1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Virtio ring implementation.
4 * Copyright 2007 Rusty Russell IBM Corporation
6 #include <linux/virtio.h>
7 #include <linux/virtio_ring.h>
8 #include <linux/virtio_config.h>
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/hrtimer.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/spinlock.h>
18 /* For development, we want to crash whenever the ring is screwed. */
19 #define BAD_RING(_vq, fmt, args...) \
21 dev_err(&(_vq)->vq.vdev->dev, \
22 "%s:"fmt, (_vq)->vq.name, ##args); \
25 /* Caller is supposed to guarantee no reentry. */
26 #define START_USE(_vq) \
29 panic("%s:in_use = %i\n", \
30 (_vq)->vq.name, (_vq)->in_use); \
31 (_vq)->in_use = __LINE__; \
33 #define END_USE(_vq) \
34 do { BUG_ON(!(_vq)->in_use); (_vq)->in_use = 0; } while(0)
35 #define LAST_ADD_TIME_UPDATE(_vq) \
37 ktime_t now = ktime_get(); \
39 /* No kick or get, with .1 second between? Warn. */ \
40 if ((_vq)->last_add_time_valid) \
41 WARN_ON(ktime_to_ms(ktime_sub(now, \
42 (_vq)->last_add_time)) > 100); \
43 (_vq)->last_add_time = now; \
44 (_vq)->last_add_time_valid = true; \
46 #define LAST_ADD_TIME_CHECK(_vq) \
48 if ((_vq)->last_add_time_valid) { \
49 WARN_ON(ktime_to_ms(ktime_sub(ktime_get(), \
50 (_vq)->last_add_time)) > 100); \
53 #define LAST_ADD_TIME_INVALID(_vq) \
54 ((_vq)->last_add_time_valid = false)
56 #define BAD_RING(_vq, fmt, args...) \
58 dev_err(&_vq->vq.vdev->dev, \
59 "%s:"fmt, (_vq)->vq.name, ##args); \
60 (_vq)->broken = true; \
64 #define LAST_ADD_TIME_UPDATE(vq)
65 #define LAST_ADD_TIME_CHECK(vq)
66 #define LAST_ADD_TIME_INVALID(vq)
69 struct vring_desc_state_split {
70 void *data; /* Data for callback. */
71 struct vring_desc *indir_desc; /* Indirect descriptor, if any. */
74 struct vring_desc_state_packed {
75 void *data; /* Data for callback. */
76 struct vring_packed_desc *indir_desc; /* Indirect descriptor, if any. */
77 u16 num; /* Descriptor list length. */
78 u16 last; /* The last desc state in a list. */
81 struct vring_desc_extra {
82 dma_addr_t addr; /* Buffer DMA addr. */
83 u32 len; /* Buffer length. */
84 u16 flags; /* Descriptor flags. */
85 u16 next; /* The next desc state in a list. */
88 struct vring_virtqueue {
91 /* Is this a packed ring? */
94 /* Is DMA API used? */
97 /* Can we use weak barriers? */
100 /* Other side has made a mess, don't try any more. */
103 /* Host supports indirect buffers */
106 /* Host publishes avail event idx */
109 /* Head of free buffer list. */
110 unsigned int free_head;
111 /* Number we've added since last sync. */
112 unsigned int num_added;
114 /* Last used index we've seen. */
117 /* Hint for event idx: already triggered no need to disable. */
118 bool event_triggered;
121 /* Available for split ring */
123 /* Actual memory layout for this queue. */
126 /* Last written value to avail->flags */
127 u16 avail_flags_shadow;
130 * Last written value to avail->idx in
133 u16 avail_idx_shadow;
135 /* Per-descriptor state. */
136 struct vring_desc_state_split *desc_state;
137 struct vring_desc_extra *desc_extra;
139 /* DMA address and size information */
140 dma_addr_t queue_dma_addr;
141 size_t queue_size_in_bytes;
144 /* Available for packed ring */
146 /* Actual memory layout for this queue. */
149 struct vring_packed_desc *desc;
150 struct vring_packed_desc_event *driver;
151 struct vring_packed_desc_event *device;
154 /* Driver ring wrap counter. */
155 bool avail_wrap_counter;
157 /* Device ring wrap counter. */
158 bool used_wrap_counter;
160 /* Avail used flags. */
161 u16 avail_used_flags;
163 /* Index of the next avail descriptor. */
167 * Last written value to driver->flags in
170 u16 event_flags_shadow;
172 /* Per-descriptor state. */
173 struct vring_desc_state_packed *desc_state;
174 struct vring_desc_extra *desc_extra;
176 /* DMA address and size information */
177 dma_addr_t ring_dma_addr;
178 dma_addr_t driver_event_dma_addr;
179 dma_addr_t device_event_dma_addr;
180 size_t ring_size_in_bytes;
181 size_t event_size_in_bytes;
185 /* How to notify other side. FIXME: commonalize hcalls! */
186 bool (*notify)(struct virtqueue *vq);
188 /* DMA, allocation, and size information */
192 /* They're supposed to lock for us. */
195 /* Figure out if their kicks are too delayed. */
196 bool last_add_time_valid;
197 ktime_t last_add_time;
206 #define to_vvq(_vq) container_of(_vq, struct vring_virtqueue, vq)
208 static inline bool virtqueue_use_indirect(struct virtqueue *_vq,
209 unsigned int total_sg)
211 struct vring_virtqueue *vq = to_vvq(_vq);
214 * If the host supports indirect descriptor tables, and we have multiple
215 * buffers, then go indirect. FIXME: tune this threshold
217 return (vq->indirect && total_sg > 1 && vq->vq.num_free);
221 * Modern virtio devices have feature bits to specify whether they need a
222 * quirk and bypass the IOMMU. If not there, just use the DMA API.
224 * If there, the interaction between virtio and DMA API is messy.
226 * On most systems with virtio, physical addresses match bus addresses,
227 * and it doesn't particularly matter whether we use the DMA API.
229 * On some systems, including Xen and any system with a physical device
230 * that speaks virtio behind a physical IOMMU, we must use the DMA API
231 * for virtio DMA to work at all.
233 * On other systems, including SPARC and PPC64, virtio-pci devices are
234 * enumerated as though they are behind an IOMMU, but the virtio host
235 * ignores the IOMMU, so we must either pretend that the IOMMU isn't
236 * there or somehow map everything as the identity.
238 * For the time being, we preserve historic behavior and bypass the DMA
241 * TODO: install a per-device DMA ops structure that does the right thing
242 * taking into account all the above quirks, and use the DMA API
243 * unconditionally on data path.
246 static bool vring_use_dma_api(struct virtio_device *vdev)
248 if (!virtio_has_dma_quirk(vdev))
251 /* Otherwise, we are left to guess. */
253 * In theory, it's possible to have a buggy QEMU-supposed
254 * emulated Q35 IOMMU and Xen enabled at the same time. On
255 * such a configuration, virtio has never worked and will
256 * not work without an even larger kludge. Instead, enable
257 * the DMA API if we're a Xen guest, which at least allows
258 * all of the sensible Xen configurations to work correctly.
266 size_t virtio_max_dma_size(struct virtio_device *vdev)
268 size_t max_segment_size = SIZE_MAX;
270 if (vring_use_dma_api(vdev))
271 max_segment_size = dma_max_mapping_size(&vdev->dev);
273 return max_segment_size;
275 EXPORT_SYMBOL_GPL(virtio_max_dma_size);
277 static void *vring_alloc_queue(struct virtio_device *vdev, size_t size,
278 dma_addr_t *dma_handle, gfp_t flag)
280 if (vring_use_dma_api(vdev)) {
281 return dma_alloc_coherent(vdev->dev.parent, size,
284 void *queue = alloc_pages_exact(PAGE_ALIGN(size), flag);
287 phys_addr_t phys_addr = virt_to_phys(queue);
288 *dma_handle = (dma_addr_t)phys_addr;
291 * Sanity check: make sure we dind't truncate
292 * the address. The only arches I can find that
293 * have 64-bit phys_addr_t but 32-bit dma_addr_t
294 * are certain non-highmem MIPS and x86
295 * configurations, but these configurations
296 * should never allocate physical pages above 32
297 * bits, so this is fine. Just in case, throw a
298 * warning and abort if we end up with an
299 * unrepresentable address.
301 if (WARN_ON_ONCE(*dma_handle != phys_addr)) {
302 free_pages_exact(queue, PAGE_ALIGN(size));
310 static void vring_free_queue(struct virtio_device *vdev, size_t size,
311 void *queue, dma_addr_t dma_handle)
313 if (vring_use_dma_api(vdev))
314 dma_free_coherent(vdev->dev.parent, size, queue, dma_handle);
316 free_pages_exact(queue, PAGE_ALIGN(size));
320 * The DMA ops on various arches are rather gnarly right now, and
321 * making all of the arch DMA ops work on the vring device itself
322 * is a mess. For now, we use the parent device for DMA ops.
