e8837c5d6f5ca5e14cf1254c8560abe42c6c0870
[platform/kernel/linux-starfive.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28
29 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42         struct xhci_segment *seg = ring->first_seg;
43
44         if (!td || !td->start_seg)
45                 return false;
46         do {
47                 if (seg == td->start_seg)
48                         return true;
49                 seg = seg->next;
50         } while (seg && seg != ring->first_seg);
51
52         return false;
53 }
54
55 /*
56  * xhci_handshake - spin reading hc until handshake completes or fails
57  * @ptr: address of hc register to be read
58  * @mask: bits to look at in result of read
59  * @done: value of those bits when handshake succeeds
60  * @usec: timeout in microseconds
61  *
62  * Returns negative errno, or zero on success
63  *
64  * Success happens when the "mask" bits have the specified value (hardware
65  * handshake done).  There are two failure modes:  "usec" have passed (major
66  * hardware flakeout), or the register reads as all-ones (hardware removed).
67  */
68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
69 {
70         u32     result;
71         int     ret;
72
73         ret = readl_poll_timeout_atomic(ptr, result,
74                                         (result & mask) == done ||
75                                         result == U32_MAX,
76                                         1, timeout_us);
77         if (result == U32_MAX)          /* card removed */
78                 return -ENODEV;
79
80         return ret;
81 }
82
83 /*
84  * Disable interrupts and begin the xHCI halting process.
85  */
86 void xhci_quiesce(struct xhci_hcd *xhci)
87 {
88         u32 halted;
89         u32 cmd;
90         u32 mask;
91
92         mask = ~(XHCI_IRQS);
93         halted = readl(&xhci->op_regs->status) & STS_HALT;
94         if (!halted)
95                 mask &= ~CMD_RUN;
96
97         cmd = readl(&xhci->op_regs->command);
98         cmd &= mask;
99         writel(cmd, &xhci->op_regs->command);
100 }
101
102 /*
103  * Force HC into halt state.
104  *
105  * Disable any IRQs and clear the run/stop bit.
106  * HC will complete any current and actively pipelined transactions, and
107  * should halt within 16 ms of the run/stop bit being cleared.
108  * Read HC Halted bit in the status register to see when the HC is finished.
109  */
110 int xhci_halt(struct xhci_hcd *xhci)
111 {
112         int ret;
113
114         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115         xhci_quiesce(xhci);
116
117         ret = xhci_handshake(&xhci->op_regs->status,
118                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119         if (ret) {
120                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
121                 return ret;
122         }
123
124         xhci->xhc_state |= XHCI_STATE_HALTED;
125         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
126
127         return ret;
128 }
129
130 /*
131  * Set the run bit and wait for the host to be running.
132  */
133 int xhci_start(struct xhci_hcd *xhci)
134 {
135         u32 temp;
136         int ret;
137
138         temp = readl(&xhci->op_regs->command);
139         temp |= (CMD_RUN);
140         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
141                         temp);
142         writel(temp, &xhci->op_regs->command);
143
144         /*
145          * Wait for the HCHalted Status bit to be 0 to indicate the host is
146          * running.
147          */
148         ret = xhci_handshake(&xhci->op_regs->status,
149                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
150         if (ret == -ETIMEDOUT)
151                 xhci_err(xhci, "Host took too long to start, "
152                                 "waited %u microseconds.\n",
153                                 XHCI_MAX_HALT_USEC);
154         if (!ret) {
155                 /* clear state flags. Including dying, halted or removing */
156                 xhci->xhc_state = 0;
157                 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
158         }
159
160         return ret;
161 }
162
163 /*
164  * Reset a halted HC.
165  *
166  * This resets pipelines, timers, counters, state machines, etc.
167  * Transactions will be terminated immediately, and operational registers
168  * will be set to their defaults.
169  */
170 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
171 {
172         u32 command;
173         u32 state;
174         int ret;
175
176         state = readl(&xhci->op_regs->status);
177
178         if (state == ~(u32)0) {
179                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
180                 return -ENODEV;
181         }
182
183         if ((state & STS_HALT) == 0) {
184                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
185                 return 0;
186         }
187
188         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
189         command = readl(&xhci->op_regs->command);
190         command |= CMD_RESET;
191         writel(command, &xhci->op_regs->command);
192
193         /* Existing Intel xHCI controllers require a delay of 1 mS,
194          * after setting the CMD_RESET bit, and before accessing any
195          * HC registers. This allows the HC to complete the
196          * reset operation and be ready for HC register access.
197          * Without this delay, the subsequent HC register access,
198          * may result in a system hang very rarely.
199          */
200         if (xhci->quirks & XHCI_INTEL_HOST)
201                 udelay(1000);
202
203         ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
204         if (ret)
205                 return ret;
206
207         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
208                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
209
210         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
211                          "Wait for controller to be ready for doorbell rings");
212         /*
213          * xHCI cannot write to any doorbells or operational registers other
214          * than status until the "Controller Not Ready" flag is cleared.
215          */
216         ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
217
218         xhci->usb2_rhub.bus_state.port_c_suspend = 0;
219         xhci->usb2_rhub.bus_state.suspended_ports = 0;
220         xhci->usb2_rhub.bus_state.resuming_ports = 0;
221         xhci->usb3_rhub.bus_state.port_c_suspend = 0;
222         xhci->usb3_rhub.bus_state.suspended_ports = 0;
223         xhci->usb3_rhub.bus_state.resuming_ports = 0;
224
225         return ret;
226 }
227
228 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
229 {
230         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
231         int err, i;
232         u64 val;
233         u32 intrs;
234
235         /*
236          * Some Renesas controllers get into a weird state if they are
237          * reset while programmed with 64bit addresses (they will preserve
238          * the top half of the address in internal, non visible
239          * registers). You end up with half the address coming from the
240          * kernel, and the other half coming from the firmware. Also,
241          * changing the programming leads to extra accesses even if the
242          * controller is supposed to be halted. The controller ends up with
243          * a fatal fault, and is then ripe for being properly reset.
244          *
245          * Special care is taken to only apply this if the device is behind
246          * an iommu. Doing anything when there is no iommu is definitely
247          * unsafe...
248          */
249         if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
250                 return;
251
252         xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
253
254         /* Clear HSEIE so that faults do not get signaled */
255         val = readl(&xhci->op_regs->command);
256         val &= ~CMD_HSEIE;
257         writel(val, &xhci->op_regs->command);
258
259         /* Clear HSE (aka FATAL) */
260         val = readl(&xhci->op_regs->status);
261         val |= STS_FATAL;
262         writel(val, &xhci->op_regs->status);
263
264         /* Now zero the registers, and brace for impact */
265         val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
266         if (upper_32_bits(val))
267                 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
268         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
269         if (upper_32_bits(val))
270                 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
271
272         intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
273                       ARRAY_SIZE(xhci->run_regs->ir_set));
274
275         for (i = 0; i < intrs; i++) {
276                 struct xhci_intr_reg __iomem *ir;
277
278                 ir = &xhci->run_regs->ir_set[i];
279                 val = xhci_read_64(xhci, &ir->erst_base);
280                 if (upper_32_bits(val))
281                         xhci_write_64(xhci, 0, &ir->erst_base);
282                 val= xhci_read_64(xhci, &ir->erst_dequeue);
283                 if (upper_32_bits(val))
284                         xhci_write_64(xhci, 0, &ir->erst_dequeue);
285         }
286
287         /* Wait for the fault to appear. It will be cleared on reset */
288         err = xhci_handshake(&xhci->op_regs->status,
289                              STS_FATAL, STS_FATAL,
290                              XHCI_MAX_HALT_USEC);
291         if (!err)
292                 xhci_info(xhci, "Fault detected\n");
293 }
294
295 #ifdef CONFIG_USB_PCI
296 /*
297  * Set up MSI
298  */
299 static int xhci_setup_msi(struct xhci_hcd *xhci)
300 {
301         int ret;
302         /*
303          * TODO:Check with MSI Soc for sysdev
304          */
305         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
306
307         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
308         if (ret < 0) {
309                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
310                                 "failed to allocate MSI entry");
311                 return ret;
312         }
313
314         ret = request_irq(pdev->irq, xhci_msi_irq,
315                                 0, "xhci_hcd", xhci_to_hcd(xhci));
316         if (ret) {
317                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
318                                 "disable MSI interrupt");
319                 pci_free_irq_vectors(pdev);
320         }
321
322         return ret;
323 }
324
325 /*
326  * Set up MSI-X
327  */
328 static int xhci_setup_msix(struct xhci_hcd *xhci)
329 {
330         int i, ret;
331         struct usb_hcd *hcd = xhci_to_hcd(xhci);
332         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
333
334         /*
335          * calculate number of msi-x vectors supported.
336          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
337          *   with max number of interrupters based on the xhci HCSPARAMS1.
338          * - num_online_cpus: maximum msi-x vectors per CPUs core.
339          *   Add additional 1 vector to ensure always available interrupt.
340          */
341         xhci->msix_count = min(num_online_cpus() + 1,
342                                 HCS_MAX_INTRS(xhci->hcs_params1));
343
344         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
345                         PCI_IRQ_MSIX);
346         if (ret < 0) {
347                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
348                                 "Failed to enable MSI-X");
349                 return ret;
350         }
351
352         for (i = 0; i < xhci->msix_count; i++) {
353                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
354                                 "xhci_hcd", xhci_to_hcd(xhci));
355                 if (ret)
356                         goto disable_msix;
357         }
358
359         hcd->msix_enabled = 1;
360         return ret;
361
362 disable_msix:
363         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
364         while (--i >= 0)
365                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
366         pci_free_irq_vectors(pdev);
367         return ret;
368 }
369
370 /* Free any IRQs and disable MSI-X */
371 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
372 {
373         struct usb_hcd *hcd = xhci_to_hcd(xhci);
374         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
375
376         if (xhci->quirks & XHCI_PLAT)
377                 return;
378
379         /* return if using legacy interrupt */
380         if (hcd->irq > 0)
381                 return;
382
383         if (hcd->msix_enabled) {
384                 int i;
385
386                 for (i = 0; i < xhci->msix_count; i++)
387                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
388         } else {
389                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
390         }
391
392         pci_free_irq_vectors(pdev);
393         hcd->msix_enabled = 0;
394 }
395
396 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
397 {
398         struct usb_hcd *hcd = xhci_to_hcd(xhci);
399
400         if (hcd->msix_enabled) {
401                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
402                 int i;
403
404                 for (i = 0; i < xhci->msix_count; i++)
405                         synchronize_irq(pci_irq_vector(pdev, i));
406         }
407 }
408
409 static int xhci_try_enable_msi(struct usb_hcd *hcd)
410 {
411         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
412         struct pci_dev  *pdev;
413         int ret;
414
415         /* The xhci platform device has set up IRQs through usb_add_hcd. */
416         if (xhci->quirks & XHCI_PLAT)
417                 return 0;
418
419         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
420         /*
421          * Some Fresco Logic host controllers advertise MSI, but fail to
422          * generate interrupts.  Don't even try to enable MSI.
423          */
424         if (xhci->quirks & XHCI_BROKEN_MSI)
425                 goto legacy_irq;
426
427         /* unregister the legacy interrupt */
428         if (hcd->irq)
429                 free_irq(hcd->irq, hcd);
430         hcd->irq = 0;
431
432         ret = xhci_setup_msix(xhci);
433         if (ret)
434                 /* fall back to msi*/
435                 ret = xhci_setup_msi(xhci);
436
437         if (!ret) {
438                 hcd->msi_enabled = 1;
439                 return 0;
440         }
441
442         if (!pdev->irq) {
443                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
444                 return -EINVAL;
445         }
446
447  legacy_irq:
448         if (!strlen(hcd->irq_descr))
449                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
450                          hcd->driver->description, hcd->self.busnum);
451
452         /* fall back to legacy interrupt*/
453         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
454                         hcd->irq_descr, hcd);
455         if (ret) {
456                 xhci_err(xhci, "request interrupt %d failed\n",
457                                 pdev->irq);
458                 return ret;
459         }
460         hcd->irq = pdev->irq;
461         return 0;
462 }
463
464 #else
465
466 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
467 {
468         return 0;
469 }
470
471 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
472 {
473 }
474
475 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
476 {
477 }
478
479 #endif
480
481 static void compliance_mode_recovery(struct timer_list *t)
482 {
483         struct xhci_hcd *xhci;
484         struct usb_hcd *hcd;
485         struct xhci_hub *rhub;
486         u32 temp;
487         int i;
488
489         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
490         rhub = &xhci->usb3_rhub;
491         hcd = rhub->hcd;
492
493         if (!hcd)
494                 return;
495
496         for (i = 0; i < rhub->num_ports; i++) {
497                 temp = readl(rhub->ports[i]->addr);
498                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
499                         /*
500                          * Compliance Mode Detected. Letting USB Core
501                          * handle the Warm Reset
502                          */
503                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
504                                         "Compliance mode detected->port %d",
505                                         i + 1);
506                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
507                                         "Attempting compliance mode recovery");
508
509                         if (hcd->state == HC_STATE_SUSPENDED)
510                                 usb_hcd_resume_root_hub(hcd);
511
512                         usb_hcd_poll_rh_status(hcd);
513                 }
514         }
515
516         if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
517                 mod_timer(&xhci->comp_mode_recovery_timer,
518                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
519 }
520
521 /*
522  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
523  * that causes ports behind that hardware to enter compliance mode sometimes.
524  * The quirk creates a timer that polls every 2 seconds the link state of
525  * each host controller's port and recovers it by issuing a Warm reset
526  * if Compliance mode is detected, otherwise the port will become "dead" (no
527  * device connections or disconnections will be detected anymore). Becasue no
528  * status event is generated when entering compliance mode (per xhci spec),
529  * this quirk is needed on systems that have the failing hardware installed.
530  */
531 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
532 {
533         xhci->port_status_u0 = 0;
534         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
535                     0);
536         xhci->comp_mode_recovery_timer.expires = jiffies +
537                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
538
539         add_timer(&xhci->comp_mode_recovery_timer);
540         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
541                         "Compliance mode recovery timer initialized");
542 }
543
544 /*
545  * This function identifies the systems that have installed the SN65LVPE502CP
546  * USB3.0 re-driver and that need the Compliance Mode Quirk.
547  * Systems:
548  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
549  */
550 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
551 {
552         const char *dmi_product_name, *dmi_sys_vendor;
553
554         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
555         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
556         if (!dmi_product_name || !dmi_sys_vendor)
557                 return false;
558
559         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
560                 return false;
561
562         if (strstr(dmi_product_name, "Z420") ||
563                         strstr(dmi_product_name, "Z620") ||
564                         strstr(dmi_product_name, "Z820") ||
565                         strstr(dmi_product_name, "Z1 Workstation"))
566                 return true;
567
568         return false;
569 }
570
571 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
572 {
573         return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
574 }
575
576
577 /*
578  * Initialize memory for HCD and xHC (one-time init).
579  *
580  * Program the PAGESIZE register, initialize the device context array, create
581  * device contexts (?), set up a command ring segment (or two?), create event
582  * ring (one for now).
583  */
584 static int xhci_init(struct usb_hcd *hcd)
585 {
586         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
587         int retval;
588
589         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
590         spin_lock_init(&xhci->lock);
591         if (xhci->hci_version == 0x95 && link_quirk) {
592                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
593                                 "QUIRK: Not clearing Link TRB chain bits.");
594                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
595         } else {
596                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
597                                 "xHCI doesn't need link TRB QUIRK");
598         }
599         retval = xhci_mem_init(xhci, GFP_KERNEL);
600         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
601
602         /* Initializing Compliance Mode Recovery Data If Needed */
603         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
604                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
605                 compliance_mode_recovery_timer_init(xhci);
606         }
607
608         return retval;
609 }
610
611 /*-------------------------------------------------------------------------*/
612
613
614 static int xhci_run_finished(struct xhci_hcd *xhci)
615 {
616         unsigned long   flags;
617         u32             temp;
618
619         /*
620          * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
621          * Protect the short window before host is running with a lock
622          */
623         spin_lock_irqsave(&xhci->lock, flags);
624
625         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
626         temp = readl(&xhci->op_regs->command);
627         temp |= (CMD_EIE);
628         writel(temp, &xhci->op_regs->command);
629
630         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
631         temp = readl(&xhci->ir_set->irq_pending);
632         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
633
634         if (xhci_start(xhci)) {
635                 xhci_halt(xhci);
636                 spin_unlock_irqrestore(&xhci->lock, flags);
637                 return -ENODEV;
638         }
639
640         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
641
642         if (xhci->quirks & XHCI_NEC_HOST)
643                 xhci_ring_cmd_db(xhci);
644
645         spin_unlock_irqrestore(&xhci->lock, flags);
646
647         return 0;
648 }
649
650 /*
651  * Start the HC after it was halted.
652  *
653  * This function is called by the USB core when the HC driver is added.
654  * Its opposite is xhci_stop().
655  *
656  * xhci_init() must be called once before this function can be called.
657  * Reset the HC, enable device slot contexts, program DCBAAP, and
658  * set command ring pointer and event ring pointer.
659  *
660  * Setup MSI-X vectors and enable interrupts.
661  */
662 int xhci_run(struct usb_hcd *hcd)
663 {
664         u32 temp;
665         u64 temp_64;
666         int ret;
667         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
668
669         /* Start the xHCI host controller running only after the USB 2.0 roothub
670          * is setup.
671          */
672
673         hcd->uses_new_polling = 1;
674         if (!usb_hcd_is_primary_hcd(hcd))
675                 return xhci_run_finished(xhci);
676
677         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
678
679         ret = xhci_try_enable_msi(hcd);
680         if (ret)
681                 return ret;
682
683         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
684         temp_64 &= ~ERST_PTR_MASK;
685         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
686                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
687
688         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
689                         "// Set the interrupt modulation register");
690         temp = readl(&xhci->ir_set->irq_control);
691         temp &= ~ER_IRQ_INTERVAL_MASK;
692         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
693         writel(temp, &xhci->ir_set->irq_control);
694
695         if (xhci->quirks & XHCI_NEC_HOST) {
696                 struct xhci_command *command;
697
698                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
699                 if (!command)
700                         return -ENOMEM;
701
702                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
703                                 TRB_TYPE(TRB_NEC_GET_FW));
704                 if (ret)
705                         xhci_free_command(xhci, command);
706         }
707         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
708                         "Finished %s for main hcd", __func__);
709
710         xhci_create_dbc_dev(xhci);
711
712         xhci_debugfs_init(xhci);
713
714         if (xhci_has_one_roothub(xhci))
715                 return xhci_run_finished(xhci);
716
717         set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
718
719         return 0;
720 }
721 EXPORT_SYMBOL_GPL(xhci_run);
722
723 /*
724  * Stop xHCI driver.
725  *
726  * This function is called by the USB core when the HC driver is removed.
727  * Its opposite is xhci_run().
728  *
729  * Disable device contexts, disable IRQs, and quiesce the HC.
730  * Reset the HC, finish any completed transactions, and cleanup memory.
