1 // SPDX-License-Identifier: GPL-2.0
3 * xHCI host controller driver
5 * Copyright (C) 2008 Intel Corp.
8 * Some code borrowed from the Linux EHCI driver.
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
22 #include "xhci-trace.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 struct xhci_segment *seg = ring->first_seg;
44 if (!td || !td->start_seg)
47 if (seg == td->start_seg)
50 } while (seg && seg != ring->first_seg);
56 * xhci_handshake - spin reading hc until handshake completes or fails
57 * @ptr: address of hc register to be read
58 * @mask: bits to look at in result of read
59 * @done: value of those bits when handshake succeeds
60 * @usec: timeout in microseconds
62 * Returns negative errno, or zero on success
64 * Success happens when the "mask" bits have the specified value (hardware
65 * handshake done). There are two failure modes: "usec" have passed (major
66 * hardware flakeout), or the register reads as all-ones (hardware removed).
68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
73 ret = readl_poll_timeout_atomic(ptr, result,
74 (result & mask) == done ||
77 if (result == U32_MAX) /* card removed */
84 * Disable interrupts and begin the xHCI halting process.
86 void xhci_quiesce(struct xhci_hcd *xhci)
93 halted = readl(&xhci->op_regs->status) & STS_HALT;
97 cmd = readl(&xhci->op_regs->command);
99 writel(cmd, &xhci->op_regs->command);
103 * Force HC into halt state.
105 * Disable any IRQs and clear the run/stop bit.
106 * HC will complete any current and actively pipelined transactions, and
107 * should halt within 16 ms of the run/stop bit being cleared.
108 * Read HC Halted bit in the status register to see when the HC is finished.
110 int xhci_halt(struct xhci_hcd *xhci)
113 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
116 ret = xhci_handshake(&xhci->op_regs->status,
117 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119 xhci_warn(xhci, "Host halt failed, %d\n", ret);
122 xhci->xhc_state |= XHCI_STATE_HALTED;
123 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
128 * Set the run bit and wait for the host to be running.
130 int xhci_start(struct xhci_hcd *xhci)
135 temp = readl(&xhci->op_regs->command);
137 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
139 writel(temp, &xhci->op_regs->command);
142 * Wait for the HCHalted Status bit to be 0 to indicate the host is
145 ret = xhci_handshake(&xhci->op_regs->status,
146 STS_HALT, 0, XHCI_MAX_HALT_USEC);
147 if (ret == -ETIMEDOUT)
148 xhci_err(xhci, "Host took too long to start, "
149 "waited %u microseconds.\n",
152 /* clear state flags. Including dying, halted or removing */
161 * This resets pipelines, timers, counters, state machines, etc.
162 * Transactions will be terminated immediately, and operational registers
163 * will be set to their defaults.
165 int xhci_reset(struct xhci_hcd *xhci)
171 state = readl(&xhci->op_regs->status);
173 if (state == ~(u32)0) {
174 xhci_warn(xhci, "Host not accessible, reset failed.\n");
178 if ((state & STS_HALT) == 0) {
179 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
183 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
184 command = readl(&xhci->op_regs->command);
185 command |= CMD_RESET;
186 writel(command, &xhci->op_regs->command);
188 /* Existing Intel xHCI controllers require a delay of 1 mS,
189 * after setting the CMD_RESET bit, and before accessing any
190 * HC registers. This allows the HC to complete the
191 * reset operation and be ready for HC register access.
192 * Without this delay, the subsequent HC register access,
193 * may result in a system hang very rarely.
195 if (xhci->quirks & XHCI_INTEL_HOST)
198 ret = xhci_handshake(&xhci->op_regs->command,
199 CMD_RESET, 0, 10 * 1000 * 1000);
203 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
204 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
206 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
207 "Wait for controller to be ready for doorbell rings");
209 * xHCI cannot write to any doorbells or operational registers other
210 * than status until the "Controller Not Ready" flag is cleared.
212 ret = xhci_handshake(&xhci->op_regs->status,
213 STS_CNR, 0, 10 * 1000 * 1000);
215 xhci->usb2_rhub.bus_state.port_c_suspend = 0;
216 xhci->usb2_rhub.bus_state.suspended_ports = 0;
217 xhci->usb2_rhub.bus_state.resuming_ports = 0;
218 xhci->usb3_rhub.bus_state.port_c_suspend = 0;
219 xhci->usb3_rhub.bus_state.suspended_ports = 0;
220 xhci->usb3_rhub.bus_state.resuming_ports = 0;
225 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
227 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
233 * Some Renesas controllers get into a weird state if they are
234 * reset while programmed with 64bit addresses (they will preserve
235 * the top half of the address in internal, non visible
236 * registers). You end up with half the address coming from the
237 * kernel, and the other half coming from the firmware. Also,
238 * changing the programming leads to extra accesses even if the
239 * controller is supposed to be halted. The controller ends up with
240 * a fatal fault, and is then ripe for being properly reset.
242 * Special care is taken to only apply this if the device is behind
243 * an iommu. Doing anything when there is no iommu is definitely
246 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
249 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
251 /* Clear HSEIE so that faults do not get signaled */
252 val = readl(&xhci->op_regs->command);
254 writel(val, &xhci->op_regs->command);
256 /* Clear HSE (aka FATAL) */
257 val = readl(&xhci->op_regs->status);
259 writel(val, &xhci->op_regs->status);
261 /* Now zero the registers, and brace for impact */
262 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263 if (upper_32_bits(val))
264 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266 if (upper_32_bits(val))
267 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
269 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
270 ARRAY_SIZE(xhci->run_regs->ir_set));
272 for (i = 0; i < intrs; i++) {
273 struct xhci_intr_reg __iomem *ir;
275 ir = &xhci->run_regs->ir_set[i];
276 val = xhci_read_64(xhci, &ir->erst_base);
277 if (upper_32_bits(val))
278 xhci_write_64(xhci, 0, &ir->erst_base);
279 val= xhci_read_64(xhci, &ir->erst_dequeue);
280 if (upper_32_bits(val))
281 xhci_write_64(xhci, 0, &ir->erst_dequeue);
284 /* Wait for the fault to appear. It will be cleared on reset */
285 err = xhci_handshake(&xhci->op_regs->status,
286 STS_FATAL, STS_FATAL,
289 xhci_info(xhci, "Fault detected\n");
292 #ifdef CONFIG_USB_PCI
296 static int xhci_setup_msi(struct xhci_hcd *xhci)
300 * TODO:Check with MSI Soc for sysdev
302 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
304 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
306 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
307 "failed to allocate MSI entry");
311 ret = request_irq(pdev->irq, xhci_msi_irq,
312 0, "xhci_hcd", xhci_to_hcd(xhci));
314 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
315 "disable MSI interrupt");
316 pci_free_irq_vectors(pdev);
325 static int xhci_setup_msix(struct xhci_hcd *xhci)
328 struct usb_hcd *hcd = xhci_to_hcd(xhci);
329 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
332 * calculate number of msi-x vectors supported.
333 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
334 * with max number of interrupters based on the xhci HCSPARAMS1.
335 * - num_online_cpus: maximum msi-x vectors per CPUs core.
336 * Add additional 1 vector to ensure always available interrupt.
338 xhci->msix_count = min(num_online_cpus() + 1,
339 HCS_MAX_INTRS(xhci->hcs_params1));
341 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
344 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
345 "Failed to enable MSI-X");
349 for (i = 0; i < xhci->msix_count; i++) {
350 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
351 "xhci_hcd", xhci_to_hcd(xhci));
356 hcd->msix_enabled = 1;
360 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
362 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
363 pci_free_irq_vectors(pdev);
367 /* Free any IRQs and disable MSI-X */
368 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
370 struct usb_hcd *hcd = xhci_to_hcd(xhci);
371 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
373 if (xhci->quirks & XHCI_PLAT)
376 /* return if using legacy interrupt */
380 if (hcd->msix_enabled) {
383 for (i = 0; i < xhci->msix_count; i++)
384 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
386 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
389 pci_free_irq_vectors(pdev);
390 hcd->msix_enabled = 0;
393 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
395 struct usb_hcd *hcd = xhci_to_hcd(xhci);
397 if (hcd->msix_enabled) {
398 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
401 for (i = 0; i < xhci->msix_count; i++)
402 synchronize_irq(pci_irq_vector(pdev, i));
406 static int xhci_try_enable_msi(struct usb_hcd *hcd)
408 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
409 struct pci_dev *pdev;
412 /* The xhci platform device has set up IRQs through usb_add_hcd. */
413 if (xhci->quirks & XHCI_PLAT)
416 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
418 * Some Fresco Logic host controllers advertise MSI, but fail to
419 * generate interrupts. Don't even try to enable MSI.
421 if (xhci->quirks & XHCI_BROKEN_MSI)
424 /* unregister the legacy interrupt */
426 free_irq(hcd->irq, hcd);
429 ret = xhci_setup_msix(xhci);
431 /* fall back to msi*/
432 ret = xhci_setup_msi(xhci);
435 hcd->msi_enabled = 1;
440 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
445 if (!strlen(hcd->irq_descr))
446 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
447 hcd->driver->description, hcd->self.busnum);
449 /* fall back to legacy interrupt*/
450 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
451 hcd->irq_descr, hcd);
453 xhci_err(xhci, "request interrupt %d failed\n",
457 hcd->irq = pdev->irq;
463 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
468 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
472 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
478 static void compliance_mode_recovery(struct timer_list *t)
480 struct xhci_hcd *xhci;
482 struct xhci_hub *rhub;
486 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
487 rhub = &xhci->usb3_rhub;
489 for (i = 0; i < rhub->num_ports; i++) {
490 temp = readl(rhub->ports[i]->addr);
491 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
493 * Compliance Mode Detected. Letting USB Core
494 * handle the Warm Reset
496 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497 "Compliance mode detected->port %d",
499 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
500 "Attempting compliance mode recovery");
501 hcd = xhci->shared_hcd;
503 if (hcd->state == HC_STATE_SUSPENDED)
504 usb_hcd_resume_root_hub(hcd);
506 usb_hcd_poll_rh_status(hcd);
510 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
511 mod_timer(&xhci->comp_mode_recovery_timer,
512 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
516 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
517 * that causes ports behind that hardware to enter compliance mode sometimes.
518 * The quirk creates a timer that polls every 2 seconds the link state of
519 * each host controller's port and recovers it by issuing a Warm reset
520 * if Compliance mode is detected, otherwise the port will become "dead" (no
521 * device connections or disconnections will be detected anymore). Becasue no
522 * status event is generated when entering compliance mode (per xhci spec),
523 * this quirk is needed on systems that have the failing hardware installed.
525 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
527 xhci->port_status_u0 = 0;
528 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
530 xhci->comp_mode_recovery_timer.expires = jiffies +
531 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
533 add_timer(&xhci->comp_mode_recovery_timer);
534 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
535 "Compliance mode recovery timer initialized");
539 * This function identifies the systems that have installed the SN65LVPE502CP
540 * USB3.0 re-driver and that need the Compliance Mode Quirk.
542 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
544 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
546 const char *dmi_product_name, *dmi_sys_vendor;
548 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
549 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
550 if (!dmi_product_name || !dmi_sys_vendor)
553 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
556 if (strstr(dmi_product_name, "Z420") ||
557 strstr(dmi_product_name, "Z620") ||
558 strstr(dmi_product_name, "Z820") ||
559 strstr(dmi_product_name, "Z1 Workstation"))
565 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
567 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
572 * Initialize memory for HCD and xHC (one-time init).
574 * Program the PAGESIZE register, initialize the device context array, create
575 * device contexts (?), set up a command ring segment (or two?), create event
576 * ring (one for now).
578 static int xhci_init(struct usb_hcd *hcd)
580 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
583 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
584 spin_lock_init(&xhci->lock);
585 if (xhci->hci_version == 0x95 && link_quirk) {
586 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
587 "QUIRK: Not clearing Link TRB chain bits.");
588 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
590 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
591 "xHCI doesn't need link TRB QUIRK");
593 retval = xhci_mem_init(xhci, GFP_KERNEL);
594 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
596 /* Initializing Compliance Mode Recovery Data If Needed */
597 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
598 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
599 compliance_mode_recovery_timer_init(xhci);
605 /*-------------------------------------------------------------------------*/
608 static int xhci_run_finished(struct xhci_hcd *xhci)
610 if (xhci_start(xhci)) {
614 xhci->shared_hcd->state = HC_STATE_RUNNING;
615 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
617 if (xhci->quirks & XHCI_NEC_HOST)
618 xhci_ring_cmd_db(xhci);
620 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
621 "Finished xhci_run for USB3 roothub");
626 * Start the HC after it was halted.
628 * This function is called by the USB core when the HC driver is added.
629 * Its opposite is xhci_stop().
631 * xhci_init() must be called once before this function can be called.
632 * Reset the HC, enable device slot contexts, program DCBAAP, and
633 * set command ring pointer and event ring pointer.
635 * Setup MSI-X vectors and enable interrupts.
637 int xhci_run(struct usb_hcd *hcd)
642 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
644 /* Start the xHCI host controller running only after the USB 2.0 roothub
648 hcd->uses_new_polling = 1;
649 if (!usb_hcd_is_primary_hcd(hcd))
650 return xhci_run_finished(xhci);
652 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
654 ret = xhci_try_enable_msi(hcd);
658 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
659 temp_64 &= ~ERST_PTR_MASK;
660 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
663 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
664 "// Set the interrupt modulation register");
665 temp = readl(&xhci->ir_set->irq_control);
666 temp &= ~ER_IRQ_INTERVAL_MASK;
667 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
668 writel(temp, &xhci->ir_set->irq_control);
670 /* Set the HCD state before we enable the irqs */
671 temp = readl(&xhci->op_regs->command);
673 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
674 "// Enable interrupts, cmd = 0x%x.", temp);
675 writel(temp, &xhci->op_regs->command);
677 temp = readl(&xhci->ir_set->irq_pending);
678 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
679 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
680 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
681 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
683 if (xhci->quirks & XHCI_NEC_HOST) {
684 struct xhci_command *command;
686 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
690 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
691 TRB_TYPE(TRB_NEC_GET_FW));
693 xhci_free_command(xhci, command);
695 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
696 "Finished xhci_run for USB2 roothub");
700 xhci_debugfs_init(xhci);
704 EXPORT_SYMBOL_GPL(xhci_run);
709 * This function is called by the USB core when the HC driver is removed.
710 * Its opposite is xhci_run().
712 * Disable device contexts, disable IRQs, and quiesce the HC.
713 * Reset the HC, finish any completed transactions, and cleanup memory.
715 static void xhci_stop(struct usb_hcd *hcd)
718 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
720 mutex_lock(&xhci->mutex);
722 /* Only halt host and free memory after both hcds are removed */
723 if (!usb_hcd_is_primary_hcd(hcd)) {
724 mutex_unlock(&xhci->mutex);
730 spin_lock_irq(&xhci->lock);
731 xhci->xhc_state |= XHCI_STATE_HALTED;
732 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
735 spin_unlock_irq(&xhci->lock);
737 xhci_cleanup_msix(xhci);
739 /* Deleting Compliance Mode Recovery Timer */
740 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
741 (!(xhci_all_ports_seen_u0(xhci)))) {
742 del_timer_sync(&xhci->comp_mode_recovery_timer);
743 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
744 "%s: compliance mode recovery timer deleted",
748 if (xhci->quirks & XHCI_AMD_PLL_FIX)
751 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
752 "// Disabling event ring interrupts");
753 temp = readl(&xhci->op_regs->status);
754 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
755 temp = readl(&xhci->ir_set->irq_pending);
756 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
758 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
759 xhci_mem_cleanup(xhci);
760 xhci_debugfs_exit(xhci);
761 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
762 "xhci_stop completed - status = %x",
763 readl(&xhci->op_regs->status));
764 mutex_unlock(&xhci->mutex);
768 * Shutdown HC (not bus-specific)
770 * This is called when the machine is rebooting or halting. We assume that the
771 * machine will be powered off, and the HC's internal state will be reset.
772 * Don't bother to free memory.
774 * This will only ever be called with the main usb_hcd (the USB3 roothub).