324 static inline struct device *vring_dma_dev(const struct vring_virtqueue *vq)
326 return vq->vq.vdev->dev.parent;
329 /* Map one sg entry. */
330 static dma_addr_t vring_map_one_sg(const struct vring_virtqueue *vq,
331 struct scatterlist *sg,
332 enum dma_data_direction direction)
334 if (!vq->use_dma_api)
335 return (dma_addr_t)sg_phys(sg);
338 * We can't use dma_map_sg, because we don't use scatterlists in
339 * the way it expects (we don't guarantee that the scatterlist
340 * will exist for the lifetime of the mapping).
342 return dma_map_page(vring_dma_dev(vq),
343 sg_page(sg), sg->offset, sg->length,
347 static dma_addr_t vring_map_single(const struct vring_virtqueue *vq,
348 void *cpu_addr, size_t size,
349 enum dma_data_direction direction)
351 if (!vq->use_dma_api)
352 return (dma_addr_t)virt_to_phys(cpu_addr);
354 return dma_map_single(vring_dma_dev(vq),
355 cpu_addr, size, direction);
358 static int vring_mapping_error(const struct vring_virtqueue *vq,
361 if (!vq->use_dma_api)
364 return dma_mapping_error(vring_dma_dev(vq), addr);
369 * Split ring specific functions - *_split().
372 static void vring_unmap_one_split_indirect(const struct vring_virtqueue *vq,
373 struct vring_desc *desc)
377 if (!vq->use_dma_api)
380 flags = virtio16_to_cpu(vq->vq.vdev, desc->flags);
382 if (flags & VRING_DESC_F_INDIRECT) {
383 dma_unmap_single(vring_dma_dev(vq),
384 virtio64_to_cpu(vq->vq.vdev, desc->addr),
385 virtio32_to_cpu(vq->vq.vdev, desc->len),
386 (flags & VRING_DESC_F_WRITE) ?
387 DMA_FROM_DEVICE : DMA_TO_DEVICE);
389 dma_unmap_page(vring_dma_dev(vq),
390 virtio64_to_cpu(vq->vq.vdev, desc->addr),
391 virtio32_to_cpu(vq->vq.vdev, desc->len),
392 (flags & VRING_DESC_F_WRITE) ?
393 DMA_FROM_DEVICE : DMA_TO_DEVICE);
397 static unsigned int vring_unmap_one_split(const struct vring_virtqueue *vq,
400 struct vring_desc_extra *extra = vq->split.desc_extra;
403 if (!vq->use_dma_api)
406 flags = extra[i].flags;
408 if (flags & VRING_DESC_F_INDIRECT) {
409 dma_unmap_single(vring_dma_dev(vq),
412 (flags & VRING_DESC_F_WRITE) ?
413 DMA_FROM_DEVICE : DMA_TO_DEVICE);
415 dma_unmap_page(vring_dma_dev(vq),
418 (flags & VRING_DESC_F_WRITE) ?
419 DMA_FROM_DEVICE : DMA_TO_DEVICE);
423 return extra[i].next;
426 static struct vring_desc *alloc_indirect_split(struct virtqueue *_vq,
427 unsigned int total_sg,
430 struct vring_desc *desc;
434 * We require lowmem mappings for the descriptors because
435 * otherwise virt_to_phys will give us bogus addresses in the
438 gfp &= ~__GFP_HIGHMEM;
440 desc = kmalloc_array(total_sg, sizeof(struct vring_desc), gfp);
444 for (i = 0; i < total_sg; i++)
445 desc[i].next = cpu_to_virtio16(_vq->vdev, i + 1);
449 static inline unsigned int virtqueue_add_desc_split(struct virtqueue *vq,
450 struct vring_desc *desc,
457 struct vring_virtqueue *vring = to_vvq(vq);
458 struct vring_desc_extra *extra = vring->split.desc_extra;
461 desc[i].flags = cpu_to_virtio16(vq->vdev, flags);
462 desc[i].addr = cpu_to_virtio64(vq->vdev, addr);
463 desc[i].len = cpu_to_virtio32(vq->vdev, len);
466 next = extra[i].next;
467 desc[i].next = cpu_to_virtio16(vq->vdev, next);
469 extra[i].addr = addr;
471 extra[i].flags = flags;
473 next = virtio16_to_cpu(vq->vdev, desc[i].next);
478 static inline int virtqueue_add_split(struct virtqueue *_vq,
479 struct scatterlist *sgs[],
480 unsigned int total_sg,
481 unsigned int out_sgs,
487 struct vring_virtqueue *vq = to_vvq(_vq);
488 struct scatterlist *sg;
489 struct vring_desc *desc;
490 unsigned int i, n, avail, descs_used, prev, err_idx;
496 BUG_ON(data == NULL);
497 BUG_ON(ctx && vq->indirect);
499 if (unlikely(vq->broken)) {
504 LAST_ADD_TIME_UPDATE(vq);
506 BUG_ON(total_sg == 0);
508 head = vq->free_head;
510 if (virtqueue_use_indirect(_vq, total_sg))
511 desc = alloc_indirect_split(_vq, total_sg, gfp);
514 WARN_ON_ONCE(total_sg > vq->split.vring.num && !vq->indirect);
518 /* Use a single buffer which doesn't continue */
520 /* Set up rest to use this indirect table. */
525 desc = vq->split.vring.desc;
527 descs_used = total_sg;
530 if (vq->vq.num_free < descs_used) {
531 pr_debug("Can't add buf len %i - avail = %i\n",
532 descs_used, vq->vq.num_free);
533 /* FIXME: for historical reasons, we force a notify here if
534 * there are outgoing parts to the buffer. Presumably the
535 * host should service the ring ASAP. */
544 for (n = 0; n < out_sgs; n++) {
545 for (sg = sgs[n]; sg; sg = sg_next(sg)) {
546 dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_TO_DEVICE);
547 if (vring_mapping_error(vq, addr))
551 /* Note that we trust indirect descriptor
552 * table since it use stream DMA mapping.
554 i = virtqueue_add_desc_split(_vq, desc, i, addr, sg->length,
559 for (; n < (out_sgs + in_sgs); n++) {
560 for (sg = sgs[n]; sg; sg = sg_next(sg)) {
561 dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_FROM_DEVICE);
562 if (vring_mapping_error(vq, addr))
566 /* Note that we trust indirect descriptor
567 * table since it use stream DMA mapping.
