2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
33 #define DRIVER_AUTHOR "Sarah Sharp"
34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
36 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
37 static int link_quirk;
38 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
39 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
41 /* TODO: copied from ehci-hcd.c - can this be refactored? */
43 * xhci_handshake - spin reading hc until handshake completes or fails
44 * @ptr: address of hc register to be read
45 * @mask: bits to look at in result of read
46 * @done: value of those bits when handshake succeeds
47 * @usec: timeout in microseconds
49 * Returns negative errno, or zero on success
51 * Success happens when the "mask" bits have the specified value (hardware
52 * handshake done). There are two failure modes: "usec" have passed (major
53 * hardware flakeout), or the register reads as all-ones (hardware removed).
55 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
56 u32 mask, u32 done, int usec)
61 result = xhci_readl(xhci, ptr);
62 if (result == ~(u32)0) /* card removed */
74 * Disable interrupts and begin the xHCI halting process.
76 void xhci_quiesce(struct xhci_hcd *xhci)
83 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
87 cmd = xhci_readl(xhci, &xhci->op_regs->command);
89 xhci_writel(xhci, cmd, &xhci->op_regs->command);
93 * Force HC into halt state.
95 * Disable any IRQs and clear the run/stop bit.
96 * HC will complete any current and actively pipelined transactions, and
97 * should halt within 16 ms of the run/stop bit being cleared.
98 * Read HC Halted bit in the status register to see when the HC is finished.
100 int xhci_halt(struct xhci_hcd *xhci)
103 xhci_dbg(xhci, "// Halt the HC\n");
106 ret = xhci_handshake(xhci, &xhci->op_regs->status,
107 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
109 xhci->xhc_state |= XHCI_STATE_HALTED;
110 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
112 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
118 * Set the run bit and wait for the host to be running.
120 static int xhci_start(struct xhci_hcd *xhci)
125 temp = xhci_readl(xhci, &xhci->op_regs->command);
127 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
129 xhci_writel(xhci, temp, &xhci->op_regs->command);
132 * Wait for the HCHalted Status bit to be 0 to indicate the host is
135 ret = xhci_handshake(xhci, &xhci->op_regs->status,
136 STS_HALT, 0, XHCI_MAX_HALT_USEC);
137 if (ret == -ETIMEDOUT)
138 xhci_err(xhci, "Host took too long to start, "
139 "waited %u microseconds.\n",
142 xhci->xhc_state &= ~XHCI_STATE_HALTED;
149 * This resets pipelines, timers, counters, state machines, etc.
150 * Transactions will be terminated immediately, and operational registers
151 * will be set to their defaults.
153 int xhci_reset(struct xhci_hcd *xhci)
159 state = xhci_readl(xhci, &xhci->op_regs->status);
160 if ((state & STS_HALT) == 0) {
161 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
165 xhci_dbg(xhci, "// Reset the HC\n");
166 command = xhci_readl(xhci, &xhci->op_regs->command);
167 command |= CMD_RESET;
168 xhci_writel(xhci, command, &xhci->op_regs->command);
170 ret = xhci_handshake(xhci, &xhci->op_regs->command,
171 CMD_RESET, 0, 10 * 1000 * 1000);
175 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
177 * xHCI cannot write to any doorbells or operational registers other
178 * than status until the "Controller Not Ready" flag is cleared.
180 ret = xhci_handshake(xhci, &xhci->op_regs->status,
181 STS_CNR, 0, 10 * 1000 * 1000);
183 for (i = 0; i < 2; ++i) {
184 xhci->bus_state[i].port_c_suspend = 0;
185 xhci->bus_state[i].suspended_ports = 0;
186 xhci->bus_state[i].resuming_ports = 0;
193 static int xhci_free_msi(struct xhci_hcd *xhci)
197 if (!xhci->msix_entries)
200 for (i = 0; i < xhci->msix_count; i++)
201 if (xhci->msix_entries[i].vector)
202 free_irq(xhci->msix_entries[i].vector,
210 static int xhci_setup_msi(struct xhci_hcd *xhci)
213 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
215 ret = pci_enable_msi(pdev);
217 xhci_dbg(xhci, "failed to allocate MSI entry\n");
221 ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
222 0, "xhci_hcd", xhci_to_hcd(xhci));
224 xhci_dbg(xhci, "disable MSI interrupt\n");
225 pci_disable_msi(pdev);
233 * free all IRQs request
235 static void xhci_free_irq(struct xhci_hcd *xhci)
237 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
240 /* return if using legacy interrupt */
241 if (xhci_to_hcd(xhci)->irq > 0)
244 ret = xhci_free_msi(xhci);
248 free_irq(pdev->irq, xhci_to_hcd(xhci));
256 static int xhci_setup_msix(struct xhci_hcd *xhci)
259 struct usb_hcd *hcd = xhci_to_hcd(xhci);
260 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
263 * calculate number of msi-x vectors supported.
264 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
265 * with max number of interrupters based on the xhci HCSPARAMS1.
266 * - num_online_cpus: maximum msi-x vectors per CPUs core.
267 * Add additional 1 vector to ensure always available interrupt.
269 xhci->msix_count = min(num_online_cpus() + 1,
270 HCS_MAX_INTRS(xhci->hcs_params1));
273 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
275 if (!xhci->msix_entries) {
276 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
280 for (i = 0; i < xhci->msix_count; i++) {
281 xhci->msix_entries[i].entry = i;
282 xhci->msix_entries[i].vector = 0;
285 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
287 xhci_dbg(xhci, "Failed to enable MSI-X\n");
291 for (i = 0; i < xhci->msix_count; i++) {
292 ret = request_irq(xhci->msix_entries[i].vector,
293 (irq_handler_t)xhci_msi_irq,
294 0, "xhci_hcd", xhci_to_hcd(xhci));
299 hcd->msix_enabled = 1;
303 xhci_dbg(xhci, "disable MSI-X interrupt\n");
305 pci_disable_msix(pdev);
307 kfree(xhci->msix_entries);
308 xhci->msix_entries = NULL;
312 /* Free any IRQs and disable MSI-X */
313 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
315 struct usb_hcd *hcd = xhci_to_hcd(xhci);
316 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
320 if (xhci->msix_entries) {
321 pci_disable_msix(pdev);
322 kfree(xhci->msix_entries);
323 xhci->msix_entries = NULL;
325 pci_disable_msi(pdev);
328 hcd->msix_enabled = 0;
332 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
336 if (xhci->msix_entries) {
337 for (i = 0; i < xhci->msix_count; i++)
338 synchronize_irq(xhci->msix_entries[i].vector);
342 static int xhci_try_enable_msi(struct usb_hcd *hcd)
344 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
345 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
349 * Some Fresco Logic host controllers advertise MSI, but fail to
350 * generate interrupts. Don't even try to enable MSI.
352 if (xhci->quirks & XHCI_BROKEN_MSI)
355 /* unregister the legacy interrupt */
357 free_irq(hcd->irq, hcd);
360 ret = xhci_setup_msix(xhci);
362 /* fall back to msi*/
363 ret = xhci_setup_msi(xhci);
366 /* hcd->irq is 0, we have MSI */
370 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
374 /* fall back to legacy interrupt*/
375 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
376 hcd->irq_descr, hcd);
378 xhci_err(xhci, "request interrupt %d failed\n",
382 hcd->irq = pdev->irq;
388 static int xhci_try_enable_msi(struct usb_hcd *hcd)
393 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
397 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
403 static void compliance_mode_recovery(unsigned long arg)
405 struct xhci_hcd *xhci;
410 xhci = (struct xhci_hcd *)arg;
412 for (i = 0; i < xhci->num_usb3_ports; i++) {
413 temp = xhci_readl(xhci, xhci->usb3_ports[i]);
414 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
416 * Compliance Mode Detected. Letting USB Core
417 * handle the Warm Reset
419 xhci_dbg(xhci, "Compliance Mode Detected->Port %d!\n",
421 xhci_dbg(xhci, "Attempting Recovery routine!\n");
422 hcd = xhci->shared_hcd;
424 if (hcd->state == HC_STATE_SUSPENDED)
425 usb_hcd_resume_root_hub(hcd);
427 usb_hcd_poll_rh_status(hcd);
431 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
432 mod_timer(&xhci->comp_mode_recovery_timer,
433 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
437 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
438 * that causes ports behind that hardware to enter compliance mode sometimes.
439 * The quirk creates a timer that polls every 2 seconds the link state of
440 * each host controller's port and recovers it by issuing a Warm reset
441 * if Compliance mode is detected, otherwise the port will become "dead" (no
442 * device connections or disconnections will be detected anymore). Becasue no
443 * status event is generated when entering compliance mode (per xhci spec),
444 * this quirk is needed on systems that have the failing hardware installed.
446 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
448 xhci->port_status_u0 = 0;
449 init_timer(&xhci->comp_mode_recovery_timer);
451 xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
452 xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
453 xhci->comp_mode_recovery_timer.expires = jiffies +
454 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
456 set_timer_slack(&xhci->comp_mode_recovery_timer,
457 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
458 add_timer(&xhci->comp_mode_recovery_timer);
459 xhci_dbg(xhci, "Compliance Mode Recovery Timer Initialized.\n");
463 * This function identifies the systems that have installed the SN65LVPE502CP
464 * USB3.0 re-driver and that need the Compliance Mode Quirk.
466 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
468 static bool compliance_mode_recovery_timer_quirk_check(void)
470 const char *dmi_product_name, *dmi_sys_vendor;
472 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
473 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
474 if (!dmi_product_name || !dmi_sys_vendor)
477 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
480 if (strstr(dmi_product_name, "Z420") ||
481 strstr(dmi_product_name, "Z620") ||
482 strstr(dmi_product_name, "Z820") ||
483 strstr(dmi_product_name, "Z1 Workstation"))
489 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
491 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
496 * Initialize memory for HCD and xHC (one-time init).
498 * Program the PAGESIZE register, initialize the device context array, create
499 * device contexts (?), set up a command ring segment (or two?), create event
500 * ring (one for now).
502 int xhci_init(struct usb_hcd *hcd)
504 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
507 xhci_dbg(xhci, "xhci_init\n");
508 spin_lock_init(&xhci->lock);
509 if (xhci->hci_version == 0x95 && link_quirk) {
510 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
511 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
513 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
515 retval = xhci_mem_init(xhci, GFP_KERNEL);
516 xhci_dbg(xhci, "Finished xhci_init\n");
518 /* Initializing Compliance Mode Recovery Data If Needed */
519 if (compliance_mode_recovery_timer_quirk_check()) {
520 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
521 compliance_mode_recovery_timer_init(xhci);
527 /*-------------------------------------------------------------------------*/
530 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
531 static void xhci_event_ring_work(unsigned long arg)
536 struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
539 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
541 spin_lock_irqsave(&xhci->lock, flags);
542 temp = xhci_readl(xhci, &xhci->op_regs->status);
543 xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
544 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
545 (xhci->xhc_state & XHCI_STATE_HALTED)) {
546 xhci_dbg(xhci, "HW died, polling stopped.\n");
547 spin_unlock_irqrestore(&xhci->lock, flags);
551 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
552 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
553 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
554 xhci->error_bitmask = 0;
555 xhci_dbg(xhci, "Event ring:\n");
556 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
557 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
558 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
559 temp_64 &= ~ERST_PTR_MASK;
560 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
561 xhci_dbg(xhci, "Command ring:\n");
562 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
563 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
564 xhci_dbg_cmd_ptrs(xhci);
565 for (i = 0; i < MAX_HC_SLOTS; ++i) {
568 for (j = 0; j < 31; ++j) {
569 xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
572 spin_unlock_irqrestore(&xhci->lock, flags);
575 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
577 xhci_dbg(xhci, "Quit polling the event ring.\n");
581 static int xhci_run_finished(struct xhci_hcd *xhci)
583 if (xhci_start(xhci)) {
587 xhci->shared_hcd->state = HC_STATE_RUNNING;
588 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
590 if (xhci->quirks & XHCI_NEC_HOST)
591 xhci_ring_cmd_db(xhci);
593 xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
598 * Start the HC after it was halted.
600 * This function is called by the USB core when the HC driver is added.
601 * Its opposite is xhci_stop().
603 * xhci_init() must be called once before this function can be called.
604 * Reset the HC, enable device slot contexts, program DCBAAP, and
605 * set command ring pointer and event ring pointer.
607 * Setup MSI-X vectors and enable interrupts.
609 int xhci_run(struct usb_hcd *hcd)
614 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
616 /* Start the xHCI host controller running only after the USB 2.0 roothub
620 hcd->uses_new_polling = 1;
621 if (!usb_hcd_is_primary_hcd(hcd))
622 return xhci_run_finished(xhci);
624 xhci_dbg(xhci, "xhci_run\n");
626 ret = xhci_try_enable_msi(hcd);
630 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
631 init_timer(&xhci->event_ring_timer);
632 xhci->event_ring_timer.data = (unsigned long) xhci;
633 xhci->event_ring_timer.function = xhci_event_ring_work;
634 /* Poll the event ring */
635 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
637 xhci_dbg(xhci, "Setting event ring polling timer\n");
638 add_timer(&xhci->event_ring_timer);
641 xhci_dbg(xhci, "Command ring memory map follows:\n");
642 xhci_debug_ring(xhci, xhci->cmd_ring);
643 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
644 xhci_dbg_cmd_ptrs(xhci);
646 xhci_dbg(xhci, "ERST memory map follows:\n");
647 xhci_dbg_erst(xhci, &xhci->erst);
648 xhci_dbg(xhci, "Event ring:\n");
649 xhci_debug_ring(xhci, xhci->event_ring);
650 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
651 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
652 temp_64 &= ~ERST_PTR_MASK;
653 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
655 xhci_dbg(xhci, "// Set the interrupt modulation register\n");
656 temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
657 temp &= ~ER_IRQ_INTERVAL_MASK;
659 xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
661 /* Set the HCD state before we enable the irqs */
662 temp = xhci_readl(xhci, &xhci->op_regs->command);
664 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
666 xhci_writel(xhci, temp, &xhci->op_regs->command);
668 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
669 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
670 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
671 xhci_writel(xhci, ER_IRQ_ENABLE(temp),
672 &xhci->ir_set->irq_pending);
673 xhci_print_ir_set(xhci, 0);
675 if (xhci->quirks & XHCI_NEC_HOST)
676 xhci_queue_vendor_command(xhci, 0, 0, 0,
677 TRB_TYPE(TRB_NEC_GET_FW));
679 xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
683 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
685 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
687 spin_lock_irq(&xhci->lock);
690 /* The shared_hcd is going to be deallocated shortly (the USB core only
691 * calls this function when allocation fails in usb_add_hcd(), or
692 * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
694 xhci->shared_hcd = NULL;
695 spin_unlock_irq(&xhci->lock);
701 * This function is called by the USB core when the HC driver is removed.
