xfs: preserve DIFLAG2_NREXT64 when setting other inode attributes
[platform/kernel/linux-starfive.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28
29 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42         struct xhci_segment *seg = ring->first_seg;
43
44         if (!td || !td->start_seg)
45                 return false;
46         do {
47                 if (seg == td->start_seg)
48                         return true;
49                 seg = seg->next;
50         } while (seg && seg != ring->first_seg);
51
52         return false;
53 }
54
55 /*
56  * xhci_handshake - spin reading hc until handshake completes or fails
57  * @ptr: address of hc register to be read
58  * @mask: bits to look at in result of read
59  * @done: value of those bits when handshake succeeds
60  * @usec: timeout in microseconds
61  *
62  * Returns negative errno, or zero on success
63  *
64  * Success happens when the "mask" bits have the specified value (hardware
65  * handshake done).  There are two failure modes:  "usec" have passed (major
66  * hardware flakeout), or the register reads as all-ones (hardware removed).
67  */
68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
69 {
70         u32     result;
71         int     ret;
72
73         ret = readl_poll_timeout_atomic(ptr, result,
74                                         (result & mask) == done ||
75                                         result == U32_MAX,
76                                         1, timeout_us);
77         if (result == U32_MAX)          /* card removed */
78                 return -ENODEV;
79
80         return ret;
81 }
82
83 /*
84  * Disable interrupts and begin the xHCI halting process.
85  */
86 void xhci_quiesce(struct xhci_hcd *xhci)
87 {
88         u32 halted;
89         u32 cmd;
90         u32 mask;
91
92         mask = ~(XHCI_IRQS);
93         halted = readl(&xhci->op_regs->status) & STS_HALT;
94         if (!halted)
95                 mask &= ~CMD_RUN;
96
97         cmd = readl(&xhci->op_regs->command);
98         cmd &= mask;
99         writel(cmd, &xhci->op_regs->command);
100 }
101
102 /*
103  * Force HC into halt state.
104  *
105  * Disable any IRQs and clear the run/stop bit.
106  * HC will complete any current and actively pipelined transactions, and
107  * should halt within 16 ms of the run/stop bit being cleared.
108  * Read HC Halted bit in the status register to see when the HC is finished.
109  */
110 int xhci_halt(struct xhci_hcd *xhci)
111 {
112         int ret;
113
114         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115         xhci_quiesce(xhci);
116
117         ret = xhci_handshake(&xhci->op_regs->status,
118                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119         if (ret) {
120                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
121                 return ret;
122         }
123
124         xhci->xhc_state |= XHCI_STATE_HALTED;
125         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
126
127         return ret;
128 }
129
130 /*
131  * Set the run bit and wait for the host to be running.
132  */
133 int xhci_start(struct xhci_hcd *xhci)
134 {
135         u32 temp;
136         int ret;
137
138         temp = readl(&xhci->op_regs->command);
139         temp |= (CMD_RUN);
140         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
141                         temp);
142         writel(temp, &xhci->op_regs->command);
143
144         /*
145          * Wait for the HCHalted Status bit to be 0 to indicate the host is
146          * running.
147          */
148         ret = xhci_handshake(&xhci->op_regs->status,
149                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
150         if (ret == -ETIMEDOUT)
151                 xhci_err(xhci, "Host took too long to start, "
152                                 "waited %u microseconds.\n",
153                                 XHCI_MAX_HALT_USEC);
154         if (!ret)
155                 /* clear state flags. Including dying, halted or removing */
156                 xhci->xhc_state = 0;
157
158         return ret;
159 }
160
161 /*
162  * Reset a halted HC.
163  *
164  * This resets pipelines, timers, counters, state machines, etc.
165  * Transactions will be terminated immediately, and operational registers
166  * will be set to their defaults.
167  */
168 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
169 {
170         u32 command;
171         u32 state;
172         int ret;
173
174         state = readl(&xhci->op_regs->status);
175
176         if (state == ~(u32)0) {
177                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
178                 return -ENODEV;
179         }
180
181         if ((state & STS_HALT) == 0) {
182                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
183                 return 0;
184         }
185
186         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
187         command = readl(&xhci->op_regs->command);
188         command |= CMD_RESET;
189         writel(command, &xhci->op_regs->command);
190
191         /* Existing Intel xHCI controllers require a delay of 1 mS,
192          * after setting the CMD_RESET bit, and before accessing any
193          * HC registers. This allows the HC to complete the
194          * reset operation and be ready for HC register access.
195          * Without this delay, the subsequent HC register access,
196          * may result in a system hang very rarely.
197          */
198         if (xhci->quirks & XHCI_INTEL_HOST)
199                 udelay(1000);
200
201         ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
202         if (ret)
203                 return ret;
204
205         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
206                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
207
208         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
209                          "Wait for controller to be ready for doorbell rings");
210         /*
211          * xHCI cannot write to any doorbells or operational registers other
212          * than status until the "Controller Not Ready" flag is cleared.
213          */
214         ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
215
216         xhci->usb2_rhub.bus_state.port_c_suspend = 0;
217         xhci->usb2_rhub.bus_state.suspended_ports = 0;
218         xhci->usb2_rhub.bus_state.resuming_ports = 0;
219         xhci->usb3_rhub.bus_state.port_c_suspend = 0;
220         xhci->usb3_rhub.bus_state.suspended_ports = 0;
221         xhci->usb3_rhub.bus_state.resuming_ports = 0;
222
223         return ret;
224 }
225
226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
227 {
228         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
229         int err, i;
230         u64 val;
231         u32 intrs;
232
233         /*
234          * Some Renesas controllers get into a weird state if they are
235          * reset while programmed with 64bit addresses (they will preserve
236          * the top half of the address in internal, non visible
237          * registers). You end up with half the address coming from the
238          * kernel, and the other half coming from the firmware. Also,
239          * changing the programming leads to extra accesses even if the
240          * controller is supposed to be halted. The controller ends up with
241          * a fatal fault, and is then ripe for being properly reset.
242          *
243          * Special care is taken to only apply this if the device is behind
244          * an iommu. Doing anything when there is no iommu is definitely
245          * unsafe...
246          */
247         if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
248                 return;
249
250         xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
251
252         /* Clear HSEIE so that faults do not get signaled */
253         val = readl(&xhci->op_regs->command);
254         val &= ~CMD_HSEIE;
255         writel(val, &xhci->op_regs->command);
256
257         /* Clear HSE (aka FATAL) */
258         val = readl(&xhci->op_regs->status);
259         val |= STS_FATAL;
260         writel(val, &xhci->op_regs->status);
261
262         /* Now zero the registers, and brace for impact */
263         val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
264         if (upper_32_bits(val))
265                 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
266         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
267         if (upper_32_bits(val))
268                 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
269
270         intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
271                       ARRAY_SIZE(xhci->run_regs->ir_set));
272
273         for (i = 0; i < intrs; i++) {
274                 struct xhci_intr_reg __iomem *ir;
275
276                 ir = &xhci->run_regs->ir_set[i];
277                 val = xhci_read_64(xhci, &ir->erst_base);
278                 if (upper_32_bits(val))
279                         xhci_write_64(xhci, 0, &ir->erst_base);
280                 val= xhci_read_64(xhci, &ir->erst_dequeue);
281                 if (upper_32_bits(val))
282                         xhci_write_64(xhci, 0, &ir->erst_dequeue);
283         }
284
285         /* Wait for the fault to appear. It will be cleared on reset */
286         err = xhci_handshake(&xhci->op_regs->status,
287                              STS_FATAL, STS_FATAL,
288                              XHCI_MAX_HALT_USEC);
289         if (!err)
290                 xhci_info(xhci, "Fault detected\n");
291 }
292
293 #ifdef CONFIG_USB_PCI
294 /*
295  * Set up MSI
296  */
297 static int xhci_setup_msi(struct xhci_hcd *xhci)
298 {
299         int ret;
300         /*
301          * TODO:Check with MSI Soc for sysdev
302          */
303         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
304
305         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
306         if (ret < 0) {
307                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
308                                 "failed to allocate MSI entry");
309                 return ret;
310         }
311
312         ret = request_irq(pdev->irq, xhci_msi_irq,
313                                 0, "xhci_hcd", xhci_to_hcd(xhci));
314         if (ret) {
315                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
316                                 "disable MSI interrupt");
317                 pci_free_irq_vectors(pdev);
318         }
319
320         return ret;
321 }
322
323 /*
324  * Set up MSI-X
325  */
326 static int xhci_setup_msix(struct xhci_hcd *xhci)
327 {
328         int i, ret;
329         struct usb_hcd *hcd = xhci_to_hcd(xhci);
330         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
331
332         /*
333          * calculate number of msi-x vectors supported.
334          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
335          *   with max number of interrupters based on the xhci HCSPARAMS1.
336          * - num_online_cpus: maximum msi-x vectors per CPUs core.
337          *   Add additional 1 vector to ensure always available interrupt.
338          */
339         xhci->msix_count = min(num_online_cpus() + 1,
340                                 HCS_MAX_INTRS(xhci->hcs_params1));
341
342         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
343                         PCI_IRQ_MSIX);
344         if (ret < 0) {
345                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
346                                 "Failed to enable MSI-X");
347                 return ret;
348         }
349
350         for (i = 0; i < xhci->msix_count; i++) {
351                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
352                                 "xhci_hcd", xhci_to_hcd(xhci));
353                 if (ret)
354                         goto disable_msix;
355         }
356
357         hcd->msix_enabled = 1;
358         return ret;
359
360 disable_msix:
361         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
362         while (--i >= 0)
363                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
364         pci_free_irq_vectors(pdev);
365         return ret;
366 }
367
368 /* Free any IRQs and disable MSI-X */
369 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
370 {
371         struct usb_hcd *hcd = xhci_to_hcd(xhci);
372         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
373
374         if (xhci->quirks & XHCI_PLAT)
375                 return;
376
377         /* return if using legacy interrupt */
378         if (hcd->irq > 0)
379                 return;
380
381         if (hcd->msix_enabled) {
382                 int i;
383
384                 for (i = 0; i < xhci->msix_count; i++)
385                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
386         } else {
387                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
388         }
389
390         pci_free_irq_vectors(pdev);
391         hcd->msix_enabled = 0;
392 }
393
394 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
395 {
396         struct usb_hcd *hcd = xhci_to_hcd(xhci);
397
398         if (hcd->msix_enabled) {
399                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
400                 int i;
401
402                 for (i = 0; i < xhci->msix_count; i++)
403                         synchronize_irq(pci_irq_vector(pdev, i));
404         }
405 }
406
407 static int xhci_try_enable_msi(struct usb_hcd *hcd)
408 {
409         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
410         struct pci_dev  *pdev;
411         int ret;
412
413         /* The xhci platform device has set up IRQs through usb_add_hcd. */
414         if (xhci->quirks & XHCI_PLAT)
415                 return 0;
416
417         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
418         /*
419          * Some Fresco Logic host controllers advertise MSI, but fail to
420          * generate interrupts.  Don't even try to enable MSI.
421          */
422         if (xhci->quirks & XHCI_BROKEN_MSI)
423                 goto legacy_irq;
424
425         /* unregister the legacy interrupt */
426         if (hcd->irq)
427                 free_irq(hcd->irq, hcd);
428         hcd->irq = 0;
429
430         ret = xhci_setup_msix(xhci);
431         if (ret)
432                 /* fall back to msi*/
433                 ret = xhci_setup_msi(xhci);
434
435         if (!ret) {
436                 hcd->msi_enabled = 1;
437                 return 0;
438         }
439
440         if (!pdev->irq) {
441                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
442                 return -EINVAL;
443         }
444
445  legacy_irq:
446         if (!strlen(hcd->irq_descr))
447                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
448                          hcd->driver->description, hcd->self.busnum);
449
450         /* fall back to legacy interrupt*/
451         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
452                         hcd->irq_descr, hcd);
453         if (ret) {
454                 xhci_err(xhci, "request interrupt %d failed\n",
455                                 pdev->irq);
456                 return ret;
457         }
458         hcd->irq = pdev->irq;
459         return 0;
460 }
461
462 #else
463
464 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
465 {
466         return 0;
467 }
468
469 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
470 {
471 }
472
473 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
474 {
475 }
476
477 #endif
478
479 static void compliance_mode_recovery(struct timer_list *t)
480 {
481         struct xhci_hcd *xhci;
482         struct usb_hcd *hcd;
483         struct xhci_hub *rhub;
484         u32 temp;
485         int i;
486
487         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
488         rhub = &xhci->usb3_rhub;
489         hcd = rhub->hcd;
490
491         if (!hcd)
492                 return;
493
494         for (i = 0; i < rhub->num_ports; i++) {
495                 temp = readl(rhub->ports[i]->addr);
496                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
497                         /*
498                          * Compliance Mode Detected. Letting USB Core
499                          * handle the Warm Reset
500                          */
501                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
502                                         "Compliance mode detected->port %d",
503                                         i + 1);
504                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
505                                         "Attempting compliance mode recovery");
506
507                         if (hcd->state == HC_STATE_SUSPENDED)
508                                 usb_hcd_resume_root_hub(hcd);
509
510                         usb_hcd_poll_rh_status(hcd);
511                 }
512         }
513
514         if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
515                 mod_timer(&xhci->comp_mode_recovery_timer,
516                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
517 }
518
519 /*
520  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
521  * that causes ports behind that hardware to enter compliance mode sometimes.
522  * The quirk creates a timer that polls every 2 seconds the link state of
523  * each host controller's port and recovers it by issuing a Warm reset
524  * if Compliance mode is detected, otherwise the port will become "dead" (no
525  * device connections or disconnections will be detected anymore). Becasue no
526  * status event is generated when entering compliance mode (per xhci spec),
527  * this quirk is needed on systems that have the failing hardware installed.
528  */
529 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
530 {
531         xhci->port_status_u0 = 0;
532         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
533                     0);
534         xhci->comp_mode_recovery_timer.expires = jiffies +
535                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
536
537         add_timer(&xhci->comp_mode_recovery_timer);
538         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
539                         "Compliance mode recovery timer initialized");
540 }
541
542 /*
543  * This function identifies the systems that have installed the SN65LVPE502CP
544  * USB3.0 re-driver and that need the Compliance Mode Quirk.
545  * Systems:
546  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
547  */
548 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
549 {
550         const char *dmi_product_name, *dmi_sys_vendor;
551
552         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
553         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
554         if (!dmi_product_name || !dmi_sys_vendor)
555                 return false;
556
557         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
558                 return false;
559
560         if (strstr(dmi_product_name, "Z420") ||
561                         strstr(dmi_product_name, "Z620") ||
562                         strstr(dmi_product_name, "Z820") ||
563                         strstr(dmi_product_name, "Z1 Workstation"))
564                 return true;
565
566         return false;
567 }
568
569 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
570 {
571         return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
572 }
573
574
575 /*
576  * Initialize memory for HCD and xHC (one-time init).
577  *
578  * Program the PAGESIZE register, initialize the device context array, create
579  * device contexts (?), set up a command ring segment (or two?), create event
580  * ring (one for now).
581  */
582 static int xhci_init(struct usb_hcd *hcd)
583 {
584         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
585         int retval;
586
587         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
588         spin_lock_init(&xhci->lock);
589         if (xhci->hci_version == 0x95 && link_quirk) {
590                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
591                                 "QUIRK: Not clearing Link TRB chain bits.");
592                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
593         } else {
594                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
595                                 "xHCI doesn't need link TRB QUIRK");
596         }
597         retval = xhci_mem_init(xhci, GFP_KERNEL);
598         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
599
600         /* Initializing Compliance Mode Recovery Data If Needed */
601         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
602                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
603                 compliance_mode_recovery_timer_init(xhci);
604         }
605
606         return retval;
607 }
608
609 /*-------------------------------------------------------------------------*/
610
611
612 static int xhci_run_finished(struct xhci_hcd *xhci)
613 {
614         if (xhci_start(xhci)) {
615                 xhci_halt(xhci);
616                 return -ENODEV;
617         }
618         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
619
620         if (xhci->quirks & XHCI_NEC_HOST)
621                 xhci_ring_cmd_db(xhci);
622
623         return 0;
624 }
625
626 /*
627  * Start the HC after it was halted.
628  *
629  * This function is called by the USB core when the HC driver is added.
630  * Its opposite is xhci_stop().
631  *
632  * xhci_init() must be called once before this function can be called.
633  * Reset the HC, enable device slot contexts, program DCBAAP, and
634  * set command ring pointer and event ring pointer.
635  *
636  * Setup MSI-X vectors and enable interrupts.
637  */
638 int xhci_run(struct usb_hcd *hcd)
639 {
640         u32 temp;
641         u64 temp_64;
642         int ret;
643         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
644
645         /* Start the xHCI host controller running only after the USB 2.0 roothub
646          * is setup.
647          */
648
649         hcd->uses_new_polling = 1;
650         if (!usb_hcd_is_primary_hcd(hcd))
651                 return xhci_run_finished(xhci);
652
653         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
654
655         ret = xhci_try_enable_msi(hcd);
656         if (ret)
657                 return ret;
658
659         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
660         temp_64 &= ~ERST_PTR_MASK;
661         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
662                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
663
664         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
665                         "// Set the interrupt modulation register");
666         temp = readl(&xhci->ir_set->irq_control);
667         temp &= ~ER_IRQ_INTERVAL_MASK;
668         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
669         writel(temp, &xhci->ir_set->irq_control);
670
671         /* Set the HCD state before we enable the irqs */
672         temp = readl(&xhci->op_regs->command);
673         temp |= (CMD_EIE);
674         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
675                         "// Enable interrupts, cmd = 0x%x.", temp);
676         writel(temp, &xhci->op_regs->command);
677
678         temp = readl(&xhci->ir_set->irq_pending);
679         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
680                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
681                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
682         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
683
684         if (xhci->quirks & XHCI_NEC_HOST) {
685                 struct xhci_command *command;
686
687                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
688                 if (!command)
689                         return -ENOMEM;
690
691                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
692                                 TRB_TYPE(TRB_NEC_GET_FW));
693                 if (ret)
694                         xhci_free_command(xhci, command);
695         }
696         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
697                         "Finished %s for main hcd", __func__);
698
699         xhci_create_dbc_dev(xhci);
700
701         xhci_debugfs_init(xhci);
702
703         if (xhci_has_one_roothub(xhci))
704                 return xhci_run_finished(xhci);
705
706         set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
707
708         return 0;
709 }
710 EXPORT_SYMBOL_GPL(xhci_run);
711
712 /*
713  * Stop xHCI driver.
714  *
715  * This function is called by the USB core when the HC driver is removed.
716  * Its opposite is xhci_run().
717  *
718  * Disable device contexts, disable IRQs, and quiesce the HC.
719  * Reset the HC, finish any completed transactions, and cleanup memory.
720  */
721 static void xhci_stop(struct usb_hcd *hcd)
722 {
723         u32 temp;
724         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
725
726         mutex_lock(&xhci->mutex);
727
728         /* Only halt host and free memory after both hcds are removed */
729         if (!usb_hcd_is_primary_hcd(hcd)) {
730                 mutex_unlock(&xhci->mutex);
731                 return;
732         }
733
734         xhci_remove_dbc_dev(xhci);
735
736         spin_lock_irq(&xhci->lock);
737         xhci->xhc_state |= XHCI_STATE_HALTED;
738         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
739         xhci_halt(xhci);
740         xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
741         spin_unlock_irq(&xhci->lock);
742
743         xhci_cleanup_msix(xhci);
744
745         /* Deleting Compliance Mode Recovery Timer */
746         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
747                         (!(xhci_all_ports_seen_u0(xhci)))) {
748                 del_timer_sync(&xhci->comp_mode_recovery_timer);
749                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
750                                 "%s: compliance mode recovery timer deleted",
751                                 __func__);
752         }
753
754         if (xhci->quirks & XHCI_AMD_PLL_FIX)
755                 usb_amd_dev_put();
756
757         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
758                         "// Disabling event ring interrupts");
759         temp = readl(&xhci->op_regs->status);
760         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
761         temp = readl(&xhci->ir_set->irq_pending);
762         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
763
764         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
765         xhci_mem_cleanup(xhci);
766         xhci_debugfs_exit(xhci);
767         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
768                         "xhci_stop completed - status = %x",
769                         readl(&xhci->op_regs->status));
770         mutex_unlock(&xhci->mutex);
771 }
772
773 /*
774  * Shutdown HC (not bus-specific)
775  *
776  * This is called when the machine is rebooting or halting.  We assume that the
777  * machine will be powered off, and the HC's internal state will be reset.
778  * Don't bother to free memory.
779  *
780  * This will only ever be called with the main usb_hcd (the USB3 roothub).
