Merge tag 'clk-for-linus-3.14-part2' of git://git.linaro.org/people/mike.turquette...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / vme / vme.c
1 /*
2  * VME Bridge Framework
3  *
4  * Author: Martyn Welch <martyn.welch@ge.com>
5  * Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc.
6  *
7  * Based on work by Tom Armistead and Ajit Prem
8  * Copyright 2004 Motorola Inc.
9  *
10  * This program is free software; you can redistribute  it and/or modify it
11  * under  the terms of  the GNU General  Public License as published by the
12  * Free Software Foundation;  either version 2 of the  License, or (at your
13  * option) any later version.
14  */
15
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/mm.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/pci.h>
23 #include <linux/poll.h>
24 #include <linux/highmem.h>
25 #include <linux/interrupt.h>
26 #include <linux/pagemap.h>
27 #include <linux/device.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/syscalls.h>
30 #include <linux/mutex.h>
31 #include <linux/spinlock.h>
32 #include <linux/slab.h>
33 #include <linux/vme.h>
34
35 #include "vme_bridge.h"
36
37 /* Bitmask and list of registered buses both protected by common mutex */
38 static unsigned int vme_bus_numbers;
39 static LIST_HEAD(vme_bus_list);
40 static DEFINE_MUTEX(vme_buses_lock);
41
42 static void __exit vme_exit(void);
43 static int __init vme_init(void);
44
45 static struct vme_dev *dev_to_vme_dev(struct device *dev)
46 {
47         return container_of(dev, struct vme_dev, dev);
48 }
49
50 /*
51  * Find the bridge that the resource is associated with.
52  */
53 static struct vme_bridge *find_bridge(struct vme_resource *resource)
54 {
55         /* Get list to search */
56         switch (resource->type) {
57         case VME_MASTER:
58                 return list_entry(resource->entry, struct vme_master_resource,
59                         list)->parent;
60                 break;
61         case VME_SLAVE:
62                 return list_entry(resource->entry, struct vme_slave_resource,
63                         list)->parent;
64                 break;
65         case VME_DMA:
66                 return list_entry(resource->entry, struct vme_dma_resource,
67                         list)->parent;
68                 break;
69         case VME_LM:
70                 return list_entry(resource->entry, struct vme_lm_resource,
71                         list)->parent;
72                 break;
73         default:
74                 printk(KERN_ERR "Unknown resource type\n");
75                 return NULL;
76                 break;
77         }
78 }
79
80 /*
81  * Allocate a contiguous block of memory for use by the driver. This is used to
82  * create the buffers for the slave windows.
83  */
84 void *vme_alloc_consistent(struct vme_resource *resource, size_t size,
85         dma_addr_t *dma)
86 {
87         struct vme_bridge *bridge;
88
89         if (resource == NULL) {
90                 printk(KERN_ERR "No resource\n");
91                 return NULL;
92         }
93
94         bridge = find_bridge(resource);
95         if (bridge == NULL) {
96                 printk(KERN_ERR "Can't find bridge\n");
97                 return NULL;
98         }
99
100         if (bridge->parent == NULL) {
101                 printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name);
102                 return NULL;
103         }
104
105         if (bridge->alloc_consistent == NULL) {
106                 printk(KERN_ERR "alloc_consistent not supported by bridge %s\n",
107                        bridge->name);
108                 return NULL;
109         }
110
111         return bridge->alloc_consistent(bridge->parent, size, dma);
112 }
113 EXPORT_SYMBOL(vme_alloc_consistent);
114
115 /*
116  * Free previously allocated contiguous block of memory.
117  */
118 void vme_free_consistent(struct vme_resource *resource, size_t size,
119         void *vaddr, dma_addr_t dma)
120 {
121         struct vme_bridge *bridge;
122
123         if (resource == NULL) {
124                 printk(KERN_ERR "No resource\n");
125                 return;
126         }
127
128         bridge = find_bridge(resource);
129         if (bridge == NULL) {
130                 printk(KERN_ERR "Can't find bridge\n");
131                 return;
132         }
133
134         if (bridge->parent == NULL) {
135                 printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name);
136                 return;
137         }
138
139         if (bridge->free_consistent == NULL) {
140                 printk(KERN_ERR "free_consistent not supported by bridge %s\n",
141                        bridge->name);
142                 return;
143         }
144
145         bridge->free_consistent(bridge->parent, size, vaddr, dma);
146 }
147 EXPORT_SYMBOL(vme_free_consistent);
148
149 size_t vme_get_size(struct vme_resource *resource)
150 {
151         int enabled, retval;
152         unsigned long long base, size;
153         dma_addr_t buf_base;
154         u32 aspace, cycle, dwidth;
155
156         switch (resource->type) {
157         case VME_MASTER:
158                 retval = vme_master_get(resource, &enabled, &base, &size,
159                         &aspace, &cycle, &dwidth);
160
161                 return size;
162                 break;
163         case VME_SLAVE:
164                 retval = vme_slave_get(resource, &enabled, &base, &size,
165                         &buf_base, &aspace, &cycle);
166
167                 return size;
168                 break;
169         case VME_DMA:
170                 return 0;
171                 break;
172         default:
173                 printk(KERN_ERR "Unknown resource type\n");
174                 return 0;
175                 break;
176         }
177 }
178 EXPORT_SYMBOL(vme_get_size);
179
180 static int vme_check_window(u32 aspace, unsigned long long vme_base,
181         unsigned long long size)
182 {
183         int retval = 0;
184
185         switch (aspace) {
186         case VME_A16:
187                 if (((vme_base + size) > VME_A16_MAX) ||
188                                 (vme_base > VME_A16_MAX))
189                         retval = -EFAULT;
190                 break;
191         case VME_A24:
192                 if (((vme_base + size) > VME_A24_MAX) ||
193                                 (vme_base > VME_A24_MAX))
194                         retval = -EFAULT;
195                 break;
196         case VME_A32:
197                 if (((vme_base + size) > VME_A32_MAX) ||
198                                 (vme_base > VME_A32_MAX))
199                         retval = -EFAULT;
200                 break;
201         case VME_A64:
202                 /*
203                  * Any value held in an unsigned long long can be used as the
204                  * base
205                  */
206                 break;
207         case VME_CRCSR:
208                 if (((vme_base + size) > VME_CRCSR_MAX) ||
209                                 (vme_base > VME_CRCSR_MAX))
210                         retval = -EFAULT;
211                 break;
212         case VME_USER1:
213         case VME_USER2:
214         case VME_USER3:
215         case VME_USER4:
216                 /* User Defined */
217                 break;
218         default:
219                 printk(KERN_ERR "Invalid address space\n");
220                 retval = -EINVAL;
221                 break;
222         }
223
224         return retval;
225 }
226
227 /*
228  * Request a slave image with specific attributes, return some unique
229  * identifier.