702 * Its opposite is xhci_run().
704 * Disable device contexts, disable IRQs, and quiesce the HC.
705 * Reset the HC, finish any completed transactions, and cleanup memory.
707 void xhci_stop(struct usb_hcd *hcd)
710 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
712 if (!usb_hcd_is_primary_hcd(hcd)) {
713 xhci_only_stop_hcd(xhci->shared_hcd);
717 spin_lock_irq(&xhci->lock);
718 /* Make sure the xHC is halted for a USB3 roothub
719 * (xhci_stop() could be called as part of failed init).
723 spin_unlock_irq(&xhci->lock);
725 xhci_cleanup_msix(xhci);
727 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
728 /* Tell the event ring poll function not to reschedule */
730 del_timer_sync(&xhci->event_ring_timer);
733 /* Deleting Compliance Mode Recovery Timer */
734 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
735 (!(xhci_all_ports_seen_u0(xhci))))
736 del_timer_sync(&xhci->comp_mode_recovery_timer);
738 if (xhci->quirks & XHCI_AMD_PLL_FIX)
741 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
742 temp = xhci_readl(xhci, &xhci->op_regs->status);
743 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
744 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
745 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
746 &xhci->ir_set->irq_pending);
747 xhci_print_ir_set(xhci, 0);
749 xhci_dbg(xhci, "cleaning up memory\n");
750 xhci_mem_cleanup(xhci);
751 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
752 xhci_readl(xhci, &xhci->op_regs->status));
756 * Shutdown HC (not bus-specific)
758 * This is called when the machine is rebooting or halting. We assume that the
759 * machine will be powered off, and the HC's internal state will be reset.
760 * Don't bother to free memory.
762 * This will only ever be called with the main usb_hcd (the USB3 roothub).
764 void xhci_shutdown(struct usb_hcd *hcd)
766 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
768 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
769 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
771 spin_lock_irq(&xhci->lock);
773 spin_unlock_irq(&xhci->lock);
775 xhci_cleanup_msix(xhci);
777 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
778 xhci_readl(xhci, &xhci->op_regs->status));
782 static void xhci_save_registers(struct xhci_hcd *xhci)
784 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
785 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
786 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
787 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
788 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
789 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
790 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
791 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
792 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
795 static void xhci_restore_registers(struct xhci_hcd *xhci)
797 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
798 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
799 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
800 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
801 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
802 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
803 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
804 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
805 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
808 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
812 /* step 2: initialize command ring buffer */
813 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
814 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
815 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
816 xhci->cmd_ring->dequeue) &
817 (u64) ~CMD_RING_RSVD_BITS) |
818 xhci->cmd_ring->cycle_state;
819 xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
820 (long unsigned long) val_64);
821 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
825 * The whole command ring must be cleared to zero when we suspend the host.
827 * The host doesn't save the command ring pointer in the suspend well, so we
828 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
829 * aligned, because of the reserved bits in the command ring dequeue pointer
830 * register. Therefore, we can't just set the dequeue pointer back in the
831 * middle of the ring (TRBs are 16-byte aligned).
833 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
835 struct xhci_ring *ring;
836 struct xhci_segment *seg;
838 ring = xhci->cmd_ring;
842 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
843 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
844 cpu_to_le32(~TRB_CYCLE);
846 } while (seg != ring->deq_seg);
848 /* Reset the software enqueue and dequeue pointers */
849 ring->deq_seg = ring->first_seg;
850 ring->dequeue = ring->first_seg->trbs;
851 ring->enq_seg = ring->deq_seg;
852 ring->enqueue = ring->dequeue;
854 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
856 * Ring is now zeroed, so the HW should look for change of ownership
857 * when the cycle bit is set to 1.
859 ring->cycle_state = 1;
862 * Reset the hardware dequeue pointer.
863 * Yes, this will need to be re-written after resume, but we're paranoid
864 * and want to make sure the hardware doesn't access bogus memory
865 * because, say, the BIOS or an SMI started the host without changing
866 * the command ring pointers.
868 xhci_set_cmd_ring_deq(xhci);
872 * Stop HC (not bus-specific)
874 * This is called when the machine transition into S3/S4 mode.
877 int xhci_suspend(struct xhci_hcd *xhci)
880 struct usb_hcd *hcd = xhci_to_hcd(xhci);
883 if (hcd->state != HC_STATE_SUSPENDED ||
884 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
887 /* Don't poll the roothubs on bus suspend. */
888 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
889 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
890 del_timer_sync(&hcd->rh_timer);
892 spin_lock_irq(&xhci->lock);
893 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
894 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
895 /* step 1: stop endpoint */
896 /* skipped assuming that port suspend has done */
898 /* step 2: clear Run/Stop bit */
899 command = xhci_readl(xhci, &xhci->op_regs->command);
901 xhci_writel(xhci, command, &xhci->op_regs->command);
902 if (xhci_handshake(xhci, &xhci->op_regs->status,
903 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
904 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
905 spin_unlock_irq(&xhci->lock);
908 xhci_clear_command_ring(xhci);
910 /* step 3: save registers */
911 xhci_save_registers(xhci);
913 /* step 4: set CSS flag */
914 command = xhci_readl(xhci, &xhci->op_regs->command);
916 xhci_writel(xhci, command, &xhci->op_regs->command);
917 if (xhci_handshake(xhci, &xhci->op_regs->status,
918 STS_SAVE, 0, 10 * 1000)) {
919 xhci_warn(xhci, "WARN: xHC save state timeout\n");
920 spin_unlock_irq(&xhci->lock);
923 spin_unlock_irq(&xhci->lock);
926 * Deleting Compliance Mode Recovery Timer because the xHCI Host
927 * is about to be suspended.
929 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
930 (!(xhci_all_ports_seen_u0(xhci)))) {
931 del_timer_sync(&xhci->comp_mode_recovery_timer);
932 xhci_dbg(xhci, "Compliance Mode Recovery Timer Deleted!\n");
935 /* step 5: remove core well power */
936 /* synchronize irq when using MSI-X */
937 xhci_msix_sync_irqs(xhci);
943 * start xHC (not bus-specific)
945 * This is called when the machine transition from S3/S4 mode.
948 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
950 u32 command, temp = 0;
951 struct usb_hcd *hcd = xhci_to_hcd(xhci);
952 struct usb_hcd *secondary_hcd;
955 /* Wait a bit if either of the roothubs need to settle from the
956 * transition into bus suspend.
958 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
960 xhci->bus_state[1].next_statechange))
963 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
964 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
966 spin_lock_irq(&xhci->lock);
967 if (xhci->quirks & XHCI_RESET_ON_RESUME)
971 /* step 1: restore register */
972 xhci_restore_registers(xhci);
973 /* step 2: initialize command ring buffer */
974 xhci_set_cmd_ring_deq(xhci);
975 /* step 3: restore state and start state*/
976 /* step 3: set CRS flag */
977 command = xhci_readl(xhci, &xhci->op_regs->command);
979 xhci_writel(xhci, command, &xhci->op_regs->command);
980 if (xhci_handshake(xhci, &xhci->op_regs->status,
981 STS_RESTORE, 0, 10 * 1000)) {
982 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
983 spin_unlock_irq(&xhci->lock);
986 temp = xhci_readl(xhci, &xhci->op_regs->status);
989 /* If restore operation fails, re-initialize the HC during resume */
990 if ((temp & STS_SRE) || hibernated) {
991 /* Let the USB core know _both_ roothubs lost power. */
992 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
993 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
995 xhci_dbg(xhci, "Stop HCD\n");
998 spin_unlock_irq(&xhci->lock);
999 xhci_cleanup_msix(xhci);
1001 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
1002 /* Tell the event ring poll function not to reschedule */
1004 del_timer_sync(&xhci->event_ring_timer);
1007 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1008 temp = xhci_readl(xhci, &xhci->op_regs->status);
1009 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
1010 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
1011 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
1012 &xhci->ir_set->irq_pending);
1013 xhci_print_ir_set(xhci, 0);
1015 xhci_dbg(xhci, "cleaning up memory\n");
1016 xhci_mem_cleanup(xhci);
1017 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1018 xhci_readl(xhci, &xhci->op_regs->status));
1020 /* USB core calls the PCI reinit and start functions twice:
1021 * first with the primary HCD, and then with the secondary HCD.
1022 * If we don't do the same, the host will never be started.
1024 if (!usb_hcd_is_primary_hcd(hcd))
1025 secondary_hcd = hcd;
1027 secondary_hcd = xhci->shared_hcd;
1029 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1030 retval = xhci_init(hcd->primary_hcd);
1033 xhci_dbg(xhci, "Start the primary HCD\n");
1034 retval = xhci_run(hcd->primary_hcd);
1036 xhci_dbg(xhci, "Start the secondary HCD\n");
1037 retval = xhci_run(secondary_hcd);
1039 hcd->state = HC_STATE_SUSPENDED;
1040 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1044 /* step 4: set Run/Stop bit */
1045 command = xhci_readl(xhci, &xhci->op_regs->command);
1047 xhci_writel(xhci, command, &xhci->op_regs->command);
1048 xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1051 /* step 5: walk topology and initialize portsc,
1052 * portpmsc and portli
1054 /* this is done in bus_resume */
1056 /* step 6: restart each of the previously
1057 * Running endpoints by ringing their doorbells
1060 spin_unlock_irq(&xhci->lock);
1064 usb_hcd_resume_root_hub(hcd);
1065 usb_hcd_resume_root_hub(xhci->shared_hcd);
1069 * If system is subject to the Quirk, Compliance Mode Timer needs to
1070 * be re-initialized Always after a system resume. Ports are subject
1071 * to suffer the Compliance Mode issue again. It doesn't matter if
1072 * ports have entered previously to U0 before system's suspension.
1074 if (xhci->quirks & XHCI_COMP_MODE_QUIRK)
1075 compliance_mode_recovery_timer_init(xhci);
1077 /* Re-enable port polling. */
1078 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1079 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1080 usb_hcd_poll_rh_status(hcd);
1084 #endif /* CONFIG_PM */
1086 /*-------------------------------------------------------------------------*/
1089 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1090 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1091 * value to right shift 1 for the bitmask.
1093 * Index = (epnum * 2) + direction - 1,
1094 * where direction = 0 for OUT, 1 for IN.
1095 * For control endpoints, the IN index is used (OUT index is unused), so
1096 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1098 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1101 if (usb_endpoint_xfer_control(desc))
1102 index = (unsigned int) (usb_endpoint_num(desc)*2);
1104 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1105 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1109 /* Find the flag for this endpoint (for use in the control context). Use the
1110 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1113 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1115 return 1 << (xhci_get_endpoint_index(desc) + 1);
1118 /* Find the flag for this endpoint (for use in the control context). Use the
1119 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1122 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1124 return 1 << (ep_index + 1);
1127 /* Compute the last valid endpoint context index. Basically, this is the
1128 * endpoint index plus one. For slot contexts with more than valid endpoint,
1129 * we find the most significant bit set in the added contexts flags.
1130 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1131 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1133 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1135 return fls(added_ctxs) - 1;
1138 /* Returns 1 if the arguments are OK;
1139 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1141 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1142 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1144 struct xhci_hcd *xhci;
1145 struct xhci_virt_device *virt_dev;
1147 if (!hcd || (check_ep && !ep) || !udev) {
1148 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1152 if (!udev->parent) {
1153 printk(KERN_DEBUG "xHCI %s called for root hub\n",
1158 xhci = hcd_to_xhci(hcd);
1159 if (xhci->xhc_state & XHCI_STATE_HALTED)
1162 if (check_virt_dev) {
1163 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1164 printk(KERN_DEBUG "xHCI %s called with unaddressed "
1169 virt_dev = xhci->devs[udev->slot_id];
1170 if (virt_dev->udev != udev) {
1171 printk(KERN_DEBUG "xHCI %s called with udev and "
1172 "virt_dev does not match\n", func);
1180 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1181 struct usb_device *udev, struct xhci_command *command,
1182 bool ctx_change, bool must_succeed);
1185 * Full speed devices may have a max packet size greater than 8 bytes, but the
1186 * USB core doesn't know that until it reads the first 8 bytes of the
1187 * descriptor. If the usb_device's max packet size changes after that point,
1188 * we need to issue an evaluate context command and wait on it.
1190 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1191 unsigned int ep_index, struct urb *urb)
1193 struct xhci_container_ctx *in_ctx;
1194 struct xhci_container_ctx *out_ctx;
1195 struct xhci_input_control_ctx *ctrl_ctx;
1196 struct xhci_ep_ctx *ep_ctx;
1197 int max_packet_size;
1198 int hw_max_packet_size;
1201 out_ctx = xhci->devs[slot_id]->out_ctx;
1202 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1203 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1204 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1205 if (hw_max_packet_size != max_packet_size) {
1206 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1207 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1209 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1210 hw_max_packet_size);
1211 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1213 /* Set up the modified control endpoint 0 */
1214 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1215 xhci->devs[slot_id]->out_ctx, ep_index);
1216 in_ctx = xhci->devs[slot_id]->in_ctx;
1217 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1218 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1219 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1221 /* Set up the input context flags for the command */
1222 /* FIXME: This won't work if a non-default control endpoint
1223 * changes max packet sizes.