781  */
782 void xhci_shutdown(struct usb_hcd *hcd)
783 {
784         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
785
786         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
787                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
788
789         /* Don't poll the roothubs after shutdown. */
790         xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
791                         __func__, hcd->self.busnum);
792         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
793         del_timer_sync(&hcd->rh_timer);
794
795         if (xhci->shared_hcd) {
796                 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
797                 del_timer_sync(&xhci->shared_hcd->rh_timer);
798         }
799
800         spin_lock_irq(&xhci->lock);
801         xhci_halt(xhci);
802         /* Workaround for spurious wakeups at shutdown with HSW */
803         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
804                 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
805         spin_unlock_irq(&xhci->lock);
806
807         xhci_cleanup_msix(xhci);
808
809         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
810                         "xhci_shutdown completed - status = %x",
811                         readl(&xhci->op_regs->status));
812 }
813 EXPORT_SYMBOL_GPL(xhci_shutdown);
814
815 #ifdef CONFIG_PM
816 static void xhci_save_registers(struct xhci_hcd *xhci)
817 {
818         xhci->s3.command = readl(&xhci->op_regs->command);
819         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
820         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
821         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
822         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
823         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
824         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
825         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
826         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
827 }
828
829 static void xhci_restore_registers(struct xhci_hcd *xhci)
830 {
831         writel(xhci->s3.command, &xhci->op_regs->command);
832         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
833         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
834         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
835         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
836         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
837         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
838         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
839         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
840 }
841
842 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
843 {
844         u64     val_64;
845
846         /* step 2: initialize command ring buffer */
847         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
848         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
849                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
850                                       xhci->cmd_ring->dequeue) &
851                  (u64) ~CMD_RING_RSVD_BITS) |
852                 xhci->cmd_ring->cycle_state;
853         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
854                         "// Setting command ring address to 0x%llx",
855                         (long unsigned long) val_64);
856         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
857 }
858
859 /*
860  * The whole command ring must be cleared to zero when we suspend the host.
861  *
862  * The host doesn't save the command ring pointer in the suspend well, so we
863  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
864  * aligned, because of the reserved bits in the command ring dequeue pointer
865  * register.  Therefore, we can't just set the dequeue pointer back in the
866  * middle of the ring (TRBs are 16-byte aligned).
867  */
868 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
869 {
870         struct xhci_ring *ring;
871         struct xhci_segment *seg;
872
873         ring = xhci->cmd_ring;
874         seg = ring->deq_seg;
875         do {
876                 memset(seg->trbs, 0,
877                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
878                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
879                         cpu_to_le32(~TRB_CYCLE);
880                 seg = seg->next;
881         } while (seg != ring->deq_seg);
882
883         /* Reset the software enqueue and dequeue pointers */
884         ring->deq_seg = ring->first_seg;
885         ring->dequeue = ring->first_seg->trbs;
886         ring->enq_seg = ring->deq_seg;
887         ring->enqueue = ring->dequeue;
888
889         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
890         /*
891          * Ring is now zeroed, so the HW should look for change of ownership
892          * when the cycle bit is set to 1.
893          */
894         ring->cycle_state = 1;
895
896         /*
897          * Reset the hardware dequeue pointer.
898          * Yes, this will need to be re-written after resume, but we're paranoid
899          * and want to make sure the hardware doesn't access bogus memory
900          * because, say, the BIOS or an SMI started the host without changing
901          * the command ring pointers.
902          */
903         xhci_set_cmd_ring_deq(xhci);
904 }
905
906 /*
907  * Disable port wake bits if do_wakeup is not set.
908  *
909  * Also clear a possible internal port wake state left hanging for ports that
910  * detected termination but never successfully enumerated (trained to 0U).
911  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
912  * at enumeration clears this wake, force one here as well for unconnected ports
913  */
914
915 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
916                                        struct xhci_hub *rhub,
917                                        bool do_wakeup)
918 {
919         unsigned long flags;
920         u32 t1, t2, portsc;
921         int i;
922
923         spin_lock_irqsave(&xhci->lock, flags);
924
925         for (i = 0; i < rhub->num_ports; i++) {
926                 portsc = readl(rhub->ports[i]->addr);
927                 t1 = xhci_port_state_to_neutral(portsc);
928                 t2 = t1;
929
930                 /* clear wake bits if do_wake is not set */
931                 if (!do_wakeup)
932                         t2 &= ~PORT_WAKE_BITS;
933
934                 /* Don't touch csc bit if connected or connect change is set */
935                 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
936                         t2 |= PORT_CSC;
937
938                 if (t1 != t2) {
939                         writel(t2, rhub->ports[i]->addr);
940                         xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
941                                  rhub->hcd->self.busnum, i + 1, portsc, t2);
942                 }
943         }
944         spin_unlock_irqrestore(&xhci->lock, flags);
945 }
946
947 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
948 {
949         struct xhci_port        **ports;
950         int                     port_index;
951         u32                     status;
952         u32                     portsc;
953
954         status = readl(&xhci->op_regs->status);
955         if (status & STS_EINT)
956                 return true;
957         /*
958          * Checking STS_EINT is not enough as there is a lag between a change
959          * bit being set and the Port Status Change Event that it generated
960          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
961          */
962
963         port_index = xhci->usb2_rhub.num_ports;
964         ports = xhci->usb2_rhub.ports;
965         while (port_index--) {
966                 portsc = readl(ports[port_index]->addr);
967                 if (portsc & PORT_CHANGE_MASK ||
968                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
969                         return true;
970         }
971         port_index = xhci->usb3_rhub.num_ports;
972         ports = xhci->usb3_rhub.ports;
973         while (port_index--) {
974                 portsc = readl(ports[port_index]->addr);
975                 if (portsc & PORT_CHANGE_MASK ||
976                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
977                         return true;
978         }
979         return false;
980 }
981
982 /*
983  * Stop HC (not bus-specific)
984  *
985  * This is called when the machine transition into S3/S4 mode.
986  *
987  */
988 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
989 {
990         int                     rc = 0;
991         unsigned int            delay = XHCI_MAX_HALT_USEC * 2;
992         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
993         u32                     command;
994         u32                     res;
995
996         if (!hcd->state)
997                 return 0;
998
999         if (hcd->state != HC_STATE_SUSPENDED ||
1000             (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
1001                 return -EINVAL;
1002
1003         /* Clear root port wake on bits if wakeup not allowed. */
1004         xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
1005         xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
1006
1007         if (!HCD_HW_ACCESSIBLE(hcd))
1008                 return 0;
1009
1010         xhci_dbc_suspend(xhci);
1011
1012         /* Don't poll the roothubs on bus suspend. */
1013         xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
1014                  __func__, hcd->self.busnum);
1015         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1016         del_timer_sync(&hcd->rh_timer);
1017         if (xhci->shared_hcd) {
1018                 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1019                 del_timer_sync(&xhci->shared_hcd->rh_timer);
1020         }
1021
1022         if (xhci->quirks & XHCI_SUSPEND_DELAY)
1023                 usleep_range(1000, 1500);
1024
1025         spin_lock_irq(&xhci->lock);
1026         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1027         if (xhci->shared_hcd)
1028                 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1029         /* step 1: stop endpoint */
1030         /* skipped assuming that port suspend has done */
1031
1032         /* step 2: clear Run/Stop bit */
1033         command = readl(&xhci->op_regs->command);
1034         command &= ~CMD_RUN;
1035         writel(command, &xhci->op_regs->command);
1036
1037         /* Some chips from Fresco Logic need an extraordinary delay */
1038         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1039
1040         if (xhci_handshake(&xhci->op_regs->status,
1041                       STS_HALT, STS_HALT, delay)) {
1042                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1043                 spin_unlock_irq(&xhci->lock);
1044                 return -ETIMEDOUT;
1045         }
1046         xhci_clear_command_ring(xhci);
1047
1048         /* step 3: save registers */
1049         xhci_save_registers(xhci);
1050
1051         /* step 4: set CSS flag */
1052         command = readl(&xhci->op_regs->command);
1053         command |= CMD_CSS;
1054         writel(command, &xhci->op_regs->command);
1055         xhci->broken_suspend = 0;
1056         if (xhci_handshake(&xhci->op_regs->status,
1057                                 STS_SAVE, 0, 20 * 1000)) {
1058         /*
1059          * AMD SNPS xHC 3.0 occasionally does not clear the
1060          * SSS bit of USBSTS and when driver tries to poll
1061          * to see if the xHC clears BIT(8) which never happens
1062          * and driver assumes that controller is not responding
1063          * and times out. To workaround this, its good to check
1064          * if SRE and HCE bits are not set (as per xhci
1065          * Section 5.4.2) and bypass the timeout.
1066          */
1067                 res = readl(&xhci->op_regs->status);
1068                 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1069                     (((res & STS_SRE) == 0) &&
1070                                 ((res & STS_HCE) == 0))) {
1071                         xhci->broken_suspend = 1;
1072                 } else {
1073                         xhci_warn(xhci, "WARN: xHC save state timeout\n");
1074                         spin_unlock_irq(&xhci->lock);
1075                         return -ETIMEDOUT;
1076                 }
1077         }
1078         spin_unlock_irq(&xhci->lock);
1079
1080         /*
1081          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1082          * is about to be suspended.
1083          */
1084         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1085                         (!(xhci_all_ports_seen_u0(xhci)))) {
1086                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1087                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1088                                 "%s: compliance mode recovery timer deleted",
1089                                 __func__);
1090         }
1091
1092         /* step 5: remove core well power */
1093         /* synchronize irq when using MSI-X */
1094         xhci_msix_sync_irqs(xhci);
1095
1096         return rc;
1097 }
1098 EXPORT_SYMBOL_GPL(xhci_suspend);
1099
1100 /*
1101  * start xHC (not bus-specific)
1102  *
1103  * This is called when the machine transition from S3/S4 mode.
1104  *
1105  */
1106 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1107 {
1108         u32                     command, temp = 0;
1109         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1110         struct usb_hcd          *secondary_hcd;
1111         int                     retval = 0;
1112         bool                    comp_timer_running = false;
1113         bool                    pending_portevent = false;
1114         bool                    reinit_xhc = false;
1115
1116         if (!hcd->state)
1117                 return 0;
1118
1119         /* Wait a bit if either of the roothubs need to settle from the
1120          * transition into bus suspend.
1121          */
1122
1123         if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1124             time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1125                 msleep(100);
1126
1127         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1128         if (xhci->shared_hcd)
1129                 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1130
1131         spin_lock_irq(&xhci->lock);
1132
1133         if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1134                 reinit_xhc = true;
1135
1136         if (!reinit_xhc) {
1137                 /*
1138                  * Some controllers might lose power during suspend, so wait
1139                  * for controller not ready bit to clear, just as in xHC init.
1140                  */
1141                 retval = xhci_handshake(&xhci->op_regs->status,
1142                                         STS_CNR, 0, 10 * 1000 * 1000);
1143                 if (retval) {
1144                         xhci_warn(xhci, "Controller not ready at resume %d\n",
1145                                   retval);
1146                         spin_unlock_irq(&xhci->lock);
1147                         return retval;
1148                 }
1149                 /* step 1: restore register */
1150                 xhci_restore_registers(xhci);
1151                 /* step 2: initialize command ring buffer */
1152                 xhci_set_cmd_ring_deq(xhci);
1153                 /* step 3: restore state and start state*/
1154                 /* step 3: set CRS flag */
1155                 command = readl(&xhci->op_regs->command);
1156                 command |= CMD_CRS;
1157                 writel(command, &xhci->op_regs->command);
1158                 /*
1159                  * Some controllers take up to 55+ ms to complete the controller
1160                  * restore so setting the timeout to 100ms. Xhci specification
1161                  * doesn't mention any timeout value.
1162                  */
1163                 if (xhci_handshake(&xhci->op_regs->status,
1164                               STS_RESTORE, 0, 100 * 1000)) {
1165                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1166                         spin_unlock_irq(&xhci->lock);
1167                         return -ETIMEDOUT;
1168                 }
1169         }
1170
1171         temp = readl(&xhci->op_regs->status);
1172
1173         /* re-initialize the HC on Restore Error, or Host Controller Error */
1174         if (temp & (STS_SRE | STS_HCE)) {
1175                 reinit_xhc = true;
1176                 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1177         }
1178
1179         if (reinit_xhc) {
1180                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1181                                 !(xhci_all_ports_seen_u0(xhci))) {
1182                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1183                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1184                                 "Compliance Mode Recovery Timer deleted!");
1185                 }
1186
1187                 /* Let the USB core know _both_ roothubs lost power. */
1188                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1189                 if (xhci->shared_hcd)
1190                         usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1191
1192                 xhci_dbg(xhci, "Stop HCD\n");
1193                 xhci_halt(xhci);
1194                 xhci_zero_64b_regs(xhci);
1195                 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1196                 spin_unlock_irq(&xhci->lock);
1197                 if (retval)
1198                         return retval;
1199                 xhci_cleanup_msix(xhci);
1200
1201                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1202                 temp = readl(&xhci->op_regs->status);
1203                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1204                 temp = readl(&xhci->ir_set->irq_pending);
1205                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1206
1207                 xhci_dbg(xhci, "cleaning up memory\n");
1208                 xhci_mem_cleanup(xhci);
1209                 xhci_debugfs_exit(xhci);
1210                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1211                             readl(&xhci->op_regs->status));
1212
1213                 /* USB core calls the PCI reinit and start functions twice:
1214                  * first with the primary HCD, and then with the secondary HCD.
1215                  * If we don't do the same, the host will never be started.
1216                  */
1217                 if (!usb_hcd_is_primary_hcd(hcd))
1218                         secondary_hcd = hcd;
1219                 else
1220                         secondary_hcd = xhci->shared_hcd;
1221
1222                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1223                 retval = xhci_init(hcd->primary_hcd);
1224                 if (retval)
1225                         return retval;
1226                 comp_timer_running = true;
1227
1228                 xhci_dbg(xhci, "Start the primary HCD\n");
1229                 retval = xhci_run(hcd->primary_hcd);
1230                 if (!retval && secondary_hcd) {
1231                         xhci_dbg(xhci, "Start the secondary HCD\n");
1232                         retval = xhci_run(secondary_hcd);
1233                 }
1234                 hcd->state = HC_STATE_SUSPENDED;
1235                 if (xhci->shared_hcd)
1236                         xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1237                 goto done;
1238         }
1239
1240         /* step 4: set Run/Stop bit */
1241         command = readl(&xhci->op_regs->command);
1242         command |= CMD_RUN;
1243         writel(command, &xhci->op_regs->command);
1244         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1245                   0, 250 * 1000);
1246
1247         /* step 5: walk topology and initialize portsc,
1248          * portpmsc and portli
1249          */
1250         /* this is done in bus_resume */
1251
1252         /* step 6: restart each of the previously
1253          * Running endpoints by ringing their doorbells
1254          */
1255
1256         spin_unlock_irq(&xhci->lock);
1257
1258         xhci_dbc_resume(xhci);
1259
1260  done:
1261         if (retval == 0) {
1262                 /*
1263                  * Resume roothubs only if there are pending events.
1264                  * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1265                  * the first wake signalling failed, give it that chance.
1266                  */
1267                 pending_portevent = xhci_pending_portevent(xhci);
1268                 if (!pending_portevent) {
1269                         msleep(120);
1270                         pending_portevent = xhci_pending_portevent(xhci);
1271                 }
1272
1273                 if (pending_portevent) {
1274                         if (xhci->shared_hcd)
1275                                 usb_hcd_resume_root_hub(xhci->shared_hcd);
1276                         usb_hcd_resume_root_hub(hcd);
1277                 }
1278         }
1279         /*
1280          * If system is subject to the Quirk, Compliance Mode Timer needs to
1281          * be re-initialized Always after a system resume. Ports are subject
1282          * to suffer the Compliance Mode issue again. It doesn't matter if
1283          * ports have entered previously to U0 before system's suspension.
1284          */
1285         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1286                 compliance_mode_recovery_timer_init(xhci);
1287
1288         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1289                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1290
1291         /* Re-enable port polling. */
1292         xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1293                  __func__, hcd->self.busnum);
1294         if (xhci->shared_hcd) {
1295                 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1296                 usb_hcd_poll_rh_status(xhci->shared_hcd);
1297         }
1298         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1299         usb_hcd_poll_rh_status(hcd);
1300
1301         return retval;
1302 }
1303 EXPORT_SYMBOL_GPL(xhci_resume);
1304 #endif  /* CONFIG_PM */
1305
1306 /*-------------------------------------------------------------------------*/
1307
1308 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1309 {
1310         void *temp;
1311         int ret = 0;
1312         unsigned int buf_len;
1313         enum dma_data_direction dir;
1314
1315         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1316         buf_len = urb->transfer_buffer_length;
1317
1318         temp = kzalloc_node(buf_len, GFP_ATOMIC,
1319                             dev_to_node(hcd->self.sysdev));
1320
1321         if (usb_urb_dir_out(urb))
1322                 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1323                                    temp, buf_len, 0);
1324
1325         urb->transfer_buffer = temp;
1326         urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1327                                            urb->transfer_buffer,
1328                                            urb->transfer_buffer_length,
1329                                            dir);
1330
1331         if (dma_mapping_error(hcd->self.sysdev,
1332                               urb->transfer_dma)) {
1333                 ret = -EAGAIN;
1334                 kfree(temp);
1335         } else {
1336                 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1337         }
1338
1339         return ret;
1340 }
1341
1342 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1343                                           struct urb *urb)
1344 {
1345         bool ret = false;
1346         unsigned int i;
1347         unsigned int len = 0;
1348         unsigned int trb_size;
1349         unsigned int max_pkt;
1350         struct scatterlist *sg;
1351         struct scatterlist *tail_sg;
1352
1353         tail_sg = urb->sg;
1354         max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1355
1356         if (!urb->num_sgs)
1357                 return ret;
1358
1359         if (urb->dev->speed >= USB_SPEED_SUPER)
1360                 trb_size = TRB_CACHE_SIZE_SS;
1361         else
1362                 trb_size = TRB_CACHE_SIZE_HS;
1363
1364         if (urb->transfer_buffer_length != 0 &&
1365             !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1366                 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1367                         len = len + sg->length;
1368                         if (i > trb_size - 2) {
1369                                 len = len - tail_sg->length;
1370                                 if (len < max_pkt) {
1371                                         ret = true;
1372                                         break;
1373                                 }
1374
1375                                 tail_sg = sg_next(tail_sg);
1376                         }
1377                 }
1378         }
1379         return ret;
1380 }
1381
1382 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1383 {
1384         unsigned int len;
1385         unsigned int buf_len;
1386         enum dma_data_direction dir;
1387
1388         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1389
1390         buf_len = urb->transfer_buffer_length;
1391
1392         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1393             (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1394                 dma_unmap_single(hcd->self.sysdev,
1395                                  urb->transfer_dma,
1396                                  urb->transfer_buffer_length,
1397                                  dir);
1398
1399         if (usb_urb_dir_in(urb)) {
1400                 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1401                                            urb->transfer_buffer,
1402                                            buf_len,
1403                                            0);
1404                 if (len != buf_len) {
1405                         xhci_dbg(hcd_to_xhci(hcd),
1406                                  "Copy from tmp buf to urb sg list failed\n");
1407                         urb->actual_length = len;
1408                 }
1409         }
1410         urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1411         kfree(urb->transfer_buffer);
1412         urb->transfer_buffer = NULL;
1413 }
1414
1415 /*
1416  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1417  * we'll copy the actual data into the TRB address register. This is limited to
1418  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1419  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1420  */
1421 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1422                                 gfp_t mem_flags)
1423 {
1424         struct xhci_hcd *xhci;
1425
1426         xhci = hcd_to_xhci(hcd);
1427
1428         if (xhci_urb_suitable_for_idt(urb))
1429                 return 0;
1430
1431         if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1432                 if (xhci_urb_temp_buffer_required(hcd, urb))
1433                         return xhci_map_temp_buffer(hcd, urb);
1434         }
1435         return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1436 }
1437
1438 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1439 {
1440         struct xhci_hcd *xhci;
1441         bool unmap_temp_buf = false;
1442
1443         xhci = hcd_to_xhci(hcd);
1444
1445         if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1446                 unmap_temp_buf = true;
1447
1448         if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1449                 xhci_unmap_temp_buf(hcd, urb);
1450         else
1451                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1452 }
1453
1454 /**
1455  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1456  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1457  * value to right shift 1 for the bitmask.
1458  *
1459  * Index  = (epnum * 2) + direction - 1,
1460  * where direction = 0 for OUT, 1 for IN.
1461  * For control endpoints, the IN index is used (OUT index is unused), so
1462  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1463  */
1464 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1465 {
1466         unsigned int index;
1467         if (usb_endpoint_xfer_control(desc))
1468                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1469         else
1470                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1471                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1472         return index;
1473 }
1474 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1475
1476 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1477  * address from the XHCI endpoint index.
1478  */
1479 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1480 {
1481         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1482         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1483         return direction | number;
1484 }
1485
1486 /* Find the flag for this endpoint (for use in the control context).  Use the
1487  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1488  * bit 1, etc.
1489  */
1490 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1491 {
1492         return 1 << (xhci_get_endpoint_index(desc) + 1);
1493 }
1494
1495 /* Compute the last valid endpoint context index.  Basically, this is the
1496  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1497  * we find the most significant bit set in the added contexts flags.
