2 * linux/drivers/video/sa1100fb.c
4 * Copyright (C) 1999 Eric A. Thomas
5 * Based on acornfb.c Copyright (C) Russell King.
7 * This file is subject to the terms and conditions of the GNU General Public
8 * License. See the file COPYING in the main directory of this archive for
11 * StrongARM 1100 LCD Controller Frame Buffer Driver
13 * Please direct your questions and comments on this driver to the following
16 * linux-arm-kernel@lists.arm.linux.org.uk
18 * Clean patches should be sent to the ARM Linux Patch System. Please see the
19 * following web page for more information:
21 * http://www.arm.linux.org.uk/developer/patches/info.shtml
26 * - With the Neponset plugged into an Assabet, LCD powerdown
27 * doesn't work (LCD stays powered up). Therefore we shouldn't
29 * - We don't limit the CPU clock rate nor the mode selection
30 * according to the available SDRAM bandwidth.
33 * - Linear grayscale palettes and the kernel.
34 * Such code does not belong in the kernel. The kernel frame buffer
35 * drivers do not expect a linear colourmap, but a colourmap based on
36 * the VT100 standard mapping.
38 * If your _userspace_ requires a linear colourmap, then the setup of
39 * such a colourmap belongs _in userspace_, not in the kernel. Code
40 * to set the colourmap correctly from user space has been sent to
41 * David Neuer. It's around 8 lines of C code, plus another 4 to
42 * detect if we are using grayscale.
44 * - The following must never be specified in a panel definition:
45 * LCCR0_LtlEnd, LCCR3_PixClkDiv, LCCR3_VrtSnchL, LCCR3_HorSnchL
47 * - The following should be specified:
48 * either LCCR0_Color or LCCR0_Mono
49 * either LCCR0_Sngl or LCCR0_Dual
50 * either LCCR0_Act or LCCR0_Pas
51 * either LCCR3_OutEnH or LCCD3_OutEnL
52 * either LCCR3_PixRsEdg or LCCR3_PixFlEdg
53 * either LCCR3_ACBsDiv or LCCR3_ACBsCntOff
57 * - Driver appears to be working for Brutus 320x200x8bpp mode. Other
58 * resolutions are working, but only the 8bpp mode is supported.
59 * Changes need to be made to the palette encode and decode routines
60 * to support 4 and 16 bpp modes.
61 * Driver is not designed to be a module. The FrameBuffer is statically
62 * allocated since dynamic allocation of a 300k buffer cannot be
66 * - FrameBuffer memory is now allocated at run-time when the
67 * driver is initialized.
69 * 2000/04/10: Nicolas Pitre <nico@fluxnic.net>
70 * - Big cleanup for dynamic selection of machine type at run time.
72 * 2000/07/19: Jamey Hicks <jamey@crl.dec.com>
73 * - Support for Bitsy aka Compaq iPAQ H3600 added.
75 * 2000/08/07: Tak-Shing Chan <tchan.rd@idthk.com>
76 * Jeff Sutherland <jsutherland@accelent.com>
77 * - Resolved an issue caused by a change made to the Assabet's PLD
78 * earlier this year which broke the framebuffer driver for newer
79 * Phase 4 Assabets. Some other parameters were changed to optimize
80 * for the Sharp display.
82 * 2000/08/09: Kunihiko IMAI <imai@vasara.co.jp>
83 * - XP860 support added
85 * 2000/08/19: Mark Huang <mhuang@livetoy.com>
86 * - Allows standard options to be passed on the kernel command line
87 * for most common passive displays.
90 * - s/save_flags_cli/local_irq_save/
91 * - remove unneeded extra save_flags_cli in sa1100fb_enable_lcd_controller
93 * 2000/10/10: Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
94 * - Updated LART stuff. Fixed some minor bugs.
96 * 2000/10/30: Murphy Chen <murphy@mail.dialogue.com.tw>
97 * - Pangolin support added
99 * 2000/10/31: Roman Jordan <jor@hoeft-wessel.de>
100 * - Huw Webpanel support added
102 * 2000/11/23: Eric Peng <ericpeng@coventive.com>
105 * 2001/02/07: Jamey Hicks <jamey.hicks@compaq.com>
106 * Cliff Brake <cbrake@accelent.com>
107 * - Added PM callback
109 * 2001/05/26: <rmk@arm.linux.org.uk>
110 * - Fix 16bpp so that (a) we use the right colours rather than some
111 * totally random colour depending on what was in page 0, and (b)
112 * we don't de-reference a NULL pointer.
113 * - remove duplicated implementation of consistent_alloc()
114 * - convert dma address types to dma_addr_t
115 * - remove unused 'montype' stuff
116 * - remove redundant zero inits of init_var after the initial
118 * - remove allow_modeset (acornfb idea does not belong here)
120 * 2001/05/28: <rmk@arm.linux.org.uk>
121 * - massive cleanup - move machine dependent data into structures
122 * - I've left various #warnings in - if you see one, and know
123 * the hardware concerned, please get in contact with me.
125 * 2001/05/31: <rmk@arm.linux.org.uk>
126 * - Fix LCCR1 HSW value, fix all machine type specifications to
127 * keep values in line. (Please check your machine type specs)
129 * 2001/06/10: <rmk@arm.linux.org.uk>
130 * - Fiddle with the LCD controller from task context only; mainly
131 * so that we can run with interrupts on, and sleep.