569 i = virtqueue_add_desc_split(_vq, desc, i, addr,
576 /* Last one doesn't continue. */
577 desc[prev].flags &= cpu_to_virtio16(_vq->vdev, ~VRING_DESC_F_NEXT);
578 if (!indirect && vq->use_dma_api)
579 vq->split.desc_extra[prev & (vq->split.vring.num - 1)].flags =
583 /* Now that the indirect table is filled in, map it. */
584 dma_addr_t addr = vring_map_single(
585 vq, desc, total_sg * sizeof(struct vring_desc),
587 if (vring_mapping_error(vq, addr))
590 virtqueue_add_desc_split(_vq, vq->split.vring.desc,
592 total_sg * sizeof(struct vring_desc),
593 VRING_DESC_F_INDIRECT,
597 /* We're using some buffers from the free list. */
598 vq->vq.num_free -= descs_used;
600 /* Update free pointer */
602 vq->free_head = vq->split.desc_extra[head].next;
606 /* Store token and indirect buffer state. */
607 vq->split.desc_state[head].data = data;
609 vq->split.desc_state[head].indir_desc = desc;
611 vq->split.desc_state[head].indir_desc = ctx;
613 /* Put entry in available array (but don't update avail->idx until they
615 avail = vq->split.avail_idx_shadow & (vq->split.vring.num - 1);
616 vq->split.vring.avail->ring[avail] = cpu_to_virtio16(_vq->vdev, head);
618 /* Descriptors and available array need to be set before we expose the
619 * new available array entries. */
620 virtio_wmb(vq->weak_barriers);
621 vq->split.avail_idx_shadow++;
622 vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
623 vq->split.avail_idx_shadow);
626 pr_debug("Added buffer head %i to %p\n", head, vq);
629 /* This is very unlikely, but theoretically possible. Kick
631 if (unlikely(vq->num_added == (1 << 16) - 1))
644 for (n = 0; n < total_sg; n++) {
648 vring_unmap_one_split_indirect(vq, &desc[i]);
649 i = virtio16_to_cpu(_vq->vdev, desc[i].next);
651 i = vring_unmap_one_split(vq, i);
661 static bool virtqueue_kick_prepare_split(struct virtqueue *_vq)
663 struct vring_virtqueue *vq = to_vvq(_vq);
668 /* We need to expose available array entries before checking avail
670 virtio_mb(vq->weak_barriers);
672 old = vq->split.avail_idx_shadow - vq->num_added;
673 new = vq->split.avail_idx_shadow;
676 LAST_ADD_TIME_CHECK(vq);
677 LAST_ADD_TIME_INVALID(vq);
680 needs_kick = vring_need_event(virtio16_to_cpu(_vq->vdev,
681 vring_avail_event(&vq->split.vring)),
684 needs_kick = !(vq->split.vring.used->flags &
685 cpu_to_virtio16(_vq->vdev,
686 VRING_USED_F_NO_NOTIFY));
692 static void detach_buf_split(struct vring_virtqueue *vq, unsigned int head,
696 __virtio16 nextflag = cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_NEXT);
698 /* Clear data ptr. */
699 vq->split.desc_state[head].data = NULL;
701 /* Put back on free list: unmap first-level descriptors and find end */
704 while (vq->split.vring.desc[i].flags & nextflag) {
705 vring_unmap_one_split(vq, i);
706 i = vq->split.desc_extra[i].next;
710 vring_unmap_one_split(vq, i);
711 vq->split.desc_extra[i].next = vq->free_head;
712 vq->free_head = head;
714 /* Plus final descriptor */
718 struct vring_desc *indir_desc =
719 vq->split.desc_state[head].indir_desc;
722 /* Free the indirect table, if any, now that it's unmapped. */
726 len = vq->split.desc_extra[head].len;
728 BUG_ON(!(vq->split.desc_extra[head].flags &
729 VRING_DESC_F_INDIRECT));
730 BUG_ON(len == 0 || len % sizeof(struct vring_desc));
732 for (j = 0; j < len / sizeof(struct vring_desc); j++)
733 vring_unmap_one_split_indirect(vq, &indir_desc[j]);
736 vq->split.desc_state[head].indir_desc = NULL;
738 *ctx = vq->split.desc_state[head].indir_desc;
742 static inline bool more_used_split(const struct vring_virtqueue *vq)
744 return vq->last_used_idx != virtio16_to_cpu(vq->vq.vdev,
745 vq->split.vring.used->idx);
748 static void *virtqueue_get_buf_ctx_split(struct virtqueue *_vq,
752 struct vring_virtqueue *vq = to_vvq(_vq);
759 if (unlikely(vq->broken)) {
764 if (!more_used_split(vq)) {
765 pr_debug("No more buffers in queue\n");
770 /* Only get used array entries after they have been exposed by host. */
771 virtio_rmb(vq->weak_barriers);
773 last_used = (vq->last_used_idx & (vq->split.vring.num - 1));
774 i = virtio32_to_cpu(_vq->vdev,
775 vq->split.vring.used->ring[last_used].id);
776 *len = virtio32_to_cpu(_vq->vdev,
777 vq->split.vring.used->ring[last_used].len);
779 if (unlikely(i >= vq->split.vring.num)) {
780 BAD_RING(vq, "id %u out of range\n", i);
783 if (unlikely(!vq->split.desc_state[i].data)) {
784 BAD_RING(vq, "id %u is not a head!\n", i);
788 /* detach_buf_split clears data, so grab it now. */
789 ret = vq->split.desc_state[i].data;
790 detach_buf_split(vq, i, ctx);
792 /* If we expect an interrupt for the next entry, tell host
793 * by writing event index and flush out the write before
794 * the read in the next get_buf call. */
795 if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT))
796 virtio_store_mb(vq->weak_barriers,
797 &vring_used_event(&vq->split.vring),
798 cpu_to_virtio16(_vq->vdev, vq->last_used_idx));
800 LAST_ADD_TIME_INVALID(vq);
806 static void virtqueue_disable_cb_split(struct virtqueue *_vq)
808 struct vring_virtqueue *vq = to_vvq(_vq);
810 if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) {
811 vq->split.avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
813 /* TODO: this is a hack. Figure out a cleaner value to write. */
814 vring_used_event(&vq->split.vring) = 0x0;
816 vq->split.vring.avail->flags =
817 cpu_to_virtio16(_vq->vdev,
818 vq->split.avail_flags_shadow);
822 static unsigned virtqueue_enable_cb_prepare_split(struct virtqueue *_vq)
824 struct vring_virtqueue *vq = to_vvq(_vq);
829 /* We optimistically turn back on interrupts, then check if there was
831 /* Depending on the VIRTIO_RING_F_EVENT_IDX feature, we need to
832 * either clear the flags bit or point the event index at the next
833 * entry. Always do both to keep code simple. */
834 if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
835 vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
837 vq->split.vring.avail->flags =
838 cpu_to_virtio16(_vq->vdev,
839 vq->split.avail_flags_shadow);
841 vring_used_event(&vq->split.vring) = cpu_to_virtio16(_vq->vdev,
842 last_used_idx = vq->last_used_idx);
844 return last_used_idx;
847 static bool virtqueue_poll_split(struct virtqueue *_vq, unsigned last_used_idx)
849 struct vring_virtqueue *vq = to_vvq(_vq);
851 return (u16)last_used_idx != virtio16_to_cpu(_vq->vdev,
852 vq->split.vring.used->idx);
855 static bool virtqueue_enable_cb_delayed_split(struct virtqueue *_vq)
857 struct vring_virtqueue *vq = to_vvq(_vq);
862 /* We optimistically turn back on interrupts, then check if there was
864 /* Depending on the VIRTIO_RING_F_USED_EVENT_IDX feature, we need to
865 * either clear the flags bit or point the event index at the next
866 * entry. Always update the event index to keep code simple. */
867 if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
868 vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
870 vq->split.vring.avail->flags =
871 cpu_to_virtio16(_vq->vdev,
872 vq->split.avail_flags_shadow);
874 /* TODO: tune this threshold */
875 bufs = (u16)(vq->split.avail_idx_shadow - vq->last_used_idx) * 3 / 4;
877 virtio_store_mb(vq->weak_barriers,
878 &vring_used_event(&vq->split.vring),
879 cpu_to_virtio16(_vq->vdev, vq->last_used_idx + bufs));
881 if (unlikely((u16)(virtio16_to_cpu(_vq->vdev, vq->split.vring.used->idx)
882 - vq->last_used_idx) > bufs)) {
891 static void *virtqueue_detach_unused_buf_split(struct virtqueue *_vq)
893 struct vring_virtqueue *vq = to_vvq(_vq);
899 for (i = 0; i < vq->split.vring.num; i++) {
900 if (!vq->split.desc_state[i].data)
902 /* detach_buf_split clears data, so grab it now. */
903 buf = vq->split.desc_state[i].data;
904 detach_buf_split(vq, i, NULL);
905 vq->split.avail_idx_shadow--;
906 vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
907 vq->split.avail_idx_shadow);
911 /* That should have freed everything. */
912 BUG_ON(vq->vq.num_free != vq->split.vring.num);
918 static struct virtqueue *vring_create_virtqueue_split(
921 unsigned int vring_align,
922 struct virtio_device *vdev,
926 bool (*notify)(struct virtqueue *),
927 void (*callback)(struct virtqueue *),
930 struct virtqueue *vq;
933 size_t queue_size_in_bytes;
936 /* We assume num is a power of 2. */
937 if (num & (num - 1)) {
938 dev_warn(&vdev->dev, "Bad virtqueue length %u\n", num);
942 /* TODO: allocate each queue chunk individually */
943 for (; num && vring_size(num, vring_align) > PAGE_SIZE; num /= 2) {
944 queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
946 GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
957 /* Try to get a single page. You are my only hope! */
958 queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
959 &dma_addr, GFP_KERNEL|__GFP_ZERO);
964 queue_size_in_bytes = vring_size(num, vring_align);
965 vring_init(&vring, num, queue, vring_align);
967 vq = __vring_new_virtqueue(index, vring, vdev, weak_barriers, context,
968 notify, callback, name);
970 vring_free_queue(vdev, queue_size_in_bytes, queue,
975 to_vvq(vq)->split.queue_dma_addr = dma_addr;
976 to_vvq(vq)->split.queue_size_in_bytes = queue_size_in_bytes;
977 to_vvq(vq)->we_own_ring = true;
984 * Packed ring specific functions - *_packed().
987 static void vring_unmap_state_packed(const struct vring_virtqueue *vq,
988 struct vring_desc_extra *state)
992 if (!vq->use_dma_api)
995 flags = state->flags;
997 if (flags & VRING_DESC_F_INDIRECT) {
998 dma_unmap_single(vring_dma_dev(vq),
999 state->addr, state->len,
1000 (flags & VRING_DESC_F_WRITE) ?
