drm/nouveau: fence: fix undefined fence state after emit
[platform/kernel/linux-rpi.git] / drivers / video / fbdev / kyro / STG4000InitDevice.c
1 /*
2  *  linux/drivers/video/kyro/STG4000InitDevice.c
3  *
4  *  Copyright (C) 2000 Imagination Technologies Ltd
5  *  Copyright (C) 2002 STMicroelectronics
6  *
7  * This file is subject to the terms and conditions of the GNU General Public
8  * License.  See the file COPYING in the main directory of this archive
9  * for more details.
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/errno.h>
14 #include <linux/types.h>
15 #include <linux/pci.h>
16
17 #include "STG4000Reg.h"
18 #include "STG4000Interface.h"
19
20 /* SDRAM fixed settings */
21 #define SDRAM_CFG_0   0x49A1
22 #define SDRAM_CFG_1   0xA732
23 #define SDRAM_CFG_2   0x31
24 #define SDRAM_ARB_CFG 0xA0
25 #define SDRAM_REFRESH 0x20
26
27 /* Reset values */
28 #define PMX2_SOFTRESET_DAC_RST          0x0001
29 #define PMX2_SOFTRESET_C1_RST           0x0004
30 #define PMX2_SOFTRESET_C2_RST           0x0008
31 #define PMX2_SOFTRESET_3D_RST           0x0010
32 #define PMX2_SOFTRESET_VIDIN_RST        0x0020
33 #define PMX2_SOFTRESET_TLB_RST          0x0040
34 #define PMX2_SOFTRESET_SD_RST           0x0080
35 #define PMX2_SOFTRESET_VGA_RST          0x0100
36 #define PMX2_SOFTRESET_ROM_RST          0x0200  /* reserved bit, do not reset */
37 #define PMX2_SOFTRESET_TA_RST           0x0400
38 #define PMX2_SOFTRESET_REG_RST          0x4000
39 #define PMX2_SOFTRESET_ALL              0x7fff
40
41 /* Core clock freq */
42 #define CORE_PLL_FREQ 1000000
43
44 /* Reference Clock freq */
45 #define REF_FREQ 14318
46
47 /* PCI Registers */
48 static u16 CorePllControl = 0x70;
49
50 #define PCI_CONFIG_SUBSYS_ID    0x2e
51
52 /* Misc */
53 #define CORE_PLL_MODE_REG_0_7      3
54 #define CORE_PLL_MODE_REG_8_15     2
55 #define CORE_PLL_MODE_CONFIG_REG   1
56 #define DAC_PLL_CONFIG_REG         0
57
58 #define STG_MAX_VCO 500000
59 #define STG_MIN_VCO 100000
60
61 /* PLL Clock */
62 #define    STG4K3_PLL_SCALER      8     /* scale numbers by 2^8 for fixed point calc */
63 #define    STG4K3_PLL_MIN_R       2     /* Minimum multiplier */
64 #define    STG4K3_PLL_MAX_R       33    /* Max */
65 #define    STG4K3_PLL_MIN_F       2     /* Minimum divisor */
66 #define    STG4K3_PLL_MAX_F       513   /* Max */
67 #define    STG4K3_PLL_MIN_OD      0     /* Min output divider (shift) */
68 #define    STG4K3_PLL_MAX_OD      2     /* Max */
69 #define    STG4K3_PLL_MIN_VCO_SC  (100000000 >> STG4K3_PLL_SCALER)      /* Min VCO rate */
70 #define    STG4K3_PLL_MAX_VCO_SC  (500000000 >> STG4K3_PLL_SCALER)      /* Max VCO rate */
71 #define    STG4K3_PLL_MINR_VCO_SC (100000000 >> STG4K3_PLL_SCALER)      /* Min VCO rate (restricted) */
72 #define    STG4K3_PLL_MAXR_VCO_SC (500000000 >> STG4K3_PLL_SCALER)      /* Max VCO rate (restricted) */
73 #define    STG4K3_PLL_MINR_VCO    100000000     /* Min VCO rate (restricted) */
74 #define    STG4K3_PLL_MAX_VCO     500000000     /* Max VCO rate */
75 #define    STG4K3_PLL_MAXR_VCO    500000000     /* Max VCO rate (restricted) */
76
77 #define OS_DELAY(X) \
78 { \
79 volatile u32 i,count=0; \
80     for(i=0;i<X;i++) count++; \
81 }
82
83 static u32 InitSDRAMRegisters(volatile STG4000REG __iomem *pSTGReg,
84                               u32 dwSubSysID, u32 dwRevID)
85 {
86         u32 adwSDRAMArgCfg0[] = { 0xa0, 0x80, 0xa0, 0xa0, 0xa0 };
87         u32 adwSDRAMCfg1[] = { 0x8732, 0x8732, 0xa732, 0xa732, 0x8732 };
88         u32 adwSDRAMCfg2[] = { 0x87d2, 0x87d2, 0xa7d2, 0x87d2, 0xa7d2 };
89         u32 adwSDRAMRsh[] = { 36, 39, 40 };
90         u32 adwChipSpeed[] = { 110, 120, 125 };
91         u32 dwMemTypeIdx;
92         u32 dwChipSpeedIdx;
93
94         /* Get memory tpye and chip speed indexs from the SubSysDevID */
95         dwMemTypeIdx = (dwSubSysID & 0x70) >> 4;
96         dwChipSpeedIdx = (dwSubSysID & 0x180) >> 7;
97
98         if (dwMemTypeIdx > 4 || dwChipSpeedIdx > 2)
99                 return 0;
100
101         /* Program SD-RAM interface */
102         STG_WRITE_REG(SDRAMArbiterConf, adwSDRAMArgCfg0[dwMemTypeIdx]);
103         if (dwRevID < 5) {
104                 STG_WRITE_REG(SDRAMConf0, 0x49A1);
105                 STG_WRITE_REG(SDRAMConf1, adwSDRAMCfg1[dwMemTypeIdx]);
106         } else {
107                 STG_WRITE_REG(SDRAMConf0, 0x4DF1);
108                 STG_WRITE_REG(SDRAMConf1, adwSDRAMCfg2[dwMemTypeIdx]);
109         }
110
111         STG_WRITE_REG(SDRAMConf2, 0x31);
112         STG_WRITE_REG(SDRAMRefresh, adwSDRAMRsh[dwChipSpeedIdx]);
113
114         return adwChipSpeed[dwChipSpeedIdx] * 10000;
115 }
116
117 u32 ProgramClock(u32 refClock,
118                    u32 coreClock,
119                    u32 * FOut, u32 * ROut, u32 * POut)
120 {
121         u32 R = 0, F = 0, OD = 0, ODIndex = 0;
122         u32 ulBestR = 0, ulBestF = 0, ulBestOD = 0;
123         u32 ulBestClk = 0, ulBestScore = 0;
124         u32 ulScore, ulPhaseScore, ulVcoScore;
125         u32 ulTmp = 0, ulVCO;
126         u32 ulScaleClockReq, ulMinClock, ulMaxClock;
127         static const unsigned char ODValues[] = { 1, 2, 0 };
128
129         /* Translate clock in Hz */
130         coreClock *= 100;       /* in Hz */
131         refClock *= 1000;       /* in Hz */
132
133         /* Work out acceptable clock
