rtc: add new lp8788 rtc driver
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30
31 #include "xhci.h"
32
33 #define DRIVER_AUTHOR "Sarah Sharp"
34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35
36 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
37 static int link_quirk;
38 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
39 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
40
41 /* TODO: copied from ehci-hcd.c - can this be refactored? */
42 /*
43  * xhci_handshake - spin reading hc until handshake completes or fails
44  * @ptr: address of hc register to be read
45  * @mask: bits to look at in result of read
46  * @done: value of those bits when handshake succeeds
47  * @usec: timeout in microseconds
48  *
49  * Returns negative errno, or zero on success
50  *
51  * Success happens when the "mask" bits have the specified value (hardware
52  * handshake done).  There are two failure modes:  "usec" have passed (major
53  * hardware flakeout), or the register reads as all-ones (hardware removed).
54  */
55 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
56                       u32 mask, u32 done, int usec)
57 {
58         u32     result;
59
60         do {
61                 result = xhci_readl(xhci, ptr);
62                 if (result == ~(u32)0)          /* card removed */
63                         return -ENODEV;
64                 result &= mask;
65                 if (result == done)
66                         return 0;
67                 udelay(1);
68                 usec--;
69         } while (usec > 0);
70         return -ETIMEDOUT;
71 }
72
73 /*
74  * Disable interrupts and begin the xHCI halting process.
75  */
76 void xhci_quiesce(struct xhci_hcd *xhci)
77 {
78         u32 halted;
79         u32 cmd;
80         u32 mask;
81
82         mask = ~(XHCI_IRQS);
83         halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
84         if (!halted)
85                 mask &= ~CMD_RUN;
86
87         cmd = xhci_readl(xhci, &xhci->op_regs->command);
88         cmd &= mask;
89         xhci_writel(xhci, cmd, &xhci->op_regs->command);
90 }
91
92 /*
93  * Force HC into halt state.
94  *
95  * Disable any IRQs and clear the run/stop bit.
96  * HC will complete any current and actively pipelined transactions, and
97  * should halt within 16 ms of the run/stop bit being cleared.
98  * Read HC Halted bit in the status register to see when the HC is finished.
99  */
100 int xhci_halt(struct xhci_hcd *xhci)
101 {
102         int ret;
103         xhci_dbg(xhci, "// Halt the HC\n");
104         xhci_quiesce(xhci);
105
106         ret = xhci_handshake(xhci, &xhci->op_regs->status,
107                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
108         if (!ret) {
109                 xhci->xhc_state |= XHCI_STATE_HALTED;
110                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
111         } else
112                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
113                                 XHCI_MAX_HALT_USEC);
114         return ret;
115 }
116
117 /*
118  * Set the run bit and wait for the host to be running.
119  */
120 static int xhci_start(struct xhci_hcd *xhci)
121 {
122         u32 temp;
123         int ret;
124
125         temp = xhci_readl(xhci, &xhci->op_regs->command);
126         temp |= (CMD_RUN);
127         xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
128                         temp);
129         xhci_writel(xhci, temp, &xhci->op_regs->command);
130
131         /*
132          * Wait for the HCHalted Status bit to be 0 to indicate the host is
133          * running.
134          */
135         ret = xhci_handshake(xhci, &xhci->op_regs->status,
136                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
137         if (ret == -ETIMEDOUT)
138                 xhci_err(xhci, "Host took too long to start, "
139                                 "waited %u microseconds.\n",
140                                 XHCI_MAX_HALT_USEC);
141         if (!ret)
142                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
143         return ret;
144 }
145
146 /*
147  * Reset a halted HC.
148  *
149  * This resets pipelines, timers, counters, state machines, etc.
150  * Transactions will be terminated immediately, and operational registers
151  * will be set to their defaults.
152  */
153 int xhci_reset(struct xhci_hcd *xhci)
154 {
155         u32 command;
156         u32 state;
157         int ret, i;
158
159         state = xhci_readl(xhci, &xhci->op_regs->status);
160         if ((state & STS_HALT) == 0) {
161                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
162                 return 0;
163         }
164
165         xhci_dbg(xhci, "// Reset the HC\n");
166         command = xhci_readl(xhci, &xhci->op_regs->command);
167         command |= CMD_RESET;
168         xhci_writel(xhci, command, &xhci->op_regs->command);
169
170         ret = xhci_handshake(xhci, &xhci->op_regs->command,
171                         CMD_RESET, 0, 10 * 1000 * 1000);
172         if (ret)
173                 return ret;
174
175         xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
176         /*
177          * xHCI cannot write to any doorbells or operational registers other
178          * than status until the "Controller Not Ready" flag is cleared.
179          */
180         ret = xhci_handshake(xhci, &xhci->op_regs->status,
181                         STS_CNR, 0, 10 * 1000 * 1000);
182
183         for (i = 0; i < 2; ++i) {
184                 xhci->bus_state[i].port_c_suspend = 0;
185                 xhci->bus_state[i].suspended_ports = 0;
186                 xhci->bus_state[i].resuming_ports = 0;
187         }
188
189         return ret;
190 }
191
192 #ifdef CONFIG_PCI
193 static int xhci_free_msi(struct xhci_hcd *xhci)
194 {
195         int i;
196
197         if (!xhci->msix_entries)
198                 return -EINVAL;
199
200         for (i = 0; i < xhci->msix_count; i++)
201                 if (xhci->msix_entries[i].vector)
202                         free_irq(xhci->msix_entries[i].vector,
203                                         xhci_to_hcd(xhci));
204         return 0;
205 }
206
207 /*
208  * Set up MSI
209  */
210 static int xhci_setup_msi(struct xhci_hcd *xhci)
211 {
212         int ret;
213         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
214
215         ret = pci_enable_msi(pdev);
216         if (ret) {
217                 xhci_dbg(xhci, "failed to allocate MSI entry\n");
218                 return ret;
219         }
220
221         ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
222                                 0, "xhci_hcd", xhci_to_hcd(xhci));
223         if (ret) {
224                 xhci_dbg(xhci, "disable MSI interrupt\n");
225                 pci_disable_msi(pdev);
226         }
227
228         return ret;
229 }
230
231 /*
232  * Free IRQs
233  * free all IRQs request
234  */
235 static void xhci_free_irq(struct xhci_hcd *xhci)
236 {
237         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
238         int ret;
239
240         /* return if using legacy interrupt */
241         if (xhci_to_hcd(xhci)->irq > 0)
242                 return;
243
244         ret = xhci_free_msi(xhci);
245         if (!ret)
246                 return;
247         if (pdev->irq > 0)
248                 free_irq(pdev->irq, xhci_to_hcd(xhci));
249
250         return;
251 }
252
253 /*
254  * Set up MSI-X
255  */
256 static int xhci_setup_msix(struct xhci_hcd *xhci)
257 {
258         int i, ret = 0;
259         struct usb_hcd *hcd = xhci_to_hcd(xhci);
260         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
261
262         /*
263          * calculate number of msi-x vectors supported.
264          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
265          *   with max number of interrupters based on the xhci HCSPARAMS1.
266          * - num_online_cpus: maximum msi-x vectors per CPUs core.
267          *   Add additional 1 vector to ensure always available interrupt.
268          */
269         xhci->msix_count = min(num_online_cpus() + 1,
270                                 HCS_MAX_INTRS(xhci->hcs_params1));
271
272         xhci->msix_entries =
273                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
274                                 GFP_KERNEL);
275         if (!xhci->msix_entries) {
276                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
277                 return -ENOMEM;
278         }
279
280         for (i = 0; i < xhci->msix_count; i++) {
281                 xhci->msix_entries[i].entry = i;
282                 xhci->msix_entries[i].vector = 0;
283         }
284
285         ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
286         if (ret) {
287                 xhci_dbg(xhci, "Failed to enable MSI-X\n");
288                 goto free_entries;
289         }
290
291         for (i = 0; i < xhci->msix_count; i++) {
292                 ret = request_irq(xhci->msix_entries[i].vector,
293                                 (irq_handler_t)xhci_msi_irq,
294                                 0, "xhci_hcd", xhci_to_hcd(xhci));
295                 if (ret)
296                         goto disable_msix;
297         }
298
299         hcd->msix_enabled = 1;
300         return ret;
301
302 disable_msix:
303         xhci_dbg(xhci, "disable MSI-X interrupt\n");
304         xhci_free_irq(xhci);
305         pci_disable_msix(pdev);
306 free_entries:
307         kfree(xhci->msix_entries);
308         xhci->msix_entries = NULL;
309         return ret;
310 }
311
312 /* Free any IRQs and disable MSI-X */
313 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
314 {
315         struct usb_hcd *hcd = xhci_to_hcd(xhci);
316         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
317
318         xhci_free_irq(xhci);
319
320         if (xhci->msix_entries) {
321                 pci_disable_msix(pdev);
322                 kfree(xhci->msix_entries);
323                 xhci->msix_entries = NULL;
324         } else {
325                 pci_disable_msi(pdev);
326         }
327
328         hcd->msix_enabled = 0;
329         return;
330 }
331
332 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
333 {
334         int i;
335
336         if (xhci->msix_entries) {
337                 for (i = 0; i < xhci->msix_count; i++)
338                         synchronize_irq(xhci->msix_entries[i].vector);
339         }
340 }
341
342 static int xhci_try_enable_msi(struct usb_hcd *hcd)
343 {
344         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
345         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
346         int ret;
347
348         /*
349          * Some Fresco Logic host controllers advertise MSI, but fail to
350          * generate interrupts.  Don't even try to enable MSI.
351          */
352         if (xhci->quirks & XHCI_BROKEN_MSI)
353                 return 0;
354
355         /* unregister the legacy interrupt */
356         if (hcd->irq)
357                 free_irq(hcd->irq, hcd);
358         hcd->irq = 0;
359
360         ret = xhci_setup_msix(xhci);
361         if (ret)
362                 /* fall back to msi*/
363                 ret = xhci_setup_msi(xhci);
364
365         if (!ret)
366                 /* hcd->irq is 0, we have MSI */
367                 return 0;
368
369         if (!pdev->irq) {
370                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
371                 return -EINVAL;
372         }
373
374         /* fall back to legacy interrupt*/
375         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
376                         hcd->irq_descr, hcd);
377         if (ret) {
378                 xhci_err(xhci, "request interrupt %d failed\n",
379                                 pdev->irq);
380                 return ret;
381         }
382         hcd->irq = pdev->irq;
383         return 0;
384 }
385
386 #else
387
388 static int xhci_try_enable_msi(struct usb_hcd *hcd)
389 {
390         return 0;
391 }
392
393 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
394 {
395 }
396
397 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
398 {
399 }
400
401 #endif
402
403 static void compliance_mode_recovery(unsigned long arg)
404 {
405         struct xhci_hcd *xhci;
406         struct usb_hcd *hcd;
407         u32 temp;
408         int i;
409
410         xhci = (struct xhci_hcd *)arg;
411
412         for (i = 0; i < xhci->num_usb3_ports; i++) {
413                 temp = xhci_readl(xhci, xhci->usb3_ports[i]);
414                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
415                         /*
416                          * Compliance Mode Detected. Letting USB Core
417                          * handle the Warm Reset
418                          */
419                         xhci_dbg(xhci, "Compliance Mode Detected->Port %d!\n",
420                                         i + 1);
421                         xhci_dbg(xhci, "Attempting Recovery routine!\n");
422                         hcd = xhci->shared_hcd;
423
424                         if (hcd->state == HC_STATE_SUSPENDED)
425                                 usb_hcd_resume_root_hub(hcd);
426
427                         usb_hcd_poll_rh_status(hcd);
428                 }
429         }
430
431         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
432                 mod_timer(&xhci->comp_mode_recovery_timer,
433                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
434 }
435
436 /*
437  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
438  * that causes ports behind that hardware to enter compliance mode sometimes.
439  * The quirk creates a timer that polls every 2 seconds the link state of
440  * each host controller's port and recovers it by issuing a Warm reset
441  * if Compliance mode is detected, otherwise the port will become "dead" (no
442  * device connections or disconnections will be detected anymore). Becasue no
443  * status event is generated when entering compliance mode (per xhci spec),
444  * this quirk is needed on systems that have the failing hardware installed.
445  */
446 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
447 {
448         xhci->port_status_u0 = 0;
449         init_timer(&xhci->comp_mode_recovery_timer);
450
451         xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
452         xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
453         xhci->comp_mode_recovery_timer.expires = jiffies +
454                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
455
456         set_timer_slack(&xhci->comp_mode_recovery_timer,
457                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
458         add_timer(&xhci->comp_mode_recovery_timer);
459         xhci_dbg(xhci, "Compliance Mode Recovery Timer Initialized.\n");
460 }
461
462 /*
463  * This function identifies the systems that have installed the SN65LVPE502CP
464  * USB3.0 re-driver and that need the Compliance Mode Quirk.
465  * Systems:
466  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
467  */
468 static bool compliance_mode_recovery_timer_quirk_check(void)
469 {
470         const char *dmi_product_name, *dmi_sys_vendor;
471
472         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
473         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
474         if (!dmi_product_name || !dmi_sys_vendor)
475                 return false;
476
477         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
478                 return false;
479
480         if (strstr(dmi_product_name, "Z420") ||
481                         strstr(dmi_product_name, "Z620") ||
482                         strstr(dmi_product_name, "Z820") ||
483                         strstr(dmi_product_name, "Z1 Workstation"))
484                 return true;
485
486         return false;
487 }
488
489 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
490 {
491         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
492 }
493
494
495 /*
496  * Initialize memory for HCD and xHC (one-time init).
497  *
498  * Program the PAGESIZE register, initialize the device context array, create
499  * device contexts (?), set up a command ring segment (or two?), create event
500  * ring (one for now).
501  */
502 int xhci_init(struct usb_hcd *hcd)
503 {
504         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
505         int retval = 0;
506
507         xhci_dbg(xhci, "xhci_init\n");
508         spin_lock_init(&xhci->lock);
509         if (xhci->hci_version == 0x95 && link_quirk) {
510                 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
511                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
512         } else {
513                 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
514         }
515         retval = xhci_mem_init(xhci, GFP_KERNEL);
516         xhci_dbg(xhci, "Finished xhci_init\n");
517
518         /* Initializing Compliance Mode Recovery Data If Needed */
519         if (compliance_mode_recovery_timer_quirk_check()) {
520                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
521                 compliance_mode_recovery_timer_init(xhci);
522         }
523
524         return retval;
525 }
526
527 /*-------------------------------------------------------------------------*/
528
529
530 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
531 static void xhci_event_ring_work(unsigned long arg)
532 {
533         unsigned long flags;
534         int temp;
535         u64 temp_64;
536         struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
537         int i, j;
538
539         xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
540
541         spin_lock_irqsave(&xhci->lock, flags);
542         temp = xhci_readl(xhci, &xhci->op_regs->status);
543         xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
544         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
545                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
546                 xhci_dbg(xhci, "HW died, polling stopped.\n");
547                 spin_unlock_irqrestore(&xhci->lock, flags);
548                 return;
549         }
550
551         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
552         xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
553         xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
554         xhci->error_bitmask = 0;
555         xhci_dbg(xhci, "Event ring:\n");
556         xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
557         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
558         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
559         temp_64 &= ~ERST_PTR_MASK;
560         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
561         xhci_dbg(xhci, "Command ring:\n");
562         xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
563         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
564         xhci_dbg_cmd_ptrs(xhci);
565         for (i = 0; i < MAX_HC_SLOTS; ++i) {
566                 if (!xhci->devs[i])
567                         continue;
568                 for (j = 0; j < 31; ++j) {
569                         xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
570                 }
571         }
572         spin_unlock_irqrestore(&xhci->lock, flags);
573
574         if (!xhci->zombie)
575                 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
576         else
577                 xhci_dbg(xhci, "Quit polling the event ring.\n");
578 }
579 #endif
580
581 static int xhci_run_finished(struct xhci_hcd *xhci)
582 {
583         if (xhci_start(xhci)) {
584                 xhci_halt(xhci);
585                 return -ENODEV;
586         }
587         xhci->shared_hcd->state = HC_STATE_RUNNING;
588         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
589
590         if (xhci->quirks & XHCI_NEC_HOST)
591                 xhci_ring_cmd_db(xhci);
592
593         xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
594         return 0;
595 }
596
597 /*
598  * Start the HC after it was halted.
599  *
600  * This function is called by the USB core when the HC driver is added.
601  * Its opposite is xhci_stop().
602  *
603  * xhci_init() must be called once before this function can be called.
604  * Reset the HC, enable device slot contexts, program DCBAAP, and
605  * set command ring pointer and event ring pointer.
606  *
607  * Setup MSI-X vectors and enable interrupts.
608  */
609 int xhci_run(struct usb_hcd *hcd)
610 {
611         u32 temp;
612         u64 temp_64;
613         int ret;
614         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
615
616         /* Start the xHCI host controller running only after the USB 2.0 roothub
617          * is setup.
618          */
619
620         hcd->uses_new_polling = 1;
621         if (!usb_hcd_is_primary_hcd(hcd))
622                 return xhci_run_finished(xhci);
623
624         xhci_dbg(xhci, "xhci_run\n");
625
626         ret = xhci_try_enable_msi(hcd);
627         if (ret)
628                 return ret;
629
630 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
631         init_timer(&xhci->event_ring_timer);
632         xhci->event_ring_timer.data = (unsigned long) xhci;
633         xhci->event_ring_timer.function = xhci_event_ring_work;
634         /* Poll the event ring */
635         xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
636         xhci->zombie = 0;
637         xhci_dbg(xhci, "Setting event ring polling timer\n");
638         add_timer(&xhci->event_ring_timer);
639 #endif
640
641         xhci_dbg(xhci, "Command ring memory map follows:\n");
642         xhci_debug_ring(xhci, xhci->cmd_ring);
643         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
644         xhci_dbg_cmd_ptrs(xhci);
645
646         xhci_dbg(xhci, "ERST memory map follows:\n");
647         xhci_dbg_erst(xhci, &xhci->erst);
648         xhci_dbg(xhci, "Event ring:\n");
649         xhci_debug_ring(xhci, xhci->event_ring);
650         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
651         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
652         temp_64 &= ~ERST_PTR_MASK;
653         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
654
655         xhci_dbg(xhci, "// Set the interrupt modulation register\n");
656         temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
657         temp &= ~ER_IRQ_INTERVAL_MASK;
658         temp |= (u32) 160;
659         xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
660
661         /* Set the HCD state before we enable the irqs */
662         temp = xhci_readl(xhci, &xhci->op_regs->command);
663         temp |= (CMD_EIE);
664         xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
665                         temp);
666         xhci_writel(xhci, temp, &xhci->op_regs->command);
667
668         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
669         xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
670                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
671         xhci_writel(xhci, ER_IRQ_ENABLE(temp),
672                         &xhci->ir_set->irq_pending);
673         xhci_print_ir_set(xhci, 0);
674
675         if (xhci->quirks & XHCI_NEC_HOST)
676                 xhci_queue_vendor_command(xhci, 0, 0, 0,
677                                 TRB_TYPE(TRB_NEC_GET_FW));
678
679         xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
680         return 0;
681 }
682
683 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
684 {
685         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
686
687         spin_lock_irq(&xhci->lock);
688         xhci_halt(xhci);
689
690         /* The shared_hcd is going to be deallocated shortly (the USB core only
691          * calls this function when allocation fails in usb_add_hcd(), or
692          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
693          */
694         xhci->shared_hcd = NULL;
695         spin_unlock_irq(&xhci->lock);
696 }
697
698 /*
699  * Stop xHCI driver.
