,
283 };
284
285 static const struct watchdog_info aspeed_wdt_pretimeout_info = {
286         .options        = WDIOF_KEEPALIVEPING
287                         | WDIOF_PRETIMEOUT
288                         | WDIOF_MAGICCLOSE
289                         | WDIOF_SETTIMEOUT,
290         .identity       = KBUILD_MODNAME,
291 };
292
293 static irqreturn_t aspeed_wdt_irq(int irq, void *arg)
294 {
295         struct watchdog_device *wdd = arg;
296         struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
297         u32 status = readl(wdt->base + WDT_TIMEOUT_STATUS);
298
299         if (status & WDT_TIMEOUT_STATUS_IRQ)
300                 watchdog_notify_pretimeout(wdd);
301
302         return IRQ_HANDLED;
303 }
304
305 static int aspeed_wdt_probe(struct platform_device *pdev)
306 {
307         struct device *dev = &pdev->dev;
308         const struct of_device_id *ofdid;
309         struct aspeed_wdt *wdt;
310         struct device_node *np;
311         const char *reset_type;
312         u32 duration;
313         u32 status;
314         int ret;
315
316         wdt = devm_kzalloc(dev, sizeof(*wdt), GFP_KERNEL);
317         if (!wdt)
318                 return -ENOMEM;
319
320         np = dev->of_node;
321
322         ofdid = of_match_node(aspeed_wdt_of_table, np);
323         if (!ofdid)
324                 return -EINVAL;
325         wdt->cfg = ofdid->data;
326
327         wdt->base = devm_platform_ioremap_resource(pdev, 0);
328         if (IS_ERR(wdt->base))
329                 return PTR_ERR(wdt->base);
330
331         wdt->wdd.info = &aspeed_wdt_info;
332
333         if (wdt->cfg->irq_mask) {
334                 int irq = platform_get_irq_optional(pdev, 0);
335
336                 if (irq > 0) {
337                         ret = devm_request_irq(dev, irq, aspeed_wdt_irq,
338                                                IRQF_SHARED, dev_name(dev),
339                                                wdt);
340                         if (ret)
341                                 return ret;
342
343                         wdt->wdd.info = &aspeed_wdt_pretimeout_info;
344                 }
345         }
346
347         wdt->wdd.ops = &aspeed_wdt_ops;
348         wdt->wdd.max_hw_heartbeat_ms = WDT_MAX_TIMEOUT_MS;
349         wdt->wdd.parent = dev;
350
351         wdt->wdd.timeout = WDT_DEFAULT_TIMEOUT;
352         watchdog_init_timeout(&wdt->wdd, 0, dev);
353
354         watchdog_set_nowayout(&wdt->wdd, nowayout);
355
356         /*
357          * On clock rates:
358          *  - ast2400 wdt can run at PCLK, or 1MHz
359          *  - ast2500 only runs at 1MHz, hard coding bit 4 to 1
360          *  - ast2600 always runs at 1MHz
361          *
362          * Set the ast2400 to run at 1MHz as it simplifies the driver.
363          */
364         if (of_device_is_compatible(np, "aspeed,ast2400-wdt"))
365                 wdt->ctrl = WDT_CTRL_1MHZ_CLK;
366
367         /*
368          * Control reset on a per-device basis to ensure the
369          * host is not affected by a BMC reboot
370          */
371         ret = of_property_read_string(np, "aspeed,reset-type", &reset_type);
372         if (ret) {
373                 wdt->ctrl |= WDT_CTRL_RESET_MODE_SOC | WDT_CTRL_RESET_SYSTEM;
374         } else {
375                 if (!strcmp(reset_type, "cpu"))
376                         wdt->ctrl |= WDT_CTRL_RESET_MODE_ARM_CPU |
377                                      WDT_CTRL_RESET_SYSTEM;
378                 else if (!strcmp(reset_type, "soc"))
379                         wdt->ctrl |= WDT_CTRL_RESET_MODE_SOC |
380                                      WDT_CTRL_RESET_SYSTEM;
381                 else if (!strcmp(reset_type, "system"))
382                         wdt->ctrl |= WDT_CTRL_RESET_MODE_FULL_CHIP |
383                                      WDT_CTRL_RESET_SYSTEM;
384                 else if (strcmp(reset_type, "none"))
385                         return -EINVAL;
386         }
387         if (of_property_read_bool(np, "aspeed,external-signal"))
388                 wdt->ctrl |= WDT_CTRL_WDT_EXT;
389         if (of_property_read_bool(np, "aspeed,alt-boot"))
390                 wdt->ctrl |= WDT_CTRL_BOOT_SECONDARY;
391
392         if (readl(wdt->base + WDT_CTRL) & WDT_CTRL_ENABLE)  {
393                 /*
394                  * The watchdog is running, but invoke aspeed_wdt_start() to
395                  * write wdt->ctrl to WDT_CTRL to ensure the watchdog's
396                  * configuration conforms to the driver's expectations.