731  */
732 static void xhci_stop(struct usb_hcd *hcd)
733 {
734         u32 temp;
735         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
736
737         mutex_lock(&xhci->mutex);
738
739         /* Only halt host and free memory after both hcds are removed */
740         if (!usb_hcd_is_primary_hcd(hcd)) {
741                 mutex_unlock(&xhci->mutex);
742                 return;
743         }
744
745         xhci_remove_dbc_dev(xhci);
746
747         spin_lock_irq(&xhci->lock);
748         xhci->xhc_state |= XHCI_STATE_HALTED;
749         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
750         xhci_halt(xhci);
751         xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
752         spin_unlock_irq(&xhci->lock);
753
754         xhci_cleanup_msix(xhci);
755
756         /* Deleting Compliance Mode Recovery Timer */
757         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
758                         (!(xhci_all_ports_seen_u0(xhci)))) {
759                 del_timer_sync(&xhci->comp_mode_recovery_timer);
760                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
761                                 "%s: compliance mode recovery timer deleted",
762                                 __func__);
763         }
764
765         if (xhci->quirks & XHCI_AMD_PLL_FIX)
766                 usb_amd_dev_put();
767
768         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
769                         "// Disabling event ring interrupts");
770         temp = readl(&xhci->op_regs->status);
771         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
772         temp = readl(&xhci->ir_set->irq_pending);
773         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
774
775         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
776         xhci_mem_cleanup(xhci);
777         xhci_debugfs_exit(xhci);
778         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
779                         "xhci_stop completed - status = %x",
780                         readl(&xhci->op_regs->status));
781         mutex_unlock(&xhci->mutex);
782 }
783
784 /*
785  * Shutdown HC (not bus-specific)
786  *
787  * This is called when the machine is rebooting or halting.  We assume that the
788  * machine will be powered off, and the HC's internal state will be reset.
789  * Don't bother to free memory.
790  *
791  * This will only ever be called with the main usb_hcd (the USB3 roothub).
792  */
793 void xhci_shutdown(struct usb_hcd *hcd)
794 {
795         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
796
797         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
798                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
799
800         /* Don't poll the roothubs after shutdown. */
801         xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
802                         __func__, hcd->self.busnum);
803         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
804         del_timer_sync(&hcd->rh_timer);
805
806         if (xhci->shared_hcd) {
807                 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
808                 del_timer_sync(&xhci->shared_hcd->rh_timer);
809         }
810
811         spin_lock_irq(&xhci->lock);
812         xhci_halt(xhci);
813         /* Workaround for spurious wakeups at shutdown with HSW */
814         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
815                 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
816         spin_unlock_irq(&xhci->lock);
817
818         xhci_cleanup_msix(xhci);
819
820         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
821                         "xhci_shutdown completed - status = %x",
822                         readl(&xhci->op_regs->status));
823 }
824 EXPORT_SYMBOL_GPL(xhci_shutdown);
825
826 #ifdef CONFIG_PM
827 static void xhci_save_registers(struct xhci_hcd *xhci)
828 {
829         xhci->s3.command = readl(&xhci->op_regs->command);
830         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
831         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
832         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
833         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
834         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
835         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
836         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
837         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
838 }
839
840 static void xhci_restore_registers(struct xhci_hcd *xhci)
841 {
842         writel(xhci->s3.command, &xhci->op_regs->command);
843         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
844         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
845         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
846         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
847         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
848         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
849         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
850         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
851 }
852
853 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
854 {
855         u64     val_64;
856
857         /* step 2: initialize command ring buffer */
858         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
859         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
860                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
861                                       xhci->cmd_ring->dequeue) &
862                  (u64) ~CMD_RING_RSVD_BITS) |
863                 xhci->cmd_ring->cycle_state;
864         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
865                         "// Setting command ring address to 0x%llx",
866                         (long unsigned long) val_64);
867         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
868 }
869
870 /*
871  * The whole command ring must be cleared to zero when we suspend the host.
872  *
873  * The host doesn't save the command ring pointer in the suspend well, so we
874  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
875  * aligned, because of the reserved bits in the command ring dequeue pointer
876  * register.  Therefore, we can't just set the dequeue pointer back in the
877  * middle of the ring (TRBs are 16-byte aligned).
878  */
879 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
880 {
881         struct xhci_ring *ring;
882         struct xhci_segment *seg;
883
884         ring = xhci->cmd_ring;
885         seg = ring->deq_seg;
886         do {
887                 memset(seg->trbs, 0,
888                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
889                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
890                         cpu_to_le32(~TRB_CYCLE);
891                 seg = seg->next;
892         } while (seg != ring->deq_seg);
893
894         /* Reset the software enqueue and dequeue pointers */
895         ring->deq_seg = ring->first_seg;
896         ring->dequeue = ring->first_seg->trbs;
897         ring->enq_seg = ring->deq_seg;
898         ring->enqueue = ring->dequeue;
899
900         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
901         /*
902          * Ring is now zeroed, so the HW should look for change of ownership
903          * when the cycle bit is set to 1.
904          */
905         ring->cycle_state = 1;
906
907         /*
908          * Reset the hardware dequeue pointer.
909          * Yes, this will need to be re-written after resume, but we're paranoid
910          * and want to make sure the hardware doesn't access bogus memory
911          * because, say, the BIOS or an SMI started the host without changing
912          * the command ring pointers.
913          */
914         xhci_set_cmd_ring_deq(xhci);
915 }
916
917 /*
918  * Disable port wake bits if do_wakeup is not set.
919  *
920  * Also clear a possible internal port wake state left hanging for ports that
921  * detected termination but never successfully enumerated (trained to 0U).
922  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
923  * at enumeration clears this wake, force one here as well for unconnected ports
924  */
925
926 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
927                                        struct xhci_hub *rhub,
928                                        bool do_wakeup)
929 {
930         unsigned long flags;
931         u32 t1, t2, portsc;
932         int i;
933
934         spin_lock_irqsave(&xhci->lock, flags);
935
936         for (i = 0; i < rhub->num_ports; i++) {
937                 portsc = readl(rhub->ports[i]->addr);
938                 t1 = xhci_port_state_to_neutral(portsc);
939                 t2 = t1;
940
941                 /* clear wake bits if do_wake is not set */
942                 if (!do_wakeup)
943                         t2 &= ~PORT_WAKE_BITS;
944
945                 /* Don't touch csc bit if connected or connect change is set */
946                 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
947                         t2 |= PORT_CSC;
948
949                 if (t1 != t2) {
950                         writel(t2, rhub->ports[i]->addr);
951                         xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
952                                  rhub->hcd->self.busnum, i + 1, portsc, t2);
953                 }
954         }
955         spin_unlock_irqrestore(&xhci->lock, flags);
956 }
957
958 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
959 {
960         struct xhci_port        **ports;
961         int                     port_index;
962         u32                     status;
963         u32                     portsc;
964
965         status = readl(&xhci->op_regs->status);
966         if (status & STS_EINT)
967                 return true;
968         /*
969          * Checking STS_EINT is not enough as there is a lag between a change
970          * bit being set and the Port Status Change Event that it generated
971          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
972          */
973
974         port_index = xhci->usb2_rhub.num_ports;
975         ports = xhci->usb2_rhub.ports;
976         while (port_index--) {
977                 portsc = readl(ports[port_index]->addr);
978                 if (portsc & PORT_CHANGE_MASK ||
979                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
980                         return true;
981         }
982         port_index = xhci->usb3_rhub.num_ports;
983         ports = xhci->usb3_rhub.ports;
984         while (port_index--) {
985                 portsc = readl(ports[port_index]->addr);
986                 if (portsc & PORT_CHANGE_MASK ||
987                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
988                         return true;
989         }
990         return false;
991 }
992
993 /*
994  * Stop HC (not bus-specific)
995  *
996  * This is called when the machine transition into S3/S4 mode.
997  *
998  */
999 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
1000 {
1001         int                     rc = 0;
1002         unsigned int            delay = XHCI_MAX_HALT_USEC * 2;
1003         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1004         u32                     command;
1005         u32                     res;
1006
1007         if (!hcd->state)
1008                 return 0;
1009
1010         if (hcd->state != HC_STATE_SUSPENDED ||
1011             (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
1012                 return -EINVAL;
1013
1014         /* Clear root port wake on bits if wakeup not allowed. */
1015         xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
1016         xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
1017
1018         if (!HCD_HW_ACCESSIBLE(hcd))
1019                 return 0;
1020
1021         xhci_dbc_suspend(xhci);
1022
1023         /* Don't poll the roothubs on bus suspend. */
1024         xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
1025                  __func__, hcd->self.busnum);
1026         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1027         del_timer_sync(&hcd->rh_timer);
1028         if (xhci->shared_hcd) {
1029                 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1030                 del_timer_sync(&xhci->shared_hcd->rh_timer);
1031         }
1032
1033         if (xhci->quirks & XHCI_SUSPEND_DELAY)
1034                 usleep_range(1000, 1500);
1035
1036         spin_lock_irq(&xhci->lock);
1037         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1038         if (xhci->shared_hcd)
1039                 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1040         /* step 1: stop endpoint */
1041         /* skipped assuming that port suspend has done */
1042
1043         /* step 2: clear Run/Stop bit */
1044         command = readl(&xhci->op_regs->command);
1045         command &= ~CMD_RUN;
1046         writel(command, &xhci->op_regs->command);
1047
1048         /* Some chips from Fresco Logic need an extraordinary delay */
1049         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1050
1051         if (xhci_handshake(&xhci->op_regs->status,
1052                       STS_HALT, STS_HALT, delay)) {
1053                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1054                 spin_unlock_irq(&xhci->lock);
1055                 return -ETIMEDOUT;
1056         }
1057         xhci_clear_command_ring(xhci);
1058
1059         /* step 3: save registers */
1060         xhci_save_registers(xhci);
1061
1062         /* step 4: set CSS flag */
1063         command = readl(&xhci->op_regs->command);
1064         command |= CMD_CSS;
1065         writel(command, &xhci->op_regs->command);
1066         xhci->broken_suspend = 0;
1067         if (xhci_handshake(&xhci->op_regs->status,
1068                                 STS_SAVE, 0, 20 * 1000)) {
1069         /*
1070          * AMD SNPS xHC 3.0 occasionally does not clear the
1071          * SSS bit of USBSTS and when driver tries to poll
1072          * to see if the xHC clears BIT(8) which never happens
1073          * and driver assumes that controller is not responding
1074          * and times out. To workaround this, its good to check
1075          * if SRE and HCE bits are not set (as per xhci
1076          * Section 5.4.2) and bypass the timeout.
1077          */
1078                 res = readl(&xhci->op_regs->status);
1079                 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1080                     (((res & STS_SRE) == 0) &&
1081                                 ((res & STS_HCE) == 0))) {
1082                         xhci->broken_suspend = 1;
1083                 } else {
1084                         xhci_warn(xhci, "WARN: xHC save state timeout\n");
1085                         spin_unlock_irq(&xhci->lock);
1086                         return -ETIMEDOUT;
1087                 }
1088         }
1089         spin_unlock_irq(&xhci->lock);
1090
1091         /*
1092          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1093          * is about to be suspended.
1094          */
1095         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1096                         (!(xhci_all_ports_seen_u0(xhci)))) {
1097                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1098                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1099                                 "%s: compliance mode recovery timer deleted",
1100                                 __func__);
1101         }
1102
1103         /* step 5: remove core well power */
1104         /* synchronize irq when using MSI-X */
1105         xhci_msix_sync_irqs(xhci);
1106
1107         return rc;
1108 }
1109 EXPORT_SYMBOL_GPL(xhci_suspend);
1110
1111 /*
1112  * start xHC (not bus-specific)
1113  *
1114  * This is called when the machine transition from S3/S4 mode.
1115  *
1116  */
1117 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1118 {
1119         u32                     command, temp = 0;
1120         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1121         int                     retval = 0;
1122         bool                    comp_timer_running = false;
1123         bool                    pending_portevent = false;
1124         bool                    reinit_xhc = false;
1125
1126         if (!hcd->state)
1127                 return 0;
1128
1129         /* Wait a bit if either of the roothubs need to settle from the
1130          * transition into bus suspend.
1131          */
1132
1133         if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1134             time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1135                 msleep(100);
1136
1137         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1138         if (xhci->shared_hcd)
1139                 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1140
1141         spin_lock_irq(&xhci->lock);
1142
1143         if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1144                 reinit_xhc = true;
1145
1146         if (!reinit_xhc) {
1147                 /*
1148                  * Some controllers might lose power during suspend, so wait
1149                  * for controller not ready bit to clear, just as in xHC init.
1150                  */
1151                 retval = xhci_handshake(&xhci->op_regs->status,
1152                                         STS_CNR, 0, 10 * 1000 * 1000);
1153                 if (retval) {
1154                         xhci_warn(xhci, "Controller not ready at resume %d\n",
1155                                   retval);
1156                         spin_unlock_irq(&xhci->lock);
1157                         return retval;
1158                 }
1159                 /* step 1: restore register */
1160                 xhci_restore_registers(xhci);
1161                 /* step 2: initialize command ring buffer */
1162                 xhci_set_cmd_ring_deq(xhci);
1163                 /* step 3: restore state and start state*/
1164                 /* step 3: set CRS flag */
1165                 command = readl(&xhci->op_regs->command);
1166                 command |= CMD_CRS;
1167                 writel(command, &xhci->op_regs->command);
1168                 /*
1169                  * Some controllers take up to 55+ ms to complete the controller
1170                  * restore so setting the timeout to 100ms. Xhci specification
1171                  * doesn't mention any timeout value.
1172                  */
1173                 if (xhci_handshake(&xhci->op_regs->status,
1174                               STS_RESTORE, 0, 100 * 1000)) {
1175                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1176                         spin_unlock_irq(&xhci->lock);
1177                         return -ETIMEDOUT;
1178                 }
1179         }
1180
1181         temp = readl(&xhci->op_regs->status);
1182
1183         /* re-initialize the HC on Restore Error, or Host Controller Error */
1184         if (temp & (STS_SRE | STS_HCE)) {
1185                 reinit_xhc = true;
1186                 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1187         }
1188
1189         if (reinit_xhc) {
1190                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1191                                 !(xhci_all_ports_seen_u0(xhci))) {
1192                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1193                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1194                                 "Compliance Mode Recovery Timer deleted!");
1195                 }
1196
1197                 /* Let the USB core know _both_ roothubs lost power. */
1198                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1199                 if (xhci->shared_hcd)
1200                         usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1201
1202                 xhci_dbg(xhci, "Stop HCD\n");
1203                 xhci_halt(xhci);
1204                 xhci_zero_64b_regs(xhci);
1205                 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1206                 spin_unlock_irq(&xhci->lock);
1207                 if (retval)
1208                         return retval;
1209                 xhci_cleanup_msix(xhci);
1210
1211                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1212                 temp = readl(&xhci->op_regs->status);
1213                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1214                 temp = readl(&xhci->ir_set->irq_pending);
1215                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1216
1217                 xhci_dbg(xhci, "cleaning up memory\n");
1218                 xhci_mem_cleanup(xhci);
1219                 xhci_debugfs_exit(xhci);
1220                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1221                             readl(&xhci->op_regs->status));
1222
1223                 /* USB core calls the PCI reinit and start functions twice:
1224                  * first with the primary HCD, and then with the secondary HCD.
1225                  * If we don't do the same, the host will never be started.
1226                  */
1227                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1228                 retval = xhci_init(hcd);
1229                 if (retval)
1230                         return retval;
1231                 comp_timer_running = true;
1232
1233                 xhci_dbg(xhci, "Start the primary HCD\n");
1234                 retval = xhci_run(hcd);
1235                 if (!retval && xhci->shared_hcd) {
1236                         xhci_dbg(xhci, "Start the secondary HCD\n");
1237                         retval = xhci_run(xhci->shared_hcd);
1238                 }
1239
1240                 hcd->state = HC_STATE_SUSPENDED;
1241                 if (xhci->shared_hcd)
1242                         xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1243                 goto done;
1244         }
1245
1246         /* step 4: set Run/Stop bit */
1247         command = readl(&xhci->op_regs->command);
1248         command |= CMD_RUN;
1249         writel(command, &xhci->op_regs->command);
1250         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1251                   0, 250 * 1000);
1252
1253         /* step 5: walk topology and initialize portsc,
1254          * portpmsc and portli
1255          */
1256         /* this is done in bus_resume */
1257
1258         /* step 6: restart each of the previously
1259          * Running endpoints by ringing their doorbells
1260          */
1261
1262         spin_unlock_irq(&xhci->lock);
1263
1264         xhci_dbc_resume(xhci);
1265
1266  done:
1267         if (retval == 0) {
1268                 /*
1269                  * Resume roothubs only if there are pending events.
1270                  * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1271                  * the first wake signalling failed, give it that chance.
1272                  */
1273                 pending_portevent = xhci_pending_portevent(xhci);
1274                 if (!pending_portevent) {
1275                         msleep(120);
1276                         pending_portevent = xhci_pending_portevent(xhci);
1277                 }
1278
1279                 if (pending_portevent) {
1280                         if (xhci->shared_hcd)
1281                                 usb_hcd_resume_root_hub(xhci->shared_hcd);
1282                         usb_hcd_resume_root_hub(hcd);
1283                 }
1284         }
1285         /*
1286          * If system is subject to the Quirk, Compliance Mode Timer needs to
1287          * be re-initialized Always after a system resume. Ports are subject
1288          * to suffer the Compliance Mode issue again. It doesn't matter if
1289          * ports have entered previously to U0 before system's suspension.
1290          */
1291         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1292                 compliance_mode_recovery_timer_init(xhci);
1293
1294         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1295                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1296
1297         /* Re-enable port polling. */
1298         xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1299                  __func__, hcd->self.busnum);
1300         if (xhci->shared_hcd) {
1301                 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1302                 usb_hcd_poll_rh_status(xhci->shared_hcd);
1303         }
1304         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1305         usb_hcd_poll_rh_status(hcd);
1306
1307         return retval;
1308 }
1309 EXPORT_SYMBOL_GPL(xhci_resume);
1310 #endif  /* CONFIG_PM */
1311
1312 /*-------------------------------------------------------------------------*/
1313
1314 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1315 {
1316         void *temp;
1317         int ret = 0;
1318         unsigned int buf_len;
1319         enum dma_data_direction dir;
1320
1321         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1322         buf_len = urb->transfer_buffer_length;
1323
1324         temp = kzalloc_node(buf_len, GFP_ATOMIC,
1325                             dev_to_node(hcd->self.sysdev));
1326
1327         if (usb_urb_dir_out(urb))
1328                 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1329                                    temp, buf_len, 0);
1330
1331         urb->transfer_buffer = temp;
1332         urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1333                                            urb->transfer_buffer,
1334                                            urb->transfer_buffer_length,
1335                                            dir);
1336
1337         if (dma_mapping_error(hcd->self.sysdev,
1338                               urb->transfer_dma)) {
1339                 ret = -EAGAIN;
1340                 kfree(temp);
1341         } else {
1342                 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1343         }
1344
1345         return ret;
1346 }
1347
1348 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1349                                           struct urb *urb)
1350 {
1351         bool ret = false;
1352         unsigned int i;
1353         unsigned int len = 0;
1354         unsigned int trb_size;
1355         unsigned int max_pkt;
1356         struct scatterlist *sg;
1357         struct scatterlist *tail_sg;
1358
1359         tail_sg = urb->sg;
1360         max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1361
1362         if (!urb->num_sgs)
1363                 return ret;
1364
1365         if (urb->dev->speed >= USB_SPEED_SUPER)
1366                 trb_size = TRB_CACHE_SIZE_SS;
1367         else
1368                 trb_size = TRB_CACHE_SIZE_HS;
1369
1370         if (urb->transfer_buffer_length != 0 &&
1371             !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1372                 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1373                         len = len + sg->length;
1374                         if (i > trb_size - 2) {
1375                                 len = len - tail_sg->length;
1376                                 if (len < max_pkt) {
1377                                         ret = true;
1378                                         break;
1379                                 }
1380
1381                                 tail_sg = sg_next(tail_sg);
1382                         }
1383                 }
1384         }
1385         return ret;
1386 }
1387
1388 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1389 {
1390         unsigned int len;
1391         unsigned int buf_len;
1392         enum dma_data_direction dir;
1393
1394         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1395
1396         buf_len = urb->transfer_buffer_length;
1397
1398         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1399             (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1400                 dma_unmap_single(hcd->self.sysdev,
1401                                  urb->transfer_dma,
1402                                  urb->transfer_buffer_length,
1403                                  dir);
1404
1405         if (usb_urb_dir_in(urb)) {
1406                 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1407                                            urb->transfer_buffer,
1408                                            buf_len,
1409                                            0);
1410                 if (len != buf_len) {
1411                         xhci_dbg(hcd_to_xhci(hcd),
1412                                  "Copy from tmp buf to urb sg list failed\n");
1413                         urb->actual_length = len;
1414                 }
1415         }
1416         urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1417         kfree(urb->transfer_buffer);
1418         urb->transfer_buffer = NULL;
1419 }
1420
1421 /*
1422  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1423  * we'll copy the actual data into the TRB address register. This is limited to
1424  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1425  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1426  */
1427 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1428                                 gfp_t mem_flags)
1429 {
1430         struct xhci_hcd *xhci;
1431
1432         xhci = hcd_to_xhci(hcd);
1433
1434         if (xhci_urb_suitable_for_idt(urb))
1435                 return 0;
1436
1437         if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1438                 if (xhci_urb_temp_buffer_required(hcd, urb))
1439                         return xhci_map_temp_buffer(hcd, urb);
1440         }
1441         return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1442 }
1443
1444 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1445 {
1446         struct xhci_hcd *xhci;
1447         bool unmap_temp_buf = false;
1448
1449         xhci = hcd_to_xhci(hcd);
1450
1451         if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1452                 unmap_temp_buf = true;
1453
1454         if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1455                 xhci_unmap_temp_buf(hcd, urb);
1456         else
1457                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1458 }
1459
1460 /**
1461  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1462  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1463  * value to right shift 1 for the bitmask.