700  *
701  * This function is called by the USB core when the HC driver is removed.
702  * Its opposite is xhci_run().
703  *
704  * Disable device contexts, disable IRQs, and quiesce the HC.
705  * Reset the HC, finish any completed transactions, and cleanup memory.
706  */
707 void xhci_stop(struct usb_hcd *hcd)
708 {
709         u32 temp;
710         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
711
712         if (!usb_hcd_is_primary_hcd(hcd)) {
713                 xhci_only_stop_hcd(xhci->shared_hcd);
714                 return;
715         }
716
717         spin_lock_irq(&xhci->lock);
718         /* Make sure the xHC is halted for a USB3 roothub
719          * (xhci_stop() could be called as part of failed init).
720          */
721         xhci_halt(xhci);
722         xhci_reset(xhci);
723         spin_unlock_irq(&xhci->lock);
724
725         xhci_cleanup_msix(xhci);
726
727 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
728         /* Tell the event ring poll function not to reschedule */
729         xhci->zombie = 1;
730         del_timer_sync(&xhci->event_ring_timer);
731 #endif
732
733         /* Deleting Compliance Mode Recovery Timer */
734         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
735                         (!(xhci_all_ports_seen_u0(xhci))))
736                 del_timer_sync(&xhci->comp_mode_recovery_timer);
737
738         if (xhci->quirks & XHCI_AMD_PLL_FIX)
739                 usb_amd_dev_put();
740
741         xhci_dbg(xhci, "// Disabling event ring interrupts\n");
742         temp = xhci_readl(xhci, &xhci->op_regs->status);
743         xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
744         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
745         xhci_writel(xhci, ER_IRQ_DISABLE(temp),
746                         &xhci->ir_set->irq_pending);
747         xhci_print_ir_set(xhci, 0);
748
749         xhci_dbg(xhci, "cleaning up memory\n");
750         xhci_mem_cleanup(xhci);
751         xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
752                     xhci_readl(xhci, &xhci->op_regs->status));
753 }
754
755 /*
756  * Shutdown HC (not bus-specific)
757  *
758  * This is called when the machine is rebooting or halting.  We assume that the
759  * machine will be powered off, and the HC's internal state will be reset.
760  * Don't bother to free memory.
761  *
762  * This will only ever be called with the main usb_hcd (the USB3 roothub).
763  */
764 void xhci_shutdown(struct usb_hcd *hcd)
765 {
766         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
767
768         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
769                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
770
771         spin_lock_irq(&xhci->lock);
772         xhci_halt(xhci);
773         spin_unlock_irq(&xhci->lock);
774
775         xhci_cleanup_msix(xhci);
776
777         xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
778                     xhci_readl(xhci, &xhci->op_regs->status));
779 }
780
781 #ifdef CONFIG_PM
782 static void xhci_save_registers(struct xhci_hcd *xhci)
783 {
784         xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
785         xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
786         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
787         xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
788         xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
789         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
790         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
791         xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
792         xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
793 }
794
795 static void xhci_restore_registers(struct xhci_hcd *xhci)
796 {
797         xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
798         xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
799         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
800         xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
801         xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
802         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
803         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
804         xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
805         xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
806 }
807
808 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
809 {
810         u64     val_64;
811
812         /* step 2: initialize command ring buffer */
813         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
814         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
815                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
816                                       xhci->cmd_ring->dequeue) &
817                  (u64) ~CMD_RING_RSVD_BITS) |
818                 xhci->cmd_ring->cycle_state;
819         xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
820                         (long unsigned long) val_64);
821         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
822 }
823
824 /*
825  * The whole command ring must be cleared to zero when we suspend the host.
826  *
827  * The host doesn't save the command ring pointer in the suspend well, so we
828  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
829  * aligned, because of the reserved bits in the command ring dequeue pointer
830  * register.  Therefore, we can't just set the dequeue pointer back in the
831  * middle of the ring (TRBs are 16-byte aligned).
832  */
833 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
834 {
835         struct xhci_ring *ring;
836         struct xhci_segment *seg;
837
838         ring = xhci->cmd_ring;
839         seg = ring->deq_seg;
840         do {
841                 memset(seg->trbs, 0,
842                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
843                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
844                         cpu_to_le32(~TRB_CYCLE);
845                 seg = seg->next;
846         } while (seg != ring->deq_seg);
847
848         /* Reset the software enqueue and dequeue pointers */
849         ring->deq_seg = ring->first_seg;
850         ring->dequeue = ring->first_seg->trbs;
851         ring->enq_seg = ring->deq_seg;
852         ring->enqueue = ring->dequeue;
853
854         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
855         /*
856          * Ring is now zeroed, so the HW should look for change of ownership
857          * when the cycle bit is set to 1.
858          */
859         ring->cycle_state = 1;
860
861         /*
862          * Reset the hardware dequeue pointer.
863          * Yes, this will need to be re-written after resume, but we're paranoid
864          * and want to make sure the hardware doesn't access bogus memory
865          * because, say, the BIOS or an SMI started the host without changing
866          * the command ring pointers.
867          */
868         xhci_set_cmd_ring_deq(xhci);
869 }
870
871 /*
872  * Stop HC (not bus-specific)
873  *
874  * This is called when the machine transition into S3/S4 mode.
875  *
876  */
877 int xhci_suspend(struct xhci_hcd *xhci)
878 {
879         int                     rc = 0;
880         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
881         u32                     command;
882
883         if (hcd->state != HC_STATE_SUSPENDED ||
884                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
885                 return -EINVAL;
886
887         /* Don't poll the roothubs on bus suspend. */
888         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
889         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
890         del_timer_sync(&hcd->rh_timer);
891
892         spin_lock_irq(&xhci->lock);
893         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
894         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
895         /* step 1: stop endpoint */
896         /* skipped assuming that port suspend has done */
897
898         /* step 2: clear Run/Stop bit */
899         command = xhci_readl(xhci, &xhci->op_regs->command);
900         command &= ~CMD_RUN;
901         xhci_writel(xhci, command, &xhci->op_regs->command);
902         if (xhci_handshake(xhci, &xhci->op_regs->status,
903                       STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
904                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
905                 spin_unlock_irq(&xhci->lock);
906                 return -ETIMEDOUT;
907         }
908         xhci_clear_command_ring(xhci);
909
910         /* step 3: save registers */
911         xhci_save_registers(xhci);
912
913         /* step 4: set CSS flag */
914         command = xhci_readl(xhci, &xhci->op_regs->command);
915         command |= CMD_CSS;
916         xhci_writel(xhci, command, &xhci->op_regs->command);
917         if (xhci_handshake(xhci, &xhci->op_regs->status,
918                                 STS_SAVE, 0, 10 * 1000)) {
919                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
920                 spin_unlock_irq(&xhci->lock);
921                 return -ETIMEDOUT;
922         }
923         spin_unlock_irq(&xhci->lock);
924
925         /*
926          * Deleting Compliance Mode Recovery Timer because the xHCI Host
927          * is about to be suspended.
928          */
929         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
930                         (!(xhci_all_ports_seen_u0(xhci)))) {
931                 del_timer_sync(&xhci->comp_mode_recovery_timer);
932                 xhci_dbg(xhci, "Compliance Mode Recovery Timer Deleted!\n");
933         }
934
935         /* step 5: remove core well power */
936         /* synchronize irq when using MSI-X */
937         xhci_msix_sync_irqs(xhci);
938
939         return rc;
940 }
941
942 /*
943  * start xHC (not bus-specific)
944  *
945  * This is called when the machine transition from S3/S4 mode.
946  *
947  */
948 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
949 {
950         u32                     command, temp = 0;
951         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
952         struct usb_hcd          *secondary_hcd;
953         int                     retval = 0;
954
955         /* Wait a bit if either of the roothubs need to settle from the
956          * transition into bus suspend.
957          */
958         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
959                         time_before(jiffies,
960                                 xhci->bus_state[1].next_statechange))
961                 msleep(100);
962
963         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
964         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
965
966         spin_lock_irq(&xhci->lock);
967         if (xhci->quirks & XHCI_RESET_ON_RESUME)
968                 hibernated = true;
969
970         if (!hibernated) {
971                 /* step 1: restore register */
972                 xhci_restore_registers(xhci);
973                 /* step 2: initialize command ring buffer */
974                 xhci_set_cmd_ring_deq(xhci);
975                 /* step 3: restore state and start state*/
976                 /* step 3: set CRS flag */
977                 command = xhci_readl(xhci, &xhci->op_regs->command);
978                 command |= CMD_CRS;
979                 xhci_writel(xhci, command, &xhci->op_regs->command);
980                 if (xhci_handshake(xhci, &xhci->op_regs->status,
981                               STS_RESTORE, 0, 10 * 1000)) {
982                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
983                         spin_unlock_irq(&xhci->lock);
984                         return -ETIMEDOUT;
985                 }
986                 temp = xhci_readl(xhci, &xhci->op_regs->status);
987         }
988
989         /* If restore operation fails, re-initialize the HC during resume */
990         if ((temp & STS_SRE) || hibernated) {
991                 /* Let the USB core know _both_ roothubs lost power. */
992                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
993                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
994
995                 xhci_dbg(xhci, "Stop HCD\n");
996                 xhci_halt(xhci);
997                 xhci_reset(xhci);
998                 spin_unlock_irq(&xhci->lock);
999                 xhci_cleanup_msix(xhci);
1000
1001 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
1002                 /* Tell the event ring poll function not to reschedule */
1003                 xhci->zombie = 1;
1004                 del_timer_sync(&xhci->event_ring_timer);
1005 #endif
1006
1007                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1008                 temp = xhci_readl(xhci, &xhci->op_regs->status);
1009                 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
1010                 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
1011                 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
1012                                 &xhci->ir_set->irq_pending);
1013                 xhci_print_ir_set(xhci, 0);
1014
1015                 xhci_dbg(xhci, "cleaning up memory\n");
1016                 xhci_mem_cleanup(xhci);
1017                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1018                             xhci_readl(xhci, &xhci->op_regs->status));
1019
1020                 /* USB core calls the PCI reinit and start functions twice:
1021                  * first with the primary HCD, and then with the secondary HCD.
1022                  * If we don't do the same, the host will never be started.
1023                  */
1024                 if (!usb_hcd_is_primary_hcd(hcd))
1025                         secondary_hcd = hcd;
1026                 else
1027                         secondary_hcd = xhci->shared_hcd;
1028
1029                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1030                 retval = xhci_init(hcd->primary_hcd);
1031                 if (retval)
1032                         return retval;
1033                 xhci_dbg(xhci, "Start the primary HCD\n");
1034                 retval = xhci_run(hcd->primary_hcd);
1035                 if (!retval) {
1036                         xhci_dbg(xhci, "Start the secondary HCD\n");
1037                         retval = xhci_run(secondary_hcd);
1038                 }
1039                 hcd->state = HC_STATE_SUSPENDED;
1040                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1041                 goto done;
1042         }
1043
1044         /* step 4: set Run/Stop bit */
1045         command = xhci_readl(xhci, &xhci->op_regs->command);
1046         command |= CMD_RUN;
1047         xhci_writel(xhci, command, &xhci->op_regs->command);
1048         xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1049                   0, 250 * 1000);
1050
1051         /* step 5: walk topology and initialize portsc,
1052          * portpmsc and portli
1053          */
1054         /* this is done in bus_resume */
1055
1056         /* step 6: restart each of the previously
1057          * Running endpoints by ringing their doorbells
1058          */
1059
1060         spin_unlock_irq(&xhci->lock);
1061
1062  done:
1063         if (retval == 0) {
1064                 usb_hcd_resume_root_hub(hcd);
1065                 usb_hcd_resume_root_hub(xhci->shared_hcd);
1066         }
1067
1068         /*
1069          * If system is subject to the Quirk, Compliance Mode Timer needs to
1070          * be re-initialized Always after a system resume. Ports are subject
1071          * to suffer the Compliance Mode issue again. It doesn't matter if
1072          * ports have entered previously to U0 before system's suspension.
1073          */
1074         if (xhci->quirks & XHCI_COMP_MODE_QUIRK)
1075                 compliance_mode_recovery_timer_init(xhci);
1076
1077         /* Re-enable port polling. */
1078         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1079         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1080         usb_hcd_poll_rh_status(hcd);
1081
1082         return retval;
1083 }
1084 #endif  /* CONFIG_PM */
1085
1086 /*-------------------------------------------------------------------------*/
1087
1088 /**
1089  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1090  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1091  * value to right shift 1 for the bitmask.
1092  *
1093  * Index  = (epnum * 2) + direction - 1,
1094  * where direction = 0 for OUT, 1 for IN.
1095  * For control endpoints, the IN index is used (OUT index is unused), so
1096  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1097  */
1098 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1099 {
1100         unsigned int index;
1101         if (usb_endpoint_xfer_control(desc))
1102                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1103         else
1104                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1105                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1106         return index;
1107 }
1108
1109 /* Find the flag for this endpoint (for use in the control context).  Use the
1110  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1111  * bit 1, etc.
1112  */
1113 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1114 {
1115         return 1 << (xhci_get_endpoint_index(desc) + 1);
1116 }
1117
1118 /* Find the flag for this endpoint (for use in the control context).  Use the
1119  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1120  * bit 1, etc.
1121  */
1122 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1123 {
1124         return 1 << (ep_index + 1);
1125 }
1126
1127 /* Compute the last valid endpoint context index.  Basically, this is the
1128  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1129  * we find the most significant bit set in the added contexts flags.
1130  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1131  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1132  */
1133 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1134 {
1135         return fls(added_ctxs) - 1;
1136 }
1137
1138 /* Returns 1 if the arguments are OK;
1139  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1140  */
1141 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1142                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1143                 const char *func) {
1144         struct xhci_hcd *xhci;
1145         struct xhci_virt_device *virt_dev;
1146
1147         if (!hcd || (check_ep && !ep) || !udev) {
1148                 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1149                                 func);
1150                 return -EINVAL;
1151         }
1152         if (!udev->parent) {
1153                 printk(KERN_DEBUG "xHCI %s called for root hub\n",
1154                                 func);
1155                 return 0;
1156         }
1157
1158         xhci = hcd_to_xhci(hcd);
1159         if (xhci->xhc_state & XHCI_STATE_HALTED)
1160                 return -ENODEV;
1161
1162         if (check_virt_dev) {
1163                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1164                         printk(KERN_DEBUG "xHCI %s called with unaddressed "
1165                                                 "device\n", func);
1166                         return -EINVAL;
1167                 }
1168
1169                 virt_dev = xhci->devs[udev->slot_id];
1170                 if (virt_dev->udev != udev) {
1171                         printk(KERN_DEBUG "xHCI %s called with udev and "
1172                                           "virt_dev does not match\n", func);
1173                         return -EINVAL;
1174                 }
1175         }
1176
1177         return 1;
1178 }
1179
1180 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1181                 struct usb_device *udev, struct xhci_command *command,
1182                 bool ctx_change, bool must_succeed);
1183
1184 /*
1185  * Full speed devices may have a max packet size greater than 8 bytes, but the
1186  * USB core doesn't know that until it reads the first 8 bytes of the
1187  * descriptor.  If the usb_device's max packet size changes after that point,
1188  * we need to issue an evaluate context command and wait on it.
1189  */
1190 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1191                 unsigned int ep_index, struct urb *urb)
1192 {
1193         struct xhci_container_ctx *in_ctx;
1194         struct xhci_container_ctx *out_ctx;
1195         struct xhci_input_control_ctx *ctrl_ctx;
1196         struct xhci_ep_ctx *ep_ctx;
1197         int max_packet_size;
1198         int hw_max_packet_size;
1199         int ret = 0;
1200
1201         out_ctx = xhci->devs[slot_id]->out_ctx;
1202         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1203         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1204         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1205         if (hw_max_packet_size != max_packet_size) {
1206                 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1207                 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1208                                 max_packet_size);
1209                 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1210                                 hw_max_packet_size);
1211                 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1212
1213                 /* Set up the modified control endpoint 0 */
1214                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1215                                 xhci->devs[slot_id]->out_ctx, ep_index);
1216                 in_ctx = xhci->devs[slot_id]->in_ctx;
1217                 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1218                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1219                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1220
1221                 /* Set up the input context flags for the command */
1222                 /* FIXME: This won't work if a non-default control endpoint
1223                  * changes max packet sizes.
1224                  */
1225                 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1226                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1227                 ctrl_ctx->drop_flags = 0;
1228
1229                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1230                 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1231                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1232                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1233
1234                 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1235                                 true, false);
1236
1237                 /* Clean up the input context for later use by bandwidth
1238                  * functions.