132 * - Convert #warnings into #errors. No pain, no gain. ;)
134 * 2001/06/14: <rmk@arm.linux.org.uk>
135 * - Make the palette BPS value for 12bpp come out correctly.
136 * - Take notice of "greyscale" on any colour depth.
137 * - Make truecolor visuals use the RGB channel encoding information.
139 * 2001/07/02: <rmk@arm.linux.org.uk>
140 * - Fix colourmap problems.
142 * 2001/07/13: <abraham@2d3d.co.za>
143 * - Added support for the ICP LCD-Kit01 on LART. This LCD is
144 * manufactured by Prime View, model no V16C6448AB
146 * 2001/07/23: <rmk@arm.linux.org.uk>
147 * - Hand merge version from handhelds.org CVS tree. See patch
148 * notes for 595/1 for more information.
149 * - Drop 12bpp (it's 16bpp with different colour register mappings).
150 * - This hardware can not do direct colour. Therefore we don't
153 * 2001/07/27: <rmk@arm.linux.org.uk>
154 * - Halve YRES on dual scan LCDs.
156 * 2001/08/22: <rmk@arm.linux.org.uk>
157 * - Add b/w iPAQ pixclock value.
159 * 2001/10/12: <rmk@arm.linux.org.uk>
160 * - Add patch 681/1 and clean up stork definitions.
163 #include <linux/module.h>
164 #include <linux/kernel.h>
165 #include <linux/sched.h>
166 #include <linux/errno.h>
167 #include <linux/string.h>
168 #include <linux/interrupt.h>
169 #include <linux/slab.h>
170 #include <linux/mm.h>
171 #include <linux/fb.h>
172 #include <linux/delay.h>
173 #include <linux/init.h>
174 #include <linux/ioport.h>
175 #include <linux/cpufreq.h>
176 #include <linux/gpio.h>
177 #include <linux/platform_device.h>
178 #include <linux/dma-mapping.h>
179 #include <linux/mutex.h>
180 #include <linux/io.h>
182 #include <video/sa1100fb.h>
184 #include <mach/hardware.h>
185 #include <asm/mach-types.h>
186 #include <mach/shannon.h>
189 * Complain if VAR is out of range.
193 #include "sa1100fb.h"
195 static const struct sa1100fb_rgb rgb_4 = {
196 .red = { .offset = 0, .length = 4, },
197 .green = { .offset = 0, .length = 4, },
198 .blue = { .offset = 0, .length = 4, },
199 .transp = { .offset = 0, .length = 0, },
202 static const struct sa1100fb_rgb rgb_8 = {
203 .red = { .offset = 0, .length = 8, },
204 .green = { .offset = 0, .length = 8, },
205 .blue = { .offset = 0, .length = 8, },
206 .transp = { .offset = 0, .length = 0, },
209 static const struct sa1100fb_rgb def_rgb_16 = {
210 .red = { .offset = 11, .length = 5, },
211 .green = { .offset = 5, .length = 6, },
212 .blue = { .offset = 0, .length = 5, },
213 .transp = { .offset = 0, .length = 0, },
218 static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *);
219 static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state);
221 static inline void sa1100fb_schedule_work(struct sa1100fb_info *fbi, u_int state)
225 local_irq_save(flags);
227 * We need to handle two requests being made at the same time.
228 * There are two important cases:
229 * 1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
230 * We must perform the unblanking, which will do our REENABLE for us.
231 * 2. When we are blanking, but immediately unblank before we have
232 * blanked. We do the "REENABLE" thing here as well, just to be sure.
234 if (fbi->task_state == C_ENABLE && state == C_REENABLE)
236 if (fbi->task_state == C_DISABLE && state == C_ENABLE)
239 if (state != (u_int)-1) {
240 fbi->task_state = state;
241 schedule_work(&fbi->task);
243 local_irq_restore(flags);
246 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
249 chan >>= 16 - bf->length;
250 return chan << bf->offset;
254 * Convert bits-per-pixel to a hardware palette PBS value.
256 static inline u_int palette_pbs(struct fb_var_screeninfo *var)
259 switch (var->bits_per_pixel) {
260 case 4: ret = 0 << 12; break;
261 case 8: ret = 1 << 12; break;
262 case 16: ret = 2 << 12; break;
268 sa1100fb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
269 u_int trans, struct fb_info *info)
271 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
274 if (regno < fbi->palette_size) {
275 val = ((red >> 4) & 0xf00);
276 val |= ((green >> 8) & 0x0f0);
277 val |= ((blue >> 12) & 0x00f);
280 val |= palette_pbs(&fbi->fb.var);
282 fbi->palette_cpu[regno] = val;
289 sa1100fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
290 u_int trans, struct fb_info *info)
292 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
297 * If inverse mode was selected, invert all the colours
298 * rather than the register number. The register number
299 * is what you poke into the framebuffer to produce the
300 * colour you requested.
302 if (fbi->inf->cmap_inverse) {
304 green = 0xffff - green;
305 blue = 0xffff - blue;
309 * If greyscale is true, then we convert the RGB value
310 * to greyscale no mater what visual we are using.
312 if (fbi->fb.var.grayscale)
313 red = green = blue = (19595 * red + 38470 * green +
316 switch (fbi->fb.fix.visual) {
317 case FB_VISUAL_TRUECOLOR:
319 * 12 or 16-bit True Colour. We encode the RGB value
320 * according to the RGB bitfield information.