134          * The method calculates ~ +- 0.4% (1/256)
135          */
136         ulMinClock = coreClock - (coreClock >> 8);
137         ulMaxClock = coreClock + (coreClock >> 8);
138
139         /* Scale clock required for use in calculations */
140         ulScaleClockReq = coreClock >> STG4K3_PLL_SCALER;
141
142         /* Iterate through post divider values */
143         for (ODIndex = 0; ODIndex < 3; ODIndex++) {
144                 OD = ODValues[ODIndex];
145                 R = STG4K3_PLL_MIN_R;
146
147                 /* loop for pre-divider from min to max  */
148                 while (R <= STG4K3_PLL_MAX_R) {
149                         /* estimate required feedback multiplier */
150                         ulTmp = R * (ulScaleClockReq << OD);
151
152                         /* F = ClkRequired * R * (2^OD) / Fref */
153                         F = (u32)(ulTmp / (refClock >> STG4K3_PLL_SCALER));
154
155                         /* compensate for accuracy */
156                         if (F > STG4K3_PLL_MIN_F)
157                                 F--;
158
159
160                         /*
161                          * We should be close to our target frequency (if it's
162                          * achievable with current OD & R) let's iterate
163                          * through F for best fit
164                          */
165                         while ((F >= STG4K3_PLL_MIN_F) &&
166                                (F <= STG4K3_PLL_MAX_F)) {
167                                 /* Calc VCO at full accuracy */
168                                 ulVCO = refClock / R;
169                                 ulVCO = F * ulVCO;
170
171                                 /*
172                                  * Check it's within restricted VCO range
173                                  * unless of course the desired frequency is
174                                  * above the restricted range, then test
175                                  * against VCO limit
176                                  */
177                                 if ((ulVCO >= STG4K3_PLL_MINR_VCO) &&
178                                     ((ulVCO <= STG4K3_PLL_MAXR_VCO) ||
179                                      ((coreClock > STG4K3_PLL_MAXR_VCO)
180                                       && (ulVCO <= STG4K3_PLL_MAX_VCO)))) {
181                                         ulTmp = (ulVCO >> OD);  /* Clock = VCO / (2^OD) */
182
183                                         /* Is this clock good enough? */
184                                         if ((ulTmp >= ulMinClock)
185                                             && (ulTmp <= ulMaxClock)) {
186                                                 ulPhaseScore = (((refClock / R) - (refClock / STG4K3_PLL_MAX_R))) / ((refClock - (refClock / STG4K3_PLL_MAX_R)) >> 10);
187
188                                                 ulVcoScore = ((ulVCO - STG4K3_PLL_MINR_VCO)) / ((STG4K3_PLL_MAXR_VCO - STG4K3_PLL_MINR_VCO) >> 10);
189                                                 ulScore = ulPhaseScore + ulVcoScore;
190
191                                                 if (!ulBestScore) {
192                                                         ulBestOD = OD;
193                                                         ulBestF = F;
194                                                         ulBestR = R;
195                                                         ulBestClk = ulTmp;
196                                                         ulBestScore =
197                                                             ulScore;
198                                                 }
199                                                 /* is this better, ( aim for highest Score) */
200                         /*--------------------------------------------------------------------------
201                              Here we want to use a scoring system which will take account of both the
202                             value at the phase comparater and the VCO output
203                              to do this we will use a cumulative score between the two
204                           The way this ends up is that we choose the first value in the loop anyway
205                           but we shall keep this code in case new restrictions come into play
206                           --------------------------------------------------------------------------*/
207                                                 if ((ulScore >= ulBestScore) && (OD > 0)) {
208                                                         ulBestOD = OD;
209                                                         ulBestF = F;
210                                                         ulBestR = R;
211                                                         ulBestClk = ulTmp;
212                                                         ulBestScore =
213                                                             ulScore;
214                                                 }
215                                         }
216                                 }
217                                 F++;
218                         }
219                         R++;
220                 }
221         }
222
223         /*
224            did we find anything?