1239                  */
1240                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1241         }
1242         return ret;
1243 }
1244
1245 /*
1246  * non-error returns are a promise to giveback() the urb later
1247  * we drop ownership so next owner (or urb unlink) can get it
1248  */
1249 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1250 {
1251         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1252         struct xhci_td *buffer;
1253         unsigned long flags;
1254         int ret = 0;
1255         unsigned int slot_id, ep_index;
1256         struct urb_priv *urb_priv;
1257         int size, i;
1258
1259         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1260                                         true, true, __func__) <= 0)
1261                 return -EINVAL;
1262
1263         slot_id = urb->dev->slot_id;
1264         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1265
1266         if (!HCD_HW_ACCESSIBLE(hcd)) {
1267                 if (!in_interrupt())
1268                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1269                 ret = -ESHUTDOWN;
1270                 goto exit;
1271         }
1272
1273         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1274                 size = urb->number_of_packets;
1275         else
1276                 size = 1;
1277
1278         urb_priv = kzalloc(sizeof(struct urb_priv) +
1279                                   size * sizeof(struct xhci_td *), mem_flags);
1280         if (!urb_priv)
1281                 return -ENOMEM;
1282
1283         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1284         if (!buffer) {
1285                 kfree(urb_priv);
1286                 return -ENOMEM;
1287         }
1288
1289         for (i = 0; i < size; i++) {
1290                 urb_priv->td[i] = buffer;
1291                 buffer++;
1292         }
1293
1294         urb_priv->length = size;
1295         urb_priv->td_cnt = 0;
1296         urb->hcpriv = urb_priv;
1297
1298         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1299                 /* Check to see if the max packet size for the default control
1300                  * endpoint changed during FS device enumeration
1301                  */
1302                 if (urb->dev->speed == USB_SPEED_FULL) {
1303                         ret = xhci_check_maxpacket(xhci, slot_id,
1304                                         ep_index, urb);
1305                         if (ret < 0) {
1306                                 xhci_urb_free_priv(xhci, urb_priv);
1307                                 urb->hcpriv = NULL;
1308                                 return ret;
1309                         }
1310                 }
1311
1312                 /* We have a spinlock and interrupts disabled, so we must pass
1313                  * atomic context to this function, which may allocate memory.
1314                  */
1315                 spin_lock_irqsave(&xhci->lock, flags);
1316                 if (xhci->xhc_state & XHCI_STATE_DYING)
1317                         goto dying;
1318                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1319                                 slot_id, ep_index);
1320                 if (ret)
1321                         goto free_priv;
1322                 spin_unlock_irqrestore(&xhci->lock, flags);
1323         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1324                 spin_lock_irqsave(&xhci->lock, flags);
1325                 if (xhci->xhc_state & XHCI_STATE_DYING)
1326                         goto dying;
1327                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1328                                 EP_GETTING_STREAMS) {
1329                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1330                                         "is transitioning to using streams.\n");
1331                         ret = -EINVAL;
1332                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1333                                 EP_GETTING_NO_STREAMS) {
1334                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1335                                         "is transitioning to "
1336                                         "not having streams.\n");
1337                         ret = -EINVAL;
1338                 } else {
1339                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1340                                         slot_id, ep_index);
1341                 }
1342                 if (ret)
1343                         goto free_priv;
1344                 spin_unlock_irqrestore(&xhci->lock, flags);
1345         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1346                 spin_lock_irqsave(&xhci->lock, flags);
1347                 if (xhci->xhc_state & XHCI_STATE_DYING)
1348                         goto dying;
1349                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1350                                 slot_id, ep_index);
1351                 if (ret)
1352                         goto free_priv;
1353                 spin_unlock_irqrestore(&xhci->lock, flags);
1354         } else {
1355                 spin_lock_irqsave(&xhci->lock, flags);
1356                 if (xhci->xhc_state & XHCI_STATE_DYING)
1357                         goto dying;
1358                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1359                                 slot_id, ep_index);
1360                 if (ret)
1361                         goto free_priv;
1362                 spin_unlock_irqrestore(&xhci->lock, flags);
1363         }
1364 exit:
1365         return ret;
1366 dying:
1367         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1368                         "non-responsive xHCI host.\n",
1369                         urb->ep->desc.bEndpointAddress, urb);
1370         ret = -ESHUTDOWN;
1371 free_priv:
1372         xhci_urb_free_priv(xhci, urb_priv);
1373         urb->hcpriv = NULL;
1374         spin_unlock_irqrestore(&xhci->lock, flags);
1375         return ret;
1376 }
1377
1378 /* Get the right ring for the given URB.
1379  * If the endpoint supports streams, boundary check the URB's stream ID.
1380  * If the endpoint doesn't support streams, return the singular endpoint ring.
1381  */
1382 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1383                 struct urb *urb)
1384 {
1385         unsigned int slot_id;
1386         unsigned int ep_index;
1387         unsigned int stream_id;
1388         struct xhci_virt_ep *ep;
1389
1390         slot_id = urb->dev->slot_id;
1391         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1392         stream_id = urb->stream_id;
1393         ep = &xhci->devs[slot_id]->eps[ep_index];
1394         /* Common case: no streams */
1395         if (!(ep->ep_state & EP_HAS_STREAMS))
1396                 return ep->ring;
1397
1398         if (stream_id == 0) {
1399                 xhci_warn(xhci,
1400                                 "WARN: Slot ID %u, ep index %u has streams, "
1401                                 "but URB has no stream ID.\n",
1402                                 slot_id, ep_index);
1403                 return NULL;
1404         }
1405
1406         if (stream_id < ep->stream_info->num_streams)
1407                 return ep->stream_info->stream_rings[stream_id];
1408
1409         xhci_warn(xhci,
1410                         "WARN: Slot ID %u, ep index %u has "
1411                         "stream IDs 1 to %u allocated, "
1412                         "but stream ID %u is requested.\n",
1413                         slot_id, ep_index,
1414                         ep->stream_info->num_streams - 1,
1415                         stream_id);
1416         return NULL;
1417 }
1418
1419 /*
1420  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1421  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1422  * should pick up where it left off in the TD, unless a Set Transfer Ring
1423  * Dequeue Pointer is issued.
1424  *
1425  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1426  * the ring.  Since the ring is a contiguous structure, they can't be physically
1427  * removed.  Instead, there are two options:
1428  *
1429  *  1) If the HC is in the middle of processing the URB to be canceled, we
1430  *     simply move the ring's dequeue pointer past those TRBs using the Set
1431  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1432  *     when drivers timeout on the last submitted URB and attempt to cancel.
1433  *
1434  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1435  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1436  *     HC will need to invalidate the any TRBs it has cached after the stop
1437  *     endpoint command, as noted in the xHCI 0.95 errata.
1438  *
1439  *  3) The TD may have completed by the time the Stop Endpoint Command
1440  *     completes, so software needs to handle that case too.
1441  *
1442  * This function should protect against the TD enqueueing code ringing the
1443  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1444  * It also needs to account for multiple cancellations on happening at the same
1445  * time for the same endpoint.
1446  *
1447  * Note that this function can be called in any context, or so says
1448  * usb_hcd_unlink_urb()
1449  */
1450 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1451 {
1452         unsigned long flags;
1453         int ret, i;
1454         u32 temp;
1455         struct xhci_hcd *xhci;
1456         struct urb_priv *urb_priv;
1457         struct xhci_td *td;
1458         unsigned int ep_index;
1459         struct xhci_ring *ep_ring;
1460         struct xhci_virt_ep *ep;
1461
1462         xhci = hcd_to_xhci(hcd);
1463         spin_lock_irqsave(&xhci->lock, flags);
1464         /* Make sure the URB hasn't completed or been unlinked already */
1465         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1466         if (ret || !urb->hcpriv)
1467                 goto done;
1468         temp = xhci_readl(xhci, &xhci->op_regs->status);
1469         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1470                 xhci_dbg(xhci, "HW died, freeing TD.\n");
1471                 urb_priv = urb->hcpriv;
1472                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1473                         td = urb_priv->td[i];
1474                         if (!list_empty(&td->td_list))
1475                                 list_del_init(&td->td_list);
1476                         if (!list_empty(&td->cancelled_td_list))
1477                                 list_del_init(&td->cancelled_td_list);
1478                 }
1479
1480                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1481                 spin_unlock_irqrestore(&xhci->lock, flags);
1482                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1483                 xhci_urb_free_priv(xhci, urb_priv);
1484                 return ret;
1485         }
1486         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1487                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1488                 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1489                                 "non-responsive xHCI host.\n",
1490                                 urb->ep->desc.bEndpointAddress, urb);
1491                 /* Let the stop endpoint command watchdog timer (which set this
1492                  * state) finish cleaning up the endpoint TD lists.  We must
1493                  * have caught it in the middle of dropping a lock and giving
1494                  * back an URB.
1495                  */
1496                 goto done;
1497         }
1498
1499         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1500         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1501         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1502         if (!ep_ring) {
1503                 ret = -EINVAL;
1504                 goto done;
1505         }
1506
1507         urb_priv = urb->hcpriv;
1508         i = urb_priv->td_cnt;
1509         if (i < urb_priv->length)
1510                 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1511                                 "starting at offset 0x%llx\n",
1512                                 urb, urb->dev->devpath,
1513                                 urb->ep->desc.bEndpointAddress,
1514                                 (unsigned long long) xhci_trb_virt_to_dma(
1515                                         urb_priv->td[i]->start_seg,
1516                                         urb_priv->td[i]->first_trb));
1517
1518         for (; i < urb_priv->length; i++) {
1519                 td = urb_priv->td[i];
1520                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1521         }
1522
1523         /* Queue a stop endpoint command, but only if this is
1524          * the first cancellation to be handled.
1525          */
1526         if (!(ep->ep_state & EP_HALT_PENDING)) {
1527                 ep->ep_state |= EP_HALT_PENDING;
1528                 ep->stop_cmds_pending++;
1529                 ep->stop_cmd_timer.expires = jiffies +
1530                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1531                 add_timer(&ep->stop_cmd_timer);
1532                 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1533                 xhci_ring_cmd_db(xhci);
1534         }
1535 done:
1536         spin_unlock_irqrestore(&xhci->lock, flags);
1537         return ret;
1538 }
1539
1540 /* Drop an endpoint from a new bandwidth configuration for this device.
1541  * Only one call to this function is allowed per endpoint before
1542  * check_bandwidth() or reset_bandwidth() must be called.
1543  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1544  * add the endpoint to the schedule with possibly new parameters denoted by a
1545  * different endpoint descriptor in usb_host_endpoint.
1546  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1547  * not allowed.
1548  *
1549  * The USB core will not allow URBs to be queued to an endpoint that is being
1550  * disabled, so there's no need for mutual exclusion to protect
1551  * the xhci->devs[slot_id] structure.
1552  */
1553 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1554                 struct usb_host_endpoint *ep)
1555 {
1556         struct xhci_hcd *xhci;
1557         struct xhci_container_ctx *in_ctx, *out_ctx;
1558         struct xhci_input_control_ctx *ctrl_ctx;
1559         struct xhci_slot_ctx *slot_ctx;
1560         unsigned int last_ctx;
1561         unsigned int ep_index;
1562         struct xhci_ep_ctx *ep_ctx;
1563         u32 drop_flag;
1564         u32 new_add_flags, new_drop_flags, new_slot_info;
1565         int ret;
1566
1567         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1568         if (ret <= 0)
1569                 return ret;
1570         xhci = hcd_to_xhci(hcd);
1571         if (xhci->xhc_state & XHCI_STATE_DYING)
1572                 return -ENODEV;
1573
1574         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1575         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1576         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1577                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1578                                 __func__, drop_flag);
1579                 return 0;
1580         }
1581
1582         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1583         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1584         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1585         ep_index = xhci_get_endpoint_index(&ep->desc);
1586         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1587         /* If the HC already knows the endpoint is disabled,
1588          * or the HCD has noted it is disabled, ignore this request
1589          */
1590         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1591              cpu_to_le32(EP_STATE_DISABLED)) ||
1592             le32_to_cpu(ctrl_ctx->drop_flags) &
1593             xhci_get_endpoint_flag(&ep->desc)) {
1594                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1595                                 __func__, ep);
1596                 return 0;
1597         }
1598
1599         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1600         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1601
1602         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1603         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1604
1605         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1606         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1607         /* Update the last valid endpoint context, if we deleted the last one */
1608         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1609             LAST_CTX(last_ctx)) {
1610                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1611                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1612         }
1613         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1614
1615         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1616
1617         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1618                         (unsigned int) ep->desc.bEndpointAddress,
1619                         udev->slot_id,
1620                         (unsigned int) new_drop_flags,
1621                         (unsigned int) new_add_flags,
1622                         (unsigned int) new_slot_info);
1623         return 0;
1624 }
1625
1626 /* Add an endpoint to a new possible bandwidth configuration for this device.
1627  * Only one call to this function is allowed per endpoint before
1628  * check_bandwidth() or reset_bandwidth() must be called.
1629  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1630  * add the endpoint to the schedule with possibly new parameters denoted by a
1631  * different endpoint descriptor in usb_host_endpoint.
1632  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1633  * not allowed.
1634  *
1635  * The USB core will not allow URBs to be queued to an endpoint until the
1636  * configuration or alt setting is installed in the device, so there's no need
1637  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1638  */
1639 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1640                 struct usb_host_endpoint *ep)
1641 {
1642         struct xhci_hcd *xhci;
1643         struct xhci_container_ctx *in_ctx, *out_ctx;
1644         unsigned int ep_index;
1645         struct xhci_slot_ctx *slot_ctx;
1646         struct xhci_input_control_ctx *ctrl_ctx;
1647         u32 added_ctxs;
1648         unsigned int last_ctx;
1649         u32 new_add_flags, new_drop_flags, new_slot_info;
1650         struct xhci_virt_device *virt_dev;
1651         int ret = 0;
1652
1653         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1654         if (ret <= 0) {
1655                 /* So we won't queue a reset ep command for a root hub */
1656                 ep->hcpriv = NULL;
1657                 return ret;
1658         }
1659         xhci = hcd_to_xhci(hcd);
1660         if (xhci->xhc_state & XHCI_STATE_DYING)
1661                 return -ENODEV;
1662
1663         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1664         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1665         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1666                 /* FIXME when we have to issue an evaluate endpoint command to
1667                  * deal with ep0 max packet size changing once we get the
1668                  * descriptors
1669                  */
1670                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1671                                 __func__, added_ctxs);
1672                 return 0;
1673         }
1674
1675         virt_dev = xhci->devs[udev->slot_id];
1676         in_ctx = virt_dev->in_ctx;
1677         out_ctx = virt_dev->out_ctx;
1678         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1679         ep_index = xhci_get_endpoint_index(&ep->desc);
1680
1681         /* If this endpoint is already in use, and the upper layers are trying
1682          * to add it again without dropping it, reject the addition.
1683          */
1684         if (virt_dev->eps[ep_index].ring &&
1685                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1686                                 xhci_get_endpoint_flag(&ep->desc))) {
1687                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1688                                 "without dropping it.\n",
1689                                 (unsigned int) ep->desc.bEndpointAddress);
1690                 return -EINVAL;
1691         }
1692
1693         /* If the HCD has already noted the endpoint is enabled,
1694          * ignore this request.
1695          */
1696         if (le32_to_cpu(ctrl_ctx->add_flags) &
1697             xhci_get_endpoint_flag(&ep->desc)) {
1698                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1699                                 __func__, ep);
1700                 return 0;
1701         }
1702
1703         /*
1704          * Configuration and alternate setting changes must be done in
1705          * process context, not interrupt context (or so documenation
1706          * for usb_set_interface() and usb_set_configuration() claim).
1707          */
1708         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1709                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1710                                 __func__, ep->desc.bEndpointAddress);
1711                 return -ENOMEM;
1712         }
1713
1714         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1715         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1716
1717         /* If xhci_endpoint_disable() was called for this endpoint, but the
1718          * xHC hasn't been notified yet through the check_bandwidth() call,
1719          * this re-adds a new state for the endpoint from the new endpoint
1720          * descriptors.  We must drop and re-add this endpoint, so we leave the
1721          * drop flags alone.
1722          */
1723         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1724
1725         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1726         /* Update the last valid endpoint context, if we just added one past */
1727         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1728             LAST_CTX(last_ctx)) {
1729                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1730                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1731         }
1732         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1733
1734         /* Store the usb_device pointer for later use */
1735         ep->hcpriv = udev;
1736
1737         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1738                         (unsigned int) ep->desc.bEndpointAddress,
1739                         udev->slot_id,
1740                         (unsigned int) new_drop_flags,
1741                         (unsigned int) new_add_flags,
1742                         (unsigned int) new_slot_info);
1743         return 0;
1744 }
1745
1746 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1747 {
1748         struct xhci_input_control_ctx *ctrl_ctx;
1749         struct xhci_ep_ctx *ep_ctx;
1750         struct xhci_slot_ctx *slot_ctx;
1751         int i;
1752
1753         /* When a device's add flag and drop flag are zero, any subsequent
1754          * configure endpoint command will leave that endpoint's state
1755          * untouched.  Make sure we don't leave any old state in the input
1756          * endpoint contexts.
1757          */
1758         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1759         ctrl_ctx->drop_flags = 0;
1760         ctrl_ctx->add_flags = 0;
1761         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1762         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1763         /* Endpoint 0 is always valid */
1764         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1765         for (i = 1; i < 31; ++i) {
1766                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1767                 ep_ctx->ep_info = 0;
1768                 ep_ctx->ep_info2 = 0;
1769                 ep_ctx->deq = 0;
1770                 ep_ctx->tx_info = 0;
1771         }
1772 }
1773
1774 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1775                 struct usb_device *udev, u32 *cmd_status)
1776 {
1777         int ret;
1778
1779         switch (*cmd_status) {
1780         case COMP_ENOMEM:
1781                 dev_warn(&udev->dev, "Not enough host controller resources "
1782                                 "for new device state.\n");
1783                 ret = -ENOMEM;
1784                 /* FIXME: can we allocate more resources for the HC? */
1785                 break;
1786         case COMP_BW_ERR:
1787         case COMP_2ND_BW_ERR:
1788                 dev_warn(&udev->dev, "Not enough bandwidth "
1789                                 "for new device state.\n");
1790                 ret = -ENOSPC;
1791                 /* FIXME: can we go back to the old state? */
1792                 break;
1793         case COMP_TRB_ERR:
1794                 /* the HCD set up something wrong */
1795                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1796                                 "add flag = 1, "
1797                                 "and endpoint is not disabled.\n");
1798                 ret = -EINVAL;
1799                 break;
1800         case COMP_DEV_ERR:
1801                 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1802                                 "configure command.\n");
1803                 ret = -ENODEV;
1804                 break;
1805         case COMP_SUCCESS:
1806                 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1807                 ret = 0;
1808                 break;
1809         default:
1810                 xhci_err(xhci, "ERROR: unexpected command completion "
1811                                 "code 0x%x.\n", *cmd_status);
1812                 ret = -EINVAL;
1813                 break;
1814         }
1815         return ret;
1816 }
1817
1818 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1819                 struct usb_device *udev, u32 *cmd_status)
1820 {
1821         int ret;
1822         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1823
1824         switch (*cmd_status) {
1825         case COMP_EINVAL:
1826                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1827                                 "context command.\n");
1828                 ret = -EINVAL;
1829                 break;
1830         case COMP_EBADSLT:
1831                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1832                                 "evaluate context command.\n");
1833                 ret = -EINVAL;
1834                 break;
1835         case COMP_CTX_STATE:
1836                 dev_warn(&udev->dev, "WARN: invalid context state for "
1837                                 "evaluate context command.\n");
1838                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1839                 ret = -EINVAL;
1840                 break;
1841         case COMP_DEV_ERR:
1842                 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1843                                 "context command.\n");
1844                 ret = -ENODEV;
1845                 break;
1846         case COMP_MEL_ERR:
1847                 /* Max Exit Latency too large error */
1848                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1849                 ret = -EINVAL;
1850                 break;
1851         case COMP_SUCCESS:
1852                 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1853                 ret = 0;
1854                 break;
1855         default:
1856                 xhci_err(xhci, "ERROR: unexpected command completion "
1857                                 "code 0x%x.\n", *cmd_status);
1858                 ret = -EINVAL;
1859                 break;
1860         }
1861         return ret;
1862 }
1863
1864 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1865                 struct xhci_container_ctx *in_ctx)
1866 {
1867         struct xhci_input_control_ctx *ctrl_ctx;
1868         u32 valid_add_flags;
1869         u32 valid_drop_flags;
1870
1871         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1872         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1873          * (bit 1).  The default control endpoint is added during the Address
1874          * Device command and is never removed until the slot is disabled.