1464  *
1465  * Index  = (epnum * 2) + direction - 1,
1466  * where direction = 0 for OUT, 1 for IN.
1467  * For control endpoints, the IN index is used (OUT index is unused), so
1468  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1469  */
1470 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1471 {
1472         unsigned int index;
1473         if (usb_endpoint_xfer_control(desc))
1474                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1475         else
1476                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1477                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1478         return index;
1479 }
1480 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1481
1482 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1483  * address from the XHCI endpoint index.
1484  */
1485 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1486 {
1487         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1488         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1489         return direction | number;
1490 }
1491
1492 /* Find the flag for this endpoint (for use in the control context).  Use the
1493  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1494  * bit 1, etc.
1495  */
1496 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1497 {
1498         return 1 << (xhci_get_endpoint_index(desc) + 1);
1499 }
1500
1501 /* Compute the last valid endpoint context index.  Basically, this is the
1502  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1503  * we find the most significant bit set in the added contexts flags.
1504  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1505  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1506  */
1507 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1508 {
1509         return fls(added_ctxs) - 1;
1510 }
1511
1512 /* Returns 1 if the arguments are OK;
1513  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1514  */
1515 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1516                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1517                 const char *func) {
1518         struct xhci_hcd *xhci;
1519         struct xhci_virt_device *virt_dev;
1520
1521         if (!hcd || (check_ep && !ep) || !udev) {
1522                 pr_debug("xHCI %s called with invalid args\n", func);
1523                 return -EINVAL;
1524         }
1525         if (!udev->parent) {
1526                 pr_debug("xHCI %s called for root hub\n", func);
1527                 return 0;
1528         }
1529
1530         xhci = hcd_to_xhci(hcd);
1531         if (check_virt_dev) {
1532                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1533                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1534                                         func);
1535                         return -EINVAL;
1536                 }
1537
1538                 virt_dev = xhci->devs[udev->slot_id];
1539                 if (virt_dev->udev != udev) {
1540                         xhci_dbg(xhci, "xHCI %s called with udev and "
1541                                           "virt_dev does not match\n", func);
1542                         return -EINVAL;
1543                 }
1544         }
1545
1546         if (xhci->xhc_state & XHCI_STATE_HALTED)
1547                 return -ENODEV;
1548
1549         return 1;
1550 }
1551
1552 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1553                 struct usb_device *udev, struct xhci_command *command,
1554                 bool ctx_change, bool must_succeed);
1555
1556 /*
1557  * Full speed devices may have a max packet size greater than 8 bytes, but the
1558  * USB core doesn't know that until it reads the first 8 bytes of the
1559  * descriptor.  If the usb_device's max packet size changes after that point,
1560  * we need to issue an evaluate context command and wait on it.
1561  */
1562 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1563                 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1564 {
1565         struct xhci_container_ctx *out_ctx;
1566         struct xhci_input_control_ctx *ctrl_ctx;
1567         struct xhci_ep_ctx *ep_ctx;
1568         struct xhci_command *command;
1569         int max_packet_size;
1570         int hw_max_packet_size;
1571         int ret = 0;
1572
1573         out_ctx = xhci->devs[slot_id]->out_ctx;
1574         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1575         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1576         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1577         if (hw_max_packet_size != max_packet_size) {
1578                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1579                                 "Max Packet Size for ep 0 changed.");
1580                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1581                                 "Max packet size in usb_device = %d",
1582                                 max_packet_size);
1583                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1584                                 "Max packet size in xHCI HW = %d",
1585                                 hw_max_packet_size);
1586                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1587                                 "Issuing evaluate context command.");
1588
1589                 /* Set up the input context flags for the command */
1590                 /* FIXME: This won't work if a non-default control endpoint
1591                  * changes max packet sizes.
1592                  */
1593
1594                 command = xhci_alloc_command(xhci, true, mem_flags);
1595                 if (!command)
1596                         return -ENOMEM;
1597
1598                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1599                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1600                 if (!ctrl_ctx) {
1601                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1602                                         __func__);
1603                         ret = -ENOMEM;
1604                         goto command_cleanup;
1605                 }
1606                 /* Set up the modified control endpoint 0 */
1607                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1608                                 xhci->devs[slot_id]->out_ctx, ep_index);
1609
1610                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1611                 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1612                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1613                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1614
1615                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1616                 ctrl_ctx->drop_flags = 0;
1617
1618                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1619                                 true, false);
1620
1621                 /* Clean up the input context for later use by bandwidth
1622                  * functions.
1623                  */
1624                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1625 command_cleanup:
1626                 kfree(command->completion);
1627                 kfree(command);
1628         }
1629         return ret;
1630 }
1631
1632 /*
1633  * non-error returns are a promise to giveback() the urb later
1634  * we drop ownership so next owner (or urb unlink) can get it
1635  */
1636 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1637 {
1638         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1639         unsigned long flags;
1640         int ret = 0;
1641         unsigned int slot_id, ep_index;
1642         unsigned int *ep_state;
1643         struct urb_priv *urb_priv;
1644         int num_tds;
1645
1646         if (!urb)
1647                 return -EINVAL;
1648         ret = xhci_check_args(hcd, urb->dev, urb->ep,
1649                                         true, true, __func__);
1650         if (ret <= 0)
1651                 return ret ? ret : -EINVAL;
1652
1653         slot_id = urb->dev->slot_id;
1654         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1655         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1656
1657         if (!HCD_HW_ACCESSIBLE(hcd))
1658                 return -ESHUTDOWN;
1659
1660         if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1661                 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1662                 return -ENODEV;
1663         }
1664
1665         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1666                 num_tds = urb->number_of_packets;
1667         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1668             urb->transfer_buffer_length > 0 &&
1669             urb->transfer_flags & URB_ZERO_PACKET &&
1670             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1671                 num_tds = 2;
1672         else
1673                 num_tds = 1;
1674
1675         urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1676         if (!urb_priv)
1677                 return -ENOMEM;
1678
1679         urb_priv->num_tds = num_tds;
1680         urb_priv->num_tds_done = 0;
1681         urb->hcpriv = urb_priv;
1682
1683         trace_xhci_urb_enqueue(urb);
1684
1685         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1686                 /* Check to see if the max packet size for the default control
1687                  * endpoint changed during FS device enumeration
1688                  */
1689                 if (urb->dev->speed == USB_SPEED_FULL) {
1690                         ret = xhci_check_maxpacket(xhci, slot_id,
1691                                         ep_index, urb, mem_flags);
1692                         if (ret < 0) {
1693                                 xhci_urb_free_priv(urb_priv);
1694                                 urb->hcpriv = NULL;
1695                                 return ret;
1696                         }
1697                 }
1698         }
1699
1700         spin_lock_irqsave(&xhci->lock, flags);
1701
1702         if (xhci->xhc_state & XHCI_STATE_DYING) {
1703                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1704                          urb->ep->desc.bEndpointAddress, urb);
1705                 ret = -ESHUTDOWN;
1706                 goto free_priv;
1707         }
1708         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1709                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1710                           *ep_state);
1711                 ret = -EINVAL;
1712                 goto free_priv;
1713         }
1714         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1715                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1716                 ret = -EINVAL;
1717                 goto free_priv;
1718         }
1719
1720         switch (usb_endpoint_type(&urb->ep->desc)) {
1721
1722         case USB_ENDPOINT_XFER_CONTROL:
1723                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1724                                          slot_id, ep_index);
1725                 break;
1726         case USB_ENDPOINT_XFER_BULK:
1727                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1728                                          slot_id, ep_index);
1729                 break;
1730         case USB_ENDPOINT_XFER_INT:
1731                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1732                                 slot_id, ep_index);
1733                 break;
1734         case USB_ENDPOINT_XFER_ISOC:
1735                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1736                                 slot_id, ep_index);
1737         }
1738
1739         if (ret) {
1740 free_priv:
1741                 xhci_urb_free_priv(urb_priv);
1742                 urb->hcpriv = NULL;
1743         }
1744         spin_unlock_irqrestore(&xhci->lock, flags);
1745         return ret;
1746 }
1747
1748 /*
1749  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1750  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1751  * should pick up where it left off in the TD, unless a Set Transfer Ring
1752  * Dequeue Pointer is issued.
1753  *
1754  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1755  * the ring.  Since the ring is a contiguous structure, they can't be physically
1756  * removed.  Instead, there are two options:
1757  *
1758  *  1) If the HC is in the middle of processing the URB to be canceled, we
1759  *     simply move the ring's dequeue pointer past those TRBs using the Set
1760  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1761  *     when drivers timeout on the last submitted URB and attempt to cancel.
1762  *
1763  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1764  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1765  *     HC will need to invalidate the any TRBs it has cached after the stop
1766  *     endpoint command, as noted in the xHCI 0.95 errata.
1767  *
1768  *  3) The TD may have completed by the time the Stop Endpoint Command
1769  *     completes, so software needs to handle that case too.
1770  *
1771  * This function should protect against the TD enqueueing code ringing the
1772  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1773  * It also needs to account for multiple cancellations on happening at the same
1774  * time for the same endpoint.
1775  *
1776  * Note that this function can be called in any context, or so says
1777  * usb_hcd_unlink_urb()
1778  */
1779 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1780 {
1781         unsigned long flags;
1782         int ret, i;
1783         u32 temp;
1784         struct xhci_hcd *xhci;
1785         struct urb_priv *urb_priv;
1786         struct xhci_td *td;
1787         unsigned int ep_index;
1788         struct xhci_ring *ep_ring;
1789         struct xhci_virt_ep *ep;
1790         struct xhci_command *command;
1791         struct xhci_virt_device *vdev;
1792
1793         xhci = hcd_to_xhci(hcd);
1794         spin_lock_irqsave(&xhci->lock, flags);
1795
1796         trace_xhci_urb_dequeue(urb);
1797
1798         /* Make sure the URB hasn't completed or been unlinked already */
1799         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1800         if (ret)
1801                 goto done;
1802
1803         /* give back URB now if we can't queue it for cancel */
1804         vdev = xhci->devs[urb->dev->slot_id];
1805         urb_priv = urb->hcpriv;
1806         if (!vdev || !urb_priv)
1807                 goto err_giveback;
1808
1809         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1810         ep = &vdev->eps[ep_index];
1811         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1812         if (!ep || !ep_ring)
1813                 goto err_giveback;
1814
1815         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1816         temp = readl(&xhci->op_regs->status);
1817         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1818                 xhci_hc_died(xhci);
1819                 goto done;
1820         }
1821
1822         /*
1823          * check ring is not re-allocated since URB was enqueued. If it is, then
1824          * make sure none of the ring related pointers in this URB private data
1825          * are touched, such as td_list, otherwise we overwrite freed data
1826          */
1827         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1828                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1829                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1830                         td = &urb_priv->td[i];
1831                         if (!list_empty(&td->cancelled_td_list))
1832                                 list_del_init(&td->cancelled_td_list);
1833                 }
1834                 goto err_giveback;
1835         }
1836
1837         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1838                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1839                                 "HC halted, freeing TD manually.");
1840                 for (i = urb_priv->num_tds_done;
1841                      i < urb_priv->num_tds;
1842                      i++) {
1843                         td = &urb_priv->td[i];
1844                         if (!list_empty(&td->td_list))
1845                                 list_del_init(&td->td_list);
1846                         if (!list_empty(&td->cancelled_td_list))
1847                                 list_del_init(&td->cancelled_td_list);
1848                 }
1849                 goto err_giveback;
1850         }
1851
1852         i = urb_priv->num_tds_done;
1853         if (i < urb_priv->num_tds)
1854                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1855                                 "Cancel URB %p, dev %s, ep 0x%x, "
1856                                 "starting at offset 0x%llx",
1857                                 urb, urb->dev->devpath,
1858                                 urb->ep->desc.bEndpointAddress,
1859                                 (unsigned long long) xhci_trb_virt_to_dma(
1860                                         urb_priv->td[i].start_seg,
1861                                         urb_priv->td[i].first_trb));
1862
1863         for (; i < urb_priv->num_tds; i++) {
1864                 td = &urb_priv->td[i];
1865                 /* TD can already be on cancelled list if ep halted on it */
1866                 if (list_empty(&td->cancelled_td_list)) {
1867                         td->cancel_status = TD_DIRTY;
1868                         list_add_tail(&td->cancelled_td_list,
1869                                       &ep->cancelled_td_list);
1870                 }
1871         }
1872
1873         /* Queue a stop endpoint command, but only if this is
1874          * the first cancellation to be handled.
1875          */
1876         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1877                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1878                 if (!command) {
1879                         ret = -ENOMEM;
1880                         goto done;
1881                 }
1882                 ep->ep_state |= EP_STOP_CMD_PENDING;
1883                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1884                                          ep_index, 0);
1885                 xhci_ring_cmd_db(xhci);
1886         }
1887 done:
1888         spin_unlock_irqrestore(&xhci->lock, flags);
1889         return ret;
1890
1891 err_giveback:
1892         if (urb_priv)
1893                 xhci_urb_free_priv(urb_priv);
1894         usb_hcd_unlink_urb_from_ep(hcd, urb);
1895         spin_unlock_irqrestore(&xhci->lock, flags);
1896         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1897         return ret;
1898 }
1899
1900 /* Drop an endpoint from a new bandwidth configuration for this device.
1901  * Only one call to this function is allowed per endpoint before
1902  * check_bandwidth() or reset_bandwidth() must be called.
1903  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1904  * add the endpoint to the schedule with possibly new parameters denoted by a
1905  * different endpoint descriptor in usb_host_endpoint.
1906  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1907  * not allowed.
1908  *
1909  * The USB core will not allow URBs to be queued to an endpoint that is being
1910  * disabled, so there's no need for mutual exclusion to protect
1911  * the xhci->devs[slot_id] structure.
1912  */
1913 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1914                        struct usb_host_endpoint *ep)
1915 {
1916         struct xhci_hcd *xhci;
1917         struct xhci_container_ctx *in_ctx, *out_ctx;
1918         struct xhci_input_control_ctx *ctrl_ctx;
1919         unsigned int ep_index;
1920         struct xhci_ep_ctx *ep_ctx;
1921         u32 drop_flag;
1922         u32 new_add_flags, new_drop_flags;
1923         int ret;
1924
1925         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1926         if (ret <= 0)
1927                 return ret;
1928         xhci = hcd_to_xhci(hcd);
1929         if (xhci->xhc_state & XHCI_STATE_DYING)
1930                 return -ENODEV;
1931
1932         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1933         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1934         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1935                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1936                                 __func__, drop_flag);
1937                 return 0;
1938         }
1939
1940         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1941         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1942         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1943         if (!ctrl_ctx) {
1944                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1945                                 __func__);
1946                 return 0;
1947         }
1948
1949         ep_index = xhci_get_endpoint_index(&ep->desc);
1950         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1951         /* If the HC already knows the endpoint is disabled,
1952          * or the HCD has noted it is disabled, ignore this request
1953          */
1954         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1955             le32_to_cpu(ctrl_ctx->drop_flags) &
1956             xhci_get_endpoint_flag(&ep->desc)) {
1957                 /* Do not warn when called after a usb_device_reset */
1958                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1959                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1960                                   __func__, ep);
1961                 return 0;
1962         }
1963
1964         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1965         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1966
1967         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1968         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1969
1970         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1971
1972         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1973
1974         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1975                         (unsigned int) ep->desc.bEndpointAddress,
1976                         udev->slot_id,
1977                         (unsigned int) new_drop_flags,
1978                         (unsigned int) new_add_flags);
1979         return 0;
1980 }
1981 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1982
1983 /* Add an endpoint to a new possible bandwidth configuration for this device.
1984  * Only one call to this function is allowed per endpoint before
1985  * check_bandwidth() or reset_bandwidth() must be called.
1986  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1987  * add the endpoint to the schedule with possibly new parameters denoted by a
1988  * different endpoint descriptor in usb_host_endpoint.
1989  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1990  * not allowed.
1991  *
1992  * The USB core will not allow URBs to be queued to an endpoint until the
1993  * configuration or alt setting is installed in the device, so there's no need
1994  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1995  */
1996 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1997                       struct usb_host_endpoint *ep)
1998 {
1999         struct xhci_hcd *xhci;
2000         struct xhci_container_ctx *in_ctx;
2001         unsigned int ep_index;
2002         struct xhci_input_control_ctx *ctrl_ctx;
2003         struct xhci_ep_ctx *ep_ctx;
2004         u32 added_ctxs;
2005         u32 new_add_flags, new_drop_flags;
2006         struct xhci_virt_device *virt_dev;
2007         int ret = 0;
2008
2009         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
2010         if (ret <= 0) {
2011                 /* So we won't queue a reset ep command for a root hub */
2012                 ep->hcpriv = NULL;
2013                 return ret;
2014         }
2015         xhci = hcd_to_xhci(hcd);
2016         if (xhci->xhc_state & XHCI_STATE_DYING)
2017                 return -ENODEV;
2018
2019         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
2020         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
2021                 /* FIXME when we have to issue an evaluate endpoint command to
2022                  * deal with ep0 max packet size changing once we get the
2023                  * descriptors
2024                  */
2025                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
2026                                 __func__, added_ctxs);
2027                 return 0;
2028         }
2029
2030         virt_dev = xhci->devs[udev->slot_id];
2031         in_ctx = virt_dev->in_ctx;
2032         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2033         if (!ctrl_ctx) {
2034                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2035                                 __func__);
2036                 return 0;
2037         }
2038
2039         ep_index = xhci_get_endpoint_index(&ep->desc);
2040         /* If this endpoint is already in use, and the upper layers are trying
2041          * to add it again without dropping it, reject the addition.
2042          */
2043         if (virt_dev->eps[ep_index].ring &&
2044                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2045                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
2046                                 "without dropping it.\n",
2047                                 (unsigned int) ep->desc.bEndpointAddress);
2048                 return -EINVAL;
2049         }
2050
2051         /* If the HCD has already noted the endpoint is enabled,
2052          * ignore this request.
2053          */
2054         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2055                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2056                                 __func__, ep);
2057                 return 0;
2058         }
2059
2060         /*
2061          * Configuration and alternate setting changes must be done in
2062          * process context, not interrupt context (or so documenation
2063          * for usb_set_interface() and usb_set_configuration() claim).