225            Then return RFOD
226          */
227         if (ulBestScore) {
228                 *ROut = ulBestR;
229                 *FOut = ulBestF;
230
231                 if ((ulBestOD == 2) || (ulBestOD == 3)) {
232                         *POut = 3;
233                 } else
234                         *POut = ulBestOD;
235
236         }
237
238         return (ulBestClk);
239 }
240
241 int SetCoreClockPLL(volatile STG4000REG __iomem *pSTGReg, struct pci_dev *pDev)
242 {
243         u32 F, R, P;
244         u16 core_pll = 0, sub;
245         u32 tmp;
246         u32 ulChipSpeed;
247
248         STG_WRITE_REG(IntMask, 0xFFFF);
249
250         /* Disable Primary Core Thread0 */
251         tmp = STG_READ_REG(Thread0Enable);
252         CLEAR_BIT(0);
253         STG_WRITE_REG(Thread0Enable, tmp);
254
255         /* Disable Primary Core Thread1 */
256         tmp = STG_READ_REG(Thread1Enable);
257         CLEAR_BIT(0);
258         STG_WRITE_REG(Thread1Enable, tmp);
259
260         STG_WRITE_REG(SoftwareReset,
261                       PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_ROM_RST);
262         STG_WRITE_REG(SoftwareReset,
263                       PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_TA_RST |
264                       PMX2_SOFTRESET_ROM_RST);
265
266         /* Need to play around to reset TA */
267         STG_WRITE_REG(TAConfiguration, 0);
268         STG_WRITE_REG(SoftwareReset,
269                       PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_ROM_RST);
270         STG_WRITE_REG(SoftwareReset,
271                       PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_TA_RST |
272                       PMX2_SOFTRESET_ROM_RST);
273
274         pci_read_config_word(pDev, PCI_CONFIG_SUBSYS_ID, &sub);
275
276         ulChipSpeed = InitSDRAMRegisters(pSTGReg, (u32)sub,
277                                          (u32)pDev->revision);
278
279         if (ulChipSpeed == 0)
280                 return -EINVAL;
281
282         ProgramClock(REF_FREQ, CORE_PLL_FREQ, &F, &R, &P);
283
284         core_pll |= ((P) | ((F - 2) << 2) | ((R - 2) << 11));
285
286         /* Set Core PLL Control to Core PLL Mode  */
287
288         /* Send bits 0:7 of the Core PLL Mode register */
289         tmp = ((CORE_PLL_MODE_REG_0_7 << 8) | (core_pll & 0x00FF));
290         pci_write_config_word(pDev, CorePllControl, tmp);
291         /* Without some delay between the PCI config writes the clock does
292            not reliably set when the code is compiled -O3
293          */
294         OS_DELAY(1000000);
295
296         tmp |= SET_BIT(14);
297         pci_write_config_word(pDev, CorePllControl, tmp);
298         OS_DELAY(1000000);
299
300         /* Send bits 8:15 of the Core PLL Mode register */
301         tmp =
302             ((CORE_PLL_MODE_REG_8_15 << 8) | ((core_pll & 0xFF00) >> 8));
303         pci_write_config_word(pDev, CorePllControl, tmp);
304         OS_DELAY(1000000);
305
306         tmp |= SET_BIT(14);
307         pci_write_config_word(pDev, CorePllControl, tmp);
308         OS_DELAY(1000000);
309
310         STG_WRITE_REG(SoftwareReset, PMX2_SOFTRESET_ALL);
311
312 #if 0
313         /* Enable Primary Core Thread0 */
314         tmp = ((STG_READ_REG(Thread0Enable)) | SET_BIT(0));
315         STG_WRITE_REG(Thread0Enable, tmp);
316
317         /* Enable Primary Core Thread1 */
318         tmp = ((STG_READ_REG(Thread1Enable)) | SET_BIT(0));
319         STG_WRITE_REG(Thread1Enable, tmp);
320 #endif
321
322         return 0;
323 }