323 u32 *pal = fbi->fb.pseudo_palette;
325 val = chan_to_field(red, &fbi->fb.var.red);
326 val |= chan_to_field(green, &fbi->fb.var.green);
327 val |= chan_to_field(blue, &fbi->fb.var.blue);
334 case FB_VISUAL_STATIC_PSEUDOCOLOR:
335 case FB_VISUAL_PSEUDOCOLOR:
336 ret = sa1100fb_setpalettereg(regno, red, green, blue, trans, info);
343 #ifdef CONFIG_CPU_FREQ
345 * sa1100fb_display_dma_period()
346 * Calculate the minimum period (in picoseconds) between two DMA
347 * requests for the LCD controller. If we hit this, it means we're
348 * doing nothing but LCD DMA.
350 static inline unsigned int sa1100fb_display_dma_period(struct fb_var_screeninfo *var)
353 * Period = pixclock * bits_per_byte * bytes_per_transfer
354 * / memory_bits_per_pixel;
356 return var->pixclock * 8 * 16 / var->bits_per_pixel;
361 * sa1100fb_check_var():
362 * Round up in the following order: bits_per_pixel, xres,
363 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
364 * bitfields, horizontal timing, vertical timing.
367 sa1100fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
369 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
372 if (var->xres < MIN_XRES)
373 var->xres = MIN_XRES;
374 if (var->yres < MIN_YRES)
375 var->yres = MIN_YRES;
376 if (var->xres > fbi->inf->xres)
377 var->xres = fbi->inf->xres;
378 if (var->yres > fbi->inf->yres)
379 var->yres = fbi->inf->yres;
380 var->xres_virtual = max(var->xres_virtual, var->xres);
381 var->yres_virtual = max(var->yres_virtual, var->yres);
383 dev_dbg(fbi->dev, "var->bits_per_pixel=%d\n", var->bits_per_pixel);
384 switch (var->bits_per_pixel) {
399 * Copy the RGB parameters for this display
400 * from the machine specific parameters.
402 var->red = fbi->rgb[rgbidx]->red;
403 var->green = fbi->rgb[rgbidx]->green;
404 var->blue = fbi->rgb[rgbidx]->blue;
405 var->transp = fbi->rgb[rgbidx]->transp;
407 dev_dbg(fbi->dev, "RGBT length = %d:%d:%d:%d\n",
408 var->red.length, var->green.length, var->blue.length,
411 dev_dbg(fbi->dev, "RGBT offset = %d:%d:%d:%d\n",
412 var->red.offset, var->green.offset, var->blue.offset,
415 #ifdef CONFIG_CPU_FREQ
416 dev_dbg(fbi->dev, "dma period = %d ps, clock = %d kHz\n",
417 sa1100fb_display_dma_period(var),
418 cpufreq_get(smp_processor_id()));
424 static void sa1100fb_set_visual(struct sa1100fb_info *fbi, u32 visual)
426 if (fbi->inf->set_visual)
427 fbi->inf->set_visual(visual);
431 * sa1100fb_set_par():
432 * Set the user defined part of the display for the specified console
434 static int sa1100fb_set_par(struct fb_info *info)
436 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
437 struct fb_var_screeninfo *var = &info->var;
438 unsigned long palette_mem_size;
440 dev_dbg(fbi->dev, "set_par\n");
442 if (var->bits_per_pixel == 16)
443 fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
444 else if (!fbi->inf->cmap_static)
445 fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
448 * Some people have weird ideas about wanting static
449 * pseudocolor maps. I suspect their user space
450 * applications are broken.
452 fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
455 fbi->fb.fix.line_length = var->xres_virtual *
456 var->bits_per_pixel / 8;
457 fbi->palette_size = var->bits_per_pixel == 8 ? 256 : 16;
459 palette_mem_size = fbi->palette_size * sizeof(u16);
461 dev_dbg(fbi->dev, "palette_mem_size = 0x%08lx\n", palette_mem_size);
463 fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
464 fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
467 * Set (any) board control register to handle new color depth
469 sa1100fb_set_visual(fbi, fbi->fb.fix.visual);
470 sa1100fb_activate_var(var, fbi);
477 sa1100fb_set_cmap(struct fb_cmap *cmap, int kspc, int con,
478 struct fb_info *info)
480 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
483 * Make sure the user isn't doing something stupid.
485 if (!kspc && (fbi->fb.var.bits_per_pixel == 16 || fbi->inf->cmap_static))
488 return gen_set_cmap(cmap, kspc, con, info);
493 * Formal definition of the VESA spec:
495 * This refers to the state of the display when it is in full operation
497 * This defines an optional operating state of minimal power reduction with
498 * the shortest recovery time
500 * This refers to a level of power management in which substantial power
501 * reduction is achieved by the display. The display can have a longer
502 * recovery time from this state than from the Stand-by state
504 * This indicates that the display is consuming the lowest level of power
505 * and is non-operational. Recovery from this state may optionally require
506 * the user to manually power on the monitor
508 * Now, the fbdev driver adds an additional state, (blank), where they
509 * turn off the video (maybe by colormap tricks), but don't mess with the
510 * video itself: think of it semantically between on and Stand-By.
512 * So here's what we should do in our fbdev blank routine:
514 * VESA_NO_BLANKING (mode 0) Video on, front/back light on
515 * VESA_VSYNC_SUSPEND (mode 1) Video on, front/back light off
516 * VESA_HSYNC_SUSPEND (mode 2) Video on, front/back light off
517 * VESA_POWERDOWN (mode 3) Video off, front/back light off
519 * This will match the matrox implementation.