1498  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1499  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1500  */
1501 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1502 {
1503         return fls(added_ctxs) - 1;
1504 }
1505
1506 /* Returns 1 if the arguments are OK;
1507  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1508  */
1509 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1510                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1511                 const char *func) {
1512         struct xhci_hcd *xhci;
1513         struct xhci_virt_device *virt_dev;
1514
1515         if (!hcd || (check_ep && !ep) || !udev) {
1516                 pr_debug("xHCI %s called with invalid args\n", func);
1517                 return -EINVAL;
1518         }
1519         if (!udev->parent) {
1520                 pr_debug("xHCI %s called for root hub\n", func);
1521                 return 0;
1522         }
1523
1524         xhci = hcd_to_xhci(hcd);
1525         if (check_virt_dev) {
1526                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1527                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1528                                         func);
1529                         return -EINVAL;
1530                 }
1531
1532                 virt_dev = xhci->devs[udev->slot_id];
1533                 if (virt_dev->udev != udev) {
1534                         xhci_dbg(xhci, "xHCI %s called with udev and "
1535                                           "virt_dev does not match\n", func);
1536                         return -EINVAL;
1537                 }
1538         }
1539
1540         if (xhci->xhc_state & XHCI_STATE_HALTED)
1541                 return -ENODEV;
1542
1543         return 1;
1544 }
1545
1546 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1547                 struct usb_device *udev, struct xhci_command *command,
1548                 bool ctx_change, bool must_succeed);
1549
1550 /*
1551  * Full speed devices may have a max packet size greater than 8 bytes, but the
1552  * USB core doesn't know that until it reads the first 8 bytes of the
1553  * descriptor.  If the usb_device's max packet size changes after that point,
1554  * we need to issue an evaluate context command and wait on it.
1555  */
1556 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1557                 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1558 {
1559         struct xhci_container_ctx *out_ctx;
1560         struct xhci_input_control_ctx *ctrl_ctx;
1561         struct xhci_ep_ctx *ep_ctx;
1562         struct xhci_command *command;
1563         int max_packet_size;
1564         int hw_max_packet_size;
1565         int ret = 0;
1566
1567         out_ctx = xhci->devs[slot_id]->out_ctx;
1568         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1569         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1570         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1571         if (hw_max_packet_size != max_packet_size) {
1572                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1573                                 "Max Packet Size for ep 0 changed.");
1574                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1575                                 "Max packet size in usb_device = %d",
1576                                 max_packet_size);
1577                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1578                                 "Max packet size in xHCI HW = %d",
1579                                 hw_max_packet_size);
1580                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1581                                 "Issuing evaluate context command.");
1582
1583                 /* Set up the input context flags for the command */
1584                 /* FIXME: This won't work if a non-default control endpoint
1585                  * changes max packet sizes.
1586                  */
1587
1588                 command = xhci_alloc_command(xhci, true, mem_flags);
1589                 if (!command)
1590                         return -ENOMEM;
1591
1592                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1593                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1594                 if (!ctrl_ctx) {
1595                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1596                                         __func__);
1597                         ret = -ENOMEM;
1598                         goto command_cleanup;
1599                 }
1600                 /* Set up the modified control endpoint 0 */
1601                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1602                                 xhci->devs[slot_id]->out_ctx, ep_index);
1603
1604                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1605                 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1606                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1607                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1608
1609                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1610                 ctrl_ctx->drop_flags = 0;
1611
1612                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1613                                 true, false);
1614
1615                 /* Clean up the input context for later use by bandwidth
1616                  * functions.
1617                  */
1618                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1619 command_cleanup:
1620                 kfree(command->completion);
1621                 kfree(command);
1622         }
1623         return ret;
1624 }
1625
1626 /*
1627  * non-error returns are a promise to giveback() the urb later
1628  * we drop ownership so next owner (or urb unlink) can get it
1629  */
1630 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1631 {
1632         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1633         unsigned long flags;
1634         int ret = 0;
1635         unsigned int slot_id, ep_index;
1636         unsigned int *ep_state;
1637         struct urb_priv *urb_priv;
1638         int num_tds;
1639
1640         if (!urb)
1641                 return -EINVAL;
1642         ret = xhci_check_args(hcd, urb->dev, urb->ep,
1643                                         true, true, __func__);
1644         if (ret <= 0)
1645                 return ret ? ret : -EINVAL;
1646
1647         slot_id = urb->dev->slot_id;
1648         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1649         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1650
1651         if (!HCD_HW_ACCESSIBLE(hcd))
1652                 return -ESHUTDOWN;
1653
1654         if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1655                 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1656                 return -ENODEV;
1657         }
1658
1659         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1660                 num_tds = urb->number_of_packets;
1661         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1662             urb->transfer_buffer_length > 0 &&
1663             urb->transfer_flags & URB_ZERO_PACKET &&
1664             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1665                 num_tds = 2;
1666         else
1667                 num_tds = 1;
1668
1669         urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1670         if (!urb_priv)
1671                 return -ENOMEM;
1672
1673         urb_priv->num_tds = num_tds;
1674         urb_priv->num_tds_done = 0;
1675         urb->hcpriv = urb_priv;
1676
1677         trace_xhci_urb_enqueue(urb);
1678
1679         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1680                 /* Check to see if the max packet size for the default control
1681                  * endpoint changed during FS device enumeration
1682                  */
1683                 if (urb->dev->speed == USB_SPEED_FULL) {
1684                         ret = xhci_check_maxpacket(xhci, slot_id,
1685                                         ep_index, urb, mem_flags);
1686                         if (ret < 0) {
1687                                 xhci_urb_free_priv(urb_priv);
1688                                 urb->hcpriv = NULL;
1689                                 return ret;
1690                         }
1691                 }
1692         }
1693
1694         spin_lock_irqsave(&xhci->lock, flags);
1695
1696         if (xhci->xhc_state & XHCI_STATE_DYING) {
1697                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1698                          urb->ep->desc.bEndpointAddress, urb);
1699                 ret = -ESHUTDOWN;
1700                 goto free_priv;
1701         }
1702         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1703                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1704                           *ep_state);
1705                 ret = -EINVAL;
1706                 goto free_priv;
1707         }
1708         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1709                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1710                 ret = -EINVAL;
1711                 goto free_priv;
1712         }
1713
1714         switch (usb_endpoint_type(&urb->ep->desc)) {
1715
1716         case USB_ENDPOINT_XFER_CONTROL:
1717                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1718                                          slot_id, ep_index);
1719                 break;
1720         case USB_ENDPOINT_XFER_BULK:
1721                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1722                                          slot_id, ep_index);
1723                 break;
1724         case USB_ENDPOINT_XFER_INT:
1725                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1726                                 slot_id, ep_index);
1727                 break;
1728         case USB_ENDPOINT_XFER_ISOC:
1729                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1730                                 slot_id, ep_index);
1731         }
1732
1733         if (ret) {
1734 free_priv:
1735                 xhci_urb_free_priv(urb_priv);
1736                 urb->hcpriv = NULL;
1737         }
1738         spin_unlock_irqrestore(&xhci->lock, flags);
1739         return ret;
1740 }
1741
1742 /*
1743  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1744  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1745  * should pick up where it left off in the TD, unless a Set Transfer Ring
1746  * Dequeue Pointer is issued.
1747  *
1748  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1749  * the ring.  Since the ring is a contiguous structure, they can't be physically
1750  * removed.  Instead, there are two options:
1751  *
1752  *  1) If the HC is in the middle of processing the URB to be canceled, we
1753  *     simply move the ring's dequeue pointer past those TRBs using the Set
1754  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1755  *     when drivers timeout on the last submitted URB and attempt to cancel.
1756  *
1757  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1758  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1759  *     HC will need to invalidate the any TRBs it has cached after the stop
1760  *     endpoint command, as noted in the xHCI 0.95 errata.
1761  *
1762  *  3) The TD may have completed by the time the Stop Endpoint Command
1763  *     completes, so software needs to handle that case too.
1764  *
1765  * This function should protect against the TD enqueueing code ringing the
1766  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1767  * It also needs to account for multiple cancellations on happening at the same
1768  * time for the same endpoint.
1769  *
1770  * Note that this function can be called in any context, or so says
1771  * usb_hcd_unlink_urb()
1772  */
1773 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1774 {
1775         unsigned long flags;
1776         int ret, i;
1777         u32 temp;
1778         struct xhci_hcd *xhci;
1779         struct urb_priv *urb_priv;
1780         struct xhci_td *td;
1781         unsigned int ep_index;
1782         struct xhci_ring *ep_ring;
1783         struct xhci_virt_ep *ep;
1784         struct xhci_command *command;
1785         struct xhci_virt_device *vdev;
1786
1787         xhci = hcd_to_xhci(hcd);
1788         spin_lock_irqsave(&xhci->lock, flags);
1789
1790         trace_xhci_urb_dequeue(urb);
1791
1792         /* Make sure the URB hasn't completed or been unlinked already */
1793         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1794         if (ret)
1795                 goto done;
1796
1797         /* give back URB now if we can't queue it for cancel */
1798         vdev = xhci->devs[urb->dev->slot_id];
1799         urb_priv = urb->hcpriv;
1800         if (!vdev || !urb_priv)
1801                 goto err_giveback;
1802
1803         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1804         ep = &vdev->eps[ep_index];
1805         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1806         if (!ep || !ep_ring)
1807                 goto err_giveback;
1808
1809         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1810         temp = readl(&xhci->op_regs->status);
1811         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1812                 xhci_hc_died(xhci);
1813                 goto done;
1814         }
1815
1816         /*
1817          * check ring is not re-allocated since URB was enqueued. If it is, then
1818          * make sure none of the ring related pointers in this URB private data
1819          * are touched, such as td_list, otherwise we overwrite freed data
1820          */
1821         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1822                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1823                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1824                         td = &urb_priv->td[i];
1825                         if (!list_empty(&td->cancelled_td_list))
1826                                 list_del_init(&td->cancelled_td_list);
1827                 }
1828                 goto err_giveback;
1829         }
1830
1831         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1832                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1833                                 "HC halted, freeing TD manually.");
1834                 for (i = urb_priv->num_tds_done;
1835                      i < urb_priv->num_tds;
1836                      i++) {
1837                         td = &urb_priv->td[i];
1838                         if (!list_empty(&td->td_list))
1839                                 list_del_init(&td->td_list);
1840                         if (!list_empty(&td->cancelled_td_list))
1841                                 list_del_init(&td->cancelled_td_list);
1842                 }
1843                 goto err_giveback;
1844         }
1845
1846         i = urb_priv->num_tds_done;
1847         if (i < urb_priv->num_tds)
1848                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1849                                 "Cancel URB %p, dev %s, ep 0x%x, "
1850                                 "starting at offset 0x%llx",
1851                                 urb, urb->dev->devpath,
1852                                 urb->ep->desc.bEndpointAddress,
1853                                 (unsigned long long) xhci_trb_virt_to_dma(
1854                                         urb_priv->td[i].start_seg,
1855                                         urb_priv->td[i].first_trb));
1856
1857         for (; i < urb_priv->num_tds; i++) {
1858                 td = &urb_priv->td[i];
1859                 /* TD can already be on cancelled list if ep halted on it */
1860                 if (list_empty(&td->cancelled_td_list)) {
1861                         td->cancel_status = TD_DIRTY;
1862                         list_add_tail(&td->cancelled_td_list,
1863                                       &ep->cancelled_td_list);
1864                 }
1865         }
1866
1867         /* Queue a stop endpoint command, but only if this is
1868          * the first cancellation to be handled.
1869          */
1870         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1871                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1872                 if (!command) {
1873                         ret = -ENOMEM;
1874                         goto done;
1875                 }
1876                 ep->ep_state |= EP_STOP_CMD_PENDING;
1877                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1878                                          ep_index, 0);
1879                 xhci_ring_cmd_db(xhci);
1880         }
1881 done:
1882         spin_unlock_irqrestore(&xhci->lock, flags);
1883         return ret;
1884
1885 err_giveback:
1886         if (urb_priv)
1887                 xhci_urb_free_priv(urb_priv);
1888         usb_hcd_unlink_urb_from_ep(hcd, urb);
1889         spin_unlock_irqrestore(&xhci->lock, flags);
1890         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1891         return ret;
1892 }
1893
1894 /* Drop an endpoint from a new bandwidth configuration for this device.
1895  * Only one call to this function is allowed per endpoint before
1896  * check_bandwidth() or reset_bandwidth() must be called.
1897  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1898  * add the endpoint to the schedule with possibly new parameters denoted by a
1899  * different endpoint descriptor in usb_host_endpoint.
1900  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1901  * not allowed.
1902  *
1903  * The USB core will not allow URBs to be queued to an endpoint that is being
1904  * disabled, so there's no need for mutual exclusion to protect
1905  * the xhci->devs[slot_id] structure.
1906  */
1907 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1908                        struct usb_host_endpoint *ep)
1909 {
1910         struct xhci_hcd *xhci;
1911         struct xhci_container_ctx *in_ctx, *out_ctx;
1912         struct xhci_input_control_ctx *ctrl_ctx;
1913         unsigned int ep_index;
1914         struct xhci_ep_ctx *ep_ctx;
1915         u32 drop_flag;
1916         u32 new_add_flags, new_drop_flags;
1917         int ret;
1918
1919         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1920         if (ret <= 0)
1921                 return ret;
1922         xhci = hcd_to_xhci(hcd);
1923         if (xhci->xhc_state & XHCI_STATE_DYING)
1924                 return -ENODEV;
1925
1926         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1927         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1928         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1929                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1930                                 __func__, drop_flag);
1931                 return 0;
1932         }
1933
1934         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1935         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1936         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1937         if (!ctrl_ctx) {
1938                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1939                                 __func__);
1940                 return 0;
1941         }
1942
1943         ep_index = xhci_get_endpoint_index(&ep->desc);
1944         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1945         /* If the HC already knows the endpoint is disabled,
1946          * or the HCD has noted it is disabled, ignore this request
1947          */
1948         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1949             le32_to_cpu(ctrl_ctx->drop_flags) &
1950             xhci_get_endpoint_flag(&ep->desc)) {
1951                 /* Do not warn when called after a usb_device_reset */
1952                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1953                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1954                                   __func__, ep);
1955                 return 0;
1956         }
1957
1958         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1959         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1960
1961         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1962         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1963
1964         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1965
1966         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1967
1968         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1969                         (unsigned int) ep->desc.bEndpointAddress,
1970                         udev->slot_id,
1971                         (unsigned int) new_drop_flags,
1972                         (unsigned int) new_add_flags);
1973         return 0;
1974 }
1975 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1976
1977 /* Add an endpoint to a new possible bandwidth configuration for this device.
1978  * Only one call to this function is allowed per endpoint before
1979  * check_bandwidth() or reset_bandwidth() must be called.
1980  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1981  * add the endpoint to the schedule with possibly new parameters denoted by a
1982  * different endpoint descriptor in usb_host_endpoint.
1983  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1984  * not allowed.
1985  *
1986  * The USB core will not allow URBs to be queued to an endpoint until the
1987  * configuration or alt setting is installed in the device, so there's no need
1988  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1989  */
1990 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1991                       struct usb_host_endpoint *ep)
1992 {
1993         struct xhci_hcd *xhci;
1994         struct xhci_container_ctx *in_ctx;
1995         unsigned int ep_index;
1996         struct xhci_input_control_ctx *ctrl_ctx;
1997         struct xhci_ep_ctx *ep_ctx;
1998         u32 added_ctxs;
1999         u32 new_add_flags, new_drop_flags;
2000         struct xhci_virt_device *virt_dev;
2001         int ret = 0;
2002
2003         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
2004         if (ret <= 0) {
2005                 /* So we won't queue a reset ep command for a root hub */
2006                 ep->hcpriv = NULL;
2007                 return ret;
2008         }
2009         xhci = hcd_to_xhci(hcd);
2010         if (xhci->xhc_state & XHCI_STATE_DYING)
2011                 return -ENODEV;
2012
2013         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
2014         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
2015                 /* FIXME when we have to issue an evaluate endpoint command to
2016                  * deal with ep0 max packet size changing once we get the
2017                  * descriptors
2018                  */
2019                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
2020                                 __func__, added_ctxs);
2021                 return 0;
2022         }
2023
2024         virt_dev = xhci->devs[udev->slot_id];
2025         in_ctx = virt_dev->in_ctx;
2026         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2027         if (!ctrl_ctx) {
2028                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2029                                 __func__);
2030                 return 0;
2031         }
2032
2033         ep_index = xhci_get_endpoint_index(&ep->desc);
2034         /* If this endpoint is already in use, and the upper layers are trying
2035          * to add it again without dropping it, reject the addition.
2036          */
2037         if (virt_dev->eps[ep_index].ring &&
2038                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2039                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
2040                                 "without dropping it.\n",
2041                                 (unsigned int) ep->desc.bEndpointAddress);
2042                 return -EINVAL;
2043         }
2044
2045         /* If the HCD has already noted the endpoint is enabled,
2046          * ignore this request.
2047          */
2048         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2049                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2050                                 __func__, ep);
2051                 return 0;
2052         }
2053
2054         /*
2055          * Configuration and alternate setting changes must be done in
2056          * process context, not interrupt context (or so documenation
2057          * for usb_set_interface() and usb_set_configuration() claim).
2058          */
2059         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2060                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2061                                 __func__, ep->desc.bEndpointAddress);
2062                 return -ENOMEM;
2063         }
2064
2065         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2066         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2067
2068         /* If xhci_endpoint_disable() was called for this endpoint, but the
2069          * xHC hasn't been notified yet through the check_bandwidth() call,
2070          * this re-adds a new state for the endpoint from the new endpoint
2071          * descriptors.  We must drop and re-add this endpoint, so we leave the
2072          * drop flags alone.
2073          */
2074         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2075
2076         /* Store the usb_device pointer for later use */
2077         ep->hcpriv = udev;
2078
2079         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2080         trace_xhci_add_endpoint(ep_ctx);
2081
2082         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2083                         (unsigned int) ep->desc.bEndpointAddress,
2084                         udev->slot_id,
2085                         (unsigned int) new_drop_flags,
2086                         (unsigned int) new_add_flags);
2087         return 0;
2088 }
2089 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2090
2091 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2092 {
2093         struct xhci_input_control_ctx *ctrl_ctx;
2094         struct xhci_ep_ctx *ep_ctx;
2095         struct xhci_slot_ctx *slot_ctx;
2096         int i;
2097
2098         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2099         if (!ctrl_ctx) {
2100                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2101                                 __func__);
2102                 return;
2103         }
2104
2105         /* When a device's add flag and drop flag are zero, any subsequent
2106          * configure endpoint command will leave that endpoint's state
2107          * untouched.  Make sure we don't leave any old state in the input
2108          * endpoint contexts.
2109          */
2110         ctrl_ctx->drop_flags = 0;
2111         ctrl_ctx->add_flags = 0;
2112         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2113         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2114         /* Endpoint 0 is always valid */
2115         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2116         for (i = 1; i < 31; i++) {
2117                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2118                 ep_ctx->ep_info = 0;
2119                 ep_ctx->ep_info2 = 0;
2120                 ep_ctx->deq = 0;
2121                 ep_ctx->tx_info = 0;
2122         }
2123 }
2124
2125 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2126                 struct usb_device *udev, u32 *cmd_status)
2127 {
2128         int ret;
2129
2130         switch (*cmd_status) {
2131         case COMP_COMMAND_ABORTED:
2132         case COMP_COMMAND_RING_STOPPED:
2133                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2134                 ret = -ETIME;
2135                 break;
2136         case COMP_RESOURCE_ERROR:
2137                 dev_warn(&udev->dev,
2138                          "Not enough host controller resources for new device state.\n");
2139                 ret = -ENOMEM;
2140                 /* FIXME: can we allocate more resources for the HC? */
2141                 break;
2142         case COMP_BANDWIDTH_ERROR:
2143         case COMP_SECONDARY_BANDWIDTH_ERROR:
2144                 dev_warn(&udev->dev,
2145                          "Not enough bandwidth for new device state.\n");
2146                 ret = -ENOSPC;
2147                 /* FIXME: can we go back to the old state? */
2148                 break;
2149         case COMP_TRB_ERROR:
2150                 /* the HCD set up something wrong */
2151                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2152                                 "add flag = 1, "
2153                                 "and endpoint is not disabled.\n");
2154                 ret = -EINVAL;
2155                 break;
2156         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2157                 dev_warn(&udev->dev,
2158                          "ERROR: Incompatible device for endpoint configure command.\n");
2159                 ret = -ENODEV;
2160                 break;
2161         case COMP_SUCCESS:
2162                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2163                                 "Successful Endpoint Configure command");
2164                 ret = 0;
2165                 break;
2166         default:
2167                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2168                                 *cmd_status);
2169                 ret = -EINVAL;
2170                 break;
2171         }
2172         return ret;
2173 }
2174
2175 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2176                 struct usb_device *udev, u32 *cmd_status)
2177 {
2178         int ret;
2179
2180         switch (*cmd_status) {
2181         case COMP_COMMAND_ABORTED:
2182         case COMP_COMMAND_RING_STOPPED:
2183                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2184                 ret = -ETIME;
2185                 break;
2186         case COMP_PARAMETER_ERROR:
2187                 dev_warn(&udev->dev,
2188                          "WARN: xHCI driver setup invalid evaluate context command.\n");
2189                 ret = -EINVAL;
2190                 break;
2191         case COMP_SLOT_NOT_ENABLED_ERROR:
2192                 dev_warn(&udev->dev,
2193                         "WARN: slot not enabled for evaluate context command.\n");
2194                 ret = -EINVAL;
2195                 break;
2196         case COMP_CONTEXT_STATE_ERROR:
2197                 dev_warn(&udev->dev,
2198                         "WARN: invalid context state for evaluate context command.\n");
2199                 ret = -EINVAL;
2200                 break;
2201         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2202                 dev_warn(&udev->dev,
2203                         "ERROR: Incompatible device for evaluate context command.\n");
2204                 ret = -ENODEV;
2205                 break;
2206         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2207                 /* Max Exit Latency too large error */
2208                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2209                 ret = -EINVAL;
2210                 break;
2211         case COMP_SUCCESS:
2212                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2213                                 "Successful evaluate context command");
2214                 ret = 0;
2215                 break;
2216         default:
2217                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2218                         *cmd_status);
2219                 ret = -EINVAL;
2220                 break;
2221         }
2222         return ret;
2223 }
2224
2225 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2226                 struct xhci_input_control_ctx *ctrl_ctx)
2227 {
2228         u32 valid_add_flags;
2229         u32 valid_drop_flags;
2230
2231         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2232          * (bit 1).  The default control endpoint is added during the Address
2233          * Device command and is never removed until the slot is disabled.