1875          */
1876         valid_add_flags = ctrl_ctx->add_flags >> 2;
1877         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1878
1879         /* Use hweight32 to count the number of ones in the add flags, or
1880          * number of endpoints added.  Don't count endpoints that are changed
1881          * (both added and dropped).
1882          */
1883         return hweight32(valid_add_flags) -
1884                 hweight32(valid_add_flags & valid_drop_flags);
1885 }
1886
1887 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1888                 struct xhci_container_ctx *in_ctx)
1889 {
1890         struct xhci_input_control_ctx *ctrl_ctx;
1891         u32 valid_add_flags;
1892         u32 valid_drop_flags;
1893
1894         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1895         valid_add_flags = ctrl_ctx->add_flags >> 2;
1896         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1897
1898         return hweight32(valid_drop_flags) -
1899                 hweight32(valid_add_flags & valid_drop_flags);
1900 }
1901
1902 /*
1903  * We need to reserve the new number of endpoints before the configure endpoint
1904  * command completes.  We can't subtract the dropped endpoints from the number
1905  * of active endpoints until the command completes because we can oversubscribe
1906  * the host in this case:
1907  *
1908  *  - the first configure endpoint command drops more endpoints than it adds
1909  *  - a second configure endpoint command that adds more endpoints is queued
1910  *  - the first configure endpoint command fails, so the config is unchanged
1911  *  - the second command may succeed, even though there isn't enough resources
1912  *
1913  * Must be called with xhci->lock held.
1914  */
1915 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1916                 struct xhci_container_ctx *in_ctx)
1917 {
1918         u32 added_eps;
1919
1920         added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1921         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1922                 xhci_dbg(xhci, "Not enough ep ctxs: "
1923                                 "%u active, need to add %u, limit is %u.\n",
1924                                 xhci->num_active_eps, added_eps,
1925                                 xhci->limit_active_eps);
1926                 return -ENOMEM;
1927         }
1928         xhci->num_active_eps += added_eps;
1929         xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1930                         xhci->num_active_eps);
1931         return 0;
1932 }
1933
1934 /*
1935  * The configure endpoint was failed by the xHC for some other reason, so we
1936  * need to revert the resources that failed configuration would have used.
1937  *
1938  * Must be called with xhci->lock held.
1939  */
1940 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1941                 struct xhci_container_ctx *in_ctx)
1942 {
1943         u32 num_failed_eps;
1944
1945         num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1946         xhci->num_active_eps -= num_failed_eps;
1947         xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1948                         num_failed_eps,
1949                         xhci->num_active_eps);
1950 }
1951
1952 /*
1953  * Now that the command has completed, clean up the active endpoint count by
1954  * subtracting out the endpoints that were dropped (but not changed).
1955  *
1956  * Must be called with xhci->lock held.
1957  */
1958 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1959                 struct xhci_container_ctx *in_ctx)
1960 {
1961         u32 num_dropped_eps;
1962
1963         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1964         xhci->num_active_eps -= num_dropped_eps;
1965         if (num_dropped_eps)
1966                 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1967                                 num_dropped_eps,
1968                                 xhci->num_active_eps);
1969 }
1970
1971 static unsigned int xhci_get_block_size(struct usb_device *udev)
1972 {
1973         switch (udev->speed) {
1974         case USB_SPEED_LOW:
1975         case USB_SPEED_FULL:
1976                 return FS_BLOCK;
1977         case USB_SPEED_HIGH:
1978                 return HS_BLOCK;
1979         case USB_SPEED_SUPER:
1980                 return SS_BLOCK;
1981         case USB_SPEED_UNKNOWN:
1982         case USB_SPEED_WIRELESS:
1983         default:
1984                 /* Should never happen */
1985                 return 1;
1986         }
1987 }
1988
1989 static unsigned int
1990 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1991 {
1992         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1993                 return LS_OVERHEAD;
1994         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1995                 return FS_OVERHEAD;
1996         return HS_OVERHEAD;
1997 }
1998
1999 /* If we are changing a LS/FS device under a HS hub,
2000  * make sure (if we are activating a new TT) that the HS bus has enough
2001  * bandwidth for this new TT.
2002  */
2003 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2004                 struct xhci_virt_device *virt_dev,
2005                 int old_active_eps)
2006 {
2007         struct xhci_interval_bw_table *bw_table;
2008         struct xhci_tt_bw_info *tt_info;
2009
2010         /* Find the bandwidth table for the root port this TT is attached to. */
2011         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2012         tt_info = virt_dev->tt_info;
2013         /* If this TT already had active endpoints, the bandwidth for this TT
2014          * has already been added.  Removing all periodic endpoints (and thus
2015          * making the TT enactive) will only decrease the bandwidth used.
2016          */
2017         if (old_active_eps)
2018                 return 0;
2019         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2020                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2021                         return -ENOMEM;
2022                 return 0;
2023         }
2024         /* Not sure why we would have no new active endpoints...
2025          *
2026          * Maybe because of an Evaluate Context change for a hub update or a
2027          * control endpoint 0 max packet size change?
2028          * FIXME: skip the bandwidth calculation in that case.
2029          */
2030         return 0;
2031 }
2032
2033 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2034                 struct xhci_virt_device *virt_dev)
2035 {
2036         unsigned int bw_reserved;
2037
2038         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2039         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2040                 return -ENOMEM;
2041
2042         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2043         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2044                 return -ENOMEM;
2045
2046         return 0;
2047 }
2048
2049 /*
2050  * This algorithm is a very conservative estimate of the worst-case scheduling
2051  * scenario for any one interval.  The hardware dynamically schedules the
2052  * packets, so we can't tell which microframe could be the limiting factor in
2053  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2054  *
2055  * Obviously, we can't solve an NP complete problem to find the minimum worst
2056  * case scenario.  Instead, we come up with an estimate that is no less than
2057  * the worst case bandwidth used for any one microframe, but may be an
2058  * over-estimate.
2059  *
2060  * We walk the requirements for each endpoint by interval, starting with the
2061  * smallest interval, and place packets in the schedule where there is only one
2062  * possible way to schedule packets for that interval.  In order to simplify
2063  * this algorithm, we record the largest max packet size for each interval, and
2064  * assume all packets will be that size.
2065  *
2066  * For interval 0, we obviously must schedule all packets for each interval.
2067  * The bandwidth for interval 0 is just the amount of data to be transmitted
2068  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2069  * the number of packets).
2070  *
2071  * For interval 1, we have two possible microframes to schedule those packets
2072  * in.  For this algorithm, if we can schedule the same number of packets for
2073  * each possible scheduling opportunity (each microframe), we will do so.  The
2074  * remaining number of packets will be saved to be transmitted in the gaps in
2075  * the next interval's scheduling sequence.
2076  *
2077  * As we move those remaining packets to be scheduled with interval 2 packets,
2078  * we have to double the number of remaining packets to transmit.  This is
2079  * because the intervals are actually powers of 2, and we would be transmitting
2080  * the previous interval's packets twice in this interval.  We also have to be
2081  * sure that when we look at the largest max packet size for this interval, we
2082  * also look at the largest max packet size for the remaining packets and take
2083  * the greater of the two.
2084  *
2085  * The algorithm continues to evenly distribute packets in each scheduling
2086  * opportunity, and push the remaining packets out, until we get to the last
2087  * interval.  Then those packets and their associated overhead are just added
2088  * to the bandwidth used.
2089  */
2090 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2091                 struct xhci_virt_device *virt_dev,
2092                 int old_active_eps)
2093 {
2094         unsigned int bw_reserved;
2095         unsigned int max_bandwidth;
2096         unsigned int bw_used;
2097         unsigned int block_size;
2098         struct xhci_interval_bw_table *bw_table;
2099         unsigned int packet_size = 0;
2100         unsigned int overhead = 0;
2101         unsigned int packets_transmitted = 0;
2102         unsigned int packets_remaining = 0;
2103         unsigned int i;
2104
2105         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2106                 return xhci_check_ss_bw(xhci, virt_dev);
2107
2108         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2109                 max_bandwidth = HS_BW_LIMIT;
2110                 /* Convert percent of bus BW reserved to blocks reserved */
2111                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2112         } else {
2113                 max_bandwidth = FS_BW_LIMIT;
2114                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2115         }
2116
2117         bw_table = virt_dev->bw_table;
2118         /* We need to translate the max packet size and max ESIT payloads into
2119          * the units the hardware uses.
2120          */
2121         block_size = xhci_get_block_size(virt_dev->udev);
2122
2123         /* If we are manipulating a LS/FS device under a HS hub, double check
2124          * that the HS bus has enough bandwidth if we are activing a new TT.
2125          */
2126         if (virt_dev->tt_info) {
2127                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2128                                 virt_dev->real_port);
2129                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2130                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2131                                         "newly activated TT.\n");
2132                         return -ENOMEM;
2133                 }
2134                 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2135                                 virt_dev->tt_info->slot_id,
2136                                 virt_dev->tt_info->ttport);
2137         } else {
2138                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2139                                 virt_dev->real_port);
2140         }
2141
2142         /* Add in how much bandwidth will be used for interval zero, or the
2143          * rounded max ESIT payload + number of packets * largest overhead.
2144          */
2145         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2146                 bw_table->interval_bw[0].num_packets *
2147                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2148
2149         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2150                 unsigned int bw_added;
2151                 unsigned int largest_mps;
2152                 unsigned int interval_overhead;
2153
2154                 /*
2155                  * How many packets could we transmit in this interval?
2156                  * If packets didn't fit in the previous interval, we will need
2157                  * to transmit that many packets twice within this interval.
2158                  */
2159                 packets_remaining = 2 * packets_remaining +
2160                         bw_table->interval_bw[i].num_packets;
2161
2162                 /* Find the largest max packet size of this or the previous
2163                  * interval.
2164                  */
2165                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2166                         largest_mps = 0;
2167                 else {
2168                         struct xhci_virt_ep *virt_ep;
2169                         struct list_head *ep_entry;
2170
2171                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2172                         virt_ep = list_entry(ep_entry,
2173                                         struct xhci_virt_ep, bw_endpoint_list);
2174                         /* Convert to blocks, rounding up */
2175                         largest_mps = DIV_ROUND_UP(
2176                                         virt_ep->bw_info.max_packet_size,
2177                                         block_size);
2178                 }
2179                 if (largest_mps > packet_size)
2180                         packet_size = largest_mps;
2181
2182                 /* Use the larger overhead of this or the previous interval. */
2183                 interval_overhead = xhci_get_largest_overhead(
2184                                 &bw_table->interval_bw[i]);
2185                 if (interval_overhead > overhead)
2186                         overhead = interval_overhead;
2187
2188                 /* How many packets can we evenly distribute across
2189                  * (1 << (i + 1)) possible scheduling opportunities?
2190                  */
2191                 packets_transmitted = packets_remaining >> (i + 1);
2192
2193                 /* Add in the bandwidth used for those scheduled packets */
2194                 bw_added = packets_transmitted * (overhead + packet_size);
2195
2196                 /* How many packets do we have remaining to transmit? */
2197                 packets_remaining = packets_remaining % (1 << (i + 1));
2198
2199                 /* What largest max packet size should those packets have? */
2200                 /* If we've transmitted all packets, don't carry over the
2201                  * largest packet size.
2202                  */
2203                 if (packets_remaining == 0) {
2204                         packet_size = 0;
2205                         overhead = 0;
2206                 } else if (packets_transmitted > 0) {
2207                         /* Otherwise if we do have remaining packets, and we've
2208                          * scheduled some packets in this interval, take the
2209                          * largest max packet size from endpoints with this
2210                          * interval.
2211                          */
2212                         packet_size = largest_mps;
2213                         overhead = interval_overhead;
2214                 }
2215                 /* Otherwise carry over packet_size and overhead from the last
2216                  * time we had a remainder.
2217                  */
2218                 bw_used += bw_added;
2219                 if (bw_used > max_bandwidth) {
2220                         xhci_warn(xhci, "Not enough bandwidth. "
2221                                         "Proposed: %u, Max: %u\n",
2222                                 bw_used, max_bandwidth);
2223                         return -ENOMEM;
2224                 }
2225         }
2226         /*
2227          * Ok, we know we have some packets left over after even-handedly
2228          * scheduling interval 15.  We don't know which microframes they will
2229          * fit into, so we over-schedule and say they will be scheduled every
2230          * microframe.
2231          */
2232         if (packets_remaining > 0)
2233                 bw_used += overhead + packet_size;
2234
2235         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2236                 unsigned int port_index = virt_dev->real_port - 1;
2237
2238                 /* OK, we're manipulating a HS device attached to a
2239                  * root port bandwidth domain.  Include the number of active TTs
2240                  * in the bandwidth used.
2241                  */
2242                 bw_used += TT_HS_OVERHEAD *
2243                         xhci->rh_bw[port_index].num_active_tts;
2244         }
2245
2246         xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2247                 "Available: %u " "percent\n",
2248                 bw_used, max_bandwidth, bw_reserved,
2249                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2250                 max_bandwidth);
2251
2252         bw_used += bw_reserved;
2253         if (bw_used > max_bandwidth) {
2254                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2255                                 bw_used, max_bandwidth);
2256                 return -ENOMEM;
2257         }
2258
2259         bw_table->bw_used = bw_used;
2260         return 0;
2261 }
2262
2263 static bool xhci_is_async_ep(unsigned int ep_type)
2264 {
2265         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2266                                         ep_type != ISOC_IN_EP &&
2267                                         ep_type != INT_IN_EP);
2268 }
2269
2270 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2271 {
2272         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2273 }
2274
2275 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2276 {
2277         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2278
2279         if (ep_bw->ep_interval == 0)
2280                 return SS_OVERHEAD_BURST +
2281                         (ep_bw->mult * ep_bw->num_packets *
2282                                         (SS_OVERHEAD + mps));
2283         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2284                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2285                                 1 << ep_bw->ep_interval);
2286
2287 }
2288
2289 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2290                 struct xhci_bw_info *ep_bw,
2291                 struct xhci_interval_bw_table *bw_table,
2292                 struct usb_device *udev,
2293                 struct xhci_virt_ep *virt_ep,
2294                 struct xhci_tt_bw_info *tt_info)
2295 {
2296         struct xhci_interval_bw *interval_bw;
2297         int normalized_interval;
2298
2299         if (xhci_is_async_ep(ep_bw->type))
2300                 return;
2301
2302         if (udev->speed == USB_SPEED_SUPER) {
2303                 if (xhci_is_sync_in_ep(ep_bw->type))
2304                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2305                                 xhci_get_ss_bw_consumed(ep_bw);
2306                 else
2307                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2308                                 xhci_get_ss_bw_consumed(ep_bw);
2309                 return;
2310         }
2311
2312         /* SuperSpeed endpoints never get added to intervals in the table, so
2313          * this check is only valid for HS/FS/LS devices.
2314          */
2315         if (list_empty(&virt_ep->bw_endpoint_list))
2316                 return;
2317         /* For LS/FS devices, we need to translate the interval expressed in
2318          * microframes to frames.
2319          */
2320         if (udev->speed == USB_SPEED_HIGH)
2321                 normalized_interval = ep_bw->ep_interval;
2322         else
2323                 normalized_interval = ep_bw->ep_interval - 3;
2324
2325         if (normalized_interval == 0)
2326                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2327         interval_bw = &bw_table->interval_bw[normalized_interval];
2328         interval_bw->num_packets -= ep_bw->num_packets;
2329         switch (udev->speed) {
2330         case USB_SPEED_LOW:
2331                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2332                 break;
2333         case USB_SPEED_FULL:
2334                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2335                 break;
2336         case USB_SPEED_HIGH:
2337                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2338                 break;
2339         case USB_SPEED_SUPER:
2340         case USB_SPEED_UNKNOWN:
2341         case USB_SPEED_WIRELESS:
2342                 /* Should never happen because only LS/FS/HS endpoints will get
2343                  * added to the endpoint list.
2344                  */
2345                 return;
2346         }
2347         if (tt_info)
2348                 tt_info->active_eps -= 1;
2349         list_del_init(&virt_ep->bw_endpoint_list);
2350 }
2351
2352 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2353                 struct xhci_bw_info *ep_bw,
2354                 struct xhci_interval_bw_table *bw_table,
2355                 struct usb_device *udev,
2356                 struct xhci_virt_ep *virt_ep,
2357                 struct xhci_tt_bw_info *tt_info)
2358 {
2359         struct xhci_interval_bw *interval_bw;
2360         struct xhci_virt_ep *smaller_ep;
2361         int normalized_interval;
2362
2363         if (xhci_is_async_ep(ep_bw->type))
2364                 return;
2365
2366         if (udev->speed == USB_SPEED_SUPER) {
2367                 if (xhci_is_sync_in_ep(ep_bw->type))
2368                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2369                                 xhci_get_ss_bw_consumed(ep_bw);
2370                 else
2371                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2372                                 xhci_get_ss_bw_consumed(ep_bw);
2373                 return;
2374         }
2375
2376         /* For LS/FS devices, we need to translate the interval expressed in
2377          * microframes to frames.