776 void xhci_shutdown(struct usb_hcd *hcd)
778 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
780 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
781 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
783 spin_lock_irq(&xhci->lock);
785 /* Workaround for spurious wakeups at shutdown with HSW */
786 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
788 spin_unlock_irq(&xhci->lock);
790 xhci_cleanup_msix(xhci);
792 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
793 "xhci_shutdown completed - status = %x",
794 readl(&xhci->op_regs->status));
796 EXPORT_SYMBOL_GPL(xhci_shutdown);
799 static void xhci_save_registers(struct xhci_hcd *xhci)
801 xhci->s3.command = readl(&xhci->op_regs->command);
802 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
803 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
804 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
805 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
806 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
807 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
808 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
809 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
812 static void xhci_restore_registers(struct xhci_hcd *xhci)
814 writel(xhci->s3.command, &xhci->op_regs->command);
815 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
816 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
817 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
818 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
819 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
820 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
821 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
822 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
825 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
829 /* step 2: initialize command ring buffer */
830 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
831 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
832 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
833 xhci->cmd_ring->dequeue) &
834 (u64) ~CMD_RING_RSVD_BITS) |
835 xhci->cmd_ring->cycle_state;
836 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
837 "// Setting command ring address to 0x%llx",
838 (long unsigned long) val_64);
839 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
843 * The whole command ring must be cleared to zero when we suspend the host.
845 * The host doesn't save the command ring pointer in the suspend well, so we
846 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
847 * aligned, because of the reserved bits in the command ring dequeue pointer
848 * register. Therefore, we can't just set the dequeue pointer back in the
849 * middle of the ring (TRBs are 16-byte aligned).
851 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
853 struct xhci_ring *ring;
854 struct xhci_segment *seg;
856 ring = xhci->cmd_ring;
860 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
861 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
862 cpu_to_le32(~TRB_CYCLE);
864 } while (seg != ring->deq_seg);
866 /* Reset the software enqueue and dequeue pointers */
867 ring->deq_seg = ring->first_seg;
868 ring->dequeue = ring->first_seg->trbs;
869 ring->enq_seg = ring->deq_seg;
870 ring->enqueue = ring->dequeue;
872 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
874 * Ring is now zeroed, so the HW should look for change of ownership
875 * when the cycle bit is set to 1.
877 ring->cycle_state = 1;
880 * Reset the hardware dequeue pointer.
881 * Yes, this will need to be re-written after resume, but we're paranoid
882 * and want to make sure the hardware doesn't access bogus memory
883 * because, say, the BIOS or an SMI started the host without changing
884 * the command ring pointers.
886 xhci_set_cmd_ring_deq(xhci);
890 * Disable port wake bits if do_wakeup is not set.
892 * Also clear a possible internal port wake state left hanging for ports that
893 * detected termination but never successfully enumerated (trained to 0U).
894 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
895 * at enumeration clears this wake, force one here as well for unconnected ports
898 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
899 struct xhci_hub *rhub,
906 spin_lock_irqsave(&xhci->lock, flags);
908 for (i = 0; i < rhub->num_ports; i++) {
909 portsc = readl(rhub->ports[i]->addr);
910 t1 = xhci_port_state_to_neutral(portsc);
913 /* clear wake bits if do_wake is not set */
915 t2 &= ~PORT_WAKE_BITS;
917 /* Don't touch csc bit if connected or connect change is set */
918 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
922 writel(t2, rhub->ports[i]->addr);
923 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
924 rhub->hcd->self.busnum, i + 1, portsc, t2);
927 spin_unlock_irqrestore(&xhci->lock, flags);
930 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
932 struct xhci_port **ports;
937 status = readl(&xhci->op_regs->status);
938 if (status & STS_EINT)
941 * Checking STS_EINT is not enough as there is a lag between a change
942 * bit being set and the Port Status Change Event that it generated
943 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
946 port_index = xhci->usb2_rhub.num_ports;
947 ports = xhci->usb2_rhub.ports;
948 while (port_index--) {
949 portsc = readl(ports[port_index]->addr);
950 if (portsc & PORT_CHANGE_MASK ||
951 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
954 port_index = xhci->usb3_rhub.num_ports;
955 ports = xhci->usb3_rhub.ports;
956 while (port_index--) {
957 portsc = readl(ports[port_index]->addr);
958 if (portsc & PORT_CHANGE_MASK ||
959 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
966 * Stop HC (not bus-specific)
968 * This is called when the machine transition into S3/S4 mode.
971 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
974 unsigned int delay = XHCI_MAX_HALT_USEC * 2;
975 struct usb_hcd *hcd = xhci_to_hcd(xhci);
982 if (hcd->state != HC_STATE_SUSPENDED ||
983 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
986 /* Clear root port wake on bits if wakeup not allowed. */
987 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
988 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
990 if (!HCD_HW_ACCESSIBLE(hcd))
993 xhci_dbc_suspend(xhci);
995 /* Don't poll the roothubs on bus suspend. */
996 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
997 __func__, hcd->self.busnum);
998 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
999 del_timer_sync(&hcd->rh_timer);
1000 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1001 del_timer_sync(&xhci->shared_hcd->rh_timer);
1003 if (xhci->quirks & XHCI_SUSPEND_DELAY)
1004 usleep_range(1000, 1500);
1006 spin_lock_irq(&xhci->lock);
1007 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1008 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1009 /* step 1: stop endpoint */
1010 /* skipped assuming that port suspend has done */
1012 /* step 2: clear Run/Stop bit */
1013 command = readl(&xhci->op_regs->command);
1014 command &= ~CMD_RUN;
1015 writel(command, &xhci->op_regs->command);
1017 /* Some chips from Fresco Logic need an extraordinary delay */
1018 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1020 if (xhci_handshake(&xhci->op_regs->status,
1021 STS_HALT, STS_HALT, delay)) {
1022 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1023 spin_unlock_irq(&xhci->lock);
1026 xhci_clear_command_ring(xhci);
1028 /* step 3: save registers */
1029 xhci_save_registers(xhci);
1031 /* step 4: set CSS flag */
1032 command = readl(&xhci->op_regs->command);
1034 writel(command, &xhci->op_regs->command);
1035 xhci->broken_suspend = 0;
1036 if (xhci_handshake(&xhci->op_regs->status,
1037 STS_SAVE, 0, 20 * 1000)) {
1039 * AMD SNPS xHC 3.0 occasionally does not clear the
1040 * SSS bit of USBSTS and when driver tries to poll
1041 * to see if the xHC clears BIT(8) which never happens
1042 * and driver assumes that controller is not responding
1043 * and times out. To workaround this, its good to check
1044 * if SRE and HCE bits are not set (as per xhci
1045 * Section 5.4.2) and bypass the timeout.
1047 res = readl(&xhci->op_regs->status);
1048 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1049 (((res & STS_SRE) == 0) &&
1050 ((res & STS_HCE) == 0))) {
1051 xhci->broken_suspend = 1;
1053 xhci_warn(xhci, "WARN: xHC save state timeout\n");
1054 spin_unlock_irq(&xhci->lock);
1058 spin_unlock_irq(&xhci->lock);
1061 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1062 * is about to be suspended.
1064 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1065 (!(xhci_all_ports_seen_u0(xhci)))) {
1066 del_timer_sync(&xhci->comp_mode_recovery_timer);
1067 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1068 "%s: compliance mode recovery timer deleted",
1072 /* step 5: remove core well power */
1073 /* synchronize irq when using MSI-X */
1074 xhci_msix_sync_irqs(xhci);
1078 EXPORT_SYMBOL_GPL(xhci_suspend);
1081 * start xHC (not bus-specific)
1083 * This is called when the machine transition from S3/S4 mode.
1086 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1088 u32 command, temp = 0;
1089 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1090 struct usb_hcd *secondary_hcd;
1092 bool comp_timer_running = false;
1093 bool pending_portevent = false;
1098 /* Wait a bit if either of the roothubs need to settle from the
1099 * transition into bus suspend.
1102 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1103 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1106 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1107 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1109 spin_lock_irq(&xhci->lock);
1110 if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1115 * Some controllers might lose power during suspend, so wait
1116 * for controller not ready bit to clear, just as in xHC init.
1118 retval = xhci_handshake(&xhci->op_regs->status,
1119 STS_CNR, 0, 10 * 1000 * 1000);
1121 xhci_warn(xhci, "Controller not ready at resume %d\n",
1123 spin_unlock_irq(&xhci->lock);
1126 /* step 1: restore register */
1127 xhci_restore_registers(xhci);
1128 /* step 2: initialize command ring buffer */
1129 xhci_set_cmd_ring_deq(xhci);
1130 /* step 3: restore state and start state*/
1131 /* step 3: set CRS flag */
1132 command = readl(&xhci->op_regs->command);
1134 writel(command, &xhci->op_regs->command);
1136 * Some controllers take up to 55+ ms to complete the controller
1137 * restore so setting the timeout to 100ms. Xhci specification
1138 * doesn't mention any timeout value.
1140 if (xhci_handshake(&xhci->op_regs->status,
1141 STS_RESTORE, 0, 100 * 1000)) {
1142 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1143 spin_unlock_irq(&xhci->lock);
1146 temp = readl(&xhci->op_regs->status);
1149 /* If restore operation fails, re-initialize the HC during resume */
1150 if ((temp & STS_SRE) || hibernated) {
1152 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1153 !(xhci_all_ports_seen_u0(xhci))) {
1154 del_timer_sync(&xhci->comp_mode_recovery_timer);
1155 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1156 "Compliance Mode Recovery Timer deleted!");
1159 /* Let the USB core know _both_ roothubs lost power. */
1160 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1161 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1163 xhci_dbg(xhci, "Stop HCD\n");
1165 xhci_zero_64b_regs(xhci);
1166 retval = xhci_reset(xhci);
1167 spin_unlock_irq(&xhci->lock);
1170 xhci_cleanup_msix(xhci);
1172 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1173 temp = readl(&xhci->op_regs->status);
1174 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1175 temp = readl(&xhci->ir_set->irq_pending);
1176 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1178 xhci_dbg(xhci, "cleaning up memory\n");
1179 xhci_mem_cleanup(xhci);
1180 xhci_debugfs_exit(xhci);
1181 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1182 readl(&xhci->op_regs->status));
1184 /* USB core calls the PCI reinit and start functions twice:
1185 * first with the primary HCD, and then with the secondary HCD.
1186 * If we don't do the same, the host will never be started.
1188 if (!usb_hcd_is_primary_hcd(hcd))
1189 secondary_hcd = hcd;
1191 secondary_hcd = xhci->shared_hcd;
1193 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1194 retval = xhci_init(hcd->primary_hcd);
1197 comp_timer_running = true;
1199 xhci_dbg(xhci, "Start the primary HCD\n");
1200 retval = xhci_run(hcd->primary_hcd);
1202 xhci_dbg(xhci, "Start the secondary HCD\n");
1203 retval = xhci_run(secondary_hcd);
1205 hcd->state = HC_STATE_SUSPENDED;
1206 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1210 /* step 4: set Run/Stop bit */
1211 command = readl(&xhci->op_regs->command);
1213 writel(command, &xhci->op_regs->command);
1214 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1217 /* step 5: walk topology and initialize portsc,
1218 * portpmsc and portli
1220 /* this is done in bus_resume */
1222 /* step 6: restart each of the previously
1223 * Running endpoints by ringing their doorbells
1226 spin_unlock_irq(&xhci->lock);
1228 xhci_dbc_resume(xhci);
1233 * Resume roothubs only if there are pending events.
1234 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1235 * the first wake signalling failed, give it that chance.
1237 pending_portevent = xhci_pending_portevent(xhci);
1238 if (!pending_portevent) {
1240 pending_portevent = xhci_pending_portevent(xhci);
1243 if (pending_portevent) {
1244 usb_hcd_resume_root_hub(xhci->shared_hcd);
1245 usb_hcd_resume_root_hub(hcd);
1249 * If system is subject to the Quirk, Compliance Mode Timer needs to
1250 * be re-initialized Always after a system resume. Ports are subject
1251 * to suffer the Compliance Mode issue again. It doesn't matter if
1252 * ports have entered previously to U0 before system's suspension.
1254 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1255 compliance_mode_recovery_timer_init(xhci);
1257 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1258 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1260 /* Re-enable port polling. */
1261 xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1262 __func__, hcd->self.busnum);
1263 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1264 usb_hcd_poll_rh_status(xhci->shared_hcd);
1265 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1266 usb_hcd_poll_rh_status(hcd);
1270 EXPORT_SYMBOL_GPL(xhci_resume);
1271 #endif /* CONFIG_PM */
1273 /*-------------------------------------------------------------------------*/
1275 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1279 unsigned int buf_len;
1280 enum dma_data_direction dir;
1282 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1283 buf_len = urb->transfer_buffer_length;
1285 temp = kzalloc_node(buf_len, GFP_ATOMIC,
1286 dev_to_node(hcd->self.sysdev));
1288 if (usb_urb_dir_out(urb))
1289 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1292 urb->transfer_buffer = temp;
1293 urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1294 urb->transfer_buffer,
1295 urb->transfer_buffer_length,
1298 if (dma_mapping_error(hcd->self.sysdev,
1299 urb->transfer_dma)) {
1303 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1309 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1314 unsigned int len = 0;
1315 unsigned int trb_size;
1316 unsigned int max_pkt;
1317 struct scatterlist *sg;
1318 struct scatterlist *tail_sg;
1321 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1326 if (urb->dev->speed >= USB_SPEED_SUPER)
1327 trb_size = TRB_CACHE_SIZE_SS;
1329 trb_size = TRB_CACHE_SIZE_HS;
1331 if (urb->transfer_buffer_length != 0 &&
1332 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1333 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1334 len = len + sg->length;
1335 if (i > trb_size - 2) {
1336 len = len - tail_sg->length;
1337 if (len < max_pkt) {
1342 tail_sg = sg_next(tail_sg);
1349 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1352 unsigned int buf_len;
1353 enum dma_data_direction dir;
1355 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1357 buf_len = urb->transfer_buffer_length;
1359 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1360 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1361 dma_unmap_single(hcd->self.sysdev,
1363 urb->transfer_buffer_length,
1366 if (usb_urb_dir_in(urb)) {
1367 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1368 urb->transfer_buffer,
1371 if (len != buf_len) {
1372 xhci_dbg(hcd_to_xhci(hcd),
1373 "Copy from tmp buf to urb sg list failed\n");
1374 urb->actual_length = len;
1377 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1378 kfree(urb->transfer_buffer);
1379 urb->transfer_buffer = NULL;
1383 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1384 * we'll copy the actual data into the TRB address register. This is limited to
1385 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1386 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1388 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1391 struct xhci_hcd *xhci;
1393 xhci = hcd_to_xhci(hcd);
1395 if (xhci_urb_suitable_for_idt(urb))
1398 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1399 if (xhci_urb_temp_buffer_required(hcd, urb))
1400 return xhci_map_temp_buffer(hcd, urb);
1402 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1405 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1407 struct xhci_hcd *xhci;
1408 bool unmap_temp_buf = false;
1410 xhci = hcd_to_xhci(hcd);
1412 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1413 unmap_temp_buf = true;
1415 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1416 xhci_unmap_temp_buf(hcd, urb);
1418 usb_hcd_unmap_urb_for_dma(hcd, urb);
1422 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1423 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1424 * value to right shift 1 for the bitmask.
1426 * Index = (epnum * 2) + direction - 1,
1427 * where direction = 0 for OUT, 1 for IN.
1428 * For control endpoints, the IN index is used (OUT index is unused), so
1429 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1431 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1434 if (usb_endpoint_xfer_control(desc))
1435 index = (unsigned int) (usb_endpoint_num(desc)*2);
1437 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1438 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1441 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1443 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1444 * address from the XHCI endpoint index.
1446 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1448 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1449 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1450 return direction | number;
1453 /* Find the flag for this endpoint (for use in the control context). Use the
1454 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1457 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1459 return 1 << (xhci_get_endpoint_index(desc) + 1);
1462 /* Compute the last valid endpoint context index. Basically, this is the
1463 * endpoint index plus one. For slot contexts with more than valid endpoint,
1464 * we find the most significant bit set in the added contexts flags.