230  */
231 struct vme_resource *vme_slave_request(struct vme_dev *vdev, u32 address,
232         u32 cycle)
233 {
234         struct vme_bridge *bridge;
235         struct list_head *slave_pos = NULL;
236         struct vme_slave_resource *allocated_image = NULL;
237         struct vme_slave_resource *slave_image = NULL;
238         struct vme_resource *resource = NULL;
239
240         bridge = vdev->bridge;
241         if (bridge == NULL) {
242                 printk(KERN_ERR "Can't find VME bus\n");
243                 goto err_bus;
244         }
245
246         /* Loop through slave resources */
247         list_for_each(slave_pos, &bridge->slave_resources) {
248                 slave_image = list_entry(slave_pos,
249                         struct vme_slave_resource, list);
250
251                 if (slave_image == NULL) {
252                         printk(KERN_ERR "Registered NULL Slave resource\n");
253                         continue;
254                 }
255
256                 /* Find an unlocked and compatible image */
257                 mutex_lock(&slave_image->mtx);
258                 if (((slave_image->address_attr & address) == address) &&
259                         ((slave_image->cycle_attr & cycle) == cycle) &&
260                         (slave_image->locked == 0)) {
261
262                         slave_image->locked = 1;
263                         mutex_unlock(&slave_image->mtx);
264                         allocated_image = slave_image;
265                         break;
266                 }
267                 mutex_unlock(&slave_image->mtx);
268         }
269
270         /* No free image */
271         if (allocated_image == NULL)
272                 goto err_image;
273
274         resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
275         if (resource == NULL) {
276                 printk(KERN_WARNING "Unable to allocate resource structure\n");
277                 goto err_alloc;
278         }
279         resource->type = VME_SLAVE;
280         resource->entry = &allocated_image->list;
281
282         return resource;
283
284 err_alloc:
285         /* Unlock image */
286         mutex_lock(&slave_image->mtx);
287         slave_image->locked = 0;
288         mutex_unlock(&slave_image->mtx);
289 err_image:
290 err_bus:
291         return NULL;
292 }
293 EXPORT_SYMBOL(vme_slave_request);
294
295 int vme_slave_set(struct vme_resource *resource, int enabled,
296         unsigned long long vme_base, unsigned long long size,
297         dma_addr_t buf_base, u32 aspace, u32 cycle)
298 {
299         struct vme_bridge *bridge = find_bridge(resource);
300         struct vme_slave_resource *image;
301         int retval;
302
303         if (resource->type != VME_SLAVE) {
304                 printk(KERN_ERR "Not a slave resource\n");
305                 return -EINVAL;
306         }
307
308         image = list_entry(resource->entry, struct vme_slave_resource, list);
309
310         if (bridge->slave_set == NULL) {
311                 printk(KERN_ERR "Function not supported\n");
312                 return -ENOSYS;
313         }
314
315         if (!(((image->address_attr & aspace) == aspace) &&
316                 ((image->cycle_attr & cycle) == cycle))) {
317                 printk(KERN_ERR "Invalid attributes\n");
318                 return -EINVAL;
319         }
320
321         retval = vme_check_window(aspace, vme_base, size);
322         if (retval)
323                 return retval;
324
325         return bridge->slave_set(image, enabled, vme_base, size, buf_base,
326                 aspace, cycle);
327 }
328 EXPORT_SYMBOL(vme_slave_set);
329
330 int vme_slave_get(struct vme_resource *resource, int *enabled,
331         unsigned long long *vme_base, unsigned long long *size,
332         dma_addr_t *buf_base, u32 *aspace, u32 *cycle)
333 {
334         struct vme_bridge *bridge = find_bridge(resource);
335         struct vme_slave_resource *image;
336
337         if (resource->type != VME_SLAVE) {
338                 printk(KERN_ERR "Not a slave resource\n");
339                 return -EINVAL;
340         }
341
342         image = list_entry(resource->entry, struct vme_slave_resource, list);
343
344         if (bridge->slave_get == NULL) {
345                 printk(KERN_ERR "vme_slave_get not supported\n");
346                 return -EINVAL;
347         }
348
349         return bridge->slave_get(image, enabled, vme_base, size, buf_base,
350                 aspace, cycle);
351 }
352 EXPORT_SYMBOL(vme_slave_get);
353
354 void vme_slave_free(struct vme_resource *resource)
355 {
356         struct vme_slave_resource *slave_image;
357
358         if (resource->type != VME_SLAVE) {
359                 printk(KERN_ERR "Not a slave resource\n");
360                 return;
361         }
362
363         slave_image = list_entry(resource->entry, struct vme_slave_resource,
364                 list);
365         if (slave_image == NULL) {
366                 printk(KERN_ERR "Can't find slave resource\n");
367                 return;
368         }
369
370         /* Unlock image */
371         mutex_lock(&slave_image->mtx);
372         if (slave_image->locked == 0)
373                 printk(KERN_ERR "Image is already free\n");
374
375         slave_image->locked = 0;
376         mutex_unlock(&slave_image->mtx);
377
378         /* Free up resource memory */
379         kfree(resource);
380 }
381 EXPORT_SYMBOL(vme_slave_free);
382
383 /*
384  * Request a master image with specific attributes, return some unique
385  * identifier.