1225 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1226 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1227 ctrl_ctx->drop_flags = 0;
1229 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1230 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1231 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1232 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1234 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1237 /* Clean up the input context for later use by bandwidth
1240 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1246 * non-error returns are a promise to giveback() the urb later
1247 * we drop ownership so next owner (or urb unlink) can get it
1249 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1251 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1252 struct xhci_td *buffer;
1253 unsigned long flags;
1255 unsigned int slot_id, ep_index;
1256 struct urb_priv *urb_priv;
1259 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1260 true, true, __func__) <= 0)
1263 slot_id = urb->dev->slot_id;
1264 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1266 if (!HCD_HW_ACCESSIBLE(hcd)) {
1267 if (!in_interrupt())
1268 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1273 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1274 size = urb->number_of_packets;
1278 urb_priv = kzalloc(sizeof(struct urb_priv) +
1279 size * sizeof(struct xhci_td *), mem_flags);
1283 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1289 for (i = 0; i < size; i++) {
1290 urb_priv->td[i] = buffer;
1294 urb_priv->length = size;
1295 urb_priv->td_cnt = 0;
1296 urb->hcpriv = urb_priv;
1298 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1299 /* Check to see if the max packet size for the default control
1300 * endpoint changed during FS device enumeration
1302 if (urb->dev->speed == USB_SPEED_FULL) {
1303 ret = xhci_check_maxpacket(xhci, slot_id,
1306 xhci_urb_free_priv(xhci, urb_priv);
1312 /* We have a spinlock and interrupts disabled, so we must pass
1313 * atomic context to this function, which may allocate memory.
1315 spin_lock_irqsave(&xhci->lock, flags);
1316 if (xhci->xhc_state & XHCI_STATE_DYING)
1318 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1322 spin_unlock_irqrestore(&xhci->lock, flags);
1323 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1324 spin_lock_irqsave(&xhci->lock, flags);
1325 if (xhci->xhc_state & XHCI_STATE_DYING)
1327 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1328 EP_GETTING_STREAMS) {
1329 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1330 "is transitioning to using streams.\n");
1332 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1333 EP_GETTING_NO_STREAMS) {
1334 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1335 "is transitioning to "
1336 "not having streams.\n");
1339 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1344 spin_unlock_irqrestore(&xhci->lock, flags);
1345 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1346 spin_lock_irqsave(&xhci->lock, flags);
1347 if (xhci->xhc_state & XHCI_STATE_DYING)
1349 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1353 spin_unlock_irqrestore(&xhci->lock, flags);
1355 spin_lock_irqsave(&xhci->lock, flags);
1356 if (xhci->xhc_state & XHCI_STATE_DYING)
1358 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1362 spin_unlock_irqrestore(&xhci->lock, flags);
1367 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1368 "non-responsive xHCI host.\n",
1369 urb->ep->desc.bEndpointAddress, urb);
1372 xhci_urb_free_priv(xhci, urb_priv);
1374 spin_unlock_irqrestore(&xhci->lock, flags);
1378 /* Get the right ring for the given URB.
1379 * If the endpoint supports streams, boundary check the URB's stream ID.
1380 * If the endpoint doesn't support streams, return the singular endpoint ring.
1382 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1385 unsigned int slot_id;
1386 unsigned int ep_index;
1387 unsigned int stream_id;
1388 struct xhci_virt_ep *ep;
1390 slot_id = urb->dev->slot_id;
1391 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1392 stream_id = urb->stream_id;
1393 ep = &xhci->devs[slot_id]->eps[ep_index];
1394 /* Common case: no streams */
1395 if (!(ep->ep_state & EP_HAS_STREAMS))
1398 if (stream_id == 0) {
1400 "WARN: Slot ID %u, ep index %u has streams, "
1401 "but URB has no stream ID.\n",
1406 if (stream_id < ep->stream_info->num_streams)
1407 return ep->stream_info->stream_rings[stream_id];
1410 "WARN: Slot ID %u, ep index %u has "
1411 "stream IDs 1 to %u allocated, "
1412 "but stream ID %u is requested.\n",
1414 ep->stream_info->num_streams - 1,
1420 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1421 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1422 * should pick up where it left off in the TD, unless a Set Transfer Ring
1423 * Dequeue Pointer is issued.
1425 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1426 * the ring. Since the ring is a contiguous structure, they can't be physically
1427 * removed. Instead, there are two options:
1429 * 1) If the HC is in the middle of processing the URB to be canceled, we
1430 * simply move the ring's dequeue pointer past those TRBs using the Set
1431 * Transfer Ring Dequeue Pointer command. This will be the common case,
1432 * when drivers timeout on the last submitted URB and attempt to cancel.
1434 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1435 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1436 * HC will need to invalidate the any TRBs it has cached after the stop
1437 * endpoint command, as noted in the xHCI 0.95 errata.
1439 * 3) The TD may have completed by the time the Stop Endpoint Command
1440 * completes, so software needs to handle that case too.
1442 * This function should protect against the TD enqueueing code ringing the
1443 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1444 * It also needs to account for multiple cancellations on happening at the same
1445 * time for the same endpoint.
1447 * Note that this function can be called in any context, or so says
1448 * usb_hcd_unlink_urb()
1450 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1452 unsigned long flags;
1455 struct xhci_hcd *xhci;
1456 struct urb_priv *urb_priv;
1458 unsigned int ep_index;
1459 struct xhci_ring *ep_ring;
1460 struct xhci_virt_ep *ep;
1462 xhci = hcd_to_xhci(hcd);
1463 spin_lock_irqsave(&xhci->lock, flags);
1464 /* Make sure the URB hasn't completed or been unlinked already */
1465 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1466 if (ret || !urb->hcpriv)
1468 temp = xhci_readl(xhci, &xhci->op_regs->status);
1469 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1470 xhci_dbg(xhci, "HW died, freeing TD.\n");
1471 urb_priv = urb->hcpriv;
1472 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1473 td = urb_priv->td[i];
1474 if (!list_empty(&td->td_list))
1475 list_del_init(&td->td_list);
1476 if (!list_empty(&td->cancelled_td_list))
1477 list_del_init(&td->cancelled_td_list);
1480 usb_hcd_unlink_urb_from_ep(hcd, urb);
1481 spin_unlock_irqrestore(&xhci->lock, flags);
1482 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1483 xhci_urb_free_priv(xhci, urb_priv);
1486 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1487 (xhci->xhc_state & XHCI_STATE_HALTED)) {
1488 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1489 "non-responsive xHCI host.\n",
1490 urb->ep->desc.bEndpointAddress, urb);
1491 /* Let the stop endpoint command watchdog timer (which set this
1492 * state) finish cleaning up the endpoint TD lists. We must
1493 * have caught it in the middle of dropping a lock and giving
1499 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1500 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1501 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1507 urb_priv = urb->hcpriv;
1508 i = urb_priv->td_cnt;
1509 if (i < urb_priv->length)
1510 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1511 "starting at offset 0x%llx\n",
1512 urb, urb->dev->devpath,
1513 urb->ep->desc.bEndpointAddress,
1514 (unsigned long long) xhci_trb_virt_to_dma(
1515 urb_priv->td[i]->start_seg,
1516 urb_priv->td[i]->first_trb));
1518 for (; i < urb_priv->length; i++) {
1519 td = urb_priv->td[i];
1520 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1523 /* Queue a stop endpoint command, but only if this is
1524 * the first cancellation to be handled.
1526 if (!(ep->ep_state & EP_HALT_PENDING)) {
1527 ep->ep_state |= EP_HALT_PENDING;
1528 ep->stop_cmds_pending++;
1529 ep->stop_cmd_timer.expires = jiffies +
1530 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1531 add_timer(&ep->stop_cmd_timer);
1532 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1533 xhci_ring_cmd_db(xhci);
1536 spin_unlock_irqrestore(&xhci->lock, flags);
1540 /* Drop an endpoint from a new bandwidth configuration for this device.
1541 * Only one call to this function is allowed per endpoint before
1542 * check_bandwidth() or reset_bandwidth() must be called.
1543 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1544 * add the endpoint to the schedule with possibly new parameters denoted by a
1545 * different endpoint descriptor in usb_host_endpoint.
1546 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1549 * The USB core will not allow URBs to be queued to an endpoint that is being
1550 * disabled, so there's no need for mutual exclusion to protect
1551 * the xhci->devs[slot_id] structure.
1553 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1554 struct usb_host_endpoint *ep)
1556 struct xhci_hcd *xhci;
1557 struct xhci_container_ctx *in_ctx, *out_ctx;
1558 struct xhci_input_control_ctx *ctrl_ctx;
1559 struct xhci_slot_ctx *slot_ctx;
1560 unsigned int last_ctx;
1561 unsigned int ep_index;
1562 struct xhci_ep_ctx *ep_ctx;
1564 u32 new_add_flags, new_drop_flags, new_slot_info;
1567 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1570 xhci = hcd_to_xhci(hcd);
1571 if (xhci->xhc_state & XHCI_STATE_DYING)
1574 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1575 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1576 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1577 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1578 __func__, drop_flag);
1582 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1583 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1584 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1585 ep_index = xhci_get_endpoint_index(&ep->desc);
1586 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1587 /* If the HC already knows the endpoint is disabled,
1588 * or the HCD has noted it is disabled, ignore this request
1590 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1591 cpu_to_le32(EP_STATE_DISABLED)) ||
1592 le32_to_cpu(ctrl_ctx->drop_flags) &
1593 xhci_get_endpoint_flag(&ep->desc)) {
1594 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1599 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1600 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1602 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1603 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1605 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1606 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1607 /* Update the last valid endpoint context, if we deleted the last one */
1608 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1609 LAST_CTX(last_ctx)) {
1610 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1611 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1613 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1615 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1617 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1618 (unsigned int) ep->desc.bEndpointAddress,
1620 (unsigned int) new_drop_flags,
1621 (unsigned int) new_add_flags,
1622 (unsigned int) new_slot_info);
1626 /* Add an endpoint to a new possible bandwidth configuration for this device.
1627 * Only one call to this function is allowed per endpoint before
1628 * check_bandwidth() or reset_bandwidth() must be called.
1629 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1630 * add the endpoint to the schedule with possibly new parameters denoted by a
1631 * different endpoint descriptor in usb_host_endpoint.
1632 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1635 * The USB core will not allow URBs to be queued to an endpoint until the
1636 * configuration or alt setting is installed in the device, so there's no need
1637 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1639 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1640 struct usb_host_endpoint *ep)
1642 struct xhci_hcd *xhci;
1643 struct xhci_container_ctx *in_ctx, *out_ctx;
1644 unsigned int ep_index;
1645 struct xhci_slot_ctx *slot_ctx;
1646 struct xhci_input_control_ctx *ctrl_ctx;
1648 unsigned int last_ctx;
1649 u32 new_add_flags, new_drop_flags, new_slot_info;
1650 struct xhci_virt_device *virt_dev;
1653 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1655 /* So we won't queue a reset ep command for a root hub */
1659 xhci = hcd_to_xhci(hcd);
1660 if (xhci->xhc_state & XHCI_STATE_DYING)
1663 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1664 last_ctx = xhci_last_valid_endpoint(added_ctxs);
1665 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1666 /* FIXME when we have to issue an evaluate endpoint command to
1667 * deal with ep0 max packet size changing once we get the
1670 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1671 __func__, added_ctxs);
1675 virt_dev = xhci->devs[udev->slot_id];
1676 in_ctx = virt_dev->in_ctx;
1677 out_ctx = virt_dev->out_ctx;
1678 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1679 ep_index = xhci_get_endpoint_index(&ep->desc);
1681 /* If this endpoint is already in use, and the upper layers are trying
1682 * to add it again without dropping it, reject the addition.
1684 if (virt_dev->eps[ep_index].ring &&
1685 !(le32_to_cpu(ctrl_ctx->drop_flags) &
1686 xhci_get_endpoint_flag(&ep->desc))) {
1687 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1688 "without dropping it.\n",
1689 (unsigned int) ep->desc.bEndpointAddress);
1693 /* If the HCD has already noted the endpoint is enabled,
1694 * ignore this request.
1696 if (le32_to_cpu(ctrl_ctx->add_flags) &
1697 xhci_get_endpoint_flag(&ep->desc)) {
1698 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1704 * Configuration and alternate setting changes must be done in
1705 * process context, not interrupt context (or so documenation
1706 * for usb_set_interface() and usb_set_configuration() claim).
1708 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1709 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1710 __func__, ep->desc.bEndpointAddress);
1714 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1715 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1717 /* If xhci_endpoint_disable() was called for this endpoint, but the
1718 * xHC hasn't been notified yet through the check_bandwidth() call,
1719 * this re-adds a new state for the endpoint from the new endpoint
1720 * descriptors. We must drop and re-add this endpoint, so we leave the
1723 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1725 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1726 /* Update the last valid endpoint context, if we just added one past */
1727 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1728 LAST_CTX(last_ctx)) {
1729 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1730 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1732 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1734 /* Store the usb_device pointer for later use */
1737 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1738 (unsigned int) ep->desc.bEndpointAddress,
1740 (unsigned int) new_drop_flags,
1741 (unsigned int) new_add_flags,
1742 (unsigned int) new_slot_info);
1746 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1748 struct xhci_input_control_ctx *ctrl_ctx;
1749 struct xhci_ep_ctx *ep_ctx;
1750 struct xhci_slot_ctx *slot_ctx;
1753 /* When a device's add flag and drop flag are zero, any subsequent
1754 * configure endpoint command will leave that endpoint's state
1755 * untouched. Make sure we don't leave any old state in the input
1756 * endpoint contexts.
1758 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1759 ctrl_ctx->drop_flags = 0;
1760 ctrl_ctx->add_flags = 0;
1761 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1762 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1763 /* Endpoint 0 is always valid */
1764 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1765 for (i = 1; i < 31; ++i) {
1766 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1767 ep_ctx->ep_info = 0;
1768 ep_ctx->ep_info2 = 0;
1770 ep_ctx->tx_info = 0;
1774 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1775 struct usb_device *udev, u32 *cmd_status)
1779 switch (*cmd_status) {
1781 dev_warn(&udev->dev, "Not enough host controller resources "
1782 "for new device state.\n");
1784 /* FIXME: can we allocate more resources for the HC? */
1787 case COMP_2ND_BW_ERR:
1788 dev_warn(&udev->dev, "Not enough bandwidth "
1789 "for new device state.\n");
1791 /* FIXME: can we go back to the old state? */
1794 /* the HCD set up something wrong */
1795 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1797 "and endpoint is not disabled.\n");
1801 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1802 "configure command.\n");
1806 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1810 xhci_err(xhci, "ERROR: unexpected command completion "
1811 "code 0x%x.\n", *cmd_status);
1818 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1819 struct usb_device *udev, u32 *cmd_status)
1822 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1824 switch (*cmd_status) {
1826 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1827 "context command.\n");
1831 dev_warn(&udev->dev, "WARN: slot not enabled for"
1832 "evaluate context command.\n");
1835 case COMP_CTX_STATE:
1836 dev_warn(&udev->dev, "WARN: invalid context state for "
1837 "evaluate context command.\n");
1838 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1842 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1843 "context command.\n");
1847 /* Max Exit Latency too large error */
1848 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1852 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1856 xhci_err(xhci, "ERROR: unexpected command completion "
1857 "code 0x%x.\n", *cmd_status);
1864 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1865 struct xhci_container_ctx *in_ctx)
1867 struct xhci_input_control_ctx *ctrl_ctx;
1868 u32 valid_add_flags;
1869 u32 valid_drop_flags;
1871 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1872 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1873 * (bit 1). The default control endpoint is added during the Address
1874 * Device command and is never removed until the slot is disabled.