1465 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1466 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1468 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1470 return fls(added_ctxs) - 1;
1473 /* Returns 1 if the arguments are OK;
1474 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1476 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1477 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1479 struct xhci_hcd *xhci;
1480 struct xhci_virt_device *virt_dev;
1482 if (!hcd || (check_ep && !ep) || !udev) {
1483 pr_debug("xHCI %s called with invalid args\n", func);
1486 if (!udev->parent) {
1487 pr_debug("xHCI %s called for root hub\n", func);
1491 xhci = hcd_to_xhci(hcd);
1492 if (check_virt_dev) {
1493 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1494 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1499 virt_dev = xhci->devs[udev->slot_id];
1500 if (virt_dev->udev != udev) {
1501 xhci_dbg(xhci, "xHCI %s called with udev and "
1502 "virt_dev does not match\n", func);
1507 if (xhci->xhc_state & XHCI_STATE_HALTED)
1513 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1514 struct usb_device *udev, struct xhci_command *command,
1515 bool ctx_change, bool must_succeed);
1518 * Full speed devices may have a max packet size greater than 8 bytes, but the
1519 * USB core doesn't know that until it reads the first 8 bytes of the
1520 * descriptor. If the usb_device's max packet size changes after that point,
1521 * we need to issue an evaluate context command and wait on it.
1523 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1524 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1526 struct xhci_container_ctx *out_ctx;
1527 struct xhci_input_control_ctx *ctrl_ctx;
1528 struct xhci_ep_ctx *ep_ctx;
1529 struct xhci_command *command;
1530 int max_packet_size;
1531 int hw_max_packet_size;
1534 out_ctx = xhci->devs[slot_id]->out_ctx;
1535 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1536 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1537 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1538 if (hw_max_packet_size != max_packet_size) {
1539 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1540 "Max Packet Size for ep 0 changed.");
1541 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1542 "Max packet size in usb_device = %d",
1544 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1545 "Max packet size in xHCI HW = %d",
1546 hw_max_packet_size);
1547 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1548 "Issuing evaluate context command.");
1550 /* Set up the input context flags for the command */
1551 /* FIXME: This won't work if a non-default control endpoint
1552 * changes max packet sizes.
1555 command = xhci_alloc_command(xhci, true, mem_flags);
1559 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1560 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1562 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1565 goto command_cleanup;
1567 /* Set up the modified control endpoint 0 */
1568 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1569 xhci->devs[slot_id]->out_ctx, ep_index);
1571 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1572 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1573 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1574 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1576 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1577 ctrl_ctx->drop_flags = 0;
1579 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1582 /* Clean up the input context for later use by bandwidth
1585 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1587 kfree(command->completion);
1594 * non-error returns are a promise to giveback() the urb later
1595 * we drop ownership so next owner (or urb unlink) can get it
1597 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1599 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1600 unsigned long flags;
1602 unsigned int slot_id, ep_index;
1603 unsigned int *ep_state;
1604 struct urb_priv *urb_priv;
1607 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1608 true, true, __func__) <= 0)
1611 slot_id = urb->dev->slot_id;
1612 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1613 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1615 if (!HCD_HW_ACCESSIBLE(hcd))
1618 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1619 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1623 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1624 num_tds = urb->number_of_packets;
1625 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1626 urb->transfer_buffer_length > 0 &&
1627 urb->transfer_flags & URB_ZERO_PACKET &&
1628 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1633 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1637 urb_priv->num_tds = num_tds;
1638 urb_priv->num_tds_done = 0;
1639 urb->hcpriv = urb_priv;
1641 trace_xhci_urb_enqueue(urb);
1643 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1644 /* Check to see if the max packet size for the default control
1645 * endpoint changed during FS device enumeration
1647 if (urb->dev->speed == USB_SPEED_FULL) {
1648 ret = xhci_check_maxpacket(xhci, slot_id,
1649 ep_index, urb, mem_flags);
1651 xhci_urb_free_priv(urb_priv);
1658 spin_lock_irqsave(&xhci->lock, flags);
1660 if (xhci->xhc_state & XHCI_STATE_DYING) {
1661 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1662 urb->ep->desc.bEndpointAddress, urb);
1666 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1667 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1672 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1673 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1678 switch (usb_endpoint_type(&urb->ep->desc)) {
1680 case USB_ENDPOINT_XFER_CONTROL:
1681 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1684 case USB_ENDPOINT_XFER_BULK:
1685 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1688 case USB_ENDPOINT_XFER_INT:
1689 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1692 case USB_ENDPOINT_XFER_ISOC:
1693 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1699 xhci_urb_free_priv(urb_priv);
1702 spin_unlock_irqrestore(&xhci->lock, flags);
1707 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1708 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1709 * should pick up where it left off in the TD, unless a Set Transfer Ring
1710 * Dequeue Pointer is issued.
1712 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1713 * the ring. Since the ring is a contiguous structure, they can't be physically
1714 * removed. Instead, there are two options:
1716 * 1) If the HC is in the middle of processing the URB to be canceled, we
1717 * simply move the ring's dequeue pointer past those TRBs using the Set
1718 * Transfer Ring Dequeue Pointer command. This will be the common case,
1719 * when drivers timeout on the last submitted URB and attempt to cancel.
1721 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1722 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1723 * HC will need to invalidate the any TRBs it has cached after the stop
1724 * endpoint command, as noted in the xHCI 0.95 errata.
1726 * 3) The TD may have completed by the time the Stop Endpoint Command
1727 * completes, so software needs to handle that case too.
1729 * This function should protect against the TD enqueueing code ringing the
1730 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1731 * It also needs to account for multiple cancellations on happening at the same
1732 * time for the same endpoint.
1734 * Note that this function can be called in any context, or so says
1735 * usb_hcd_unlink_urb()
1737 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1739 unsigned long flags;
1742 struct xhci_hcd *xhci;
1743 struct urb_priv *urb_priv;
1745 unsigned int ep_index;
1746 struct xhci_ring *ep_ring;
1747 struct xhci_virt_ep *ep;
1748 struct xhci_command *command;
1749 struct xhci_virt_device *vdev;
1751 xhci = hcd_to_xhci(hcd);
1752 spin_lock_irqsave(&xhci->lock, flags);
1754 trace_xhci_urb_dequeue(urb);
1756 /* Make sure the URB hasn't completed or been unlinked already */
1757 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1761 /* give back URB now if we can't queue it for cancel */
1762 vdev = xhci->devs[urb->dev->slot_id];
1763 urb_priv = urb->hcpriv;
1764 if (!vdev || !urb_priv)
1767 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1768 ep = &vdev->eps[ep_index];
1769 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1770 if (!ep || !ep_ring)
1773 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1774 temp = readl(&xhci->op_regs->status);
1775 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1781 * check ring is not re-allocated since URB was enqueued. If it is, then
1782 * make sure none of the ring related pointers in this URB private data
1783 * are touched, such as td_list, otherwise we overwrite freed data
1785 if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1786 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1787 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1788 td = &urb_priv->td[i];
1789 if (!list_empty(&td->cancelled_td_list))
1790 list_del_init(&td->cancelled_td_list);
1795 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1796 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1797 "HC halted, freeing TD manually.");
1798 for (i = urb_priv->num_tds_done;
1799 i < urb_priv->num_tds;
1801 td = &urb_priv->td[i];
1802 if (!list_empty(&td->td_list))
1803 list_del_init(&td->td_list);
1804 if (!list_empty(&td->cancelled_td_list))
1805 list_del_init(&td->cancelled_td_list);
1810 i = urb_priv->num_tds_done;
1811 if (i < urb_priv->num_tds)
1812 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1813 "Cancel URB %p, dev %s, ep 0x%x, "
1814 "starting at offset 0x%llx",
1815 urb, urb->dev->devpath,
1816 urb->ep->desc.bEndpointAddress,
1817 (unsigned long long) xhci_trb_virt_to_dma(
1818 urb_priv->td[i].start_seg,
1819 urb_priv->td[i].first_trb));
1821 for (; i < urb_priv->num_tds; i++) {
1822 td = &urb_priv->td[i];
1823 /* TD can already be on cancelled list if ep halted on it */
1824 if (list_empty(&td->cancelled_td_list)) {
1825 td->cancel_status = TD_DIRTY;
1826 list_add_tail(&td->cancelled_td_list,
1827 &ep->cancelled_td_list);
1831 /* Queue a stop endpoint command, but only if this is
1832 * the first cancellation to be handled.
1834 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1835 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1840 ep->ep_state |= EP_STOP_CMD_PENDING;
1841 ep->stop_cmd_timer.expires = jiffies +
1842 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1843 add_timer(&ep->stop_cmd_timer);
1844 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1846 xhci_ring_cmd_db(xhci);
1849 spin_unlock_irqrestore(&xhci->lock, flags);
1854 xhci_urb_free_priv(urb_priv);
1855 usb_hcd_unlink_urb_from_ep(hcd, urb);
1856 spin_unlock_irqrestore(&xhci->lock, flags);
1857 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1861 /* Drop an endpoint from a new bandwidth configuration for this device.
1862 * Only one call to this function is allowed per endpoint before
1863 * check_bandwidth() or reset_bandwidth() must be called.
1864 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1865 * add the endpoint to the schedule with possibly new parameters denoted by a
1866 * different endpoint descriptor in usb_host_endpoint.
1867 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1870 * The USB core will not allow URBs to be queued to an endpoint that is being
1871 * disabled, so there's no need for mutual exclusion to protect
1872 * the xhci->devs[slot_id] structure.
1874 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1875 struct usb_host_endpoint *ep)
1877 struct xhci_hcd *xhci;
1878 struct xhci_container_ctx *in_ctx, *out_ctx;
1879 struct xhci_input_control_ctx *ctrl_ctx;
1880 unsigned int ep_index;
1881 struct xhci_ep_ctx *ep_ctx;
1883 u32 new_add_flags, new_drop_flags;
1886 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1889 xhci = hcd_to_xhci(hcd);
1890 if (xhci->xhc_state & XHCI_STATE_DYING)
1893 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1894 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1895 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1896 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1897 __func__, drop_flag);
1901 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1902 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1903 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1905 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1910 ep_index = xhci_get_endpoint_index(&ep->desc);
1911 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1912 /* If the HC already knows the endpoint is disabled,
1913 * or the HCD has noted it is disabled, ignore this request
1915 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1916 le32_to_cpu(ctrl_ctx->drop_flags) &
1917 xhci_get_endpoint_flag(&ep->desc)) {
1918 /* Do not warn when called after a usb_device_reset */
1919 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1920 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1925 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1926 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1928 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1929 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1931 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1933 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1935 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1936 (unsigned int) ep->desc.bEndpointAddress,
1938 (unsigned int) new_drop_flags,
1939 (unsigned int) new_add_flags);
1942 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1944 /* Add an endpoint to a new possible bandwidth configuration for this device.
1945 * Only one call to this function is allowed per endpoint before
1946 * check_bandwidth() or reset_bandwidth() must be called.
1947 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1948 * add the endpoint to the schedule with possibly new parameters denoted by a
1949 * different endpoint descriptor in usb_host_endpoint.
1950 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1953 * The USB core will not allow URBs to be queued to an endpoint until the
1954 * configuration or alt setting is installed in the device, so there's no need
1955 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1957 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1958 struct usb_host_endpoint *ep)
1960 struct xhci_hcd *xhci;
1961 struct xhci_container_ctx *in_ctx;
1962 unsigned int ep_index;
1963 struct xhci_input_control_ctx *ctrl_ctx;
1964 struct xhci_ep_ctx *ep_ctx;
1966 u32 new_add_flags, new_drop_flags;
1967 struct xhci_virt_device *virt_dev;
1970 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1972 /* So we won't queue a reset ep command for a root hub */
1976 xhci = hcd_to_xhci(hcd);
1977 if (xhci->xhc_state & XHCI_STATE_DYING)
1980 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1981 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1982 /* FIXME when we have to issue an evaluate endpoint command to
1983 * deal with ep0 max packet size changing once we get the
1986 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1987 __func__, added_ctxs);
1991 virt_dev = xhci->devs[udev->slot_id];
1992 in_ctx = virt_dev->in_ctx;
1993 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1995 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2000 ep_index = xhci_get_endpoint_index(&ep->desc);
2001 /* If this endpoint is already in use, and the upper layers are trying
2002 * to add it again without dropping it, reject the addition.
2004 if (virt_dev->eps[ep_index].ring &&
2005 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2006 xhci_warn(xhci, "Trying to add endpoint 0x%x "
2007 "without dropping it.\n",
2008 (unsigned int) ep->desc.bEndpointAddress);
2012 /* If the HCD has already noted the endpoint is enabled,
2013 * ignore this request.
2015 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2016 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2022 * Configuration and alternate setting changes must be done in
2023 * process context, not interrupt context (or so documenation
2024 * for usb_set_interface() and usb_set_configuration() claim).
2026 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2027 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2028 __func__, ep->desc.bEndpointAddress);
2032 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2033 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2035 /* If xhci_endpoint_disable() was called for this endpoint, but the
2036 * xHC hasn't been notified yet through the check_bandwidth() call,
2037 * this re-adds a new state for the endpoint from the new endpoint
2038 * descriptors. We must drop and re-add this endpoint, so we leave the
2041 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2043 /* Store the usb_device pointer for later use */
2046 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2047 trace_xhci_add_endpoint(ep_ctx);
2049 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2050 (unsigned int) ep->desc.bEndpointAddress,
2052 (unsigned int) new_drop_flags,
2053 (unsigned int) new_add_flags);
2056 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2058 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2060 struct xhci_input_control_ctx *ctrl_ctx;
2061 struct xhci_ep_ctx *ep_ctx;
2062 struct xhci_slot_ctx *slot_ctx;
2065 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2067 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2072 /* When a device's add flag and drop flag are zero, any subsequent
2073 * configure endpoint command will leave that endpoint's state
2074 * untouched. Make sure we don't leave any old state in the input
2075 * endpoint contexts.
2077 ctrl_ctx->drop_flags = 0;
2078 ctrl_ctx->add_flags = 0;
2079 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2080 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2081 /* Endpoint 0 is always valid */
2082 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2083 for (i = 1; i < 31; i++) {
2084 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2085 ep_ctx->ep_info = 0;
2086 ep_ctx->ep_info2 = 0;
2088 ep_ctx->tx_info = 0;
2092 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2093 struct usb_device *udev, u32 *cmd_status)
2097 switch (*cmd_status) {
2098 case COMP_COMMAND_ABORTED:
2099 case COMP_COMMAND_RING_STOPPED:
2100 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2103 case COMP_RESOURCE_ERROR:
2104 dev_warn(&udev->dev,
2105 "Not enough host controller resources for new device state.\n");
2107 /* FIXME: can we allocate more resources for the HC? */
2109 case COMP_BANDWIDTH_ERROR:
2110 case COMP_SECONDARY_BANDWIDTH_ERROR:
2111 dev_warn(&udev->dev,
2112 "Not enough bandwidth for new device state.\n");
2114 /* FIXME: can we go back to the old state? */
2116 case COMP_TRB_ERROR:
2117 /* the HCD set up something wrong */
2118 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2120 "and endpoint is not disabled.\n");
2123 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2124 dev_warn(&udev->dev,
2125 "ERROR: Incompatible device for endpoint configure command.\n");
2129 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2130 "Successful Endpoint Configure command");
2134 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2142 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2143 struct usb_device *udev, u32 *cmd_status)
2147 switch (*cmd_status) {
2148 case COMP_COMMAND_ABORTED:
2149 case COMP_COMMAND_RING_STOPPED:
2150 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2153 case COMP_PARAMETER_ERROR:
2154 dev_warn(&udev->dev,
2155 "WARN: xHCI driver setup invalid evaluate context command.\n");
2158 case COMP_SLOT_NOT_ENABLED_ERROR:
2159 dev_warn(&udev->dev,
2160 "WARN: slot not enabled for evaluate context command.\n");
2163 case COMP_CONTEXT_STATE_ERROR:
2164 dev_warn(&udev->dev,
2165 "WARN: invalid context state for evaluate context command.\n");
2168 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2169 dev_warn(&udev->dev,
2170 "ERROR: Incompatible device for evaluate context command.\n");
2173 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2174 /* Max Exit Latency too large error */
2175 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2179 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2180 "Successful evaluate context command");
2184 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2192 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2193 struct xhci_input_control_ctx *ctrl_ctx)
2195 u32 valid_add_flags;
2196 u32 valid_drop_flags;
2198 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2199 * (bit 1). The default control endpoint is added during the Address
2200 * Device command and is never removed until the slot is disabled.