397                  * Primarily, ensure we're using the 1MHz clock source.
398                  */
399                 aspeed_wdt_start(&wdt->wdd);
400                 set_bit(WDOG_HW_RUNNING, &wdt->wdd.status);
401         }
402
403         if ((of_device_is_compatible(np, "aspeed,ast2500-wdt")) ||
404                 (of_device_is_compatible(np, "aspeed,ast2600-wdt"))) {
405                 u32 reg = readl(wdt->base + WDT_RESET_WIDTH);
406
407                 reg &= wdt->cfg->ext_pulse_width_mask;
408                 if (of_property_read_bool(np, "aspeed,ext-active-high"))
409                         reg |= WDT_ACTIVE_HIGH_MAGIC;
410                 else
411                         reg |= WDT_ACTIVE_LOW_MAGIC;
412
413                 writel(reg, wdt->base + WDT_RESET_WIDTH);
414
415                 reg &= wdt->cfg->ext_pulse_width_mask;
416                 if (of_property_read_bool(np, "aspeed,ext-push-pull"))
417                         reg |= WDT_PUSH_PULL_MAGIC;
418                 else
419                         reg |= WDT_OPEN_DRAIN_MAGIC;
420
421                 writel(reg, wdt->base + WDT_RESET_WIDTH);
422         }
423
424         if (!of_property_read_u32(np, "aspeed,ext-pulse-duration", &duration)) {
425                 u32 max_duration = wdt->cfg->ext_pulse_width_mask + 1;
426
427                 if (duration == 0 || duration > max_duration) {
428                         dev_err(dev, "Invalid pulse duration: %uus\n",
429                                 duration);
430                         duration = max(1U, min(max_duration, duration));
431                         dev_info(dev, "Pulse duration set to %uus\n",
432                                  duration);
433                 }
434
435                 /*
436                  * The watchdog is always configured with a 1MHz source, so
437                  * there is no need to scale the microsecond value. However we
438                  * need to offset it - from the datasheet:
439                  *
440                  * "This register decides the asserting duration of wdt_ext and
441                  * wdt_rstarm signal. The default value is 0xFF. It means the
442                  * default asserting duration of wdt_ext and wdt_rstarm is
443                  * 256us."
444                  *
445                  * This implies a value of 0 gives a 1us pulse.
446                  */
447                 writel(duration - 1, wdt->base + WDT_RESET_WIDTH);
448         }
449
450         status = readl(wdt->base + WDT_TIMEOUT_STATUS);
451         if (status & WDT_TIMEOUT_STATUS_BOOT_SECONDARY) {
452                 wdt->wdd.bootstatus = WDIOF_CARDRESET;
453
454                 if (of_device_is_compatible(np, "aspeed,ast2400-wdt") ||
455                     of_device_is_compatible(np, "aspeed,ast2500-wdt"))
456                         wdt->wdd.groups = bswitch_groups;
457         }
458
459         dev_set_drvdata(dev, wdt);
460
461         return devm_watchdog_register_device(dev, &wdt->wdd);
462 }
463
464 static struct platform_driver aspeed_watchdog_driver = {
465         .probe = aspeed_wdt_probe,
466         .driver = {
467                 .name = KBUILD_MODNAME,
468                 .of_match_table = aspeed_wdt_of_table,
469         },
470 };
471
472 static int __init aspeed_wdt_init(void)
473 {
474         return platform_driver_register(&aspeed_watchdog_driver);
475 }
476 arch_initcall(aspeed_wdt_init);
477
478 static void __exit aspeed_wdt_exit(void)
479 {
480         platform_driver_unregister(&aspeed_watchdog_driver);
481 }
482 module_exit(aspeed_wdt_exit);
483
484 MODULE_DESCRIPTION("Aspeed Watchdog Driver");
485 MODULE_LICENSE("GPL");