1876 valid_add_flags = ctrl_ctx->add_flags >> 2;
1877 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1879 /* Use hweight32 to count the number of ones in the add flags, or
1880 * number of endpoints added. Don't count endpoints that are changed
1881 * (both added and dropped).
1883 return hweight32(valid_add_flags) -
1884 hweight32(valid_add_flags & valid_drop_flags);
1887 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1888 struct xhci_container_ctx *in_ctx)
1890 struct xhci_input_control_ctx *ctrl_ctx;
1891 u32 valid_add_flags;
1892 u32 valid_drop_flags;
1894 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1895 valid_add_flags = ctrl_ctx->add_flags >> 2;
1896 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1898 return hweight32(valid_drop_flags) -
1899 hweight32(valid_add_flags & valid_drop_flags);
1903 * We need to reserve the new number of endpoints before the configure endpoint
1904 * command completes. We can't subtract the dropped endpoints from the number
1905 * of active endpoints until the command completes because we can oversubscribe
1906 * the host in this case:
1908 * - the first configure endpoint command drops more endpoints than it adds
1909 * - a second configure endpoint command that adds more endpoints is queued
1910 * - the first configure endpoint command fails, so the config is unchanged
1911 * - the second command may succeed, even though there isn't enough resources
1913 * Must be called with xhci->lock held.
1915 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1916 struct xhci_container_ctx *in_ctx)
1920 added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1921 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1922 xhci_dbg(xhci, "Not enough ep ctxs: "
1923 "%u active, need to add %u, limit is %u.\n",
1924 xhci->num_active_eps, added_eps,
1925 xhci->limit_active_eps);
1928 xhci->num_active_eps += added_eps;
1929 xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1930 xhci->num_active_eps);
1935 * The configure endpoint was failed by the xHC for some other reason, so we
1936 * need to revert the resources that failed configuration would have used.
1938 * Must be called with xhci->lock held.
1940 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1941 struct xhci_container_ctx *in_ctx)
1945 num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1946 xhci->num_active_eps -= num_failed_eps;
1947 xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1949 xhci->num_active_eps);
1953 * Now that the command has completed, clean up the active endpoint count by
1954 * subtracting out the endpoints that were dropped (but not changed).
1956 * Must be called with xhci->lock held.
1958 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1959 struct xhci_container_ctx *in_ctx)
1961 u32 num_dropped_eps;
1963 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1964 xhci->num_active_eps -= num_dropped_eps;
1965 if (num_dropped_eps)
1966 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1968 xhci->num_active_eps);
1971 static unsigned int xhci_get_block_size(struct usb_device *udev)
1973 switch (udev->speed) {
1975 case USB_SPEED_FULL:
1977 case USB_SPEED_HIGH:
1979 case USB_SPEED_SUPER:
1981 case USB_SPEED_UNKNOWN:
1982 case USB_SPEED_WIRELESS:
1984 /* Should never happen */
1990 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1992 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1994 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1999 /* If we are changing a LS/FS device under a HS hub,
2000 * make sure (if we are activating a new TT) that the HS bus has enough
2001 * bandwidth for this new TT.
2003 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2004 struct xhci_virt_device *virt_dev,
2007 struct xhci_interval_bw_table *bw_table;
2008 struct xhci_tt_bw_info *tt_info;
2010 /* Find the bandwidth table for the root port this TT is attached to. */
2011 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2012 tt_info = virt_dev->tt_info;
2013 /* If this TT already had active endpoints, the bandwidth for this TT
2014 * has already been added. Removing all periodic endpoints (and thus
2015 * making the TT enactive) will only decrease the bandwidth used.
2019 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2020 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2024 /* Not sure why we would have no new active endpoints...
2026 * Maybe because of an Evaluate Context change for a hub update or a
2027 * control endpoint 0 max packet size change?
2028 * FIXME: skip the bandwidth calculation in that case.
2033 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2034 struct xhci_virt_device *virt_dev)
2036 unsigned int bw_reserved;
2038 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2039 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2042 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2043 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2050 * This algorithm is a very conservative estimate of the worst-case scheduling
2051 * scenario for any one interval. The hardware dynamically schedules the
2052 * packets, so we can't tell which microframe could be the limiting factor in
2053 * the bandwidth scheduling. This only takes into account periodic endpoints.
2055 * Obviously, we can't solve an NP complete problem to find the minimum worst
2056 * case scenario. Instead, we come up with an estimate that is no less than
2057 * the worst case bandwidth used for any one microframe, but may be an
2060 * We walk the requirements for each endpoint by interval, starting with the
2061 * smallest interval, and place packets in the schedule where there is only one
2062 * possible way to schedule packets for that interval. In order to simplify
2063 * this algorithm, we record the largest max packet size for each interval, and
2064 * assume all packets will be that size.
2066 * For interval 0, we obviously must schedule all packets for each interval.
2067 * The bandwidth for interval 0 is just the amount of data to be transmitted
2068 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2069 * the number of packets).
2071 * For interval 1, we have two possible microframes to schedule those packets
2072 * in. For this algorithm, if we can schedule the same number of packets for
2073 * each possible scheduling opportunity (each microframe), we will do so. The
2074 * remaining number of packets will be saved to be transmitted in the gaps in
2075 * the next interval's scheduling sequence.
2077 * As we move those remaining packets to be scheduled with interval 2 packets,
2078 * we have to double the number of remaining packets to transmit. This is
2079 * because the intervals are actually powers of 2, and we would be transmitting
2080 * the previous interval's packets twice in this interval. We also have to be
2081 * sure that when we look at the largest max packet size for this interval, we
2082 * also look at the largest max packet size for the remaining packets and take
2083 * the greater of the two.
2085 * The algorithm continues to evenly distribute packets in each scheduling
2086 * opportunity, and push the remaining packets out, until we get to the last
2087 * interval. Then those packets and their associated overhead are just added
2088 * to the bandwidth used.
2090 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2091 struct xhci_virt_device *virt_dev,
2094 unsigned int bw_reserved;
2095 unsigned int max_bandwidth;
2096 unsigned int bw_used;
2097 unsigned int block_size;
2098 struct xhci_interval_bw_table *bw_table;
2099 unsigned int packet_size = 0;
2100 unsigned int overhead = 0;
2101 unsigned int packets_transmitted = 0;
2102 unsigned int packets_remaining = 0;
2105 if (virt_dev->udev->speed == USB_SPEED_SUPER)
2106 return xhci_check_ss_bw(xhci, virt_dev);
2108 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2109 max_bandwidth = HS_BW_LIMIT;
2110 /* Convert percent of bus BW reserved to blocks reserved */
2111 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2113 max_bandwidth = FS_BW_LIMIT;
2114 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2117 bw_table = virt_dev->bw_table;
2118 /* We need to translate the max packet size and max ESIT payloads into
2119 * the units the hardware uses.
2121 block_size = xhci_get_block_size(virt_dev->udev);
2123 /* If we are manipulating a LS/FS device under a HS hub, double check
2124 * that the HS bus has enough bandwidth if we are activing a new TT.
2126 if (virt_dev->tt_info) {
2127 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2128 virt_dev->real_port);
2129 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2130 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2131 "newly activated TT.\n");
2134 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2135 virt_dev->tt_info->slot_id,
2136 virt_dev->tt_info->ttport);
2138 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2139 virt_dev->real_port);
2142 /* Add in how much bandwidth will be used for interval zero, or the
2143 * rounded max ESIT payload + number of packets * largest overhead.
2145 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2146 bw_table->interval_bw[0].num_packets *
2147 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2149 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2150 unsigned int bw_added;
2151 unsigned int largest_mps;
2152 unsigned int interval_overhead;
2155 * How many packets could we transmit in this interval?
2156 * If packets didn't fit in the previous interval, we will need
2157 * to transmit that many packets twice within this interval.
2159 packets_remaining = 2 * packets_remaining +
2160 bw_table->interval_bw[i].num_packets;
2162 /* Find the largest max packet size of this or the previous
2165 if (list_empty(&bw_table->interval_bw[i].endpoints))
2168 struct xhci_virt_ep *virt_ep;
2169 struct list_head *ep_entry;
2171 ep_entry = bw_table->interval_bw[i].endpoints.next;
2172 virt_ep = list_entry(ep_entry,
2173 struct xhci_virt_ep, bw_endpoint_list);
2174 /* Convert to blocks, rounding up */
2175 largest_mps = DIV_ROUND_UP(
2176 virt_ep->bw_info.max_packet_size,
2179 if (largest_mps > packet_size)
2180 packet_size = largest_mps;
2182 /* Use the larger overhead of this or the previous interval. */
2183 interval_overhead = xhci_get_largest_overhead(
2184 &bw_table->interval_bw[i]);
2185 if (interval_overhead > overhead)
2186 overhead = interval_overhead;
2188 /* How many packets can we evenly distribute across
2189 * (1 << (i + 1)) possible scheduling opportunities?
2191 packets_transmitted = packets_remaining >> (i + 1);
2193 /* Add in the bandwidth used for those scheduled packets */
2194 bw_added = packets_transmitted * (overhead + packet_size);
2196 /* How many packets do we have remaining to transmit? */
2197 packets_remaining = packets_remaining % (1 << (i + 1));
2199 /* What largest max packet size should those packets have? */
2200 /* If we've transmitted all packets, don't carry over the
2201 * largest packet size.
2203 if (packets_remaining == 0) {
2206 } else if (packets_transmitted > 0) {
2207 /* Otherwise if we do have remaining packets, and we've
2208 * scheduled some packets in this interval, take the
2209 * largest max packet size from endpoints with this
2212 packet_size = largest_mps;
2213 overhead = interval_overhead;
2215 /* Otherwise carry over packet_size and overhead from the last
2216 * time we had a remainder.
2218 bw_used += bw_added;
2219 if (bw_used > max_bandwidth) {
2220 xhci_warn(xhci, "Not enough bandwidth. "
2221 "Proposed: %u, Max: %u\n",
2222 bw_used, max_bandwidth);
2227 * Ok, we know we have some packets left over after even-handedly
2228 * scheduling interval 15. We don't know which microframes they will
2229 * fit into, so we over-schedule and say they will be scheduled every
2232 if (packets_remaining > 0)
2233 bw_used += overhead + packet_size;
2235 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2236 unsigned int port_index = virt_dev->real_port - 1;
2238 /* OK, we're manipulating a HS device attached to a
2239 * root port bandwidth domain. Include the number of active TTs
2240 * in the bandwidth used.
2242 bw_used += TT_HS_OVERHEAD *
2243 xhci->rh_bw[port_index].num_active_tts;
2246 xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2247 "Available: %u " "percent\n",
2248 bw_used, max_bandwidth, bw_reserved,
2249 (max_bandwidth - bw_used - bw_reserved) * 100 /
2252 bw_used += bw_reserved;
2253 if (bw_used > max_bandwidth) {
2254 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2255 bw_used, max_bandwidth);
2259 bw_table->bw_used = bw_used;
2263 static bool xhci_is_async_ep(unsigned int ep_type)
2265 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2266 ep_type != ISOC_IN_EP &&
2267 ep_type != INT_IN_EP);
2270 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2272 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2275 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2277 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2279 if (ep_bw->ep_interval == 0)
2280 return SS_OVERHEAD_BURST +
2281 (ep_bw->mult * ep_bw->num_packets *
2282 (SS_OVERHEAD + mps));
2283 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2284 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2285 1 << ep_bw->ep_interval);
2289 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2290 struct xhci_bw_info *ep_bw,
2291 struct xhci_interval_bw_table *bw_table,
2292 struct usb_device *udev,
2293 struct xhci_virt_ep *virt_ep,
2294 struct xhci_tt_bw_info *tt_info)
2296 struct xhci_interval_bw *interval_bw;
2297 int normalized_interval;
2299 if (xhci_is_async_ep(ep_bw->type))
2302 if (udev->speed == USB_SPEED_SUPER) {
2303 if (xhci_is_sync_in_ep(ep_bw->type))
2304 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2305 xhci_get_ss_bw_consumed(ep_bw);
2307 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2308 xhci_get_ss_bw_consumed(ep_bw);
2312 /* SuperSpeed endpoints never get added to intervals in the table, so
2313 * this check is only valid for HS/FS/LS devices.
2315 if (list_empty(&virt_ep->bw_endpoint_list))
2317 /* For LS/FS devices, we need to translate the interval expressed in
2318 * microframes to frames.
2320 if (udev->speed == USB_SPEED_HIGH)
2321 normalized_interval = ep_bw->ep_interval;
2323 normalized_interval = ep_bw->ep_interval - 3;
2325 if (normalized_interval == 0)
2326 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2327 interval_bw = &bw_table->interval_bw[normalized_interval];
2328 interval_bw->num_packets -= ep_bw->num_packets;
2329 switch (udev->speed) {
2331 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2333 case USB_SPEED_FULL:
2334 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2336 case USB_SPEED_HIGH:
2337 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2339 case USB_SPEED_SUPER:
2340 case USB_SPEED_UNKNOWN:
2341 case USB_SPEED_WIRELESS:
2342 /* Should never happen because only LS/FS/HS endpoints will get
2343 * added to the endpoint list.