2202 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2203 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2205 /* Use hweight32 to count the number of ones in the add flags, or
2206 * number of endpoints added. Don't count endpoints that are changed
2207 * (both added and dropped).
2209 return hweight32(valid_add_flags) -
2210 hweight32(valid_add_flags & valid_drop_flags);
2213 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2214 struct xhci_input_control_ctx *ctrl_ctx)
2216 u32 valid_add_flags;
2217 u32 valid_drop_flags;
2219 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2220 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2222 return hweight32(valid_drop_flags) -
2223 hweight32(valid_add_flags & valid_drop_flags);
2227 * We need to reserve the new number of endpoints before the configure endpoint
2228 * command completes. We can't subtract the dropped endpoints from the number
2229 * of active endpoints until the command completes because we can oversubscribe
2230 * the host in this case:
2232 * - the first configure endpoint command drops more endpoints than it adds
2233 * - a second configure endpoint command that adds more endpoints is queued
2234 * - the first configure endpoint command fails, so the config is unchanged
2235 * - the second command may succeed, even though there isn't enough resources
2237 * Must be called with xhci->lock held.
2239 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2240 struct xhci_input_control_ctx *ctrl_ctx)
2244 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2245 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2246 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2247 "Not enough ep ctxs: "
2248 "%u active, need to add %u, limit is %u.",
2249 xhci->num_active_eps, added_eps,
2250 xhci->limit_active_eps);
2253 xhci->num_active_eps += added_eps;
2254 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2255 "Adding %u ep ctxs, %u now active.", added_eps,
2256 xhci->num_active_eps);
2261 * The configure endpoint was failed by the xHC for some other reason, so we
2262 * need to revert the resources that failed configuration would have used.
2264 * Must be called with xhci->lock held.
2266 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2267 struct xhci_input_control_ctx *ctrl_ctx)
2271 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2272 xhci->num_active_eps -= num_failed_eps;
2273 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2274 "Removing %u failed ep ctxs, %u now active.",
2276 xhci->num_active_eps);
2280 * Now that the command has completed, clean up the active endpoint count by
2281 * subtracting out the endpoints that were dropped (but not changed).
2283 * Must be called with xhci->lock held.
2285 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2286 struct xhci_input_control_ctx *ctrl_ctx)
2288 u32 num_dropped_eps;
2290 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2291 xhci->num_active_eps -= num_dropped_eps;
2292 if (num_dropped_eps)
2293 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2294 "Removing %u dropped ep ctxs, %u now active.",
2296 xhci->num_active_eps);
2299 static unsigned int xhci_get_block_size(struct usb_device *udev)
2301 switch (udev->speed) {
2303 case USB_SPEED_FULL:
2305 case USB_SPEED_HIGH:
2307 case USB_SPEED_SUPER:
2308 case USB_SPEED_SUPER_PLUS:
2310 case USB_SPEED_UNKNOWN:
2311 case USB_SPEED_WIRELESS:
2313 /* Should never happen */
2319 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2321 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2323 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2328 /* If we are changing a LS/FS device under a HS hub,
2329 * make sure (if we are activating a new TT) that the HS bus has enough
2330 * bandwidth for this new TT.
2332 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2333 struct xhci_virt_device *virt_dev,
2336 struct xhci_interval_bw_table *bw_table;
2337 struct xhci_tt_bw_info *tt_info;
2339 /* Find the bandwidth table for the root port this TT is attached to. */
2340 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2341 tt_info = virt_dev->tt_info;
2342 /* If this TT already had active endpoints, the bandwidth for this TT
2343 * has already been added. Removing all periodic endpoints (and thus
2344 * making the TT enactive) will only decrease the bandwidth used.
2348 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2349 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2353 /* Not sure why we would have no new active endpoints...
2355 * Maybe because of an Evaluate Context change for a hub update or a
2356 * control endpoint 0 max packet size change?
2357 * FIXME: skip the bandwidth calculation in that case.
2362 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2363 struct xhci_virt_device *virt_dev)
2365 unsigned int bw_reserved;
2367 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2368 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2371 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2372 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2379 * This algorithm is a very conservative estimate of the worst-case scheduling
2380 * scenario for any one interval. The hardware dynamically schedules the
2381 * packets, so we can't tell which microframe could be the limiting factor in
2382 * the bandwidth scheduling. This only takes into account periodic endpoints.
2384 * Obviously, we can't solve an NP complete problem to find the minimum worst
2385 * case scenario. Instead, we come up with an estimate that is no less than
2386 * the worst case bandwidth used for any one microframe, but may be an
2389 * We walk the requirements for each endpoint by interval, starting with the
2390 * smallest interval, and place packets in the schedule where there is only one
2391 * possible way to schedule packets for that interval. In order to simplify
2392 * this algorithm, we record the largest max packet size for each interval, and
2393 * assume all packets will be that size.
2395 * For interval 0, we obviously must schedule all packets for each interval.
2396 * The bandwidth for interval 0 is just the amount of data to be transmitted
2397 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2398 * the number of packets).
2400 * For interval 1, we have two possible microframes to schedule those packets
2401 * in. For this algorithm, if we can schedule the same number of packets for
2402 * each possible scheduling opportunity (each microframe), we will do so. The
2403 * remaining number of packets will be saved to be transmitted in the gaps in
2404 * the next interval's scheduling sequence.
2406 * As we move those remaining packets to be scheduled with interval 2 packets,
2407 * we have to double the number of remaining packets to transmit. This is
2408 * because the intervals are actually powers of 2, and we would be transmitting
2409 * the previous interval's packets twice in this interval. We also have to be
2410 * sure that when we look at the largest max packet size for this interval, we
2411 * also look at the largest max packet size for the remaining packets and take
2412 * the greater of the two.
2414 * The algorithm continues to evenly distribute packets in each scheduling
2415 * opportunity, and push the remaining packets out, until we get to the last
2416 * interval. Then those packets and their associated overhead are just added
2417 * to the bandwidth used.
2419 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2420 struct xhci_virt_device *virt_dev,
2423 unsigned int bw_reserved;
2424 unsigned int max_bandwidth;
2425 unsigned int bw_used;
2426 unsigned int block_size;
2427 struct xhci_interval_bw_table *bw_table;
2428 unsigned int packet_size = 0;
2429 unsigned int overhead = 0;
2430 unsigned int packets_transmitted = 0;
2431 unsigned int packets_remaining = 0;
2434 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2435 return xhci_check_ss_bw(xhci, virt_dev);
2437 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2438 max_bandwidth = HS_BW_LIMIT;
2439 /* Convert percent of bus BW reserved to blocks reserved */
2440 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2442 max_bandwidth = FS_BW_LIMIT;
2443 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2446 bw_table = virt_dev->bw_table;
2447 /* We need to translate the max packet size and max ESIT payloads into
2448 * the units the hardware uses.
2450 block_size = xhci_get_block_size(virt_dev->udev);
2452 /* If we are manipulating a LS/FS device under a HS hub, double check
2453 * that the HS bus has enough bandwidth if we are activing a new TT.
2455 if (virt_dev->tt_info) {
2456 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2457 "Recalculating BW for rootport %u",
2458 virt_dev->real_port);
2459 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2460 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2461 "newly activated TT.\n");
2464 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2465 "Recalculating BW for TT slot %u port %u",
2466 virt_dev->tt_info->slot_id,
2467 virt_dev->tt_info->ttport);
2469 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2470 "Recalculating BW for rootport %u",
2471 virt_dev->real_port);
2474 /* Add in how much bandwidth will be used for interval zero, or the
2475 * rounded max ESIT payload + number of packets * largest overhead.
2477 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2478 bw_table->interval_bw[0].num_packets *
2479 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2481 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2482 unsigned int bw_added;
2483 unsigned int largest_mps;
2484 unsigned int interval_overhead;
2487 * How many packets could we transmit in this interval?
2488 * If packets didn't fit in the previous interval, we will need
2489 * to transmit that many packets twice within this interval.
2491 packets_remaining = 2 * packets_remaining +
2492 bw_table->interval_bw[i].num_packets;
2494 /* Find the largest max packet size of this or the previous
2497 if (list_empty(&bw_table->interval_bw[i].endpoints))
2500 struct xhci_virt_ep *virt_ep;
2501 struct list_head *ep_entry;
2503 ep_entry = bw_table->interval_bw[i].endpoints.next;
2504 virt_ep = list_entry(ep_entry,
2505 struct xhci_virt_ep, bw_endpoint_list);
2506 /* Convert to blocks, rounding up */
2507 largest_mps = DIV_ROUND_UP(
2508 virt_ep->bw_info.max_packet_size,
2511 if (largest_mps > packet_size)
2512 packet_size = largest_mps;
2514 /* Use the larger overhead of this or the previous interval. */
2515 interval_overhead = xhci_get_largest_overhead(
2516 &bw_table->interval_bw[i]);
2517 if (interval_overhead > overhead)
2518 overhead = interval_overhead;
2520 /* How many packets can we evenly distribute across
2521 * (1 << (i + 1)) possible scheduling opportunities?
2523 packets_transmitted = packets_remaining >> (i + 1);
2525 /* Add in the bandwidth used for those scheduled packets */
2526 bw_added = packets_transmitted * (overhead + packet_size);
2528 /* How many packets do we have remaining to transmit? */
2529 packets_remaining = packets_remaining % (1 << (i + 1));
2531 /* What largest max packet size should those packets have? */
2532 /* If we've transmitted all packets, don't carry over the
2533 * largest packet size.
2535 if (packets_remaining == 0) {
2538 } else if (packets_transmitted > 0) {
2539 /* Otherwise if we do have remaining packets, and we've
2540 * scheduled some packets in this interval, take the
2541 * largest max packet size from endpoints with this
2544 packet_size = largest_mps;
2545 overhead = interval_overhead;
2547 /* Otherwise carry over packet_size and overhead from the last
2548 * time we had a remainder.
2550 bw_used += bw_added;
2551 if (bw_used > max_bandwidth) {
2552 xhci_warn(xhci, "Not enough bandwidth. "
2553 "Proposed: %u, Max: %u\n",
2554 bw_used, max_bandwidth);
2559 * Ok, we know we have some packets left over after even-handedly
2560 * scheduling interval 15. We don't know which microframes they will
2561 * fit into, so we over-schedule and say they will be scheduled every
2564 if (packets_remaining > 0)
2565 bw_used += overhead + packet_size;
2567 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2568 unsigned int port_index = virt_dev->real_port - 1;
2570 /* OK, we're manipulating a HS device attached to a
2571 * root port bandwidth domain. Include the number of active TTs
2572 * in the bandwidth used.
2574 bw_used += TT_HS_OVERHEAD *
2575 xhci->rh_bw[port_index].num_active_tts;
2578 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2579 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2580 "Available: %u " "percent",
2581 bw_used, max_bandwidth, bw_reserved,
2582 (max_bandwidth - bw_used - bw_reserved) * 100 /
2585 bw_used += bw_reserved;
2586 if (bw_used > max_bandwidth) {
2587 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2588 bw_used, max_bandwidth);
2592 bw_table->bw_used = bw_used;
2596 static bool xhci_is_async_ep(unsigned int ep_type)
2598 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2599 ep_type != ISOC_IN_EP &&
2600 ep_type != INT_IN_EP);
2603 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2605 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2608 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2610 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2612 if (ep_bw->ep_interval == 0)
2613 return SS_OVERHEAD_BURST +
2614 (ep_bw->mult * ep_bw->num_packets *
2615 (SS_OVERHEAD + mps));
2616 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2617 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2618 1 << ep_bw->ep_interval);
2622 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2623 struct xhci_bw_info *ep_bw,
2624 struct xhci_interval_bw_table *bw_table,
2625 struct usb_device *udev,
2626 struct xhci_virt_ep *virt_ep,
2627 struct xhci_tt_bw_info *tt_info)
2629 struct xhci_interval_bw *interval_bw;
2630 int normalized_interval;
2632 if (xhci_is_async_ep(ep_bw->type))
2635 if (udev->speed >= USB_SPEED_SUPER) {
2636 if (xhci_is_sync_in_ep(ep_bw->type))
2637 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2638 xhci_get_ss_bw_consumed(ep_bw);
2640 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2641 xhci_get_ss_bw_consumed(ep_bw);
2645 /* SuperSpeed endpoints never get added to intervals in the table, so
2646 * this check is only valid for HS/FS/LS devices.
2648 if (list_empty(&virt_ep->bw_endpoint_list))
2650 /* For LS/FS devices, we need to translate the interval expressed in
2651 * microframes to frames.
2653 if (udev->speed == USB_SPEED_HIGH)
2654 normalized_interval = ep_bw->ep_interval;
2656 normalized_interval = ep_bw->ep_interval - 3;
2658 if (normalized_interval == 0)
2659 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2660 interval_bw = &bw_table->interval_bw[normalized_interval];
2661 interval_bw->num_packets -= ep_bw->num_packets;
2662 switch (udev->speed) {
2664 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2666 case USB_SPEED_FULL:
2667 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2669 case USB_SPEED_HIGH:
2670 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2672 case USB_SPEED_SUPER:
2673 case USB_SPEED_SUPER_PLUS:
2674 case USB_SPEED_UNKNOWN:
2675 case USB_SPEED_WIRELESS:
2676 /* Should never happen because only LS/FS/HS endpoints will get
2677 * added to the endpoint list.
2682 tt_info->active_eps -= 1;
2683 list_del_init(&virt_ep->bw_endpoint_list);
2686 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2687 struct xhci_bw_info *ep_bw,
2688 struct xhci_interval_bw_table *bw_table,
2689 struct usb_device *udev,
2690 struct xhci_virt_ep *virt_ep,
2691 struct xhci_tt_bw_info *tt_info)
2693 struct xhci_interval_bw *interval_bw;
2694 struct xhci_virt_ep *smaller_ep;
2695 int normalized_interval;
2697 if (xhci_is_async_ep(ep_bw->type))
2700 if (udev->speed == USB_SPEED_SUPER) {
2701 if (xhci_is_sync_in_ep(ep_bw->type))
2702 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2703 xhci_get_ss_bw_consumed(ep_bw);
2705 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2706 xhci_get_ss_bw_consumed(ep_bw);
2710 /* For LS/FS devices, we need to translate the interval expressed in
2711 * microframes to frames.
2713 if (udev->speed == USB_SPEED_HIGH)
2714 normalized_interval = ep_bw->ep_interval;
2716 normalized_interval = ep_bw->ep_interval - 3;
2718 if (normalized_interval == 0)
2719 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2720 interval_bw = &bw_table->interval_bw[normalized_interval];
2721 interval_bw->num_packets += ep_bw->num_packets;
2722 switch (udev->speed) {
2724 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2726 case USB_SPEED_FULL:
2727 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2729 case USB_SPEED_HIGH:
2730 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2732 case USB_SPEED_SUPER:
2733 case USB_SPEED_SUPER_PLUS:
2734 case USB_SPEED_UNKNOWN:
2735 case USB_SPEED_WIRELESS:
2736 /* Should never happen because only LS/FS/HS endpoints will get
2737 * added to the endpoint list.
2743 tt_info->active_eps += 1;
2744 /* Insert the endpoint into the list, largest max packet size first. */
2745 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2747 if (ep_bw->max_packet_size >=
2748 smaller_ep->bw_info.max_packet_size) {
2749 /* Add the new ep before the smaller endpoint */
2750 list_add_tail(&virt_ep->bw_endpoint_list,
2751 &smaller_ep->bw_endpoint_list);
2755 /* Add the new endpoint at the end of the list. */
2756 list_add_tail(&virt_ep->bw_endpoint_list,
2757 &interval_bw->endpoints);
2760 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2761 struct xhci_virt_device *virt_dev,
2764 struct xhci_root_port_bw_info *rh_bw_info;
2765 if (!virt_dev->tt_info)
2768 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2769 if (old_active_eps == 0 &&
2770 virt_dev->tt_info->active_eps != 0) {
2771 rh_bw_info->num_active_tts += 1;
2772 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2773 } else if (old_active_eps != 0 &&
2774 virt_dev->tt_info->active_eps == 0) {
2775 rh_bw_info->num_active_tts -= 1;
2776 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2780 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2781 struct xhci_virt_device *virt_dev,
2782 struct xhci_container_ctx *in_ctx)
2784 struct xhci_bw_info ep_bw_info[31];
2786 struct xhci_input_control_ctx *ctrl_ctx;
2787 int old_active_eps = 0;
2789 if (virt_dev->tt_info)
2790 old_active_eps = virt_dev->tt_info->active_eps;
2792 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2794 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2799 for (i = 0; i < 31; i++) {
2800 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2803 /* Make a copy of the BW info in case we need to revert this */
2804 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2805 sizeof(ep_bw_info[i]));
2806 /* Drop the endpoint from the interval table if the endpoint is
2807 * being dropped or changed.