2234          */
2235         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2236         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2237
2238         /* Use hweight32 to count the number of ones in the add flags, or
2239          * number of endpoints added.  Don't count endpoints that are changed
2240          * (both added and dropped).
2241          */
2242         return hweight32(valid_add_flags) -
2243                 hweight32(valid_add_flags & valid_drop_flags);
2244 }
2245
2246 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2247                 struct xhci_input_control_ctx *ctrl_ctx)
2248 {
2249         u32 valid_add_flags;
2250         u32 valid_drop_flags;
2251
2252         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2253         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2254
2255         return hweight32(valid_drop_flags) -
2256                 hweight32(valid_add_flags & valid_drop_flags);
2257 }
2258
2259 /*
2260  * We need to reserve the new number of endpoints before the configure endpoint
2261  * command completes.  We can't subtract the dropped endpoints from the number
2262  * of active endpoints until the command completes because we can oversubscribe
2263  * the host in this case:
2264  *
2265  *  - the first configure endpoint command drops more endpoints than it adds
2266  *  - a second configure endpoint command that adds more endpoints is queued
2267  *  - the first configure endpoint command fails, so the config is unchanged
2268  *  - the second command may succeed, even though there isn't enough resources
2269  *
2270  * Must be called with xhci->lock held.
2271  */
2272 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2273                 struct xhci_input_control_ctx *ctrl_ctx)
2274 {
2275         u32 added_eps;
2276
2277         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2278         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2279                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2280                                 "Not enough ep ctxs: "
2281                                 "%u active, need to add %u, limit is %u.",
2282                                 xhci->num_active_eps, added_eps,
2283                                 xhci->limit_active_eps);
2284                 return -ENOMEM;
2285         }
2286         xhci->num_active_eps += added_eps;
2287         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2288                         "Adding %u ep ctxs, %u now active.", added_eps,
2289                         xhci->num_active_eps);
2290         return 0;
2291 }
2292
2293 /*
2294  * The configure endpoint was failed by the xHC for some other reason, so we
2295  * need to revert the resources that failed configuration would have used.
2296  *
2297  * Must be called with xhci->lock held.
2298  */
2299 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2300                 struct xhci_input_control_ctx *ctrl_ctx)
2301 {
2302         u32 num_failed_eps;
2303
2304         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2305         xhci->num_active_eps -= num_failed_eps;
2306         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2307                         "Removing %u failed ep ctxs, %u now active.",
2308                         num_failed_eps,
2309                         xhci->num_active_eps);
2310 }
2311
2312 /*
2313  * Now that the command has completed, clean up the active endpoint count by
2314  * subtracting out the endpoints that were dropped (but not changed).
2315  *
2316  * Must be called with xhci->lock held.
2317  */
2318 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2319                 struct xhci_input_control_ctx *ctrl_ctx)
2320 {
2321         u32 num_dropped_eps;
2322
2323         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2324         xhci->num_active_eps -= num_dropped_eps;
2325         if (num_dropped_eps)
2326                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2327                                 "Removing %u dropped ep ctxs, %u now active.",
2328                                 num_dropped_eps,
2329                                 xhci->num_active_eps);
2330 }
2331
2332 static unsigned int xhci_get_block_size(struct usb_device *udev)
2333 {
2334         switch (udev->speed) {
2335         case USB_SPEED_LOW:
2336         case USB_SPEED_FULL:
2337                 return FS_BLOCK;
2338         case USB_SPEED_HIGH:
2339                 return HS_BLOCK;
2340         case USB_SPEED_SUPER:
2341         case USB_SPEED_SUPER_PLUS:
2342                 return SS_BLOCK;
2343         case USB_SPEED_UNKNOWN:
2344         case USB_SPEED_WIRELESS:
2345         default:
2346                 /* Should never happen */
2347                 return 1;
2348         }
2349 }
2350
2351 static unsigned int
2352 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2353 {
2354         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2355                 return LS_OVERHEAD;
2356         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2357                 return FS_OVERHEAD;
2358         return HS_OVERHEAD;
2359 }
2360
2361 /* If we are changing a LS/FS device under a HS hub,
2362  * make sure (if we are activating a new TT) that the HS bus has enough
2363  * bandwidth for this new TT.
2364  */
2365 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2366                 struct xhci_virt_device *virt_dev,
2367                 int old_active_eps)
2368 {
2369         struct xhci_interval_bw_table *bw_table;
2370         struct xhci_tt_bw_info *tt_info;
2371
2372         /* Find the bandwidth table for the root port this TT is attached to. */
2373         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2374         tt_info = virt_dev->tt_info;
2375         /* If this TT already had active endpoints, the bandwidth for this TT
2376          * has already been added.  Removing all periodic endpoints (and thus
2377          * making the TT enactive) will only decrease the bandwidth used.
2378          */
2379         if (old_active_eps)
2380                 return 0;
2381         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2382                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2383                         return -ENOMEM;
2384                 return 0;
2385         }
2386         /* Not sure why we would have no new active endpoints...
2387          *
2388          * Maybe because of an Evaluate Context change for a hub update or a
2389          * control endpoint 0 max packet size change?
2390          * FIXME: skip the bandwidth calculation in that case.
2391          */
2392         return 0;
2393 }
2394
2395 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2396                 struct xhci_virt_device *virt_dev)
2397 {
2398         unsigned int bw_reserved;
2399
2400         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2401         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2402                 return -ENOMEM;
2403
2404         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2405         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2406                 return -ENOMEM;
2407
2408         return 0;
2409 }
2410
2411 /*
2412  * This algorithm is a very conservative estimate of the worst-case scheduling
2413  * scenario for any one interval.  The hardware dynamically schedules the
2414  * packets, so we can't tell which microframe could be the limiting factor in
2415  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2416  *
2417  * Obviously, we can't solve an NP complete problem to find the minimum worst
2418  * case scenario.  Instead, we come up with an estimate that is no less than
2419  * the worst case bandwidth used for any one microframe, but may be an
2420  * over-estimate.
2421  *
2422  * We walk the requirements for each endpoint by interval, starting with the
2423  * smallest interval, and place packets in the schedule where there is only one
2424  * possible way to schedule packets for that interval.  In order to simplify
2425  * this algorithm, we record the largest max packet size for each interval, and
2426  * assume all packets will be that size.
2427  *
2428  * For interval 0, we obviously must schedule all packets for each interval.
2429  * The bandwidth for interval 0 is just the amount of data to be transmitted
2430  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2431  * the number of packets).
2432  *
2433  * For interval 1, we have two possible microframes to schedule those packets
2434  * in.  For this algorithm, if we can schedule the same number of packets for
2435  * each possible scheduling opportunity (each microframe), we will do so.  The
2436  * remaining number of packets will be saved to be transmitted in the gaps in
2437  * the next interval's scheduling sequence.
2438  *
2439  * As we move those remaining packets to be scheduled with interval 2 packets,
2440  * we have to double the number of remaining packets to transmit.  This is
2441  * because the intervals are actually powers of 2, and we would be transmitting
2442  * the previous interval's packets twice in this interval.  We also have to be
2443  * sure that when we look at the largest max packet size for this interval, we
2444  * also look at the largest max packet size for the remaining packets and take
2445  * the greater of the two.
2446  *
2447  * The algorithm continues to evenly distribute packets in each scheduling
2448  * opportunity, and push the remaining packets out, until we get to the last
2449  * interval.  Then those packets and their associated overhead are just added
2450  * to the bandwidth used.
2451  */
2452 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2453                 struct xhci_virt_device *virt_dev,
2454                 int old_active_eps)
2455 {
2456         unsigned int bw_reserved;
2457         unsigned int max_bandwidth;
2458         unsigned int bw_used;
2459         unsigned int block_size;
2460         struct xhci_interval_bw_table *bw_table;
2461         unsigned int packet_size = 0;
2462         unsigned int overhead = 0;
2463         unsigned int packets_transmitted = 0;
2464         unsigned int packets_remaining = 0;
2465         unsigned int i;
2466
2467         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2468                 return xhci_check_ss_bw(xhci, virt_dev);
2469
2470         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2471                 max_bandwidth = HS_BW_LIMIT;
2472                 /* Convert percent of bus BW reserved to blocks reserved */
2473                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2474         } else {
2475                 max_bandwidth = FS_BW_LIMIT;
2476                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2477         }
2478
2479         bw_table = virt_dev->bw_table;
2480         /* We need to translate the max packet size and max ESIT payloads into
2481          * the units the hardware uses.
2482          */
2483         block_size = xhci_get_block_size(virt_dev->udev);
2484
2485         /* If we are manipulating a LS/FS device under a HS hub, double check
2486          * that the HS bus has enough bandwidth if we are activing a new TT.
2487          */
2488         if (virt_dev->tt_info) {
2489                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2490                                 "Recalculating BW for rootport %u",
2491                                 virt_dev->real_port);
2492                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2493                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2494                                         "newly activated TT.\n");
2495                         return -ENOMEM;
2496                 }
2497                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2498                                 "Recalculating BW for TT slot %u port %u",
2499                                 virt_dev->tt_info->slot_id,
2500                                 virt_dev->tt_info->ttport);
2501         } else {
2502                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2503                                 "Recalculating BW for rootport %u",
2504                                 virt_dev->real_port);
2505         }
2506
2507         /* Add in how much bandwidth will be used for interval zero, or the
2508          * rounded max ESIT payload + number of packets * largest overhead.
2509          */
2510         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2511                 bw_table->interval_bw[0].num_packets *
2512                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2513
2514         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2515                 unsigned int bw_added;
2516                 unsigned int largest_mps;
2517                 unsigned int interval_overhead;
2518
2519                 /*
2520                  * How many packets could we transmit in this interval?
2521                  * If packets didn't fit in the previous interval, we will need
2522                  * to transmit that many packets twice within this interval.
2523                  */
2524                 packets_remaining = 2 * packets_remaining +
2525                         bw_table->interval_bw[i].num_packets;
2526
2527                 /* Find the largest max packet size of this or the previous
2528                  * interval.
2529                  */
2530                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2531                         largest_mps = 0;
2532                 else {
2533                         struct xhci_virt_ep *virt_ep;
2534                         struct list_head *ep_entry;
2535
2536                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2537                         virt_ep = list_entry(ep_entry,
2538                                         struct xhci_virt_ep, bw_endpoint_list);
2539                         /* Convert to blocks, rounding up */
2540                         largest_mps = DIV_ROUND_UP(
2541                                         virt_ep->bw_info.max_packet_size,
2542                                         block_size);
2543                 }
2544                 if (largest_mps > packet_size)
2545                         packet_size = largest_mps;
2546
2547                 /* Use the larger overhead of this or the previous interval. */
2548                 interval_overhead = xhci_get_largest_overhead(
2549                                 &bw_table->interval_bw[i]);
2550                 if (interval_overhead > overhead)
2551                         overhead = interval_overhead;
2552
2553                 /* How many packets can we evenly distribute across
2554                  * (1 << (i + 1)) possible scheduling opportunities?
2555                  */
2556                 packets_transmitted = packets_remaining >> (i + 1);
2557
2558                 /* Add in the bandwidth used for those scheduled packets */
2559                 bw_added = packets_transmitted * (overhead + packet_size);
2560
2561                 /* How many packets do we have remaining to transmit? */
2562                 packets_remaining = packets_remaining % (1 << (i + 1));
2563
2564                 /* What largest max packet size should those packets have? */
2565                 /* If we've transmitted all packets, don't carry over the
2566                  * largest packet size.
2567                  */
2568                 if (packets_remaining == 0) {
2569                         packet_size = 0;
2570                         overhead = 0;
2571                 } else if (packets_transmitted > 0) {
2572                         /* Otherwise if we do have remaining packets, and we've
2573                          * scheduled some packets in this interval, take the
2574                          * largest max packet size from endpoints with this
2575                          * interval.
2576                          */
2577                         packet_size = largest_mps;
2578                         overhead = interval_overhead;
2579                 }
2580                 /* Otherwise carry over packet_size and overhead from the last
2581                  * time we had a remainder.
2582                  */
2583                 bw_used += bw_added;
2584                 if (bw_used > max_bandwidth) {
2585                         xhci_warn(xhci, "Not enough bandwidth. "
2586                                         "Proposed: %u, Max: %u\n",
2587                                 bw_used, max_bandwidth);
2588                         return -ENOMEM;
2589                 }
2590         }
2591         /*
2592          * Ok, we know we have some packets left over after even-handedly
2593          * scheduling interval 15.  We don't know which microframes they will
2594          * fit into, so we over-schedule and say they will be scheduled every
2595          * microframe.
2596          */
2597         if (packets_remaining > 0)
2598                 bw_used += overhead + packet_size;
2599
2600         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2601                 unsigned int port_index = virt_dev->real_port - 1;
2602
2603                 /* OK, we're manipulating a HS device attached to a
2604                  * root port bandwidth domain.  Include the number of active TTs
2605                  * in the bandwidth used.
2606                  */
2607                 bw_used += TT_HS_OVERHEAD *
2608                         xhci->rh_bw[port_index].num_active_tts;
2609         }
2610
2611         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2612                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2613                 "Available: %u " "percent",
2614                 bw_used, max_bandwidth, bw_reserved,
2615                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2616                 max_bandwidth);
2617
2618         bw_used += bw_reserved;
2619         if (bw_used > max_bandwidth) {
2620                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2621                                 bw_used, max_bandwidth);
2622                 return -ENOMEM;
2623         }
2624
2625         bw_table->bw_used = bw_used;
2626         return 0;
2627 }
2628
2629 static bool xhci_is_async_ep(unsigned int ep_type)
2630 {
2631         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2632                                         ep_type != ISOC_IN_EP &&
2633                                         ep_type != INT_IN_EP);
2634 }
2635
2636 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2637 {
2638         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2639 }
2640
2641 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2642 {
2643         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2644
2645         if (ep_bw->ep_interval == 0)
2646                 return SS_OVERHEAD_BURST +
2647                         (ep_bw->mult * ep_bw->num_packets *
2648                                         (SS_OVERHEAD + mps));
2649         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2650                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2651                                 1 << ep_bw->ep_interval);
2652
2653 }
2654
2655 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2656                 struct xhci_bw_info *ep_bw,
2657                 struct xhci_interval_bw_table *bw_table,
2658                 struct usb_device *udev,
2659                 struct xhci_virt_ep *virt_ep,
2660                 struct xhci_tt_bw_info *tt_info)
2661 {
2662         struct xhci_interval_bw *interval_bw;
2663         int normalized_interval;
2664
2665         if (xhci_is_async_ep(ep_bw->type))
2666                 return;
2667
2668         if (udev->speed >= USB_SPEED_SUPER) {
2669                 if (xhci_is_sync_in_ep(ep_bw->type))
2670                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2671                                 xhci_get_ss_bw_consumed(ep_bw);
2672                 else
2673                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2674                                 xhci_get_ss_bw_consumed(ep_bw);
2675                 return;
2676         }
2677
2678         /* SuperSpeed endpoints never get added to intervals in the table, so
2679          * this check is only valid for HS/FS/LS devices.
2680          */
2681         if (list_empty(&virt_ep->bw_endpoint_list))
2682                 return;
2683         /* For LS/FS devices, we need to translate the interval expressed in
2684          * microframes to frames.
2685          */
2686         if (udev->speed == USB_SPEED_HIGH)
2687                 normalized_interval = ep_bw->ep_interval;
2688         else
2689                 normalized_interval = ep_bw->ep_interval - 3;
2690
2691         if (normalized_interval == 0)
2692                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2693         interval_bw = &bw_table->interval_bw[normalized_interval];
2694         interval_bw->num_packets -= ep_bw->num_packets;
2695         switch (udev->speed) {
2696         case USB_SPEED_LOW:
2697                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2698                 break;
2699         case USB_SPEED_FULL:
2700                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2701                 break;
2702         case USB_SPEED_HIGH:
2703                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2704                 break;
2705         case USB_SPEED_SUPER:
2706         case USB_SPEED_SUPER_PLUS:
2707         case USB_SPEED_UNKNOWN:
2708         case USB_SPEED_WIRELESS:
2709                 /* Should never happen because only LS/FS/HS endpoints will get
2710                  * added to the endpoint list.
2711                  */
2712                 return;
2713         }
2714         if (tt_info)
2715                 tt_info->active_eps -= 1;
2716         list_del_init(&virt_ep->bw_endpoint_list);
2717 }
2718
2719 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2720                 struct xhci_bw_info *ep_bw,
2721                 struct xhci_interval_bw_table *bw_table,
2722                 struct usb_device *udev,
2723                 struct xhci_virt_ep *virt_ep,
2724                 struct xhci_tt_bw_info *tt_info)
2725 {
2726         struct xhci_interval_bw *interval_bw;
2727         struct xhci_virt_ep *smaller_ep;
2728         int normalized_interval;
2729
2730         if (xhci_is_async_ep(ep_bw->type))
2731                 return;
2732
2733         if (udev->speed == USB_SPEED_SUPER) {
2734                 if (xhci_is_sync_in_ep(ep_bw->type))
2735                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2736                                 xhci_get_ss_bw_consumed(ep_bw);
2737                 else
2738                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2739                                 xhci_get_ss_bw_consumed(ep_bw);
2740                 return;
2741         }
2742
2743         /* For LS/FS devices, we need to translate the interval expressed in
2744          * microframes to frames.
2745          */
2746         if (udev->speed == USB_SPEED_HIGH)
2747                 normalized_interval = ep_bw->ep_interval;
2748         else
2749                 normalized_interval = ep_bw->ep_interval - 3;
2750
2751         if (normalized_interval == 0)
2752                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2753         interval_bw = &bw_table->interval_bw[normalized_interval];
2754         interval_bw->num_packets += ep_bw->num_packets;
2755         switch (udev->speed) {
2756         case USB_SPEED_LOW:
2757                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2758                 break;
2759         case USB_SPEED_FULL:
2760                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2761                 break;
2762         case USB_SPEED_HIGH:
2763                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2764                 break;
2765         case USB_SPEED_SUPER:
2766         case USB_SPEED_SUPER_PLUS:
2767         case USB_SPEED_UNKNOWN:
2768         case USB_SPEED_WIRELESS:
2769                 /* Should never happen because only LS/FS/HS endpoints will get
2770                  * added to the endpoint list.
2771                  */
2772                 return;
2773         }
2774
2775         if (tt_info)
2776                 tt_info->active_eps += 1;
2777         /* Insert the endpoint into the list, largest max packet size first. */
2778         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2779                         bw_endpoint_list) {
2780                 if (ep_bw->max_packet_size >=
2781                                 smaller_ep->bw_info.max_packet_size) {
2782                         /* Add the new ep before the smaller endpoint */
2783                         list_add_tail(&virt_ep->bw_endpoint_list,
2784                                         &smaller_ep->bw_endpoint_list);
2785                         return;
2786                 }
2787         }
2788         /* Add the new endpoint at the end of the list. */
2789         list_add_tail(&virt_ep->bw_endpoint_list,
2790                         &interval_bw->endpoints);
2791 }
2792
2793 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2794                 struct xhci_virt_device *virt_dev,
2795                 int old_active_eps)
2796 {
2797         struct xhci_root_port_bw_info *rh_bw_info;
2798         if (!virt_dev->tt_info)
2799                 return;
2800
2801         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2802         if (old_active_eps == 0 &&
2803                                 virt_dev->tt_info->active_eps != 0) {
2804                 rh_bw_info->num_active_tts += 1;
2805                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2806         } else if (old_active_eps != 0 &&
2807                                 virt_dev->tt_info->active_eps == 0) {
2808                 rh_bw_info->num_active_tts -= 1;
2809                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2810         }
2811 }
2812
2813 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2814                 struct xhci_virt_device *virt_dev,
2815                 struct xhci_container_ctx *in_ctx)
2816 {
2817         struct xhci_bw_info ep_bw_info[31];
2818         int i;
2819         struct xhci_input_control_ctx *ctrl_ctx;
2820         int old_active_eps = 0;
2821
2822         if (virt_dev->tt_info)
2823                 old_active_eps = virt_dev->tt_info->active_eps;
2824
2825         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2826         if (!ctrl_ctx) {
2827                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2828                                 __func__);
2829                 return -ENOMEM;
2830         }
2831
2832         for (i = 0; i < 31; i++) {
2833                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2834                         continue;
2835
2836                 /* Make a copy of the BW info in case we need to revert this */
2837                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2838                                 sizeof(ep_bw_info[i]));
2839                 /* Drop the endpoint from the interval table if the endpoint is
2840                  * being dropped or changed.