2348 tt_info->active_eps -= 1;
2349 list_del_init(&virt_ep->bw_endpoint_list);
2352 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2353 struct xhci_bw_info *ep_bw,
2354 struct xhci_interval_bw_table *bw_table,
2355 struct usb_device *udev,
2356 struct xhci_virt_ep *virt_ep,
2357 struct xhci_tt_bw_info *tt_info)
2359 struct xhci_interval_bw *interval_bw;
2360 struct xhci_virt_ep *smaller_ep;
2361 int normalized_interval;
2363 if (xhci_is_async_ep(ep_bw->type))
2366 if (udev->speed == USB_SPEED_SUPER) {
2367 if (xhci_is_sync_in_ep(ep_bw->type))
2368 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2369 xhci_get_ss_bw_consumed(ep_bw);
2371 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2372 xhci_get_ss_bw_consumed(ep_bw);
2376 /* For LS/FS devices, we need to translate the interval expressed in
2377 * microframes to frames.
2379 if (udev->speed == USB_SPEED_HIGH)
2380 normalized_interval = ep_bw->ep_interval;
2382 normalized_interval = ep_bw->ep_interval - 3;
2384 if (normalized_interval == 0)
2385 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2386 interval_bw = &bw_table->interval_bw[normalized_interval];
2387 interval_bw->num_packets += ep_bw->num_packets;
2388 switch (udev->speed) {
2390 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2392 case USB_SPEED_FULL:
2393 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2395 case USB_SPEED_HIGH:
2396 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2398 case USB_SPEED_SUPER:
2399 case USB_SPEED_UNKNOWN:
2400 case USB_SPEED_WIRELESS:
2401 /* Should never happen because only LS/FS/HS endpoints will get
2402 * added to the endpoint list.
2408 tt_info->active_eps += 1;
2409 /* Insert the endpoint into the list, largest max packet size first. */
2410 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2412 if (ep_bw->max_packet_size >=
2413 smaller_ep->bw_info.max_packet_size) {
2414 /* Add the new ep before the smaller endpoint */
2415 list_add_tail(&virt_ep->bw_endpoint_list,
2416 &smaller_ep->bw_endpoint_list);
2420 /* Add the new endpoint at the end of the list. */
2421 list_add_tail(&virt_ep->bw_endpoint_list,
2422 &interval_bw->endpoints);
2425 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2426 struct xhci_virt_device *virt_dev,
2429 struct xhci_root_port_bw_info *rh_bw_info;
2430 if (!virt_dev->tt_info)
2433 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2434 if (old_active_eps == 0 &&
2435 virt_dev->tt_info->active_eps != 0) {
2436 rh_bw_info->num_active_tts += 1;
2437 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2438 } else if (old_active_eps != 0 &&
2439 virt_dev->tt_info->active_eps == 0) {
2440 rh_bw_info->num_active_tts -= 1;
2441 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2445 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2446 struct xhci_virt_device *virt_dev,
2447 struct xhci_container_ctx *in_ctx)
2449 struct xhci_bw_info ep_bw_info[31];
2451 struct xhci_input_control_ctx *ctrl_ctx;
2452 int old_active_eps = 0;
2454 if (virt_dev->tt_info)
2455 old_active_eps = virt_dev->tt_info->active_eps;
2457 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2459 for (i = 0; i < 31; i++) {
2460 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2463 /* Make a copy of the BW info in case we need to revert this */
2464 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2465 sizeof(ep_bw_info[i]));
2466 /* Drop the endpoint from the interval table if the endpoint is
2467 * being dropped or changed.
2469 if (EP_IS_DROPPED(ctrl_ctx, i))
2470 xhci_drop_ep_from_interval_table(xhci,
2471 &virt_dev->eps[i].bw_info,
2477 /* Overwrite the information stored in the endpoints' bw_info */
2478 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2479 for (i = 0; i < 31; i++) {
2480 /* Add any changed or added endpoints to the interval table */
2481 if (EP_IS_ADDED(ctrl_ctx, i))
2482 xhci_add_ep_to_interval_table(xhci,
2483 &virt_dev->eps[i].bw_info,
2490 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2491 /* Ok, this fits in the bandwidth we have.
2492 * Update the number of active TTs.
2494 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2498 /* We don't have enough bandwidth for this, revert the stored info. */
2499 for (i = 0; i < 31; i++) {
2500 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2503 /* Drop the new copies of any added or changed endpoints from
2504 * the interval table.
2506 if (EP_IS_ADDED(ctrl_ctx, i)) {
2507 xhci_drop_ep_from_interval_table(xhci,
2508 &virt_dev->eps[i].bw_info,
2514 /* Revert the endpoint back to its old information */
2515 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2516 sizeof(ep_bw_info[i]));
2517 /* Add any changed or dropped endpoints back into the table */
2518 if (EP_IS_DROPPED(ctrl_ctx, i))
2519 xhci_add_ep_to_interval_table(xhci,
2520 &virt_dev->eps[i].bw_info,
2530 /* Issue a configure endpoint command or evaluate context command
2531 * and wait for it to finish.
2533 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2534 struct usb_device *udev,
2535 struct xhci_command *command,
2536 bool ctx_change, bool must_succeed)
2540 unsigned long flags;
2541 struct xhci_container_ctx *in_ctx;
2542 struct completion *cmd_completion;
2544 struct xhci_virt_device *virt_dev;
2545 union xhci_trb *cmd_trb;
2547 spin_lock_irqsave(&xhci->lock, flags);
2548 virt_dev = xhci->devs[udev->slot_id];
2551 in_ctx = command->in_ctx;
2553 in_ctx = virt_dev->in_ctx;
2555 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2556 xhci_reserve_host_resources(xhci, in_ctx)) {
2557 spin_unlock_irqrestore(&xhci->lock, flags);
2558 xhci_warn(xhci, "Not enough host resources, "
2559 "active endpoint contexts = %u\n",
2560 xhci->num_active_eps);
2563 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2564 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2565 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2566 xhci_free_host_resources(xhci, in_ctx);
2567 spin_unlock_irqrestore(&xhci->lock, flags);
2568 xhci_warn(xhci, "Not enough bandwidth\n");
2573 cmd_completion = command->completion;
2574 cmd_status = &command->status;
2575 command->command_trb = xhci->cmd_ring->enqueue;
2577 /* Enqueue pointer can be left pointing to the link TRB,
2578 * we must handle that
2580 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2581 command->command_trb =
2582 xhci->cmd_ring->enq_seg->next->trbs;
2584 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2586 cmd_completion = &virt_dev->cmd_completion;
2587 cmd_status = &virt_dev->cmd_status;
2589 init_completion(cmd_completion);
2591 cmd_trb = xhci->cmd_ring->dequeue;
2593 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2594 udev->slot_id, must_succeed);
2596 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2597 udev->slot_id, must_succeed);
2600 list_del(&command->cmd_list);
2601 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2602 xhci_free_host_resources(xhci, in_ctx);
2603 spin_unlock_irqrestore(&xhci->lock, flags);
2604 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2607 xhci_ring_cmd_db(xhci);
2608 spin_unlock_irqrestore(&xhci->lock, flags);
2610 /* Wait for the configure endpoint command to complete */
2611 timeleft = wait_for_completion_interruptible_timeout(
2613 XHCI_CMD_DEFAULT_TIMEOUT);
2614 if (timeleft <= 0) {
2615 xhci_warn(xhci, "%s while waiting for %s command\n",
2616 timeleft == 0 ? "Timeout" : "Signal",
2618 "configure endpoint" :
2619 "evaluate context");
2620 /* cancel the configure endpoint command */
2621 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2628 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2630 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2632 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2633 spin_lock_irqsave(&xhci->lock, flags);
2634 /* If the command failed, remove the reserved resources.
2635 * Otherwise, clean up the estimate to include dropped eps.
2638 xhci_free_host_resources(xhci, in_ctx);
2640 xhci_finish_resource_reservation(xhci, in_ctx);
2641 spin_unlock_irqrestore(&xhci->lock, flags);
2646 /* Called after one or more calls to xhci_add_endpoint() or
2647 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2648 * to call xhci_reset_bandwidth().
2650 * Since we are in the middle of changing either configuration or
2651 * installing a new alt setting, the USB core won't allow URBs to be
2652 * enqueued for any endpoint on the old config or interface. Nothing
2653 * else should be touching the xhci->devs[slot_id] structure, so we
2654 * don't need to take the xhci->lock for manipulating that.
2656 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2660 struct xhci_hcd *xhci;
2661 struct xhci_virt_device *virt_dev;
2662 struct xhci_input_control_ctx *ctrl_ctx;
2663 struct xhci_slot_ctx *slot_ctx;
2665 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2668 xhci = hcd_to_xhci(hcd);
2669 if (xhci->xhc_state & XHCI_STATE_DYING)
2672 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2673 virt_dev = xhci->devs[udev->slot_id];
2675 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2676 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2677 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2678 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2679 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2681 /* Don't issue the command if there's no endpoints to update. */
2682 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2683 ctrl_ctx->drop_flags == 0)
2686 xhci_dbg(xhci, "New Input Control Context:\n");
2687 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2688 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2689 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2691 ret = xhci_configure_endpoint(xhci, udev, NULL,
2694 /* Callee should call reset_bandwidth() */
2698 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2699 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2700 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2702 /* Free any rings that were dropped, but not changed. */
2703 for (i = 1; i < 31; ++i) {
2704 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2705 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2706 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2708 xhci_zero_in_ctx(xhci, virt_dev);
2710 * Install any rings for completely new endpoints or changed endpoints,
2711 * and free or cache any old rings from changed endpoints.
2713 for (i = 1; i < 31; ++i) {
2714 if (!virt_dev->eps[i].new_ring)
2716 /* Only cache or free the old ring if it exists.
2717 * It may not if this is the first add of an endpoint.
2719 if (virt_dev->eps[i].ring) {
2720 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2722 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2723 virt_dev->eps[i].new_ring = NULL;
2729 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2731 struct xhci_hcd *xhci;
2732 struct xhci_virt_device *virt_dev;
2735 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2738 xhci = hcd_to_xhci(hcd);
2740 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2741 virt_dev = xhci->devs[udev->slot_id];
2742 /* Free any rings allocated for added endpoints */
2743 for (i = 0; i < 31; ++i) {
2744 if (virt_dev->eps[i].new_ring) {
2745 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2746 virt_dev->eps[i].new_ring = NULL;
2749 xhci_zero_in_ctx(xhci, virt_dev);
2752 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2753 struct xhci_container_ctx *in_ctx,
2754 struct xhci_container_ctx *out_ctx,
2755 u32 add_flags, u32 drop_flags)
2757 struct xhci_input_control_ctx *ctrl_ctx;
2758 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2759 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2760 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2761 xhci_slot_copy(xhci, in_ctx, out_ctx);
2762 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2764 xhci_dbg(xhci, "Input Context:\n");
2765 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2768 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2769 unsigned int slot_id, unsigned int ep_index,
2770 struct xhci_dequeue_state *deq_state)
2772 struct xhci_container_ctx *in_ctx;
2773 struct xhci_ep_ctx *ep_ctx;
2777 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2778 xhci->devs[slot_id]->out_ctx, ep_index);
2779 in_ctx = xhci->devs[slot_id]->in_ctx;
2780 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2781 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2782 deq_state->new_deq_ptr);
2784 xhci_warn(xhci, "WARN Cannot submit config ep after "
2785 "reset ep command\n");
2786 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2787 deq_state->new_deq_seg,
2788 deq_state->new_deq_ptr);
2791 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2793 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2794 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2795 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2798 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2799 struct usb_device *udev, unsigned int ep_index)
2801 struct xhci_dequeue_state deq_state;
2802 struct xhci_virt_ep *ep;
2804 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2805 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2806 /* We need to move the HW's dequeue pointer past this TD,
2807 * or it will attempt to resend it on the next doorbell ring.
2809 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2810 ep_index, ep->stopped_stream, ep->stopped_td,
2813 /* HW with the reset endpoint quirk will use the saved dequeue state to
2814 * issue a configure endpoint command later.
2816 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2817 xhci_dbg(xhci, "Queueing new dequeue state\n");
2818 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2819 ep_index, ep->stopped_stream, &deq_state);
2821 /* Better hope no one uses the input context between now and the
2822 * reset endpoint completion!
2823 * XXX: No idea how this hardware will react when stream rings
2826 xhci_dbg(xhci, "Setting up input context for "
2827 "configure endpoint command\n");
2828 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2829 ep_index, &deq_state);
2833 /* Deal with stalled endpoints. The core should have sent the control message
2834 * to clear the halt condition. However, we need to make the xHCI hardware
2835 * reset its sequence number, since a device will expect a sequence number of
2836 * zero after the halt condition is cleared.
2837 * Context: in_interrupt
2839 void xhci_endpoint_reset(struct usb_hcd *hcd,
2840 struct usb_host_endpoint *ep)
2842 struct xhci_hcd *xhci;
2843 struct usb_device *udev;
2844 unsigned int ep_index;
2845 unsigned long flags;
2847 struct xhci_virt_ep *virt_ep;
2849 xhci = hcd_to_xhci(hcd);
2850 udev = (struct usb_device *) ep->hcpriv;
2851 /* Called with a root hub endpoint (or an endpoint that wasn't added
2852 * with xhci_add_endpoint()
2856 ep_index = xhci_get_endpoint_index(&ep->desc);
2857 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2858 if (!virt_ep->stopped_td) {
2859 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2860 ep->desc.bEndpointAddress);
2863 if (usb_endpoint_xfer_control(&ep->desc)) {
2864 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2868 xhci_dbg(xhci, "Queueing reset endpoint command\n");
2869 spin_lock_irqsave(&xhci->lock, flags);
2870 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2872 * Can't change the ring dequeue pointer until it's transitioned to the
2873 * stopped state, which is only upon a successful reset endpoint
2874 * command. Better hope that last command worked!
2877 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2878 kfree(virt_ep->stopped_td);
2879 xhci_ring_cmd_db(xhci);
2881 virt_ep->stopped_td = NULL;
2882 virt_ep->stopped_trb = NULL;
2883 virt_ep->stopped_stream = 0;
2884 spin_unlock_irqrestore(&xhci->lock, flags);
2887 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2890 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2891 struct usb_device *udev, struct usb_host_endpoint *ep,
2892 unsigned int slot_id)
2895 unsigned int ep_index;
2896 unsigned int ep_state;
2900 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2903 if (ep->ss_ep_comp.bmAttributes == 0) {
2904 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2905 " descriptor for ep 0x%x does not support streams\n",
2906 ep->desc.bEndpointAddress);
2910 ep_index = xhci_get_endpoint_index(&ep->desc);
2911 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2912 if (ep_state & EP_HAS_STREAMS ||
2913 ep_state & EP_GETTING_STREAMS) {
2914 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2915 "already has streams set up.\n",
2916 ep->desc.bEndpointAddress);
2917 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2918 "dynamic stream context array reallocation.\n");
2921 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2922 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2923 "endpoint 0x%x; URBs are pending.\n",
2924 ep->desc.bEndpointAddress);
2930 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2931 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2933 unsigned int max_streams;
2935 /* The stream context array size must be a power of two */
2936 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2938 * Find out how many primary stream array entries the host controller
2939 * supports. Later we may use secondary stream arrays (similar to 2nd
2940 * level page entries), but that's an optional feature for xHCI host
2941 * controllers. xHCs must support at least 4 stream IDs.