2809 if (EP_IS_DROPPED(ctrl_ctx, i))
2810 xhci_drop_ep_from_interval_table(xhci,
2811 &virt_dev->eps[i].bw_info,
2817 /* Overwrite the information stored in the endpoints' bw_info */
2818 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2819 for (i = 0; i < 31; i++) {
2820 /* Add any changed or added endpoints to the interval table */
2821 if (EP_IS_ADDED(ctrl_ctx, i))
2822 xhci_add_ep_to_interval_table(xhci,
2823 &virt_dev->eps[i].bw_info,
2830 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2831 /* Ok, this fits in the bandwidth we have.
2832 * Update the number of active TTs.
2834 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2838 /* We don't have enough bandwidth for this, revert the stored info. */
2839 for (i = 0; i < 31; i++) {
2840 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2843 /* Drop the new copies of any added or changed endpoints from
2844 * the interval table.
2846 if (EP_IS_ADDED(ctrl_ctx, i)) {
2847 xhci_drop_ep_from_interval_table(xhci,
2848 &virt_dev->eps[i].bw_info,
2854 /* Revert the endpoint back to its old information */
2855 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2856 sizeof(ep_bw_info[i]));
2857 /* Add any changed or dropped endpoints back into the table */
2858 if (EP_IS_DROPPED(ctrl_ctx, i))
2859 xhci_add_ep_to_interval_table(xhci,
2860 &virt_dev->eps[i].bw_info,
2870 /* Issue a configure endpoint command or evaluate context command
2871 * and wait for it to finish.
2873 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2874 struct usb_device *udev,
2875 struct xhci_command *command,
2876 bool ctx_change, bool must_succeed)
2879 unsigned long flags;
2880 struct xhci_input_control_ctx *ctrl_ctx;
2881 struct xhci_virt_device *virt_dev;
2882 struct xhci_slot_ctx *slot_ctx;
2887 spin_lock_irqsave(&xhci->lock, flags);
2889 if (xhci->xhc_state & XHCI_STATE_DYING) {
2890 spin_unlock_irqrestore(&xhci->lock, flags);
2894 virt_dev = xhci->devs[udev->slot_id];
2896 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2898 spin_unlock_irqrestore(&xhci->lock, flags);
2899 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2904 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2905 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2906 spin_unlock_irqrestore(&xhci->lock, flags);
2907 xhci_warn(xhci, "Not enough host resources, "
2908 "active endpoint contexts = %u\n",
2909 xhci->num_active_eps);
2912 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2913 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2914 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2915 xhci_free_host_resources(xhci, ctrl_ctx);
2916 spin_unlock_irqrestore(&xhci->lock, flags);
2917 xhci_warn(xhci, "Not enough bandwidth\n");
2921 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2923 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2924 trace_xhci_configure_endpoint(slot_ctx);
2927 ret = xhci_queue_configure_endpoint(xhci, command,
2928 command->in_ctx->dma,
2929 udev->slot_id, must_succeed);
2931 ret = xhci_queue_evaluate_context(xhci, command,
2932 command->in_ctx->dma,
2933 udev->slot_id, must_succeed);
2935 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2936 xhci_free_host_resources(xhci, ctrl_ctx);
2937 spin_unlock_irqrestore(&xhci->lock, flags);
2938 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2939 "FIXME allocate a new ring segment");
2942 xhci_ring_cmd_db(xhci);
2943 spin_unlock_irqrestore(&xhci->lock, flags);
2945 /* Wait for the configure endpoint command to complete */
2946 wait_for_completion(command->completion);
2949 ret = xhci_configure_endpoint_result(xhci, udev,
2952 ret = xhci_evaluate_context_result(xhci, udev,
2955 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2956 spin_lock_irqsave(&xhci->lock, flags);
2957 /* If the command failed, remove the reserved resources.
2958 * Otherwise, clean up the estimate to include dropped eps.
2961 xhci_free_host_resources(xhci, ctrl_ctx);
2963 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2964 spin_unlock_irqrestore(&xhci->lock, flags);
2969 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2970 struct xhci_virt_device *vdev, int i)
2972 struct xhci_virt_ep *ep = &vdev->eps[i];
2974 if (ep->ep_state & EP_HAS_STREAMS) {
2975 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2976 xhci_get_endpoint_address(i));
2977 xhci_free_stream_info(xhci, ep->stream_info);
2978 ep->stream_info = NULL;
2979 ep->ep_state &= ~EP_HAS_STREAMS;
2983 /* Called after one or more calls to xhci_add_endpoint() or
2984 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2985 * to call xhci_reset_bandwidth().
2987 * Since we are in the middle of changing either configuration or
2988 * installing a new alt setting, the USB core won't allow URBs to be
2989 * enqueued for any endpoint on the old config or interface. Nothing
2990 * else should be touching the xhci->devs[slot_id] structure, so we
2991 * don't need to take the xhci->lock for manipulating that.
2993 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2997 struct xhci_hcd *xhci;
2998 struct xhci_virt_device *virt_dev;
2999 struct xhci_input_control_ctx *ctrl_ctx;
3000 struct xhci_slot_ctx *slot_ctx;
3001 struct xhci_command *command;
3003 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3006 xhci = hcd_to_xhci(hcd);
3007 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3008 (xhci->xhc_state & XHCI_STATE_REMOVING))
3011 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3012 virt_dev = xhci->devs[udev->slot_id];
3014 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3018 command->in_ctx = virt_dev->in_ctx;
3020 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3021 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3023 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3026 goto command_cleanup;
3028 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3029 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3030 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3032 /* Don't issue the command if there's no endpoints to update. */
3033 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3034 ctrl_ctx->drop_flags == 0) {
3036 goto command_cleanup;
3038 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3039 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3040 for (i = 31; i >= 1; i--) {
3041 __le32 le32 = cpu_to_le32(BIT(i));
3043 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3044 || (ctrl_ctx->add_flags & le32) || i == 1) {
3045 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3046 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3051 ret = xhci_configure_endpoint(xhci, udev, command,
3054 /* Callee should call reset_bandwidth() */
3055 goto command_cleanup;
3057 /* Free any rings that were dropped, but not changed. */
3058 for (i = 1; i < 31; i++) {
3059 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3060 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3061 xhci_free_endpoint_ring(xhci, virt_dev, i);
3062 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3065 xhci_zero_in_ctx(xhci, virt_dev);
3067 * Install any rings for completely new endpoints or changed endpoints,
3068 * and free any old rings from changed endpoints.
3070 for (i = 1; i < 31; i++) {
3071 if (!virt_dev->eps[i].new_ring)
3073 /* Only free the old ring if it exists.
3074 * It may not if this is the first add of an endpoint.
3076 if (virt_dev->eps[i].ring) {
3077 xhci_free_endpoint_ring(xhci, virt_dev, i);
3079 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3080 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3081 virt_dev->eps[i].new_ring = NULL;
3082 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3085 kfree(command->completion);
3090 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3092 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3094 struct xhci_hcd *xhci;
3095 struct xhci_virt_device *virt_dev;
3098 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3101 xhci = hcd_to_xhci(hcd);
3103 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3104 virt_dev = xhci->devs[udev->slot_id];
3105 /* Free any rings allocated for added endpoints */
3106 for (i = 0; i < 31; i++) {
3107 if (virt_dev->eps[i].new_ring) {
3108 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3109 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3110 virt_dev->eps[i].new_ring = NULL;
3113 xhci_zero_in_ctx(xhci, virt_dev);
3115 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3117 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3118 struct xhci_container_ctx *in_ctx,
3119 struct xhci_container_ctx *out_ctx,
3120 struct xhci_input_control_ctx *ctrl_ctx,
3121 u32 add_flags, u32 drop_flags)
3123 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3124 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3125 xhci_slot_copy(xhci, in_ctx, out_ctx);
3126 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3129 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3130 struct usb_host_endpoint *host_ep)
3132 struct xhci_hcd *xhci;
3133 struct xhci_virt_device *vdev;
3134 struct xhci_virt_ep *ep;
3135 struct usb_device *udev;
3136 unsigned long flags;
3137 unsigned int ep_index;
3139 xhci = hcd_to_xhci(hcd);
3141 spin_lock_irqsave(&xhci->lock, flags);
3143 udev = (struct usb_device *)host_ep->hcpriv;
3144 if (!udev || !udev->slot_id)
3147 vdev = xhci->devs[udev->slot_id];
3151 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3152 ep = &vdev->eps[ep_index];
3156 /* wait for hub_tt_work to finish clearing hub TT */
3157 if (ep->ep_state & EP_CLEARING_TT) {
3158 spin_unlock_irqrestore(&xhci->lock, flags);
3159 schedule_timeout_uninterruptible(1);
3164 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3167 host_ep->hcpriv = NULL;
3168 spin_unlock_irqrestore(&xhci->lock, flags);
3172 * Called after usb core issues a clear halt control message.
3173 * The host side of the halt should already be cleared by a reset endpoint
3174 * command issued when the STALL event was received.
3176 * The reset endpoint command may only be issued to endpoints in the halted
3177 * state. For software that wishes to reset the data toggle or sequence number
3178 * of an endpoint that isn't in the halted state this function will issue a
3179 * configure endpoint command with the Drop and Add bits set for the target
3180 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3183 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3184 struct usb_host_endpoint *host_ep)
3186 struct xhci_hcd *xhci;
3187 struct usb_device *udev;
3188 struct xhci_virt_device *vdev;
3189 struct xhci_virt_ep *ep;
3190 struct xhci_input_control_ctx *ctrl_ctx;
3191 struct xhci_command *stop_cmd, *cfg_cmd;
3192 unsigned int ep_index;
3193 unsigned long flags;
3197 xhci = hcd_to_xhci(hcd);
3198 if (!host_ep->hcpriv)
3200 udev = (struct usb_device *) host_ep->hcpriv;
3201 vdev = xhci->devs[udev->slot_id];
3204 * vdev may be lost due to xHC restore error and re-initialization
3205 * during S3/S4 resume. A new vdev will be allocated later by
3206 * xhci_discover_or_reset_device()
3208 if (!udev->slot_id || !vdev)
3210 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3211 ep = &vdev->eps[ep_index];
3215 /* Bail out if toggle is already being cleared by a endpoint reset */
3216 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3217 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3220 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3221 if (usb_endpoint_xfer_control(&host_ep->desc) ||
3222 usb_endpoint_xfer_isoc(&host_ep->desc))
3225 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3227 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3230 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3234 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3238 spin_lock_irqsave(&xhci->lock, flags);
3240 /* block queuing new trbs and ringing ep doorbell */
3241 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3244 * Make sure endpoint ring is empty before resetting the toggle/seq.
3245 * Driver is required to synchronously cancel all transfer request.
3246 * Stop the endpoint to force xHC to update the output context
3249 if (!list_empty(&ep->ring->td_list)) {
3250 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3251 spin_unlock_irqrestore(&xhci->lock, flags);
3252 xhci_free_command(xhci, cfg_cmd);
3256 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3259 spin_unlock_irqrestore(&xhci->lock, flags);
3260 xhci_free_command(xhci, cfg_cmd);
3261 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3266 xhci_ring_cmd_db(xhci);
3267 spin_unlock_irqrestore(&xhci->lock, flags);
3269 wait_for_completion(stop_cmd->completion);
3271 spin_lock_irqsave(&xhci->lock, flags);
3273 /* config ep command clears toggle if add and drop ep flags are set */
3274 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3276 spin_unlock_irqrestore(&xhci->lock, flags);
3277 xhci_free_command(xhci, cfg_cmd);
3278 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3283 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3284 ctrl_ctx, ep_flag, ep_flag);
3285 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3287 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3288 udev->slot_id, false);
3290 spin_unlock_irqrestore(&xhci->lock, flags);
3291 xhci_free_command(xhci, cfg_cmd);
3292 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3297 xhci_ring_cmd_db(xhci);
3298 spin_unlock_irqrestore(&xhci->lock, flags);
3300 wait_for_completion(cfg_cmd->completion);
3302 xhci_free_command(xhci, cfg_cmd);
3304 xhci_free_command(xhci, stop_cmd);
3305 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3306 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3309 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3310 struct usb_device *udev, struct usb_host_endpoint *ep,
3311 unsigned int slot_id)
3314 unsigned int ep_index;
3315 unsigned int ep_state;
3319 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3322 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3323 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3324 " descriptor for ep 0x%x does not support streams\n",
3325 ep->desc.bEndpointAddress);
3329 ep_index = xhci_get_endpoint_index(&ep->desc);
3330 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3331 if (ep_state & EP_HAS_STREAMS ||
3332 ep_state & EP_GETTING_STREAMS) {
3333 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3334 "already has streams set up.\n",
3335 ep->desc.bEndpointAddress);
3336 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3337 "dynamic stream context array reallocation.\n");
3340 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3341 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3342 "endpoint 0x%x; URBs are pending.\n",
3343 ep->desc.bEndpointAddress);
3349 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3350 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3352 unsigned int max_streams;
3354 /* The stream context array size must be a power of two */
3355 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3357 * Find out how many primary stream array entries the host controller
3358 * supports. Later we may use secondary stream arrays (similar to 2nd
3359 * level page entries), but that's an optional feature for xHCI host
3360 * controllers. xHCs must support at least 4 stream IDs.
3362 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3363 if (*num_stream_ctxs > max_streams) {
3364 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3366 *num_stream_ctxs = max_streams;
3367 *num_streams = max_streams;
3371 /* Returns an error code if one of the endpoint already has streams.
3372 * This does not change any data structures, it only checks and gathers
3375 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3376 struct usb_device *udev,
3377 struct usb_host_endpoint **eps, unsigned int num_eps,
3378 unsigned int *num_streams, u32 *changed_ep_bitmask)
3380 unsigned int max_streams;
3381 unsigned int endpoint_flag;
3385 for (i = 0; i < num_eps; i++) {
3386 ret = xhci_check_streams_endpoint(xhci, udev,
3387 eps[i], udev->slot_id);
3391 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3392 if (max_streams < (*num_streams - 1)) {
3393 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3394 eps[i]->desc.bEndpointAddress,
3396 *num_streams = max_streams+1;
3399 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3400 if (*changed_ep_bitmask & endpoint_flag)
3402 *changed_ep_bitmask |= endpoint_flag;
3407 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3408 struct usb_device *udev,
3409 struct usb_host_endpoint **eps, unsigned int num_eps)
3411 u32 changed_ep_bitmask = 0;
3412 unsigned int slot_id;
3413 unsigned int ep_index;
3414 unsigned int ep_state;
3417 slot_id = udev->slot_id;
3418 if (!xhci->devs[slot_id])
3421 for (i = 0; i < num_eps; i++) {
3422 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3423 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3424 /* Are streams already being freed for the endpoint? */
3425 if (ep_state & EP_GETTING_NO_STREAMS) {
3426 xhci_warn(xhci, "WARN Can't disable streams for "
3428 "streams are being disabled already\n",
3429 eps[i]->desc.bEndpointAddress);
3432 /* Are there actually any streams to free? */
3433 if (!(ep_state & EP_HAS_STREAMS) &&
3434 !(ep_state & EP_GETTING_STREAMS)) {
3435 xhci_warn(xhci, "WARN Can't disable streams for "
3437 "streams are already disabled!\n",
3438 eps[i]->desc.bEndpointAddress);
3439 xhci_warn(xhci, "WARN xhci_free_streams() called "
3440 "with non-streams endpoint\n");
3443 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3445 return changed_ep_bitmask;
3449 * The USB device drivers use this function (through the HCD interface in USB
3450 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3451 * coordinate mass storage command queueing across multiple endpoints (basically
3452 * a stream ID == a task ID).