1001 DMA_FROM_DEVICE : DMA_TO_DEVICE);
1003 dma_unmap_page(vring_dma_dev(vq),
1004 state->addr, state->len,
1005 (flags & VRING_DESC_F_WRITE) ?
1006 DMA_FROM_DEVICE : DMA_TO_DEVICE);
1010 static void vring_unmap_desc_packed(const struct vring_virtqueue *vq,
1011 struct vring_packed_desc *desc)
1015 if (!vq->use_dma_api)
1018 flags = le16_to_cpu(desc->flags);
1020 if (flags & VRING_DESC_F_INDIRECT) {
1021 dma_unmap_single(vring_dma_dev(vq),
1022 le64_to_cpu(desc->addr),
1023 le32_to_cpu(desc->len),
1024 (flags & VRING_DESC_F_WRITE) ?
1025 DMA_FROM_DEVICE : DMA_TO_DEVICE);
1027 dma_unmap_page(vring_dma_dev(vq),
1028 le64_to_cpu(desc->addr),
1029 le32_to_cpu(desc->len),
1030 (flags & VRING_DESC_F_WRITE) ?
1031 DMA_FROM_DEVICE : DMA_TO_DEVICE);
1035 static struct vring_packed_desc *alloc_indirect_packed(unsigned int total_sg,
1038 struct vring_packed_desc *desc;
1041 * We require lowmem mappings for the descriptors because
1042 * otherwise virt_to_phys will give us bogus addresses in the
1045 gfp &= ~__GFP_HIGHMEM;
1047 desc = kmalloc_array(total_sg, sizeof(struct vring_packed_desc), gfp);
1052 static int virtqueue_add_indirect_packed(struct vring_virtqueue *vq,
1053 struct scatterlist *sgs[],
1054 unsigned int total_sg,
1055 unsigned int out_sgs,
1056 unsigned int in_sgs,
1060 struct vring_packed_desc *desc;
1061 struct scatterlist *sg;
1062 unsigned int i, n, err_idx;
1066 head = vq->packed.next_avail_idx;
1067 desc = alloc_indirect_packed(total_sg, gfp);
1069 if (unlikely(vq->vq.num_free < 1)) {
1070 pr_debug("Can't add buf len 1 - avail = 0\n");
1078 BUG_ON(id == vq->packed.vring.num);
1080 for (n = 0; n < out_sgs + in_sgs; n++) {
1081 for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1082 addr = vring_map_one_sg(vq, sg, n < out_sgs ?
1083 DMA_TO_DEVICE : DMA_FROM_DEVICE);
1084 if (vring_mapping_error(vq, addr))
1087 desc[i].flags = cpu_to_le16(n < out_sgs ?
1088 0 : VRING_DESC_F_WRITE);
1089 desc[i].addr = cpu_to_le64(addr);
1090 desc[i].len = cpu_to_le32(sg->length);
1095 /* Now that the indirect table is filled in, map it. */
1096 addr = vring_map_single(vq, desc,
1097 total_sg * sizeof(struct vring_packed_desc),
1099 if (vring_mapping_error(vq, addr))
1102 vq->packed.vring.desc[head].addr = cpu_to_le64(addr);
1103 vq->packed.vring.desc[head].len = cpu_to_le32(total_sg *
1104 sizeof(struct vring_packed_desc));
1105 vq->packed.vring.desc[head].id = cpu_to_le16(id);
1107 if (vq->use_dma_api) {
1108 vq->packed.desc_extra[id].addr = addr;
1109 vq->packed.desc_extra[id].len = total_sg *
1110 sizeof(struct vring_packed_desc);
1111 vq->packed.desc_extra[id].flags = VRING_DESC_F_INDIRECT |
1112 vq->packed.avail_used_flags;
1116 * A driver MUST NOT make the first descriptor in the list
1117 * available before all subsequent descriptors comprising
1118 * the list are made available.
1120 virtio_wmb(vq->weak_barriers);
1121 vq->packed.vring.desc[head].flags = cpu_to_le16(VRING_DESC_F_INDIRECT |
1122 vq->packed.avail_used_flags);
1124 /* We're using some buffers from the free list. */
1125 vq->vq.num_free -= 1;
1127 /* Update free pointer */
1129 if (n >= vq->packed.vring.num) {
1131 vq->packed.avail_wrap_counter ^= 1;
1132 vq->packed.avail_used_flags ^=
1133 1 << VRING_PACKED_DESC_F_AVAIL |
1134 1 << VRING_PACKED_DESC_F_USED;
1136 vq->packed.next_avail_idx = n;
1137 vq->free_head = vq->packed.desc_extra[id].next;
1139 /* Store token and indirect buffer state. */
1140 vq->packed.desc_state[id].num = 1;
1141 vq->packed.desc_state[id].data = data;
1142 vq->packed.desc_state[id].indir_desc = desc;
1143 vq->packed.desc_state[id].last = id;
1147 pr_debug("Added buffer head %i to %p\n", head, vq);
1155 for (i = 0; i < err_idx; i++)
1156 vring_unmap_desc_packed(vq, &desc[i]);
1164 static inline int virtqueue_add_packed(struct virtqueue *_vq,
1165 struct scatterlist *sgs[],
1166 unsigned int total_sg,
1167 unsigned int out_sgs,
1168 unsigned int in_sgs,
1173 struct vring_virtqueue *vq = to_vvq(_vq);
1174 struct vring_packed_desc *desc;
1175 struct scatterlist *sg;
1176 unsigned int i, n, c, descs_used, err_idx;
1177 __le16 head_flags, flags;
1178 u16 head, id, prev, curr, avail_used_flags;
1182 BUG_ON(data == NULL);
1183 BUG_ON(ctx && vq->indirect);
1185 if (unlikely(vq->broken)) {
1190 LAST_ADD_TIME_UPDATE(vq);
1192 BUG_ON(total_sg == 0);
1194 if (virtqueue_use_indirect(_vq, total_sg))
1195 return virtqueue_add_indirect_packed(vq, sgs, total_sg,
1196 out_sgs, in_sgs, data, gfp);
1198 head = vq->packed.next_avail_idx;
1199 avail_used_flags = vq->packed.avail_used_flags;
1201 WARN_ON_ONCE(total_sg > vq->packed.vring.num && !vq->indirect);
1203 desc = vq->packed.vring.desc;
1205 descs_used = total_sg;
1207 if (unlikely(vq->vq.num_free < descs_used)) {
1208 pr_debug("Can't add buf len %i - avail = %i\n",
1209 descs_used, vq->vq.num_free);
1215 BUG_ON(id == vq->packed.vring.num);
1219 for (n = 0; n < out_sgs + in_sgs; n++) {
1220 for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1221 dma_addr_t addr = vring_map_one_sg(vq, sg, n < out_sgs ?
1222 DMA_TO_DEVICE : DMA_FROM_DEVICE);
1223 if (vring_mapping_error(vq, addr))
1226 flags = cpu_to_le16(vq->packed.avail_used_flags |
1227 (++c == total_sg ? 0 : VRING_DESC_F_NEXT) |
1228 (n < out_sgs ? 0 : VRING_DESC_F_WRITE));
1232 desc[i].flags = flags;
1234 desc[i].addr = cpu_to_le64(addr);
1235 desc[i].len = cpu_to_le32(sg->length);
1236 desc[i].id = cpu_to_le16(id);
1238 if (unlikely(vq->use_dma_api)) {
1239 vq->packed.desc_extra[curr].addr = addr;
1240 vq->packed.desc_extra[curr].len = sg->length;
1241 vq->packed.desc_extra[curr].flags =
1245 curr = vq->packed.desc_extra[curr].next;
1247 if ((unlikely(++i >= vq->packed.vring.num))) {
1249 vq->packed.avail_used_flags ^=
1250 1 << VRING_PACKED_DESC_F_AVAIL |
1251 1 << VRING_PACKED_DESC_F_USED;
1257 vq->packed.avail_wrap_counter ^= 1;
1259 /* We're using some buffers from the free list. */
1260 vq->vq.num_free -= descs_used;
1262 /* Update free pointer */
1263 vq->packed.next_avail_idx = i;
1264 vq->free_head = curr;
1267 vq->packed.desc_state[id].num = descs_used;
1268 vq->packed.desc_state[id].data = data;
1269 vq->packed.desc_state[id].indir_desc = ctx;
1270 vq->packed.desc_state[id].last = prev;
1273 * A driver MUST NOT make the first descriptor in the list
1274 * available before all subsequent descriptors comprising
1275 * the list are made available.