386  */
387 struct vme_resource *vme_master_request(struct vme_dev *vdev, u32 address,
388         u32 cycle, u32 dwidth)
389 {
390         struct vme_bridge *bridge;
391         struct list_head *master_pos = NULL;
392         struct vme_master_resource *allocated_image = NULL;
393         struct vme_master_resource *master_image = NULL;
394         struct vme_resource *resource = NULL;
395
396         bridge = vdev->bridge;
397         if (bridge == NULL) {
398                 printk(KERN_ERR "Can't find VME bus\n");
399                 goto err_bus;
400         }
401
402         /* Loop through master resources */
403         list_for_each(master_pos, &bridge->master_resources) {
404                 master_image = list_entry(master_pos,
405                         struct vme_master_resource, list);
406
407                 if (master_image == NULL) {
408                         printk(KERN_WARNING "Registered NULL master resource\n");
409                         continue;
410                 }
411
412                 /* Find an unlocked and compatible image */
413                 spin_lock(&master_image->lock);
414                 if (((master_image->address_attr & address) == address) &&
415                         ((master_image->cycle_attr & cycle) == cycle) &&
416                         ((master_image->width_attr & dwidth) == dwidth) &&
417                         (master_image->locked == 0)) {
418
419                         master_image->locked = 1;
420                         spin_unlock(&master_image->lock);
421                         allocated_image = master_image;
422                         break;
423                 }
424                 spin_unlock(&master_image->lock);
425         }
426
427         /* Check to see if we found a resource */
428         if (allocated_image == NULL) {
429                 printk(KERN_ERR "Can't find a suitable resource\n");
430                 goto err_image;
431         }
432
433         resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
434         if (resource == NULL) {
435                 printk(KERN_ERR "Unable to allocate resource structure\n");
436                 goto err_alloc;
437         }
438         resource->type = VME_MASTER;
439         resource->entry = &allocated_image->list;
440
441         return resource;
442
443 err_alloc:
444         /* Unlock image */
445         spin_lock(&master_image->lock);
446         master_image->locked = 0;
447         spin_unlock(&master_image->lock);
448 err_image:
449 err_bus:
450         return NULL;
451 }
452 EXPORT_SYMBOL(vme_master_request);
453
454 int vme_master_set(struct vme_resource *resource, int enabled,
455         unsigned long long vme_base, unsigned long long size, u32 aspace,
456         u32 cycle, u32 dwidth)
457 {
458         struct vme_bridge *bridge = find_bridge(resource);
459         struct vme_master_resource *image;
460         int retval;
461
462         if (resource->type != VME_MASTER) {
463                 printk(KERN_ERR "Not a master resource\n");
464                 return -EINVAL;
465         }
466
467         image = list_entry(resource->entry, struct vme_master_resource, list);
468
469         if (bridge->master_set == NULL) {
470                 printk(KERN_WARNING "vme_master_set not supported\n");
471                 return -EINVAL;
472         }
473
474         if (!(((image->address_attr & aspace) == aspace) &&
475                 ((image->cycle_attr & cycle) == cycle) &&
476                 ((image->width_attr & dwidth) == dwidth))) {
477                 printk(KERN_WARNING "Invalid attributes\n");
478                 return -EINVAL;
479         }
480
481         retval = vme_check_window(aspace, vme_base, size);
482         if (retval)
483                 return retval;
484
485         return bridge->master_set(image, enabled, vme_base, size, aspace,
486                 cycle, dwidth);
487 }
488 EXPORT_SYMBOL(vme_master_set);
489
490 int vme_master_get(struct vme_resource *resource, int *enabled,
491         unsigned long long *vme_base, unsigned long long *size, u32 *aspace,
492         u32 *cycle, u32 *dwidth)
493 {
494         struct vme_bridge *bridge = find_bridge(resource);
495         struct vme_master_resource *image;
496
497         if (resource->type != VME_MASTER) {
498                 printk(KERN_ERR "Not a master resource\n");
499                 return -EINVAL;
500         }
501
502         image = list_entry(resource->entry, struct vme_master_resource, list);
503
504         if (bridge->master_get == NULL) {
505                 printk(KERN_WARNING "vme_master_set not supported\n");
506                 return -EINVAL;
507         }
508
509         return bridge->master_get(image, enabled, vme_base, size, aspace,
510                 cycle, dwidth);
511 }
512 EXPORT_SYMBOL(vme_master_get);
513
514 /*
515  * Read data out of VME space into a buffer.
516  */
517 ssize_t vme_master_read(struct vme_resource *resource, void *buf, size_t count,
518         loff_t offset)
519 {
520         struct vme_bridge *bridge = find_bridge(resource);
521         struct vme_master_resource *image;
522         size_t length;
523
524         if (bridge->master_read == NULL) {
525                 printk(KERN_WARNING "Reading from resource not supported\n");
526                 return -EINVAL;
527         }
528
529         if (resource->type != VME_MASTER) {
530                 printk(KERN_ERR "Not a master resource\n");
531                 return -EINVAL;
532         }
533
534         image = list_entry(resource->entry, struct vme_master_resource, list);
535
536         length = vme_get_size(resource);
537
538         if (offset > length) {
539                 printk(KERN_WARNING "Invalid Offset\n");
540                 return -EFAULT;
541         }
542
543         if ((offset + count) > length)
544                 count = length - offset;
545
546         return bridge->master_read(image, buf, count, offset);
547
548 }
549 EXPORT_SYMBOL(vme_master_read);
550
551 /*
552  * Write data out to VME space from a buffer.
553  */
554 ssize_t vme_master_write(struct vme_resource *resource, void *buf,
555         size_t count, loff_t offset)
556 {
557         struct vme_bridge *bridge = find_bridge(resource);
558         struct vme_master_resource *image;
559         size_t length;
560
561         if (bridge->master_write == NULL) {
562                 printk(KERN_WARNING "Writing to resource not supported\n");
563                 return -EINVAL;
564         }
565
566         if (resource->type != VME_MASTER) {
567                 printk(KERN_ERR "Not a master resource\n");
568                 return -EINVAL;
569         }
570
571         image = list_entry(resource->entry, struct vme_master_resource, list);
572
573         length = vme_get_size(resource);
574
575         if (offset > length) {
576                 printk(KERN_WARNING "Invalid Offset\n");
577                 return -EFAULT;
578         }
579
580         if ((offset + count) > length)
581                 count = length - offset;
582
583         return bridge->master_write(image, buf, count, offset);
584 }
585 EXPORT_SYMBOL(vme_master_write);
586
587 /*
588  * Perform RMW cycle to provided location.