523 * Blank the display by setting all palette values to zero. Note, the
524 * 12 and 16 bpp modes don't really use the palette, so this will not
525 * blank the display in all modes.
527 static int sa1100fb_blank(int blank, struct fb_info *info)
529 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
532 dev_dbg(fbi->dev, "sa1100fb_blank: blank=%d\n", blank);
535 case FB_BLANK_POWERDOWN:
536 case FB_BLANK_VSYNC_SUSPEND:
537 case FB_BLANK_HSYNC_SUSPEND:
538 case FB_BLANK_NORMAL:
539 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
540 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
541 for (i = 0; i < fbi->palette_size; i++)
542 sa1100fb_setpalettereg(i, 0, 0, 0, 0, info);
543 sa1100fb_schedule_work(fbi, C_DISABLE);
546 case FB_BLANK_UNBLANK:
547 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
548 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
549 fb_set_cmap(&fbi->fb.cmap, info);
550 sa1100fb_schedule_work(fbi, C_ENABLE);
555 static int sa1100fb_mmap(struct fb_info *info,
556 struct vm_area_struct *vma)
558 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
559 unsigned long start, len, off = vma->vm_pgoff << PAGE_SHIFT;
561 if (off < info->fix.smem_len) {
562 vma->vm_pgoff += 1; /* skip over the palette */
563 return dma_mmap_writecombine(fbi->dev, vma, fbi->map_cpu,
564 fbi->map_dma, fbi->map_size);
567 start = info->fix.mmio_start;
568 len = PAGE_ALIGN((start & ~PAGE_MASK) + info->fix.mmio_len);
570 if ((vma->vm_end - vma->vm_start + off) > len)
573 off += start & PAGE_MASK;
574 vma->vm_pgoff = off >> PAGE_SHIFT;
575 vma->vm_flags |= VM_IO;
576 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
577 return io_remap_pfn_range(vma, vma->vm_start, off >> PAGE_SHIFT,
578 vma->vm_end - vma->vm_start,
582 static struct fb_ops sa1100fb_ops = {
583 .owner = THIS_MODULE,
584 .fb_check_var = sa1100fb_check_var,
585 .fb_set_par = sa1100fb_set_par,
586 // .fb_set_cmap = sa1100fb_set_cmap,
587 .fb_setcolreg = sa1100fb_setcolreg,
588 .fb_fillrect = cfb_fillrect,
589 .fb_copyarea = cfb_copyarea,
590 .fb_imageblit = cfb_imageblit,
591 .fb_blank = sa1100fb_blank,
592 .fb_mmap = sa1100fb_mmap,
596 * Calculate the PCD value from the clock rate (in picoseconds).
597 * We take account of the PPCR clock setting.
599 static inline unsigned int get_pcd(unsigned int pixclock, unsigned int cpuclock)
601 unsigned int pcd = cpuclock / 100;
606 return pcd + 1; /* make up for integer math truncations */
610 * sa1100fb_activate_var():
611 * Configures LCD Controller based on entries in var parameter. Settings are
612 * only written to the controller if changes were made.
614 static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *fbi)
616 struct sa1100fb_lcd_reg new_regs;
617 u_int half_screen_size, yres, pcd;
620 dev_dbg(fbi->dev, "Configuring SA1100 LCD\n");
622 dev_dbg(fbi->dev, "var: xres=%d hslen=%d lm=%d rm=%d\n",
623 var->xres, var->hsync_len,
624 var->left_margin, var->right_margin);
625 dev_dbg(fbi->dev, "var: yres=%d vslen=%d um=%d bm=%d\n",
626 var->yres, var->vsync_len,
627 var->upper_margin, var->lower_margin);
630 if (var->xres < 16 || var->xres > 1024)
631 dev_err(fbi->dev, "%s: invalid xres %d\n",
632 fbi->fb.fix.id, var->xres);
633 if (var->hsync_len < 1 || var->hsync_len > 64)
634 dev_err(fbi->dev, "%s: invalid hsync_len %d\n",
635 fbi->fb.fix.id, var->hsync_len);
636 if (var->left_margin < 1 || var->left_margin > 255)
637 dev_err(fbi->dev, "%s: invalid left_margin %d\n",
638 fbi->fb.fix.id, var->left_margin);
639 if (var->right_margin < 1 || var->right_margin > 255)
640 dev_err(fbi->dev, "%s: invalid right_margin %d\n",
641 fbi->fb.fix.id, var->right_margin);
642 if (var->yres < 1 || var->yres > 1024)
643 dev_err(fbi->dev, "%s: invalid yres %d\n",
644 fbi->fb.fix.id, var->yres);
645 if (var->vsync_len < 1 || var->vsync_len > 64)
646 dev_err(fbi->dev, "%s: invalid vsync_len %d\n",
647 fbi->fb.fix.id, var->vsync_len);
648 if (var->upper_margin < 0 || var->upper_margin > 255)
649 dev_err(fbi->dev, "%s: invalid upper_margin %d\n",
650 fbi->fb.fix.id, var->upper_margin);
651 if (var->lower_margin < 0 || var->lower_margin > 255)
652 dev_err(fbi->dev, "%s: invalid lower_margin %d\n",
653 fbi->fb.fix.id, var->lower_margin);
656 new_regs.lccr0 = fbi->inf->lccr0 |
657 LCCR0_LEN | LCCR0_LDM | LCCR0_BAM |
658 LCCR0_ERM | LCCR0_LtlEnd | LCCR0_DMADel(0);
661 LCCR1_DisWdth(var->xres) +
662 LCCR1_HorSnchWdth(var->hsync_len) +
663 LCCR1_BegLnDel(var->left_margin) +
664 LCCR1_EndLnDel(var->right_margin);
667 * If we have a dual scan LCD, then we need to halve
668 * the YRES parameter.