1277 virtio_wmb(vq->weak_barriers);
1278 vq->packed.vring.desc[head].flags = head_flags;
1279 vq->num_added += descs_used;
1281 pr_debug("Added buffer head %i to %p\n", head, vq);
1289 curr = vq->free_head;
1291 vq->packed.avail_used_flags = avail_used_flags;
1293 for (n = 0; n < total_sg; n++) {
1296 vring_unmap_state_packed(vq,
1297 &vq->packed.desc_extra[curr]);
1298 curr = vq->packed.desc_extra[curr].next;
1300 if (i >= vq->packed.vring.num)
1308 static bool virtqueue_kick_prepare_packed(struct virtqueue *_vq)
1310 struct vring_virtqueue *vq = to_vvq(_vq);
1311 u16 new, old, off_wrap, flags, wrap_counter, event_idx;
1324 * We need to expose the new flags value before checking notification
1327 virtio_mb(vq->weak_barriers);
1329 old = vq->packed.next_avail_idx - vq->num_added;
1330 new = vq->packed.next_avail_idx;
1333 snapshot.u32 = *(u32 *)vq->packed.vring.device;
1334 flags = le16_to_cpu(snapshot.flags);
1336 LAST_ADD_TIME_CHECK(vq);
1337 LAST_ADD_TIME_INVALID(vq);
1339 if (flags != VRING_PACKED_EVENT_FLAG_DESC) {
1340 needs_kick = (flags != VRING_PACKED_EVENT_FLAG_DISABLE);
1344 off_wrap = le16_to_cpu(snapshot.off_wrap);
1346 wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1347 event_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1348 if (wrap_counter != vq->packed.avail_wrap_counter)
1349 event_idx -= vq->packed.vring.num;
1351 needs_kick = vring_need_event(event_idx, new, old);
1357 static void detach_buf_packed(struct vring_virtqueue *vq,
1358 unsigned int id, void **ctx)
1360 struct vring_desc_state_packed *state = NULL;
1361 struct vring_packed_desc *desc;
1362 unsigned int i, curr;
1364 state = &vq->packed.desc_state[id];
1366 /* Clear data ptr. */
1369 vq->packed.desc_extra[state->last].next = vq->free_head;
1371 vq->vq.num_free += state->num;
1373 if (unlikely(vq->use_dma_api)) {
1375 for (i = 0; i < state->num; i++) {
1376 vring_unmap_state_packed(vq,
1377 &vq->packed.desc_extra[curr]);
1378 curr = vq->packed.desc_extra[curr].next;
1385 /* Free the indirect table, if any, now that it's unmapped. */
1386 desc = state->indir_desc;
1390 if (vq->use_dma_api) {
1391 len = vq->packed.desc_extra[id].len;
1392 for (i = 0; i < len / sizeof(struct vring_packed_desc);
1394 vring_unmap_desc_packed(vq, &desc[i]);
1397 state->indir_desc = NULL;
1399 *ctx = state->indir_desc;
1403 static inline bool is_used_desc_packed(const struct vring_virtqueue *vq,
1404 u16 idx, bool used_wrap_counter)
1409 flags = le16_to_cpu(vq->packed.vring.desc[idx].flags);
1410 avail = !!(flags & (1 << VRING_PACKED_DESC_F_AVAIL));
1411 used = !!(flags & (1 << VRING_PACKED_DESC_F_USED));
1413 return avail == used && used == used_wrap_counter;
1416 static inline bool more_used_packed(const struct vring_virtqueue *vq)
1418 return is_used_desc_packed(vq, vq->last_used_idx,
1419 vq->packed.used_wrap_counter);
1422 static void *virtqueue_get_buf_ctx_packed(struct virtqueue *_vq,
1426 struct vring_virtqueue *vq = to_vvq(_vq);
1432 if (unlikely(vq->broken)) {
1437 if (!more_used_packed(vq)) {
1438 pr_debug("No more buffers in queue\n");
1443 /* Only get used elements after they have been exposed by host. */
1444 virtio_rmb(vq->weak_barriers);
1446 last_used = vq->last_used_idx;
1447 id = le16_to_cpu(vq->packed.vring.desc[last_used].id);
1448 *len = le32_to_cpu(vq->packed.vring.desc[last_used].len);
1450 if (unlikely(id >= vq->packed.vring.num)) {
1451 BAD_RING(vq, "id %u out of range\n", id);
1454 if (unlikely(!vq->packed.desc_state[id].data)) {
1455 BAD_RING(vq, "id %u is not a head!\n", id);
1459 /* detach_buf_packed clears data, so grab it now. */
1460 ret = vq->packed.desc_state[id].data;
1461 detach_buf_packed(vq, id, ctx);
1463 vq->last_used_idx += vq->packed.desc_state[id].num;
1464 if (unlikely(vq->last_used_idx >= vq->packed.vring.num)) {
1465 vq->last_used_idx -= vq->packed.vring.num;
1466 vq->packed.used_wrap_counter ^= 1;
1470 * If we expect an interrupt for the next entry, tell host
1471 * by writing event index and flush out the write before
1472 * the read in the next get_buf call.
1474 if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DESC)
1475 virtio_store_mb(vq->weak_barriers,
1476 &vq->packed.vring.driver->off_wrap,
1477 cpu_to_le16(vq->last_used_idx |
1478 (vq->packed.used_wrap_counter <<
1479 VRING_PACKED_EVENT_F_WRAP_CTR)));
1481 LAST_ADD_TIME_INVALID(vq);
1487 static void virtqueue_disable_cb_packed(struct virtqueue *_vq)
1489 struct vring_virtqueue *vq = to_vvq(_vq);
1491 if (vq->packed.event_flags_shadow != VRING_PACKED_EVENT_FLAG_DISABLE) {
1492 vq->packed.event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
1493 vq->packed.vring.driver->flags =
1494 cpu_to_le16(vq->packed.event_flags_shadow);
1498 static unsigned virtqueue_enable_cb_prepare_packed(struct virtqueue *_vq)
1500 struct vring_virtqueue *vq = to_vvq(_vq);
1505 * We optimistically turn back on interrupts, then check if there was
1510 vq->packed.vring.driver->off_wrap =
1511 cpu_to_le16(vq->last_used_idx |
1512 (vq->packed.used_wrap_counter <<
1513 VRING_PACKED_EVENT_F_WRAP_CTR));
1515 * We need to update event offset and event wrap
1516 * counter first before updating event flags.
1518 virtio_wmb(vq->weak_barriers);
1521 if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1522 vq->packed.event_flags_shadow = vq->event ?
1523 VRING_PACKED_EVENT_FLAG_DESC :
1524 VRING_PACKED_EVENT_FLAG_ENABLE;
1525 vq->packed.vring.driver->flags =
1526 cpu_to_le16(vq->packed.event_flags_shadow);
1530 return vq->last_used_idx | ((u16)vq->packed.used_wrap_counter <<
1531 VRING_PACKED_EVENT_F_WRAP_CTR);
1534 static bool virtqueue_poll_packed(struct virtqueue *_vq, u16 off_wrap)
1536 struct vring_virtqueue *vq = to_vvq(_vq);
1540 wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1541 used_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1543 return is_used_desc_packed(vq, used_idx, wrap_counter);
1546 static bool virtqueue_enable_cb_delayed_packed(struct virtqueue *_vq)
1548 struct vring_virtqueue *vq = to_vvq(_vq);
1549 u16 used_idx, wrap_counter;
1555 * We optimistically turn back on interrupts, then check if there was
1560 /* TODO: tune this threshold */
1561 bufs = (vq->packed.vring.num - vq->vq.num_free) * 3 / 4;
1562 wrap_counter = vq->packed.used_wrap_counter;
1564 used_idx = vq->last_used_idx + bufs;
1565 if (used_idx >= vq->packed.vring.num) {
1566 used_idx -= vq->packed.vring.num;
1570 vq->packed.vring.driver->off_wrap = cpu_to_le16(used_idx |
1571 (wrap_counter << VRING_PACKED_EVENT_F_WRAP_CTR));
1574 * We need to update event offset and event wrap
1575 * counter first before updating event flags.
1577 virtio_wmb(vq->weak_barriers);
1580 if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1581 vq->packed.event_flags_shadow = vq->event ?
1582 VRING_PACKED_EVENT_FLAG_DESC :
1583 VRING_PACKED_EVENT_FLAG_ENABLE;
1584 vq->packed.vring.driver->flags =
1585 cpu_to_le16(vq->packed.event_flags_shadow);
1589 * We need to update event suppression structure first
1590 * before re-checking for more used buffers.