2841                  */
2842                 if (EP_IS_DROPPED(ctrl_ctx, i))
2843                         xhci_drop_ep_from_interval_table(xhci,
2844                                         &virt_dev->eps[i].bw_info,
2845                                         virt_dev->bw_table,
2846                                         virt_dev->udev,
2847                                         &virt_dev->eps[i],
2848                                         virt_dev->tt_info);
2849         }
2850         /* Overwrite the information stored in the endpoints' bw_info */
2851         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2852         for (i = 0; i < 31; i++) {
2853                 /* Add any changed or added endpoints to the interval table */
2854                 if (EP_IS_ADDED(ctrl_ctx, i))
2855                         xhci_add_ep_to_interval_table(xhci,
2856                                         &virt_dev->eps[i].bw_info,
2857                                         virt_dev->bw_table,
2858                                         virt_dev->udev,
2859                                         &virt_dev->eps[i],
2860                                         virt_dev->tt_info);
2861         }
2862
2863         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2864                 /* Ok, this fits in the bandwidth we have.
2865                  * Update the number of active TTs.
2866                  */
2867                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2868                 return 0;
2869         }
2870
2871         /* We don't have enough bandwidth for this, revert the stored info. */
2872         for (i = 0; i < 31; i++) {
2873                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2874                         continue;
2875
2876                 /* Drop the new copies of any added or changed endpoints from
2877                  * the interval table.
2878                  */
2879                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2880                         xhci_drop_ep_from_interval_table(xhci,
2881                                         &virt_dev->eps[i].bw_info,
2882                                         virt_dev->bw_table,
2883                                         virt_dev->udev,
2884                                         &virt_dev->eps[i],
2885                                         virt_dev->tt_info);
2886                 }
2887                 /* Revert the endpoint back to its old information */
2888                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2889                                 sizeof(ep_bw_info[i]));
2890                 /* Add any changed or dropped endpoints back into the table */
2891                 if (EP_IS_DROPPED(ctrl_ctx, i))
2892                         xhci_add_ep_to_interval_table(xhci,
2893                                         &virt_dev->eps[i].bw_info,
2894                                         virt_dev->bw_table,
2895                                         virt_dev->udev,
2896                                         &virt_dev->eps[i],
2897                                         virt_dev->tt_info);
2898         }
2899         return -ENOMEM;
2900 }
2901
2902
2903 /* Issue a configure endpoint command or evaluate context command
2904  * and wait for it to finish.
2905  */
2906 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2907                 struct usb_device *udev,
2908                 struct xhci_command *command,
2909                 bool ctx_change, bool must_succeed)
2910 {
2911         int ret;
2912         unsigned long flags;
2913         struct xhci_input_control_ctx *ctrl_ctx;
2914         struct xhci_virt_device *virt_dev;
2915         struct xhci_slot_ctx *slot_ctx;
2916
2917         if (!command)
2918                 return -EINVAL;
2919
2920         spin_lock_irqsave(&xhci->lock, flags);
2921
2922         if (xhci->xhc_state & XHCI_STATE_DYING) {
2923                 spin_unlock_irqrestore(&xhci->lock, flags);
2924                 return -ESHUTDOWN;
2925         }
2926
2927         virt_dev = xhci->devs[udev->slot_id];
2928
2929         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2930         if (!ctrl_ctx) {
2931                 spin_unlock_irqrestore(&xhci->lock, flags);
2932                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2933                                 __func__);
2934                 return -ENOMEM;
2935         }
2936
2937         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2938                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2939                 spin_unlock_irqrestore(&xhci->lock, flags);
2940                 xhci_warn(xhci, "Not enough host resources, "
2941                                 "active endpoint contexts = %u\n",
2942                                 xhci->num_active_eps);
2943                 return -ENOMEM;
2944         }
2945         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2946             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2947                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2948                         xhci_free_host_resources(xhci, ctrl_ctx);
2949                 spin_unlock_irqrestore(&xhci->lock, flags);
2950                 xhci_warn(xhci, "Not enough bandwidth\n");
2951                 return -ENOMEM;
2952         }
2953
2954         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2955
2956         trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2957         trace_xhci_configure_endpoint(slot_ctx);
2958
2959         if (!ctx_change)
2960                 ret = xhci_queue_configure_endpoint(xhci, command,
2961                                 command->in_ctx->dma,
2962                                 udev->slot_id, must_succeed);
2963         else
2964                 ret = xhci_queue_evaluate_context(xhci, command,
2965                                 command->in_ctx->dma,
2966                                 udev->slot_id, must_succeed);
2967         if (ret < 0) {
2968                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2969                         xhci_free_host_resources(xhci, ctrl_ctx);
2970                 spin_unlock_irqrestore(&xhci->lock, flags);
2971                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2972                                 "FIXME allocate a new ring segment");
2973                 return -ENOMEM;
2974         }
2975         xhci_ring_cmd_db(xhci);
2976         spin_unlock_irqrestore(&xhci->lock, flags);
2977
2978         /* Wait for the configure endpoint command to complete */
2979         wait_for_completion(command->completion);
2980
2981         if (!ctx_change)
2982                 ret = xhci_configure_endpoint_result(xhci, udev,
2983                                                      &command->status);
2984         else
2985                 ret = xhci_evaluate_context_result(xhci, udev,
2986                                                    &command->status);
2987
2988         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2989                 spin_lock_irqsave(&xhci->lock, flags);
2990                 /* If the command failed, remove the reserved resources.
2991                  * Otherwise, clean up the estimate to include dropped eps.
2992                  */
2993                 if (ret)
2994                         xhci_free_host_resources(xhci, ctrl_ctx);
2995                 else
2996                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2997                 spin_unlock_irqrestore(&xhci->lock, flags);
2998         }
2999         return ret;
3000 }
3001
3002 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
3003         struct xhci_virt_device *vdev, int i)
3004 {
3005         struct xhci_virt_ep *ep = &vdev->eps[i];
3006
3007         if (ep->ep_state & EP_HAS_STREAMS) {
3008                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
3009                                 xhci_get_endpoint_address(i));
3010                 xhci_free_stream_info(xhci, ep->stream_info);
3011                 ep->stream_info = NULL;
3012                 ep->ep_state &= ~EP_HAS_STREAMS;
3013         }
3014 }
3015
3016 /* Called after one or more calls to xhci_add_endpoint() or
3017  * xhci_drop_endpoint().  If this call fails, the USB core is expected
3018  * to call xhci_reset_bandwidth().
3019  *
3020  * Since we are in the middle of changing either configuration or
3021  * installing a new alt setting, the USB core won't allow URBs to be
3022  * enqueued for any endpoint on the old config or interface.  Nothing
3023  * else should be touching the xhci->devs[slot_id] structure, so we
3024  * don't need to take the xhci->lock for manipulating that.
3025  */
3026 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3027 {
3028         int i;
3029         int ret = 0;
3030         struct xhci_hcd *xhci;
3031         struct xhci_virt_device *virt_dev;
3032         struct xhci_input_control_ctx *ctrl_ctx;
3033         struct xhci_slot_ctx *slot_ctx;
3034         struct xhci_command *command;
3035
3036         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3037         if (ret <= 0)
3038                 return ret;
3039         xhci = hcd_to_xhci(hcd);
3040         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3041                 (xhci->xhc_state & XHCI_STATE_REMOVING))
3042                 return -ENODEV;
3043
3044         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3045         virt_dev = xhci->devs[udev->slot_id];
3046
3047         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3048         if (!command)
3049                 return -ENOMEM;
3050
3051         command->in_ctx = virt_dev->in_ctx;
3052
3053         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3054         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3055         if (!ctrl_ctx) {
3056                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3057                                 __func__);
3058                 ret = -ENOMEM;
3059                 goto command_cleanup;
3060         }
3061         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3062         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3063         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3064
3065         /* Don't issue the command if there's no endpoints to update. */
3066         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3067             ctrl_ctx->drop_flags == 0) {
3068                 ret = 0;
3069                 goto command_cleanup;
3070         }
3071         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3072         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3073         for (i = 31; i >= 1; i--) {
3074                 __le32 le32 = cpu_to_le32(BIT(i));
3075
3076                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3077                     || (ctrl_ctx->add_flags & le32) || i == 1) {
3078                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3079                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3080                         break;
3081                 }
3082         }
3083
3084         ret = xhci_configure_endpoint(xhci, udev, command,
3085                         false, false);
3086         if (ret)
3087                 /* Callee should call reset_bandwidth() */
3088                 goto command_cleanup;
3089
3090         /* Free any rings that were dropped, but not changed. */
3091         for (i = 1; i < 31; i++) {
3092                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3093                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3094                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3095                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3096                 }
3097         }
3098         xhci_zero_in_ctx(xhci, virt_dev);
3099         /*
3100          * Install any rings for completely new endpoints or changed endpoints,
3101          * and free any old rings from changed endpoints.
3102          */
3103         for (i = 1; i < 31; i++) {
3104                 if (!virt_dev->eps[i].new_ring)
3105                         continue;
3106                 /* Only free the old ring if it exists.
3107                  * It may not if this is the first add of an endpoint.
3108                  */
3109                 if (virt_dev->eps[i].ring) {
3110                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3111                 }
3112                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3113                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3114                 virt_dev->eps[i].new_ring = NULL;
3115                 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3116         }
3117 command_cleanup:
3118         kfree(command->completion);
3119         kfree(command);
3120
3121         return ret;
3122 }
3123 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3124
3125 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3126 {
3127         struct xhci_hcd *xhci;
3128         struct xhci_virt_device *virt_dev;
3129         int i, ret;
3130
3131         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3132         if (ret <= 0)
3133                 return;
3134         xhci = hcd_to_xhci(hcd);
3135
3136         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3137         virt_dev = xhci->devs[udev->slot_id];
3138         /* Free any rings allocated for added endpoints */
3139         for (i = 0; i < 31; i++) {
3140                 if (virt_dev->eps[i].new_ring) {
3141                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3142                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3143                         virt_dev->eps[i].new_ring = NULL;
3144                 }
3145         }
3146         xhci_zero_in_ctx(xhci, virt_dev);
3147 }
3148 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3149
3150 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3151                 struct xhci_container_ctx *in_ctx,
3152                 struct xhci_container_ctx *out_ctx,
3153                 struct xhci_input_control_ctx *ctrl_ctx,
3154                 u32 add_flags, u32 drop_flags)
3155 {
3156         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3157         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3158         xhci_slot_copy(xhci, in_ctx, out_ctx);
3159         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3160 }
3161
3162 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3163                                   struct usb_host_endpoint *host_ep)
3164 {
3165         struct xhci_hcd         *xhci;
3166         struct xhci_virt_device *vdev;
3167         struct xhci_virt_ep     *ep;
3168         struct usb_device       *udev;
3169         unsigned long           flags;
3170         unsigned int            ep_index;
3171
3172         xhci = hcd_to_xhci(hcd);
3173 rescan:
3174         spin_lock_irqsave(&xhci->lock, flags);
3175
3176         udev = (struct usb_device *)host_ep->hcpriv;
3177         if (!udev || !udev->slot_id)
3178                 goto done;
3179
3180         vdev = xhci->devs[udev->slot_id];
3181         if (!vdev)
3182                 goto done;
3183
3184         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3185         ep = &vdev->eps[ep_index];
3186
3187         /* wait for hub_tt_work to finish clearing hub TT */
3188         if (ep->ep_state & EP_CLEARING_TT) {
3189                 spin_unlock_irqrestore(&xhci->lock, flags);
3190                 schedule_timeout_uninterruptible(1);
3191                 goto rescan;
3192         }
3193
3194         if (ep->ep_state)
3195                 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3196                          ep->ep_state);
3197 done:
3198         host_ep->hcpriv = NULL;
3199         spin_unlock_irqrestore(&xhci->lock, flags);
3200 }
3201
3202 /*
3203  * Called after usb core issues a clear halt control message.
3204  * The host side of the halt should already be cleared by a reset endpoint
3205  * command issued when the STALL event was received.
3206  *
3207  * The reset endpoint command may only be issued to endpoints in the halted
3208  * state. For software that wishes to reset the data toggle or sequence number
3209  * of an endpoint that isn't in the halted state this function will issue a
3210  * configure endpoint command with the Drop and Add bits set for the target
3211  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3212  */
3213
3214 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3215                 struct usb_host_endpoint *host_ep)
3216 {
3217         struct xhci_hcd *xhci;
3218         struct usb_device *udev;
3219         struct xhci_virt_device *vdev;
3220         struct xhci_virt_ep *ep;
3221         struct xhci_input_control_ctx *ctrl_ctx;
3222         struct xhci_command *stop_cmd, *cfg_cmd;
3223         unsigned int ep_index;
3224         unsigned long flags;
3225         u32 ep_flag;
3226         int err;
3227
3228         xhci = hcd_to_xhci(hcd);
3229         if (!host_ep->hcpriv)
3230                 return;
3231         udev = (struct usb_device *) host_ep->hcpriv;
3232         vdev = xhci->devs[udev->slot_id];
3233
3234         /*
3235          * vdev may be lost due to xHC restore error and re-initialization
3236          * during S3/S4 resume. A new vdev will be allocated later by
3237          * xhci_discover_or_reset_device()
3238          */
3239         if (!udev->slot_id || !vdev)
3240                 return;
3241         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3242         ep = &vdev->eps[ep_index];
3243
3244         /* Bail out if toggle is already being cleared by a endpoint reset */
3245         spin_lock_irqsave(&xhci->lock, flags);
3246         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3247                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3248                 spin_unlock_irqrestore(&xhci->lock, flags);
3249                 return;
3250         }
3251         spin_unlock_irqrestore(&xhci->lock, flags);
3252         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3253         if (usb_endpoint_xfer_control(&host_ep->desc) ||
3254             usb_endpoint_xfer_isoc(&host_ep->desc))
3255                 return;
3256
3257         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3258
3259         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3260                 return;
3261
3262         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3263         if (!stop_cmd)
3264                 return;
3265
3266         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3267         if (!cfg_cmd)
3268                 goto cleanup;
3269
3270         spin_lock_irqsave(&xhci->lock, flags);
3271
3272         /* block queuing new trbs and ringing ep doorbell */
3273         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3274
3275         /*
3276          * Make sure endpoint ring is empty before resetting the toggle/seq.
3277          * Driver is required to synchronously cancel all transfer request.
3278          * Stop the endpoint to force xHC to update the output context
3279          */
3280
3281         if (!list_empty(&ep->ring->td_list)) {
3282                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3283                 spin_unlock_irqrestore(&xhci->lock, flags);
3284                 xhci_free_command(xhci, cfg_cmd);
3285                 goto cleanup;
3286         }
3287
3288         err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3289                                         ep_index, 0);
3290         if (err < 0) {
3291                 spin_unlock_irqrestore(&xhci->lock, flags);
3292                 xhci_free_command(xhci, cfg_cmd);
3293                 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3294                                 __func__, err);
3295                 goto cleanup;
3296         }
3297
3298         xhci_ring_cmd_db(xhci);
3299         spin_unlock_irqrestore(&xhci->lock, flags);
3300
3301         wait_for_completion(stop_cmd->completion);
3302
3303         spin_lock_irqsave(&xhci->lock, flags);
3304
3305         /* config ep command clears toggle if add and drop ep flags are set */
3306         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3307         if (!ctrl_ctx) {
3308                 spin_unlock_irqrestore(&xhci->lock, flags);
3309                 xhci_free_command(xhci, cfg_cmd);
3310                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3311                                 __func__);
3312                 goto cleanup;
3313         }
3314
3315         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3316                                            ctrl_ctx, ep_flag, ep_flag);
3317         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3318
3319         err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3320                                       udev->slot_id, false);
3321         if (err < 0) {
3322                 spin_unlock_irqrestore(&xhci->lock, flags);
3323                 xhci_free_command(xhci, cfg_cmd);
3324                 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3325                                 __func__, err);
3326                 goto cleanup;
3327         }
3328
3329         xhci_ring_cmd_db(xhci);
3330         spin_unlock_irqrestore(&xhci->lock, flags);
3331
3332         wait_for_completion(cfg_cmd->completion);
3333
3334         xhci_free_command(xhci, cfg_cmd);
3335 cleanup:
3336         xhci_free_command(xhci, stop_cmd);
3337         spin_lock_irqsave(&xhci->lock, flags);
3338         if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3339                 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3340         spin_unlock_irqrestore(&xhci->lock, flags);
3341 }
3342
3343 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3344                 struct usb_device *udev, struct usb_host_endpoint *ep,
3345                 unsigned int slot_id)
3346 {
3347         int ret;
3348         unsigned int ep_index;
3349         unsigned int ep_state;
3350
3351         if (!ep)
3352                 return -EINVAL;
3353         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3354         if (ret <= 0)
3355                 return ret ? ret : -EINVAL;
3356         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3357                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3358                                 " descriptor for ep 0x%x does not support streams\n",
3359                                 ep->desc.bEndpointAddress);
3360                 return -EINVAL;
3361         }
3362
3363         ep_index = xhci_get_endpoint_index(&ep->desc);
3364         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3365         if (ep_state & EP_HAS_STREAMS ||
3366                         ep_state & EP_GETTING_STREAMS) {
3367                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3368                                 "already has streams set up.\n",
3369                                 ep->desc.bEndpointAddress);
3370                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3371                                 "dynamic stream context array reallocation.\n");
3372                 return -EINVAL;
3373         }
3374         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3375                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3376                                 "endpoint 0x%x; URBs are pending.\n",
3377                                 ep->desc.bEndpointAddress);
3378                 return -EINVAL;
3379         }
3380         return 0;
3381 }
3382
3383 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3384                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3385 {
3386         unsigned int max_streams;
3387
3388         /* The stream context array size must be a power of two */
3389         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3390         /*
3391          * Find out how many primary stream array entries the host controller
3392          * supports.  Later we may use secondary stream arrays (similar to 2nd
3393          * level page entries), but that's an optional feature for xHCI host
3394          * controllers. xHCs must support at least 4 stream IDs.
3395          */
3396         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3397         if (*num_stream_ctxs > max_streams) {
3398                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3399                                 max_streams);
3400                 *num_stream_ctxs = max_streams;
3401                 *num_streams = max_streams;
3402         }
3403 }
3404
3405 /* Returns an error code if one of the endpoint already has streams.
3406  * This does not change any data structures, it only checks and gathers
3407  * information.
3408  */
3409 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3410                 struct usb_device *udev,
3411                 struct usb_host_endpoint **eps, unsigned int num_eps,
3412                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3413 {
3414         unsigned int max_streams;
3415         unsigned int endpoint_flag;
3416         int i;
3417         int ret;
3418
3419         for (i = 0; i < num_eps; i++) {
3420                 ret = xhci_check_streams_endpoint(xhci, udev,
3421                                 eps[i], udev->slot_id);
3422                 if (ret < 0)
3423                         return ret;
3424
3425                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3426                 if (max_streams < (*num_streams - 1)) {
3427                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3428                                         eps[i]->desc.bEndpointAddress,
3429                                         max_streams);
3430                         *num_streams = max_streams+1;
3431                 }
3432
3433                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3434                 if (*changed_ep_bitmask & endpoint_flag)
3435                         return -EINVAL;
3436                 *changed_ep_bitmask |= endpoint_flag;
3437         }
3438         return 0;
3439 }
3440
3441 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3442                 struct usb_device *udev,
3443                 struct usb_host_endpoint **eps, unsigned int num_eps)
3444 {
3445         u32 changed_ep_bitmask = 0;
3446         unsigned int slot_id;
3447         unsigned int ep_index;
3448         unsigned int ep_state;
3449         int i;
3450
3451         slot_id = udev->slot_id;
3452         if (!xhci->devs[slot_id])
3453                 return 0;
3454
3455         for (i = 0; i < num_eps; i++) {
3456                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3457                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3458                 /* Are streams already being freed for the endpoint? */
3459                 if (ep_state & EP_GETTING_NO_STREAMS) {
3460                         xhci_warn(xhci, "WARN Can't disable streams for "
3461                                         "endpoint 0x%x, "
3462                                         "streams are being disabled already\n",
3463                                         eps[i]->desc.bEndpointAddress);
3464                         return 0;
3465                 }
3466                 /* Are there actually any streams to free? */
3467                 if (!(ep_state & EP_HAS_STREAMS) &&
3468                                 !(ep_state & EP_GETTING_STREAMS)) {
3469                         xhci_warn(xhci, "WARN Can't disable streams for "
3470                                         "endpoint 0x%x, "
3471                                         "streams are already disabled!\n",
3472                                         eps[i]->desc.bEndpointAddress);
3473                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3474                                         "with non-streams endpoint\n");
3475                         return 0;
3476                 }
3477                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3478         }
3479         return changed_ep_bitmask;
3480 }
3481
3482 /*
3483  * The USB device drivers use this function (through the HCD interface in USB
3484  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3485  * coordinate mass storage command queueing across multiple endpoints (basically
3486  * a stream ID == a task ID).