2064          */
2065         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2066                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2067                                 __func__, ep->desc.bEndpointAddress);
2068                 return -ENOMEM;
2069         }
2070
2071         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2072         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2073
2074         /* If xhci_endpoint_disable() was called for this endpoint, but the
2075          * xHC hasn't been notified yet through the check_bandwidth() call,
2076          * this re-adds a new state for the endpoint from the new endpoint
2077          * descriptors.  We must drop and re-add this endpoint, so we leave the
2078          * drop flags alone.
2079          */
2080         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2081
2082         /* Store the usb_device pointer for later use */
2083         ep->hcpriv = udev;
2084
2085         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2086         trace_xhci_add_endpoint(ep_ctx);
2087
2088         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2089                         (unsigned int) ep->desc.bEndpointAddress,
2090                         udev->slot_id,
2091                         (unsigned int) new_drop_flags,
2092                         (unsigned int) new_add_flags);
2093         return 0;
2094 }
2095 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2096
2097 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2098 {
2099         struct xhci_input_control_ctx *ctrl_ctx;
2100         struct xhci_ep_ctx *ep_ctx;
2101         struct xhci_slot_ctx *slot_ctx;
2102         int i;
2103
2104         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2105         if (!ctrl_ctx) {
2106                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2107                                 __func__);
2108                 return;
2109         }
2110
2111         /* When a device's add flag and drop flag are zero, any subsequent
2112          * configure endpoint command will leave that endpoint's state
2113          * untouched.  Make sure we don't leave any old state in the input
2114          * endpoint contexts.
2115          */
2116         ctrl_ctx->drop_flags = 0;
2117         ctrl_ctx->add_flags = 0;
2118         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2119         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2120         /* Endpoint 0 is always valid */
2121         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2122         for (i = 1; i < 31; i++) {
2123                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2124                 ep_ctx->ep_info = 0;
2125                 ep_ctx->ep_info2 = 0;
2126                 ep_ctx->deq = 0;
2127                 ep_ctx->tx_info = 0;
2128         }
2129 }
2130
2131 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2132                 struct usb_device *udev, u32 *cmd_status)
2133 {
2134         int ret;
2135
2136         switch (*cmd_status) {
2137         case COMP_COMMAND_ABORTED:
2138         case COMP_COMMAND_RING_STOPPED:
2139                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2140                 ret = -ETIME;
2141                 break;
2142         case COMP_RESOURCE_ERROR:
2143                 dev_warn(&udev->dev,
2144                          "Not enough host controller resources for new device state.\n");
2145                 ret = -ENOMEM;
2146                 /* FIXME: can we allocate more resources for the HC? */
2147                 break;
2148         case COMP_BANDWIDTH_ERROR:
2149         case COMP_SECONDARY_BANDWIDTH_ERROR:
2150                 dev_warn(&udev->dev,
2151                          "Not enough bandwidth for new device state.\n");
2152                 ret = -ENOSPC;
2153                 /* FIXME: can we go back to the old state? */
2154                 break;
2155         case COMP_TRB_ERROR:
2156                 /* the HCD set up something wrong */
2157                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2158                                 "add flag = 1, "
2159                                 "and endpoint is not disabled.\n");
2160                 ret = -EINVAL;
2161                 break;
2162         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2163                 dev_warn(&udev->dev,
2164                          "ERROR: Incompatible device for endpoint configure command.\n");
2165                 ret = -ENODEV;
2166                 break;
2167         case COMP_SUCCESS:
2168                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2169                                 "Successful Endpoint Configure command");
2170                 ret = 0;
2171                 break;
2172         default:
2173                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2174                                 *cmd_status);
2175                 ret = -EINVAL;
2176                 break;
2177         }
2178         return ret;
2179 }
2180
2181 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2182                 struct usb_device *udev, u32 *cmd_status)
2183 {
2184         int ret;
2185
2186         switch (*cmd_status) {
2187         case COMP_COMMAND_ABORTED:
2188         case COMP_COMMAND_RING_STOPPED:
2189                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2190                 ret = -ETIME;
2191                 break;
2192         case COMP_PARAMETER_ERROR:
2193                 dev_warn(&udev->dev,
2194                          "WARN: xHCI driver setup invalid evaluate context command.\n");
2195                 ret = -EINVAL;
2196                 break;
2197         case COMP_SLOT_NOT_ENABLED_ERROR:
2198                 dev_warn(&udev->dev,
2199                         "WARN: slot not enabled for evaluate context command.\n");
2200                 ret = -EINVAL;
2201                 break;
2202         case COMP_CONTEXT_STATE_ERROR:
2203                 dev_warn(&udev->dev,
2204                         "WARN: invalid context state for evaluate context command.\n");
2205                 ret = -EINVAL;
2206                 break;
2207         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2208                 dev_warn(&udev->dev,
2209                         "ERROR: Incompatible device for evaluate context command.\n");
2210                 ret = -ENODEV;
2211                 break;
2212         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2213                 /* Max Exit Latency too large error */
2214                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2215                 ret = -EINVAL;
2216                 break;
2217         case COMP_SUCCESS:
2218                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2219                                 "Successful evaluate context command");
2220                 ret = 0;
2221                 break;
2222         default:
2223                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2224                         *cmd_status);
2225                 ret = -EINVAL;
2226                 break;
2227         }
2228         return ret;
2229 }
2230
2231 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2232                 struct xhci_input_control_ctx *ctrl_ctx)
2233 {
2234         u32 valid_add_flags;
2235         u32 valid_drop_flags;
2236
2237         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2238          * (bit 1).  The default control endpoint is added during the Address
2239          * Device command and is never removed until the slot is disabled.
2240          */
2241         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2242         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2243
2244         /* Use hweight32 to count the number of ones in the add flags, or
2245          * number of endpoints added.  Don't count endpoints that are changed
2246          * (both added and dropped).
2247          */
2248         return hweight32(valid_add_flags) -
2249                 hweight32(valid_add_flags & valid_drop_flags);
2250 }
2251
2252 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2253                 struct xhci_input_control_ctx *ctrl_ctx)
2254 {
2255         u32 valid_add_flags;
2256         u32 valid_drop_flags;
2257
2258         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2259         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2260
2261         return hweight32(valid_drop_flags) -
2262                 hweight32(valid_add_flags & valid_drop_flags);
2263 }
2264
2265 /*
2266  * We need to reserve the new number of endpoints before the configure endpoint
2267  * command completes.  We can't subtract the dropped endpoints from the number
2268  * of active endpoints until the command completes because we can oversubscribe
2269  * the host in this case:
2270  *
2271  *  - the first configure endpoint command drops more endpoints than it adds
2272  *  - a second configure endpoint command that adds more endpoints is queued
2273  *  - the first configure endpoint command fails, so the config is unchanged
2274  *  - the second command may succeed, even though there isn't enough resources
2275  *
2276  * Must be called with xhci->lock held.
2277  */
2278 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2279                 struct xhci_input_control_ctx *ctrl_ctx)
2280 {
2281         u32 added_eps;
2282
2283         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2284         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2285                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2286                                 "Not enough ep ctxs: "
2287                                 "%u active, need to add %u, limit is %u.",
2288                                 xhci->num_active_eps, added_eps,
2289                                 xhci->limit_active_eps);
2290                 return -ENOMEM;
2291         }
2292         xhci->num_active_eps += added_eps;
2293         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2294                         "Adding %u ep ctxs, %u now active.", added_eps,
2295                         xhci->num_active_eps);
2296         return 0;
2297 }
2298
2299 /*
2300  * The configure endpoint was failed by the xHC for some other reason, so we
2301  * need to revert the resources that failed configuration would have used.
2302  *
2303  * Must be called with xhci->lock held.
2304  */
2305 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2306                 struct xhci_input_control_ctx *ctrl_ctx)
2307 {
2308         u32 num_failed_eps;
2309
2310         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2311         xhci->num_active_eps -= num_failed_eps;
2312         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2313                         "Removing %u failed ep ctxs, %u now active.",
2314                         num_failed_eps,
2315                         xhci->num_active_eps);
2316 }
2317
2318 /*
2319  * Now that the command has completed, clean up the active endpoint count by
2320  * subtracting out the endpoints that were dropped (but not changed).
2321  *
2322  * Must be called with xhci->lock held.
2323  */
2324 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2325                 struct xhci_input_control_ctx *ctrl_ctx)
2326 {
2327         u32 num_dropped_eps;
2328
2329         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2330         xhci->num_active_eps -= num_dropped_eps;
2331         if (num_dropped_eps)
2332                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2333                                 "Removing %u dropped ep ctxs, %u now active.",
2334                                 num_dropped_eps,
2335                                 xhci->num_active_eps);
2336 }
2337
2338 static unsigned int xhci_get_block_size(struct usb_device *udev)
2339 {
2340         switch (udev->speed) {
2341         case USB_SPEED_LOW:
2342         case USB_SPEED_FULL:
2343                 return FS_BLOCK;
2344         case USB_SPEED_HIGH:
2345                 return HS_BLOCK;
2346         case USB_SPEED_SUPER:
2347         case USB_SPEED_SUPER_PLUS:
2348                 return SS_BLOCK;
2349         case USB_SPEED_UNKNOWN:
2350         case USB_SPEED_WIRELESS:
2351         default:
2352                 /* Should never happen */
2353                 return 1;
2354         }
2355 }
2356
2357 static unsigned int
2358 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2359 {
2360         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2361                 return LS_OVERHEAD;
2362         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2363                 return FS_OVERHEAD;
2364         return HS_OVERHEAD;
2365 }
2366
2367 /* If we are changing a LS/FS device under a HS hub,
2368  * make sure (if we are activating a new TT) that the HS bus has enough
2369  * bandwidth for this new TT.
2370  */
2371 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2372                 struct xhci_virt_device *virt_dev,
2373                 int old_active_eps)
2374 {
2375         struct xhci_interval_bw_table *bw_table;
2376         struct xhci_tt_bw_info *tt_info;
2377
2378         /* Find the bandwidth table for the root port this TT is attached to. */
2379         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2380         tt_info = virt_dev->tt_info;
2381         /* If this TT already had active endpoints, the bandwidth for this TT
2382          * has already been added.  Removing all periodic endpoints (and thus
2383          * making the TT enactive) will only decrease the bandwidth used.
2384          */
2385         if (old_active_eps)
2386                 return 0;
2387         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2388                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2389                         return -ENOMEM;
2390                 return 0;
2391         }
2392         /* Not sure why we would have no new active endpoints...
2393          *
2394          * Maybe because of an Evaluate Context change for a hub update or a
2395          * control endpoint 0 max packet size change?
2396          * FIXME: skip the bandwidth calculation in that case.
2397          */
2398         return 0;
2399 }
2400
2401 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2402                 struct xhci_virt_device *virt_dev)
2403 {
2404         unsigned int bw_reserved;
2405
2406         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2407         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2408                 return -ENOMEM;
2409
2410         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2411         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2412                 return -ENOMEM;
2413
2414         return 0;
2415 }
2416
2417 /*
2418  * This algorithm is a very conservative estimate of the worst-case scheduling
2419  * scenario for any one interval.  The hardware dynamically schedules the
2420  * packets, so we can't tell which microframe could be the limiting factor in
2421  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2422  *
2423  * Obviously, we can't solve an NP complete problem to find the minimum worst
2424  * case scenario.  Instead, we come up with an estimate that is no less than
2425  * the worst case bandwidth used for any one microframe, but may be an
2426  * over-estimate.
2427  *
2428  * We walk the requirements for each endpoint by interval, starting with the
2429  * smallest interval, and place packets in the schedule where there is only one
2430  * possible way to schedule packets for that interval.  In order to simplify
2431  * this algorithm, we record the largest max packet size for each interval, and
2432  * assume all packets will be that size.
2433  *
2434  * For interval 0, we obviously must schedule all packets for each interval.
2435  * The bandwidth for interval 0 is just the amount of data to be transmitted
2436  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2437  * the number of packets).
2438  *
2439  * For interval 1, we have two possible microframes to schedule those packets
2440  * in.  For this algorithm, if we can schedule the same number of packets for
2441  * each possible scheduling opportunity (each microframe), we will do so.  The
2442  * remaining number of packets will be saved to be transmitted in the gaps in
2443  * the next interval's scheduling sequence.
2444  *
2445  * As we move those remaining packets to be scheduled with interval 2 packets,
2446  * we have to double the number of remaining packets to transmit.  This is
2447  * because the intervals are actually powers of 2, and we would be transmitting
2448  * the previous interval's packets twice in this interval.  We also have to be
2449  * sure that when we look at the largest max packet size for this interval, we
2450  * also look at the largest max packet size for the remaining packets and take
2451  * the greater of the two.
2452  *
2453  * The algorithm continues to evenly distribute packets in each scheduling
2454  * opportunity, and push the remaining packets out, until we get to the last
2455  * interval.  Then those packets and their associated overhead are just added
2456  * to the bandwidth used.
2457  */
2458 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2459                 struct xhci_virt_device *virt_dev,
2460                 int old_active_eps)
2461 {
2462         unsigned int bw_reserved;
2463         unsigned int max_bandwidth;
2464         unsigned int bw_used;
2465         unsigned int block_size;
2466         struct xhci_interval_bw_table *bw_table;
2467         unsigned int packet_size = 0;
2468         unsigned int overhead = 0;
2469         unsigned int packets_transmitted = 0;
2470         unsigned int packets_remaining = 0;
2471         unsigned int i;
2472
2473         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2474                 return xhci_check_ss_bw(xhci, virt_dev);
2475
2476         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2477                 max_bandwidth = HS_BW_LIMIT;
2478                 /* Convert percent of bus BW reserved to blocks reserved */
2479                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2480         } else {
2481                 max_bandwidth = FS_BW_LIMIT;
2482                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2483         }
2484
2485         bw_table = virt_dev->bw_table;
2486         /* We need to translate the max packet size and max ESIT payloads into
2487          * the units the hardware uses.
2488          */
2489         block_size = xhci_get_block_size(virt_dev->udev);
2490
2491         /* If we are manipulating a LS/FS device under a HS hub, double check
2492          * that the HS bus has enough bandwidth if we are activing a new TT.
2493          */
2494         if (virt_dev->tt_info) {
2495                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2496                                 "Recalculating BW for rootport %u",
2497                                 virt_dev->real_port);
2498                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2499                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2500                                         "newly activated TT.\n");
2501                         return -ENOMEM;
2502                 }
2503                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2504                                 "Recalculating BW for TT slot %u port %u",
2505                                 virt_dev->tt_info->slot_id,
2506                                 virt_dev->tt_info->ttport);
2507         } else {
2508                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2509                                 "Recalculating BW for rootport %u",
2510                                 virt_dev->real_port);
2511         }
2512
2513         /* Add in how much bandwidth will be used for interval zero, or the
2514          * rounded max ESIT payload + number of packets * largest overhead.
2515          */
2516         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2517                 bw_table->interval_bw[0].num_packets *
2518                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2519
2520         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2521                 unsigned int bw_added;
2522                 unsigned int largest_mps;
2523                 unsigned int interval_overhead;
2524
2525                 /*
2526                  * How many packets could we transmit in this interval?
2527                  * If packets didn't fit in the previous interval, we will need
2528                  * to transmit that many packets twice within this interval.
2529                  */
2530                 packets_remaining = 2 * packets_remaining +
2531                         bw_table->interval_bw[i].num_packets;
2532
2533                 /* Find the largest max packet size of this or the previous
2534                  * interval.
2535                  */
2536                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2537                         largest_mps = 0;
2538                 else {
2539                         struct xhci_virt_ep *virt_ep;
2540                         struct list_head *ep_entry;
2541
2542                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2543                         virt_ep = list_entry(ep_entry,
2544                                         struct xhci_virt_ep, bw_endpoint_list);
2545                         /* Convert to blocks, rounding up */
2546                         largest_mps = DIV_ROUND_UP(
2547                                         virt_ep->bw_info.max_packet_size,
2548                                         block_size);
2549                 }
2550                 if (largest_mps > packet_size)
2551                         packet_size = largest_mps;
2552
2553                 /* Use the larger overhead of this or the previous interval. */
2554                 interval_overhead = xhci_get_largest_overhead(
2555                                 &bw_table->interval_bw[i]);
2556                 if (interval_overhead > overhead)
2557                         overhead = interval_overhead;
2558
2559                 /* How many packets can we evenly distribute across
2560                  * (1 << (i + 1)) possible scheduling opportunities?
2561                  */
2562                 packets_transmitted = packets_remaining >> (i + 1);
2563
2564                 /* Add in the bandwidth used for those scheduled packets */
2565                 bw_added = packets_transmitted * (overhead + packet_size);
2566
2567                 /* How many packets do we have remaining to transmit? */
2568                 packets_remaining = packets_remaining % (1 << (i + 1));
2569
2570                 /* What largest max packet size should those packets have? */
2571                 /* If we've transmitted all packets, don't carry over the
2572                  * largest packet size.
2573                  */
2574                 if (packets_remaining == 0) {
2575                         packet_size = 0;
2576                         overhead = 0;
2577                 } else if (packets_transmitted > 0) {
2578                         /* Otherwise if we do have remaining packets, and we've
2579                          * scheduled some packets in this interval, take the
2580                          * largest max packet size from endpoints with this
2581                          * interval.
2582                          */
2583                         packet_size = largest_mps;
2584                         overhead = interval_overhead;
2585                 }
2586                 /* Otherwise carry over packet_size and overhead from the last
2587                  * time we had a remainder.
2588                  */
2589                 bw_used += bw_added;
2590                 if (bw_used > max_bandwidth) {
2591                         xhci_warn(xhci, "Not enough bandwidth. "
2592                                         "Proposed: %u, Max: %u\n",
2593                                 bw_used, max_bandwidth);
2594                         return -ENOMEM;
2595                 }
2596         }
2597         /*
2598          * Ok, we know we have some packets left over after even-handedly
2599          * scheduling interval 15.  We don't know which microframes they will
2600          * fit into, so we over-schedule and say they will be scheduled every
2601          * microframe.
2602          */
2603         if (packets_remaining > 0)
2604                 bw_used += overhead + packet_size;
2605
2606         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2607                 unsigned int port_index = virt_dev->real_port - 1;
2608
2609                 /* OK, we're manipulating a HS device attached to a
2610                  * root port bandwidth domain.  Include the number of active TTs
2611                  * in the bandwidth used.
2612                  */
2613                 bw_used += TT_HS_OVERHEAD *
2614                         xhci->rh_bw[port_index].num_active_tts;
2615         }
2616
2617         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2618                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2619                 "Available: %u " "percent",
2620                 bw_used, max_bandwidth, bw_reserved,
2621                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2622                 max_bandwidth);
2623
2624         bw_used += bw_reserved;
2625         if (bw_used > max_bandwidth) {
2626                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2627                                 bw_used, max_bandwidth);
2628                 return -ENOMEM;
2629         }
2630
2631         bw_table->bw_used = bw_used;
2632         return 0;
2633 }
2634
2635 static bool xhci_is_async_ep(unsigned int ep_type)
2636 {
2637         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2638                                         ep_type != ISOC_IN_EP &&
2639                                         ep_type != INT_IN_EP);
2640 }
2641
2642 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2643 {
2644         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2645 }
2646
2647 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2648 {
2649         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2650
2651         if (ep_bw->ep_interval == 0)
2652                 return SS_OVERHEAD_BURST +
2653                         (ep_bw->mult * ep_bw->num_packets *
2654                                         (SS_OVERHEAD + mps));
2655         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2656                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2657                                 1 << ep_bw->ep_interval);
2658
2659 }
2660
2661 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2662                 struct xhci_bw_info *ep_bw,
2663                 struct xhci_interval_bw_table *bw_table,
2664                 struct usb_device *udev,
2665                 struct xhci_virt_ep *virt_ep,
2666                 struct xhci_tt_bw_info *tt_info)
2667 {
2668         struct xhci_interval_bw *interval_bw;
2669         int normalized_interval;
2670
2671         if (xhci_is_async_ep(ep_bw->type))
2672                 return;
2673
2674         if (udev->speed >= USB_SPEED_SUPER) {
2675                 if (xhci_is_sync_in_ep(ep_bw->type))
2676                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2677                                 xhci_get_ss_bw_consumed(ep_bw);
2678                 else
2679                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2680                                 xhci_get_ss_bw_consumed(ep_bw);
2681                 return;
2682         }
2683
2684         /* SuperSpeed endpoints never get added to intervals in the table, so
2685          * this check is only valid for HS/FS/LS devices.