2943 max_streams = HCC_MAX_PSA(xhci->hcc_params);
2944 if (*num_stream_ctxs > max_streams) {
2945 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2947 *num_stream_ctxs = max_streams;
2948 *num_streams = max_streams;
2952 /* Returns an error code if one of the endpoint already has streams.
2953 * This does not change any data structures, it only checks and gathers
2956 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2957 struct usb_device *udev,
2958 struct usb_host_endpoint **eps, unsigned int num_eps,
2959 unsigned int *num_streams, u32 *changed_ep_bitmask)
2961 unsigned int max_streams;
2962 unsigned int endpoint_flag;
2966 for (i = 0; i < num_eps; i++) {
2967 ret = xhci_check_streams_endpoint(xhci, udev,
2968 eps[i], udev->slot_id);
2972 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2973 if (max_streams < (*num_streams - 1)) {
2974 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2975 eps[i]->desc.bEndpointAddress,
2977 *num_streams = max_streams+1;
2980 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2981 if (*changed_ep_bitmask & endpoint_flag)
2983 *changed_ep_bitmask |= endpoint_flag;
2988 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2989 struct usb_device *udev,
2990 struct usb_host_endpoint **eps, unsigned int num_eps)
2992 u32 changed_ep_bitmask = 0;
2993 unsigned int slot_id;
2994 unsigned int ep_index;
2995 unsigned int ep_state;
2998 slot_id = udev->slot_id;
2999 if (!xhci->devs[slot_id])
3002 for (i = 0; i < num_eps; i++) {
3003 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3004 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3005 /* Are streams already being freed for the endpoint? */
3006 if (ep_state & EP_GETTING_NO_STREAMS) {
3007 xhci_warn(xhci, "WARN Can't disable streams for "
3009 "streams are being disabled already.",
3010 eps[i]->desc.bEndpointAddress);
3013 /* Are there actually any streams to free? */
3014 if (!(ep_state & EP_HAS_STREAMS) &&
3015 !(ep_state & EP_GETTING_STREAMS)) {
3016 xhci_warn(xhci, "WARN Can't disable streams for "
3018 "streams are already disabled!",
3019 eps[i]->desc.bEndpointAddress);
3020 xhci_warn(xhci, "WARN xhci_free_streams() called "
3021 "with non-streams endpoint\n");
3024 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3026 return changed_ep_bitmask;
3030 * The USB device drivers use this function (though the HCD interface in USB
3031 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3032 * coordinate mass storage command queueing across multiple endpoints (basically
3033 * a stream ID == a task ID).
3035 * Setting up streams involves allocating the same size stream context array
3036 * for each endpoint and issuing a configure endpoint command for all endpoints.
3038 * Don't allow the call to succeed if one endpoint only supports one stream
3039 * (which means it doesn't support streams at all).
3041 * Drivers may get less stream IDs than they asked for, if the host controller
3042 * hardware or endpoints claim they can't support the number of requested
3045 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3046 struct usb_host_endpoint **eps, unsigned int num_eps,
3047 unsigned int num_streams, gfp_t mem_flags)
3050 struct xhci_hcd *xhci;
3051 struct xhci_virt_device *vdev;
3052 struct xhci_command *config_cmd;
3053 unsigned int ep_index;
3054 unsigned int num_stream_ctxs;
3055 unsigned long flags;
3056 u32 changed_ep_bitmask = 0;
3061 /* Add one to the number of streams requested to account for
3062 * stream 0 that is reserved for xHCI usage.
3065 xhci = hcd_to_xhci(hcd);
3066 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3069 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3071 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3075 /* Check to make sure all endpoints are not already configured for
3076 * streams. While we're at it, find the maximum number of streams that
3077 * all the endpoints will support and check for duplicate endpoints.
3079 spin_lock_irqsave(&xhci->lock, flags);
3080 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3081 num_eps, &num_streams, &changed_ep_bitmask);
3083 xhci_free_command(xhci, config_cmd);
3084 spin_unlock_irqrestore(&xhci->lock, flags);
3087 if (num_streams <= 1) {
3088 xhci_warn(xhci, "WARN: endpoints can't handle "
3089 "more than one stream.\n");
3090 xhci_free_command(xhci, config_cmd);
3091 spin_unlock_irqrestore(&xhci->lock, flags);
3094 vdev = xhci->devs[udev->slot_id];
3095 /* Mark each endpoint as being in transition, so
3096 * xhci_urb_enqueue() will reject all URBs.
3098 for (i = 0; i < num_eps; i++) {
3099 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3100 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3102 spin_unlock_irqrestore(&xhci->lock, flags);
3104 /* Setup internal data structures and allocate HW data structures for
3105 * streams (but don't install the HW structures in the input context
3106 * until we're sure all memory allocation succeeded).
3108 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3109 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3110 num_stream_ctxs, num_streams);
3112 for (i = 0; i < num_eps; i++) {
3113 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3114 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3116 num_streams, mem_flags);
3117 if (!vdev->eps[ep_index].stream_info)
3119 /* Set maxPstreams in endpoint context and update deq ptr to
3120 * point to stream context array. FIXME
3124 /* Set up the input context for a configure endpoint command. */
3125 for (i = 0; i < num_eps; i++) {
3126 struct xhci_ep_ctx *ep_ctx;
3128 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3129 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3131 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3132 vdev->out_ctx, ep_index);
3133 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3134 vdev->eps[ep_index].stream_info);
3136 /* Tell the HW to drop its old copy of the endpoint context info
3137 * and add the updated copy from the input context.
3139 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3140 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3142 /* Issue and wait for the configure endpoint command */
3143 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3146 /* xHC rejected the configure endpoint command for some reason, so we
3147 * leave the old ring intact and free our internal streams data
3153 spin_lock_irqsave(&xhci->lock, flags);
3154 for (i = 0; i < num_eps; i++) {
3155 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3156 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3157 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3158 udev->slot_id, ep_index);
3159 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3161 xhci_free_command(xhci, config_cmd);
3162 spin_unlock_irqrestore(&xhci->lock, flags);
3164 /* Subtract 1 for stream 0, which drivers can't use */
3165 return num_streams - 1;
3168 /* If it didn't work, free the streams! */
3169 for (i = 0; i < num_eps; i++) {
3170 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3171 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3172 vdev->eps[ep_index].stream_info = NULL;
3173 /* FIXME Unset maxPstreams in endpoint context and
3174 * update deq ptr to point to normal string ring.
3176 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3177 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3178 xhci_endpoint_zero(xhci, vdev, eps[i]);
3180 xhci_free_command(xhci, config_cmd);
3184 /* Transition the endpoint from using streams to being a "normal" endpoint
3187 * Modify the endpoint context state, submit a configure endpoint command,
3188 * and free all endpoint rings for streams if that completes successfully.
3190 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3191 struct usb_host_endpoint **eps, unsigned int num_eps,
3195 struct xhci_hcd *xhci;
3196 struct xhci_virt_device *vdev;
3197 struct xhci_command *command;
3198 unsigned int ep_index;
3199 unsigned long flags;
3200 u32 changed_ep_bitmask;
3202 xhci = hcd_to_xhci(hcd);
3203 vdev = xhci->devs[udev->slot_id];
3205 /* Set up a configure endpoint command to remove the streams rings */
3206 spin_lock_irqsave(&xhci->lock, flags);
3207 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3208 udev, eps, num_eps);
3209 if (changed_ep_bitmask == 0) {
3210 spin_unlock_irqrestore(&xhci->lock, flags);
3214 /* Use the xhci_command structure from the first endpoint. We may have
3215 * allocated too many, but the driver may call xhci_free_streams() for
3216 * each endpoint it grouped into one call to xhci_alloc_streams().
3218 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3219 command = vdev->eps[ep_index].stream_info->free_streams_command;
3220 for (i = 0; i < num_eps; i++) {
3221 struct xhci_ep_ctx *ep_ctx;
3223 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3224 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3225 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3226 EP_GETTING_NO_STREAMS;
3228 xhci_endpoint_copy(xhci, command->in_ctx,
3229 vdev->out_ctx, ep_index);
3230 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3231 &vdev->eps[ep_index]);
3233 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3234 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3235 spin_unlock_irqrestore(&xhci->lock, flags);
3237 /* Issue and wait for the configure endpoint command,
3238 * which must succeed.
3240 ret = xhci_configure_endpoint(xhci, udev, command,
3243 /* xHC rejected the configure endpoint command for some reason, so we
3244 * leave the streams rings intact.
3249 spin_lock_irqsave(&xhci->lock, flags);
3250 for (i = 0; i < num_eps; i++) {
3251 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3252 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3253 vdev->eps[ep_index].stream_info = NULL;
3254 /* FIXME Unset maxPstreams in endpoint context and
3255 * update deq ptr to point to normal string ring.
3257 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3258 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3260 spin_unlock_irqrestore(&xhci->lock, flags);
3266 * Deletes endpoint resources for endpoints that were active before a Reset
3267 * Device command, or a Disable Slot command. The Reset Device command leaves
3268 * the control endpoint intact, whereas the Disable Slot command deletes it.
3270 * Must be called with xhci->lock held.
3272 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3273 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3276 unsigned int num_dropped_eps = 0;
3277 unsigned int drop_flags = 0;
3279 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3280 if (virt_dev->eps[i].ring) {
3281 drop_flags |= 1 << i;
3285 xhci->num_active_eps -= num_dropped_eps;
3286 if (num_dropped_eps)
3287 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3289 num_dropped_eps, drop_flags,
3290 xhci->num_active_eps);
3294 * This submits a Reset Device Command, which will set the device state to 0,
3295 * set the device address to 0, and disable all the endpoints except the default
3296 * control endpoint. The USB core should come back and call
3297 * xhci_address_device(), and then re-set up the configuration. If this is
3298 * called because of a usb_reset_and_verify_device(), then the old alternate
3299 * settings will be re-installed through the normal bandwidth allocation
3302 * Wait for the Reset Device command to finish. Remove all structures
3303 * associated with the endpoints that were disabled. Clear the input device
3304 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3306 * If the virt_dev to be reset does not exist or does not match the udev,
3307 * it means the device is lost, possibly due to the xHC restore error and
3308 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3309 * re-allocate the device.
3311 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3314 unsigned long flags;
3315 struct xhci_hcd *xhci;
3316 unsigned int slot_id;
3317 struct xhci_virt_device *virt_dev;
3318 struct xhci_command *reset_device_cmd;
3320 int last_freed_endpoint;
3321 struct xhci_slot_ctx *slot_ctx;
3322 int old_active_eps = 0;
3324 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3327 xhci = hcd_to_xhci(hcd);
3328 slot_id = udev->slot_id;
3329 virt_dev = xhci->devs[slot_id];
3331 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3332 "not exist. Re-allocate the device\n", slot_id);
3333 ret = xhci_alloc_dev(hcd, udev);
3340 if (virt_dev->udev != udev) {
3341 /* If the virt_dev and the udev does not match, this virt_dev
3342 * may belong to another udev.
3343 * Re-allocate the device.
3345 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3346 "not match the udev. Re-allocate the device\n",
3348 ret = xhci_alloc_dev(hcd, udev);
3355 /* If device is not setup, there is no point in resetting it */
3356 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3357 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3358 SLOT_STATE_DISABLED)
3361 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3362 /* Allocate the command structure that holds the struct completion.
3363 * Assume we're in process context, since the normal device reset
3364 * process has to wait for the device anyway. Storage devices are
3365 * reset as part of error handling, so use GFP_NOIO instead of
3368 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3369 if (!reset_device_cmd) {
3370 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3374 /* Attempt to submit the Reset Device command to the command ring */
3375 spin_lock_irqsave(&xhci->lock, flags);
3376 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3378 /* Enqueue pointer can be left pointing to the link TRB,
3379 * we must handle that
3381 if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3382 reset_device_cmd->command_trb =
3383 xhci->cmd_ring->enq_seg->next->trbs;
3385 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3386 ret = xhci_queue_reset_device(xhci, slot_id);
3388 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3389 list_del(&reset_device_cmd->cmd_list);
3390 spin_unlock_irqrestore(&xhci->lock, flags);
3391 goto command_cleanup;
3393 xhci_ring_cmd_db(xhci);
3394 spin_unlock_irqrestore(&xhci->lock, flags);
3396 /* Wait for the Reset Device command to finish */
3397 timeleft = wait_for_completion_interruptible_timeout(
3398 reset_device_cmd->completion,
3399 USB_CTRL_SET_TIMEOUT);
3400 if (timeleft <= 0) {
3401 xhci_warn(xhci, "%s while waiting for reset device command\n",
3402 timeleft == 0 ? "Timeout" : "Signal");
3403 spin_lock_irqsave(&xhci->lock, flags);
3404 /* The timeout might have raced with the event ring handler, so
3405 * only delete from the list if the item isn't poisoned.
3407 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3408 list_del(&reset_device_cmd->cmd_list);
3409 spin_unlock_irqrestore(&xhci->lock, flags);
3411 goto command_cleanup;
3414 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3415 * unless we tried to reset a slot ID that wasn't enabled,
3416 * or the device wasn't in the addressed or configured state.