2378          */
2379         if (udev->speed == USB_SPEED_HIGH)
2380                 normalized_interval = ep_bw->ep_interval;
2381         else
2382                 normalized_interval = ep_bw->ep_interval - 3;
2383
2384         if (normalized_interval == 0)
2385                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2386         interval_bw = &bw_table->interval_bw[normalized_interval];
2387         interval_bw->num_packets += ep_bw->num_packets;
2388         switch (udev->speed) {
2389         case USB_SPEED_LOW:
2390                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2391                 break;
2392         case USB_SPEED_FULL:
2393                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2394                 break;
2395         case USB_SPEED_HIGH:
2396                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2397                 break;
2398         case USB_SPEED_SUPER:
2399         case USB_SPEED_UNKNOWN:
2400         case USB_SPEED_WIRELESS:
2401                 /* Should never happen because only LS/FS/HS endpoints will get
2402                  * added to the endpoint list.
2403                  */
2404                 return;
2405         }
2406
2407         if (tt_info)
2408                 tt_info->active_eps += 1;
2409         /* Insert the endpoint into the list, largest max packet size first. */
2410         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2411                         bw_endpoint_list) {
2412                 if (ep_bw->max_packet_size >=
2413                                 smaller_ep->bw_info.max_packet_size) {
2414                         /* Add the new ep before the smaller endpoint */
2415                         list_add_tail(&virt_ep->bw_endpoint_list,
2416                                         &smaller_ep->bw_endpoint_list);
2417                         return;
2418                 }
2419         }
2420         /* Add the new endpoint at the end of the list. */
2421         list_add_tail(&virt_ep->bw_endpoint_list,
2422                         &interval_bw->endpoints);
2423 }
2424
2425 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2426                 struct xhci_virt_device *virt_dev,
2427                 int old_active_eps)
2428 {
2429         struct xhci_root_port_bw_info *rh_bw_info;
2430         if (!virt_dev->tt_info)
2431                 return;
2432
2433         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2434         if (old_active_eps == 0 &&
2435                                 virt_dev->tt_info->active_eps != 0) {
2436                 rh_bw_info->num_active_tts += 1;
2437                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2438         } else if (old_active_eps != 0 &&
2439                                 virt_dev->tt_info->active_eps == 0) {
2440                 rh_bw_info->num_active_tts -= 1;
2441                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2442         }
2443 }
2444
2445 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2446                 struct xhci_virt_device *virt_dev,
2447                 struct xhci_container_ctx *in_ctx)
2448 {
2449         struct xhci_bw_info ep_bw_info[31];
2450         int i;
2451         struct xhci_input_control_ctx *ctrl_ctx;
2452         int old_active_eps = 0;
2453
2454         if (virt_dev->tt_info)
2455                 old_active_eps = virt_dev->tt_info->active_eps;
2456
2457         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2458
2459         for (i = 0; i < 31; i++) {
2460                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2461                         continue;
2462
2463                 /* Make a copy of the BW info in case we need to revert this */
2464                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2465                                 sizeof(ep_bw_info[i]));
2466                 /* Drop the endpoint from the interval table if the endpoint is
2467                  * being dropped or changed.
2468                  */
2469                 if (EP_IS_DROPPED(ctrl_ctx, i))
2470                         xhci_drop_ep_from_interval_table(xhci,
2471                                         &virt_dev->eps[i].bw_info,
2472                                         virt_dev->bw_table,
2473                                         virt_dev->udev,
2474                                         &virt_dev->eps[i],
2475                                         virt_dev->tt_info);
2476         }
2477         /* Overwrite the information stored in the endpoints' bw_info */
2478         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2479         for (i = 0; i < 31; i++) {
2480                 /* Add any changed or added endpoints to the interval table */
2481                 if (EP_IS_ADDED(ctrl_ctx, i))
2482                         xhci_add_ep_to_interval_table(xhci,
2483                                         &virt_dev->eps[i].bw_info,
2484                                         virt_dev->bw_table,
2485                                         virt_dev->udev,
2486                                         &virt_dev->eps[i],
2487                                         virt_dev->tt_info);
2488         }
2489
2490         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2491                 /* Ok, this fits in the bandwidth we have.
2492                  * Update the number of active TTs.
2493                  */
2494                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2495                 return 0;
2496         }
2497
2498         /* We don't have enough bandwidth for this, revert the stored info. */
2499         for (i = 0; i < 31; i++) {
2500                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2501                         continue;
2502
2503                 /* Drop the new copies of any added or changed endpoints from
2504                  * the interval table.
2505                  */
2506                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2507                         xhci_drop_ep_from_interval_table(xhci,
2508                                         &virt_dev->eps[i].bw_info,
2509                                         virt_dev->bw_table,
2510                                         virt_dev->udev,
2511                                         &virt_dev->eps[i],
2512                                         virt_dev->tt_info);
2513                 }
2514                 /* Revert the endpoint back to its old information */
2515                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2516                                 sizeof(ep_bw_info[i]));
2517                 /* Add any changed or dropped endpoints back into the table */
2518                 if (EP_IS_DROPPED(ctrl_ctx, i))
2519                         xhci_add_ep_to_interval_table(xhci,
2520                                         &virt_dev->eps[i].bw_info,
2521                                         virt_dev->bw_table,
2522                                         virt_dev->udev,
2523                                         &virt_dev->eps[i],
2524                                         virt_dev->tt_info);
2525         }
2526         return -ENOMEM;
2527 }
2528
2529
2530 /* Issue a configure endpoint command or evaluate context command
2531  * and wait for it to finish.
2532  */
2533 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2534                 struct usb_device *udev,
2535                 struct xhci_command *command,
2536                 bool ctx_change, bool must_succeed)
2537 {
2538         int ret;
2539         int timeleft;
2540         unsigned long flags;
2541         struct xhci_container_ctx *in_ctx;
2542         struct completion *cmd_completion;
2543         u32 *cmd_status;
2544         struct xhci_virt_device *virt_dev;
2545         union xhci_trb *cmd_trb;
2546
2547         spin_lock_irqsave(&xhci->lock, flags);
2548         virt_dev = xhci->devs[udev->slot_id];
2549
2550         if (command)
2551                 in_ctx = command->in_ctx;
2552         else
2553                 in_ctx = virt_dev->in_ctx;
2554
2555         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2556                         xhci_reserve_host_resources(xhci, in_ctx)) {
2557                 spin_unlock_irqrestore(&xhci->lock, flags);
2558                 xhci_warn(xhci, "Not enough host resources, "
2559                                 "active endpoint contexts = %u\n",
2560                                 xhci->num_active_eps);
2561                 return -ENOMEM;
2562         }
2563         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2564                         xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2565                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2566                         xhci_free_host_resources(xhci, in_ctx);
2567                 spin_unlock_irqrestore(&xhci->lock, flags);
2568                 xhci_warn(xhci, "Not enough bandwidth\n");
2569                 return -ENOMEM;
2570         }
2571
2572         if (command) {
2573                 cmd_completion = command->completion;
2574                 cmd_status = &command->status;
2575                 command->command_trb = xhci->cmd_ring->enqueue;
2576
2577                 /* Enqueue pointer can be left pointing to the link TRB,
2578                  * we must handle that
2579                  */
2580                 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2581                         command->command_trb =
2582                                 xhci->cmd_ring->enq_seg->next->trbs;
2583
2584                 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2585         } else {
2586                 cmd_completion = &virt_dev->cmd_completion;
2587                 cmd_status = &virt_dev->cmd_status;
2588         }
2589         init_completion(cmd_completion);
2590
2591         cmd_trb = xhci->cmd_ring->dequeue;
2592         if (!ctx_change)
2593                 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2594                                 udev->slot_id, must_succeed);
2595         else
2596                 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2597                                 udev->slot_id, must_succeed);
2598         if (ret < 0) {
2599                 if (command)
2600                         list_del(&command->cmd_list);
2601                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2602                         xhci_free_host_resources(xhci, in_ctx);
2603                 spin_unlock_irqrestore(&xhci->lock, flags);
2604                 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2605                 return -ENOMEM;
2606         }
2607         xhci_ring_cmd_db(xhci);
2608         spin_unlock_irqrestore(&xhci->lock, flags);
2609
2610         /* Wait for the configure endpoint command to complete */
2611         timeleft = wait_for_completion_interruptible_timeout(
2612                         cmd_completion,
2613                         XHCI_CMD_DEFAULT_TIMEOUT);
2614         if (timeleft <= 0) {
2615                 xhci_warn(xhci, "%s while waiting for %s command\n",
2616                                 timeleft == 0 ? "Timeout" : "Signal",
2617                                 ctx_change == 0 ?
2618                                         "configure endpoint" :
2619                                         "evaluate context");
2620                 /* cancel the configure endpoint command */
2621                 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2622                 if (ret < 0)
2623                         return ret;
2624                 return -ETIME;
2625         }
2626
2627         if (!ctx_change)
2628                 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2629         else
2630                 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2631
2632         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2633                 spin_lock_irqsave(&xhci->lock, flags);
2634                 /* If the command failed, remove the reserved resources.
2635                  * Otherwise, clean up the estimate to include dropped eps.
2636                  */
2637                 if (ret)
2638                         xhci_free_host_resources(xhci, in_ctx);
2639                 else
2640                         xhci_finish_resource_reservation(xhci, in_ctx);
2641                 spin_unlock_irqrestore(&xhci->lock, flags);
2642         }
2643         return ret;
2644 }
2645
2646 /* Called after one or more calls to xhci_add_endpoint() or
2647  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2648  * to call xhci_reset_bandwidth().
2649  *
2650  * Since we are in the middle of changing either configuration or
2651  * installing a new alt setting, the USB core won't allow URBs to be
2652  * enqueued for any endpoint on the old config or interface.  Nothing
2653  * else should be touching the xhci->devs[slot_id] structure, so we
2654  * don't need to take the xhci->lock for manipulating that.
2655  */
2656 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2657 {
2658         int i;
2659         int ret = 0;
2660         struct xhci_hcd *xhci;
2661         struct xhci_virt_device *virt_dev;
2662         struct xhci_input_control_ctx *ctrl_ctx;
2663         struct xhci_slot_ctx *slot_ctx;
2664
2665         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2666         if (ret <= 0)
2667                 return ret;
2668         xhci = hcd_to_xhci(hcd);
2669         if (xhci->xhc_state & XHCI_STATE_DYING)
2670                 return -ENODEV;
2671
2672         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2673         virt_dev = xhci->devs[udev->slot_id];
2674
2675         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2676         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2677         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2678         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2679         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2680
2681         /* Don't issue the command if there's no endpoints to update. */
2682         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2683                         ctrl_ctx->drop_flags == 0)
2684                 return 0;
2685
2686         xhci_dbg(xhci, "New Input Control Context:\n");
2687         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2688         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2689                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2690
2691         ret = xhci_configure_endpoint(xhci, udev, NULL,
2692                         false, false);
2693         if (ret) {
2694                 /* Callee should call reset_bandwidth() */
2695                 return ret;
2696         }
2697
2698         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2699         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2700                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2701
2702         /* Free any rings that were dropped, but not changed. */
2703         for (i = 1; i < 31; ++i) {
2704                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2705                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2706                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2707         }
2708         xhci_zero_in_ctx(xhci, virt_dev);
2709         /*
2710          * Install any rings for completely new endpoints or changed endpoints,
2711          * and free or cache any old rings from changed endpoints.
2712          */
2713         for (i = 1; i < 31; ++i) {
2714                 if (!virt_dev->eps[i].new_ring)
2715                         continue;
2716                 /* Only cache or free the old ring if it exists.
2717                  * It may not if this is the first add of an endpoint.
2718                  */
2719                 if (virt_dev->eps[i].ring) {
2720                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2721                 }
2722                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2723                 virt_dev->eps[i].new_ring = NULL;
2724         }
2725
2726         return ret;
2727 }
2728
2729 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2730 {
2731         struct xhci_hcd *xhci;
2732         struct xhci_virt_device *virt_dev;
2733         int i, ret;
2734
2735         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2736         if (ret <= 0)
2737                 return;
2738         xhci = hcd_to_xhci(hcd);
2739
2740         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2741         virt_dev = xhci->devs[udev->slot_id];
2742         /* Free any rings allocated for added endpoints */
2743         for (i = 0; i < 31; ++i) {
2744                 if (virt_dev->eps[i].new_ring) {
2745                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2746                         virt_dev->eps[i].new_ring = NULL;
2747                 }
2748         }
2749         xhci_zero_in_ctx(xhci, virt_dev);
2750 }
2751
2752 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2753                 struct xhci_container_ctx *in_ctx,
2754                 struct xhci_container_ctx *out_ctx,
2755                 u32 add_flags, u32 drop_flags)
2756 {
2757         struct xhci_input_control_ctx *ctrl_ctx;
2758         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2759         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2760         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2761         xhci_slot_copy(xhci, in_ctx, out_ctx);
2762         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2763
2764         xhci_dbg(xhci, "Input Context:\n");
2765         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2766 }
2767
2768 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2769                 unsigned int slot_id, unsigned int ep_index,
2770                 struct xhci_dequeue_state *deq_state)
2771 {
2772         struct xhci_container_ctx *in_ctx;
2773         struct xhci_ep_ctx *ep_ctx;
2774         u32 added_ctxs;
2775         dma_addr_t addr;
2776
2777         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2778                         xhci->devs[slot_id]->out_ctx, ep_index);
2779         in_ctx = xhci->devs[slot_id]->in_ctx;
2780         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2781         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2782                         deq_state->new_deq_ptr);
2783         if (addr == 0) {
2784                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2785                                 "reset ep command\n");
2786                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2787                                 deq_state->new_deq_seg,
2788                                 deq_state->new_deq_ptr);
2789                 return;
2790         }
2791         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2792
2793         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2794         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2795                         xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2796 }
2797
2798 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2799                 struct usb_device *udev, unsigned int ep_index)
2800 {
2801         struct xhci_dequeue_state deq_state;
2802         struct xhci_virt_ep *ep;
2803
2804         xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2805         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2806         /* We need to move the HW's dequeue pointer past this TD,
2807          * or it will attempt to resend it on the next doorbell ring.
2808          */
2809         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2810                         ep_index, ep->stopped_stream, ep->stopped_td,
2811                         &deq_state);
2812
2813         /* HW with the reset endpoint quirk will use the saved dequeue state to
2814          * issue a configure endpoint command later.
2815          */
2816         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2817                 xhci_dbg(xhci, "Queueing new dequeue state\n");
2818                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2819                                 ep_index, ep->stopped_stream, &deq_state);
2820         } else {
2821                 /* Better hope no one uses the input context between now and the
2822                  * reset endpoint completion!
2823                  * XXX: No idea how this hardware will react when stream rings
2824                  * are enabled.
2825                  */
2826                 xhci_dbg(xhci, "Setting up input context for "
2827                                 "configure endpoint command\n");
2828                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2829                                 ep_index, &deq_state);
2830         }
2831 }
2832
2833 /* Deal with stalled endpoints.  The core should have sent the control message
2834  * to clear the halt condition.  However, we need to make the xHCI hardware
2835  * reset its sequence number, since a device will expect a sequence number of
2836  * zero after the halt condition is cleared.
2837  * Context: in_interrupt
2838  */
2839 void xhci_endpoint_reset(struct usb_hcd *hcd,
2840                 struct usb_host_endpoint *ep)
2841 {
2842         struct xhci_hcd *xhci;
2843         struct usb_device *udev;
2844         unsigned int ep_index;
2845         unsigned long flags;
2846         int ret;
2847         struct xhci_virt_ep *virt_ep;
2848
2849         xhci = hcd_to_xhci(hcd);
2850         udev = (struct usb_device *) ep->hcpriv;
2851         /* Called with a root hub endpoint (or an endpoint that wasn't added
2852          * with xhci_add_endpoint()
2853          */
2854         if (!ep->hcpriv)
2855                 return;
2856         ep_index = xhci_get_endpoint_index(&ep->desc);
2857         virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2858         if (!virt_ep->stopped_td) {
2859                 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2860                                 ep->desc.bEndpointAddress);
2861                 return;
2862         }
2863         if (usb_endpoint_xfer_control(&ep->desc)) {
2864                 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2865                 return;
2866         }
2867
2868         xhci_dbg(xhci, "Queueing reset endpoint command\n");
2869         spin_lock_irqsave(&xhci->lock, flags);
2870         ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2871         /*
2872          * Can't change the ring dequeue pointer until it's transitioned to the
2873          * stopped state, which is only upon a successful reset endpoint
2874          * command.  Better hope that last command worked!
2875          */
2876         if (!ret) {
2877                 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2878                 kfree(virt_ep->stopped_td);
2879                 xhci_ring_cmd_db(xhci);
2880         }
2881         virt_ep->stopped_td = NULL;
2882         virt_ep->stopped_trb = NULL;
2883         virt_ep->stopped_stream = 0;
2884         spin_unlock_irqrestore(&xhci->lock, flags);
2885
2886         if (ret)
2887                 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2888 }
2889
2890 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2891                 struct usb_device *udev, struct usb_host_endpoint *ep,
2892                 unsigned int slot_id)
2893 {
2894         int ret;
2895         unsigned int ep_index;
2896         unsigned int ep_state;
2897
2898         if (!ep)
2899                 return -EINVAL;
2900         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2901         if (ret <= 0)
2902                 return -EINVAL;
2903         if (ep->ss_ep_comp.bmAttributes == 0) {
2904                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2905                                 " descriptor for ep 0x%x does not support streams\n",
2906                                 ep->desc.bEndpointAddress);
2907                 return -EINVAL;
2908         }
2909
2910         ep_index = xhci_get_endpoint_index(&ep->desc);
2911         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2912         if (ep_state & EP_HAS_STREAMS ||
2913                         ep_state & EP_GETTING_STREAMS) {
2914                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2915                                 "already has streams set up.\n",
2916                                 ep->desc.bEndpointAddress);
2917                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2918                                 "dynamic stream context array reallocation.\n");
2919                 return -EINVAL;
2920         }
2921         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2922                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2923                                 "endpoint 0x%x; URBs are pending.\n",
2924                                 ep->desc.bEndpointAddress);
2925                 return -EINVAL;
2926         }
2927         return 0;
2928 }
2929
2930 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2931                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2932 {
2933         unsigned int max_streams;
2934
2935         /* The stream context array size must be a power of two */
2936         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2937         /*
2938          * Find out how many primary stream array entries the host controller
2939          * supports.  Later we may use secondary stream arrays (similar to 2nd
2940          * level page entries), but that's an optional feature for xHCI host
2941          * controllers. xHCs must support at least 4 stream IDs.