1592 virtio_mb(vq->weak_barriers);
1594 if (is_used_desc_packed(vq,
1596 vq->packed.used_wrap_counter)) {
1605 static void *virtqueue_detach_unused_buf_packed(struct virtqueue *_vq)
1607 struct vring_virtqueue *vq = to_vvq(_vq);
1613 for (i = 0; i < vq->packed.vring.num; i++) {
1614 if (!vq->packed.desc_state[i].data)
1616 /* detach_buf clears data, so grab it now. */
1617 buf = vq->packed.desc_state[i].data;
1618 detach_buf_packed(vq, i, NULL);
1622 /* That should have freed everything. */
1623 BUG_ON(vq->vq.num_free != vq->packed.vring.num);
1629 static struct vring_desc_extra *vring_alloc_desc_extra(struct vring_virtqueue *vq,
1632 struct vring_desc_extra *desc_extra;
1635 desc_extra = kmalloc_array(num, sizeof(struct vring_desc_extra),
1640 memset(desc_extra, 0, num * sizeof(struct vring_desc_extra));
1642 for (i = 0; i < num - 1; i++)
1643 desc_extra[i].next = i + 1;
1648 static struct virtqueue *vring_create_virtqueue_packed(
1651 unsigned int vring_align,
1652 struct virtio_device *vdev,
1654 bool may_reduce_num,
1656 bool (*notify)(struct virtqueue *),
1657 void (*callback)(struct virtqueue *),
1660 struct vring_virtqueue *vq;
1661 struct vring_packed_desc *ring;
1662 struct vring_packed_desc_event *driver, *device;
1663 dma_addr_t ring_dma_addr, driver_event_dma_addr, device_event_dma_addr;
1664 size_t ring_size_in_bytes, event_size_in_bytes;
1666 ring_size_in_bytes = num * sizeof(struct vring_packed_desc);
1668 ring = vring_alloc_queue(vdev, ring_size_in_bytes,
1670 GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1674 event_size_in_bytes = sizeof(struct vring_packed_desc_event);
1676 driver = vring_alloc_queue(vdev, event_size_in_bytes,
1677 &driver_event_dma_addr,
1678 GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1682 device = vring_alloc_queue(vdev, event_size_in_bytes,
1683 &device_event_dma_addr,
1684 GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1688 vq = kmalloc(sizeof(*vq), GFP_KERNEL);
1692 vq->vq.callback = callback;
1695 vq->vq.num_free = num;
1696 vq->vq.index = index;
1697 vq->we_own_ring = true;
1698 vq->notify = notify;
1699 vq->weak_barriers = weak_barriers;
1701 vq->last_used_idx = 0;
1702 vq->event_triggered = false;
1704 vq->packed_ring = true;
1705 vq->use_dma_api = vring_use_dma_api(vdev);
1708 vq->last_add_time_valid = false;
1711 vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
1713 vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
1715 if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
1716 vq->weak_barriers = false;
1718 vq->packed.ring_dma_addr = ring_dma_addr;
1719 vq->packed.driver_event_dma_addr = driver_event_dma_addr;
1720 vq->packed.device_event_dma_addr = device_event_dma_addr;
1722 vq->packed.ring_size_in_bytes = ring_size_in_bytes;
1723 vq->packed.event_size_in_bytes = event_size_in_bytes;
1725 vq->packed.vring.num = num;
1726 vq->packed.vring.desc = ring;
1727 vq->packed.vring.driver = driver;
1728 vq->packed.vring.device = device;
1730 vq->packed.next_avail_idx = 0;
1731 vq->packed.avail_wrap_counter = 1;
1732 vq->packed.used_wrap_counter = 1;
1733 vq->packed.event_flags_shadow = 0;
1734 vq->packed.avail_used_flags = 1 << VRING_PACKED_DESC_F_AVAIL;
1736 vq->packed.desc_state = kmalloc_array(num,
1737 sizeof(struct vring_desc_state_packed),
1739 if (!vq->packed.desc_state)
1740 goto err_desc_state;
1742 memset(vq->packed.desc_state, 0,
1743 num * sizeof(struct vring_desc_state_packed));
1745 /* Put everything in free lists. */
1748 vq->packed.desc_extra = vring_alloc_desc_extra(vq, num);
1749 if (!vq->packed.desc_extra)
1750 goto err_desc_extra;
1752 /* No callback? Tell other side not to bother us. */
1754 vq->packed.event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
1755 vq->packed.vring.driver->flags =
1756 cpu_to_le16(vq->packed.event_flags_shadow);
1759 spin_lock(&vdev->vqs_list_lock);
1760 list_add_tail(&vq->vq.list, &vdev->vqs);
1761 spin_unlock(&vdev->vqs_list_lock);
1765 kfree(vq->packed.desc_state);
1769 vring_free_queue(vdev, event_size_in_bytes, device, device_event_dma_addr);
1771 vring_free_queue(vdev, event_size_in_bytes, driver, driver_event_dma_addr);
1773 vring_free_queue(vdev, ring_size_in_bytes, ring, ring_dma_addr);
1780 * Generic functions and exported symbols.
1783 static inline int virtqueue_add(struct virtqueue *_vq,
1784 struct scatterlist *sgs[],
1785 unsigned int total_sg,
1786 unsigned int out_sgs,
1787 unsigned int in_sgs,
1792 struct vring_virtqueue *vq = to_vvq(_vq);
1794 return vq->packed_ring ? virtqueue_add_packed(_vq, sgs, total_sg,
1795 out_sgs, in_sgs, data, ctx, gfp) :
1796 virtqueue_add_split(_vq, sgs, total_sg,
1797 out_sgs, in_sgs, data, ctx, gfp);
1801 * virtqueue_add_sgs - expose buffers to other end
1802 * @_vq: the struct virtqueue we're talking about.
1803 * @sgs: array of terminated scatterlists.
1804 * @out_sgs: the number of scatterlists readable by other side
1805 * @in_sgs: the number of scatterlists which are writable (after readable ones)
1806 * @data: the token identifying the buffer.
1807 * @gfp: how to do memory allocations (if necessary).
1809 * Caller must ensure we don't call this with other virtqueue operations
1810 * at the same time (except where noted).
1812 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1814 int virtqueue_add_sgs(struct virtqueue *_vq,
1815 struct scatterlist *sgs[],
1816 unsigned int out_sgs,
1817 unsigned int in_sgs,
1821 unsigned int i, total_sg = 0;
1823 /* Count them first. */
1824 for (i = 0; i < out_sgs + in_sgs; i++) {
1825 struct scatterlist *sg;
1827 for (sg = sgs[i]; sg; sg = sg_next(sg))
1830 return virtqueue_add(_vq, sgs, total_sg, out_sgs, in_sgs,
1833 EXPORT_SYMBOL_GPL(virtqueue_add_sgs);
1836 * virtqueue_add_outbuf - expose output buffers to other end
1837 * @vq: the struct virtqueue we're talking about.
1838 * @sg: scatterlist (must be well-formed and terminated!)
1839 * @num: the number of entries in @sg readable by other side
1840 * @data: the token identifying the buffer.
1841 * @gfp: how to do memory allocations (if necessary).
1843 * Caller must ensure we don't call this with other virtqueue operations
1844 * at the same time (except where noted).
1846 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1848 int virtqueue_add_outbuf(struct virtqueue *vq,
1849 struct scatterlist *sg, unsigned int num,
1853 return virtqueue_add(vq, &sg, num, 1, 0, data, NULL, gfp);
1855 EXPORT_SYMBOL_GPL(virtqueue_add_outbuf);
1858 * virtqueue_add_inbuf - expose input buffers to other end
1859 * @vq: the struct virtqueue we're talking about.
1860 * @sg: scatterlist (must be well-formed and terminated!)
1861 * @num: the number of entries in @sg writable by other side
1862 * @data: the token identifying the buffer.
1863 * @gfp: how to do memory allocations (if necessary).
1865 * Caller must ensure we don't call this with other virtqueue operations
1866 * at the same time (except where noted).
1868 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1870 int virtqueue_add_inbuf(struct virtqueue *vq,
1871 struct scatterlist *sg, unsigned int num,
1875 return virtqueue_add(vq, &sg, num, 0, 1, data, NULL, gfp);
1877 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf);
1880 * virtqueue_add_inbuf_ctx - expose input buffers to other end
1881 * @vq: the struct virtqueue we're talking about.
1882 * @sg: scatterlist (must be well-formed and terminated!)
1883 * @num: the number of entries in @sg writable by other side
1884 * @data: the token identifying the buffer.
1885 * @ctx: extra context for the token
1886 * @gfp: how to do memory allocations (if necessary).
1888 * Caller must ensure we don't call this with other virtqueue operations
1889 * at the same time (except where noted).
1891 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1893 int virtqueue_add_inbuf_ctx(struct virtqueue *vq,
1894 struct scatterlist *sg, unsigned int num,
1899 return virtqueue_add(vq, &sg, num, 0, 1, data, ctx, gfp);
1901 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf_ctx);
1904 * virtqueue_kick_prepare - first half of split virtqueue_kick call.
1905 * @_vq: the struct virtqueue
1907 * Instead of virtqueue_kick(), you can do:
1908 * if (virtqueue_kick_prepare(vq))
1909 * virtqueue_notify(vq);
1911 * This is sometimes useful because the virtqueue_kick_prepare() needs
1912 * to be serialized, but the actual virtqueue_notify() call does not.