2686          */
2687         if (list_empty(&virt_ep->bw_endpoint_list))
2688                 return;
2689         /* For LS/FS devices, we need to translate the interval expressed in
2690          * microframes to frames.
2691          */
2692         if (udev->speed == USB_SPEED_HIGH)
2693                 normalized_interval = ep_bw->ep_interval;
2694         else
2695                 normalized_interval = ep_bw->ep_interval - 3;
2696
2697         if (normalized_interval == 0)
2698                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2699         interval_bw = &bw_table->interval_bw[normalized_interval];
2700         interval_bw->num_packets -= ep_bw->num_packets;
2701         switch (udev->speed) {
2702         case USB_SPEED_LOW:
2703                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2704                 break;
2705         case USB_SPEED_FULL:
2706                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2707                 break;
2708         case USB_SPEED_HIGH:
2709                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2710                 break;
2711         case USB_SPEED_SUPER:
2712         case USB_SPEED_SUPER_PLUS:
2713         case USB_SPEED_UNKNOWN:
2714         case USB_SPEED_WIRELESS:
2715                 /* Should never happen because only LS/FS/HS endpoints will get
2716                  * added to the endpoint list.
2717                  */
2718                 return;
2719         }
2720         if (tt_info)
2721                 tt_info->active_eps -= 1;
2722         list_del_init(&virt_ep->bw_endpoint_list);
2723 }
2724
2725 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2726                 struct xhci_bw_info *ep_bw,
2727                 struct xhci_interval_bw_table *bw_table,
2728                 struct usb_device *udev,
2729                 struct xhci_virt_ep *virt_ep,
2730                 struct xhci_tt_bw_info *tt_info)
2731 {
2732         struct xhci_interval_bw *interval_bw;
2733         struct xhci_virt_ep *smaller_ep;
2734         int normalized_interval;
2735
2736         if (xhci_is_async_ep(ep_bw->type))
2737                 return;
2738
2739         if (udev->speed == USB_SPEED_SUPER) {
2740                 if (xhci_is_sync_in_ep(ep_bw->type))
2741                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2742                                 xhci_get_ss_bw_consumed(ep_bw);
2743                 else
2744                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2745                                 xhci_get_ss_bw_consumed(ep_bw);
2746                 return;
2747         }
2748
2749         /* For LS/FS devices, we need to translate the interval expressed in
2750          * microframes to frames.
2751          */
2752         if (udev->speed == USB_SPEED_HIGH)
2753                 normalized_interval = ep_bw->ep_interval;
2754         else
2755                 normalized_interval = ep_bw->ep_interval - 3;
2756
2757         if (normalized_interval == 0)
2758                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2759         interval_bw = &bw_table->interval_bw[normalized_interval];
2760         interval_bw->num_packets += ep_bw->num_packets;
2761         switch (udev->speed) {
2762         case USB_SPEED_LOW:
2763                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2764                 break;
2765         case USB_SPEED_FULL:
2766                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2767                 break;
2768         case USB_SPEED_HIGH:
2769                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2770                 break;
2771         case USB_SPEED_SUPER:
2772         case USB_SPEED_SUPER_PLUS:
2773         case USB_SPEED_UNKNOWN:
2774         case USB_SPEED_WIRELESS:
2775                 /* Should never happen because only LS/FS/HS endpoints will get
2776                  * added to the endpoint list.
2777                  */
2778                 return;
2779         }
2780
2781         if (tt_info)
2782                 tt_info->active_eps += 1;
2783         /* Insert the endpoint into the list, largest max packet size first. */
2784         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2785                         bw_endpoint_list) {
2786                 if (ep_bw->max_packet_size >=
2787                                 smaller_ep->bw_info.max_packet_size) {
2788                         /* Add the new ep before the smaller endpoint */
2789                         list_add_tail(&virt_ep->bw_endpoint_list,
2790                                         &smaller_ep->bw_endpoint_list);
2791                         return;
2792                 }
2793         }
2794         /* Add the new endpoint at the end of the list. */
2795         list_add_tail(&virt_ep->bw_endpoint_list,
2796                         &interval_bw->endpoints);
2797 }
2798
2799 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2800                 struct xhci_virt_device *virt_dev,
2801                 int old_active_eps)
2802 {
2803         struct xhci_root_port_bw_info *rh_bw_info;
2804         if (!virt_dev->tt_info)
2805                 return;
2806
2807         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2808         if (old_active_eps == 0 &&
2809                                 virt_dev->tt_info->active_eps != 0) {
2810                 rh_bw_info->num_active_tts += 1;
2811                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2812         } else if (old_active_eps != 0 &&
2813                                 virt_dev->tt_info->active_eps == 0) {
2814                 rh_bw_info->num_active_tts -= 1;
2815                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2816         }
2817 }
2818
2819 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2820                 struct xhci_virt_device *virt_dev,
2821                 struct xhci_container_ctx *in_ctx)
2822 {
2823         struct xhci_bw_info ep_bw_info[31];
2824         int i;
2825         struct xhci_input_control_ctx *ctrl_ctx;
2826         int old_active_eps = 0;
2827
2828         if (virt_dev->tt_info)
2829                 old_active_eps = virt_dev->tt_info->active_eps;
2830
2831         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2832         if (!ctrl_ctx) {
2833                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2834                                 __func__);
2835                 return -ENOMEM;
2836         }
2837
2838         for (i = 0; i < 31; i++) {
2839                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2840                         continue;
2841
2842                 /* Make a copy of the BW info in case we need to revert this */
2843                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2844                                 sizeof(ep_bw_info[i]));
2845                 /* Drop the endpoint from the interval table if the endpoint is
2846                  * being dropped or changed.
2847                  */
2848                 if (EP_IS_DROPPED(ctrl_ctx, i))
2849                         xhci_drop_ep_from_interval_table(xhci,
2850                                         &virt_dev->eps[i].bw_info,
2851                                         virt_dev->bw_table,
2852                                         virt_dev->udev,
2853                                         &virt_dev->eps[i],
2854                                         virt_dev->tt_info);
2855         }
2856         /* Overwrite the information stored in the endpoints' bw_info */
2857         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2858         for (i = 0; i < 31; i++) {
2859                 /* Add any changed or added endpoints to the interval table */
2860                 if (EP_IS_ADDED(ctrl_ctx, i))
2861                         xhci_add_ep_to_interval_table(xhci,
2862                                         &virt_dev->eps[i].bw_info,
2863                                         virt_dev->bw_table,
2864                                         virt_dev->udev,
2865                                         &virt_dev->eps[i],
2866                                         virt_dev->tt_info);
2867         }
2868
2869         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2870                 /* Ok, this fits in the bandwidth we have.
2871                  * Update the number of active TTs.
2872                  */
2873                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2874                 return 0;
2875         }
2876
2877         /* We don't have enough bandwidth for this, revert the stored info. */
2878         for (i = 0; i < 31; i++) {
2879                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2880                         continue;
2881
2882                 /* Drop the new copies of any added or changed endpoints from
2883                  * the interval table.
2884                  */
2885                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2886                         xhci_drop_ep_from_interval_table(xhci,
2887                                         &virt_dev->eps[i].bw_info,
2888                                         virt_dev->bw_table,
2889                                         virt_dev->udev,
2890                                         &virt_dev->eps[i],
2891                                         virt_dev->tt_info);
2892                 }
2893                 /* Revert the endpoint back to its old information */
2894                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2895                                 sizeof(ep_bw_info[i]));
2896                 /* Add any changed or dropped endpoints back into the table */
2897                 if (EP_IS_DROPPED(ctrl_ctx, i))
2898                         xhci_add_ep_to_interval_table(xhci,
2899                                         &virt_dev->eps[i].bw_info,
2900                                         virt_dev->bw_table,
2901                                         virt_dev->udev,
2902                                         &virt_dev->eps[i],
2903                                         virt_dev->tt_info);
2904         }
2905         return -ENOMEM;
2906 }
2907
2908
2909 /* Issue a configure endpoint command or evaluate context command
2910  * and wait for it to finish.
2911  */
2912 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2913                 struct usb_device *udev,
2914                 struct xhci_command *command,
2915                 bool ctx_change, bool must_succeed)
2916 {
2917         int ret;
2918         unsigned long flags;
2919         struct xhci_input_control_ctx *ctrl_ctx;
2920         struct xhci_virt_device *virt_dev;
2921         struct xhci_slot_ctx *slot_ctx;
2922
2923         if (!command)
2924                 return -EINVAL;
2925
2926         spin_lock_irqsave(&xhci->lock, flags);
2927
2928         if (xhci->xhc_state & XHCI_STATE_DYING) {
2929                 spin_unlock_irqrestore(&xhci->lock, flags);
2930                 return -ESHUTDOWN;
2931         }
2932
2933         virt_dev = xhci->devs[udev->slot_id];
2934
2935         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2936         if (!ctrl_ctx) {
2937                 spin_unlock_irqrestore(&xhci->lock, flags);
2938                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2939                                 __func__);
2940                 return -ENOMEM;
2941         }
2942
2943         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2944                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2945                 spin_unlock_irqrestore(&xhci->lock, flags);
2946                 xhci_warn(xhci, "Not enough host resources, "
2947                                 "active endpoint contexts = %u\n",
2948                                 xhci->num_active_eps);
2949                 return -ENOMEM;
2950         }
2951         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2952             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2953                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2954                         xhci_free_host_resources(xhci, ctrl_ctx);
2955                 spin_unlock_irqrestore(&xhci->lock, flags);
2956                 xhci_warn(xhci, "Not enough bandwidth\n");
2957                 return -ENOMEM;
2958         }
2959
2960         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2961
2962         trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2963         trace_xhci_configure_endpoint(slot_ctx);
2964
2965         if (!ctx_change)
2966                 ret = xhci_queue_configure_endpoint(xhci, command,
2967                                 command->in_ctx->dma,
2968                                 udev->slot_id, must_succeed);
2969         else
2970                 ret = xhci_queue_evaluate_context(xhci, command,
2971                                 command->in_ctx->dma,
2972                                 udev->slot_id, must_succeed);
2973         if (ret < 0) {
2974                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2975                         xhci_free_host_resources(xhci, ctrl_ctx);
2976                 spin_unlock_irqrestore(&xhci->lock, flags);
2977                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2978                                 "FIXME allocate a new ring segment");
2979                 return -ENOMEM;
2980         }
2981         xhci_ring_cmd_db(xhci);
2982         spin_unlock_irqrestore(&xhci->lock, flags);
2983
2984         /* Wait for the configure endpoint command to complete */
2985         wait_for_completion(command->completion);
2986
2987         if (!ctx_change)
2988                 ret = xhci_configure_endpoint_result(xhci, udev,
2989                                                      &command->status);
2990         else
2991                 ret = xhci_evaluate_context_result(xhci, udev,
2992                                                    &command->status);
2993
2994         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2995                 spin_lock_irqsave(&xhci->lock, flags);
2996                 /* If the command failed, remove the reserved resources.
2997                  * Otherwise, clean up the estimate to include dropped eps.
2998                  */
2999                 if (ret)
3000                         xhci_free_host_resources(xhci, ctrl_ctx);
3001                 else
3002                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
3003                 spin_unlock_irqrestore(&xhci->lock, flags);
3004         }
3005         return ret;
3006 }
3007
3008 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
3009         struct xhci_virt_device *vdev, int i)
3010 {
3011         struct xhci_virt_ep *ep = &vdev->eps[i];
3012
3013         if (ep->ep_state & EP_HAS_STREAMS) {
3014                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
3015                                 xhci_get_endpoint_address(i));
3016                 xhci_free_stream_info(xhci, ep->stream_info);
3017                 ep->stream_info = NULL;
3018                 ep->ep_state &= ~EP_HAS_STREAMS;
3019         }
3020 }
3021
3022 /* Called after one or more calls to xhci_add_endpoint() or
3023  * xhci_drop_endpoint().  If this call fails, the USB core is expected
3024  * to call xhci_reset_bandwidth().
3025  *
3026  * Since we are in the middle of changing either configuration or
3027  * installing a new alt setting, the USB core won't allow URBs to be
3028  * enqueued for any endpoint on the old config or interface.  Nothing
3029  * else should be touching the xhci->devs[slot_id] structure, so we
3030  * don't need to take the xhci->lock for manipulating that.
3031  */
3032 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3033 {
3034         int i;
3035         int ret = 0;
3036         struct xhci_hcd *xhci;
3037         struct xhci_virt_device *virt_dev;
3038         struct xhci_input_control_ctx *ctrl_ctx;
3039         struct xhci_slot_ctx *slot_ctx;
3040         struct xhci_command *command;
3041
3042         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3043         if (ret <= 0)
3044                 return ret;
3045         xhci = hcd_to_xhci(hcd);
3046         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3047                 (xhci->xhc_state & XHCI_STATE_REMOVING))
3048                 return -ENODEV;
3049
3050         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3051         virt_dev = xhci->devs[udev->slot_id];
3052
3053         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3054         if (!command)
3055                 return -ENOMEM;
3056
3057         command->in_ctx = virt_dev->in_ctx;
3058
3059         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3060         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3061         if (!ctrl_ctx) {
3062                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3063                                 __func__);
3064                 ret = -ENOMEM;
3065                 goto command_cleanup;
3066         }
3067         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3068         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3069         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3070
3071         /* Don't issue the command if there's no endpoints to update. */
3072         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3073             ctrl_ctx->drop_flags == 0) {
3074                 ret = 0;
3075                 goto command_cleanup;
3076         }
3077         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3078         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3079         for (i = 31; i >= 1; i--) {
3080                 __le32 le32 = cpu_to_le32(BIT(i));
3081
3082                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3083                     || (ctrl_ctx->add_flags & le32) || i == 1) {
3084                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3085                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3086                         break;
3087                 }
3088         }
3089
3090         ret = xhci_configure_endpoint(xhci, udev, command,
3091                         false, false);
3092         if (ret)
3093                 /* Callee should call reset_bandwidth() */
3094                 goto command_cleanup;
3095
3096         /* Free any rings that were dropped, but not changed. */
3097         for (i = 1; i < 31; i++) {
3098                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3099                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3100                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3101                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3102                 }
3103         }
3104         xhci_zero_in_ctx(xhci, virt_dev);
3105         /*
3106          * Install any rings for completely new endpoints or changed endpoints,
3107          * and free any old rings from changed endpoints.
3108          */
3109         for (i = 1; i < 31; i++) {
3110                 if (!virt_dev->eps[i].new_ring)
3111                         continue;
3112                 /* Only free the old ring if it exists.
3113                  * It may not if this is the first add of an endpoint.
3114                  */
3115                 if (virt_dev->eps[i].ring) {
3116                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3117                 }
3118                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3119                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3120                 virt_dev->eps[i].new_ring = NULL;
3121                 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3122         }
3123 command_cleanup:
3124         kfree(command->completion);
3125         kfree(command);
3126
3127         return ret;
3128 }
3129 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3130
3131 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3132 {
3133         struct xhci_hcd *xhci;
3134         struct xhci_virt_device *virt_dev;
3135         int i, ret;
3136
3137         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3138         if (ret <= 0)
3139                 return;
3140         xhci = hcd_to_xhci(hcd);
3141
3142         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3143         virt_dev = xhci->devs[udev->slot_id];
3144         /* Free any rings allocated for added endpoints */
3145         for (i = 0; i < 31; i++) {
3146                 if (virt_dev->eps[i].new_ring) {
3147                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3148                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3149                         virt_dev->eps[i].new_ring = NULL;
3150                 }
3151         }
3152         xhci_zero_in_ctx(xhci, virt_dev);
3153 }
3154 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3155
3156 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3157                 struct xhci_container_ctx *in_ctx,
3158                 struct xhci_container_ctx *out_ctx,
3159                 struct xhci_input_control_ctx *ctrl_ctx,
3160                 u32 add_flags, u32 drop_flags)
3161 {
3162         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3163         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3164         xhci_slot_copy(xhci, in_ctx, out_ctx);
3165         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3166 }
3167
3168 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3169                                   struct usb_host_endpoint *host_ep)
3170 {
3171         struct xhci_hcd         *xhci;
3172         struct xhci_virt_device *vdev;
3173         struct xhci_virt_ep     *ep;
3174         struct usb_device       *udev;
3175         unsigned long           flags;
3176         unsigned int            ep_index;
3177
3178         xhci = hcd_to_xhci(hcd);
3179 rescan:
3180         spin_lock_irqsave(&xhci->lock, flags);
3181
3182         udev = (struct usb_device *)host_ep->hcpriv;
3183         if (!udev || !udev->slot_id)
3184                 goto done;
3185
3186         vdev = xhci->devs[udev->slot_id];
3187         if (!vdev)
3188                 goto done;
3189
3190         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3191         ep = &vdev->eps[ep_index];
3192
3193         /* wait for hub_tt_work to finish clearing hub TT */
3194         if (ep->ep_state & EP_CLEARING_TT) {
3195                 spin_unlock_irqrestore(&xhci->lock, flags);
3196                 schedule_timeout_uninterruptible(1);
3197                 goto rescan;
3198         }
3199
3200         if (ep->ep_state)
3201                 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3202                          ep->ep_state);
3203 done:
3204         host_ep->hcpriv = NULL;
3205         spin_unlock_irqrestore(&xhci->lock, flags);
3206 }
3207
3208 /*
3209  * Called after usb core issues a clear halt control message.
3210  * The host side of the halt should already be cleared by a reset endpoint
3211  * command issued when the STALL event was received.
3212  *
3213  * The reset endpoint command may only be issued to endpoints in the halted
3214  * state. For software that wishes to reset the data toggle or sequence number
3215  * of an endpoint that isn't in the halted state this function will issue a
3216  * configure endpoint command with the Drop and Add bits set for the target
3217  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3218  */
3219
3220 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3221                 struct usb_host_endpoint *host_ep)
3222 {
3223         struct xhci_hcd *xhci;
3224         struct usb_device *udev;
3225         struct xhci_virt_device *vdev;
3226         struct xhci_virt_ep *ep;
3227         struct xhci_input_control_ctx *ctrl_ctx;
3228         struct xhci_command *stop_cmd, *cfg_cmd;
3229         unsigned int ep_index;
3230         unsigned long flags;
3231         u32 ep_flag;
3232         int err;
3233
3234         xhci = hcd_to_xhci(hcd);
3235         if (!host_ep->hcpriv)
3236                 return;
3237         udev = (struct usb_device *) host_ep->hcpriv;
3238         vdev = xhci->devs[udev->slot_id];
3239
3240         /*
3241          * vdev may be lost due to xHC restore error and re-initialization
3242          * during S3/S4 resume. A new vdev will be allocated later by
3243          * xhci_discover_or_reset_device()
3244          */
3245         if (!udev->slot_id || !vdev)
3246                 return;
3247         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3248         ep = &vdev->eps[ep_index];
3249
3250         /* Bail out if toggle is already being cleared by a endpoint reset */
3251         spin_lock_irqsave(&xhci->lock, flags);
3252         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3253                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3254                 spin_unlock_irqrestore(&xhci->lock, flags);
3255                 return;
3256         }
3257         spin_unlock_irqrestore(&xhci->lock, flags);
3258         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3259         if (usb_endpoint_xfer_control(&host_ep->desc) ||
3260             usb_endpoint_xfer_isoc(&host_ep->desc))
3261                 return;
3262
3263         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3264
3265         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3266                 return;
3267
3268         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3269         if (!stop_cmd)
3270                 return;
3271
3272         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3273         if (!cfg_cmd)
3274                 goto cleanup;
3275
3276         spin_lock_irqsave(&xhci->lock, flags);
3277
3278         /* block queuing new trbs and ringing ep doorbell */
3279         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3280
3281         /*
3282          * Make sure endpoint ring is empty before resetting the toggle/seq.