3487  *
3488  * Setting up streams involves allocating the same size stream context array
3489  * for each endpoint and issuing a configure endpoint command for all endpoints.
3490  *
3491  * Don't allow the call to succeed if one endpoint only supports one stream
3492  * (which means it doesn't support streams at all).
3493  *
3494  * Drivers may get less stream IDs than they asked for, if the host controller
3495  * hardware or endpoints claim they can't support the number of requested
3496  * stream IDs.
3497  */
3498 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3499                 struct usb_host_endpoint **eps, unsigned int num_eps,
3500                 unsigned int num_streams, gfp_t mem_flags)
3501 {
3502         int i, ret;
3503         struct xhci_hcd *xhci;
3504         struct xhci_virt_device *vdev;
3505         struct xhci_command *config_cmd;
3506         struct xhci_input_control_ctx *ctrl_ctx;
3507         unsigned int ep_index;
3508         unsigned int num_stream_ctxs;
3509         unsigned int max_packet;
3510         unsigned long flags;
3511         u32 changed_ep_bitmask = 0;
3512
3513         if (!eps)
3514                 return -EINVAL;
3515
3516         /* Add one to the number of streams requested to account for
3517          * stream 0 that is reserved for xHCI usage.
3518          */
3519         num_streams += 1;
3520         xhci = hcd_to_xhci(hcd);
3521         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3522                         num_streams);
3523
3524         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3525         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3526                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3527                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3528                 return -ENOSYS;
3529         }
3530
3531         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3532         if (!config_cmd)
3533                 return -ENOMEM;
3534
3535         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3536         if (!ctrl_ctx) {
3537                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3538                                 __func__);
3539                 xhci_free_command(xhci, config_cmd);
3540                 return -ENOMEM;
3541         }
3542
3543         /* Check to make sure all endpoints are not already configured for
3544          * streams.  While we're at it, find the maximum number of streams that
3545          * all the endpoints will support and check for duplicate endpoints.
3546          */
3547         spin_lock_irqsave(&xhci->lock, flags);
3548         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3549                         num_eps, &num_streams, &changed_ep_bitmask);
3550         if (ret < 0) {
3551                 xhci_free_command(xhci, config_cmd);
3552                 spin_unlock_irqrestore(&xhci->lock, flags);
3553                 return ret;
3554         }
3555         if (num_streams <= 1) {
3556                 xhci_warn(xhci, "WARN: endpoints can't handle "
3557                                 "more than one stream.\n");
3558                 xhci_free_command(xhci, config_cmd);
3559                 spin_unlock_irqrestore(&xhci->lock, flags);
3560                 return -EINVAL;
3561         }
3562         vdev = xhci->devs[udev->slot_id];
3563         /* Mark each endpoint as being in transition, so
3564          * xhci_urb_enqueue() will reject all URBs.
3565          */
3566         for (i = 0; i < num_eps; i++) {
3567                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3568                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3569         }
3570         spin_unlock_irqrestore(&xhci->lock, flags);
3571
3572         /* Setup internal data structures and allocate HW data structures for
3573          * streams (but don't install the HW structures in the input context
3574          * until we're sure all memory allocation succeeded).
3575          */
3576         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3577         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3578                         num_stream_ctxs, num_streams);
3579
3580         for (i = 0; i < num_eps; i++) {
3581                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3582                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3583                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3584                                 num_stream_ctxs,
3585                                 num_streams,
3586                                 max_packet, mem_flags);
3587                 if (!vdev->eps[ep_index].stream_info)
3588                         goto cleanup;
3589                 /* Set maxPstreams in endpoint context and update deq ptr to
3590                  * point to stream context array. FIXME
3591                  */
3592         }
3593
3594         /* Set up the input context for a configure endpoint command. */
3595         for (i = 0; i < num_eps; i++) {
3596                 struct xhci_ep_ctx *ep_ctx;
3597
3598                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3599                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3600
3601                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3602                                 vdev->out_ctx, ep_index);
3603                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3604                                 vdev->eps[ep_index].stream_info);
3605         }
3606         /* Tell the HW to drop its old copy of the endpoint context info
3607          * and add the updated copy from the input context.
3608          */
3609         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3610                         vdev->out_ctx, ctrl_ctx,
3611                         changed_ep_bitmask, changed_ep_bitmask);
3612
3613         /* Issue and wait for the configure endpoint command */
3614         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3615                         false, false);
3616
3617         /* xHC rejected the configure endpoint command for some reason, so we
3618          * leave the old ring intact and free our internal streams data
3619          * structure.
3620          */
3621         if (ret < 0)
3622                 goto cleanup;
3623
3624         spin_lock_irqsave(&xhci->lock, flags);
3625         for (i = 0; i < num_eps; i++) {
3626                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3627                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3628                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3629                          udev->slot_id, ep_index);
3630                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3631         }
3632         xhci_free_command(xhci, config_cmd);
3633         spin_unlock_irqrestore(&xhci->lock, flags);
3634
3635         for (i = 0; i < num_eps; i++) {
3636                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3637                 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3638         }
3639         /* Subtract 1 for stream 0, which drivers can't use */
3640         return num_streams - 1;
3641
3642 cleanup:
3643         /* If it didn't work, free the streams! */
3644         for (i = 0; i < num_eps; i++) {
3645                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3646                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3647                 vdev->eps[ep_index].stream_info = NULL;
3648                 /* FIXME Unset maxPstreams in endpoint context and
3649                  * update deq ptr to point to normal string ring.
3650                  */
3651                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3652                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3653                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3654         }
3655         xhci_free_command(xhci, config_cmd);
3656         return -ENOMEM;
3657 }
3658
3659 /* Transition the endpoint from using streams to being a "normal" endpoint
3660  * without streams.
3661  *
3662  * Modify the endpoint context state, submit a configure endpoint command,
3663  * and free all endpoint rings for streams if that completes successfully.
3664  */
3665 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3666                 struct usb_host_endpoint **eps, unsigned int num_eps,
3667                 gfp_t mem_flags)
3668 {
3669         int i, ret;
3670         struct xhci_hcd *xhci;
3671         struct xhci_virt_device *vdev;
3672         struct xhci_command *command;
3673         struct xhci_input_control_ctx *ctrl_ctx;
3674         unsigned int ep_index;
3675         unsigned long flags;
3676         u32 changed_ep_bitmask;
3677
3678         xhci = hcd_to_xhci(hcd);
3679         vdev = xhci->devs[udev->slot_id];
3680
3681         /* Set up a configure endpoint command to remove the streams rings */
3682         spin_lock_irqsave(&xhci->lock, flags);
3683         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3684                         udev, eps, num_eps);
3685         if (changed_ep_bitmask == 0) {
3686                 spin_unlock_irqrestore(&xhci->lock, flags);
3687                 return -EINVAL;
3688         }
3689
3690         /* Use the xhci_command structure from the first endpoint.  We may have
3691          * allocated too many, but the driver may call xhci_free_streams() for
3692          * each endpoint it grouped into one call to xhci_alloc_streams().
3693          */
3694         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3695         command = vdev->eps[ep_index].stream_info->free_streams_command;
3696         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3697         if (!ctrl_ctx) {
3698                 spin_unlock_irqrestore(&xhci->lock, flags);
3699                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3700                                 __func__);
3701                 return -EINVAL;
3702         }
3703
3704         for (i = 0; i < num_eps; i++) {
3705                 struct xhci_ep_ctx *ep_ctx;
3706
3707                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3708                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3709                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3710                         EP_GETTING_NO_STREAMS;
3711
3712                 xhci_endpoint_copy(xhci, command->in_ctx,
3713                                 vdev->out_ctx, ep_index);
3714                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3715                                 &vdev->eps[ep_index]);
3716         }
3717         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3718                         vdev->out_ctx, ctrl_ctx,
3719                         changed_ep_bitmask, changed_ep_bitmask);
3720         spin_unlock_irqrestore(&xhci->lock, flags);
3721
3722         /* Issue and wait for the configure endpoint command,
3723          * which must succeed.
3724          */
3725         ret = xhci_configure_endpoint(xhci, udev, command,
3726                         false, true);
3727
3728         /* xHC rejected the configure endpoint command for some reason, so we
3729          * leave the streams rings intact.
3730          */
3731         if (ret < 0)
3732                 return ret;
3733
3734         spin_lock_irqsave(&xhci->lock, flags);
3735         for (i = 0; i < num_eps; i++) {
3736                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3737                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3738                 vdev->eps[ep_index].stream_info = NULL;
3739                 /* FIXME Unset maxPstreams in endpoint context and
3740                  * update deq ptr to point to normal string ring.
3741                  */
3742                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3743                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3744         }
3745         spin_unlock_irqrestore(&xhci->lock, flags);
3746
3747         return 0;
3748 }
3749
3750 /*
3751  * Deletes endpoint resources for endpoints that were active before a Reset
3752  * Device command, or a Disable Slot command.  The Reset Device command leaves
3753  * the control endpoint intact, whereas the Disable Slot command deletes it.
3754  *
3755  * Must be called with xhci->lock held.
3756  */
3757 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3758         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3759 {
3760         int i;
3761         unsigned int num_dropped_eps = 0;
3762         unsigned int drop_flags = 0;
3763
3764         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3765                 if (virt_dev->eps[i].ring) {
3766                         drop_flags |= 1 << i;
3767                         num_dropped_eps++;
3768                 }
3769         }
3770         xhci->num_active_eps -= num_dropped_eps;
3771         if (num_dropped_eps)
3772                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3773                                 "Dropped %u ep ctxs, flags = 0x%x, "
3774                                 "%u now active.",
3775                                 num_dropped_eps, drop_flags,
3776                                 xhci->num_active_eps);
3777 }
3778
3779 /*
3780  * This submits a Reset Device Command, which will set the device state to 0,
3781  * set the device address to 0, and disable all the endpoints except the default
3782  * control endpoint.  The USB core should come back and call
3783  * xhci_address_device(), and then re-set up the configuration.  If this is
3784  * called because of a usb_reset_and_verify_device(), then the old alternate
3785  * settings will be re-installed through the normal bandwidth allocation
3786  * functions.
3787  *
3788  * Wait for the Reset Device command to finish.  Remove all structures
3789  * associated with the endpoints that were disabled.  Clear the input device
3790  * structure? Reset the control endpoint 0 max packet size?
3791  *
3792  * If the virt_dev to be reset does not exist or does not match the udev,
3793  * it means the device is lost, possibly due to the xHC restore error and
3794  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3795  * re-allocate the device.
3796  */
3797 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3798                 struct usb_device *udev)
3799 {
3800         int ret, i;
3801         unsigned long flags;
3802         struct xhci_hcd *xhci;
3803         unsigned int slot_id;
3804         struct xhci_virt_device *virt_dev;
3805         struct xhci_command *reset_device_cmd;
3806         struct xhci_slot_ctx *slot_ctx;
3807         int old_active_eps = 0;
3808
3809         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3810         if (ret <= 0)
3811                 return ret;
3812         xhci = hcd_to_xhci(hcd);
3813         slot_id = udev->slot_id;
3814         virt_dev = xhci->devs[slot_id];
3815         if (!virt_dev) {
3816                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3817                                 "not exist. Re-allocate the device\n", slot_id);
3818                 ret = xhci_alloc_dev(hcd, udev);
3819                 if (ret == 1)
3820                         return 0;
3821                 else
3822                         return -EINVAL;
3823         }
3824
3825         if (virt_dev->tt_info)
3826                 old_active_eps = virt_dev->tt_info->active_eps;
3827
3828         if (virt_dev->udev != udev) {
3829                 /* If the virt_dev and the udev does not match, this virt_dev
3830                  * may belong to another udev.
3831                  * Re-allocate the device.
3832                  */
3833                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3834                                 "not match the udev. Re-allocate the device\n",
3835                                 slot_id);
3836                 ret = xhci_alloc_dev(hcd, udev);
3837                 if (ret == 1)
3838                         return 0;
3839                 else
3840                         return -EINVAL;
3841         }
3842
3843         /* If device is not setup, there is no point in resetting it */
3844         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3845         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3846                                                 SLOT_STATE_DISABLED)
3847                 return 0;
3848
3849         trace_xhci_discover_or_reset_device(slot_ctx);
3850
3851         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3852         /* Allocate the command structure that holds the struct completion.
3853          * Assume we're in process context, since the normal device reset
3854          * process has to wait for the device anyway.  Storage devices are
3855          * reset as part of error handling, so use GFP_NOIO instead of
3856          * GFP_KERNEL.
3857          */
3858         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3859         if (!reset_device_cmd) {
3860                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3861                 return -ENOMEM;
3862         }
3863
3864         /* Attempt to submit the Reset Device command to the command ring */
3865         spin_lock_irqsave(&xhci->lock, flags);
3866
3867         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3868         if (ret) {
3869                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3870                 spin_unlock_irqrestore(&xhci->lock, flags);
3871                 goto command_cleanup;
3872         }
3873         xhci_ring_cmd_db(xhci);
3874         spin_unlock_irqrestore(&xhci->lock, flags);
3875
3876         /* Wait for the Reset Device command to finish */
3877         wait_for_completion(reset_device_cmd->completion);
3878
3879         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3880          * unless we tried to reset a slot ID that wasn't enabled,
3881          * or the device wasn't in the addressed or configured state.
3882          */
3883         ret = reset_device_cmd->status;
3884         switch (ret) {
3885         case COMP_COMMAND_ABORTED:
3886         case COMP_COMMAND_RING_STOPPED:
3887                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3888                 ret = -ETIME;
3889                 goto command_cleanup;
3890         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3891         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3892                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3893                                 slot_id,
3894                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3895                 xhci_dbg(xhci, "Not freeing device rings.\n");
3896                 /* Don't treat this as an error.  May change my mind later. */
3897                 ret = 0;
3898                 goto command_cleanup;
3899         case COMP_SUCCESS:
3900                 xhci_dbg(xhci, "Successful reset device command.\n");
3901                 break;
3902         default:
3903                 if (xhci_is_vendor_info_code(xhci, ret))
3904                         break;
3905                 xhci_warn(xhci, "Unknown completion code %u for "
3906                                 "reset device command.\n", ret);
3907                 ret = -EINVAL;
3908                 goto command_cleanup;
3909         }
3910
3911         /* Free up host controller endpoint resources */
3912         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3913                 spin_lock_irqsave(&xhci->lock, flags);
3914                 /* Don't delete the default control endpoint resources */
3915                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3916                 spin_unlock_irqrestore(&xhci->lock, flags);
3917         }
3918
3919         /* Everything but endpoint 0 is disabled, so free the rings. */
3920         for (i = 1; i < 31; i++) {
3921                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3922
3923                 if (ep->ep_state & EP_HAS_STREAMS) {
3924                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3925                                         xhci_get_endpoint_address(i));
3926                         xhci_free_stream_info(xhci, ep->stream_info);
3927                         ep->stream_info = NULL;
3928                         ep->ep_state &= ~EP_HAS_STREAMS;
3929                 }
3930
3931                 if (ep->ring) {
3932                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3933                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3934                 }
3935                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3936                         xhci_drop_ep_from_interval_table(xhci,
3937                                         &virt_dev->eps[i].bw_info,
3938                                         virt_dev->bw_table,
3939                                         udev,
3940                                         &virt_dev->eps[i],
3941                                         virt_dev->tt_info);
3942                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3943         }
3944         /* If necessary, update the number of active TTs on this root port */
3945         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3946         virt_dev->flags = 0;
3947         ret = 0;
3948
3949 command_cleanup:
3950         xhci_free_command(xhci, reset_device_cmd);
3951         return ret;
3952 }
3953
3954 /*
3955  * At this point, the struct usb_device is about to go away, the device has
3956  * disconnected, and all traffic has been stopped and the endpoints have been
3957  * disabled.  Free any HC data structures associated with that device.
3958  */
3959 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3960 {
3961         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3962         struct xhci_virt_device *virt_dev;
3963         struct xhci_slot_ctx *slot_ctx;
3964         int i, ret;
3965
3966         /*
3967          * We called pm_runtime_get_noresume when the device was attached.
3968          * Decrement the counter here to allow controller to runtime suspend
3969          * if no devices remain.
3970          */
3971         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3972                 pm_runtime_put_noidle(hcd->self.controller);
3973
3974         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3975         /* If the host is halted due to driver unload, we still need to free the
3976          * device.
3977          */
3978         if (ret <= 0 && ret != -ENODEV)
3979                 return;
3980
3981         virt_dev = xhci->devs[udev->slot_id];
3982         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3983         trace_xhci_free_dev(slot_ctx);
3984
3985         /* Stop any wayward timer functions (which may grab the lock) */
3986         for (i = 0; i < 31; i++)
3987                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3988         virt_dev->udev = NULL;
3989         xhci_disable_slot(xhci, udev->slot_id);
3990         xhci_free_virt_device(xhci, udev->slot_id);
3991 }
3992
3993 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3994 {
3995         struct xhci_command *command;
3996         unsigned long flags;
3997         u32 state;
3998         int ret;
3999
4000         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4001         if (!command)
4002                 return -ENOMEM;
4003
4004         xhci_debugfs_remove_slot(xhci, slot_id);
4005
4006         spin_lock_irqsave(&xhci->lock, flags);
4007         /* Don't disable the slot if the host controller is dead. */
4008         state = readl(&xhci->op_regs->status);
4009         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4010                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
4011                 spin_unlock_irqrestore(&xhci->lock, flags);
4012                 kfree(command);
4013                 return -ENODEV;
4014         }
4015
4016         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4017                                 slot_id);
4018         if (ret) {
4019                 spin_unlock_irqrestore(&xhci->lock, flags);
4020                 kfree(command);
4021                 return ret;
4022         }
4023         xhci_ring_cmd_db(xhci);
4024         spin_unlock_irqrestore(&xhci->lock, flags);
4025
4026         wait_for_completion(command->completion);
4027
4028         if (command->status != COMP_SUCCESS)
4029                 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4030                           slot_id, command->status);
4031
4032         xhci_free_command(xhci, command);
4033
4034         return 0;
4035 }
4036
4037 /*
4038  * Checks if we have enough host controller resources for the default control
4039  * endpoint.
4040  *
4041  * Must be called with xhci->lock held.
4042  */
4043 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4044 {
4045         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4046                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4047                                 "Not enough ep ctxs: "
4048                                 "%u active, need to add 1, limit is %u.",
4049                                 xhci->num_active_eps, xhci->limit_active_eps);
4050                 return -ENOMEM;
4051         }
4052         xhci->num_active_eps += 1;
4053         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4054                         "Adding 1 ep ctx, %u now active.",
4055                         xhci->num_active_eps);
4056         return 0;
4057 }
4058
4059
4060 /*
4061  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4062  * timed out, or allocating memory failed.  Returns 1 on success.
4063  */
4064 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4065 {
4066         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4067         struct xhci_virt_device *vdev;
4068         struct xhci_slot_ctx *slot_ctx;
4069         unsigned long flags;
4070         int ret, slot_id;
4071         struct xhci_command *command;
4072
4073         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4074         if (!command)
4075                 return 0;
4076
4077         spin_lock_irqsave(&xhci->lock, flags);
4078         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4079         if (ret) {
4080                 spin_unlock_irqrestore(&xhci->lock, flags);
4081                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4082                 xhci_free_command(xhci, command);
4083                 return 0;
4084         }
4085         xhci_ring_cmd_db(xhci);
4086         spin_unlock_irqrestore(&xhci->lock, flags);
4087
4088         wait_for_completion(command->completion);
4089         slot_id = command->slot_id;
4090
4091         if (!slot_id || command->status != COMP_SUCCESS) {
4092                 xhci_err(xhci, "Error while assigning device slot ID\n");
4093                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4094                                 HCS_MAX_SLOTS(
4095                                         readl(&xhci->cap_regs->hcs_params1)));
4096                 xhci_free_command(xhci, command);
4097                 return 0;
4098         }
4099
4100         xhci_free_command(xhci, command);
4101
4102         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4103                 spin_lock_irqsave(&xhci->lock, flags);
4104                 ret = xhci_reserve_host_control_ep_resources(xhci);
4105                 if (ret) {
4106                         spin_unlock_irqrestore(&xhci->lock, flags);
4107                         xhci_warn(xhci, "Not enough host resources, "
4108                                         "active endpoint contexts = %u\n",
4109                                         xhci->num_active_eps);
4110                         goto disable_slot;
4111                 }
4112                 spin_unlock_irqrestore(&xhci->lock, flags);
4113         }
4114         /* Use GFP_NOIO, since this function can be called from
4115          * xhci_discover_or_reset_device(), which may be called as part of
4116          * mass storage driver error handling.
4117          */
4118         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4119                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4120                 goto disable_slot;
4121         }
4122         vdev = xhci->devs[slot_id];
4123         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4124         trace_xhci_alloc_dev(slot_ctx);
4125
4126         udev->slot_id = slot_id;
4127
4128         xhci_debugfs_create_slot(xhci, slot_id);
4129
4130         /*
4131          * If resetting upon resume, we can't put the controller into runtime
4132          * suspend if there is a device attached.