2942          */
2943         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2944         if (*num_stream_ctxs > max_streams) {
2945                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2946                                 max_streams);
2947                 *num_stream_ctxs = max_streams;
2948                 *num_streams = max_streams;
2949         }
2950 }
2951
2952 /* Returns an error code if one of the endpoint already has streams.
2953  * This does not change any data structures, it only checks and gathers
2954  * information.
2955  */
2956 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2957                 struct usb_device *udev,
2958                 struct usb_host_endpoint **eps, unsigned int num_eps,
2959                 unsigned int *num_streams, u32 *changed_ep_bitmask)
2960 {
2961         unsigned int max_streams;
2962         unsigned int endpoint_flag;
2963         int i;
2964         int ret;
2965
2966         for (i = 0; i < num_eps; i++) {
2967                 ret = xhci_check_streams_endpoint(xhci, udev,
2968                                 eps[i], udev->slot_id);
2969                 if (ret < 0)
2970                         return ret;
2971
2972                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2973                 if (max_streams < (*num_streams - 1)) {
2974                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2975                                         eps[i]->desc.bEndpointAddress,
2976                                         max_streams);
2977                         *num_streams = max_streams+1;
2978                 }
2979
2980                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2981                 if (*changed_ep_bitmask & endpoint_flag)
2982                         return -EINVAL;
2983                 *changed_ep_bitmask |= endpoint_flag;
2984         }
2985         return 0;
2986 }
2987
2988 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2989                 struct usb_device *udev,
2990                 struct usb_host_endpoint **eps, unsigned int num_eps)
2991 {
2992         u32 changed_ep_bitmask = 0;
2993         unsigned int slot_id;
2994         unsigned int ep_index;
2995         unsigned int ep_state;
2996         int i;
2997
2998         slot_id = udev->slot_id;
2999         if (!xhci->devs[slot_id])
3000                 return 0;
3001
3002         for (i = 0; i < num_eps; i++) {
3003                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3004                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3005                 /* Are streams already being freed for the endpoint? */
3006                 if (ep_state & EP_GETTING_NO_STREAMS) {
3007                         xhci_warn(xhci, "WARN Can't disable streams for "
3008                                         "endpoint 0x%x\n, "
3009                                         "streams are being disabled already.",
3010                                         eps[i]->desc.bEndpointAddress);
3011                         return 0;
3012                 }
3013                 /* Are there actually any streams to free? */
3014                 if (!(ep_state & EP_HAS_STREAMS) &&
3015                                 !(ep_state & EP_GETTING_STREAMS)) {
3016                         xhci_warn(xhci, "WARN Can't disable streams for "
3017                                         "endpoint 0x%x\n, "
3018                                         "streams are already disabled!",
3019                                         eps[i]->desc.bEndpointAddress);
3020                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3021                                         "with non-streams endpoint\n");
3022                         return 0;
3023                 }
3024                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3025         }
3026         return changed_ep_bitmask;
3027 }
3028
3029 /*
3030  * The USB device drivers use this function (though the HCD interface in USB
3031  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3032  * coordinate mass storage command queueing across multiple endpoints (basically
3033  * a stream ID == a task ID).
3034  *
3035  * Setting up streams involves allocating the same size stream context array
3036  * for each endpoint and issuing a configure endpoint command for all endpoints.
3037  *
3038  * Don't allow the call to succeed if one endpoint only supports one stream
3039  * (which means it doesn't support streams at all).
3040  *
3041  * Drivers may get less stream IDs than they asked for, if the host controller
3042  * hardware or endpoints claim they can't support the number of requested
3043  * stream IDs.
3044  */
3045 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3046                 struct usb_host_endpoint **eps, unsigned int num_eps,
3047                 unsigned int num_streams, gfp_t mem_flags)
3048 {
3049         int i, ret;
3050         struct xhci_hcd *xhci;
3051         struct xhci_virt_device *vdev;
3052         struct xhci_command *config_cmd;
3053         unsigned int ep_index;
3054         unsigned int num_stream_ctxs;
3055         unsigned long flags;
3056         u32 changed_ep_bitmask = 0;
3057
3058         if (!eps)
3059                 return -EINVAL;
3060
3061         /* Add one to the number of streams requested to account for
3062          * stream 0 that is reserved for xHCI usage.
3063          */
3064         num_streams += 1;
3065         xhci = hcd_to_xhci(hcd);
3066         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3067                         num_streams);
3068
3069         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3070         if (!config_cmd) {
3071                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3072                 return -ENOMEM;
3073         }
3074
3075         /* Check to make sure all endpoints are not already configured for
3076          * streams.  While we're at it, find the maximum number of streams that
3077          * all the endpoints will support and check for duplicate endpoints.
3078          */
3079         spin_lock_irqsave(&xhci->lock, flags);
3080         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3081                         num_eps, &num_streams, &changed_ep_bitmask);
3082         if (ret < 0) {
3083                 xhci_free_command(xhci, config_cmd);
3084                 spin_unlock_irqrestore(&xhci->lock, flags);
3085                 return ret;
3086         }
3087         if (num_streams <= 1) {
3088                 xhci_warn(xhci, "WARN: endpoints can't handle "
3089                                 "more than one stream.\n");
3090                 xhci_free_command(xhci, config_cmd);
3091                 spin_unlock_irqrestore(&xhci->lock, flags);
3092                 return -EINVAL;
3093         }
3094         vdev = xhci->devs[udev->slot_id];
3095         /* Mark each endpoint as being in transition, so
3096          * xhci_urb_enqueue() will reject all URBs.
3097          */
3098         for (i = 0; i < num_eps; i++) {
3099                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3100                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3101         }
3102         spin_unlock_irqrestore(&xhci->lock, flags);
3103
3104         /* Setup internal data structures and allocate HW data structures for
3105          * streams (but don't install the HW structures in the input context
3106          * until we're sure all memory allocation succeeded).
3107          */
3108         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3109         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3110                         num_stream_ctxs, num_streams);
3111
3112         for (i = 0; i < num_eps; i++) {
3113                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3114                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3115                                 num_stream_ctxs,
3116                                 num_streams, mem_flags);
3117                 if (!vdev->eps[ep_index].stream_info)
3118                         goto cleanup;
3119                 /* Set maxPstreams in endpoint context and update deq ptr to
3120                  * point to stream context array. FIXME
3121                  */
3122         }
3123
3124         /* Set up the input context for a configure endpoint command. */
3125         for (i = 0; i < num_eps; i++) {
3126                 struct xhci_ep_ctx *ep_ctx;
3127
3128                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3129                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3130
3131                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3132                                 vdev->out_ctx, ep_index);
3133                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3134                                 vdev->eps[ep_index].stream_info);
3135         }
3136         /* Tell the HW to drop its old copy of the endpoint context info
3137          * and add the updated copy from the input context.
3138          */
3139         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3140                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3141
3142         /* Issue and wait for the configure endpoint command */
3143         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3144                         false, false);
3145
3146         /* xHC rejected the configure endpoint command for some reason, so we
3147          * leave the old ring intact and free our internal streams data
3148          * structure.
3149          */
3150         if (ret < 0)
3151                 goto cleanup;
3152
3153         spin_lock_irqsave(&xhci->lock, flags);
3154         for (i = 0; i < num_eps; i++) {
3155                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3156                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3157                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3158                          udev->slot_id, ep_index);
3159                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3160         }
3161         xhci_free_command(xhci, config_cmd);
3162         spin_unlock_irqrestore(&xhci->lock, flags);
3163
3164         /* Subtract 1 for stream 0, which drivers can't use */
3165         return num_streams - 1;
3166
3167 cleanup:
3168         /* If it didn't work, free the streams! */
3169         for (i = 0; i < num_eps; i++) {
3170                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3171                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3172                 vdev->eps[ep_index].stream_info = NULL;
3173                 /* FIXME Unset maxPstreams in endpoint context and
3174                  * update deq ptr to point to normal string ring.
3175                  */
3176                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3177                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3178                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3179         }
3180         xhci_free_command(xhci, config_cmd);
3181         return -ENOMEM;
3182 }
3183
3184 /* Transition the endpoint from using streams to being a "normal" endpoint
3185  * without streams.
3186  *
3187  * Modify the endpoint context state, submit a configure endpoint command,
3188  * and free all endpoint rings for streams if that completes successfully.
3189  */
3190 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3191                 struct usb_host_endpoint **eps, unsigned int num_eps,
3192                 gfp_t mem_flags)
3193 {
3194         int i, ret;
3195         struct xhci_hcd *xhci;
3196         struct xhci_virt_device *vdev;
3197         struct xhci_command *command;
3198         unsigned int ep_index;
3199         unsigned long flags;
3200         u32 changed_ep_bitmask;
3201
3202         xhci = hcd_to_xhci(hcd);
3203         vdev = xhci->devs[udev->slot_id];
3204
3205         /* Set up a configure endpoint command to remove the streams rings */
3206         spin_lock_irqsave(&xhci->lock, flags);
3207         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3208                         udev, eps, num_eps);
3209         if (changed_ep_bitmask == 0) {
3210                 spin_unlock_irqrestore(&xhci->lock, flags);
3211                 return -EINVAL;
3212         }
3213
3214         /* Use the xhci_command structure from the first endpoint.  We may have
3215          * allocated too many, but the driver may call xhci_free_streams() for
3216          * each endpoint it grouped into one call to xhci_alloc_streams().
3217          */
3218         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3219         command = vdev->eps[ep_index].stream_info->free_streams_command;
3220         for (i = 0; i < num_eps; i++) {
3221                 struct xhci_ep_ctx *ep_ctx;
3222
3223                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3224                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3225                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3226                         EP_GETTING_NO_STREAMS;
3227
3228                 xhci_endpoint_copy(xhci, command->in_ctx,
3229                                 vdev->out_ctx, ep_index);
3230                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3231                                 &vdev->eps[ep_index]);
3232         }
3233         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3234                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3235         spin_unlock_irqrestore(&xhci->lock, flags);
3236
3237         /* Issue and wait for the configure endpoint command,
3238          * which must succeed.
3239          */
3240         ret = xhci_configure_endpoint(xhci, udev, command,
3241                         false, true);
3242
3243         /* xHC rejected the configure endpoint command for some reason, so we
3244          * leave the streams rings intact.
3245          */
3246         if (ret < 0)
3247                 return ret;
3248
3249         spin_lock_irqsave(&xhci->lock, flags);
3250         for (i = 0; i < num_eps; i++) {
3251                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3252                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3253                 vdev->eps[ep_index].stream_info = NULL;
3254                 /* FIXME Unset maxPstreams in endpoint context and
3255                  * update deq ptr to point to normal string ring.
3256                  */
3257                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3258                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3259         }
3260         spin_unlock_irqrestore(&xhci->lock, flags);
3261
3262         return 0;
3263 }
3264
3265 /*
3266  * Deletes endpoint resources for endpoints that were active before a Reset
3267  * Device command, or a Disable Slot command.  The Reset Device command leaves
3268  * the control endpoint intact, whereas the Disable Slot command deletes it.
3269  *
3270  * Must be called with xhci->lock held.
3271  */
3272 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3273         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3274 {
3275         int i;
3276         unsigned int num_dropped_eps = 0;
3277         unsigned int drop_flags = 0;
3278
3279         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3280                 if (virt_dev->eps[i].ring) {
3281                         drop_flags |= 1 << i;
3282                         num_dropped_eps++;
3283                 }
3284         }
3285         xhci->num_active_eps -= num_dropped_eps;
3286         if (num_dropped_eps)
3287                 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3288                                 "%u now active.\n",
3289                                 num_dropped_eps, drop_flags,
3290                                 xhci->num_active_eps);
3291 }
3292
3293 /*
3294  * This submits a Reset Device Command, which will set the device state to 0,
3295  * set the device address to 0, and disable all the endpoints except the default
3296  * control endpoint.  The USB core should come back and call
3297  * xhci_address_device(), and then re-set up the configuration.  If this is
3298  * called because of a usb_reset_and_verify_device(), then the old alternate
3299  * settings will be re-installed through the normal bandwidth allocation
3300  * functions.
3301  *
3302  * Wait for the Reset Device command to finish.  Remove all structures
3303  * associated with the endpoints that were disabled.  Clear the input device
3304  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3305  *
3306  * If the virt_dev to be reset does not exist or does not match the udev,
3307  * it means the device is lost, possibly due to the xHC restore error and
3308  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3309  * re-allocate the device.
3310  */
3311 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3312 {
3313         int ret, i;
3314         unsigned long flags;
3315         struct xhci_hcd *xhci;
3316         unsigned int slot_id;
3317         struct xhci_virt_device *virt_dev;
3318         struct xhci_command *reset_device_cmd;
3319         int timeleft;
3320         int last_freed_endpoint;
3321         struct xhci_slot_ctx *slot_ctx;
3322         int old_active_eps = 0;
3323
3324         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3325         if (ret <= 0)
3326                 return ret;
3327         xhci = hcd_to_xhci(hcd);
3328         slot_id = udev->slot_id;
3329         virt_dev = xhci->devs[slot_id];
3330         if (!virt_dev) {
3331                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3332                                 "not exist. Re-allocate the device\n", slot_id);
3333                 ret = xhci_alloc_dev(hcd, udev);
3334                 if (ret == 1)
3335                         return 0;
3336                 else
3337                         return -EINVAL;
3338         }
3339
3340         if (virt_dev->udev != udev) {
3341                 /* If the virt_dev and the udev does not match, this virt_dev
3342                  * may belong to another udev.
3343                  * Re-allocate the device.
3344                  */
3345                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3346                                 "not match the udev. Re-allocate the device\n",
3347                                 slot_id);
3348                 ret = xhci_alloc_dev(hcd, udev);
3349                 if (ret == 1)
3350                         return 0;
3351                 else
3352                         return -EINVAL;
3353         }
3354
3355         /* If device is not setup, there is no point in resetting it */
3356         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3357         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3358                                                 SLOT_STATE_DISABLED)
3359                 return 0;
3360
3361         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3362         /* Allocate the command structure that holds the struct completion.
3363          * Assume we're in process context, since the normal device reset
3364          * process has to wait for the device anyway.  Storage devices are
3365          * reset as part of error handling, so use GFP_NOIO instead of
3366          * GFP_KERNEL.
3367          */
3368         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3369         if (!reset_device_cmd) {
3370                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3371                 return -ENOMEM;
3372         }
3373
3374         /* Attempt to submit the Reset Device command to the command ring */
3375         spin_lock_irqsave(&xhci->lock, flags);
3376         reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3377
3378         /* Enqueue pointer can be left pointing to the link TRB,
3379          * we must handle that
3380          */
3381         if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3382                 reset_device_cmd->command_trb =
3383                         xhci->cmd_ring->enq_seg->next->trbs;
3384
3385         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3386         ret = xhci_queue_reset_device(xhci, slot_id);
3387         if (ret) {
3388                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3389                 list_del(&reset_device_cmd->cmd_list);
3390                 spin_unlock_irqrestore(&xhci->lock, flags);
3391                 goto command_cleanup;
3392         }
3393         xhci_ring_cmd_db(xhci);
3394         spin_unlock_irqrestore(&xhci->lock, flags);
3395
3396         /* Wait for the Reset Device command to finish */
3397         timeleft = wait_for_completion_interruptible_timeout(
3398                         reset_device_cmd->completion,
3399                         USB_CTRL_SET_TIMEOUT);
3400         if (timeleft <= 0) {
3401                 xhci_warn(xhci, "%s while waiting for reset device command\n",
3402                                 timeleft == 0 ? "Timeout" : "Signal");
3403                 spin_lock_irqsave(&xhci->lock, flags);
3404                 /* The timeout might have raced with the event ring handler, so
3405                  * only delete from the list if the item isn't poisoned.
3406                  */
3407                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3408                         list_del(&reset_device_cmd->cmd_list);
3409                 spin_unlock_irqrestore(&xhci->lock, flags);
3410                 ret = -ETIME;
3411                 goto command_cleanup;
3412         }
3413
3414         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3415          * unless we tried to reset a slot ID that wasn't enabled,
3416          * or the device wasn't in the addressed or configured state.
3417          */
3418         ret = reset_device_cmd->status;
3419         switch (ret) {
3420         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3421         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3422                 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3423                                 slot_id,
3424                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3425                 xhci_info(xhci, "Not freeing device rings.\n");
3426                 /* Don't treat this as an error.  May change my mind later. */
3427                 ret = 0;
3428                 goto command_cleanup;
3429         case COMP_SUCCESS:
3430                 xhci_dbg(xhci, "Successful reset device command.\n");
3431                 break;
3432         default:
3433                 if (xhci_is_vendor_info_code(xhci, ret))
3434                         break;
3435                 xhci_warn(xhci, "Unknown completion code %u for "
3436                                 "reset device command.\n", ret);
3437                 ret = -EINVAL;
3438                 goto command_cleanup;
3439         }
3440
3441         /* Free up host controller endpoint resources */
3442         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3443                 spin_lock_irqsave(&xhci->lock, flags);
3444                 /* Don't delete the default control endpoint resources */
3445                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3446                 spin_unlock_irqrestore(&xhci->lock, flags);
3447         }
3448
3449         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3450         last_freed_endpoint = 1;
3451         for (i = 1; i < 31; ++i) {
3452                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3453
3454                 if (ep->ep_state & EP_HAS_STREAMS) {
3455                         xhci_free_stream_info(xhci, ep->stream_info);
3456                         ep->stream_info = NULL;
3457                         ep->ep_state &= ~EP_HAS_STREAMS;
3458                 }
3459
3460                 if (ep->ring) {
3461                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3462                         last_freed_endpoint = i;
3463                 }
3464                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3465                         xhci_drop_ep_from_interval_table(xhci,
3466                                         &virt_dev->eps[i].bw_info,
3467                                         virt_dev->bw_table,
3468                                         udev,
3469                                         &virt_dev->eps[i],
3470                                         virt_dev->tt_info);
3471                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3472         }
3473         /* If necessary, update the number of active TTs on this root port */
3474         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3475
3476         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3477         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3478         ret = 0;
3479
3480 command_cleanup:
3481         xhci_free_command(xhci, reset_device_cmd);
3482         return ret;
3483 }
3484
3485 /*
3486  * At this point, the struct usb_device is about to go away, the device has
3487  * disconnected, and all traffic has been stopped and the endpoints have been
3488  * disabled.  Free any HC data structures associated with that device.
3489  */
3490 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3491 {
3492         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3493         struct xhci_virt_device *virt_dev;
3494         unsigned long flags;
3495         u32 state;
3496         int i, ret;
3497
3498         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3499         /* If the host is halted due to driver unload, we still need to free the
3500          * device.