3283          * Driver is required to synchronously cancel all transfer request.
3284          * Stop the endpoint to force xHC to update the output context
3285          */
3286
3287         if (!list_empty(&ep->ring->td_list)) {
3288                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3289                 spin_unlock_irqrestore(&xhci->lock, flags);
3290                 xhci_free_command(xhci, cfg_cmd);
3291                 goto cleanup;
3292         }
3293
3294         err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3295                                         ep_index, 0);
3296         if (err < 0) {
3297                 spin_unlock_irqrestore(&xhci->lock, flags);
3298                 xhci_free_command(xhci, cfg_cmd);
3299                 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3300                                 __func__, err);
3301                 goto cleanup;
3302         }
3303
3304         xhci_ring_cmd_db(xhci);
3305         spin_unlock_irqrestore(&xhci->lock, flags);
3306
3307         wait_for_completion(stop_cmd->completion);
3308
3309         spin_lock_irqsave(&xhci->lock, flags);
3310
3311         /* config ep command clears toggle if add and drop ep flags are set */
3312         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3313         if (!ctrl_ctx) {
3314                 spin_unlock_irqrestore(&xhci->lock, flags);
3315                 xhci_free_command(xhci, cfg_cmd);
3316                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3317                                 __func__);
3318                 goto cleanup;
3319         }
3320
3321         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3322                                            ctrl_ctx, ep_flag, ep_flag);
3323         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3324
3325         err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3326                                       udev->slot_id, false);
3327         if (err < 0) {
3328                 spin_unlock_irqrestore(&xhci->lock, flags);
3329                 xhci_free_command(xhci, cfg_cmd);
3330                 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3331                                 __func__, err);
3332                 goto cleanup;
3333         }
3334
3335         xhci_ring_cmd_db(xhci);
3336         spin_unlock_irqrestore(&xhci->lock, flags);
3337
3338         wait_for_completion(cfg_cmd->completion);
3339
3340         xhci_free_command(xhci, cfg_cmd);
3341 cleanup:
3342         xhci_free_command(xhci, stop_cmd);
3343         spin_lock_irqsave(&xhci->lock, flags);
3344         if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3345                 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3346         spin_unlock_irqrestore(&xhci->lock, flags);
3347 }
3348
3349 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3350                 struct usb_device *udev, struct usb_host_endpoint *ep,
3351                 unsigned int slot_id)
3352 {
3353         int ret;
3354         unsigned int ep_index;
3355         unsigned int ep_state;
3356
3357         if (!ep)
3358                 return -EINVAL;
3359         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3360         if (ret <= 0)
3361                 return ret ? ret : -EINVAL;
3362         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3363                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3364                                 " descriptor for ep 0x%x does not support streams\n",
3365                                 ep->desc.bEndpointAddress);
3366                 return -EINVAL;
3367         }
3368
3369         ep_index = xhci_get_endpoint_index(&ep->desc);
3370         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3371         if (ep_state & EP_HAS_STREAMS ||
3372                         ep_state & EP_GETTING_STREAMS) {
3373                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3374                                 "already has streams set up.\n",
3375                                 ep->desc.bEndpointAddress);
3376                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3377                                 "dynamic stream context array reallocation.\n");
3378                 return -EINVAL;
3379         }
3380         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3381                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3382                                 "endpoint 0x%x; URBs are pending.\n",
3383                                 ep->desc.bEndpointAddress);
3384                 return -EINVAL;
3385         }
3386         return 0;
3387 }
3388
3389 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3390                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3391 {
3392         unsigned int max_streams;
3393
3394         /* The stream context array size must be a power of two */
3395         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3396         /*
3397          * Find out how many primary stream array entries the host controller
3398          * supports.  Later we may use secondary stream arrays (similar to 2nd
3399          * level page entries), but that's an optional feature for xHCI host
3400          * controllers. xHCs must support at least 4 stream IDs.
3401          */
3402         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3403         if (*num_stream_ctxs > max_streams) {
3404                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3405                                 max_streams);
3406                 *num_stream_ctxs = max_streams;
3407                 *num_streams = max_streams;
3408         }
3409 }
3410
3411 /* Returns an error code if one of the endpoint already has streams.
3412  * This does not change any data structures, it only checks and gathers
3413  * information.
3414  */
3415 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3416                 struct usb_device *udev,
3417                 struct usb_host_endpoint **eps, unsigned int num_eps,
3418                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3419 {
3420         unsigned int max_streams;
3421         unsigned int endpoint_flag;
3422         int i;
3423         int ret;
3424
3425         for (i = 0; i < num_eps; i++) {
3426                 ret = xhci_check_streams_endpoint(xhci, udev,
3427                                 eps[i], udev->slot_id);
3428                 if (ret < 0)
3429                         return ret;
3430
3431                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3432                 if (max_streams < (*num_streams - 1)) {
3433                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3434                                         eps[i]->desc.bEndpointAddress,
3435                                         max_streams);
3436                         *num_streams = max_streams+1;
3437                 }
3438
3439                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3440                 if (*changed_ep_bitmask & endpoint_flag)
3441                         return -EINVAL;
3442                 *changed_ep_bitmask |= endpoint_flag;
3443         }
3444         return 0;
3445 }
3446
3447 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3448                 struct usb_device *udev,
3449                 struct usb_host_endpoint **eps, unsigned int num_eps)
3450 {
3451         u32 changed_ep_bitmask = 0;
3452         unsigned int slot_id;
3453         unsigned int ep_index;
3454         unsigned int ep_state;
3455         int i;
3456
3457         slot_id = udev->slot_id;
3458         if (!xhci->devs[slot_id])
3459                 return 0;
3460
3461         for (i = 0; i < num_eps; i++) {
3462                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3463                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3464                 /* Are streams already being freed for the endpoint? */
3465                 if (ep_state & EP_GETTING_NO_STREAMS) {
3466                         xhci_warn(xhci, "WARN Can't disable streams for "
3467                                         "endpoint 0x%x, "
3468                                         "streams are being disabled already\n",
3469                                         eps[i]->desc.bEndpointAddress);
3470                         return 0;
3471                 }
3472                 /* Are there actually any streams to free? */
3473                 if (!(ep_state & EP_HAS_STREAMS) &&
3474                                 !(ep_state & EP_GETTING_STREAMS)) {
3475                         xhci_warn(xhci, "WARN Can't disable streams for "
3476                                         "endpoint 0x%x, "
3477                                         "streams are already disabled!\n",
3478                                         eps[i]->desc.bEndpointAddress);
3479                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3480                                         "with non-streams endpoint\n");
3481                         return 0;
3482                 }
3483                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3484         }
3485         return changed_ep_bitmask;
3486 }
3487
3488 /*
3489  * The USB device drivers use this function (through the HCD interface in USB
3490  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3491  * coordinate mass storage command queueing across multiple endpoints (basically
3492  * a stream ID == a task ID).
3493  *
3494  * Setting up streams involves allocating the same size stream context array
3495  * for each endpoint and issuing a configure endpoint command for all endpoints.
3496  *
3497  * Don't allow the call to succeed if one endpoint only supports one stream
3498  * (which means it doesn't support streams at all).
3499  *
3500  * Drivers may get less stream IDs than they asked for, if the host controller
3501  * hardware or endpoints claim they can't support the number of requested
3502  * stream IDs.
3503  */
3504 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3505                 struct usb_host_endpoint **eps, unsigned int num_eps,
3506                 unsigned int num_streams, gfp_t mem_flags)
3507 {
3508         int i, ret;
3509         struct xhci_hcd *xhci;
3510         struct xhci_virt_device *vdev;
3511         struct xhci_command *config_cmd;
3512         struct xhci_input_control_ctx *ctrl_ctx;
3513         unsigned int ep_index;
3514         unsigned int num_stream_ctxs;
3515         unsigned int max_packet;
3516         unsigned long flags;
3517         u32 changed_ep_bitmask = 0;
3518
3519         if (!eps)
3520                 return -EINVAL;
3521
3522         /* Add one to the number of streams requested to account for
3523          * stream 0 that is reserved for xHCI usage.
3524          */
3525         num_streams += 1;
3526         xhci = hcd_to_xhci(hcd);
3527         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3528                         num_streams);
3529
3530         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3531         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3532                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3533                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3534                 return -ENOSYS;
3535         }
3536
3537         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3538         if (!config_cmd)
3539                 return -ENOMEM;
3540
3541         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3542         if (!ctrl_ctx) {
3543                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3544                                 __func__);
3545                 xhci_free_command(xhci, config_cmd);
3546                 return -ENOMEM;
3547         }
3548
3549         /* Check to make sure all endpoints are not already configured for
3550          * streams.  While we're at it, find the maximum number of streams that
3551          * all the endpoints will support and check for duplicate endpoints.
3552          */
3553         spin_lock_irqsave(&xhci->lock, flags);
3554         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3555                         num_eps, &num_streams, &changed_ep_bitmask);
3556         if (ret < 0) {
3557                 xhci_free_command(xhci, config_cmd);
3558                 spin_unlock_irqrestore(&xhci->lock, flags);
3559                 return ret;
3560         }
3561         if (num_streams <= 1) {
3562                 xhci_warn(xhci, "WARN: endpoints can't handle "
3563                                 "more than one stream.\n");
3564                 xhci_free_command(xhci, config_cmd);
3565                 spin_unlock_irqrestore(&xhci->lock, flags);
3566                 return -EINVAL;
3567         }
3568         vdev = xhci->devs[udev->slot_id];
3569         /* Mark each endpoint as being in transition, so
3570          * xhci_urb_enqueue() will reject all URBs.
3571          */
3572         for (i = 0; i < num_eps; i++) {
3573                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3574                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3575         }
3576         spin_unlock_irqrestore(&xhci->lock, flags);
3577
3578         /* Setup internal data structures and allocate HW data structures for
3579          * streams (but don't install the HW structures in the input context
3580          * until we're sure all memory allocation succeeded).
3581          */
3582         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3583         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3584                         num_stream_ctxs, num_streams);
3585
3586         for (i = 0; i < num_eps; i++) {
3587                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3588                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3589                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3590                                 num_stream_ctxs,
3591                                 num_streams,
3592                                 max_packet, mem_flags);
3593                 if (!vdev->eps[ep_index].stream_info)
3594                         goto cleanup;
3595                 /* Set maxPstreams in endpoint context and update deq ptr to
3596                  * point to stream context array. FIXME
3597                  */
3598         }
3599
3600         /* Set up the input context for a configure endpoint command. */
3601         for (i = 0; i < num_eps; i++) {
3602                 struct xhci_ep_ctx *ep_ctx;
3603
3604                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3605                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3606
3607                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3608                                 vdev->out_ctx, ep_index);
3609                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3610                                 vdev->eps[ep_index].stream_info);
3611         }
3612         /* Tell the HW to drop its old copy of the endpoint context info
3613          * and add the updated copy from the input context.
3614          */
3615         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3616                         vdev->out_ctx, ctrl_ctx,
3617                         changed_ep_bitmask, changed_ep_bitmask);
3618
3619         /* Issue and wait for the configure endpoint command */
3620         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3621                         false, false);
3622
3623         /* xHC rejected the configure endpoint command for some reason, so we
3624          * leave the old ring intact and free our internal streams data
3625          * structure.
3626          */
3627         if (ret < 0)
3628                 goto cleanup;
3629
3630         spin_lock_irqsave(&xhci->lock, flags);
3631         for (i = 0; i < num_eps; i++) {
3632                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3633                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3634                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3635                          udev->slot_id, ep_index);
3636                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3637         }
3638         xhci_free_command(xhci, config_cmd);
3639         spin_unlock_irqrestore(&xhci->lock, flags);
3640
3641         for (i = 0; i < num_eps; i++) {
3642                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3643                 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3644         }
3645         /* Subtract 1 for stream 0, which drivers can't use */
3646         return num_streams - 1;
3647
3648 cleanup:
3649         /* If it didn't work, free the streams! */
3650         for (i = 0; i < num_eps; i++) {
3651                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3652                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3653                 vdev->eps[ep_index].stream_info = NULL;
3654                 /* FIXME Unset maxPstreams in endpoint context and
3655                  * update deq ptr to point to normal string ring.
3656                  */
3657                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3658                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3659                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3660         }
3661         xhci_free_command(xhci, config_cmd);
3662         return -ENOMEM;
3663 }
3664
3665 /* Transition the endpoint from using streams to being a "normal" endpoint
3666  * without streams.
3667  *
3668  * Modify the endpoint context state, submit a configure endpoint command,
3669  * and free all endpoint rings for streams if that completes successfully.
3670  */
3671 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3672                 struct usb_host_endpoint **eps, unsigned int num_eps,
3673                 gfp_t mem_flags)
3674 {
3675         int i, ret;
3676         struct xhci_hcd *xhci;
3677         struct xhci_virt_device *vdev;
3678         struct xhci_command *command;
3679         struct xhci_input_control_ctx *ctrl_ctx;
3680         unsigned int ep_index;
3681         unsigned long flags;
3682         u32 changed_ep_bitmask;
3683
3684         xhci = hcd_to_xhci(hcd);
3685         vdev = xhci->devs[udev->slot_id];
3686
3687         /* Set up a configure endpoint command to remove the streams rings */
3688         spin_lock_irqsave(&xhci->lock, flags);
3689         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3690                         udev, eps, num_eps);
3691         if (changed_ep_bitmask == 0) {
3692                 spin_unlock_irqrestore(&xhci->lock, flags);
3693                 return -EINVAL;
3694         }
3695
3696         /* Use the xhci_command structure from the first endpoint.  We may have
3697          * allocated too many, but the driver may call xhci_free_streams() for
3698          * each endpoint it grouped into one call to xhci_alloc_streams().
3699          */
3700         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3701         command = vdev->eps[ep_index].stream_info->free_streams_command;
3702         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3703         if (!ctrl_ctx) {
3704                 spin_unlock_irqrestore(&xhci->lock, flags);
3705                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3706                                 __func__);
3707                 return -EINVAL;
3708         }
3709
3710         for (i = 0; i < num_eps; i++) {
3711                 struct xhci_ep_ctx *ep_ctx;
3712
3713                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3714                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3715                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3716                         EP_GETTING_NO_STREAMS;
3717
3718                 xhci_endpoint_copy(xhci, command->in_ctx,
3719                                 vdev->out_ctx, ep_index);
3720                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3721                                 &vdev->eps[ep_index]);
3722         }
3723         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3724                         vdev->out_ctx, ctrl_ctx,
3725                         changed_ep_bitmask, changed_ep_bitmask);
3726         spin_unlock_irqrestore(&xhci->lock, flags);
3727
3728         /* Issue and wait for the configure endpoint command,
3729          * which must succeed.
3730          */
3731         ret = xhci_configure_endpoint(xhci, udev, command,
3732                         false, true);
3733
3734         /* xHC rejected the configure endpoint command for some reason, so we
3735          * leave the streams rings intact.
3736          */
3737         if (ret < 0)
3738                 return ret;
3739
3740         spin_lock_irqsave(&xhci->lock, flags);
3741         for (i = 0; i < num_eps; i++) {
3742                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3743                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3744                 vdev->eps[ep_index].stream_info = NULL;
3745                 /* FIXME Unset maxPstreams in endpoint context and
3746                  * update deq ptr to point to normal string ring.
3747                  */
3748                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3749                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3750         }
3751         spin_unlock_irqrestore(&xhci->lock, flags);
3752
3753         return 0;
3754 }
3755
3756 /*
3757  * Deletes endpoint resources for endpoints that were active before a Reset
3758  * Device command, or a Disable Slot command.  The Reset Device command leaves
3759  * the control endpoint intact, whereas the Disable Slot command deletes it.
3760  *
3761  * Must be called with xhci->lock held.
3762  */
3763 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3764         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3765 {
3766         int i;
3767         unsigned int num_dropped_eps = 0;
3768         unsigned int drop_flags = 0;
3769
3770         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3771                 if (virt_dev->eps[i].ring) {
3772                         drop_flags |= 1 << i;
3773                         num_dropped_eps++;
3774                 }
3775         }
3776         xhci->num_active_eps -= num_dropped_eps;
3777         if (num_dropped_eps)
3778                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3779                                 "Dropped %u ep ctxs, flags = 0x%x, "
3780                                 "%u now active.",
3781                                 num_dropped_eps, drop_flags,
3782                                 xhci->num_active_eps);
3783 }
3784
3785 /*
3786  * This submits a Reset Device Command, which will set the device state to 0,
3787  * set the device address to 0, and disable all the endpoints except the default
3788  * control endpoint.  The USB core should come back and call
3789  * xhci_address_device(), and then re-set up the configuration.  If this is
3790  * called because of a usb_reset_and_verify_device(), then the old alternate
3791  * settings will be re-installed through the normal bandwidth allocation
3792  * functions.
3793  *
3794  * Wait for the Reset Device command to finish.  Remove all structures
3795  * associated with the endpoints that were disabled.  Clear the input device
3796  * structure? Reset the control endpoint 0 max packet size?
3797  *
3798  * If the virt_dev to be reset does not exist or does not match the udev,
3799  * it means the device is lost, possibly due to the xHC restore error and
3800  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3801  * re-allocate the device.
3802  */
3803 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3804                 struct usb_device *udev)
3805 {
3806         int ret, i;
3807         unsigned long flags;
3808         struct xhci_hcd *xhci;
3809         unsigned int slot_id;
3810         struct xhci_virt_device *virt_dev;
3811         struct xhci_command *reset_device_cmd;
3812         struct xhci_slot_ctx *slot_ctx;
3813         int old_active_eps = 0;
3814
3815         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3816         if (ret <= 0)
3817                 return ret;
3818         xhci = hcd_to_xhci(hcd);
3819         slot_id = udev->slot_id;
3820         virt_dev = xhci->devs[slot_id];
3821         if (!virt_dev) {
3822                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3823                                 "not exist. Re-allocate the device\n", slot_id);
3824                 ret = xhci_alloc_dev(hcd, udev);
3825                 if (ret == 1)
3826                         return 0;
3827                 else
3828                         return -EINVAL;
3829         }
3830
3831         if (virt_dev->tt_info)
3832                 old_active_eps = virt_dev->tt_info->active_eps;
3833
3834         if (virt_dev->udev != udev) {
3835                 /* If the virt_dev and the udev does not match, this virt_dev
3836                  * may belong to another udev.
3837                  * Re-allocate the device.
3838                  */
3839                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3840                                 "not match the udev. Re-allocate the device\n",
3841                                 slot_id);
3842                 ret = xhci_alloc_dev(hcd, udev);
3843                 if (ret == 1)
3844                         return 0;
3845                 else
3846                         return -EINVAL;
3847         }
3848
3849         /* If device is not setup, there is no point in resetting it */
3850         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3851         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3852                                                 SLOT_STATE_DISABLED)
3853                 return 0;
3854
3855         trace_xhci_discover_or_reset_device(slot_ctx);
3856
3857         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3858         /* Allocate the command structure that holds the struct completion.
3859          * Assume we're in process context, since the normal device reset
3860          * process has to wait for the device anyway.  Storage devices are
3861          * reset as part of error handling, so use GFP_NOIO instead of
3862          * GFP_KERNEL.