3418 ret = reset_device_cmd->status;
3420 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3421 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3422 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3424 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3425 xhci_info(xhci, "Not freeing device rings.\n");
3426 /* Don't treat this as an error. May change my mind later. */
3428 goto command_cleanup;
3430 xhci_dbg(xhci, "Successful reset device command.\n");
3433 if (xhci_is_vendor_info_code(xhci, ret))
3435 xhci_warn(xhci, "Unknown completion code %u for "
3436 "reset device command.\n", ret);
3438 goto command_cleanup;
3441 /* Free up host controller endpoint resources */
3442 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3443 spin_lock_irqsave(&xhci->lock, flags);
3444 /* Don't delete the default control endpoint resources */
3445 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3446 spin_unlock_irqrestore(&xhci->lock, flags);
3449 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3450 last_freed_endpoint = 1;
3451 for (i = 1; i < 31; ++i) {
3452 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3454 if (ep->ep_state & EP_HAS_STREAMS) {
3455 xhci_free_stream_info(xhci, ep->stream_info);
3456 ep->stream_info = NULL;
3457 ep->ep_state &= ~EP_HAS_STREAMS;
3461 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3462 last_freed_endpoint = i;
3464 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3465 xhci_drop_ep_from_interval_table(xhci,
3466 &virt_dev->eps[i].bw_info,
3471 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3473 /* If necessary, update the number of active TTs on this root port */
3474 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3476 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3477 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3481 xhci_free_command(xhci, reset_device_cmd);
3486 * At this point, the struct usb_device is about to go away, the device has
3487 * disconnected, and all traffic has been stopped and the endpoints have been
3488 * disabled. Free any HC data structures associated with that device.
3490 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3492 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3493 struct xhci_virt_device *virt_dev;
3494 unsigned long flags;
3498 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3499 /* If the host is halted due to driver unload, we still need to free the
3502 if (ret <= 0 && ret != -ENODEV)
3505 virt_dev = xhci->devs[udev->slot_id];
3507 /* Stop any wayward timer functions (which may grab the lock) */
3508 for (i = 0; i < 31; ++i) {
3509 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3510 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3513 if (udev->usb2_hw_lpm_enabled) {
3514 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3515 udev->usb2_hw_lpm_enabled = 0;
3518 spin_lock_irqsave(&xhci->lock, flags);
3519 /* Don't disable the slot if the host controller is dead. */
3520 state = xhci_readl(xhci, &xhci->op_regs->status);
3521 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3522 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3523 xhci_free_virt_device(xhci, udev->slot_id);
3524 spin_unlock_irqrestore(&xhci->lock, flags);
3528 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3529 spin_unlock_irqrestore(&xhci->lock, flags);
3530 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3533 xhci_ring_cmd_db(xhci);
3534 spin_unlock_irqrestore(&xhci->lock, flags);
3536 * Event command completion handler will free any data structures
3537 * associated with the slot. XXX Can free sleep?
3542 * Checks if we have enough host controller resources for the default control
3545 * Must be called with xhci->lock held.
3547 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3549 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3550 xhci_dbg(xhci, "Not enough ep ctxs: "
3551 "%u active, need to add 1, limit is %u.\n",
3552 xhci->num_active_eps, xhci->limit_active_eps);
3555 xhci->num_active_eps += 1;
3556 xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3557 xhci->num_active_eps);
3563 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3564 * timed out, or allocating memory failed. Returns 1 on success.
3566 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3568 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3569 unsigned long flags;
3572 union xhci_trb *cmd_trb;
3574 spin_lock_irqsave(&xhci->lock, flags);
3575 cmd_trb = xhci->cmd_ring->dequeue;
3576 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3578 spin_unlock_irqrestore(&xhci->lock, flags);
3579 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3582 xhci_ring_cmd_db(xhci);
3583 spin_unlock_irqrestore(&xhci->lock, flags);
3585 /* XXX: how much time for xHC slot assignment? */
3586 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3587 XHCI_CMD_DEFAULT_TIMEOUT);
3588 if (timeleft <= 0) {
3589 xhci_warn(xhci, "%s while waiting for a slot\n",
3590 timeleft == 0 ? "Timeout" : "Signal");
3591 /* cancel the enable slot request */
3592 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3595 if (!xhci->slot_id) {
3596 xhci_err(xhci, "Error while assigning device slot ID\n");
3600 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3601 spin_lock_irqsave(&xhci->lock, flags);
3602 ret = xhci_reserve_host_control_ep_resources(xhci);
3604 spin_unlock_irqrestore(&xhci->lock, flags);
3605 xhci_warn(xhci, "Not enough host resources, "
3606 "active endpoint contexts = %u\n",
3607 xhci->num_active_eps);
3610 spin_unlock_irqrestore(&xhci->lock, flags);
3612 /* Use GFP_NOIO, since this function can be called from
3613 * xhci_discover_or_reset_device(), which may be called as part of
3614 * mass storage driver error handling.
3616 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3617 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3620 udev->slot_id = xhci->slot_id;
3621 /* Is this a LS or FS device under a HS hub? */
3622 /* Hub or peripherial? */
3626 /* Disable slot, if we can do it without mem alloc */
3627 spin_lock_irqsave(&xhci->lock, flags);
3628 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3629 xhci_ring_cmd_db(xhci);
3630 spin_unlock_irqrestore(&xhci->lock, flags);
3635 * Issue an Address Device command (which will issue a SetAddress request to
3637 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3638 * we should only issue and wait on one address command at the same time.
3640 * We add one to the device address issued by the hardware because the USB core
3641 * uses address 1 for the root hubs (even though they're not really devices).
3643 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3645 unsigned long flags;
3647 struct xhci_virt_device *virt_dev;
3649 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3650 struct xhci_slot_ctx *slot_ctx;
3651 struct xhci_input_control_ctx *ctrl_ctx;
3653 union xhci_trb *cmd_trb;
3655 if (!udev->slot_id) {
3656 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3660 virt_dev = xhci->devs[udev->slot_id];
3662 if (WARN_ON(!virt_dev)) {
3664 * In plug/unplug torture test with an NEC controller,
3665 * a zero-dereference was observed once due to virt_dev = 0.
3666 * Print useful debug rather than crash if it is observed again!
3668 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3673 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3675 * If this is the first Set Address since device plug-in or
3676 * virt_device realloaction after a resume with an xHCI power loss,
3677 * then set up the slot context.
3679 if (!slot_ctx->dev_info)
3680 xhci_setup_addressable_virt_dev(xhci, udev);
3681 /* Otherwise, update the control endpoint ring enqueue pointer. */
3683 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3684 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3685 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3686 ctrl_ctx->drop_flags = 0;
3688 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3689 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3691 spin_lock_irqsave(&xhci->lock, flags);
3692 cmd_trb = xhci->cmd_ring->dequeue;
3693 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3696 spin_unlock_irqrestore(&xhci->lock, flags);
3697 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3700 xhci_ring_cmd_db(xhci);
3701 spin_unlock_irqrestore(&xhci->lock, flags);
3703 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3704 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3705 XHCI_CMD_DEFAULT_TIMEOUT);
3706 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3707 * the SetAddress() "recovery interval" required by USB and aborting the
3708 * command on a timeout.
3710 if (timeleft <= 0) {
3711 xhci_warn(xhci, "%s while waiting for address device command\n",
3712 timeleft == 0 ? "Timeout" : "Signal");
3713 /* cancel the address device command */
3714 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3720 switch (virt_dev->cmd_status) {
3721 case COMP_CTX_STATE:
3723 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3728 dev_warn(&udev->dev, "Device not responding to set address.\n");
3732 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3733 "device command.\n");
3737 xhci_dbg(xhci, "Successful Address Device command\n");
3740 xhci_err(xhci, "ERROR: unexpected command completion "
3741 "code 0x%x.\n", virt_dev->cmd_status);
3742 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3743 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3750 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3751 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3752 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3754 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3755 (unsigned long long)
3756 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3757 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3758 (unsigned long long)virt_dev->out_ctx->dma);
3759 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3760 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3761 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3762 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3764 * USB core uses address 1 for the roothubs, so we add one to the
3765 * address given back to us by the HC.
3767 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3768 /* Use kernel assigned address for devices; store xHC assigned
3769 * address locally. */
3770 virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3772 /* Zero the input context control for later use */
3773 ctrl_ctx->add_flags = 0;
3774 ctrl_ctx->drop_flags = 0;
3776 xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3781 #ifdef CONFIG_USB_SUSPEND
3783 /* BESL to HIRD Encoding array for USB2 LPM */
3784 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3785 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3787 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3788 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3789 struct usb_device *udev)
3791 int u2del, besl, besl_host;
3792 int besl_device = 0;
3795 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3796 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3798 if (field & USB_BESL_SUPPORT) {
3799 for (besl_host = 0; besl_host < 16; besl_host++) {
3800 if (xhci_besl_encoding[besl_host] >= u2del)
3803 /* Use baseline BESL value as default */
3804 if (field & USB_BESL_BASELINE_VALID)
3805 besl_device = USB_GET_BESL_BASELINE(field);
3806 else if (field & USB_BESL_DEEP_VALID)
3807 besl_device = USB_GET_BESL_DEEP(field);
3812 besl_host = (u2del - 51) / 75 + 1;
3815 besl = besl_host + besl_device;
3822 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3823 struct usb_device *udev)
3825 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3826 struct dev_info *dev_info;
3827 __le32 __iomem **port_array;
3828 __le32 __iomem *addr, *pm_addr;
3830 unsigned int port_num;
3831 unsigned long flags;
3835 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3839 /* we only support lpm for non-hub device connected to root hub yet */
3840 if (!udev->parent || udev->parent->parent ||
3841 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3844 spin_lock_irqsave(&xhci->lock, flags);
3846 /* Look for devices in lpm_failed_devs list */
3847 dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3848 le16_to_cpu(udev->descriptor.idProduct);
3849 list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3850 if (dev_info->dev_id == dev_id) {
3856 port_array = xhci->usb2_ports;
3857 port_num = udev->portnum - 1;
3859 if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3860 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3866 * Test USB 2.0 software LPM.
3867 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3868 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3869 * in the June 2011 errata release.
3871 xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3873 * Set L1 Device Slot and HIRD/BESL.
3874 * Check device's USB 2.0 extension descriptor to determine whether
3875 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3877 pm_addr = port_array[port_num] + 1;
3878 hird = xhci_calculate_hird_besl(xhci, udev);
3879 temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3880 xhci_writel(xhci, temp, pm_addr);
3882 /* Set port link state to U2(L1) */
3883 addr = port_array[port_num];
3884 xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3887 spin_unlock_irqrestore(&xhci->lock, flags);
3889 spin_lock_irqsave(&xhci->lock, flags);
3891 /* Check L1 Status */
3892 ret = xhci_handshake(xhci, pm_addr,
3893 PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3894 if (ret != -ETIMEDOUT) {
3895 /* enter L1 successfully */
3896 temp = xhci_readl(xhci, addr);
3897 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3901 temp = xhci_readl(xhci, pm_addr);
3902 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3903 port_num, temp & PORT_L1S_MASK);
3907 /* Resume the port */
3908 xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3910 spin_unlock_irqrestore(&xhci->lock, flags);
3912 spin_lock_irqsave(&xhci->lock, flags);
3915 xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3917 /* Check PORTSC to make sure the device is in the right state */
3919 temp = xhci_readl(xhci, addr);
3920 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
3921 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3922 (temp & PORT_PLS_MASK) != XDEV_U0) {
3923 xhci_dbg(xhci, "port L1 resume fail\n");
3929 /* Insert dev to lpm_failed_devs list */
3930 xhci_warn(xhci, "device LPM test failed, may disconnect and "
3932 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3937 dev_info->dev_id = dev_id;
3938 INIT_LIST_HEAD(&dev_info->list);
3939 list_add(&dev_info->list, &xhci->lpm_failed_devs);
3941 xhci_ring_device(xhci, udev->slot_id);
3945 spin_unlock_irqrestore(&xhci->lock, flags);
3949 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3950 struct usb_device *udev, int enable)
3952 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3953 __le32 __iomem **port_array;
3954 __le32 __iomem *pm_addr;
3956 unsigned int port_num;
3957 unsigned long flags;
3960 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3964 if (!udev->parent || udev->parent->parent ||
3965 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3968 if (udev->usb2_hw_lpm_capable != 1)
3971 spin_lock_irqsave(&xhci->lock, flags);
3973 port_array = xhci->usb2_ports;
3974 port_num = udev->portnum - 1;
3975 pm_addr = port_array[port_num] + 1;
3976 temp = xhci_readl(xhci, pm_addr);
3978 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3979 enable ? "enable" : "disable", port_num);
3981 hird = xhci_calculate_hird_besl(xhci, udev);
3984 temp &= ~PORT_HIRD_MASK;
3985 temp |= PORT_HIRD(hird) | PORT_RWE;
3986 xhci_writel(xhci, temp, pm_addr);
3987 temp = xhci_readl(xhci, pm_addr);
3989 xhci_writel(xhci, temp, pm_addr);
3991 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3992 xhci_writel(xhci, temp, pm_addr);
3995 spin_unlock_irqrestore(&xhci->lock, flags);
3999 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4001 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4004 ret = xhci_usb2_software_lpm_test(hcd, udev);
4006 xhci_dbg(xhci, "software LPM test succeed\n");
4007 if (xhci->hw_lpm_support == 1) {
4008 udev->usb2_hw_lpm_capable = 1;
4009 ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
4011 udev->usb2_hw_lpm_enabled = 1;
4020 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4021 struct usb_device *udev, int enable)
4026 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4031 #endif /* CONFIG_USB_SUSPEND */
4033 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4036 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4037 static unsigned long long xhci_service_interval_to_ns(
4038 struct usb_endpoint_descriptor *desc)
4040 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4043 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4044 enum usb3_link_state state)
4046 unsigned long long sel;
4047 unsigned long long pel;
4048 unsigned int max_sel_pel;
4053 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4054 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4055 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4056 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4060 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4061 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4062 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4066 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4068 return USB3_LPM_DISABLED;
4071 if (sel <= max_sel_pel && pel <= max_sel_pel)
4072 return USB3_LPM_DEVICE_INITIATED;
4074 if (sel > max_sel_pel)
4075 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4076 "due to long SEL %llu ms\n",
4079 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4080 "due to long PEL %llu\n ms",
4082 return USB3_LPM_DISABLED;
4085 /* Returns the hub-encoded U1 timeout value.