4133          */
4134         if (xhci->quirks & XHCI_RESET_ON_RESUME)
4135                 pm_runtime_get_noresume(hcd->self.controller);
4136
4137         /* Is this a LS or FS device under a HS hub? */
4138         /* Hub or peripherial? */
4139         return 1;
4140
4141 disable_slot:
4142         xhci_disable_slot(xhci, udev->slot_id);
4143         xhci_free_virt_device(xhci, udev->slot_id);
4144
4145         return 0;
4146 }
4147
4148 /*
4149  * Issue an Address Device command and optionally send a corresponding
4150  * SetAddress request to the device.
4151  */
4152 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4153                              enum xhci_setup_dev setup)
4154 {
4155         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4156         unsigned long flags;
4157         struct xhci_virt_device *virt_dev;
4158         int ret = 0;
4159         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4160         struct xhci_slot_ctx *slot_ctx;
4161         struct xhci_input_control_ctx *ctrl_ctx;
4162         u64 temp_64;
4163         struct xhci_command *command = NULL;
4164
4165         mutex_lock(&xhci->mutex);
4166
4167         if (xhci->xhc_state) {  /* dying, removing or halted */
4168                 ret = -ESHUTDOWN;
4169                 goto out;
4170         }
4171
4172         if (!udev->slot_id) {
4173                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4174                                 "Bad Slot ID %d", udev->slot_id);
4175                 ret = -EINVAL;
4176                 goto out;
4177         }
4178
4179         virt_dev = xhci->devs[udev->slot_id];
4180
4181         if (WARN_ON(!virt_dev)) {
4182                 /*
4183                  * In plug/unplug torture test with an NEC controller,
4184                  * a zero-dereference was observed once due to virt_dev = 0.
4185                  * Print useful debug rather than crash if it is observed again!
4186                  */
4187                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4188                         udev->slot_id);
4189                 ret = -EINVAL;
4190                 goto out;
4191         }
4192         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4193         trace_xhci_setup_device_slot(slot_ctx);
4194
4195         if (setup == SETUP_CONTEXT_ONLY) {
4196                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4197                     SLOT_STATE_DEFAULT) {
4198                         xhci_dbg(xhci, "Slot already in default state\n");
4199                         goto out;
4200                 }
4201         }
4202
4203         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4204         if (!command) {
4205                 ret = -ENOMEM;
4206                 goto out;
4207         }
4208
4209         command->in_ctx = virt_dev->in_ctx;
4210
4211         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4212         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4213         if (!ctrl_ctx) {
4214                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4215                                 __func__);
4216                 ret = -EINVAL;
4217                 goto out;
4218         }
4219         /*
4220          * If this is the first Set Address since device plug-in or
4221          * virt_device realloaction after a resume with an xHCI power loss,
4222          * then set up the slot context.
4223          */
4224         if (!slot_ctx->dev_info)
4225                 xhci_setup_addressable_virt_dev(xhci, udev);
4226         /* Otherwise, update the control endpoint ring enqueue pointer. */
4227         else
4228                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4229         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4230         ctrl_ctx->drop_flags = 0;
4231
4232         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4233                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4234
4235         trace_xhci_address_ctrl_ctx(ctrl_ctx);
4236         spin_lock_irqsave(&xhci->lock, flags);
4237         trace_xhci_setup_device(virt_dev);
4238         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4239                                         udev->slot_id, setup);
4240         if (ret) {
4241                 spin_unlock_irqrestore(&xhci->lock, flags);
4242                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4243                                 "FIXME: allocate a command ring segment");
4244                 goto out;
4245         }
4246         xhci_ring_cmd_db(xhci);
4247         spin_unlock_irqrestore(&xhci->lock, flags);
4248
4249         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4250         wait_for_completion(command->completion);
4251
4252         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4253          * the SetAddress() "recovery interval" required by USB and aborting the
4254          * command on a timeout.
4255          */
4256         switch (command->status) {
4257         case COMP_COMMAND_ABORTED:
4258         case COMP_COMMAND_RING_STOPPED:
4259                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4260                 ret = -ETIME;
4261                 break;
4262         case COMP_CONTEXT_STATE_ERROR:
4263         case COMP_SLOT_NOT_ENABLED_ERROR:
4264                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4265                          act, udev->slot_id);
4266                 ret = -EINVAL;
4267                 break;
4268         case COMP_USB_TRANSACTION_ERROR:
4269                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4270
4271                 mutex_unlock(&xhci->mutex);
4272                 ret = xhci_disable_slot(xhci, udev->slot_id);
4273                 xhci_free_virt_device(xhci, udev->slot_id);
4274                 if (!ret)
4275                         xhci_alloc_dev(hcd, udev);
4276                 kfree(command->completion);
4277                 kfree(command);
4278                 return -EPROTO;
4279         case COMP_INCOMPATIBLE_DEVICE_ERROR:
4280                 dev_warn(&udev->dev,
4281                          "ERROR: Incompatible device for setup %s command\n", act);
4282                 ret = -ENODEV;
4283                 break;
4284         case COMP_SUCCESS:
4285                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4286                                "Successful setup %s command", act);
4287                 break;
4288         default:
4289                 xhci_err(xhci,
4290                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
4291                          act, command->status);
4292                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4293                 ret = -EINVAL;
4294                 break;
4295         }
4296         if (ret)
4297                 goto out;
4298         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4299         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4300                         "Op regs DCBAA ptr = %#016llx", temp_64);
4301         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4302                 "Slot ID %d dcbaa entry @%p = %#016llx",
4303                 udev->slot_id,
4304                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4305                 (unsigned long long)
4306                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4307         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4308                         "Output Context DMA address = %#08llx",
4309                         (unsigned long long)virt_dev->out_ctx->dma);
4310         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4311                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4312         /*
4313          * USB core uses address 1 for the roothubs, so we add one to the
4314          * address given back to us by the HC.
4315          */
4316         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4317                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4318         /* Zero the input context control for later use */
4319         ctrl_ctx->add_flags = 0;
4320         ctrl_ctx->drop_flags = 0;
4321         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4322         udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4323
4324         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4325                        "Internal device address = %d",
4326                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4327 out:
4328         mutex_unlock(&xhci->mutex);
4329         if (command) {
4330                 kfree(command->completion);
4331                 kfree(command);
4332         }
4333         return ret;
4334 }
4335
4336 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4337 {
4338         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4339 }
4340
4341 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4342 {
4343         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4344 }
4345
4346 /*
4347  * Transfer the port index into real index in the HW port status
4348  * registers. Caculate offset between the port's PORTSC register
4349  * and port status base. Divide the number of per port register
4350  * to get the real index. The raw port number bases 1.
4351  */
4352 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4353 {
4354         struct xhci_hub *rhub;
4355
4356         rhub = xhci_get_rhub(hcd);
4357         return rhub->ports[port1 - 1]->hw_portnum + 1;
4358 }
4359
4360 /*
4361  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4362  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4363  */
4364 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4365                         struct usb_device *udev, u16 max_exit_latency)
4366 {
4367         struct xhci_virt_device *virt_dev;
4368         struct xhci_command *command;
4369         struct xhci_input_control_ctx *ctrl_ctx;
4370         struct xhci_slot_ctx *slot_ctx;
4371         unsigned long flags;
4372         int ret;
4373
4374         command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4375         if (!command)
4376                 return -ENOMEM;
4377
4378         spin_lock_irqsave(&xhci->lock, flags);
4379
4380         virt_dev = xhci->devs[udev->slot_id];
4381
4382         /*
4383          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4384          * xHC was re-initialized. Exit latency will be set later after
4385          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4386          */
4387
4388         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4389                 spin_unlock_irqrestore(&xhci->lock, flags);
4390                 return 0;
4391         }
4392
4393         /* Attempt to issue an Evaluate Context command to change the MEL. */
4394         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4395         if (!ctrl_ctx) {
4396                 spin_unlock_irqrestore(&xhci->lock, flags);
4397                 xhci_free_command(xhci, command);
4398                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4399                                 __func__);
4400                 return -ENOMEM;
4401         }
4402
4403         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4404         spin_unlock_irqrestore(&xhci->lock, flags);
4405
4406         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4407         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4408         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4409         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4410         slot_ctx->dev_state = 0;
4411
4412         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4413                         "Set up evaluate context for LPM MEL change.");
4414
4415         /* Issue and wait for the evaluate context command. */
4416         ret = xhci_configure_endpoint(xhci, udev, command,
4417                         true, true);
4418
4419         if (!ret) {
4420                 spin_lock_irqsave(&xhci->lock, flags);
4421                 virt_dev->current_mel = max_exit_latency;
4422                 spin_unlock_irqrestore(&xhci->lock, flags);
4423         }
4424
4425         xhci_free_command(xhci, command);
4426
4427         return ret;
4428 }
4429
4430 #ifdef CONFIG_PM
4431
4432 /* BESL to HIRD Encoding array for USB2 LPM */
4433 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4434         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4435
4436 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4437 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4438                                         struct usb_device *udev)
4439 {
4440         int u2del, besl, besl_host;
4441         int besl_device = 0;
4442         u32 field;
4443
4444         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4445         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4446
4447         if (field & USB_BESL_SUPPORT) {
4448                 for (besl_host = 0; besl_host < 16; besl_host++) {
4449                         if (xhci_besl_encoding[besl_host] >= u2del)
4450                                 break;
4451                 }
4452                 /* Use baseline BESL value as default */
4453                 if (field & USB_BESL_BASELINE_VALID)
4454                         besl_device = USB_GET_BESL_BASELINE(field);
4455                 else if (field & USB_BESL_DEEP_VALID)
4456                         besl_device = USB_GET_BESL_DEEP(field);
4457         } else {
4458                 if (u2del <= 50)
4459                         besl_host = 0;
4460                 else
4461                         besl_host = (u2del - 51) / 75 + 1;
4462         }
4463
4464         besl = besl_host + besl_device;
4465         if (besl > 15)
4466                 besl = 15;
4467
4468         return besl;
4469 }
4470
4471 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4472 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4473 {
4474         u32 field;
4475         int l1;
4476         int besld = 0;
4477         int hirdm = 0;
4478
4479         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4480
4481         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4482         l1 = udev->l1_params.timeout / 256;
4483
4484         /* device has preferred BESLD */
4485         if (field & USB_BESL_DEEP_VALID) {
4486                 besld = USB_GET_BESL_DEEP(field);
4487                 hirdm = 1;
4488         }
4489
4490         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4491 }
4492
4493 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4494                         struct usb_device *udev, int enable)
4495 {
4496         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4497         struct xhci_port **ports;
4498         __le32 __iomem  *pm_addr, *hlpm_addr;
4499         u32             pm_val, hlpm_val, field;
4500         unsigned int    port_num;
4501         unsigned long   flags;
4502         int             hird, exit_latency;
4503         int             ret;
4504
4505         if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4506                 return -EPERM;
4507
4508         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4509                         !udev->lpm_capable)
4510                 return -EPERM;
4511
4512         if (!udev->parent || udev->parent->parent ||
4513                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4514                 return -EPERM;
4515
4516         if (udev->usb2_hw_lpm_capable != 1)
4517                 return -EPERM;
4518
4519         spin_lock_irqsave(&xhci->lock, flags);
4520
4521         ports = xhci->usb2_rhub.ports;
4522         port_num = udev->portnum - 1;
4523         pm_addr = ports[port_num]->addr + PORTPMSC;
4524         pm_val = readl(pm_addr);
4525         hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4526
4527         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4528                         enable ? "enable" : "disable", port_num + 1);
4529
4530         if (enable) {
4531                 /* Host supports BESL timeout instead of HIRD */
4532                 if (udev->usb2_hw_lpm_besl_capable) {
4533                         /* if device doesn't have a preferred BESL value use a
4534                          * default one which works with mixed HIRD and BESL
4535                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4536                          */
4537                         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4538                         if ((field & USB_BESL_SUPPORT) &&
4539                             (field & USB_BESL_BASELINE_VALID))
4540                                 hird = USB_GET_BESL_BASELINE(field);
4541                         else
4542                                 hird = udev->l1_params.besl;
4543
4544                         exit_latency = xhci_besl_encoding[hird];
4545                         spin_unlock_irqrestore(&xhci->lock, flags);
4546
4547                         ret = xhci_change_max_exit_latency(xhci, udev,
4548                                                            exit_latency);
4549                         if (ret < 0)
4550                                 return ret;
4551                         spin_lock_irqsave(&xhci->lock, flags);
4552
4553                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4554                         writel(hlpm_val, hlpm_addr);
4555                         /* flush write */
4556                         readl(hlpm_addr);
4557                 } else {
4558                         hird = xhci_calculate_hird_besl(xhci, udev);
4559                 }
4560
4561                 pm_val &= ~PORT_HIRD_MASK;
4562                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4563                 writel(pm_val, pm_addr);
4564                 pm_val = readl(pm_addr);
4565                 pm_val |= PORT_HLE;
4566                 writel(pm_val, pm_addr);
4567                 /* flush write */
4568                 readl(pm_addr);
4569         } else {
4570                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4571                 writel(pm_val, pm_addr);
4572                 /* flush write */
4573                 readl(pm_addr);
4574                 if (udev->usb2_hw_lpm_besl_capable) {
4575                         spin_unlock_irqrestore(&xhci->lock, flags);
4576                         xhci_change_max_exit_latency(xhci, udev, 0);
4577                         readl_poll_timeout(ports[port_num]->addr, pm_val,
4578                                            (pm_val & PORT_PLS_MASK) == XDEV_U0,
4579                                            100, 10000);
4580                         return 0;
4581                 }
4582         }
4583
4584         spin_unlock_irqrestore(&xhci->lock, flags);
4585         return 0;
4586 }
4587
4588 /* check if a usb2 port supports a given extened capability protocol
4589  * only USB2 ports extended protocol capability values are cached.
4590  * Return 1 if capability is supported
4591  */
4592 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4593                                            unsigned capability)
4594 {
4595         u32 port_offset, port_count;
4596         int i;
4597
4598         for (i = 0; i < xhci->num_ext_caps; i++) {
4599                 if (xhci->ext_caps[i] & capability) {
4600                         /* port offsets starts at 1 */
4601                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4602                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4603                         if (port >= port_offset &&
4604                             port < port_offset + port_count)
4605                                 return 1;
4606                 }
4607         }
4608         return 0;
4609 }
4610
4611 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4612 {
4613         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4614         int             portnum = udev->portnum - 1;
4615
4616         if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4617                 return 0;
4618
4619         /* we only support lpm for non-hub device connected to root hub yet */
4620         if (!udev->parent || udev->parent->parent ||
4621                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4622                 return 0;
4623
4624         if (xhci->hw_lpm_support == 1 &&
4625                         xhci_check_usb2_port_capability(
4626                                 xhci, portnum, XHCI_HLC)) {
4627                 udev->usb2_hw_lpm_capable = 1;
4628                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4629                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4630                 if (xhci_check_usb2_port_capability(xhci, portnum,
4631                                         XHCI_BLC))
4632                         udev->usb2_hw_lpm_besl_capable = 1;
4633         }
4634
4635         return 0;
4636 }
4637
4638 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4639
4640 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4641 static unsigned long long xhci_service_interval_to_ns(
4642                 struct usb_endpoint_descriptor *desc)
4643 {
4644         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4645 }
4646
4647 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4648                 enum usb3_link_state state)
4649 {
4650         unsigned long long sel;
4651         unsigned long long pel;
4652         unsigned int max_sel_pel;
4653         char *state_name;
4654
4655         switch (state) {
4656         case USB3_LPM_U1:
4657                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4658                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4659                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4660                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4661                 state_name = "U1";
4662                 break;
4663         case USB3_LPM_U2:
4664                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4665                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4666                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4667                 state_name = "U2";
4668                 break;
4669         default:
4670                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4671                                 __func__);
4672                 return USB3_LPM_DISABLED;
4673         }
4674
4675         if (sel <= max_sel_pel && pel <= max_sel_pel)
4676                 return USB3_LPM_DEVICE_INITIATED;
4677
4678         if (sel > max_sel_pel)
4679                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4680                                 "due to long SEL %llu ms\n",
4681                                 state_name, sel);
4682         else
4683                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4684                                 "due to long PEL %llu ms\n",
4685                                 state_name, pel);
4686         return USB3_LPM_DISABLED;
4687 }
4688
4689 /* The U1 timeout should be the maximum of the following values:
4690  *  - For control endpoints, U1 system exit latency (SEL) * 3
4691  *  - For bulk endpoints, U1 SEL * 5
4692  *  - For interrupt endpoints:
4693  *    - Notification EPs, U1 SEL * 3
4694  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4695  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4696  */
4697 static unsigned long long xhci_calculate_intel_u1_timeout(
4698                 struct usb_device *udev,
4699                 struct usb_endpoint_descriptor *desc)
4700 {
4701         unsigned long long timeout_ns;
4702         int ep_type;
4703         int intr_type;
4704
4705         ep_type = usb_endpoint_type(desc);
4706         switch (ep_type) {
4707         case USB_ENDPOINT_XFER_CONTROL:
4708                 timeout_ns = udev->u1_params.sel * 3;
4709                 break;
4710         case USB_ENDPOINT_XFER_BULK:
4711                 timeout_ns = udev->u1_params.sel * 5;
4712                 break;
4713         case USB_ENDPOINT_XFER_INT:
4714                 intr_type = usb_endpoint_interrupt_type(desc);
4715                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4716                         timeout_ns = udev->u1_params.sel * 3;
4717                         break;
4718                 }
4719                 /* Otherwise the calculation is the same as isoc eps */
4720                 fallthrough;
4721         case USB_ENDPOINT_XFER_ISOC:
4722                 timeout_ns = xhci_service_interval_to_ns(desc);
4723                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4724                 if (timeout_ns < udev->u1_params.sel * 2)
4725                         timeout_ns = udev->u1_params.sel * 2;
4726                 break;
4727         default:
4728                 return 0;
4729         }
4730
4731         return timeout_ns;
4732 }
4733
4734 /* Returns the hub-encoded U1 timeout value. */
4735 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4736                 struct usb_device *udev,
4737                 struct usb_endpoint_descriptor *desc)
4738 {
4739         unsigned long long timeout_ns;
4740
4741         /* Prevent U1 if service interval is shorter than U1 exit latency */
4742         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4743                 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4744                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4745                         return USB3_LPM_DISABLED;
4746                 }
4747         }
4748
4749         if (xhci->quirks & XHCI_INTEL_HOST)
4750                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4751         else
4752                 timeout_ns = udev->u1_params.sel;
4753
4754         /* The U1 timeout is encoded in 1us intervals.
4755          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4756          */
4757         if (timeout_ns == USB3_LPM_DISABLED)
4758                 timeout_ns = 1;
4759         else
4760                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4761
4762         /* If the necessary timeout value is bigger than what we can set in the
4763          * USB 3.0 hub, we have to disable hub-initiated U1.
4764          */
4765         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4766                 return timeout_ns;
4767         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4768                         "due to long timeout %llu ms\n", timeout_ns);
4769         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4770 }
4771
4772 /* The U2 timeout should be the maximum of:
4773  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4774  *  - largest bInterval of any active periodic endpoint (to avoid going
4775  *    into lower power link states between intervals).
4776  *  - the U2 Exit Latency of the device
4777  */
4778 static unsigned long long xhci_calculate_intel_u2_timeout(
4779                 struct usb_device *udev,
4780                 struct usb_endpoint_descriptor *desc)
4781 {
4782         unsigned long long timeout_ns;
4783         unsigned long long u2_del_ns;
4784
4785         timeout_ns = 10 * 1000 * 1000;
4786
4787         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4788                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4789                 timeout_ns = xhci_service_interval_to_ns(desc);
4790
4791         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4792         if (u2_del_ns > timeout_ns)
4793                 timeout_ns = u2_del_ns;
4794
4795         return timeout_ns;
4796 }
4797
4798 /* Returns the hub-encoded U2 timeout value. */
4799 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4800                 struct usb_device *udev,
4801                 struct usb_endpoint_descriptor *desc)
4802 {
4803         unsigned long long timeout_ns;
4804
4805         /* Prevent U2 if service interval is shorter than U2 exit latency */
4806         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4807                 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4808                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4809                         return USB3_LPM_DISABLED;
4810                 }
4811         }
4812
4813         if (xhci->quirks & XHCI_INTEL_HOST)
4814                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4815         else
4816                 timeout_ns = udev->u2_params.sel;
4817
4818         /* The U2 timeout is encoded in 256us intervals */
4819         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4820         /* If the necessary timeout value is bigger than what we can set in the
4821          * USB 3.0 hub, we have to disable hub-initiated U2.