3863          */
3864         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3865         if (!reset_device_cmd) {
3866                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3867                 return -ENOMEM;
3868         }
3869
3870         /* Attempt to submit the Reset Device command to the command ring */
3871         spin_lock_irqsave(&xhci->lock, flags);
3872
3873         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3874         if (ret) {
3875                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3876                 spin_unlock_irqrestore(&xhci->lock, flags);
3877                 goto command_cleanup;
3878         }
3879         xhci_ring_cmd_db(xhci);
3880         spin_unlock_irqrestore(&xhci->lock, flags);
3881
3882         /* Wait for the Reset Device command to finish */
3883         wait_for_completion(reset_device_cmd->completion);
3884
3885         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3886          * unless we tried to reset a slot ID that wasn't enabled,
3887          * or the device wasn't in the addressed or configured state.
3888          */
3889         ret = reset_device_cmd->status;
3890         switch (ret) {
3891         case COMP_COMMAND_ABORTED:
3892         case COMP_COMMAND_RING_STOPPED:
3893                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3894                 ret = -ETIME;
3895                 goto command_cleanup;
3896         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3897         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3898                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3899                                 slot_id,
3900                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3901                 xhci_dbg(xhci, "Not freeing device rings.\n");
3902                 /* Don't treat this as an error.  May change my mind later. */
3903                 ret = 0;
3904                 goto command_cleanup;
3905         case COMP_SUCCESS:
3906                 xhci_dbg(xhci, "Successful reset device command.\n");
3907                 break;
3908         default:
3909                 if (xhci_is_vendor_info_code(xhci, ret))
3910                         break;
3911                 xhci_warn(xhci, "Unknown completion code %u for "
3912                                 "reset device command.\n", ret);
3913                 ret = -EINVAL;
3914                 goto command_cleanup;
3915         }
3916
3917         /* Free up host controller endpoint resources */
3918         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3919                 spin_lock_irqsave(&xhci->lock, flags);
3920                 /* Don't delete the default control endpoint resources */
3921                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3922                 spin_unlock_irqrestore(&xhci->lock, flags);
3923         }
3924
3925         /* Everything but endpoint 0 is disabled, so free the rings. */
3926         for (i = 1; i < 31; i++) {
3927                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3928
3929                 if (ep->ep_state & EP_HAS_STREAMS) {
3930                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3931                                         xhci_get_endpoint_address(i));
3932                         xhci_free_stream_info(xhci, ep->stream_info);
3933                         ep->stream_info = NULL;
3934                         ep->ep_state &= ~EP_HAS_STREAMS;
3935                 }
3936
3937                 if (ep->ring) {
3938                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3939                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3940                 }
3941                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3942                         xhci_drop_ep_from_interval_table(xhci,
3943                                         &virt_dev->eps[i].bw_info,
3944                                         virt_dev->bw_table,
3945                                         udev,
3946                                         &virt_dev->eps[i],
3947                                         virt_dev->tt_info);
3948                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3949         }
3950         /* If necessary, update the number of active TTs on this root port */
3951         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3952         virt_dev->flags = 0;
3953         ret = 0;
3954
3955 command_cleanup:
3956         xhci_free_command(xhci, reset_device_cmd);
3957         return ret;
3958 }
3959
3960 /*
3961  * At this point, the struct usb_device is about to go away, the device has
3962  * disconnected, and all traffic has been stopped and the endpoints have been
3963  * disabled.  Free any HC data structures associated with that device.
3964  */
3965 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3966 {
3967         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3968         struct xhci_virt_device *virt_dev;
3969         struct xhci_slot_ctx *slot_ctx;
3970         int i, ret;
3971
3972         /*
3973          * We called pm_runtime_get_noresume when the device was attached.
3974          * Decrement the counter here to allow controller to runtime suspend
3975          * if no devices remain.
3976          */
3977         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3978                 pm_runtime_put_noidle(hcd->self.controller);
3979
3980         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3981         /* If the host is halted due to driver unload, we still need to free the
3982          * device.
3983          */
3984         if (ret <= 0 && ret != -ENODEV)
3985                 return;
3986
3987         virt_dev = xhci->devs[udev->slot_id];
3988         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3989         trace_xhci_free_dev(slot_ctx);
3990
3991         /* Stop any wayward timer functions (which may grab the lock) */
3992         for (i = 0; i < 31; i++)
3993                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3994         virt_dev->udev = NULL;
3995         xhci_disable_slot(xhci, udev->slot_id);
3996         xhci_free_virt_device(xhci, udev->slot_id);
3997 }
3998
3999 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
4000 {
4001         struct xhci_command *command;
4002         unsigned long flags;
4003         u32 state;
4004         int ret;
4005
4006         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4007         if (!command)
4008                 return -ENOMEM;
4009
4010         xhci_debugfs_remove_slot(xhci, slot_id);
4011
4012         spin_lock_irqsave(&xhci->lock, flags);
4013         /* Don't disable the slot if the host controller is dead. */
4014         state = readl(&xhci->op_regs->status);
4015         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4016                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
4017                 spin_unlock_irqrestore(&xhci->lock, flags);
4018                 kfree(command);
4019                 return -ENODEV;
4020         }
4021
4022         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4023                                 slot_id);
4024         if (ret) {
4025                 spin_unlock_irqrestore(&xhci->lock, flags);
4026                 kfree(command);
4027                 return ret;
4028         }
4029         xhci_ring_cmd_db(xhci);
4030         spin_unlock_irqrestore(&xhci->lock, flags);
4031
4032         wait_for_completion(command->completion);
4033
4034         if (command->status != COMP_SUCCESS)
4035                 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4036                           slot_id, command->status);
4037
4038         xhci_free_command(xhci, command);
4039
4040         return 0;
4041 }
4042
4043 /*
4044  * Checks if we have enough host controller resources for the default control
4045  * endpoint.
4046  *
4047  * Must be called with xhci->lock held.
4048  */
4049 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4050 {
4051         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4052                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4053                                 "Not enough ep ctxs: "
4054                                 "%u active, need to add 1, limit is %u.",
4055                                 xhci->num_active_eps, xhci->limit_active_eps);
4056                 return -ENOMEM;
4057         }
4058         xhci->num_active_eps += 1;
4059         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4060                         "Adding 1 ep ctx, %u now active.",
4061                         xhci->num_active_eps);
4062         return 0;
4063 }
4064
4065
4066 /*
4067  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4068  * timed out, or allocating memory failed.  Returns 1 on success.
4069  */
4070 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4071 {
4072         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4073         struct xhci_virt_device *vdev;
4074         struct xhci_slot_ctx *slot_ctx;
4075         unsigned long flags;
4076         int ret, slot_id;
4077         struct xhci_command *command;
4078
4079         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4080         if (!command)
4081                 return 0;
4082
4083         spin_lock_irqsave(&xhci->lock, flags);
4084         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4085         if (ret) {
4086                 spin_unlock_irqrestore(&xhci->lock, flags);
4087                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4088                 xhci_free_command(xhci, command);
4089                 return 0;
4090         }
4091         xhci_ring_cmd_db(xhci);
4092         spin_unlock_irqrestore(&xhci->lock, flags);
4093
4094         wait_for_completion(command->completion);
4095         slot_id = command->slot_id;
4096
4097         if (!slot_id || command->status != COMP_SUCCESS) {
4098                 xhci_err(xhci, "Error while assigning device slot ID\n");
4099                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4100                                 HCS_MAX_SLOTS(
4101                                         readl(&xhci->cap_regs->hcs_params1)));
4102                 xhci_free_command(xhci, command);
4103                 return 0;
4104         }
4105
4106         xhci_free_command(xhci, command);
4107
4108         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4109                 spin_lock_irqsave(&xhci->lock, flags);
4110                 ret = xhci_reserve_host_control_ep_resources(xhci);
4111                 if (ret) {
4112                         spin_unlock_irqrestore(&xhci->lock, flags);
4113                         xhci_warn(xhci, "Not enough host resources, "
4114                                         "active endpoint contexts = %u\n",
4115                                         xhci->num_active_eps);
4116                         goto disable_slot;
4117                 }
4118                 spin_unlock_irqrestore(&xhci->lock, flags);
4119         }
4120         /* Use GFP_NOIO, since this function can be called from
4121          * xhci_discover_or_reset_device(), which may be called as part of
4122          * mass storage driver error handling.
4123          */
4124         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4125                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4126                 goto disable_slot;
4127         }
4128         vdev = xhci->devs[slot_id];
4129         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4130         trace_xhci_alloc_dev(slot_ctx);
4131
4132         udev->slot_id = slot_id;
4133
4134         xhci_debugfs_create_slot(xhci, slot_id);
4135
4136         /*
4137          * If resetting upon resume, we can't put the controller into runtime
4138          * suspend if there is a device attached.
4139          */
4140         if (xhci->quirks & XHCI_RESET_ON_RESUME)
4141                 pm_runtime_get_noresume(hcd->self.controller);
4142
4143         /* Is this a LS or FS device under a HS hub? */
4144         /* Hub or peripherial? */
4145         return 1;
4146
4147 disable_slot:
4148         xhci_disable_slot(xhci, udev->slot_id);
4149         xhci_free_virt_device(xhci, udev->slot_id);
4150
4151         return 0;
4152 }
4153
4154 /*
4155  * Issue an Address Device command and optionally send a corresponding
4156  * SetAddress request to the device.
4157  */
4158 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4159                              enum xhci_setup_dev setup)
4160 {
4161         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4162         unsigned long flags;
4163         struct xhci_virt_device *virt_dev;
4164         int ret = 0;
4165         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4166         struct xhci_slot_ctx *slot_ctx;
4167         struct xhci_input_control_ctx *ctrl_ctx;
4168         u64 temp_64;
4169         struct xhci_command *command = NULL;
4170
4171         mutex_lock(&xhci->mutex);
4172
4173         if (xhci->xhc_state) {  /* dying, removing or halted */
4174                 ret = -ESHUTDOWN;
4175                 goto out;
4176         }
4177
4178         if (!udev->slot_id) {
4179                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4180                                 "Bad Slot ID %d", udev->slot_id);
4181                 ret = -EINVAL;
4182                 goto out;
4183         }
4184
4185         virt_dev = xhci->devs[udev->slot_id];
4186
4187         if (WARN_ON(!virt_dev)) {
4188                 /*
4189                  * In plug/unplug torture test with an NEC controller,
4190                  * a zero-dereference was observed once due to virt_dev = 0.
4191                  * Print useful debug rather than crash if it is observed again!
4192                  */
4193                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4194                         udev->slot_id);
4195                 ret = -EINVAL;
4196                 goto out;
4197         }
4198         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4199         trace_xhci_setup_device_slot(slot_ctx);
4200
4201         if (setup == SETUP_CONTEXT_ONLY) {
4202                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4203                     SLOT_STATE_DEFAULT) {
4204                         xhci_dbg(xhci, "Slot already in default state\n");
4205                         goto out;
4206                 }
4207         }
4208
4209         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4210         if (!command) {
4211                 ret = -ENOMEM;
4212                 goto out;
4213         }
4214
4215         command->in_ctx = virt_dev->in_ctx;
4216
4217         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4218         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4219         if (!ctrl_ctx) {
4220                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4221                                 __func__);
4222                 ret = -EINVAL;
4223                 goto out;
4224         }
4225         /*
4226          * If this is the first Set Address since device plug-in or
4227          * virt_device realloaction after a resume with an xHCI power loss,
4228          * then set up the slot context.
4229          */
4230         if (!slot_ctx->dev_info)
4231                 xhci_setup_addressable_virt_dev(xhci, udev);
4232         /* Otherwise, update the control endpoint ring enqueue pointer. */
4233         else
4234                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4235         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4236         ctrl_ctx->drop_flags = 0;
4237
4238         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4239                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4240
4241         trace_xhci_address_ctrl_ctx(ctrl_ctx);
4242         spin_lock_irqsave(&xhci->lock, flags);
4243         trace_xhci_setup_device(virt_dev);
4244         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4245                                         udev->slot_id, setup);
4246         if (ret) {
4247                 spin_unlock_irqrestore(&xhci->lock, flags);
4248                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4249                                 "FIXME: allocate a command ring segment");
4250                 goto out;
4251         }
4252         xhci_ring_cmd_db(xhci);
4253         spin_unlock_irqrestore(&xhci->lock, flags);
4254
4255         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4256         wait_for_completion(command->completion);
4257
4258         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4259          * the SetAddress() "recovery interval" required by USB and aborting the
4260          * command on a timeout.
4261          */
4262         switch (command->status) {
4263         case COMP_COMMAND_ABORTED:
4264         case COMP_COMMAND_RING_STOPPED:
4265                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4266                 ret = -ETIME;
4267                 break;
4268         case COMP_CONTEXT_STATE_ERROR:
4269         case COMP_SLOT_NOT_ENABLED_ERROR:
4270                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4271                          act, udev->slot_id);
4272                 ret = -EINVAL;
4273                 break;
4274         case COMP_USB_TRANSACTION_ERROR:
4275                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4276
4277                 mutex_unlock(&xhci->mutex);
4278                 ret = xhci_disable_slot(xhci, udev->slot_id);
4279                 xhci_free_virt_device(xhci, udev->slot_id);
4280                 if (!ret)
4281                         xhci_alloc_dev(hcd, udev);
4282                 kfree(command->completion);
4283                 kfree(command);
4284                 return -EPROTO;
4285         case COMP_INCOMPATIBLE_DEVICE_ERROR:
4286                 dev_warn(&udev->dev,
4287                          "ERROR: Incompatible device for setup %s command\n", act);
4288                 ret = -ENODEV;
4289                 break;
4290         case COMP_SUCCESS:
4291                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4292                                "Successful setup %s command", act);
4293                 break;
4294         default:
4295                 xhci_err(xhci,
4296                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
4297                          act, command->status);
4298                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4299                 ret = -EINVAL;
4300                 break;
4301         }
4302         if (ret)
4303                 goto out;
4304         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4305         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4306                         "Op regs DCBAA ptr = %#016llx", temp_64);
4307         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4308                 "Slot ID %d dcbaa entry @%p = %#016llx",
4309                 udev->slot_id,
4310                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4311                 (unsigned long long)
4312                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4313         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4314                         "Output Context DMA address = %#08llx",
4315                         (unsigned long long)virt_dev->out_ctx->dma);
4316         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4317                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4318         /*
4319          * USB core uses address 1 for the roothubs, so we add one to the
4320          * address given back to us by the HC.
4321          */
4322         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4323                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4324         /* Zero the input context control for later use */
4325         ctrl_ctx->add_flags = 0;
4326         ctrl_ctx->drop_flags = 0;
4327         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4328         udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4329
4330         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4331                        "Internal device address = %d",
4332                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4333 out:
4334         mutex_unlock(&xhci->mutex);
4335         if (command) {
4336                 kfree(command->completion);
4337                 kfree(command);
4338         }
4339         return ret;
4340 }
4341
4342 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4343 {
4344         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4345 }
4346
4347 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4348 {
4349         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4350 }
4351
4352 /*
4353  * Transfer the port index into real index in the HW port status
4354  * registers. Caculate offset between the port's PORTSC register
4355  * and port status base. Divide the number of per port register
4356  * to get the real index. The raw port number bases 1.
4357  */
4358 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4359 {
4360         struct xhci_hub *rhub;
4361
4362         rhub = xhci_get_rhub(hcd);
4363         return rhub->ports[port1 - 1]->hw_portnum + 1;
4364 }
4365
4366 /*
4367  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4368  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4369  */
4370 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4371                         struct usb_device *udev, u16 max_exit_latency)
4372 {
4373         struct xhci_virt_device *virt_dev;
4374         struct xhci_command *command;
4375         struct xhci_input_control_ctx *ctrl_ctx;
4376         struct xhci_slot_ctx *slot_ctx;
4377         unsigned long flags;
4378         int ret;
4379
4380         command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4381         if (!command)
4382                 return -ENOMEM;
4383
4384         spin_lock_irqsave(&xhci->lock, flags);
4385
4386         virt_dev = xhci->devs[udev->slot_id];
4387
4388         /*
4389          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4390          * xHC was re-initialized. Exit latency will be set later after
4391          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4392          */
4393
4394         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4395                 spin_unlock_irqrestore(&xhci->lock, flags);
4396                 return 0;
4397         }
4398
4399         /* Attempt to issue an Evaluate Context command to change the MEL. */
4400         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4401         if (!ctrl_ctx) {
4402                 spin_unlock_irqrestore(&xhci->lock, flags);
4403                 xhci_free_command(xhci, command);
4404                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4405                                 __func__);
4406                 return -ENOMEM;
4407         }
4408
4409         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4410         spin_unlock_irqrestore(&xhci->lock, flags);
4411
4412         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4413         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4414         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4415         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4416         slot_ctx->dev_state = 0;
4417
4418         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4419                         "Set up evaluate context for LPM MEL change.");
4420
4421         /* Issue and wait for the evaluate context command. */
4422         ret = xhci_configure_endpoint(xhci, udev, command,
4423                         true, true);
4424
4425         if (!ret) {
4426                 spin_lock_irqsave(&xhci->lock, flags);
4427                 virt_dev->current_mel = max_exit_latency;
4428                 spin_unlock_irqrestore(&xhci->lock, flags);
4429         }
4430
4431         xhci_free_command(xhci, command);
4432
4433         return ret;
4434 }
4435
4436 #ifdef CONFIG_PM
4437
4438 /* BESL to HIRD Encoding array for USB2 LPM */
4439 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4440         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4441
4442 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4443 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4444                                         struct usb_device *udev)
4445 {
4446         int u2del, besl, besl_host;
4447         int besl_device = 0;
4448         u32 field;
4449
4450         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4451         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4452
4453         if (field & USB_BESL_SUPPORT) {
4454                 for (besl_host = 0; besl_host < 16; besl_host++) {
4455                         if (xhci_besl_encoding[besl_host] >= u2del)
4456                                 break;
4457                 }
4458                 /* Use baseline BESL value as default */
4459                 if (field & USB_BESL_BASELINE_VALID)
4460                         besl_device = USB_GET_BESL_BASELINE(field);
4461                 else if (field & USB_BESL_DEEP_VALID)
4462                         besl_device = USB_GET_BESL_DEEP(field);
4463         } else {
4464                 if (u2del <= 50)
4465                         besl_host = 0;
4466                 else
4467                         besl_host = (u2del - 51) / 75 + 1;
4468         }
4469
4470         besl = besl_host + besl_device;
4471         if (besl > 15)
4472                 besl = 15;
4473
4474         return besl;
4475 }
4476
4477 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4478 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4479 {
4480         u32 field;
4481         int l1;
4482         int besld = 0;
4483         int hirdm = 0;
4484
4485         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4486
4487         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4488         l1 = udev->l1_params.timeout / 256;
4489
4490         /* device has preferred BESLD */
4491         if (field & USB_BESL_DEEP_VALID) {
4492                 besld = USB_GET_BESL_DEEP(field);
4493                 hirdm = 1;
4494         }
4495
4496         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4497 }
4498
4499 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4500                         struct usb_device *udev, int enable)
4501 {
4502         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4503         struct xhci_port **ports;
4504         __le32 __iomem  *pm_addr, *hlpm_addr;
4505         u32             pm_val, hlpm_val, field;
4506         unsigned int    port_num;
4507         unsigned long   flags;
4508         int             hird, exit_latency;
4509         int             ret;
4510
4511         if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4512                 return -EPERM;
4513
4514         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4515                         !udev->lpm_capable)
4516                 return -EPERM;
4517
4518         if (!udev->parent || udev->parent->parent ||
4519                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4520                 return -EPERM;
4521
4522         if (udev->usb2_hw_lpm_capable != 1)
4523                 return -EPERM;
4524
4525         spin_lock_irqsave(&xhci->lock, flags);
4526
4527         ports = xhci->usb2_rhub.ports;
4528         port_num = udev->portnum - 1;
4529         pm_addr = ports[port_num]->addr + PORTPMSC;
4530         pm_val = readl(pm_addr);
4531         hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4532
4533         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4534                         enable ? "enable" : "disable", port_num + 1);
4535
4536         if (enable) {
4537                 /* Host supports BESL timeout instead of HIRD */
4538                 if (udev->usb2_hw_lpm_besl_capable) {
4539                         /* if device doesn't have a preferred BESL value use a
4540                          * default one which works with mixed HIRD and BESL
4541                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4542                          */
4543                         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4544                         if ((field & USB_BESL_SUPPORT) &&
4545                             (field & USB_BESL_BASELINE_VALID))
4546                                 hird = USB_GET_BESL_BASELINE(field);
4547                         else
4548                                 hird = udev->l1_params.besl;
4549
4550                         exit_latency = xhci_besl_encoding[hird];
4551                         spin_unlock_irqrestore(&xhci->lock, flags);
4552
4553                         ret = xhci_change_max_exit_latency(xhci, udev,
4554                                                            exit_latency);
4555                         if (ret < 0)
4556                                 return ret;
4557                         spin_lock_irqsave(&xhci->lock, flags);
4558
4559                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4560                         writel(hlpm_val, hlpm_addr);
4561                         /* flush write */
4562                         readl(hlpm_addr);
4563                 } else {
4564                         hird = xhci_calculate_hird_besl(xhci, udev);
4565                 }
4566
4567                 pm_val &= ~PORT_HIRD_MASK;
4568                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4569                 writel(pm_val, pm_addr);
4570                 pm_val = readl(pm_addr);
4571                 pm_val |= PORT_HLE;
4572                 writel(pm_val, pm_addr);
4573                 /* flush write */
4574                 readl(pm_addr);
4575         } else {
4576                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4577                 writel(pm_val, pm_addr);
4578                 /* flush write */
4579                 readl(pm_addr);
4580                 if (udev->usb2_hw_lpm_besl_capable) {
4581                         spin_unlock_irqrestore(&xhci->lock, flags);
4582                         xhci_change_max_exit_latency(xhci, udev, 0);
4583                         readl_poll_timeout(ports[port_num]->addr, pm_val,
4584                                            (pm_val & PORT_PLS_MASK) == XDEV_U0,
4585                                            100, 10000);
4586                         return 0;
4587                 }
4588         }
4589
4590         spin_unlock_irqrestore(&xhci->lock, flags);
4591         return 0;
4592 }
4593
4594 /* check if a usb2 port supports a given extened capability protocol
4595  * only USB2 ports extended protocol capability values are cached.