4086 * The U1 timeout should be the maximum of the following values:
4087 * - For control endpoints, U1 system exit latency (SEL) * 3
4088 * - For bulk endpoints, U1 SEL * 5
4089 * - For interrupt endpoints:
4090 * - Notification EPs, U1 SEL * 3
4091 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4092 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4094 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4095 struct usb_endpoint_descriptor *desc)
4097 unsigned long long timeout_ns;
4101 ep_type = usb_endpoint_type(desc);
4103 case USB_ENDPOINT_XFER_CONTROL:
4104 timeout_ns = udev->u1_params.sel * 3;
4106 case USB_ENDPOINT_XFER_BULK:
4107 timeout_ns = udev->u1_params.sel * 5;
4109 case USB_ENDPOINT_XFER_INT:
4110 intr_type = usb_endpoint_interrupt_type(desc);
4111 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4112 timeout_ns = udev->u1_params.sel * 3;
4115 /* Otherwise the calculation is the same as isoc eps */
4116 case USB_ENDPOINT_XFER_ISOC:
4117 timeout_ns = xhci_service_interval_to_ns(desc);
4118 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4119 if (timeout_ns < udev->u1_params.sel * 2)
4120 timeout_ns = udev->u1_params.sel * 2;
4126 /* The U1 timeout is encoded in 1us intervals. */
4127 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4128 /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4129 if (timeout_ns == USB3_LPM_DISABLED)
4132 /* If the necessary timeout value is bigger than what we can set in the
4133 * USB 3.0 hub, we have to disable hub-initiated U1.
4135 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4137 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4138 "due to long timeout %llu ms\n", timeout_ns);
4139 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4142 /* Returns the hub-encoded U2 timeout value.
4143 * The U2 timeout should be the maximum of:
4144 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4145 * - largest bInterval of any active periodic endpoint (to avoid going
4146 * into lower power link states between intervals).
4147 * - the U2 Exit Latency of the device
4149 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4150 struct usb_endpoint_descriptor *desc)
4152 unsigned long long timeout_ns;
4153 unsigned long long u2_del_ns;
4155 timeout_ns = 10 * 1000 * 1000;
4157 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4158 (xhci_service_interval_to_ns(desc) > timeout_ns))
4159 timeout_ns = xhci_service_interval_to_ns(desc);
4161 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4162 if (u2_del_ns > timeout_ns)
4163 timeout_ns = u2_del_ns;
4165 /* The U2 timeout is encoded in 256us intervals */
4166 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4167 /* If the necessary timeout value is bigger than what we can set in the
4168 * USB 3.0 hub, we have to disable hub-initiated U2.
4170 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4172 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4173 "due to long timeout %llu ms\n", timeout_ns);
4174 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4177 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4178 struct usb_device *udev,
4179 struct usb_endpoint_descriptor *desc,
4180 enum usb3_link_state state,
4183 if (state == USB3_LPM_U1) {
4184 if (xhci->quirks & XHCI_INTEL_HOST)
4185 return xhci_calculate_intel_u1_timeout(udev, desc);
4187 if (xhci->quirks & XHCI_INTEL_HOST)
4188 return xhci_calculate_intel_u2_timeout(udev, desc);
4191 return USB3_LPM_DISABLED;
4194 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4195 struct usb_device *udev,
4196 struct usb_endpoint_descriptor *desc,
4197 enum usb3_link_state state,
4202 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4203 desc, state, timeout);
4205 /* If we found we can't enable hub-initiated LPM, or
4206 * the U1 or U2 exit latency was too high to allow
4207 * device-initiated LPM as well, just stop searching.
4209 if (alt_timeout == USB3_LPM_DISABLED ||
4210 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4211 *timeout = alt_timeout;
4214 if (alt_timeout > *timeout)
4215 *timeout = alt_timeout;
4219 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4220 struct usb_device *udev,
4221 struct usb_host_interface *alt,
4222 enum usb3_link_state state,
4227 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4228 if (xhci_update_timeout_for_endpoint(xhci, udev,
4229 &alt->endpoint[j].desc, state, timeout))
4236 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4237 enum usb3_link_state state)
4239 struct usb_device *parent;
4240 unsigned int num_hubs;
4242 if (state == USB3_LPM_U2)
4245 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4246 for (parent = udev->parent, num_hubs = 0; parent->parent;
4247 parent = parent->parent)
4253 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4254 " below second-tier hub.\n");
4255 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4256 "to decrease power consumption.\n");
4260 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4261 struct usb_device *udev,
4262 enum usb3_link_state state)
4264 if (xhci->quirks & XHCI_INTEL_HOST)
4265 return xhci_check_intel_tier_policy(udev, state);
4269 /* Returns the U1 or U2 timeout that should be enabled.
4270 * If the tier check or timeout setting functions return with a non-zero exit
4271 * code, that means the timeout value has been finalized and we shouldn't look
4272 * at any more endpoints.
4274 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4275 struct usb_device *udev, enum usb3_link_state state)
4277 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4278 struct usb_host_config *config;
4281 u16 timeout = USB3_LPM_DISABLED;
4283 if (state == USB3_LPM_U1)
4285 else if (state == USB3_LPM_U2)
4288 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4293 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4296 /* Gather some information about the currently installed configuration
4297 * and alternate interface settings.
4299 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4303 config = udev->actconfig;
4307 for (i = 0; i < USB_MAXINTERFACES; i++) {
4308 struct usb_driver *driver;
4309 struct usb_interface *intf = config->interface[i];
4314 /* Check if any currently bound drivers want hub-initiated LPM
4317 if (intf->dev.driver) {
4318 driver = to_usb_driver(intf->dev.driver);
4319 if (driver && driver->disable_hub_initiated_lpm) {
4320 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4321 "at request of driver %s\n",
4322 state_name, driver->name);
4323 return xhci_get_timeout_no_hub_lpm(udev, state);
4327 /* Not sure how this could happen... */
4328 if (!intf->cur_altsetting)
4331 if (xhci_update_timeout_for_interface(xhci, udev,
4332 intf->cur_altsetting,
4340 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4341 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4343 static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4344 struct usb_device *udev, u16 max_exit_latency)
4346 struct xhci_virt_device *virt_dev;
4347 struct xhci_command *command;
4348 struct xhci_input_control_ctx *ctrl_ctx;
4349 struct xhci_slot_ctx *slot_ctx;
4350 unsigned long flags;
4353 spin_lock_irqsave(&xhci->lock, flags);
4354 if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
4355 spin_unlock_irqrestore(&xhci->lock, flags);
4359 /* Attempt to issue an Evaluate Context command to change the MEL. */
4360 virt_dev = xhci->devs[udev->slot_id];
4361 command = xhci->lpm_command;
4362 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4363 spin_unlock_irqrestore(&xhci->lock, flags);
4365 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
4366 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4367 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4368 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4369 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4371 xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
4372 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4373 xhci_dbg_ctx(xhci, command->in_ctx, 0);
4375 /* Issue and wait for the evaluate context command. */
4376 ret = xhci_configure_endpoint(xhci, udev, command,
4378 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4379 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4382 spin_lock_irqsave(&xhci->lock, flags);
4383 virt_dev->current_mel = max_exit_latency;
4384 spin_unlock_irqrestore(&xhci->lock, flags);
4389 static int calculate_max_exit_latency(struct usb_device *udev,
4390 enum usb3_link_state state_changed,
4391 u16 hub_encoded_timeout)
4393 unsigned long long u1_mel_us = 0;
4394 unsigned long long u2_mel_us = 0;
4395 unsigned long long mel_us = 0;
4401 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4402 hub_encoded_timeout == USB3_LPM_DISABLED);
4403 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4404 hub_encoded_timeout == USB3_LPM_DISABLED);
4406 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4407 hub_encoded_timeout != USB3_LPM_DISABLED);
4408 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4409 hub_encoded_timeout != USB3_LPM_DISABLED);
4411 /* If U1 was already enabled and we're not disabling it,
4412 * or we're going to enable U1, account for the U1 max exit latency.
4414 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4416 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4417 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4419 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4421 if (u1_mel_us > u2_mel_us)
4425 /* xHCI host controller max exit latency field is only 16 bits wide. */
4426 if (mel_us > MAX_EXIT) {
4427 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4428 "is too big.\n", mel_us);
4434 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4435 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4436 struct usb_device *udev, enum usb3_link_state state)
4438 struct xhci_hcd *xhci;
4439 u16 hub_encoded_timeout;
4443 xhci = hcd_to_xhci(hcd);
4444 /* The LPM timeout values are pretty host-controller specific, so don't
4445 * enable hub-initiated timeouts unless the vendor has provided
4446 * information about their timeout algorithm.
4448 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4449 !xhci->devs[udev->slot_id])
4450 return USB3_LPM_DISABLED;
4452 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4453 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4455 /* Max Exit Latency is too big, disable LPM. */
4456 hub_encoded_timeout = USB3_LPM_DISABLED;
4460 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4463 return hub_encoded_timeout;
4466 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4467 struct usb_device *udev, enum usb3_link_state state)
4469 struct xhci_hcd *xhci;
4473 xhci = hcd_to_xhci(hcd);
4474 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4475 !xhci->devs[udev->slot_id])
4478 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4479 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4484 #else /* CONFIG_PM */
4486 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4487 struct usb_device *udev, enum usb3_link_state state)
4489 return USB3_LPM_DISABLED;
4492 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4493 struct usb_device *udev, enum usb3_link_state state)
4497 #endif /* CONFIG_PM */
4499 /*-------------------------------------------------------------------------*/
4501 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4502 * internal data structures for the device.
4504 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4505 struct usb_tt *tt, gfp_t mem_flags)
4507 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4508 struct xhci_virt_device *vdev;
4509 struct xhci_command *config_cmd;
4510 struct xhci_input_control_ctx *ctrl_ctx;
4511 struct xhci_slot_ctx *slot_ctx;
4512 unsigned long flags;
4513 unsigned think_time;
4516 /* Ignore root hubs */
4520 vdev = xhci->devs[hdev->slot_id];
4522 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4525 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4527 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4531 spin_lock_irqsave(&xhci->lock, flags);
4532 if (hdev->speed == USB_SPEED_HIGH &&
4533 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4534 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4535 xhci_free_command(xhci, config_cmd);
4536 spin_unlock_irqrestore(&xhci->lock, flags);
4540 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4541 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4542 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4543 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4544 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4546 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4547 if (xhci->hci_version > 0x95) {
4548 xhci_dbg(xhci, "xHCI version %x needs hub "
4549 "TT think time and number of ports\n",
4550 (unsigned int) xhci->hci_version);
4551 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4552 /* Set TT think time - convert from ns to FS bit times.
4553 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4554 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4556 * xHCI 1.0: this field shall be 0 if the device is not a
4559 think_time = tt->think_time;
4560 if (think_time != 0)
4561 think_time = (think_time / 666) - 1;
4562 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4563 slot_ctx->tt_info |=
4564 cpu_to_le32(TT_THINK_TIME(think_time));
4566 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4567 "TT think time or number of ports\n",
4568 (unsigned int) xhci->hci_version);
4570 slot_ctx->dev_state = 0;
4571 spin_unlock_irqrestore(&xhci->lock, flags);
4573 xhci_dbg(xhci, "Set up %s for hub device.\n",
4574 (xhci->hci_version > 0x95) ?
4575 "configure endpoint" : "evaluate context");
4576 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4577 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4579 /* Issue and wait for the configure endpoint or
4580 * evaluate context command.
4582 if (xhci->hci_version > 0x95)
4583 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4586 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4589 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4590 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4592 xhci_free_command(xhci, config_cmd);
4596 int xhci_get_frame(struct usb_hcd *hcd)
4598 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4599 /* EHCI mods by the periodic size. Why? */
4600 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4603 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4605 struct xhci_hcd *xhci;
4606 struct device *dev = hcd->self.controller;
4610 /* Accept arbitrarily long scatter-gather lists */
4611 hcd->self.sg_tablesize = ~0;
4612 /* XHCI controllers don't stop the ep queue on short packets :| */
4613 hcd->self.no_stop_on_short = 1;
4615 if (usb_hcd_is_primary_hcd(hcd)) {
4616 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4619 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4620 xhci->main_hcd = hcd;
4621 /* Mark the first roothub as being USB 2.0.
4622 * The xHCI driver will register the USB 3.0 roothub.
4624 hcd->speed = HCD_USB2;
4625 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4627 * USB 2.0 roothub under xHCI has an integrated TT,
4628 * (rate matching hub) as opposed to having an OHCI/UHCI
4629 * companion controller.
4633 /* xHCI private pointer was set in xhci_pci_probe for the second
4634 * registered roothub.
4636 xhci = hcd_to_xhci(hcd);
4637 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4638 if (HCC_64BIT_ADDR(temp)) {
4639 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4640 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4642 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4647 xhci->cap_regs = hcd->regs;
4648 xhci->op_regs = hcd->regs +
4649 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4650 xhci->run_regs = hcd->regs +
4651 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4652 /* Cache read-only capability registers */
4653 xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4654 xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4655 xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4656 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4657 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4658 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4659 xhci_print_registers(xhci);
4661 get_quirks(dev, xhci);
4663 /* Make sure the HC is halted. */
4664 retval = xhci_halt(xhci);
4668 xhci_dbg(xhci, "Resetting HCD\n");
4669 /* Reset the internal HC memory state and registers. */
4670 retval = xhci_reset(xhci);
4673 xhci_dbg(xhci, "Reset complete\n");
4675 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4676 if (HCC_64BIT_ADDR(temp)) {
4677 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4678 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4680 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4683 xhci_dbg(xhci, "Calling HCD init\n");
4684 /* Initialize HCD and host controller data structures. */
4685 retval = xhci_init(hcd);
4688 xhci_dbg(xhci, "Called HCD init\n");
4695 MODULE_DESCRIPTION(DRIVER_DESC);
4696 MODULE_AUTHOR(DRIVER_AUTHOR);
4697 MODULE_LICENSE("GPL");
4699 static int __init xhci_hcd_init(void)
4703 retval = xhci_register_pci();
4705 printk(KERN_DEBUG "Problem registering PCI driver.");
4708 retval = xhci_register_plat();
4710 printk(KERN_DEBUG "Problem registering platform driver.");
4714 * Check the compiler generated sizes of structures that must be laid
4715 * out in specific ways for hardware access.
4717 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4718 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4719 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4720 /* xhci_device_control has eight fields, and also
4721 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4723 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4724 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4725 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4726 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4727 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4728 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4729 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4732 xhci_unregister_pci();
4735 module_init(xhci_hcd_init);
4737 static void __exit xhci_hcd_cleanup(void)
4739 xhci_unregister_pci();
4740 xhci_unregister_plat();
4742 module_exit(xhci_hcd_cleanup);