589  */
590 unsigned int vme_master_rmw(struct vme_resource *resource, unsigned int mask,
591         unsigned int compare, unsigned int swap, loff_t offset)
592 {
593         struct vme_bridge *bridge = find_bridge(resource);
594         struct vme_master_resource *image;
595
596         if (bridge->master_rmw == NULL) {
597                 printk(KERN_WARNING "Writing to resource not supported\n");
598                 return -EINVAL;
599         }
600
601         if (resource->type != VME_MASTER) {
602                 printk(KERN_ERR "Not a master resource\n");
603                 return -EINVAL;
604         }
605
606         image = list_entry(resource->entry, struct vme_master_resource, list);
607
608         return bridge->master_rmw(image, mask, compare, swap, offset);
609 }
610 EXPORT_SYMBOL(vme_master_rmw);
611
612 void vme_master_free(struct vme_resource *resource)
613 {
614         struct vme_master_resource *master_image;
615
616         if (resource->type != VME_MASTER) {
617                 printk(KERN_ERR "Not a master resource\n");
618                 return;
619         }
620
621         master_image = list_entry(resource->entry, struct vme_master_resource,
622                 list);
623         if (master_image == NULL) {
624                 printk(KERN_ERR "Can't find master resource\n");
625                 return;
626         }
627
628         /* Unlock image */
629         spin_lock(&master_image->lock);
630         if (master_image->locked == 0)
631                 printk(KERN_ERR "Image is already free\n");
632
633         master_image->locked = 0;
634         spin_unlock(&master_image->lock);
635
636         /* Free up resource memory */
637         kfree(resource);
638 }
639 EXPORT_SYMBOL(vme_master_free);
640
641 /*
642  * Request a DMA controller with specific attributes, return some unique
643  * identifier.
644  */
645 struct vme_resource *vme_dma_request(struct vme_dev *vdev, u32 route)
646 {
647         struct vme_bridge *bridge;
648         struct list_head *dma_pos = NULL;
649         struct vme_dma_resource *allocated_ctrlr = NULL;
650         struct vme_dma_resource *dma_ctrlr = NULL;
651         struct vme_resource *resource = NULL;
652
653         /* XXX Not checking resource attributes */
654         printk(KERN_ERR "No VME resource Attribute tests done\n");
655
656         bridge = vdev->bridge;
657         if (bridge == NULL) {
658                 printk(KERN_ERR "Can't find VME bus\n");
659                 goto err_bus;
660         }
661
662         /* Loop through DMA resources */
663         list_for_each(dma_pos, &bridge->dma_resources) {
664                 dma_ctrlr = list_entry(dma_pos,
665                         struct vme_dma_resource, list);
666
667                 if (dma_ctrlr == NULL) {
668                         printk(KERN_ERR "Registered NULL DMA resource\n");
669                         continue;
670                 }
671
672                 /* Find an unlocked and compatible controller */
673                 mutex_lock(&dma_ctrlr->mtx);
674                 if (((dma_ctrlr->route_attr & route) == route) &&
675                         (dma_ctrlr->locked == 0)) {
676
677                         dma_ctrlr->locked = 1;
678                         mutex_unlock(&dma_ctrlr->mtx);
679                         allocated_ctrlr = dma_ctrlr;
680                         break;
681                 }
682                 mutex_unlock(&dma_ctrlr->mtx);
683         }
684
685         /* Check to see if we found a resource */
686         if (allocated_ctrlr == NULL)
687                 goto err_ctrlr;
688
689         resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
690         if (resource == NULL) {
691                 printk(KERN_WARNING "Unable to allocate resource structure\n");
692                 goto err_alloc;
693         }
694         resource->type = VME_DMA;
695         resource->entry = &allocated_ctrlr->list;
696
697         return resource;
698
699 err_alloc:
700         /* Unlock image */
701         mutex_lock(&dma_ctrlr->mtx);
702         dma_ctrlr->locked = 0;
703         mutex_unlock(&dma_ctrlr->mtx);
704 err_ctrlr:
705 err_bus:
706         return NULL;
707 }
708 EXPORT_SYMBOL(vme_dma_request);
709
710 /*
711  * Start new list
712  */
713 struct vme_dma_list *vme_new_dma_list(struct vme_resource *resource)
714 {
715         struct vme_dma_resource *ctrlr;
716         struct vme_dma_list *dma_list;
717
718         if (resource->type != VME_DMA) {
719                 printk(KERN_ERR "Not a DMA resource\n");
720                 return NULL;
721         }
722
723         ctrlr = list_entry(resource->entry, struct vme_dma_resource, list);
724
725         dma_list = kmalloc(sizeof(struct vme_dma_list), GFP_KERNEL);
726         if (dma_list == NULL) {
727                 printk(KERN_ERR "Unable to allocate memory for new dma list\n");
728                 return NULL;
729         }
730         INIT_LIST_HEAD(&dma_list->entries);
731         dma_list->parent = ctrlr;
732         mutex_init(&dma_list->mtx);
733
734         return dma_list;
735 }
736 EXPORT_SYMBOL(vme_new_dma_list);
737
738 /*
739  * Create "Pattern" type attributes
740  */
741 struct vme_dma_attr *vme_dma_pattern_attribute(u32 pattern, u32 type)
742 {
743         struct vme_dma_attr *attributes;
744         struct vme_dma_pattern *pattern_attr;
745