1914 bool virtqueue_kick_prepare(struct virtqueue *_vq)
1916 struct vring_virtqueue *vq = to_vvq(_vq);
1918 return vq->packed_ring ? virtqueue_kick_prepare_packed(_vq) :
1919 virtqueue_kick_prepare_split(_vq);
1921 EXPORT_SYMBOL_GPL(virtqueue_kick_prepare);
1924 * virtqueue_notify - second half of split virtqueue_kick call.
1925 * @_vq: the struct virtqueue
1927 * This does not need to be serialized.
1929 * Returns false if host notify failed or queue is broken, otherwise true.
1931 bool virtqueue_notify(struct virtqueue *_vq)
1933 struct vring_virtqueue *vq = to_vvq(_vq);
1935 if (unlikely(vq->broken))
1938 /* Prod other side to tell it about changes. */
1939 if (!vq->notify(_vq)) {
1945 EXPORT_SYMBOL_GPL(virtqueue_notify);
1948 * virtqueue_kick - update after add_buf
1949 * @vq: the struct virtqueue
1951 * After one or more virtqueue_add_* calls, invoke this to kick
1954 * Caller must ensure we don't call this with other virtqueue
1955 * operations at the same time (except where noted).
1957 * Returns false if kick failed, otherwise true.
1959 bool virtqueue_kick(struct virtqueue *vq)
1961 if (virtqueue_kick_prepare(vq))
1962 return virtqueue_notify(vq);
1965 EXPORT_SYMBOL_GPL(virtqueue_kick);
1968 * virtqueue_get_buf_ctx - get the next used buffer
1969 * @_vq: the struct virtqueue we're talking about.
1970 * @len: the length written into the buffer
1971 * @ctx: extra context for the token
1973 * If the device wrote data into the buffer, @len will be set to the
1974 * amount written. This means you don't need to clear the buffer
1975 * beforehand to ensure there's no data leakage in the case of short
1978 * Caller must ensure we don't call this with other virtqueue
1979 * operations at the same time (except where noted).
1981 * Returns NULL if there are no used buffers, or the "data" token
1982 * handed to virtqueue_add_*().
1984 void *virtqueue_get_buf_ctx(struct virtqueue *_vq, unsigned int *len,
1987 struct vring_virtqueue *vq = to_vvq(_vq);
1989 return vq->packed_ring ? virtqueue_get_buf_ctx_packed(_vq, len, ctx) :
1990 virtqueue_get_buf_ctx_split(_vq, len, ctx);
1992 EXPORT_SYMBOL_GPL(virtqueue_get_buf_ctx);
1994 void *virtqueue_get_buf(struct virtqueue *_vq, unsigned int *len)
1996 return virtqueue_get_buf_ctx(_vq, len, NULL);
1998 EXPORT_SYMBOL_GPL(virtqueue_get_buf);
2000 * virtqueue_disable_cb - disable callbacks
2001 * @_vq: the struct virtqueue we're talking about.
2003 * Note that this is not necessarily synchronous, hence unreliable and only
2004 * useful as an optimization.
2006 * Unlike other operations, this need not be serialized.
2008 void virtqueue_disable_cb(struct virtqueue *_vq)
2010 struct vring_virtqueue *vq = to_vvq(_vq);
2012 /* If device triggered an event already it won't trigger one again:
2013 * no need to disable.
2015 if (vq->event_triggered)
2018 if (vq->packed_ring)
2019 virtqueue_disable_cb_packed(_vq);
2021 virtqueue_disable_cb_split(_vq);
2023 EXPORT_SYMBOL_GPL(virtqueue_disable_cb);
2026 * virtqueue_enable_cb_prepare - restart callbacks after disable_cb
2027 * @_vq: the struct virtqueue we're talking about.
2029 * This re-enables callbacks; it returns current queue state
2030 * in an opaque unsigned value. This value should be later tested by
2031 * virtqueue_poll, to detect a possible race between the driver checking for
2032 * more work, and enabling callbacks.
2034 * Caller must ensure we don't call this with other virtqueue
2035 * operations at the same time (except where noted).
2037 unsigned virtqueue_enable_cb_prepare(struct virtqueue *_vq)
2039 struct vring_virtqueue *vq = to_vvq(_vq);
2041 if (vq->event_triggered)
2042 vq->event_triggered = false;
2044 return vq->packed_ring ? virtqueue_enable_cb_prepare_packed(_vq) :
2045 virtqueue_enable_cb_prepare_split(_vq);
2047 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_prepare);
2050 * virtqueue_poll - query pending used buffers
2051 * @_vq: the struct virtqueue we're talking about.
2052 * @last_used_idx: virtqueue state (from call to virtqueue_enable_cb_prepare).
2054 * Returns "true" if there are pending used buffers in the queue.
2056 * This does not need to be serialized.
2058 bool virtqueue_poll(struct virtqueue *_vq, unsigned last_used_idx)
2060 struct vring_virtqueue *vq = to_vvq(_vq);
2062 if (unlikely(vq->broken))
2065 virtio_mb(vq->weak_barriers);
2066 return vq->packed_ring ? virtqueue_poll_packed(_vq, last_used_idx) :
2067 virtqueue_poll_split(_vq, last_used_idx);
2069 EXPORT_SYMBOL_GPL(virtqueue_poll);
2072 * virtqueue_enable_cb - restart callbacks after disable_cb.
2073 * @_vq: the struct virtqueue we're talking about.
2075 * This re-enables callbacks; it returns "false" if there are pending
2076 * buffers in the queue, to detect a possible race between the driver
2077 * checking for more work, and enabling callbacks.
2079 * Caller must ensure we don't call this with other virtqueue
2080 * operations at the same time (except where noted).
2082 bool virtqueue_enable_cb(struct virtqueue *_vq)
2084 unsigned last_used_idx = virtqueue_enable_cb_prepare(_vq);
2086 return !virtqueue_poll(_vq, last_used_idx);
2088 EXPORT_SYMBOL_GPL(virtqueue_enable_cb);
2091 * virtqueue_enable_cb_delayed - restart callbacks after disable_cb.
2092 * @_vq: the struct virtqueue we're talking about.
2094 * This re-enables callbacks but hints to the other side to delay
2095 * interrupts until most of the available buffers have been processed;
2096 * it returns "false" if there are many pending buffers in the queue,
2097 * to detect a possible race between the driver checking for more work,
2098 * and enabling callbacks.
2100 * Caller must ensure we don't call this with other virtqueue
2101 * operations at the same time (except where noted).
2103 bool virtqueue_enable_cb_delayed(struct virtqueue *_vq)
2105 struct vring_virtqueue *vq = to_vvq(_vq);
2107 if (vq->event_triggered)
2108 vq->event_triggered = false;
2110 return vq->packed_ring ? virtqueue_enable_cb_delayed_packed(_vq) :
2111 virtqueue_enable_cb_delayed_split(_vq);
2113 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_delayed);
2116 * virtqueue_detach_unused_buf - detach first unused buffer
2117 * @_vq: the struct virtqueue we're talking about.
2119 * Returns NULL or the "data" token handed to virtqueue_add_*().