671 if (fbi->inf->lccr0 & LCCR0_Dual)
675 LCCR2_DisHght(yres) +
676 LCCR2_VrtSnchWdth(var->vsync_len) +
677 LCCR2_BegFrmDel(var->upper_margin) +
678 LCCR2_EndFrmDel(var->lower_margin);
680 pcd = get_pcd(var->pixclock, cpufreq_get(0));
681 new_regs.lccr3 = LCCR3_PixClkDiv(pcd) | fbi->inf->lccr3 |
682 (var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) |
683 (var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL);
685 dev_dbg(fbi->dev, "nlccr0 = 0x%08lx\n", new_regs.lccr0);
686 dev_dbg(fbi->dev, "nlccr1 = 0x%08lx\n", new_regs.lccr1);
687 dev_dbg(fbi->dev, "nlccr2 = 0x%08lx\n", new_regs.lccr2);
688 dev_dbg(fbi->dev, "nlccr3 = 0x%08lx\n", new_regs.lccr3);
690 half_screen_size = var->bits_per_pixel;
691 half_screen_size = half_screen_size * var->xres * var->yres / 16;
693 /* Update shadow copy atomically */
694 local_irq_save(flags);
695 fbi->dbar1 = fbi->palette_dma;
696 fbi->dbar2 = fbi->screen_dma + half_screen_size;
698 fbi->reg_lccr0 = new_regs.lccr0;
699 fbi->reg_lccr1 = new_regs.lccr1;
700 fbi->reg_lccr2 = new_regs.lccr2;
701 fbi->reg_lccr3 = new_regs.lccr3;
702 local_irq_restore(flags);
705 * Only update the registers if the controller is enabled
706 * and something has changed.
708 if (readl_relaxed(fbi->base + LCCR0) != fbi->reg_lccr0 ||
709 readl_relaxed(fbi->base + LCCR1) != fbi->reg_lccr1 ||
710 readl_relaxed(fbi->base + LCCR2) != fbi->reg_lccr2 ||
711 readl_relaxed(fbi->base + LCCR3) != fbi->reg_lccr3 ||
712 readl_relaxed(fbi->base + DBAR1) != fbi->dbar1 ||
713 readl_relaxed(fbi->base + DBAR2) != fbi->dbar2)
714 sa1100fb_schedule_work(fbi, C_REENABLE);
720 * NOTE! The following functions are purely helpers for set_ctrlr_state.
721 * Do not call them directly; set_ctrlr_state does the correct serialisation
722 * to ensure that things happen in the right way 100% of time time.
725 static inline void __sa1100fb_backlight_power(struct sa1100fb_info *fbi, int on)
727 dev_dbg(fbi->dev, "backlight o%s\n", on ? "n" : "ff");
729 if (fbi->inf->backlight_power)
730 fbi->inf->backlight_power(on);
733 static inline void __sa1100fb_lcd_power(struct sa1100fb_info *fbi, int on)
735 dev_dbg(fbi->dev, "LCD power o%s\n", on ? "n" : "ff");
737 if (fbi->inf->lcd_power)
738 fbi->inf->lcd_power(on);
741 static void sa1100fb_setup_gpio(struct sa1100fb_info *fbi)
746 * Enable GPIO<9:2> for LCD use if:
747 * 1. Active display, or
748 * 2. Color Dual Passive display
750 * see table 11.8 on page 11-27 in the SA1100 manual
753 * SA1110 spec update nr. 25 says we can and should
754 * clear LDD15 to 12 for 4 or 8bpp modes with active
757 if ((fbi->reg_lccr0 & LCCR0_CMS) == LCCR0_Color &&
758 (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) != 0) {
759 mask = GPIO_LDD11 | GPIO_LDD10 | GPIO_LDD9 | GPIO_LDD8;
761 if (fbi->fb.var.bits_per_pixel > 8 ||
762 (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) == LCCR0_Dual)
763 mask |= GPIO_LDD15 | GPIO_LDD14 | GPIO_LDD13 | GPIO_LDD12;
771 * SA-1100 requires the GPIO direction register set
772 * appropriately for the alternate function. Hence
773 * we set it here via bitmask rather than excessive
774 * fiddling via the GPIO subsystem - and even then
775 * we'll still have to deal with GAFR.