746         attributes = kmalloc(sizeof(struct vme_dma_attr), GFP_KERNEL);
747         if (attributes == NULL) {
748                 printk(KERN_ERR "Unable to allocate memory for attributes structure\n");
749                 goto err_attr;
750         }
751
752         pattern_attr = kmalloc(sizeof(struct vme_dma_pattern), GFP_KERNEL);
753         if (pattern_attr == NULL) {
754                 printk(KERN_ERR "Unable to allocate memory for pattern attributes\n");
755                 goto err_pat;
756         }
757
758         attributes->type = VME_DMA_PATTERN;
759         attributes->private = (void *)pattern_attr;
760
761         pattern_attr->pattern = pattern;
762         pattern_attr->type = type;
763
764         return attributes;
765
766 err_pat:
767         kfree(attributes);
768 err_attr:
769         return NULL;
770 }
771 EXPORT_SYMBOL(vme_dma_pattern_attribute);
772
773 /*
774  * Create "PCI" type attributes
775  */
776 struct vme_dma_attr *vme_dma_pci_attribute(dma_addr_t address)
777 {
778         struct vme_dma_attr *attributes;
779         struct vme_dma_pci *pci_attr;
780
781         /* XXX Run some sanity checks here */
782
783         attributes = kmalloc(sizeof(struct vme_dma_attr), GFP_KERNEL);
784         if (attributes == NULL) {
785                 printk(KERN_ERR "Unable to allocate memory for attributes structure\n");
786                 goto err_attr;
787         }
788
789         pci_attr = kmalloc(sizeof(struct vme_dma_pci), GFP_KERNEL);
790         if (pci_attr == NULL) {
791                 printk(KERN_ERR "Unable to allocate memory for pci attributes\n");
792                 goto err_pci;
793         }
794
795
796
797         attributes->type = VME_DMA_PCI;
798         attributes->private = (void *)pci_attr;
799
800         pci_attr->address = address;
801
802         return attributes;
803
804 err_pci:
805         kfree(attributes);
806 err_attr:
807         return NULL;
808 }
809 EXPORT_SYMBOL(vme_dma_pci_attribute);
810
811 /*
812  * Create "VME" type attributes
813  */
814 struct vme_dma_attr *vme_dma_vme_attribute(unsigned long long address,
815         u32 aspace, u32 cycle, u32 dwidth)
816 {
817         struct vme_dma_attr *attributes;
818         struct vme_dma_vme *vme_attr;
819
820         attributes = kmalloc(
821                 sizeof(struct vme_dma_attr), GFP_KERNEL);
822         if (attributes == NULL) {
823                 printk(KERN_ERR "Unable to allocate memory for attributes structure\n");
824                 goto err_attr;
825         }
826
827         vme_attr = kmalloc(sizeof(struct vme_dma_vme), GFP_KERNEL);
828         if (vme_attr == NULL) {
829                 printk(KERN_ERR "Unable to allocate memory for vme attributes\n");
830                 goto err_vme;
831         }
832
833         attributes->type = VME_DMA_VME;
834         attributes->private = (void *)vme_attr;
835
836         vme_attr->address = address;
837         vme_attr->aspace = aspace;
838         vme_attr->cycle = cycle;
839         vme_attr->dwidth = dwidth;
840
841         return attributes;
842
843 err_vme:
844         kfree(attributes);
845 err_attr:
846         return NULL;
847 }
848 EXPORT_SYMBOL(vme_dma_vme_attribute);
849
850 /*
851  * Free attribute
852  */
853 void vme_dma_free_attribute(struct vme_dma_attr *attributes)
854 {
855         kfree(attributes->private);
856         kfree(attributes);
857 }
858 EXPORT_SYMBOL(vme_dma_free_attribute);
859
860 int vme_dma_list_add(struct vme_dma_list *list, struct vme_dma_attr *src,
861         struct vme_dma_attr *dest, size_t count)
862 {
863         struct vme_bridge *bridge = list->parent->parent;
864         int retval;
865
866         if (bridge->dma_list_add == NULL) {
867                 printk(KERN_WARNING "Link List DMA generation not supported\n");
868                 return -EINVAL;
869         }
870
871         if (!mutex_trylock(&list->mtx)) {
872                 printk(KERN_ERR "Link List already submitted\n");
873                 return -EINVAL;
874         }
875
876         retval = bridge->dma_list_add(list, src, dest, count);
877
878         mutex_unlock(&list->mtx);
879
880         return retval;
881 }
882 EXPORT_SYMBOL(vme_dma_list_add);
883
884 int vme_dma_list_exec(struct vme_dma_list *list)
885 {
886         struct vme_bridge *bridge = list->parent->parent;
887         int retval;
888
889         if (bridge->dma_list_exec == NULL) {
890                 printk(KERN_ERR "Link List DMA execution not supported\n");
891                 return -EINVAL;
892         }
893
894         mutex_lock(&list->mtx);
895
896         retval = bridge->dma_list_exec(list);
897
898         mutex_unlock(&list->mtx);
899
900         return retval;
901 }
902 EXPORT_SYMBOL(vme_dma_list_exec);
903
904 int vme_dma_list_free(struct vme_dma_list *list)
905 {
906         struct vme_bridge *bridge = list->parent->parent;
907         int retval;
908
909         if (bridge->dma_list_empty == NULL) {
910                 printk(KERN_WARNING "Emptying of Link Lists not supported\n");
911                 return -EINVAL;
912         }
913
914         if (!mutex_trylock(&list->mtx)) {
915                 printk(KERN_ERR "Link List in use\n");
916                 return -EINVAL;
917         }
918
919         /*
920          * Empty out all of the entries from the dma list. We need to go to the
921          * low level driver as dma entries are driver specific.