3501          */
3502         if (ret <= 0 && ret != -ENODEV)
3503                 return;
3504
3505         virt_dev = xhci->devs[udev->slot_id];
3506
3507         /* Stop any wayward timer functions (which may grab the lock) */
3508         for (i = 0; i < 31; ++i) {
3509                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3510                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3511         }
3512
3513         if (udev->usb2_hw_lpm_enabled) {
3514                 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3515                 udev->usb2_hw_lpm_enabled = 0;
3516         }
3517
3518         spin_lock_irqsave(&xhci->lock, flags);
3519         /* Don't disable the slot if the host controller is dead. */
3520         state = xhci_readl(xhci, &xhci->op_regs->status);
3521         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3522                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3523                 xhci_free_virt_device(xhci, udev->slot_id);
3524                 spin_unlock_irqrestore(&xhci->lock, flags);
3525                 return;
3526         }
3527
3528         if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3529                 spin_unlock_irqrestore(&xhci->lock, flags);
3530                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3531                 return;
3532         }
3533         xhci_ring_cmd_db(xhci);
3534         spin_unlock_irqrestore(&xhci->lock, flags);
3535         /*
3536          * Event command completion handler will free any data structures
3537          * associated with the slot.  XXX Can free sleep?
3538          */
3539 }
3540
3541 /*
3542  * Checks if we have enough host controller resources for the default control
3543  * endpoint.
3544  *
3545  * Must be called with xhci->lock held.
3546  */
3547 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3548 {
3549         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3550                 xhci_dbg(xhci, "Not enough ep ctxs: "
3551                                 "%u active, need to add 1, limit is %u.\n",
3552                                 xhci->num_active_eps, xhci->limit_active_eps);
3553                 return -ENOMEM;
3554         }
3555         xhci->num_active_eps += 1;
3556         xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3557                         xhci->num_active_eps);
3558         return 0;
3559 }
3560
3561
3562 /*
3563  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3564  * timed out, or allocating memory failed.  Returns 1 on success.
3565  */
3566 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3567 {
3568         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3569         unsigned long flags;
3570         int timeleft;
3571         int ret;
3572         union xhci_trb *cmd_trb;
3573
3574         spin_lock_irqsave(&xhci->lock, flags);
3575         cmd_trb = xhci->cmd_ring->dequeue;
3576         ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3577         if (ret) {
3578                 spin_unlock_irqrestore(&xhci->lock, flags);
3579                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3580                 return 0;
3581         }
3582         xhci_ring_cmd_db(xhci);
3583         spin_unlock_irqrestore(&xhci->lock, flags);
3584
3585         /* XXX: how much time for xHC slot assignment? */
3586         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3587                         XHCI_CMD_DEFAULT_TIMEOUT);
3588         if (timeleft <= 0) {
3589                 xhci_warn(xhci, "%s while waiting for a slot\n",
3590                                 timeleft == 0 ? "Timeout" : "Signal");
3591                 /* cancel the enable slot request */
3592                 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3593         }
3594
3595         if (!xhci->slot_id) {
3596                 xhci_err(xhci, "Error while assigning device slot ID\n");
3597                 return 0;
3598         }
3599
3600         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3601                 spin_lock_irqsave(&xhci->lock, flags);
3602                 ret = xhci_reserve_host_control_ep_resources(xhci);
3603                 if (ret) {
3604                         spin_unlock_irqrestore(&xhci->lock, flags);
3605                         xhci_warn(xhci, "Not enough host resources, "
3606                                         "active endpoint contexts = %u\n",
3607                                         xhci->num_active_eps);
3608                         goto disable_slot;
3609                 }
3610                 spin_unlock_irqrestore(&xhci->lock, flags);
3611         }
3612         /* Use GFP_NOIO, since this function can be called from
3613          * xhci_discover_or_reset_device(), which may be called as part of
3614          * mass storage driver error handling.
3615          */
3616         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3617                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3618                 goto disable_slot;
3619         }
3620         udev->slot_id = xhci->slot_id;
3621         /* Is this a LS or FS device under a HS hub? */
3622         /* Hub or peripherial? */
3623         return 1;
3624
3625 disable_slot:
3626         /* Disable slot, if we can do it without mem alloc */
3627         spin_lock_irqsave(&xhci->lock, flags);
3628         if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3629                 xhci_ring_cmd_db(xhci);
3630         spin_unlock_irqrestore(&xhci->lock, flags);
3631         return 0;
3632 }
3633
3634 /*
3635  * Issue an Address Device command (which will issue a SetAddress request to
3636  * the device).
3637  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3638  * we should only issue and wait on one address command at the same time.
3639  *
3640  * We add one to the device address issued by the hardware because the USB core
3641  * uses address 1 for the root hubs (even though they're not really devices).
3642  */
3643 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3644 {
3645         unsigned long flags;
3646         int timeleft;
3647         struct xhci_virt_device *virt_dev;
3648         int ret = 0;
3649         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3650         struct xhci_slot_ctx *slot_ctx;
3651         struct xhci_input_control_ctx *ctrl_ctx;
3652         u64 temp_64;
3653         union xhci_trb *cmd_trb;
3654
3655         if (!udev->slot_id) {
3656                 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3657                 return -EINVAL;
3658         }
3659
3660         virt_dev = xhci->devs[udev->slot_id];
3661
3662         if (WARN_ON(!virt_dev)) {
3663                 /*
3664                  * In plug/unplug torture test with an NEC controller,
3665                  * a zero-dereference was observed once due to virt_dev = 0.
3666                  * Print useful debug rather than crash if it is observed again!
3667                  */
3668                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3669                         udev->slot_id);
3670                 return -EINVAL;
3671         }
3672
3673         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3674         /*
3675          * If this is the first Set Address since device plug-in or
3676          * virt_device realloaction after a resume with an xHCI power loss,
3677          * then set up the slot context.
3678          */
3679         if (!slot_ctx->dev_info)
3680                 xhci_setup_addressable_virt_dev(xhci, udev);
3681         /* Otherwise, update the control endpoint ring enqueue pointer. */
3682         else
3683                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3684         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3685         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3686         ctrl_ctx->drop_flags = 0;
3687
3688         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3689         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3690
3691         spin_lock_irqsave(&xhci->lock, flags);
3692         cmd_trb = xhci->cmd_ring->dequeue;
3693         ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3694                                         udev->slot_id);
3695         if (ret) {
3696                 spin_unlock_irqrestore(&xhci->lock, flags);
3697                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3698                 return ret;
3699         }
3700         xhci_ring_cmd_db(xhci);
3701         spin_unlock_irqrestore(&xhci->lock, flags);
3702
3703         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3704         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3705                         XHCI_CMD_DEFAULT_TIMEOUT);
3706         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3707          * the SetAddress() "recovery interval" required by USB and aborting the
3708          * command on a timeout.
3709          */
3710         if (timeleft <= 0) {
3711                 xhci_warn(xhci, "%s while waiting for address device command\n",
3712                                 timeleft == 0 ? "Timeout" : "Signal");
3713                 /* cancel the address device command */
3714                 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3715                 if (ret < 0)
3716                         return ret;
3717                 return -ETIME;
3718         }
3719
3720         switch (virt_dev->cmd_status) {
3721         case COMP_CTX_STATE:
3722         case COMP_EBADSLT:
3723                 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3724                                 udev->slot_id);
3725                 ret = -EINVAL;
3726                 break;
3727         case COMP_TX_ERR:
3728                 dev_warn(&udev->dev, "Device not responding to set address.\n");
3729                 ret = -EPROTO;
3730                 break;
3731         case COMP_DEV_ERR:
3732                 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3733                                 "device command.\n");
3734                 ret = -ENODEV;
3735                 break;
3736         case COMP_SUCCESS:
3737                 xhci_dbg(xhci, "Successful Address Device command\n");
3738                 break;
3739         default:
3740                 xhci_err(xhci, "ERROR: unexpected command completion "
3741                                 "code 0x%x.\n", virt_dev->cmd_status);
3742                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3743                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3744                 ret = -EINVAL;
3745                 break;
3746         }
3747         if (ret) {
3748                 return ret;
3749         }
3750         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3751         xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3752         xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3753                  udev->slot_id,
3754                  &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3755                  (unsigned long long)
3756                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3757         xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3758                         (unsigned long long)virt_dev->out_ctx->dma);
3759         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3760         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3761         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3762         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3763         /*
3764          * USB core uses address 1 for the roothubs, so we add one to the
3765          * address given back to us by the HC.
3766          */
3767         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3768         /* Use kernel assigned address for devices; store xHC assigned
3769          * address locally. */
3770         virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3771                 + 1;
3772         /* Zero the input context control for later use */
3773         ctrl_ctx->add_flags = 0;
3774         ctrl_ctx->drop_flags = 0;
3775
3776         xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3777
3778         return 0;
3779 }
3780
3781 #ifdef CONFIG_USB_SUSPEND
3782
3783 /* BESL to HIRD Encoding array for USB2 LPM */
3784 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3785         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3786
3787 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3788 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3789                                         struct usb_device *udev)
3790 {
3791         int u2del, besl, besl_host;
3792         int besl_device = 0;
3793         u32 field;
3794
3795         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3796         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3797
3798         if (field & USB_BESL_SUPPORT) {
3799                 for (besl_host = 0; besl_host < 16; besl_host++) {
3800                         if (xhci_besl_encoding[besl_host] >= u2del)
3801                                 break;
3802                 }
3803                 /* Use baseline BESL value as default */
3804                 if (field & USB_BESL_BASELINE_VALID)
3805                         besl_device = USB_GET_BESL_BASELINE(field);
3806                 else if (field & USB_BESL_DEEP_VALID)
3807                         besl_device = USB_GET_BESL_DEEP(field);
3808         } else {
3809                 if (u2del <= 50)
3810                         besl_host = 0;
3811                 else
3812                         besl_host = (u2del - 51) / 75 + 1;
3813         }
3814
3815         besl = besl_host + besl_device;
3816         if (besl > 15)
3817                 besl = 15;
3818
3819         return besl;
3820 }
3821
3822 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3823                                         struct usb_device *udev)
3824 {
3825         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3826         struct dev_info *dev_info;
3827         __le32 __iomem  **port_array;
3828         __le32 __iomem  *addr, *pm_addr;
3829         u32             temp, dev_id;
3830         unsigned int    port_num;
3831         unsigned long   flags;
3832         int             hird;
3833         int             ret;
3834
3835         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3836                         !udev->lpm_capable)
3837                 return -EINVAL;
3838
3839         /* we only support lpm for non-hub device connected to root hub yet */
3840         if (!udev->parent || udev->parent->parent ||
3841                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3842                 return -EINVAL;
3843
3844         spin_lock_irqsave(&xhci->lock, flags);
3845
3846         /* Look for devices in lpm_failed_devs list */
3847         dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3848                         le16_to_cpu(udev->descriptor.idProduct);
3849         list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3850                 if (dev_info->dev_id == dev_id) {
3851                         ret = -EINVAL;
3852                         goto finish;
3853                 }
3854         }
3855
3856         port_array = xhci->usb2_ports;
3857         port_num = udev->portnum - 1;
3858
3859         if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3860                 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3861                 ret = -EINVAL;
3862                 goto finish;
3863         }
3864
3865         /*
3866          * Test USB 2.0 software LPM.
3867          * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3868          * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3869          * in the June 2011 errata release.
3870          */
3871         xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3872         /*
3873          * Set L1 Device Slot and HIRD/BESL.
3874          * Check device's USB 2.0 extension descriptor to determine whether
3875          * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3876          */
3877         pm_addr = port_array[port_num] + 1;
3878         hird = xhci_calculate_hird_besl(xhci, udev);
3879         temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3880         xhci_writel(xhci, temp, pm_addr);
3881
3882         /* Set port link state to U2(L1) */
3883         addr = port_array[port_num];
3884         xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3885
3886         /* wait for ACK */
3887         spin_unlock_irqrestore(&xhci->lock, flags);
3888         msleep(10);
3889         spin_lock_irqsave(&xhci->lock, flags);
3890
3891         /* Check L1 Status */
3892         ret = xhci_handshake(xhci, pm_addr,
3893                         PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3894         if (ret != -ETIMEDOUT) {
3895                 /* enter L1 successfully */
3896                 temp = xhci_readl(xhci, addr);
3897                 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3898                                 port_num, temp);
3899                 ret = 0;
3900         } else {
3901                 temp = xhci_readl(xhci, pm_addr);
3902                 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3903                                 port_num, temp & PORT_L1S_MASK);
3904                 ret = -EINVAL;
3905         }
3906
3907         /* Resume the port */
3908         xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3909
3910         spin_unlock_irqrestore(&xhci->lock, flags);
3911         msleep(10);
3912         spin_lock_irqsave(&xhci->lock, flags);
3913
3914         /* Clear PLC */
3915         xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3916
3917         /* Check PORTSC to make sure the device is in the right state */
3918         if (!ret) {
3919                 temp = xhci_readl(xhci, addr);
3920                 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
3921                 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3922                                 (temp & PORT_PLS_MASK) != XDEV_U0) {
3923                         xhci_dbg(xhci, "port L1 resume fail\n");
3924                         ret = -EINVAL;
3925                 }
3926         }
3927
3928         if (ret) {
3929                 /* Insert dev to lpm_failed_devs list */
3930                 xhci_warn(xhci, "device LPM test failed, may disconnect and "
3931                                 "re-enumerate\n");
3932                 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3933                 if (!dev_info) {
3934                         ret = -ENOMEM;
3935                         goto finish;
3936                 }
3937                 dev_info->dev_id = dev_id;
3938                 INIT_LIST_HEAD(&dev_info->list);
3939                 list_add(&dev_info->list, &xhci->lpm_failed_devs);
3940         } else {
3941                 xhci_ring_device(xhci, udev->slot_id);
3942         }
3943
3944 finish:
3945         spin_unlock_irqrestore(&xhci->lock, flags);
3946         return ret;
3947 }
3948
3949 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3950                         struct usb_device *udev, int enable)
3951 {
3952         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3953         __le32 __iomem  **port_array;
3954         __le32 __iomem  *pm_addr;
3955         u32             temp;
3956         unsigned int    port_num;
3957         unsigned long   flags;
3958         int             hird;
3959
3960         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3961                         !udev->lpm_capable)
3962                 return -EPERM;
3963
3964         if (!udev->parent || udev->parent->parent ||
3965                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3966                 return -EPERM;
3967
3968         if (udev->usb2_hw_lpm_capable != 1)
3969                 return -EPERM;
3970
3971         spin_lock_irqsave(&xhci->lock, flags);
3972
3973         port_array = xhci->usb2_ports;
3974         port_num = udev->portnum - 1;
3975         pm_addr = port_array[port_num] + 1;
3976         temp = xhci_readl(xhci, pm_addr);
3977
3978         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3979                         enable ? "enable" : "disable", port_num);
3980
3981         hird = xhci_calculate_hird_besl(xhci, udev);
3982
3983         if (enable) {
3984                 temp &= ~PORT_HIRD_MASK;
3985                 temp |= PORT_HIRD(hird) | PORT_RWE;
3986                 xhci_writel(xhci, temp, pm_addr);
3987                 temp = xhci_readl(xhci, pm_addr);
3988                 temp |= PORT_HLE;
3989                 xhci_writel(xhci, temp, pm_addr);
3990         } else {
3991                 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3992                 xhci_writel(xhci, temp, pm_addr);
3993         }
3994
3995         spin_unlock_irqrestore(&xhci->lock, flags);
3996         return 0;
3997 }
3998
3999 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4000 {
4001         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4002         int             ret;
4003
4004         ret = xhci_usb2_software_lpm_test(hcd, udev);
4005         if (!ret) {
4006                 xhci_dbg(xhci, "software LPM test succeed\n");
4007                 if (xhci->hw_lpm_support == 1) {
4008                         udev->usb2_hw_lpm_capable = 1;
4009                         ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
4010                         if (!ret)
4011                                 udev->usb2_hw_lpm_enabled = 1;
4012                 }
4013         }
4014
4015         return 0;
4016 }
4017
4018 #else
4019
4020 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4021                                 struct usb_device *udev, int enable)
4022 {
4023         return 0;
4024 }
4025
4026 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4027 {
4028         return 0;
4029 }
4030
4031 #endif /* CONFIG_USB_SUSPEND */
4032
4033 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4034
4035 #ifdef CONFIG_PM
4036 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4037 static unsigned long long xhci_service_interval_to_ns(
4038                 struct usb_endpoint_descriptor *desc)
4039 {
4040         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4041 }
4042
4043 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4044                 enum usb3_link_state state)
4045 {
4046         unsigned long long sel;
4047         unsigned long long pel;
4048         unsigned int max_sel_pel;
4049         char *state_name;
4050
4051         switch (state) {
4052         case USB3_LPM_U1:
4053                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4054                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4055                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4056                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4057                 state_name = "U1";
4058                 break;
4059         case USB3_LPM_U2:
4060                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4061                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4062                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4063                 state_name = "U2";
4064                 break;
4065         default:
4066                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4067                                 __func__);
4068                 return USB3_LPM_DISABLED;
4069         }
4070
4071         if (sel <= max_sel_pel && pel <= max_sel_pel)
4072                 return USB3_LPM_DEVICE_INITIATED;
4073
4074         if (sel > max_sel_pel)
4075                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4076                                 "due to long SEL %llu ms\n",
4077                                 state_name, sel);
4078         else
4079                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4080                                 "due to long PEL %llu\n ms",
4081                                 state_name, pel);
4082         return USB3_LPM_DISABLED;
4083 }
4084
4085 /* Returns the hub-encoded U1 timeout value.