3454 * Setting up streams involves allocating the same size stream context array
3455 * for each endpoint and issuing a configure endpoint command for all endpoints.
3457 * Don't allow the call to succeed if one endpoint only supports one stream
3458 * (which means it doesn't support streams at all).
3460 * Drivers may get less stream IDs than they asked for, if the host controller
3461 * hardware or endpoints claim they can't support the number of requested
3464 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3465 struct usb_host_endpoint **eps, unsigned int num_eps,
3466 unsigned int num_streams, gfp_t mem_flags)
3469 struct xhci_hcd *xhci;
3470 struct xhci_virt_device *vdev;
3471 struct xhci_command *config_cmd;
3472 struct xhci_input_control_ctx *ctrl_ctx;
3473 unsigned int ep_index;
3474 unsigned int num_stream_ctxs;
3475 unsigned int max_packet;
3476 unsigned long flags;
3477 u32 changed_ep_bitmask = 0;
3482 /* Add one to the number of streams requested to account for
3483 * stream 0 that is reserved for xHCI usage.
3486 xhci = hcd_to_xhci(hcd);
3487 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3490 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3491 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3492 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3493 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3497 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3501 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3503 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3505 xhci_free_command(xhci, config_cmd);
3509 /* Check to make sure all endpoints are not already configured for
3510 * streams. While we're at it, find the maximum number of streams that
3511 * all the endpoints will support and check for duplicate endpoints.
3513 spin_lock_irqsave(&xhci->lock, flags);
3514 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3515 num_eps, &num_streams, &changed_ep_bitmask);
3517 xhci_free_command(xhci, config_cmd);
3518 spin_unlock_irqrestore(&xhci->lock, flags);
3521 if (num_streams <= 1) {
3522 xhci_warn(xhci, "WARN: endpoints can't handle "
3523 "more than one stream.\n");
3524 xhci_free_command(xhci, config_cmd);
3525 spin_unlock_irqrestore(&xhci->lock, flags);
3528 vdev = xhci->devs[udev->slot_id];
3529 /* Mark each endpoint as being in transition, so
3530 * xhci_urb_enqueue() will reject all URBs.
3532 for (i = 0; i < num_eps; i++) {
3533 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3534 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3536 spin_unlock_irqrestore(&xhci->lock, flags);
3538 /* Setup internal data structures and allocate HW data structures for
3539 * streams (but don't install the HW structures in the input context
3540 * until we're sure all memory allocation succeeded).
3542 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3543 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3544 num_stream_ctxs, num_streams);
3546 for (i = 0; i < num_eps; i++) {
3547 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3548 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3549 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3552 max_packet, mem_flags);
3553 if (!vdev->eps[ep_index].stream_info)
3555 /* Set maxPstreams in endpoint context and update deq ptr to
3556 * point to stream context array. FIXME
3560 /* Set up the input context for a configure endpoint command. */
3561 for (i = 0; i < num_eps; i++) {
3562 struct xhci_ep_ctx *ep_ctx;
3564 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3565 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3567 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3568 vdev->out_ctx, ep_index);
3569 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3570 vdev->eps[ep_index].stream_info);
3572 /* Tell the HW to drop its old copy of the endpoint context info
3573 * and add the updated copy from the input context.
3575 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3576 vdev->out_ctx, ctrl_ctx,
3577 changed_ep_bitmask, changed_ep_bitmask);
3579 /* Issue and wait for the configure endpoint command */
3580 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3583 /* xHC rejected the configure endpoint command for some reason, so we
3584 * leave the old ring intact and free our internal streams data
3590 spin_lock_irqsave(&xhci->lock, flags);
3591 for (i = 0; i < num_eps; i++) {
3592 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3593 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3594 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3595 udev->slot_id, ep_index);
3596 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3598 xhci_free_command(xhci, config_cmd);
3599 spin_unlock_irqrestore(&xhci->lock, flags);
3601 for (i = 0; i < num_eps; i++) {
3602 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3603 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3605 /* Subtract 1 for stream 0, which drivers can't use */
3606 return num_streams - 1;
3609 /* If it didn't work, free the streams! */
3610 for (i = 0; i < num_eps; i++) {
3611 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3612 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3613 vdev->eps[ep_index].stream_info = NULL;
3614 /* FIXME Unset maxPstreams in endpoint context and
3615 * update deq ptr to point to normal string ring.
3617 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3618 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3619 xhci_endpoint_zero(xhci, vdev, eps[i]);
3621 xhci_free_command(xhci, config_cmd);
3625 /* Transition the endpoint from using streams to being a "normal" endpoint
3628 * Modify the endpoint context state, submit a configure endpoint command,
3629 * and free all endpoint rings for streams if that completes successfully.
3631 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3632 struct usb_host_endpoint **eps, unsigned int num_eps,
3636 struct xhci_hcd *xhci;
3637 struct xhci_virt_device *vdev;
3638 struct xhci_command *command;
3639 struct xhci_input_control_ctx *ctrl_ctx;
3640 unsigned int ep_index;
3641 unsigned long flags;
3642 u32 changed_ep_bitmask;
3644 xhci = hcd_to_xhci(hcd);
3645 vdev = xhci->devs[udev->slot_id];
3647 /* Set up a configure endpoint command to remove the streams rings */
3648 spin_lock_irqsave(&xhci->lock, flags);
3649 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3650 udev, eps, num_eps);
3651 if (changed_ep_bitmask == 0) {
3652 spin_unlock_irqrestore(&xhci->lock, flags);
3656 /* Use the xhci_command structure from the first endpoint. We may have
3657 * allocated too many, but the driver may call xhci_free_streams() for
3658 * each endpoint it grouped into one call to xhci_alloc_streams().
3660 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3661 command = vdev->eps[ep_index].stream_info->free_streams_command;
3662 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3664 spin_unlock_irqrestore(&xhci->lock, flags);
3665 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3670 for (i = 0; i < num_eps; i++) {
3671 struct xhci_ep_ctx *ep_ctx;
3673 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3674 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3675 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3676 EP_GETTING_NO_STREAMS;
3678 xhci_endpoint_copy(xhci, command->in_ctx,
3679 vdev->out_ctx, ep_index);
3680 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3681 &vdev->eps[ep_index]);
3683 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3684 vdev->out_ctx, ctrl_ctx,
3685 changed_ep_bitmask, changed_ep_bitmask);
3686 spin_unlock_irqrestore(&xhci->lock, flags);
3688 /* Issue and wait for the configure endpoint command,
3689 * which must succeed.
3691 ret = xhci_configure_endpoint(xhci, udev, command,
3694 /* xHC rejected the configure endpoint command for some reason, so we
3695 * leave the streams rings intact.
3700 spin_lock_irqsave(&xhci->lock, flags);
3701 for (i = 0; i < num_eps; i++) {
3702 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3703 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3704 vdev->eps[ep_index].stream_info = NULL;
3705 /* FIXME Unset maxPstreams in endpoint context and
3706 * update deq ptr to point to normal string ring.
3708 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3709 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3711 spin_unlock_irqrestore(&xhci->lock, flags);
3717 * Deletes endpoint resources for endpoints that were active before a Reset
3718 * Device command, or a Disable Slot command. The Reset Device command leaves
3719 * the control endpoint intact, whereas the Disable Slot command deletes it.
3721 * Must be called with xhci->lock held.
3723 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3724 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3727 unsigned int num_dropped_eps = 0;
3728 unsigned int drop_flags = 0;
3730 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3731 if (virt_dev->eps[i].ring) {
3732 drop_flags |= 1 << i;
3736 xhci->num_active_eps -= num_dropped_eps;
3737 if (num_dropped_eps)
3738 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3739 "Dropped %u ep ctxs, flags = 0x%x, "
3741 num_dropped_eps, drop_flags,
3742 xhci->num_active_eps);
3746 * This submits a Reset Device Command, which will set the device state to 0,
3747 * set the device address to 0, and disable all the endpoints except the default
3748 * control endpoint. The USB core should come back and call
3749 * xhci_address_device(), and then re-set up the configuration. If this is
3750 * called because of a usb_reset_and_verify_device(), then the old alternate
3751 * settings will be re-installed through the normal bandwidth allocation
3754 * Wait for the Reset Device command to finish. Remove all structures
3755 * associated with the endpoints that were disabled. Clear the input device
3756 * structure? Reset the control endpoint 0 max packet size?
3758 * If the virt_dev to be reset does not exist or does not match the udev,
3759 * it means the device is lost, possibly due to the xHC restore error and
3760 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3761 * re-allocate the device.
3763 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3764 struct usb_device *udev)
3767 unsigned long flags;
3768 struct xhci_hcd *xhci;
3769 unsigned int slot_id;
3770 struct xhci_virt_device *virt_dev;
3771 struct xhci_command *reset_device_cmd;
3772 struct xhci_slot_ctx *slot_ctx;
3773 int old_active_eps = 0;
3775 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3778 xhci = hcd_to_xhci(hcd);
3779 slot_id = udev->slot_id;
3780 virt_dev = xhci->devs[slot_id];
3782 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3783 "not exist. Re-allocate the device\n", slot_id);
3784 ret = xhci_alloc_dev(hcd, udev);
3791 if (virt_dev->tt_info)
3792 old_active_eps = virt_dev->tt_info->active_eps;
3794 if (virt_dev->udev != udev) {
3795 /* If the virt_dev and the udev does not match, this virt_dev
3796 * may belong to another udev.
3797 * Re-allocate the device.
3799 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3800 "not match the udev. Re-allocate the device\n",
3802 ret = xhci_alloc_dev(hcd, udev);
3809 /* If device is not setup, there is no point in resetting it */
3810 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3811 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3812 SLOT_STATE_DISABLED)
3815 trace_xhci_discover_or_reset_device(slot_ctx);
3817 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3818 /* Allocate the command structure that holds the struct completion.
3819 * Assume we're in process context, since the normal device reset
3820 * process has to wait for the device anyway. Storage devices are
3821 * reset as part of error handling, so use GFP_NOIO instead of
3824 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3825 if (!reset_device_cmd) {
3826 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3830 /* Attempt to submit the Reset Device command to the command ring */
3831 spin_lock_irqsave(&xhci->lock, flags);
3833 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3835 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3836 spin_unlock_irqrestore(&xhci->lock, flags);
3837 goto command_cleanup;
3839 xhci_ring_cmd_db(xhci);
3840 spin_unlock_irqrestore(&xhci->lock, flags);
3842 /* Wait for the Reset Device command to finish */
3843 wait_for_completion(reset_device_cmd->completion);
3845 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3846 * unless we tried to reset a slot ID that wasn't enabled,
3847 * or the device wasn't in the addressed or configured state.
3849 ret = reset_device_cmd->status;
3851 case COMP_COMMAND_ABORTED:
3852 case COMP_COMMAND_RING_STOPPED:
3853 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3855 goto command_cleanup;
3856 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3857 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3858 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3860 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3861 xhci_dbg(xhci, "Not freeing device rings.\n");
3862 /* Don't treat this as an error. May change my mind later. */
3864 goto command_cleanup;
3866 xhci_dbg(xhci, "Successful reset device command.\n");
3869 if (xhci_is_vendor_info_code(xhci, ret))
3871 xhci_warn(xhci, "Unknown completion code %u for "
3872 "reset device command.\n", ret);
3874 goto command_cleanup;
3877 /* Free up host controller endpoint resources */
3878 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3879 spin_lock_irqsave(&xhci->lock, flags);
3880 /* Don't delete the default control endpoint resources */
3881 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3882 spin_unlock_irqrestore(&xhci->lock, flags);
3885 /* Everything but endpoint 0 is disabled, so free the rings. */
3886 for (i = 1; i < 31; i++) {
3887 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3889 if (ep->ep_state & EP_HAS_STREAMS) {
3890 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3891 xhci_get_endpoint_address(i));
3892 xhci_free_stream_info(xhci, ep->stream_info);
3893 ep->stream_info = NULL;
3894 ep->ep_state &= ~EP_HAS_STREAMS;
3898 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3899 xhci_free_endpoint_ring(xhci, virt_dev, i);
3901 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3902 xhci_drop_ep_from_interval_table(xhci,
3903 &virt_dev->eps[i].bw_info,
3908 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3910 /* If necessary, update the number of active TTs on this root port */
3911 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3912 virt_dev->flags = 0;
3916 xhci_free_command(xhci, reset_device_cmd);
3921 * At this point, the struct usb_device is about to go away, the device has
3922 * disconnected, and all traffic has been stopped and the endpoints have been
3923 * disabled. Free any HC data structures associated with that device.
3925 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3927 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3928 struct xhci_virt_device *virt_dev;
3929 struct xhci_slot_ctx *slot_ctx;
3932 #ifndef CONFIG_USB_DEFAULT_PERSIST
3934 * We called pm_runtime_get_noresume when the device was attached.
3935 * Decrement the counter here to allow controller to runtime suspend
3936 * if no devices remain.
3938 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3939 pm_runtime_put_noidle(hcd->self.controller);
3942 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3943 /* If the host is halted due to driver unload, we still need to free the
3946 if (ret <= 0 && ret != -ENODEV)
3949 virt_dev = xhci->devs[udev->slot_id];
3950 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3951 trace_xhci_free_dev(slot_ctx);
3953 /* Stop any wayward timer functions (which may grab the lock) */
3954 for (i = 0; i < 31; i++) {
3955 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3956 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3958 virt_dev->udev = NULL;
3959 ret = xhci_disable_slot(xhci, udev->slot_id);
3961 xhci_free_virt_device(xhci, udev->slot_id);
3964 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3966 struct xhci_command *command;
3967 unsigned long flags;
3971 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3975 xhci_debugfs_remove_slot(xhci, slot_id);
3977 spin_lock_irqsave(&xhci->lock, flags);
3978 /* Don't disable the slot if the host controller is dead. */
3979 state = readl(&xhci->op_regs->status);
3980 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3981 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3982 spin_unlock_irqrestore(&xhci->lock, flags);
3987 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3990 spin_unlock_irqrestore(&xhci->lock, flags);
3994 xhci_ring_cmd_db(xhci);
3995 spin_unlock_irqrestore(&xhci->lock, flags);
4000 * Checks if we have enough host controller resources for the default control
4003 * Must be called with xhci->lock held.
4005 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4007 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4008 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4009 "Not enough ep ctxs: "
4010 "%u active, need to add 1, limit is %u.",
4011 xhci->num_active_eps, xhci->limit_active_eps);
4014 xhci->num_active_eps += 1;
4015 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4016 "Adding 1 ep ctx, %u now active.",
4017 xhci->num_active_eps);
4023 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4024 * timed out, or allocating memory failed. Returns 1 on success.
4026 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4028 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4029 struct xhci_virt_device *vdev;
4030 struct xhci_slot_ctx *slot_ctx;
4031 unsigned long flags;
4033 struct xhci_command *command;
4035 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4039 spin_lock_irqsave(&xhci->lock, flags);
4040 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4042 spin_unlock_irqrestore(&xhci->lock, flags);
4043 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4044 xhci_free_command(xhci, command);
4047 xhci_ring_cmd_db(xhci);
4048 spin_unlock_irqrestore(&xhci->lock, flags);
4050 wait_for_completion(command->completion);
4051 slot_id = command->slot_id;
4053 if (!slot_id || command->status != COMP_SUCCESS) {
4054 xhci_err(xhci, "Error while assigning device slot ID\n");
4055 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4057 readl(&xhci->cap_regs->hcs_params1)));
4058 xhci_free_command(xhci, command);
4062 xhci_free_command(xhci, command);
4064 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4065 spin_lock_irqsave(&xhci->lock, flags);
4066 ret = xhci_reserve_host_control_ep_resources(xhci);
4068 spin_unlock_irqrestore(&xhci->lock, flags);
4069 xhci_warn(xhci, "Not enough host resources, "
4070 "active endpoint contexts = %u\n",
4071 xhci->num_active_eps);
4074 spin_unlock_irqrestore(&xhci->lock, flags);
4076 /* Use GFP_NOIO, since this function can be called from
4077 * xhci_discover_or_reset_device(), which may be called as part of
4078 * mass storage driver error handling.