922          */
923         retval = bridge->dma_list_empty(list);
924         if (retval) {
925                 printk(KERN_ERR "Unable to empty link-list entries\n");
926                 mutex_unlock(&list->mtx);
927                 return retval;
928         }
929         mutex_unlock(&list->mtx);
930         kfree(list);
931
932         return retval;
933 }
934 EXPORT_SYMBOL(vme_dma_list_free);
935
936 int vme_dma_free(struct vme_resource *resource)
937 {
938         struct vme_dma_resource *ctrlr;
939
940         if (resource->type != VME_DMA) {
941                 printk(KERN_ERR "Not a DMA resource\n");
942                 return -EINVAL;
943         }
944
945         ctrlr = list_entry(resource->entry, struct vme_dma_resource, list);
946
947         if (!mutex_trylock(&ctrlr->mtx)) {
948                 printk(KERN_ERR "Resource busy, can't free\n");
949                 return -EBUSY;
950         }
951
952         if (!(list_empty(&ctrlr->pending) && list_empty(&ctrlr->running))) {
953                 printk(KERN_WARNING "Resource still processing transfers\n");
954                 mutex_unlock(&ctrlr->mtx);
955                 return -EBUSY;
956         }
957
958         ctrlr->locked = 0;
959
960         mutex_unlock(&ctrlr->mtx);
961
962         kfree(resource);
963
964         return 0;
965 }
966 EXPORT_SYMBOL(vme_dma_free);
967
968 void vme_irq_handler(struct vme_bridge *bridge, int level, int statid)
969 {
970         void (*call)(int, int, void *);
971         void *priv_data;
972
973         call = bridge->irq[level - 1].callback[statid].func;
974         priv_data = bridge->irq[level - 1].callback[statid].priv_data;
975
976         if (call != NULL)
977                 call(level, statid, priv_data);
978         else
979                 printk(KERN_WARNING "Spurilous VME interrupt, level:%x, vector:%x\n",
980                        level, statid);
981 }
982 EXPORT_SYMBOL(vme_irq_handler);
983
984 int vme_irq_request(struct vme_dev *vdev, int level, int statid,
985         void (*callback)(int, int, void *),
986         void *priv_data)
987 {
988         struct vme_bridge *bridge;
989
990         bridge = vdev->bridge;
991         if (bridge == NULL) {
992                 printk(KERN_ERR "Can't find VME bus\n");
993                 return -EINVAL;
994         }
995
996         if ((level < 1) || (level > 7)) {
997                 printk(KERN_ERR "Invalid interrupt level\n");
998                 return -EINVAL;
999         }
1000
1001         if (bridge->irq_set == NULL) {
1002                 printk(KERN_ERR "Configuring interrupts not supported\n");
1003                 return -EINVAL;
1004         }
1005
1006         mutex_lock(&bridge->irq_mtx);
1007
1008         if (bridge->irq[level - 1].callback[statid].func) {
1009                 mutex_unlock(&bridge->irq_mtx);
1010                 printk(KERN_WARNING "VME Interrupt already taken\n");
1011                 return -EBUSY;
1012         }
1013
1014         bridge->irq[level - 1].count++;
1015         bridge->irq[level - 1].callback[statid].priv_data = priv_data;
1016         bridge->irq[level - 1].callback[statid].func = callback;
1017
1018         /* Enable IRQ level */
1019         bridge->irq_set(bridge, level, 1, 1);
1020
1021         mutex_unlock(&bridge->irq_mtx);
1022
1023         return 0;
1024 }
1025 EXPORT_SYMBOL(vme_irq_request);
1026
1027 void vme_irq_free(struct vme_dev *vdev, int level, int statid)
1028 {
1029         struct vme_bridge *bridge;
1030
1031         bridge = vdev->bridge;
1032         if (bridge == NULL) {
1033                 printk(KERN_ERR "Can't find VME bus\n");
1034                 return;
1035         }
1036
1037         if ((level < 1) || (level > 7)) {
1038                 printk(KERN_ERR "Invalid interrupt level\n");
1039                 return;
1040         }
1041
1042         if (bridge->irq_set == NULL) {
1043                 printk(KERN_ERR "Configuring interrupts not supported\n");
1044                 return;
1045         }
1046
1047         mutex_lock(&bridge->irq_mtx);
1048
1049         bridge->irq[level - 1].count--;
1050
1051         /* Disable IRQ level if no more interrupts attached at this level*/
1052         if (bridge->irq[level - 1].count == 0)
1053                 bridge->irq_set(bridge, level, 0, 1);
1054
1055         bridge->irq[level - 1].callback[statid].func = NULL;
1056         bridge->irq[level - 1].callback[statid].priv_data = NULL;
1057
1058         mutex_unlock(&bridge->irq_mtx);
1059 }
1060 EXPORT_SYMBOL(vme_irq_free);
1061
1062 int vme_irq_generate(struct vme_dev *vdev, int level, int statid)
1063 {
1064         struct vme_bridge *bridge;
1065
1066         bridge = vdev->bridge;
1067         if (bridge == NULL) {
1068                 printk(KERN_ERR "Can't find VME bus\n");
1069                 return -EINVAL;
1070         }
1071
1072         if ((level < 1) || (level > 7)) {
1073                 printk(KERN_WARNING "Invalid interrupt level\n");
1074                 return -EINVAL;
1075         }
1076
1077         if (bridge->irq_generate == NULL) {
1078                 printk(KERN_WARNING "Interrupt generation not supported\n");
1079                 return -EINVAL;
1080         }
1081
1082         return bridge->irq_generate(bridge, level, statid);
1083 }
1084 EXPORT_SYMBOL(vme_irq_generate);
1085
1086 /*
1087  * Request the location monitor, return resource or NULL
1088  */
1089 struct vme_resource *vme_lm_request(struct vme_dev *vdev)
1090 {
1091         struct vme_bridge *bridge;
1092         struct list_head *lm_pos = NULL;
1093         struct vme_lm_resource *allocated_lm = NULL;
1094         struct vme_lm_resource *lm = NULL;
1095         struct vme_resource *resource = NULL;
1096
1097         bridge = vdev->bridge;
1098         if (bridge == NULL) {
1099                 printk(KERN_ERR "Can't find VME bus\n");
1100                 goto err_bus;
1101         }
1102
1103         /* Loop through DMA resources */
1104         list_for_each(lm_pos, &bridge->lm_resources) {
1105                 lm = list_entry(lm_pos,
1106                         struct vme_lm_resource, list);
1107
1108                 if (lm == NULL) {
1109                         printk(KERN_ERR "Registered NULL Location Monitor resource\n");
1110                         continue;
1111                 }
1112
1113                 /* Find an unlocked controller */
1114                 mutex_lock(&lm->mtx);
1115                 if (lm->locked == 0) {
1116                         lm->locked = 1;
1117                         mutex_unlock(&lm->mtx);
1118                         allocated_lm = lm;
1119                         break;