4086  * The U1 timeout should be the maximum of the following values:
4087  *  - For control endpoints, U1 system exit latency (SEL) * 3
4088  *  - For bulk endpoints, U1 SEL * 5
4089  *  - For interrupt endpoints:
4090  *    - Notification EPs, U1 SEL * 3
4091  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4092  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4093  */
4094 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4095                 struct usb_endpoint_descriptor *desc)
4096 {
4097         unsigned long long timeout_ns;
4098         int ep_type;
4099         int intr_type;
4100
4101         ep_type = usb_endpoint_type(desc);
4102         switch (ep_type) {
4103         case USB_ENDPOINT_XFER_CONTROL:
4104                 timeout_ns = udev->u1_params.sel * 3;
4105                 break;
4106         case USB_ENDPOINT_XFER_BULK:
4107                 timeout_ns = udev->u1_params.sel * 5;
4108                 break;
4109         case USB_ENDPOINT_XFER_INT:
4110                 intr_type = usb_endpoint_interrupt_type(desc);
4111                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4112                         timeout_ns = udev->u1_params.sel * 3;
4113                         break;
4114                 }
4115                 /* Otherwise the calculation is the same as isoc eps */
4116         case USB_ENDPOINT_XFER_ISOC:
4117                 timeout_ns = xhci_service_interval_to_ns(desc);
4118                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4119                 if (timeout_ns < udev->u1_params.sel * 2)
4120                         timeout_ns = udev->u1_params.sel * 2;
4121                 break;
4122         default:
4123                 return 0;
4124         }
4125
4126         /* The U1 timeout is encoded in 1us intervals. */
4127         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4128         /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4129         if (timeout_ns == USB3_LPM_DISABLED)
4130                 timeout_ns++;
4131
4132         /* If the necessary timeout value is bigger than what we can set in the
4133          * USB 3.0 hub, we have to disable hub-initiated U1.
4134          */
4135         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4136                 return timeout_ns;
4137         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4138                         "due to long timeout %llu ms\n", timeout_ns);
4139         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4140 }
4141
4142 /* Returns the hub-encoded U2 timeout value.
4143  * The U2 timeout should be the maximum of:
4144  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4145  *  - largest bInterval of any active periodic endpoint (to avoid going
4146  *    into lower power link states between intervals).
4147  *  - the U2 Exit Latency of the device
4148  */
4149 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4150                 struct usb_endpoint_descriptor *desc)
4151 {
4152         unsigned long long timeout_ns;
4153         unsigned long long u2_del_ns;
4154
4155         timeout_ns = 10 * 1000 * 1000;
4156
4157         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4158                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4159                 timeout_ns = xhci_service_interval_to_ns(desc);
4160
4161         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4162         if (u2_del_ns > timeout_ns)
4163                 timeout_ns = u2_del_ns;
4164
4165         /* The U2 timeout is encoded in 256us intervals */
4166         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4167         /* If the necessary timeout value is bigger than what we can set in the
4168          * USB 3.0 hub, we have to disable hub-initiated U2.
4169          */
4170         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4171                 return timeout_ns;
4172         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4173                         "due to long timeout %llu ms\n", timeout_ns);
4174         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4175 }
4176
4177 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4178                 struct usb_device *udev,
4179                 struct usb_endpoint_descriptor *desc,
4180                 enum usb3_link_state state,
4181                 u16 *timeout)
4182 {
4183         if (state == USB3_LPM_U1) {
4184                 if (xhci->quirks & XHCI_INTEL_HOST)
4185                         return xhci_calculate_intel_u1_timeout(udev, desc);
4186         } else {
4187                 if (xhci->quirks & XHCI_INTEL_HOST)
4188                         return xhci_calculate_intel_u2_timeout(udev, desc);
4189         }
4190
4191         return USB3_LPM_DISABLED;
4192 }
4193
4194 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4195                 struct usb_device *udev,
4196                 struct usb_endpoint_descriptor *desc,
4197                 enum usb3_link_state state,
4198                 u16 *timeout)
4199 {
4200         u16 alt_timeout;
4201
4202         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4203                 desc, state, timeout);
4204
4205         /* If we found we can't enable hub-initiated LPM, or
4206          * the U1 or U2 exit latency was too high to allow
4207          * device-initiated LPM as well, just stop searching.
4208          */
4209         if (alt_timeout == USB3_LPM_DISABLED ||
4210                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4211                 *timeout = alt_timeout;
4212                 return -E2BIG;
4213         }
4214         if (alt_timeout > *timeout)
4215                 *timeout = alt_timeout;
4216         return 0;
4217 }
4218
4219 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4220                 struct usb_device *udev,
4221                 struct usb_host_interface *alt,
4222                 enum usb3_link_state state,
4223                 u16 *timeout)
4224 {
4225         int j;
4226
4227         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4228                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4229                                         &alt->endpoint[j].desc, state, timeout))
4230                         return -E2BIG;
4231                 continue;
4232         }
4233         return 0;
4234 }
4235
4236 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4237                 enum usb3_link_state state)
4238 {
4239         struct usb_device *parent;
4240         unsigned int num_hubs;
4241
4242         if (state == USB3_LPM_U2)
4243                 return 0;
4244
4245         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4246         for (parent = udev->parent, num_hubs = 0; parent->parent;
4247                         parent = parent->parent)
4248                 num_hubs++;
4249
4250         if (num_hubs < 2)
4251                 return 0;
4252
4253         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4254                         " below second-tier hub.\n");
4255         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4256                         "to decrease power consumption.\n");
4257         return -E2BIG;
4258 }
4259
4260 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4261                 struct usb_device *udev,
4262                 enum usb3_link_state state)
4263 {
4264         if (xhci->quirks & XHCI_INTEL_HOST)
4265                 return xhci_check_intel_tier_policy(udev, state);
4266         return -EINVAL;
4267 }
4268
4269 /* Returns the U1 or U2 timeout that should be enabled.
4270  * If the tier check or timeout setting functions return with a non-zero exit
4271  * code, that means the timeout value has been finalized and we shouldn't look
4272  * at any more endpoints.
4273  */
4274 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4275                         struct usb_device *udev, enum usb3_link_state state)
4276 {
4277         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4278         struct usb_host_config *config;
4279         char *state_name;
4280         int i;
4281         u16 timeout = USB3_LPM_DISABLED;
4282
4283         if (state == USB3_LPM_U1)
4284                 state_name = "U1";
4285         else if (state == USB3_LPM_U2)
4286                 state_name = "U2";
4287         else {
4288                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4289                                 state);
4290                 return timeout;
4291         }
4292
4293         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4294                 return timeout;
4295
4296         /* Gather some information about the currently installed configuration
4297          * and alternate interface settings.
4298          */
4299         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4300                         state, &timeout))
4301                 return timeout;
4302
4303         config = udev->actconfig;
4304         if (!config)
4305                 return timeout;
4306
4307         for (i = 0; i < USB_MAXINTERFACES; i++) {
4308                 struct usb_driver *driver;
4309                 struct usb_interface *intf = config->interface[i];
4310
4311                 if (!intf)
4312                         continue;
4313
4314                 /* Check if any currently bound drivers want hub-initiated LPM
4315                  * disabled.
4316                  */
4317                 if (intf->dev.driver) {
4318                         driver = to_usb_driver(intf->dev.driver);
4319                         if (driver && driver->disable_hub_initiated_lpm) {
4320                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4321                                                 "at request of driver %s\n",
4322                                                 state_name, driver->name);
4323                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4324                         }
4325                 }
4326
4327                 /* Not sure how this could happen... */
4328                 if (!intf->cur_altsetting)
4329                         continue;
4330
4331                 if (xhci_update_timeout_for_interface(xhci, udev,
4332                                         intf->cur_altsetting,
4333                                         state, &timeout))
4334                         return timeout;
4335         }
4336         return timeout;
4337 }
4338
4339 /*
4340  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4341  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4342  */
4343 static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4344                         struct usb_device *udev, u16 max_exit_latency)
4345 {
4346         struct xhci_virt_device *virt_dev;
4347         struct xhci_command *command;
4348         struct xhci_input_control_ctx *ctrl_ctx;
4349         struct xhci_slot_ctx *slot_ctx;
4350         unsigned long flags;
4351         int ret;
4352
4353         spin_lock_irqsave(&xhci->lock, flags);
4354         if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
4355                 spin_unlock_irqrestore(&xhci->lock, flags);
4356                 return 0;
4357         }
4358
4359         /* Attempt to issue an Evaluate Context command to change the MEL. */
4360         virt_dev = xhci->devs[udev->slot_id];
4361         command = xhci->lpm_command;
4362         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4363         spin_unlock_irqrestore(&xhci->lock, flags);
4364
4365         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
4366         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4367         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4368         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4369         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4370
4371         xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
4372         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4373         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4374
4375         /* Issue and wait for the evaluate context command. */
4376         ret = xhci_configure_endpoint(xhci, udev, command,
4377                         true, true);
4378         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4379         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4380
4381         if (!ret) {
4382                 spin_lock_irqsave(&xhci->lock, flags);
4383                 virt_dev->current_mel = max_exit_latency;
4384                 spin_unlock_irqrestore(&xhci->lock, flags);
4385         }
4386         return ret;
4387 }
4388
4389 static int calculate_max_exit_latency(struct usb_device *udev,
4390                 enum usb3_link_state state_changed,
4391                 u16 hub_encoded_timeout)
4392 {
4393         unsigned long long u1_mel_us = 0;
4394         unsigned long long u2_mel_us = 0;
4395         unsigned long long mel_us = 0;
4396         bool disabling_u1;
4397         bool disabling_u2;
4398         bool enabling_u1;
4399         bool enabling_u2;
4400
4401         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4402                         hub_encoded_timeout == USB3_LPM_DISABLED);
4403         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4404                         hub_encoded_timeout == USB3_LPM_DISABLED);
4405
4406         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4407                         hub_encoded_timeout != USB3_LPM_DISABLED);
4408         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4409                         hub_encoded_timeout != USB3_LPM_DISABLED);
4410
4411         /* If U1 was already enabled and we're not disabling it,
4412          * or we're going to enable U1, account for the U1 max exit latency.
4413          */
4414         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4415                         enabling_u1)
4416                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4417         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4418                         enabling_u2)
4419                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4420
4421         if (u1_mel_us > u2_mel_us)
4422                 mel_us = u1_mel_us;
4423         else
4424                 mel_us = u2_mel_us;
4425         /* xHCI host controller max exit latency field is only 16 bits wide. */
4426         if (mel_us > MAX_EXIT) {
4427                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4428                                 "is too big.\n", mel_us);
4429                 return -E2BIG;
4430         }
4431         return mel_us;
4432 }
4433
4434 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4435 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4436                         struct usb_device *udev, enum usb3_link_state state)
4437 {
4438         struct xhci_hcd *xhci;
4439         u16 hub_encoded_timeout;
4440         int mel;
4441         int ret;
4442
4443         xhci = hcd_to_xhci(hcd);
4444         /* The LPM timeout values are pretty host-controller specific, so don't
4445          * enable hub-initiated timeouts unless the vendor has provided
4446          * information about their timeout algorithm.
4447          */
4448         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4449                         !xhci->devs[udev->slot_id])
4450                 return USB3_LPM_DISABLED;
4451
4452         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4453         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4454         if (mel < 0) {
4455                 /* Max Exit Latency is too big, disable LPM. */
4456                 hub_encoded_timeout = USB3_LPM_DISABLED;
4457                 mel = 0;
4458         }
4459
4460         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4461         if (ret)
4462                 return ret;
4463         return hub_encoded_timeout;
4464 }
4465
4466 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4467                         struct usb_device *udev, enum usb3_link_state state)
4468 {
4469         struct xhci_hcd *xhci;
4470         u16 mel;
4471         int ret;
4472
4473         xhci = hcd_to_xhci(hcd);
4474         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4475                         !xhci->devs[udev->slot_id])
4476                 return 0;
4477
4478         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4479         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4480         if (ret)
4481                 return ret;
4482         return 0;
4483 }
4484 #else /* CONFIG_PM */
4485
4486 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4487                         struct usb_device *udev, enum usb3_link_state state)
4488 {
4489         return USB3_LPM_DISABLED;
4490 }
4491
4492 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4493                         struct usb_device *udev, enum usb3_link_state state)
4494 {
4495         return 0;
4496 }
4497 #endif  /* CONFIG_PM */
4498
4499 /*-------------------------------------------------------------------------*/
4500
4501 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4502  * internal data structures for the device.
4503  */
4504 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4505                         struct usb_tt *tt, gfp_t mem_flags)
4506 {
4507         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4508         struct xhci_virt_device *vdev;
4509         struct xhci_command *config_cmd;
4510         struct xhci_input_control_ctx *ctrl_ctx;
4511         struct xhci_slot_ctx *slot_ctx;
4512         unsigned long flags;
4513         unsigned think_time;
4514         int ret;
4515
4516         /* Ignore root hubs */
4517         if (!hdev->parent)
4518                 return 0;
4519
4520         vdev = xhci->devs[hdev->slot_id];
4521         if (!vdev) {
4522                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4523                 return -EINVAL;
4524         }
4525         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4526         if (!config_cmd) {
4527                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4528                 return -ENOMEM;
4529         }
4530
4531         spin_lock_irqsave(&xhci->lock, flags);
4532         if (hdev->speed == USB_SPEED_HIGH &&
4533                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4534                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4535                 xhci_free_command(xhci, config_cmd);
4536                 spin_unlock_irqrestore(&xhci->lock, flags);
4537                 return -ENOMEM;
4538         }
4539
4540         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4541         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4542         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4543         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4544         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4545         if (tt->multi)
4546                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4547         if (xhci->hci_version > 0x95) {
4548                 xhci_dbg(xhci, "xHCI version %x needs hub "
4549                                 "TT think time and number of ports\n",
4550                                 (unsigned int) xhci->hci_version);
4551                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4552                 /* Set TT think time - convert from ns to FS bit times.
4553                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4554                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4555                  *
4556                  * xHCI 1.0: this field shall be 0 if the device is not a
4557                  * High-spped hub.
4558                  */
4559                 think_time = tt->think_time;
4560                 if (think_time != 0)
4561                         think_time = (think_time / 666) - 1;
4562                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4563                         slot_ctx->tt_info |=
4564                                 cpu_to_le32(TT_THINK_TIME(think_time));
4565         } else {
4566                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4567                                 "TT think time or number of ports\n",
4568                                 (unsigned int) xhci->hci_version);
4569         }
4570         slot_ctx->dev_state = 0;
4571         spin_unlock_irqrestore(&xhci->lock, flags);
4572
4573         xhci_dbg(xhci, "Set up %s for hub device.\n",
4574                         (xhci->hci_version > 0x95) ?
4575                         "configure endpoint" : "evaluate context");
4576         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4577         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4578
4579         /* Issue and wait for the configure endpoint or
4580          * evaluate context command.
4581          */
4582         if (xhci->hci_version > 0x95)
4583                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4584                                 false, false);
4585         else
4586                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4587                                 true, false);
4588
4589         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4590         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4591
4592         xhci_free_command(xhci, config_cmd);
4593         return ret;
4594 }
4595
4596 int xhci_get_frame(struct usb_hcd *hcd)
4597 {
4598         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4599         /* EHCI mods by the periodic size.  Why? */
4600         return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4601 }
4602
4603 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4604 {
4605         struct xhci_hcd         *xhci;
4606         struct device           *dev = hcd->self.controller;
4607         int                     retval;
4608         u32                     temp;
4609
4610         /* Accept arbitrarily long scatter-gather lists */
4611         hcd->self.sg_tablesize = ~0;
4612         /* XHCI controllers don't stop the ep queue on short packets :| */
4613         hcd->self.no_stop_on_short = 1;
4614
4615         if (usb_hcd_is_primary_hcd(hcd)) {
4616                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4617                 if (!xhci)
4618                         return -ENOMEM;
4619                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4620                 xhci->main_hcd = hcd;
4621                 /* Mark the first roothub as being USB 2.0.
4622                  * The xHCI driver will register the USB 3.0 roothub.
4623                  */
4624                 hcd->speed = HCD_USB2;
4625                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4626                 /*
4627                  * USB 2.0 roothub under xHCI has an integrated TT,
4628                  * (rate matching hub) as opposed to having an OHCI/UHCI
4629                  * companion controller.
4630                  */
4631                 hcd->has_tt = 1;
4632         } else {
4633                 /* xHCI private pointer was set in xhci_pci_probe for the second
4634                  * registered roothub.
4635                  */
4636                 xhci = hcd_to_xhci(hcd);
4637                 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4638                 if (HCC_64BIT_ADDR(temp)) {
4639                         xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4640                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4641                 } else {
4642                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4643                 }
4644                 return 0;
4645         }
4646
4647         xhci->cap_regs = hcd->regs;
4648         xhci->op_regs = hcd->regs +
4649                 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4650         xhci->run_regs = hcd->regs +
4651                 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4652         /* Cache read-only capability registers */
4653         xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4654         xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4655         xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4656         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4657         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4658         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4659         xhci_print_registers(xhci);
4660
4661         get_quirks(dev, xhci);
4662
4663         /* Make sure the HC is halted. */
4664         retval = xhci_halt(xhci);
4665         if (retval)
4666                 goto error;
4667
4668         xhci_dbg(xhci, "Resetting HCD\n");
4669         /* Reset the internal HC memory state and registers. */
4670         retval = xhci_reset(xhci);
4671         if (retval)
4672                 goto error;
4673         xhci_dbg(xhci, "Reset complete\n");
4674
4675         temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4676         if (HCC_64BIT_ADDR(temp)) {
4677                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4678                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4679         } else {
4680                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4681         }
4682
4683         xhci_dbg(xhci, "Calling HCD init\n");
4684         /* Initialize HCD and host controller data structures. */
4685         retval = xhci_init(hcd);
4686         if (retval)
4687                 goto error;
4688         xhci_dbg(xhci, "Called HCD init\n");
4689         return 0;
4690 error:
4691         kfree(xhci);
4692         return retval;
4693 }
4694
4695 MODULE_DESCRIPTION(DRIVER_DESC);
4696 MODULE_AUTHOR(DRIVER_AUTHOR);
4697 MODULE_LICENSE("GPL");
4698
4699 static int __init xhci_hcd_init(void)
4700 {
4701         int retval;
4702
4703         retval = xhci_register_pci();
4704         if (retval < 0) {
4705                 printk(KERN_DEBUG "Problem registering PCI driver.");
4706                 return retval;
4707         }
4708         retval = xhci_register_plat();
4709         if (retval < 0) {
4710                 printk(KERN_DEBUG "Problem registering platform driver.");
4711                 goto unreg_pci;
4712         }
4713         /*
4714          * Check the compiler generated sizes of structures that must be laid
4715          * out in specific ways for hardware access.
4716          */
4717         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4718         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4719         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4720         /* xhci_device_control has eight fields, and also
4721          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4722          */
4723         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4724         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4725         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4726         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4727         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4728         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4729         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4730         return 0;
4731 unreg_pci:
4732         xhci_unregister_pci();
4733         return retval;
4734 }
4735 module_init(xhci_hcd_init);
4736
4737 static void __exit xhci_hcd_cleanup(void)
4738 {
4739         xhci_unregister_pci();
4740         xhci_unregister_plat();
4741 }
4742 module_exit(xhci_hcd_cleanup);