777 local_irq_save(flags);
780 local_irq_restore(flags);
784 static void sa1100fb_enable_controller(struct sa1100fb_info *fbi)
786 dev_dbg(fbi->dev, "Enabling LCD controller\n");
789 * Make sure the mode bits are present in the first palette entry
791 fbi->palette_cpu[0] &= 0xcfff;
792 fbi->palette_cpu[0] |= palette_pbs(&fbi->fb.var);
794 /* Sequence from 11.7.10 */
795 writel_relaxed(fbi->reg_lccr3, fbi->base + LCCR3);
796 writel_relaxed(fbi->reg_lccr2, fbi->base + LCCR2);
797 writel_relaxed(fbi->reg_lccr1, fbi->base + LCCR1);
798 writel_relaxed(fbi->reg_lccr0 & ~LCCR0_LEN, fbi->base + LCCR0);
799 writel_relaxed(fbi->dbar1, fbi->base + DBAR1);
800 writel_relaxed(fbi->dbar2, fbi->base + DBAR2);
801 writel_relaxed(fbi->reg_lccr0 | LCCR0_LEN, fbi->base + LCCR0);
803 if (machine_is_shannon())
804 gpio_set_value(SHANNON_GPIO_DISP_EN, 1);
806 dev_dbg(fbi->dev, "DBAR1: 0x%08x\n", readl_relaxed(fbi->base + DBAR1));
807 dev_dbg(fbi->dev, "DBAR2: 0x%08x\n", readl_relaxed(fbi->base + DBAR2));
808 dev_dbg(fbi->dev, "LCCR0: 0x%08x\n", readl_relaxed(fbi->base + LCCR0));
809 dev_dbg(fbi->dev, "LCCR1: 0x%08x\n", readl_relaxed(fbi->base + LCCR1));
810 dev_dbg(fbi->dev, "LCCR2: 0x%08x\n", readl_relaxed(fbi->base + LCCR2));
811 dev_dbg(fbi->dev, "LCCR3: 0x%08x\n", readl_relaxed(fbi->base + LCCR3));
814 static void sa1100fb_disable_controller(struct sa1100fb_info *fbi)
816 DECLARE_WAITQUEUE(wait, current);
819 dev_dbg(fbi->dev, "Disabling LCD controller\n");
821 if (machine_is_shannon())
822 gpio_set_value(SHANNON_GPIO_DISP_EN, 0);
824 set_current_state(TASK_UNINTERRUPTIBLE);
825 add_wait_queue(&fbi->ctrlr_wait, &wait);
827 /* Clear LCD Status Register */
828 writel_relaxed(~0, fbi->base + LCSR);
830 lccr0 = readl_relaxed(fbi->base + LCCR0);
831 lccr0 &= ~LCCR0_LDM; /* Enable LCD Disable Done Interrupt */
832 writel_relaxed(lccr0, fbi->base + LCCR0);
833 lccr0 &= ~LCCR0_LEN; /* Disable LCD Controller */
834 writel_relaxed(lccr0, fbi->base + LCCR0);
836 schedule_timeout(20 * HZ / 1000);
837 remove_wait_queue(&fbi->ctrlr_wait, &wait);
841 * sa1100fb_handle_irq: Handle 'LCD DONE' interrupts.
843 static irqreturn_t sa1100fb_handle_irq(int irq, void *dev_id)
845 struct sa1100fb_info *fbi = dev_id;
846 unsigned int lcsr = readl_relaxed(fbi->base + LCSR);
848 if (lcsr & LCSR_LDD) {
849 u32 lccr0 = readl_relaxed(fbi->base + LCCR0) | LCCR0_LDM;
850 writel_relaxed(lccr0, fbi->base + LCCR0);
851 wake_up(&fbi->ctrlr_wait);
854 writel_relaxed(lcsr, fbi->base + LCSR);
859 * This function must be called from task context only, since it will
860 * sleep when disabling the LCD controller, or if we get two contending
861 * processes trying to alter state.
863 static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state)
867 mutex_lock(&fbi->ctrlr_lock);
869 old_state = fbi->state;
872 * Hack around fbcon initialisation.
874 if (old_state == C_STARTUP && state == C_REENABLE)
878 case C_DISABLE_CLKCHANGE:
880 * Disable controller for clock change. If the
881 * controller is already disabled, then do nothing.
883 if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
885 sa1100fb_disable_controller(fbi);
894 if (old_state != C_DISABLE) {
897 __sa1100fb_backlight_power(fbi, 0);
898 if (old_state != C_DISABLE_CLKCHANGE)
899 sa1100fb_disable_controller(fbi);
900 __sa1100fb_lcd_power(fbi, 0);
904 case C_ENABLE_CLKCHANGE:
906 * Enable the controller after clock change. Only
907 * do this if we were disabled for the clock change.
909 if (old_state == C_DISABLE_CLKCHANGE) {
910 fbi->state = C_ENABLE;
911 sa1100fb_enable_controller(fbi);
917 * Re-enable the controller only if it was already
918 * enabled. This is so we reprogram the control
921 if (old_state == C_ENABLE) {
922 sa1100fb_disable_controller(fbi);
923 sa1100fb_setup_gpio(fbi);
924 sa1100fb_enable_controller(fbi);
930 * Re-enable the controller after PM. This is not
931 * perfect - think about the case where we were doing
932 * a clock change, and we suspended half-way through.
934 if (old_state != C_DISABLE_PM)
940 * Power up the LCD screen, enable controller, and
941 * turn on the backlight.
943 if (old_state != C_ENABLE) {
944 fbi->state = C_ENABLE;
945 sa1100fb_setup_gpio(fbi);
946 __sa1100fb_lcd_power(fbi, 1);
947 sa1100fb_enable_controller(fbi);
948 __sa1100fb_backlight_power(fbi, 1);
952 mutex_unlock(&fbi->ctrlr_lock);
956 * Our LCD controller task (which is called when we blank or unblank)
959 static void sa1100fb_task(struct work_struct *w)
961 struct sa1100fb_info *fbi = container_of(w, struct sa1100fb_info, task);
962 u_int state = xchg(&fbi->task_state, -1);
964 set_ctrlr_state(fbi, state);
967 #ifdef CONFIG_CPU_FREQ
969 * Calculate the minimum DMA period over all displays that we own.
970 * This, together with the SDRAM bandwidth defines the slowest CPU
971 * frequency that can be selected.