1120                 }
1121                 mutex_unlock(&lm->mtx);
1122         }
1123
1124         /* Check to see if we found a resource */
1125         if (allocated_lm == NULL)
1126                 goto err_lm;
1127
1128         resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
1129         if (resource == NULL) {
1130                 printk(KERN_ERR "Unable to allocate resource structure\n");
1131                 goto err_alloc;
1132         }
1133         resource->type = VME_LM;
1134         resource->entry = &allocated_lm->list;
1135
1136         return resource;
1137
1138 err_alloc:
1139         /* Unlock image */
1140         mutex_lock(&lm->mtx);
1141         lm->locked = 0;
1142         mutex_unlock(&lm->mtx);
1143 err_lm:
1144 err_bus:
1145         return NULL;
1146 }
1147 EXPORT_SYMBOL(vme_lm_request);
1148
1149 int vme_lm_count(struct vme_resource *resource)
1150 {
1151         struct vme_lm_resource *lm;
1152
1153         if (resource->type != VME_LM) {
1154                 printk(KERN_ERR "Not a Location Monitor resource\n");
1155                 return -EINVAL;
1156         }
1157
1158         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1159
1160         return lm->monitors;
1161 }
1162 EXPORT_SYMBOL(vme_lm_count);
1163
1164 int vme_lm_set(struct vme_resource *resource, unsigned long long lm_base,
1165         u32 aspace, u32 cycle)
1166 {
1167         struct vme_bridge *bridge = find_bridge(resource);
1168         struct vme_lm_resource *lm;
1169
1170         if (resource->type != VME_LM) {
1171                 printk(KERN_ERR "Not a Location Monitor resource\n");
1172                 return -EINVAL;
1173         }
1174
1175         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1176
1177         if (bridge->lm_set == NULL) {
1178                 printk(KERN_ERR "vme_lm_set not supported\n");
1179                 return -EINVAL;
1180         }
1181
1182         return bridge->lm_set(lm, lm_base, aspace, cycle);
1183 }
1184 EXPORT_SYMBOL(vme_lm_set);
1185
1186 int vme_lm_get(struct vme_resource *resource, unsigned long long *lm_base,
1187         u32 *aspace, u32 *cycle)
1188 {
1189         struct vme_bridge *bridge = find_bridge(resource);
1190         struct vme_lm_resource *lm;
1191
1192         if (resource->type != VME_LM) {
1193                 printk(KERN_ERR "Not a Location Monitor resource\n");
1194                 return -EINVAL;
1195         }
1196
1197         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1198
1199         if (bridge->lm_get == NULL) {
1200                 printk(KERN_ERR "vme_lm_get not supported\n");
1201                 return -EINVAL;
1202         }
1203
1204         return bridge->lm_get(lm, lm_base, aspace, cycle);
1205 }
1206 EXPORT_SYMBOL(vme_lm_get);
1207
1208 int vme_lm_attach(struct vme_resource *resource, int monitor,
1209         void (*callback)(int))
1210 {
1211         struct vme_bridge *bridge = find_bridge(resource);
1212         struct vme_lm_resource *lm;
1213
1214         if (resource->type != VME_LM) {
1215                 printk(KERN_ERR "Not a Location Monitor resource\n");
1216                 return -EINVAL;
1217         }
1218
1219         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1220
1221         if (bridge->lm_attach == NULL) {
1222                 printk(KERN_ERR "vme_lm_attach not supported\n");
1223                 return -EINVAL;
1224         }
1225
1226         return bridge->lm_attach(lm, monitor, callback);
1227 }
1228 EXPORT_SYMBOL(vme_lm_attach);
1229
1230 int vme_lm_detach(struct vme_resource *resource, int monitor)
1231 {
1232         struct vme_bridge *bridge = find_bridge(resource);
1233         struct vme_lm_resource *lm;
1234
1235         if (resource->type != VME_LM) {
1236                 printk(KERN_ERR "Not a Location Monitor resource\n");
1237                 return -EINVAL;
1238         }
1239
1240         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1241
1242         if (bridge->lm_detach == NULL) {
1243                 printk(KERN_ERR "vme_lm_detach not supported\n");
1244                 return -EINVAL;
1245         }
1246
1247         return bridge->lm_detach(lm, monitor);
1248 }
1249 EXPORT_SYMBOL(vme_lm_detach);
1250
1251 void vme_lm_free(struct vme_resource *resource)
1252 {
1253         struct vme_lm_resource *lm;
1254
1255         if (resource->type != VME_LM) {
1256                 printk(KERN_ERR "Not a Location Monitor resource\n");
1257                 return;
1258         }
1259
1260         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1261
1262         mutex_lock(&lm->mtx);
1263
1264         /* XXX
1265          * Check to see that there aren't any callbacks still attached, if
1266          * there are we should probably be detaching them!
1267          */
1268
1269         lm->locked = 0;
1270
1271         mutex_unlock(&lm->mtx);
1272
1273         kfree(resource);
1274 }
1275 EXPORT_SYMBOL(vme_lm_free);
1276
1277 int vme_slot_num(struct vme_dev *vdev)
1278 {
1279         struct vme_bridge *bridge;
1280
1281         bridge = vdev->bridge;
1282         if (bridge == NULL) {
1283                 printk(KERN_ERR "Can't find VME bus\n");
1284                 return -EINVAL;
1285         }
1286
1287         if (bridge->slot_get == NULL) {
1288                 printk(KERN_WARNING "vme_slot_num not supported\n");
1289                 return -EINVAL;
1290         }
1291
1292         return bridge->slot_get(bridge);
1293 }
1294 EXPORT_SYMBOL(vme_slot_num);
1295
1296 int vme_bus_num(struct vme_dev *vdev)
1297 {
1298         struct vme_bridge *bridge;
1299
1300         bridge = vdev->bridge;
1301         if (bridge == NULL) {
1302                 pr_err("Can't find VME bus\n");
1303                 return -EINVAL;
1304         }
1305
1306         return bridge->num;
1307 }
1308 EXPORT_SYMBOL(vme_bus_num);
1309
1310 /* - Bridge Registration --------------------------------------------------- */
1311
1312 static void vme_dev_release(struct device *dev)
1313 {
1314         kfree(dev_to_vme_dev(dev));
1315 }
1316
1317 int vme_register_bridge(struct vme_bridge *bridge)
1318 {
1319         int i;
1320         int ret = -1;
1321
1322         mutex_lock(&vme_buses_lock);
1323         for (i = 0; i < sizeof(vme_bus_numbers) * 8; i++) {
1324                 if ((vme_bus_numbers & (1 << i)) == 0) {
1325                         vme_bus_numbers |= (1 << i);
1326                         bridge->num = i;
1327                         INIT_LIST_HEAD(&bridge->devices);
1328                         list_add_tail(&bridge->bus_list, &vme_bus_list);
1329                         ret = 0;