2120 * This is not valid on an active queue; it is useful only for device
2123 void *virtqueue_detach_unused_buf(struct virtqueue *_vq)
2125 struct vring_virtqueue *vq = to_vvq(_vq);
2127 return vq->packed_ring ? virtqueue_detach_unused_buf_packed(_vq) :
2128 virtqueue_detach_unused_buf_split(_vq);
2130 EXPORT_SYMBOL_GPL(virtqueue_detach_unused_buf);
2132 static inline bool more_used(const struct vring_virtqueue *vq)
2134 return vq->packed_ring ? more_used_packed(vq) : more_used_split(vq);
2137 irqreturn_t vring_interrupt(int irq, void *_vq)
2139 struct vring_virtqueue *vq = to_vvq(_vq);
2141 if (!more_used(vq)) {
2142 pr_debug("virtqueue interrupt with no work for %p\n", vq);
2146 if (unlikely(vq->broken))
2149 /* Just a hint for performance: so it's ok that this can be racy! */
2151 vq->event_triggered = true;
2153 pr_debug("virtqueue callback for %p (%p)\n", vq, vq->vq.callback);
2154 if (vq->vq.callback)
2155 vq->vq.callback(&vq->vq);
2159 EXPORT_SYMBOL_GPL(vring_interrupt);
2161 /* Only available for split ring */
2162 struct virtqueue *__vring_new_virtqueue(unsigned int index,
2164 struct virtio_device *vdev,
2167 bool (*notify)(struct virtqueue *),
2168 void (*callback)(struct virtqueue *),
2171 struct vring_virtqueue *vq;
2173 if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2176 vq = kmalloc(sizeof(*vq), GFP_KERNEL);
2180 vq->packed_ring = false;
2181 vq->vq.callback = callback;
2184 vq->vq.num_free = vring.num;
2185 vq->vq.index = index;
2186 vq->we_own_ring = false;
2187 vq->notify = notify;
2188 vq->weak_barriers = weak_barriers;
2190 vq->last_used_idx = 0;
2191 vq->event_triggered = false;
2193 vq->use_dma_api = vring_use_dma_api(vdev);
2196 vq->last_add_time_valid = false;
2199 vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
2201 vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
2203 if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
2204 vq->weak_barriers = false;
2206 vq->split.queue_dma_addr = 0;
2207 vq->split.queue_size_in_bytes = 0;
2209 vq->split.vring = vring;
2210 vq->split.avail_flags_shadow = 0;
2211 vq->split.avail_idx_shadow = 0;
2213 /* No callback? Tell other side not to bother us. */
2215 vq->split.avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
2217 vq->split.vring.avail->flags = cpu_to_virtio16(vdev,
2218 vq->split.avail_flags_shadow);
2221 vq->split.desc_state = kmalloc_array(vring.num,
2222 sizeof(struct vring_desc_state_split), GFP_KERNEL);
2223 if (!vq->split.desc_state)
2226 vq->split.desc_extra = vring_alloc_desc_extra(vq, vring.num);
2227 if (!vq->split.desc_extra)
2230 /* Put everything in free lists. */
2232 memset(vq->split.desc_state, 0, vring.num *
2233 sizeof(struct vring_desc_state_split));
2235 spin_lock(&vdev->vqs_list_lock);
2236 list_add_tail(&vq->vq.list, &vdev->vqs);
2237 spin_unlock(&vdev->vqs_list_lock);
2241 kfree(vq->split.desc_state);
2246 EXPORT_SYMBOL_GPL(__vring_new_virtqueue);
2248 struct virtqueue *vring_create_virtqueue(
2251 unsigned int vring_align,
2252 struct virtio_device *vdev,
2254 bool may_reduce_num,
2256 bool (*notify)(struct virtqueue *),
2257 void (*callback)(struct virtqueue *),
2261 if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2262 return vring_create_virtqueue_packed(index, num, vring_align,
2263 vdev, weak_barriers, may_reduce_num,
2264 context, notify, callback, name);
2266 return vring_create_virtqueue_split(index, num, vring_align,
2267 vdev, weak_barriers, may_reduce_num,
2268 context, notify, callback, name);
2270 EXPORT_SYMBOL_GPL(vring_create_virtqueue);
2272 /* Only available for split ring */
2273 struct virtqueue *vring_new_virtqueue(unsigned int index,
2275 unsigned int vring_align,
2276 struct virtio_device *vdev,
2280 bool (*notify)(struct virtqueue *vq),
2281 void (*callback)(struct virtqueue *vq),
2286 if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2289 vring_init(&vring, num, pages, vring_align);
2290 return __vring_new_virtqueue(index, vring, vdev, weak_barriers, context,
2291 notify, callback, name);
2293 EXPORT_SYMBOL_GPL(vring_new_virtqueue);
2295 void vring_del_virtqueue(struct virtqueue *_vq)
2297 struct vring_virtqueue *vq = to_vvq(_vq);
2299 spin_lock(&vq->vq.vdev->vqs_list_lock);
2300 list_del(&_vq->list);
2301 spin_unlock(&vq->vq.vdev->vqs_list_lock);
2303 if (vq->we_own_ring) {
2304 if (vq->packed_ring) {
2305 vring_free_queue(vq->vq.vdev,
2306 vq->packed.ring_size_in_bytes,
2307 vq->packed.vring.desc,
2308 vq->packed.ring_dma_addr);
2310 vring_free_queue(vq->vq.vdev,
2311 vq->packed.event_size_in_bytes,
2312 vq->packed.vring.driver,
2313 vq->packed.driver_event_dma_addr);
2315 vring_free_queue(vq->vq.vdev,
2316 vq->packed.event_size_in_bytes,
2317 vq->packed.vring.device,
2318 vq->packed.device_event_dma_addr);
2320 kfree(vq->packed.desc_state);
2321 kfree(vq->packed.desc_extra);
2323 vring_free_queue(vq->vq.vdev,
2324 vq->split.queue_size_in_bytes,
2325 vq->split.vring.desc,
2326 vq->split.queue_dma_addr);
2329 if (!vq->packed_ring) {
2330 kfree(vq->split.desc_state);
2331 kfree(vq->split.desc_extra);
2335 EXPORT_SYMBOL_GPL(vring_del_virtqueue);
2337 /* Manipulates transport-specific feature bits. */
2338 void vring_transport_features(struct virtio_device *vdev)
2342 for (i = VIRTIO_TRANSPORT_F_START; i < VIRTIO_TRANSPORT_F_END; i++) {
2344 case VIRTIO_RING_F_INDIRECT_DESC:
2346 case VIRTIO_RING_F_EVENT_IDX:
2348 case VIRTIO_F_VERSION_1:
2350 case VIRTIO_F_ACCESS_PLATFORM:
2352 case VIRTIO_F_RING_PACKED:
2354 case VIRTIO_F_ORDER_PLATFORM:
2357 /* We don't understand this bit. */
2358 __virtio_clear_bit(vdev, i);
2362 EXPORT_SYMBOL_GPL(vring_transport_features);
2365 * virtqueue_get_vring_size - return the size of the virtqueue's vring
2366 * @_vq: the struct virtqueue containing the vring of interest.
2368 * Returns the size of the vring. This is mainly used for boasting to
2369 * userspace. Unlike other operations, this need not be serialized.
2371 unsigned int virtqueue_get_vring_size(struct virtqueue *_vq)
2374 struct vring_virtqueue *vq = to_vvq(_vq);
2376 return vq->packed_ring ? vq->packed.vring.num : vq->split.vring.num;
2378 EXPORT_SYMBOL_GPL(virtqueue_get_vring_size);
2380 bool virtqueue_is_broken(struct virtqueue *_vq)
2382 struct vring_virtqueue *vq = to_vvq(_vq);
2384 return READ_ONCE(vq->broken);
2386 EXPORT_SYMBOL_GPL(virtqueue_is_broken);
2389 * This should prevent the device from being used, allowing drivers to
2390 * recover. You may need to grab appropriate locks to flush.
2392 void virtio_break_device(struct virtio_device *dev)
2394 struct virtqueue *_vq;
2396 spin_lock(&dev->vqs_list_lock);
2397 list_for_each_entry(_vq, &dev->vqs, list) {
2398 struct vring_virtqueue *vq = to_vvq(_vq);
2400 /* Pairs with READ_ONCE() in virtqueue_is_broken(). */
2401 WRITE_ONCE(vq->broken, true);
2403 spin_unlock(&dev->vqs_list_lock);
2405 EXPORT_SYMBOL_GPL(virtio_break_device);
2407 dma_addr_t virtqueue_get_desc_addr(struct virtqueue *_vq)
2409 struct vring_virtqueue *vq = to_vvq(_vq);
2411 BUG_ON(!vq->we_own_ring);
2413 if (vq->packed_ring)
2414 return vq->packed.ring_dma_addr;
2416 return vq->split.queue_dma_addr;
2418 EXPORT_SYMBOL_GPL(virtqueue_get_desc_addr);
2420 dma_addr_t virtqueue_get_avail_addr(struct virtqueue *_vq)
2422 struct vring_virtqueue *vq = to_vvq(_vq);
2424 BUG_ON(!vq->we_own_ring);
2426 if (vq->packed_ring)
2427 return vq->packed.driver_event_dma_addr;
2429 return vq->split.queue_dma_addr +
2430 ((char *)vq->split.vring.avail - (char *)vq->split.vring.desc);
2432 EXPORT_SYMBOL_GPL(virtqueue_get_avail_addr);
2434 dma_addr_t virtqueue_get_used_addr(struct virtqueue *_vq)
2436 struct vring_virtqueue *vq = to_vvq(_vq);
2438 BUG_ON(!vq->we_own_ring);
2440 if (vq->packed_ring)
2441 return vq->packed.device_event_dma_addr;
2443 return vq->split.queue_dma_addr +
2444 ((char *)vq->split.vring.used - (char *)vq->split.vring.desc);
2446 EXPORT_SYMBOL_GPL(virtqueue_get_used_addr);
2448 /* Only available for split ring */
2449 const struct vring *virtqueue_get_vring(struct virtqueue *vq)
2451 return &to_vvq(vq)->split.vring;
2453 EXPORT_SYMBOL_GPL(virtqueue_get_vring);
2455 MODULE_LICENSE("GPL");