973 static unsigned int sa1100fb_min_dma_period(struct sa1100fb_info *fbi)
976 unsigned int min_period = (unsigned int)-1;
979 for (i = 0; i < MAX_NR_CONSOLES; i++) {
980 struct display *disp = &fb_display[i];
984 * Do we own this display?
986 if (disp->fb_info != &fbi->fb)
990 * Ok, calculate its DMA period
992 period = sa1100fb_display_dma_period(&disp->var);
993 if (period < min_period)
1000 * FIXME: we need to verify _all_ consoles.
1002 return sa1100fb_display_dma_period(&fbi->fb.var);
1007 * CPU clock speed change handler. We need to adjust the LCD timing
1008 * parameters when the CPU clock is adjusted by the power management
1012 sa1100fb_freq_transition(struct notifier_block *nb, unsigned long val,
1015 struct sa1100fb_info *fbi = TO_INF(nb, freq_transition);
1016 struct cpufreq_freqs *f = data;
1020 case CPUFREQ_PRECHANGE:
1021 set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
1024 case CPUFREQ_POSTCHANGE:
1025 pcd = get_pcd(fbi->fb.var.pixclock, f->new);
1026 fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd);
1027 set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1034 sa1100fb_freq_policy(struct notifier_block *nb, unsigned long val,
1037 struct sa1100fb_info *fbi = TO_INF(nb, freq_policy);
1038 struct cpufreq_policy *policy = data;
1041 case CPUFREQ_ADJUST:
1042 case CPUFREQ_INCOMPATIBLE:
1043 dev_dbg(fbi->dev, "min dma period: %d ps, "
1044 "new clock %d kHz\n", sa1100fb_min_dma_period(fbi),
1046 /* todo: fill in min/max values */
1048 case CPUFREQ_NOTIFY:
1050 /* todo: panic if min/max values aren't fulfilled
1051 * [can't really happen unless there's a bug in the
1052 * CPU policy verififcation process *
1062 * Power management hooks. Note that we won't be called from IRQ context,
1063 * unlike the blank functions above, so we may sleep.
1065 static int sa1100fb_suspend(struct platform_device *dev, pm_message_t state)
1067 struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1069 set_ctrlr_state(fbi, C_DISABLE_PM);
1073 static int sa1100fb_resume(struct platform_device *dev)
1075 struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1077 set_ctrlr_state(fbi, C_ENABLE_PM);
1081 #define sa1100fb_suspend NULL
1082 #define sa1100fb_resume NULL
1086 * sa1100fb_map_video_memory():
1087 * Allocates the DRAM memory for the frame buffer. This buffer is
1088 * remapped into a non-cached, non-buffered, memory region to
1089 * allow palette and pixel writes to occur without flushing the
1090 * cache. Once this area is remapped, all virtual memory
1091 * access to the video memory should occur at the new region.
1093 static int __devinit sa1100fb_map_video_memory(struct sa1100fb_info *fbi)
1096 * We reserve one page for the palette, plus the size
1097 * of the framebuffer.
1099 fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE);
1100 fbi->map_cpu = dma_alloc_writecombine(fbi->dev, fbi->map_size,
1101 &fbi->map_dma, GFP_KERNEL);
1104 fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE;
1105 fbi->screen_dma = fbi->map_dma + PAGE_SIZE;
1107 * FIXME: this is actually the wrong thing to place in
1108 * smem_start. But fbdev suffers from the problem that
1109 * it needs an API which doesn't exist (in this case,
1110 * dma_writecombine_mmap)
1112 fbi->fb.fix.smem_start = fbi->screen_dma;
1115 return fbi->map_cpu ? 0 : -ENOMEM;
1118 /* Fake monspecs to fill in fbinfo structure */
1119 static struct fb_monspecs monspecs __devinitdata = {
1127 static struct sa1100fb_info * __devinit sa1100fb_init_fbinfo(struct device *dev)
1129 struct sa1100fb_mach_info *inf = dev->platform_data;
1130 struct sa1100fb_info *fbi;
1133 fbi = kmalloc(sizeof(struct sa1100fb_info) + sizeof(u32) * 16,
1138 memset(fbi, 0, sizeof(struct sa1100fb_info));
1141 strcpy(fbi->fb.fix.id, SA1100_NAME);
1143 fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS;
1144 fbi->fb.fix.type_aux = 0;
1145 fbi->fb.fix.xpanstep = 0;
1146 fbi->fb.fix.ypanstep = 0;
1147 fbi->fb.fix.ywrapstep = 0;
1148 fbi->fb.fix.accel = FB_ACCEL_NONE;
1150 fbi->fb.var.nonstd = 0;
1151 fbi->fb.var.activate = FB_ACTIVATE_NOW;
1152 fbi->fb.var.height = -1;
1153 fbi->fb.var.width = -1;
1154 fbi->fb.var.accel_flags = 0;
1155 fbi->fb.var.vmode = FB_VMODE_NONINTERLACED;
1157 fbi->fb.fbops = &sa1100fb_ops;
1158 fbi->fb.flags = FBINFO_DEFAULT;
1159 fbi->fb.monspecs = monspecs;
1160 fbi->fb.pseudo_palette = (fbi + 1);
1162 fbi->rgb[RGB_4] = &rgb_4;
1163 fbi->rgb[RGB_8] = &rgb_8;
1164 fbi->rgb[RGB_16] = &def_rgb_16;
1167 * People just don't seem to get this. We don't support
1168 * anything but correct entries now, so panic if someone
1169 * does something stupid.