4822          */
4823         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4824                 return timeout_ns;
4825         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4826                         "due to long timeout %llu ms\n", timeout_ns);
4827         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4828 }
4829
4830 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4831                 struct usb_device *udev,
4832                 struct usb_endpoint_descriptor *desc,
4833                 enum usb3_link_state state,
4834                 u16 *timeout)
4835 {
4836         if (state == USB3_LPM_U1)
4837                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4838         else if (state == USB3_LPM_U2)
4839                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4840
4841         return USB3_LPM_DISABLED;
4842 }
4843
4844 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4845                 struct usb_device *udev,
4846                 struct usb_endpoint_descriptor *desc,
4847                 enum usb3_link_state state,
4848                 u16 *timeout)
4849 {
4850         u16 alt_timeout;
4851
4852         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4853                 desc, state, timeout);
4854
4855         /* If we found we can't enable hub-initiated LPM, and
4856          * the U1 or U2 exit latency was too high to allow
4857          * device-initiated LPM as well, then we will disable LPM
4858          * for this device, so stop searching any further.
4859          */
4860         if (alt_timeout == USB3_LPM_DISABLED) {
4861                 *timeout = alt_timeout;
4862                 return -E2BIG;
4863         }
4864         if (alt_timeout > *timeout)
4865                 *timeout = alt_timeout;
4866         return 0;
4867 }
4868
4869 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4870                 struct usb_device *udev,
4871                 struct usb_host_interface *alt,
4872                 enum usb3_link_state state,
4873                 u16 *timeout)
4874 {
4875         int j;
4876
4877         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4878                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4879                                         &alt->endpoint[j].desc, state, timeout))
4880                         return -E2BIG;
4881         }
4882         return 0;
4883 }
4884
4885 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4886                 enum usb3_link_state state)
4887 {
4888         struct usb_device *parent;
4889         unsigned int num_hubs;
4890
4891         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4892         for (parent = udev->parent, num_hubs = 0; parent->parent;
4893                         parent = parent->parent)
4894                 num_hubs++;
4895
4896         if (num_hubs < 2)
4897                 return 0;
4898
4899         dev_dbg(&udev->dev, "Disabling U1/U2 link state for device"
4900                         " below second-tier hub.\n");
4901         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4902                         "to decrease power consumption.\n");
4903         return -E2BIG;
4904 }
4905
4906 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4907                 struct usb_device *udev,
4908                 enum usb3_link_state state)
4909 {
4910         if (xhci->quirks & XHCI_INTEL_HOST)
4911                 return xhci_check_intel_tier_policy(udev, state);
4912         else
4913                 return 0;
4914 }
4915
4916 /* Returns the U1 or U2 timeout that should be enabled.
4917  * If the tier check or timeout setting functions return with a non-zero exit
4918  * code, that means the timeout value has been finalized and we shouldn't look
4919  * at any more endpoints.
4920  */
4921 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4922                         struct usb_device *udev, enum usb3_link_state state)
4923 {
4924         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4925         struct usb_host_config *config;
4926         char *state_name;
4927         int i;
4928         u16 timeout = USB3_LPM_DISABLED;
4929
4930         if (state == USB3_LPM_U1)
4931                 state_name = "U1";
4932         else if (state == USB3_LPM_U2)
4933                 state_name = "U2";
4934         else {
4935                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4936                                 state);
4937                 return timeout;
4938         }
4939
4940         /* Gather some information about the currently installed configuration
4941          * and alternate interface settings.
4942          */
4943         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4944                         state, &timeout))
4945                 return timeout;
4946
4947         config = udev->actconfig;
4948         if (!config)
4949                 return timeout;
4950
4951         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4952                 struct usb_driver *driver;
4953                 struct usb_interface *intf = config->interface[i];
4954
4955                 if (!intf)
4956                         continue;
4957
4958                 /* Check if any currently bound drivers want hub-initiated LPM
4959                  * disabled.
4960                  */
4961                 if (intf->dev.driver) {
4962                         driver = to_usb_driver(intf->dev.driver);
4963                         if (driver && driver->disable_hub_initiated_lpm) {
4964                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4965                                         state_name, driver->name);
4966                                 timeout = xhci_get_timeout_no_hub_lpm(udev,
4967                                                                       state);
4968                                 if (timeout == USB3_LPM_DISABLED)
4969                                         return timeout;
4970                         }
4971                 }
4972
4973                 /* Not sure how this could happen... */
4974                 if (!intf->cur_altsetting)
4975                         continue;
4976
4977                 if (xhci_update_timeout_for_interface(xhci, udev,
4978                                         intf->cur_altsetting,
4979                                         state, &timeout))
4980                         return timeout;
4981         }
4982         return timeout;
4983 }
4984
4985 static int calculate_max_exit_latency(struct usb_device *udev,
4986                 enum usb3_link_state state_changed,
4987                 u16 hub_encoded_timeout)
4988 {
4989         unsigned long long u1_mel_us = 0;
4990         unsigned long long u2_mel_us = 0;
4991         unsigned long long mel_us = 0;
4992         bool disabling_u1;
4993         bool disabling_u2;
4994         bool enabling_u1;
4995         bool enabling_u2;
4996
4997         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4998                         hub_encoded_timeout == USB3_LPM_DISABLED);
4999         disabling_u2 = (state_changed == USB3_LPM_U2 &&
5000                         hub_encoded_timeout == USB3_LPM_DISABLED);
5001
5002         enabling_u1 = (state_changed == USB3_LPM_U1 &&
5003                         hub_encoded_timeout != USB3_LPM_DISABLED);
5004         enabling_u2 = (state_changed == USB3_LPM_U2 &&
5005                         hub_encoded_timeout != USB3_LPM_DISABLED);
5006
5007         /* If U1 was already enabled and we're not disabling it,
5008          * or we're going to enable U1, account for the U1 max exit latency.
5009          */
5010         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5011                         enabling_u1)
5012                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5013         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5014                         enabling_u2)
5015                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5016
5017         mel_us = max(u1_mel_us, u2_mel_us);
5018
5019         /* xHCI host controller max exit latency field is only 16 bits wide. */
5020         if (mel_us > MAX_EXIT) {
5021                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5022                                 "is too big.\n", mel_us);
5023                 return -E2BIG;
5024         }
5025         return mel_us;
5026 }
5027
5028 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5029 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5030                         struct usb_device *udev, enum usb3_link_state state)
5031 {
5032         struct xhci_hcd *xhci;
5033         u16 hub_encoded_timeout;
5034         int mel;
5035         int ret;
5036
5037         xhci = hcd_to_xhci(hcd);
5038         /* The LPM timeout values are pretty host-controller specific, so don't
5039          * enable hub-initiated timeouts unless the vendor has provided
5040          * information about their timeout algorithm.
5041          */
5042         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5043                         !xhci->devs[udev->slot_id])
5044                 return USB3_LPM_DISABLED;
5045
5046         if (xhci_check_tier_policy(xhci, udev, state) < 0)
5047                 return USB3_LPM_DISABLED;
5048
5049         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5050         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5051         if (mel < 0) {
5052                 /* Max Exit Latency is too big, disable LPM. */
5053                 hub_encoded_timeout = USB3_LPM_DISABLED;
5054                 mel = 0;
5055         }
5056
5057         ret = xhci_change_max_exit_latency(xhci, udev, mel);
5058         if (ret)
5059                 return ret;
5060         return hub_encoded_timeout;
5061 }
5062
5063 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5064                         struct usb_device *udev, enum usb3_link_state state)
5065 {
5066         struct xhci_hcd *xhci;
5067         u16 mel;
5068
5069         xhci = hcd_to_xhci(hcd);
5070         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5071                         !xhci->devs[udev->slot_id])
5072                 return 0;
5073
5074         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5075         return xhci_change_max_exit_latency(xhci, udev, mel);
5076 }
5077 #else /* CONFIG_PM */
5078
5079 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5080                                 struct usb_device *udev, int enable)
5081 {
5082         return 0;
5083 }
5084
5085 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5086 {
5087         return 0;
5088 }
5089
5090 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5091                         struct usb_device *udev, enum usb3_link_state state)
5092 {
5093         return USB3_LPM_DISABLED;
5094 }
5095
5096 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5097                         struct usb_device *udev, enum usb3_link_state state)
5098 {
5099         return 0;
5100 }
5101 #endif  /* CONFIG_PM */
5102
5103 /*-------------------------------------------------------------------------*/
5104
5105 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5106  * internal data structures for the device.
5107  */
5108 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5109                         struct usb_tt *tt, gfp_t mem_flags)
5110 {
5111         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5112         struct xhci_virt_device *vdev;
5113         struct xhci_command *config_cmd;
5114         struct xhci_input_control_ctx *ctrl_ctx;
5115         struct xhci_slot_ctx *slot_ctx;
5116         unsigned long flags;
5117         unsigned think_time;
5118         int ret;
5119
5120         /* Ignore root hubs */
5121         if (!hdev->parent)
5122                 return 0;
5123
5124         vdev = xhci->devs[hdev->slot_id];
5125         if (!vdev) {
5126                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5127                 return -EINVAL;
5128         }
5129
5130         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5131         if (!config_cmd)
5132                 return -ENOMEM;
5133
5134         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5135         if (!ctrl_ctx) {
5136                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5137                                 __func__);
5138                 xhci_free_command(xhci, config_cmd);
5139                 return -ENOMEM;
5140         }
5141
5142         spin_lock_irqsave(&xhci->lock, flags);
5143         if (hdev->speed == USB_SPEED_HIGH &&
5144                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5145                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5146                 xhci_free_command(xhci, config_cmd);
5147                 spin_unlock_irqrestore(&xhci->lock, flags);
5148                 return -ENOMEM;
5149         }
5150
5151         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5152         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5153         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5154         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5155         /*
5156          * refer to section 6.2.2: MTT should be 0 for full speed hub,
5157          * but it may be already set to 1 when setup an xHCI virtual
5158          * device, so clear it anyway.
5159          */
5160         if (tt->multi)
5161                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5162         else if (hdev->speed == USB_SPEED_FULL)
5163                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5164
5165         if (xhci->hci_version > 0x95) {
5166                 xhci_dbg(xhci, "xHCI version %x needs hub "
5167                                 "TT think time and number of ports\n",
5168                                 (unsigned int) xhci->hci_version);
5169                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5170                 /* Set TT think time - convert from ns to FS bit times.
5171                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
5172                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
5173                  *
5174                  * xHCI 1.0: this field shall be 0 if the device is not a
5175                  * High-spped hub.
5176                  */
5177                 think_time = tt->think_time;
5178                 if (think_time != 0)
5179                         think_time = (think_time / 666) - 1;
5180                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5181                         slot_ctx->tt_info |=
5182                                 cpu_to_le32(TT_THINK_TIME(think_time));
5183         } else {
5184                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5185                                 "TT think time or number of ports\n",
5186                                 (unsigned int) xhci->hci_version);
5187         }
5188         slot_ctx->dev_state = 0;
5189         spin_unlock_irqrestore(&xhci->lock, flags);
5190
5191         xhci_dbg(xhci, "Set up %s for hub device.\n",
5192                         (xhci->hci_version > 0x95) ?
5193                         "configure endpoint" : "evaluate context");
5194
5195         /* Issue and wait for the configure endpoint or
5196          * evaluate context command.
5197          */
5198         if (xhci->hci_version > 0x95)
5199                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5200                                 false, false);
5201         else
5202                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5203                                 true, false);
5204
5205         xhci_free_command(xhci, config_cmd);
5206         return ret;
5207 }
5208
5209 static int xhci_get_frame(struct usb_hcd *hcd)
5210 {
5211         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5212         /* EHCI mods by the periodic size.  Why? */
5213         return readl(&xhci->run_regs->microframe_index) >> 3;
5214 }
5215
5216 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5217 {
5218         xhci->usb2_rhub.hcd = hcd;
5219         hcd->speed = HCD_USB2;
5220         hcd->self.root_hub->speed = USB_SPEED_HIGH;
5221         /*
5222          * USB 2.0 roothub under xHCI has an integrated TT,
5223          * (rate matching hub) as opposed to having an OHCI/UHCI
5224          * companion controller.
5225          */
5226         hcd->has_tt = 1;
5227 }
5228
5229 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5230 {
5231         unsigned int minor_rev;
5232
5233         /*
5234          * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5235          * should return 0x31 for sbrn, or that the minor revision
5236          * is a two digit BCD containig minor and sub-minor numbers.
5237          * This was later clarified in xHCI 1.2.
5238          *
5239          * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5240          * minor revision set to 0x1 instead of 0x10.
5241          */
5242         if (xhci->usb3_rhub.min_rev == 0x1)
5243                 minor_rev = 1;
5244         else
5245                 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5246
5247         switch (minor_rev) {
5248         case 2:
5249                 hcd->speed = HCD_USB32;
5250                 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5251                 hcd->self.root_hub->rx_lanes = 2;
5252                 hcd->self.root_hub->tx_lanes = 2;
5253                 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5254                 break;
5255         case 1:
5256                 hcd->speed = HCD_USB31;
5257                 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5258                 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5259                 break;
5260         }
5261         xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5262                   minor_rev, minor_rev ? "Enhanced " : "");
5263
5264         xhci->usb3_rhub.hcd = hcd;
5265 }
5266
5267 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5268 {
5269         struct xhci_hcd         *xhci;
5270         /*
5271          * TODO: Check with DWC3 clients for sysdev according to
5272          * quirks
5273          */
5274         struct device           *dev = hcd->self.sysdev;
5275         int                     retval;
5276
5277         /* Accept arbitrarily long scatter-gather lists */
5278         hcd->self.sg_tablesize = ~0;
5279
5280         /* support to build packet from discontinuous buffers */
5281         hcd->self.no_sg_constraint = 1;
5282
5283         /* XHCI controllers don't stop the ep queue on short packets :| */
5284         hcd->self.no_stop_on_short = 1;
5285
5286         xhci = hcd_to_xhci(hcd);
5287
5288         if (!usb_hcd_is_primary_hcd(hcd)) {
5289                 xhci_hcd_init_usb3_data(xhci, hcd);
5290                 return 0;
5291         }
5292
5293         mutex_init(&xhci->mutex);
5294         xhci->main_hcd = hcd;
5295         xhci->cap_regs = hcd->regs;
5296         xhci->op_regs = hcd->regs +
5297                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5298         xhci->run_regs = hcd->regs +
5299                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5300         /* Cache read-only capability registers */
5301         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5302         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5303         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5304         xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5305         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5306         if (xhci->hci_version > 0x100)
5307                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5308
5309         xhci->quirks |= quirks;
5310
5311         get_quirks(dev, xhci);
5312
5313         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5314          * success event after a short transfer. This quirk will ignore such
5315          * spurious event.
5316          */
5317         if (xhci->hci_version > 0x96)
5318                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5319
5320         /* Make sure the HC is halted. */
5321         retval = xhci_halt(xhci);
5322         if (retval)
5323                 return retval;
5324
5325         xhci_zero_64b_regs(xhci);
5326
5327         xhci_dbg(xhci, "Resetting HCD\n");
5328         /* Reset the internal HC memory state and registers. */
5329         retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5330         if (retval)
5331                 return retval;
5332         xhci_dbg(xhci, "Reset complete\n");
5333
5334         /*
5335          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5336          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5337          * address memory pointers actually. So, this driver clears the AC64
5338          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5339          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5340          */
5341         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5342                 xhci->hcc_params &= ~BIT(0);
5343
5344         /* Set dma_mask and coherent_dma_mask to 64-bits,
5345          * if xHC supports 64-bit addressing */
5346         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5347                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5348                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5349                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5350         } else {
5351                 /*
5352                  * This is to avoid error in cases where a 32-bit USB
5353                  * controller is used on a 64-bit capable system.
5354                  */
5355                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5356                 if (retval)
5357                         return retval;
5358                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5359                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5360         }
5361
5362         xhci_dbg(xhci, "Calling HCD init\n");
5363         /* Initialize HCD and host controller data structures. */
5364         retval = xhci_init(hcd);
5365         if (retval)
5366                 return retval;
5367         xhci_dbg(xhci, "Called HCD init\n");
5368
5369         if (xhci_hcd_is_usb3(hcd))
5370                 xhci_hcd_init_usb3_data(xhci, hcd);
5371         else
5372                 xhci_hcd_init_usb2_data(xhci, hcd);
5373
5374         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5375                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5376
5377         return 0;
5378 }
5379 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5380
5381 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5382                 struct usb_host_endpoint *ep)
5383 {
5384         struct xhci_hcd *xhci;
5385         struct usb_device *udev;
5386         unsigned int slot_id;
5387         unsigned int ep_index;
5388         unsigned long flags;
5389
5390         xhci = hcd_to_xhci(hcd);
5391
5392         spin_lock_irqsave(&xhci->lock, flags);
5393         udev = (struct usb_device *)ep->hcpriv;
5394         slot_id = udev->slot_id;
5395         ep_index = xhci_get_endpoint_index(&ep->desc);
5396
5397         xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5398         xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5399         spin_unlock_irqrestore(&xhci->lock, flags);
5400 }
5401
5402 static const struct hc_driver xhci_hc_driver = {
5403         .description =          "xhci-hcd",
5404         .product_desc =         "xHCI Host Controller",
5405         .hcd_priv_size =        sizeof(struct xhci_hcd),
5406
5407         /*
5408          * generic hardware linkage
5409          */
5410         .irq =                  xhci_irq,
5411         .flags =                HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5412                                 HCD_BH,
5413
5414         /*
5415          * basic lifecycle operations
5416          */
5417         .reset =                NULL, /* set in xhci_init_driver() */
5418         .start =                xhci_run,
5419         .stop =                 xhci_stop,
5420         .shutdown =             xhci_shutdown,
5421
5422         /*
5423          * managing i/o requests and associated device resources
5424          */
5425         .map_urb_for_dma =      xhci_map_urb_for_dma,
5426         .unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5427         .urb_enqueue =          xhci_urb_enqueue,
5428         .urb_dequeue =          xhci_urb_dequeue,
5429         .alloc_dev =            xhci_alloc_dev,
5430         .free_dev =             xhci_free_dev,
5431         .alloc_streams =        xhci_alloc_streams,
5432         .free_streams =         xhci_free_streams,
5433         .add_endpoint =         xhci_add_endpoint,
5434         .drop_endpoint =        xhci_drop_endpoint,
5435         .endpoint_disable =     xhci_endpoint_disable,
5436         .endpoint_reset =       xhci_endpoint_reset,
5437         .check_bandwidth =      xhci_check_bandwidth,
5438         .reset_bandwidth =      xhci_reset_bandwidth,
5439         .address_device =       xhci_address_device,
5440         .enable_device =        xhci_enable_device,
5441         .update_hub_device =    xhci_update_hub_device,
5442         .reset_device =         xhci_discover_or_reset_device,
5443
5444         /*
5445          * scheduling support
5446          */
5447         .get_frame_number =     xhci_get_frame,
5448
5449         /*
5450          * root hub support
5451          */
5452         .hub_control =          xhci_hub_control,
5453         .hub_status_data =      xhci_hub_status_data,
5454         .bus_suspend =          xhci_bus_suspend,
5455         .bus_resume =           xhci_bus_resume,
5456         .get_resuming_ports =   xhci_get_resuming_ports,
5457
5458         /*
5459          * call back when device connected and addressed
5460          */
5461         .update_device =        xhci_update_device,
5462         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5463         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5464         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5465         .find_raw_port_number = xhci_find_raw_port_number,
5466         .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5467 };
5468
5469 void xhci_init_driver(struct hc_driver *drv,
5470                       const struct xhci_driver_overrides *over)
5471 {
5472         BUG_ON(!over);
5473
5474         /* Copy the generic table to drv then apply the overrides */
5475         *drv = xhci_hc_driver;
5476
5477         if (over) {
5478                 drv->hcd_priv_size += over->extra_priv_size;
5479                 if (over->reset)
5480                         drv->reset = over->reset;
5481                 if (over->start)
5482                         drv->start = over->start;
5483                 if (over->add_endpoint)
5484                         drv->add_endpoint = over->add_endpoint;
5485                 if (over->drop_endpoint)
5486                         drv->drop_endpoint = over->drop_endpoint;
5487                 if (over->check_bandwidth)
5488                         drv->check_bandwidth = over->check_bandwidth;
5489                 if (over->reset_bandwidth)
5490                         drv->reset_bandwidth = over->reset_bandwidth;
5491         }
5492 }
5493 EXPORT_SYMBOL_GPL(xhci_init_driver);
5494
5495 MODULE_DESCRIPTION(DRIVER_DESC);
5496 MODULE_AUTHOR(DRIVER_AUTHOR);
5497 MODULE_LICENSE("GPL");
5498
5499 static int __init xhci_hcd_init(void)
5500 {
5501         /*
5502          * Check the compiler generated sizes of structures that must be laid
5503          * out in specific ways for hardware access.
5504          */
5505         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5506         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5507         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5508         /* xhci_device_control has eight fields, and also
5509          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5510          */
5511         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5512         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5513         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5514         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5515         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5516         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5517         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5518
5519         if (usb_disabled())
5520                 return -ENODEV;
5521
5522         xhci_debugfs_create_root();
5523         xhci_dbc_init();
5524
5525         return 0;
5526 }
5527
5528 /*
5529  * If an init function is provided, an exit function must also be provided
5530  * to allow module unload.
5531  */
5532 static void __exit xhci_hcd_fini(void)
5533 {
5534         xhci_debugfs_remove_root();
5535         xhci_dbc_exit();
5536 }
5537
5538 module_init(xhci_hcd_init);
5539 module_exit(xhci_hcd_fini);