1330                         break;
1331                 }
1332         }
1333         mutex_unlock(&vme_buses_lock);
1334
1335         return ret;
1336 }
1337 EXPORT_SYMBOL(vme_register_bridge);
1338
1339 void vme_unregister_bridge(struct vme_bridge *bridge)
1340 {
1341         struct vme_dev *vdev;
1342         struct vme_dev *tmp;
1343
1344         mutex_lock(&vme_buses_lock);
1345         vme_bus_numbers &= ~(1 << bridge->num);
1346         list_for_each_entry_safe(vdev, tmp, &bridge->devices, bridge_list) {
1347                 list_del(&vdev->drv_list);
1348                 list_del(&vdev->bridge_list);
1349                 device_unregister(&vdev->dev);
1350         }
1351         list_del(&bridge->bus_list);
1352         mutex_unlock(&vme_buses_lock);
1353 }
1354 EXPORT_SYMBOL(vme_unregister_bridge);
1355
1356 /* - Driver Registration --------------------------------------------------- */
1357
1358 static int __vme_register_driver_bus(struct vme_driver *drv,
1359         struct vme_bridge *bridge, unsigned int ndevs)
1360 {
1361         int err;
1362         unsigned int i;
1363         struct vme_dev *vdev;
1364         struct vme_dev *tmp;
1365
1366         for (i = 0; i < ndevs; i++) {
1367                 vdev = kzalloc(sizeof(struct vme_dev), GFP_KERNEL);
1368                 if (!vdev) {
1369                         err = -ENOMEM;
1370                         goto err_devalloc;
1371                 }
1372                 vdev->num = i;
1373                 vdev->bridge = bridge;
1374                 vdev->dev.platform_data = drv;
1375                 vdev->dev.release = vme_dev_release;
1376                 vdev->dev.parent = bridge->parent;
1377                 vdev->dev.bus = &vme_bus_type;
1378                 dev_set_name(&vdev->dev, "%s.%u-%u", drv->name, bridge->num,
1379                         vdev->num);
1380
1381                 err = device_register(&vdev->dev);
1382                 if (err)
1383                         goto err_reg;
1384
1385                 if (vdev->dev.platform_data) {
1386                         list_add_tail(&vdev->drv_list, &drv->devices);
1387                         list_add_tail(&vdev->bridge_list, &bridge->devices);
1388                 } else
1389                         device_unregister(&vdev->dev);
1390         }
1391         return 0;
1392
1393 err_reg:
1394         put_device(&vdev->dev);
1395         kfree(vdev);
1396 err_devalloc:
1397         list_for_each_entry_safe(vdev, tmp, &drv->devices, drv_list) {
1398                 list_del(&vdev->drv_list);
1399                 list_del(&vdev->bridge_list);
1400                 device_unregister(&vdev->dev);
1401         }
1402         return err;
1403 }
1404
1405 static int __vme_register_driver(struct vme_driver *drv, unsigned int ndevs)
1406 {
1407         struct vme_bridge *bridge;
1408         int err = 0;
1409
1410         mutex_lock(&vme_buses_lock);
1411         list_for_each_entry(bridge, &vme_bus_list, bus_list) {
1412                 /*
1413                  * This cannot cause trouble as we already have vme_buses_lock
1414                  * and if the bridge is removed, it will have to go through
1415                  * vme_unregister_bridge() to do it (which calls remove() on
1416                  * the bridge which in turn tries to acquire vme_buses_lock and
1417                  * will have to wait).
1418                  */
1419                 err = __vme_register_driver_bus(drv, bridge, ndevs);
1420                 if (err)
1421                         break;
1422         }
1423         mutex_unlock(&vme_buses_lock);
1424         return err;
1425 }
1426
1427 int vme_register_driver(struct vme_driver *drv, unsigned int ndevs)
1428 {
1429         int err;
1430
1431         drv->driver.name = drv->name;
1432         drv->driver.bus = &vme_bus_type;
1433         INIT_LIST_HEAD(&drv->devices);
1434
1435         err = driver_register(&drv->driver);
1436         if (err)
1437                 return err;
1438
1439         err = __vme_register_driver(drv, ndevs);
1440         if (err)
1441                 driver_unregister(&drv->driver);
1442
1443         return err;
1444 }
1445 EXPORT_SYMBOL(vme_register_driver);
1446
1447 void vme_unregister_driver(struct vme_driver *drv)
1448 {
1449         struct vme_dev *dev, *dev_tmp;
1450
1451         mutex_lock(&vme_buses_lock);
1452         list_for_each_entry_safe(dev, dev_tmp, &drv->devices, drv_list) {
1453                 list_del(&dev->drv_list);
1454                 list_del(&dev->bridge_list);
1455                 device_unregister(&dev->dev);
1456         }
1457         mutex_unlock(&vme_buses_lock);
1458
1459         driver_unregister(&drv->driver);
1460 }
1461 EXPORT_SYMBOL(vme_unregister_driver);
1462
1463 /* - Bus Registration ------------------------------------------------------ */
1464
1465 static int vme_bus_match(struct device *dev, struct device_driver *drv)
1466 {
1467         struct vme_driver *vme_drv;
1468
1469         vme_drv = container_of(drv, struct vme_driver, driver);
1470
1471         if (dev->platform_data == vme_drv) {
1472                 struct vme_dev *vdev = dev_to_vme_dev(dev);
1473
1474                 if (vme_drv->match && vme_drv->match(vdev))
1475                         return 1;
1476
1477                 dev->platform_data = NULL;
1478         }
1479         return 0;
1480 }
1481
1482 static int vme_bus_probe(struct device *dev)
1483 {
1484         int retval = -ENODEV;
1485         struct vme_driver *driver;
1486         struct vme_dev *vdev = dev_to_vme_dev(dev);
1487
1488         driver = dev->platform_data;
1489
1490         if (driver->probe != NULL)
1491                 retval = driver->probe(vdev);
1492
1493         return retval;
1494 }
1495
1496 static int vme_bus_remove(struct device *dev)
1497 {
1498         int retval = -ENODEV;
1499         struct vme_driver *driver;
1500         struct vme_dev *vdev = dev_to_vme_dev(dev);
1501
1502         driver = dev->platform_data;
1503
1504         if (driver->remove != NULL)
1505                 retval = driver->remove(vdev);
1506
1507         return retval;
1508 }
1509
1510 struct bus_type vme_bus_type = {
1511         .name = "vme",
1512         .match = vme_bus_match,
1513         .probe = vme_bus_probe,
1514         .remove = vme_bus_remove,
1515 };
1516 EXPORT_SYMBOL(vme_bus_type);
1517
1518 static int __init vme_init(void)
1519 {
1520         return bus_register(&vme_bus_type);
1521 }
1522
1523 static void __exit vme_exit(void)
1524 {
1525         bus_unregister(&vme_bus_type);
1526 }
1527
1528 subsys_initcall(vme_init);
1529 module_exit(vme_exit);