4080 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4081 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4084 vdev = xhci->devs[slot_id];
4085 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4086 trace_xhci_alloc_dev(slot_ctx);
4088 udev->slot_id = slot_id;
4090 xhci_debugfs_create_slot(xhci, slot_id);
4092 #ifndef CONFIG_USB_DEFAULT_PERSIST
4094 * If resetting upon resume, we can't put the controller into runtime
4095 * suspend if there is a device attached.
4097 if (xhci->quirks & XHCI_RESET_ON_RESUME)
4098 pm_runtime_get_noresume(hcd->self.controller);
4101 /* Is this a LS or FS device under a HS hub? */
4102 /* Hub or peripherial? */
4106 ret = xhci_disable_slot(xhci, udev->slot_id);
4108 xhci_free_virt_device(xhci, udev->slot_id);
4114 * Issue an Address Device command and optionally send a corresponding
4115 * SetAddress request to the device.
4117 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4118 enum xhci_setup_dev setup)
4120 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4121 unsigned long flags;
4122 struct xhci_virt_device *virt_dev;
4124 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4125 struct xhci_slot_ctx *slot_ctx;
4126 struct xhci_input_control_ctx *ctrl_ctx;
4128 struct xhci_command *command = NULL;
4130 mutex_lock(&xhci->mutex);
4132 if (xhci->xhc_state) { /* dying, removing or halted */
4137 if (!udev->slot_id) {
4138 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4139 "Bad Slot ID %d", udev->slot_id);
4144 virt_dev = xhci->devs[udev->slot_id];
4146 if (WARN_ON(!virt_dev)) {
4148 * In plug/unplug torture test with an NEC controller,
4149 * a zero-dereference was observed once due to virt_dev = 0.
4150 * Print useful debug rather than crash if it is observed again!
4152 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4157 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4158 trace_xhci_setup_device_slot(slot_ctx);
4160 if (setup == SETUP_CONTEXT_ONLY) {
4161 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4162 SLOT_STATE_DEFAULT) {
4163 xhci_dbg(xhci, "Slot already in default state\n");
4168 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4174 command->in_ctx = virt_dev->in_ctx;
4176 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4177 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4179 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4185 * If this is the first Set Address since device plug-in or
4186 * virt_device realloaction after a resume with an xHCI power loss,
4187 * then set up the slot context.
4189 if (!slot_ctx->dev_info)
4190 xhci_setup_addressable_virt_dev(xhci, udev);
4191 /* Otherwise, update the control endpoint ring enqueue pointer. */
4193 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4194 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4195 ctrl_ctx->drop_flags = 0;
4197 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4198 le32_to_cpu(slot_ctx->dev_info) >> 27);
4200 trace_xhci_address_ctrl_ctx(ctrl_ctx);
4201 spin_lock_irqsave(&xhci->lock, flags);
4202 trace_xhci_setup_device(virt_dev);
4203 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4204 udev->slot_id, setup);
4206 spin_unlock_irqrestore(&xhci->lock, flags);
4207 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4208 "FIXME: allocate a command ring segment");
4211 xhci_ring_cmd_db(xhci);
4212 spin_unlock_irqrestore(&xhci->lock, flags);
4214 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4215 wait_for_completion(command->completion);
4217 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4218 * the SetAddress() "recovery interval" required by USB and aborting the
4219 * command on a timeout.
4221 switch (command->status) {
4222 case COMP_COMMAND_ABORTED:
4223 case COMP_COMMAND_RING_STOPPED:
4224 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4227 case COMP_CONTEXT_STATE_ERROR:
4228 case COMP_SLOT_NOT_ENABLED_ERROR:
4229 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4230 act, udev->slot_id);
4233 case COMP_USB_TRANSACTION_ERROR:
4234 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4236 mutex_unlock(&xhci->mutex);
4237 ret = xhci_disable_slot(xhci, udev->slot_id);
4239 xhci_alloc_dev(hcd, udev);
4240 kfree(command->completion);
4243 case COMP_INCOMPATIBLE_DEVICE_ERROR:
4244 dev_warn(&udev->dev,
4245 "ERROR: Incompatible device for setup %s command\n", act);
4249 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4250 "Successful setup %s command", act);
4254 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4255 act, command->status);
4256 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4262 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4263 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4264 "Op regs DCBAA ptr = %#016llx", temp_64);
4265 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4266 "Slot ID %d dcbaa entry @%p = %#016llx",
4268 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4269 (unsigned long long)
4270 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4271 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4272 "Output Context DMA address = %#08llx",
4273 (unsigned long long)virt_dev->out_ctx->dma);
4274 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4275 le32_to_cpu(slot_ctx->dev_info) >> 27);
4277 * USB core uses address 1 for the roothubs, so we add one to the
4278 * address given back to us by the HC.
4280 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4281 le32_to_cpu(slot_ctx->dev_info) >> 27);
4282 /* Zero the input context control for later use */
4283 ctrl_ctx->add_flags = 0;
4284 ctrl_ctx->drop_flags = 0;
4285 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4286 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4288 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4289 "Internal device address = %d",
4290 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4292 mutex_unlock(&xhci->mutex);
4294 kfree(command->completion);
4300 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4302 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4305 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4307 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4311 * Transfer the port index into real index in the HW port status
4312 * registers. Caculate offset between the port's PORTSC register
4313 * and port status base. Divide the number of per port register
4314 * to get the real index. The raw port number bases 1.
4316 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4318 struct xhci_hub *rhub;
4320 rhub = xhci_get_rhub(hcd);
4321 return rhub->ports[port1 - 1]->hw_portnum + 1;
4325 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4326 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4328 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4329 struct usb_device *udev, u16 max_exit_latency)
4331 struct xhci_virt_device *virt_dev;
4332 struct xhci_command *command;
4333 struct xhci_input_control_ctx *ctrl_ctx;
4334 struct xhci_slot_ctx *slot_ctx;
4335 unsigned long flags;
4338 spin_lock_irqsave(&xhci->lock, flags);
4340 virt_dev = xhci->devs[udev->slot_id];
4343 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4344 * xHC was re-initialized. Exit latency will be set later after
4345 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4348 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4349 spin_unlock_irqrestore(&xhci->lock, flags);
4353 /* Attempt to issue an Evaluate Context command to change the MEL. */
4354 command = xhci->lpm_command;
4355 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4357 spin_unlock_irqrestore(&xhci->lock, flags);
4358 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4363 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4364 spin_unlock_irqrestore(&xhci->lock, flags);
4366 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4367 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4368 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4369 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4370 slot_ctx->dev_state = 0;
4372 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4373 "Set up evaluate context for LPM MEL change.");
4375 /* Issue and wait for the evaluate context command. */
4376 ret = xhci_configure_endpoint(xhci, udev, command,
4380 spin_lock_irqsave(&xhci->lock, flags);
4381 virt_dev->current_mel = max_exit_latency;
4382 spin_unlock_irqrestore(&xhci->lock, flags);
4389 /* BESL to HIRD Encoding array for USB2 LPM */
4390 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4391 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4393 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4394 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4395 struct usb_device *udev)
4397 int u2del, besl, besl_host;
4398 int besl_device = 0;
4401 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4402 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4404 if (field & USB_BESL_SUPPORT) {
4405 for (besl_host = 0; besl_host < 16; besl_host++) {
4406 if (xhci_besl_encoding[besl_host] >= u2del)
4409 /* Use baseline BESL value as default */
4410 if (field & USB_BESL_BASELINE_VALID)
4411 besl_device = USB_GET_BESL_BASELINE(field);
4412 else if (field & USB_BESL_DEEP_VALID)
4413 besl_device = USB_GET_BESL_DEEP(field);
4418 besl_host = (u2del - 51) / 75 + 1;
4421 besl = besl_host + besl_device;
4428 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4429 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4436 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4438 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4439 l1 = udev->l1_params.timeout / 256;
4441 /* device has preferred BESLD */
4442 if (field & USB_BESL_DEEP_VALID) {
4443 besld = USB_GET_BESL_DEEP(field);
4447 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4450 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4451 struct usb_device *udev, int enable)
4453 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4454 struct xhci_port **ports;
4455 __le32 __iomem *pm_addr, *hlpm_addr;
4456 u32 pm_val, hlpm_val, field;
4457 unsigned int port_num;
4458 unsigned long flags;
4459 int hird, exit_latency;
4462 if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4465 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4469 if (!udev->parent || udev->parent->parent ||
4470 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4473 if (udev->usb2_hw_lpm_capable != 1)
4476 spin_lock_irqsave(&xhci->lock, flags);
4478 ports = xhci->usb2_rhub.ports;
4479 port_num = udev->portnum - 1;
4480 pm_addr = ports[port_num]->addr + PORTPMSC;
4481 pm_val = readl(pm_addr);
4482 hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4484 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4485 enable ? "enable" : "disable", port_num + 1);
4488 /* Host supports BESL timeout instead of HIRD */
4489 if (udev->usb2_hw_lpm_besl_capable) {
4490 /* if device doesn't have a preferred BESL value use a
4491 * default one which works with mixed HIRD and BESL
4492 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4494 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4495 if ((field & USB_BESL_SUPPORT) &&
4496 (field & USB_BESL_BASELINE_VALID))
4497 hird = USB_GET_BESL_BASELINE(field);
4499 hird = udev->l1_params.besl;
4501 exit_latency = xhci_besl_encoding[hird];
4502 spin_unlock_irqrestore(&xhci->lock, flags);
4504 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4505 * input context for link powermanagement evaluate
4506 * context commands. It is protected by hcd->bandwidth
4507 * mutex and is shared by all devices. We need to set
4508 * the max ext latency in USB 2 BESL LPM as well, so
4509 * use the same mutex and xhci_change_max_exit_latency()
4511 mutex_lock(hcd->bandwidth_mutex);
4512 ret = xhci_change_max_exit_latency(xhci, udev,
4514 mutex_unlock(hcd->bandwidth_mutex);
4518 spin_lock_irqsave(&xhci->lock, flags);
4520 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4521 writel(hlpm_val, hlpm_addr);
4525 hird = xhci_calculate_hird_besl(xhci, udev);
4528 pm_val &= ~PORT_HIRD_MASK;
4529 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4530 writel(pm_val, pm_addr);
4531 pm_val = readl(pm_addr);
4533 writel(pm_val, pm_addr);
4537 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4538 writel(pm_val, pm_addr);
4541 if (udev->usb2_hw_lpm_besl_capable) {
4542 spin_unlock_irqrestore(&xhci->lock, flags);
4543 mutex_lock(hcd->bandwidth_mutex);
4544 xhci_change_max_exit_latency(xhci, udev, 0);
4545 mutex_unlock(hcd->bandwidth_mutex);
4546 readl_poll_timeout(ports[port_num]->addr, pm_val,
4547 (pm_val & PORT_PLS_MASK) == XDEV_U0,
4553 spin_unlock_irqrestore(&xhci->lock, flags);
4557 /* check if a usb2 port supports a given extened capability protocol
4558 * only USB2 ports extended protocol capability values are cached.
4559 * Return 1 if capability is supported
4561 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4562 unsigned capability)
4564 u32 port_offset, port_count;
4567 for (i = 0; i < xhci->num_ext_caps; i++) {
4568 if (xhci->ext_caps[i] & capability) {
4569 /* port offsets starts at 1 */
4570 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4571 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4572 if (port >= port_offset &&
4573 port < port_offset + port_count)
4580 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4582 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4583 int portnum = udev->portnum - 1;
4585 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4588 /* we only support lpm for non-hub device connected to root hub yet */
4589 if (!udev->parent || udev->parent->parent ||
4590 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4593 if (xhci->hw_lpm_support == 1 &&
4594 xhci_check_usb2_port_capability(
4595 xhci, portnum, XHCI_HLC)) {
4596 udev->usb2_hw_lpm_capable = 1;
4597 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4598 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4599 if (xhci_check_usb2_port_capability(xhci, portnum,
4601 udev->usb2_hw_lpm_besl_capable = 1;
4607 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4609 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4610 static unsigned long long xhci_service_interval_to_ns(
4611 struct usb_endpoint_descriptor *desc)
4613 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4616 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4617 enum usb3_link_state state)
4619 unsigned long long sel;
4620 unsigned long long pel;
4621 unsigned int max_sel_pel;
4626 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4627 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4628 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4629 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4633 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4634 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4635 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4639 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4641 return USB3_LPM_DISABLED;
4644 if (sel <= max_sel_pel && pel <= max_sel_pel)
4645 return USB3_LPM_DEVICE_INITIATED;
4647 if (sel > max_sel_pel)
4648 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4649 "due to long SEL %llu ms\n",
4652 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4653 "due to long PEL %llu ms\n",
4655 return USB3_LPM_DISABLED;
4658 /* The U1 timeout should be the maximum of the following values:
4659 * - For control endpoints, U1 system exit latency (SEL) * 3
4660 * - For bulk endpoints, U1 SEL * 5
4661 * - For interrupt endpoints:
4662 * - Notification EPs, U1 SEL * 3
4663 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4664 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4666 static unsigned long long xhci_calculate_intel_u1_timeout(
4667 struct usb_device *udev,
4668 struct usb_endpoint_descriptor *desc)
4670 unsigned long long timeout_ns;
4674 ep_type = usb_endpoint_type(desc);
4676 case USB_ENDPOINT_XFER_CONTROL:
4677 timeout_ns = udev->u1_params.sel * 3;
4679 case USB_ENDPOINT_XFER_BULK:
4680 timeout_ns = udev->u1_params.sel * 5;
4682 case USB_ENDPOINT_XFER_INT:
4683 intr_type = usb_endpoint_interrupt_type(desc);
4684 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4685 timeout_ns = udev->u1_params.sel * 3;
4688 /* Otherwise the calculation is the same as isoc eps */
4690 case USB_ENDPOINT_XFER_ISOC:
4691 timeout_ns = xhci_service_interval_to_ns(desc);
4692 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4693 if (timeout_ns < udev->u1_params.sel * 2)
4694 timeout_ns = udev->u1_params.sel * 2;
4703 /* Returns the hub-encoded U1 timeout value. */
4704 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4705 struct usb_device *udev,
4706 struct usb_endpoint_descriptor *desc)
4708 unsigned long long timeout_ns;
4710 /* Prevent U1 if service interval is shorter than U1 exit latency */
4711 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4712 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4713 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4714 return USB3_LPM_DISABLED;
4718 if (xhci->quirks & XHCI_INTEL_HOST)
4719 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4721 timeout_ns = udev->u1_params.sel;
4723 /* The U1 timeout is encoded in 1us intervals.
4724 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4726 if (timeout_ns == USB3_LPM_DISABLED)
4729 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4731 /* If the necessary timeout value is bigger than what we can set in the
4732 * USB 3.0 hub, we have to disable hub-initiated U1.
4734 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4736 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4737 "due to long timeout %llu ms\n", timeout_ns);
4738 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4741 /* The U2 timeout should be the maximum of:
4742 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4743 * - largest bInterval of any active periodic endpoint (to avoid going
4744 * into lower power link states between intervals).
4745 * - the U2 Exit Latency of the device
4747 static unsigned long long xhci_calculate_intel_u2_timeout(
4748 struct usb_device *udev,
4749 struct usb_endpoint_descriptor *desc)
4751 unsigned long long timeout_ns;
4752 unsigned long long u2_del_ns;
4754 timeout_ns = 10 * 1000 * 1000;
4756 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4757 (xhci_service_interval_to_ns(desc) > timeout_ns))
4758 timeout_ns = xhci_service_interval_to_ns(desc);
4760 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4761 if (u2_del_ns > timeout_ns)
4762 timeout_ns = u2_del_ns;
4767 /* Returns the hub-encoded U2 timeout value. */
4768 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4769 struct usb_device *udev,
4770 struct usb_endpoint_descriptor *desc)
4772 unsigned long long timeout_ns;
4774 /* Prevent U2 if service interval is shorter than U2 exit latency */
4775 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4776 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4777 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4778 return USB3_LPM_DISABLED;
4782 if (xhci->quirks & XHCI_INTEL_HOST)
4783 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4785 timeout_ns = udev->u2_params.sel;
4787 /* The U2 timeout is encoded in 256us intervals */
4788 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4789 /* If the necessary timeout value is bigger than what we can set in the
4790 * USB 3.0 hub, we have to disable hub-initiated U2.