1171 if (inf->lccr3 & (LCCR3_VrtSnchL|LCCR3_HorSnchL|0xff) ||
1173 panic("sa1100fb error: invalid LCCR3 fields set or zero "
1176 fbi->fb.var.xres = inf->xres;
1177 fbi->fb.var.xres_virtual = inf->xres;
1178 fbi->fb.var.yres = inf->yres;
1179 fbi->fb.var.yres_virtual = inf->yres;
1180 fbi->fb.var.bits_per_pixel = inf->bpp;
1181 fbi->fb.var.pixclock = inf->pixclock;
1182 fbi->fb.var.hsync_len = inf->hsync_len;
1183 fbi->fb.var.left_margin = inf->left_margin;
1184 fbi->fb.var.right_margin = inf->right_margin;
1185 fbi->fb.var.vsync_len = inf->vsync_len;
1186 fbi->fb.var.upper_margin = inf->upper_margin;
1187 fbi->fb.var.lower_margin = inf->lower_margin;
1188 fbi->fb.var.sync = inf->sync;
1189 fbi->fb.var.grayscale = inf->cmap_greyscale;
1190 fbi->state = C_STARTUP;
1191 fbi->task_state = (u_char)-1;
1192 fbi->fb.fix.smem_len = inf->xres * inf->yres *
1196 /* Copy the RGB bitfield overrides */
1197 for (i = 0; i < NR_RGB; i++)
1199 fbi->rgb[i] = inf->rgb[i];
1201 init_waitqueue_head(&fbi->ctrlr_wait);
1202 INIT_WORK(&fbi->task, sa1100fb_task);
1203 mutex_init(&fbi->ctrlr_lock);
1208 static int __devinit sa1100fb_probe(struct platform_device *pdev)
1210 struct sa1100fb_info *fbi;
1211 struct resource *res;
1214 if (!pdev->dev.platform_data) {
1215 dev_err(&pdev->dev, "no platform LCD data\n");
1219 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1220 irq = platform_get_irq(pdev, 0);
1221 if (irq < 0 || !res)
1224 if (!request_mem_region(res->start, resource_size(res), "LCD"))
1227 fbi = sa1100fb_init_fbinfo(&pdev->dev);
1232 fbi->base = ioremap(res->start, resource_size(res));
1236 /* Initialize video memory */
1237 ret = sa1100fb_map_video_memory(fbi);
1241 ret = request_irq(irq, sa1100fb_handle_irq, 0, "LCD", fbi);
1243 dev_err(&pdev->dev, "request_irq failed: %d\n", ret);
1247 if (machine_is_shannon()) {
1248 ret = gpio_request_one(SHANNON_GPIO_DISP_EN,
1249 GPIOF_OUT_INIT_LOW, "display enable");
1255 * This makes sure that our colour bitfield
1256 * descriptors are correctly initialised.
1258 sa1100fb_check_var(&fbi->fb.var, &fbi->fb);
1260 platform_set_drvdata(pdev, fbi);
1262 ret = register_framebuffer(&fbi->fb);
1266 #ifdef CONFIG_CPU_FREQ
1267 fbi->freq_transition.notifier_call = sa1100fb_freq_transition;
1268 fbi->freq_policy.notifier_call = sa1100fb_freq_policy;
1269 cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER);
1270 cpufreq_register_notifier(&fbi->freq_policy, CPUFREQ_POLICY_NOTIFIER);
1273 /* This driver cannot be unloaded at the moment */
1277 if (machine_is_shannon())
1278 gpio_free(SHANNON_GPIO_DISP_EN);
1284 platform_set_drvdata(pdev, NULL);
1286 release_mem_region(res->start, resource_size(res));
1290 static struct platform_driver sa1100fb_driver = {
1291 .probe = sa1100fb_probe,
1292 .suspend = sa1100fb_suspend,
1293 .resume = sa1100fb_resume,
1295 .name = "sa11x0-fb",
1296 .owner = THIS_MODULE,
1300 int __init sa1100fb_init(void)
1302 if (fb_get_options("sa1100fb", NULL))
1305 return platform_driver_register(&sa1100fb_driver);
1308 int __init sa1100fb_setup(char *options)
1313 if (!options || !*options)
1316 while ((this_opt = strsep(&options, ",")) != NULL) {
1318 if (!strncmp(this_opt, "bpp:", 4))
1319 current_par.max_bpp =
1320 simple_strtoul(this_opt + 4, NULL, 0);
1322 if (!strncmp(this_opt, "lccr0:", 6))
1324 simple_strtoul(this_opt + 6, NULL, 0);
1325 if (!strncmp(this_opt, "lccr1:", 6)) {
1327 simple_strtoul(this_opt + 6, NULL, 0);
1328 current_par.max_xres =
1329 (lcd_shadow.lccr1 & 0x3ff) + 16;
1331 if (!strncmp(this_opt, "lccr2:", 6)) {
1333 simple_strtoul(this_opt + 6, NULL, 0);
1334 current_par.max_yres =
1336 lccr0 & LCCR0_SDS) ? ((lcd_shadow.
1339 2 : ((lcd_shadow.lccr2 & 0x3ff) + 1);
1341 if (!strncmp(this_opt, "lccr3:", 6))
1343 simple_strtoul(this_opt + 6, NULL, 0);
1349 module_init(sa1100fb_init);
1350 MODULE_DESCRIPTION("StrongARM-1100/1110 framebuffer driver");
1351 MODULE_LICENSE("GPL");