4792 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4794 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4795 "due to long timeout %llu ms\n", timeout_ns);
4796 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4799 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4800 struct usb_device *udev,
4801 struct usb_endpoint_descriptor *desc,
4802 enum usb3_link_state state,
4805 if (state == USB3_LPM_U1)
4806 return xhci_calculate_u1_timeout(xhci, udev, desc);
4807 else if (state == USB3_LPM_U2)
4808 return xhci_calculate_u2_timeout(xhci, udev, desc);
4810 return USB3_LPM_DISABLED;
4813 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4814 struct usb_device *udev,
4815 struct usb_endpoint_descriptor *desc,
4816 enum usb3_link_state state,
4821 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4822 desc, state, timeout);
4824 /* If we found we can't enable hub-initiated LPM, and
4825 * the U1 or U2 exit latency was too high to allow
4826 * device-initiated LPM as well, then we will disable LPM
4827 * for this device, so stop searching any further.
4829 if (alt_timeout == USB3_LPM_DISABLED) {
4830 *timeout = alt_timeout;
4833 if (alt_timeout > *timeout)
4834 *timeout = alt_timeout;
4838 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4839 struct usb_device *udev,
4840 struct usb_host_interface *alt,
4841 enum usb3_link_state state,
4846 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4847 if (xhci_update_timeout_for_endpoint(xhci, udev,
4848 &alt->endpoint[j].desc, state, timeout))
4854 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4855 enum usb3_link_state state)
4857 struct usb_device *parent;
4858 unsigned int num_hubs;
4860 if (state == USB3_LPM_U2)
4863 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4864 for (parent = udev->parent, num_hubs = 0; parent->parent;
4865 parent = parent->parent)
4871 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4872 " below second-tier hub.\n");
4873 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4874 "to decrease power consumption.\n");
4878 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4879 struct usb_device *udev,
4880 enum usb3_link_state state)
4882 if (xhci->quirks & XHCI_INTEL_HOST)
4883 return xhci_check_intel_tier_policy(udev, state);
4888 /* Returns the U1 or U2 timeout that should be enabled.
4889 * If the tier check or timeout setting functions return with a non-zero exit
4890 * code, that means the timeout value has been finalized and we shouldn't look
4891 * at any more endpoints.
4893 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4894 struct usb_device *udev, enum usb3_link_state state)
4896 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4897 struct usb_host_config *config;
4900 u16 timeout = USB3_LPM_DISABLED;
4902 if (state == USB3_LPM_U1)
4904 else if (state == USB3_LPM_U2)
4907 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4912 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4915 /* Gather some information about the currently installed configuration
4916 * and alternate interface settings.
4918 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4922 config = udev->actconfig;
4926 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4927 struct usb_driver *driver;
4928 struct usb_interface *intf = config->interface[i];
4933 /* Check if any currently bound drivers want hub-initiated LPM
4936 if (intf->dev.driver) {
4937 driver = to_usb_driver(intf->dev.driver);
4938 if (driver && driver->disable_hub_initiated_lpm) {
4939 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4940 state_name, driver->name);
4941 timeout = xhci_get_timeout_no_hub_lpm(udev,
4943 if (timeout == USB3_LPM_DISABLED)
4948 /* Not sure how this could happen... */
4949 if (!intf->cur_altsetting)
4952 if (xhci_update_timeout_for_interface(xhci, udev,
4953 intf->cur_altsetting,
4960 static int calculate_max_exit_latency(struct usb_device *udev,
4961 enum usb3_link_state state_changed,
4962 u16 hub_encoded_timeout)
4964 unsigned long long u1_mel_us = 0;
4965 unsigned long long u2_mel_us = 0;
4966 unsigned long long mel_us = 0;
4972 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4973 hub_encoded_timeout == USB3_LPM_DISABLED);
4974 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4975 hub_encoded_timeout == USB3_LPM_DISABLED);
4977 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4978 hub_encoded_timeout != USB3_LPM_DISABLED);
4979 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4980 hub_encoded_timeout != USB3_LPM_DISABLED);
4982 /* If U1 was already enabled and we're not disabling it,
4983 * or we're going to enable U1, account for the U1 max exit latency.
4985 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4987 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4988 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4990 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4992 if (u1_mel_us > u2_mel_us)
4996 /* xHCI host controller max exit latency field is only 16 bits wide. */
4997 if (mel_us > MAX_EXIT) {
4998 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4999 "is too big.\n", mel_us);
5005 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5006 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5007 struct usb_device *udev, enum usb3_link_state state)
5009 struct xhci_hcd *xhci;
5010 u16 hub_encoded_timeout;
5014 xhci = hcd_to_xhci(hcd);
5015 /* The LPM timeout values are pretty host-controller specific, so don't
5016 * enable hub-initiated timeouts unless the vendor has provided
5017 * information about their timeout algorithm.
5019 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5020 !xhci->devs[udev->slot_id])
5021 return USB3_LPM_DISABLED;
5023 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5024 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5026 /* Max Exit Latency is too big, disable LPM. */
5027 hub_encoded_timeout = USB3_LPM_DISABLED;
5031 ret = xhci_change_max_exit_latency(xhci, udev, mel);
5034 return hub_encoded_timeout;
5037 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5038 struct usb_device *udev, enum usb3_link_state state)
5040 struct xhci_hcd *xhci;
5043 xhci = hcd_to_xhci(hcd);
5044 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5045 !xhci->devs[udev->slot_id])
5048 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5049 return xhci_change_max_exit_latency(xhci, udev, mel);
5051 #else /* CONFIG_PM */
5053 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5054 struct usb_device *udev, int enable)
5059 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5064 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5065 struct usb_device *udev, enum usb3_link_state state)
5067 return USB3_LPM_DISABLED;
5070 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5071 struct usb_device *udev, enum usb3_link_state state)
5075 #endif /* CONFIG_PM */
5077 /*-------------------------------------------------------------------------*/
5079 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5080 * internal data structures for the device.
5082 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5083 struct usb_tt *tt, gfp_t mem_flags)
5085 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5086 struct xhci_virt_device *vdev;
5087 struct xhci_command *config_cmd;
5088 struct xhci_input_control_ctx *ctrl_ctx;
5089 struct xhci_slot_ctx *slot_ctx;
5090 unsigned long flags;
5091 unsigned think_time;
5094 /* Ignore root hubs */
5098 vdev = xhci->devs[hdev->slot_id];
5100 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5104 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5108 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5110 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5112 xhci_free_command(xhci, config_cmd);
5116 spin_lock_irqsave(&xhci->lock, flags);
5117 if (hdev->speed == USB_SPEED_HIGH &&
5118 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5119 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5120 xhci_free_command(xhci, config_cmd);
5121 spin_unlock_irqrestore(&xhci->lock, flags);
5125 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5126 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5127 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5128 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5130 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5131 * but it may be already set to 1 when setup an xHCI virtual
5132 * device, so clear it anyway.
5135 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5136 else if (hdev->speed == USB_SPEED_FULL)
5137 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5139 if (xhci->hci_version > 0x95) {
5140 xhci_dbg(xhci, "xHCI version %x needs hub "
5141 "TT think time and number of ports\n",
5142 (unsigned int) xhci->hci_version);
5143 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5144 /* Set TT think time - convert from ns to FS bit times.
5145 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5146 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5148 * xHCI 1.0: this field shall be 0 if the device is not a
5151 think_time = tt->think_time;
5152 if (think_time != 0)
5153 think_time = (think_time / 666) - 1;
5154 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5155 slot_ctx->tt_info |=
5156 cpu_to_le32(TT_THINK_TIME(think_time));
5158 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5159 "TT think time or number of ports\n",
5160 (unsigned int) xhci->hci_version);
5162 slot_ctx->dev_state = 0;
5163 spin_unlock_irqrestore(&xhci->lock, flags);
5165 xhci_dbg(xhci, "Set up %s for hub device.\n",
5166 (xhci->hci_version > 0x95) ?
5167 "configure endpoint" : "evaluate context");
5169 /* Issue and wait for the configure endpoint or
5170 * evaluate context command.
5172 if (xhci->hci_version > 0x95)
5173 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5176 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5179 xhci_free_command(xhci, config_cmd);
5183 static int xhci_get_frame(struct usb_hcd *hcd)
5185 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5186 /* EHCI mods by the periodic size. Why? */
5187 return readl(&xhci->run_regs->microframe_index) >> 3;
5190 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5192 struct xhci_hcd *xhci;
5194 * TODO: Check with DWC3 clients for sysdev according to
5197 struct device *dev = hcd->self.sysdev;
5198 unsigned int minor_rev;
5201 /* Accept arbitrarily long scatter-gather lists */
5202 hcd->self.sg_tablesize = ~0;
5204 /* support to build packet from discontinuous buffers */
5205 hcd->self.no_sg_constraint = 1;
5207 /* XHCI controllers don't stop the ep queue on short packets :| */
5208 hcd->self.no_stop_on_short = 1;
5210 xhci = hcd_to_xhci(hcd);
5212 if (usb_hcd_is_primary_hcd(hcd)) {
5213 xhci->main_hcd = hcd;
5214 xhci->usb2_rhub.hcd = hcd;
5215 /* Mark the first roothub as being USB 2.0.
5216 * The xHCI driver will register the USB 3.0 roothub.
5218 hcd->speed = HCD_USB2;
5219 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5221 * USB 2.0 roothub under xHCI has an integrated TT,
5222 * (rate matching hub) as opposed to having an OHCI/UHCI
5223 * companion controller.
5228 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5229 * should return 0x31 for sbrn, or that the minor revision
5230 * is a two digit BCD containig minor and sub-minor numbers.
5231 * This was later clarified in xHCI 1.2.
5233 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5234 * minor revision set to 0x1 instead of 0x10.
5236 if (xhci->usb3_rhub.min_rev == 0x1)
5239 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5241 switch (minor_rev) {
5243 hcd->speed = HCD_USB32;
5244 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5245 hcd->self.root_hub->rx_lanes = 2;
5246 hcd->self.root_hub->tx_lanes = 2;
5247 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5250 hcd->speed = HCD_USB31;
5251 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5252 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5255 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5257 minor_rev ? "Enhanced " : "");
5259 xhci->usb3_rhub.hcd = hcd;
5260 /* xHCI private pointer was set in xhci_pci_probe for the second
5261 * registered roothub.
5266 mutex_init(&xhci->mutex);
5267 xhci->cap_regs = hcd->regs;
5268 xhci->op_regs = hcd->regs +
5269 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5270 xhci->run_regs = hcd->regs +
5271 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5272 /* Cache read-only capability registers */
5273 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5274 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5275 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5276 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5277 xhci->hci_version = HC_VERSION(xhci->hcc_params);
5278 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5279 if (xhci->hci_version > 0x100)
5280 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5282 xhci->quirks |= quirks;
5284 get_quirks(dev, xhci);
5286 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5287 * success event after a short transfer. This quirk will ignore such
5290 if (xhci->hci_version > 0x96)
5291 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5293 /* Make sure the HC is halted. */
5294 retval = xhci_halt(xhci);
5298 xhci_zero_64b_regs(xhci);
5300 xhci_dbg(xhci, "Resetting HCD\n");
5301 /* Reset the internal HC memory state and registers. */
5302 retval = xhci_reset(xhci);
5305 xhci_dbg(xhci, "Reset complete\n");
5308 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5309 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5310 * address memory pointers actually. So, this driver clears the AC64
5311 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5312 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5314 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5315 xhci->hcc_params &= ~BIT(0);
5317 /* Set dma_mask and coherent_dma_mask to 64-bits,
5318 * if xHC supports 64-bit addressing */
5319 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5320 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5321 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5322 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5325 * This is to avoid error in cases where a 32-bit USB
5326 * controller is used on a 64-bit capable system.
5328 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5331 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5332 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5335 xhci_dbg(xhci, "Calling HCD init\n");
5336 /* Initialize HCD and host controller data structures. */
5337 retval = xhci_init(hcd);
5340 xhci_dbg(xhci, "Called HCD init\n");
5342 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5343 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5347 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5349 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5350 struct usb_host_endpoint *ep)
5352 struct xhci_hcd *xhci;
5353 struct usb_device *udev;
5354 unsigned int slot_id;
5355 unsigned int ep_index;
5356 unsigned long flags;
5358 xhci = hcd_to_xhci(hcd);
5360 spin_lock_irqsave(&xhci->lock, flags);
5361 udev = (struct usb_device *)ep->hcpriv;
5362 slot_id = udev->slot_id;
5363 ep_index = xhci_get_endpoint_index(&ep->desc);
5365 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5366 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5367 spin_unlock_irqrestore(&xhci->lock, flags);
5370 static const struct hc_driver xhci_hc_driver = {
5371 .description = "xhci-hcd",
5372 .product_desc = "xHCI Host Controller",
5373 .hcd_priv_size = sizeof(struct xhci_hcd),
5376 * generic hardware linkage
5379 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5383 * basic lifecycle operations
5385 .reset = NULL, /* set in xhci_init_driver() */
5388 .shutdown = xhci_shutdown,
5391 * managing i/o requests and associated device resources
5393 .map_urb_for_dma = xhci_map_urb_for_dma,
5394 .unmap_urb_for_dma = xhci_unmap_urb_for_dma,
5395 .urb_enqueue = xhci_urb_enqueue,
5396 .urb_dequeue = xhci_urb_dequeue,
5397 .alloc_dev = xhci_alloc_dev,
5398 .free_dev = xhci_free_dev,
5399 .alloc_streams = xhci_alloc_streams,
5400 .free_streams = xhci_free_streams,
5401 .add_endpoint = xhci_add_endpoint,
5402 .drop_endpoint = xhci_drop_endpoint,
5403 .endpoint_disable = xhci_endpoint_disable,
5404 .endpoint_reset = xhci_endpoint_reset,
5405 .check_bandwidth = xhci_check_bandwidth,
5406 .reset_bandwidth = xhci_reset_bandwidth,
5407 .address_device = xhci_address_device,
5408 .enable_device = xhci_enable_device,
5409 .update_hub_device = xhci_update_hub_device,
5410 .reset_device = xhci_discover_or_reset_device,
5413 * scheduling support
5415 .get_frame_number = xhci_get_frame,
5420 .hub_control = xhci_hub_control,
5421 .hub_status_data = xhci_hub_status_data,
5422 .bus_suspend = xhci_bus_suspend,
5423 .bus_resume = xhci_bus_resume,
5424 .get_resuming_ports = xhci_get_resuming_ports,
5427 * call back when device connected and addressed
5429 .update_device = xhci_update_device,
5430 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5431 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5432 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5433 .find_raw_port_number = xhci_find_raw_port_number,
5434 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5437 void xhci_init_driver(struct hc_driver *drv,
5438 const struct xhci_driver_overrides *over)
5442 /* Copy the generic table to drv then apply the overrides */
5443 *drv = xhci_hc_driver;
5446 drv->hcd_priv_size += over->extra_priv_size;
5448 drv->reset = over->reset;
5450 drv->start = over->start;
5451 if (over->add_endpoint)
5452 drv->add_endpoint = over->add_endpoint;
5453 if (over->drop_endpoint)
5454 drv->drop_endpoint = over->drop_endpoint;
5455 if (over->check_bandwidth)
5456 drv->check_bandwidth = over->check_bandwidth;
5457 if (over->reset_bandwidth)
5458 drv->reset_bandwidth = over->reset_bandwidth;
5461 EXPORT_SYMBOL_GPL(xhci_init_driver);
5463 MODULE_DESCRIPTION(DRIVER_DESC);
5464 MODULE_AUTHOR(DRIVER_AUTHOR);
5465 MODULE_LICENSE("GPL");
5467 static int __init xhci_hcd_init(void)
5470 * Check the compiler generated sizes of structures that must be laid
5471 * out in specific ways for hardware access.
5473 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5474 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5475 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5476 /* xhci_device_control has eight fields, and also
5477 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5479 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5480 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5481 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5482 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5483 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5484 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5485 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5490 xhci_debugfs_create_root();
5496 * If an init function is provided, an exit function must also be provided
5497 * to allow module unload.
5499 static void __exit xhci_hcd_fini(void)
5501 xhci_debugfs_remove_root();
5504 module_init(xhci_hcd_init);
5505 module_exit(xhci_hcd_fini);