4596  * Return 1 if capability is supported
4597  */
4598 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4599                                            unsigned capability)
4600 {
4601         u32 port_offset, port_count;
4602         int i;
4603
4604         for (i = 0; i < xhci->num_ext_caps; i++) {
4605                 if (xhci->ext_caps[i] & capability) {
4606                         /* port offsets starts at 1 */
4607                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4608                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4609                         if (port >= port_offset &&
4610                             port < port_offset + port_count)
4611                                 return 1;
4612                 }
4613         }
4614         return 0;
4615 }
4616
4617 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4618 {
4619         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4620         int             portnum = udev->portnum - 1;
4621
4622         if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4623                 return 0;
4624
4625         /* we only support lpm for non-hub device connected to root hub yet */
4626         if (!udev->parent || udev->parent->parent ||
4627                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4628                 return 0;
4629
4630         if (xhci->hw_lpm_support == 1 &&
4631                         xhci_check_usb2_port_capability(
4632                                 xhci, portnum, XHCI_HLC)) {
4633                 udev->usb2_hw_lpm_capable = 1;
4634                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4635                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4636                 if (xhci_check_usb2_port_capability(xhci, portnum,
4637                                         XHCI_BLC))
4638                         udev->usb2_hw_lpm_besl_capable = 1;
4639         }
4640
4641         return 0;
4642 }
4643
4644 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4645
4646 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4647 static unsigned long long xhci_service_interval_to_ns(
4648                 struct usb_endpoint_descriptor *desc)
4649 {
4650         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4651 }
4652
4653 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4654                 enum usb3_link_state state)
4655 {
4656         unsigned long long sel;
4657         unsigned long long pel;
4658         unsigned int max_sel_pel;
4659         char *state_name;
4660
4661         switch (state) {
4662         case USB3_LPM_U1:
4663                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4664                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4665                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4666                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4667                 state_name = "U1";
4668                 break;
4669         case USB3_LPM_U2:
4670                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4671                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4672                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4673                 state_name = "U2";
4674                 break;
4675         default:
4676                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4677                                 __func__);
4678                 return USB3_LPM_DISABLED;
4679         }
4680
4681         if (sel <= max_sel_pel && pel <= max_sel_pel)
4682                 return USB3_LPM_DEVICE_INITIATED;
4683
4684         if (sel > max_sel_pel)
4685                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4686                                 "due to long SEL %llu ms\n",
4687                                 state_name, sel);
4688         else
4689                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4690                                 "due to long PEL %llu ms\n",
4691                                 state_name, pel);
4692         return USB3_LPM_DISABLED;
4693 }
4694
4695 /* The U1 timeout should be the maximum of the following values:
4696  *  - For control endpoints, U1 system exit latency (SEL) * 3
4697  *  - For bulk endpoints, U1 SEL * 5
4698  *  - For interrupt endpoints:
4699  *    - Notification EPs, U1 SEL * 3
4700  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4701  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4702  */
4703 static unsigned long long xhci_calculate_intel_u1_timeout(
4704                 struct usb_device *udev,
4705                 struct usb_endpoint_descriptor *desc)
4706 {
4707         unsigned long long timeout_ns;
4708         int ep_type;
4709         int intr_type;
4710
4711         ep_type = usb_endpoint_type(desc);
4712         switch (ep_type) {
4713         case USB_ENDPOINT_XFER_CONTROL:
4714                 timeout_ns = udev->u1_params.sel * 3;
4715                 break;
4716         case USB_ENDPOINT_XFER_BULK:
4717                 timeout_ns = udev->u1_params.sel * 5;
4718                 break;
4719         case USB_ENDPOINT_XFER_INT:
4720                 intr_type = usb_endpoint_interrupt_type(desc);
4721                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4722                         timeout_ns = udev->u1_params.sel * 3;
4723                         break;
4724                 }
4725                 /* Otherwise the calculation is the same as isoc eps */
4726                 fallthrough;
4727         case USB_ENDPOINT_XFER_ISOC:
4728                 timeout_ns = xhci_service_interval_to_ns(desc);
4729                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4730                 if (timeout_ns < udev->u1_params.sel * 2)
4731                         timeout_ns = udev->u1_params.sel * 2;
4732                 break;
4733         default:
4734                 return 0;
4735         }
4736
4737         return timeout_ns;
4738 }
4739
4740 /* Returns the hub-encoded U1 timeout value. */
4741 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4742                 struct usb_device *udev,
4743                 struct usb_endpoint_descriptor *desc)
4744 {
4745         unsigned long long timeout_ns;
4746
4747         /* Prevent U1 if service interval is shorter than U1 exit latency */
4748         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4749                 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4750                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4751                         return USB3_LPM_DISABLED;
4752                 }
4753         }
4754
4755         if (xhci->quirks & XHCI_INTEL_HOST)
4756                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4757         else
4758                 timeout_ns = udev->u1_params.sel;
4759
4760         /* The U1 timeout is encoded in 1us intervals.
4761          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4762          */
4763         if (timeout_ns == USB3_LPM_DISABLED)
4764                 timeout_ns = 1;
4765         else
4766                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4767
4768         /* If the necessary timeout value is bigger than what we can set in the
4769          * USB 3.0 hub, we have to disable hub-initiated U1.
4770          */
4771         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4772                 return timeout_ns;
4773         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4774                         "due to long timeout %llu ms\n", timeout_ns);
4775         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4776 }
4777
4778 /* The U2 timeout should be the maximum of:
4779  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4780  *  - largest bInterval of any active periodic endpoint (to avoid going
4781  *    into lower power link states between intervals).
4782  *  - the U2 Exit Latency of the device
4783  */
4784 static unsigned long long xhci_calculate_intel_u2_timeout(
4785                 struct usb_device *udev,
4786                 struct usb_endpoint_descriptor *desc)
4787 {
4788         unsigned long long timeout_ns;
4789         unsigned long long u2_del_ns;
4790
4791         timeout_ns = 10 * 1000 * 1000;
4792
4793         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4794                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4795                 timeout_ns = xhci_service_interval_to_ns(desc);
4796
4797         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4798         if (u2_del_ns > timeout_ns)
4799                 timeout_ns = u2_del_ns;
4800
4801         return timeout_ns;
4802 }
4803
4804 /* Returns the hub-encoded U2 timeout value. */
4805 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4806                 struct usb_device *udev,
4807                 struct usb_endpoint_descriptor *desc)
4808 {
4809         unsigned long long timeout_ns;
4810
4811         /* Prevent U2 if service interval is shorter than U2 exit latency */
4812         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4813                 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4814                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4815                         return USB3_LPM_DISABLED;
4816                 }
4817         }
4818
4819         if (xhci->quirks & XHCI_INTEL_HOST)
4820                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4821         else
4822                 timeout_ns = udev->u2_params.sel;
4823
4824         /* The U2 timeout is encoded in 256us intervals */
4825         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4826         /* If the necessary timeout value is bigger than what we can set in the
4827          * USB 3.0 hub, we have to disable hub-initiated U2.
4828          */
4829         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4830                 return timeout_ns;
4831         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4832                         "due to long timeout %llu ms\n", timeout_ns);
4833         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4834 }
4835
4836 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4837                 struct usb_device *udev,
4838                 struct usb_endpoint_descriptor *desc,
4839                 enum usb3_link_state state,
4840                 u16 *timeout)
4841 {
4842         if (state == USB3_LPM_U1)
4843                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4844         else if (state == USB3_LPM_U2)
4845                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4846
4847         return USB3_LPM_DISABLED;
4848 }
4849
4850 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4851                 struct usb_device *udev,
4852                 struct usb_endpoint_descriptor *desc,
4853                 enum usb3_link_state state,
4854                 u16 *timeout)
4855 {
4856         u16 alt_timeout;
4857
4858         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4859                 desc, state, timeout);
4860
4861         /* If we found we can't enable hub-initiated LPM, and
4862          * the U1 or U2 exit latency was too high to allow
4863          * device-initiated LPM as well, then we will disable LPM
4864          * for this device, so stop searching any further.
4865          */
4866         if (alt_timeout == USB3_LPM_DISABLED) {
4867                 *timeout = alt_timeout;
4868                 return -E2BIG;
4869         }
4870         if (alt_timeout > *timeout)
4871                 *timeout = alt_timeout;
4872         return 0;
4873 }
4874
4875 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4876                 struct usb_device *udev,
4877                 struct usb_host_interface *alt,
4878                 enum usb3_link_state state,
4879                 u16 *timeout)
4880 {
4881         int j;
4882
4883         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4884                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4885                                         &alt->endpoint[j].desc, state, timeout))
4886                         return -E2BIG;
4887         }
4888         return 0;
4889 }
4890
4891 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4892                 enum usb3_link_state state)
4893 {
4894         struct usb_device *parent;
4895         unsigned int num_hubs;
4896
4897         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4898         for (parent = udev->parent, num_hubs = 0; parent->parent;
4899                         parent = parent->parent)
4900                 num_hubs++;
4901
4902         if (num_hubs < 2)
4903                 return 0;
4904
4905         dev_dbg(&udev->dev, "Disabling U1/U2 link state for device"
4906                         " below second-tier hub.\n");
4907         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4908                         "to decrease power consumption.\n");
4909         return -E2BIG;
4910 }
4911
4912 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4913                 struct usb_device *udev,
4914                 enum usb3_link_state state)
4915 {
4916         if (xhci->quirks & XHCI_INTEL_HOST)
4917                 return xhci_check_intel_tier_policy(udev, state);
4918         else
4919                 return 0;
4920 }
4921
4922 /* Returns the U1 or U2 timeout that should be enabled.
4923  * If the tier check or timeout setting functions return with a non-zero exit
4924  * code, that means the timeout value has been finalized and we shouldn't look
4925  * at any more endpoints.
4926  */
4927 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4928                         struct usb_device *udev, enum usb3_link_state state)
4929 {
4930         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4931         struct usb_host_config *config;
4932         char *state_name;
4933         int i;
4934         u16 timeout = USB3_LPM_DISABLED;
4935
4936         if (state == USB3_LPM_U1)
4937                 state_name = "U1";
4938         else if (state == USB3_LPM_U2)
4939                 state_name = "U2";
4940         else {
4941                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4942                                 state);
4943                 return timeout;
4944         }
4945
4946         /* Gather some information about the currently installed configuration
4947          * and alternate interface settings.
4948          */
4949         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4950                         state, &timeout))
4951                 return timeout;
4952
4953         config = udev->actconfig;
4954         if (!config)
4955                 return timeout;
4956
4957         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4958                 struct usb_driver *driver;
4959                 struct usb_interface *intf = config->interface[i];
4960
4961                 if (!intf)
4962                         continue;
4963
4964                 /* Check if any currently bound drivers want hub-initiated LPM
4965                  * disabled.
4966                  */
4967                 if (intf->dev.driver) {
4968                         driver = to_usb_driver(intf->dev.driver);
4969                         if (driver && driver->disable_hub_initiated_lpm) {
4970                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4971                                         state_name, driver->name);
4972                                 timeout = xhci_get_timeout_no_hub_lpm(udev,
4973                                                                       state);
4974                                 if (timeout == USB3_LPM_DISABLED)
4975                                         return timeout;
4976                         }
4977                 }
4978
4979                 /* Not sure how this could happen... */
4980                 if (!intf->cur_altsetting)
4981                         continue;
4982
4983                 if (xhci_update_timeout_for_interface(xhci, udev,
4984                                         intf->cur_altsetting,
4985                                         state, &timeout))
4986                         return timeout;
4987         }
4988         return timeout;
4989 }
4990
4991 static int calculate_max_exit_latency(struct usb_device *udev,
4992                 enum usb3_link_state state_changed,
4993                 u16 hub_encoded_timeout)
4994 {
4995         unsigned long long u1_mel_us = 0;
4996         unsigned long long u2_mel_us = 0;
4997         unsigned long long mel_us = 0;
4998         bool disabling_u1;
4999         bool disabling_u2;
5000         bool enabling_u1;
5001         bool enabling_u2;
5002
5003         disabling_u1 = (state_changed == USB3_LPM_U1 &&
5004                         hub_encoded_timeout == USB3_LPM_DISABLED);
5005         disabling_u2 = (state_changed == USB3_LPM_U2 &&
5006                         hub_encoded_timeout == USB3_LPM_DISABLED);
5007
5008         enabling_u1 = (state_changed == USB3_LPM_U1 &&
5009                         hub_encoded_timeout != USB3_LPM_DISABLED);
5010         enabling_u2 = (state_changed == USB3_LPM_U2 &&
5011                         hub_encoded_timeout != USB3_LPM_DISABLED);
5012
5013         /* If U1 was already enabled and we're not disabling it,
5014          * or we're going to enable U1, account for the U1 max exit latency.
5015          */
5016         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5017                         enabling_u1)
5018                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5019         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5020                         enabling_u2)
5021                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5022
5023         mel_us = max(u1_mel_us, u2_mel_us);
5024
5025         /* xHCI host controller max exit latency field is only 16 bits wide. */
5026         if (mel_us > MAX_EXIT) {
5027                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5028                                 "is too big.\n", mel_us);
5029                 return -E2BIG;
5030         }
5031         return mel_us;
5032 }
5033
5034 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5035 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5036                         struct usb_device *udev, enum usb3_link_state state)
5037 {
5038         struct xhci_hcd *xhci;
5039         u16 hub_encoded_timeout;
5040         int mel;
5041         int ret;
5042
5043         xhci = hcd_to_xhci(hcd);
5044         /* The LPM timeout values are pretty host-controller specific, so don't
5045          * enable hub-initiated timeouts unless the vendor has provided
5046          * information about their timeout algorithm.
5047          */
5048         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5049                         !xhci->devs[udev->slot_id])
5050                 return USB3_LPM_DISABLED;
5051
5052         if (xhci_check_tier_policy(xhci, udev, state) < 0)
5053                 return USB3_LPM_DISABLED;
5054
5055         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5056         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5057         if (mel < 0) {
5058                 /* Max Exit Latency is too big, disable LPM. */
5059                 hub_encoded_timeout = USB3_LPM_DISABLED;
5060                 mel = 0;
5061         }
5062
5063         ret = xhci_change_max_exit_latency(xhci, udev, mel);
5064         if (ret)
5065                 return ret;
5066         return hub_encoded_timeout;
5067 }
5068
5069 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5070                         struct usb_device *udev, enum usb3_link_state state)
5071 {
5072         struct xhci_hcd *xhci;
5073         u16 mel;
5074
5075         xhci = hcd_to_xhci(hcd);
5076         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5077                         !xhci->devs[udev->slot_id])
5078                 return 0;
5079
5080         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5081         return xhci_change_max_exit_latency(xhci, udev, mel);
5082 }
5083 #else /* CONFIG_PM */
5084
5085 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5086                                 struct usb_device *udev, int enable)
5087 {
5088         return 0;
5089 }
5090
5091 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5092 {
5093         return 0;
5094 }
5095
5096 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5097                         struct usb_device *udev, enum usb3_link_state state)
5098 {
5099         return USB3_LPM_DISABLED;
5100 }
5101
5102 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5103                         struct usb_device *udev, enum usb3_link_state state)
5104 {
5105         return 0;
5106 }
5107 #endif  /* CONFIG_PM */
5108
5109 /*-------------------------------------------------------------------------*/
5110
5111 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5112  * internal data structures for the device.
5113  */
5114 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5115                         struct usb_tt *tt, gfp_t mem_flags)
5116 {
5117         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5118         struct xhci_virt_device *vdev;
5119         struct xhci_command *config_cmd;
5120         struct xhci_input_control_ctx *ctrl_ctx;
5121         struct xhci_slot_ctx *slot_ctx;
5122         unsigned long flags;
5123         unsigned think_time;
5124         int ret;
5125
5126         /* Ignore root hubs */
5127         if (!hdev->parent)
5128                 return 0;
5129
5130         vdev = xhci->devs[hdev->slot_id];
5131         if (!vdev) {
5132                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5133                 return -EINVAL;
5134         }
5135
5136         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5137         if (!config_cmd)
5138                 return -ENOMEM;
5139
5140         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5141         if (!ctrl_ctx) {
5142                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5143                                 __func__);
5144                 xhci_free_command(xhci, config_cmd);
5145                 return -ENOMEM;
5146         }
5147
5148         spin_lock_irqsave(&xhci->lock, flags);
5149         if (hdev->speed == USB_SPEED_HIGH &&
5150                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5151                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5152                 xhci_free_command(xhci, config_cmd);
5153                 spin_unlock_irqrestore(&xhci->lock, flags);
5154                 return -ENOMEM;
5155         }
5156
5157         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5158         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5159         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5160         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5161         /*
5162          * refer to section 6.2.2: MTT should be 0 for full speed hub,
5163          * but it may be already set to 1 when setup an xHCI virtual
5164          * device, so clear it anyway.
5165          */
5166         if (tt->multi)
5167                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5168         else if (hdev->speed == USB_SPEED_FULL)
5169                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5170
5171         if (xhci->hci_version > 0x95) {
5172                 xhci_dbg(xhci, "xHCI version %x needs hub "
5173                                 "TT think time and number of ports\n",
5174                                 (unsigned int) xhci->hci_version);
5175                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5176                 /* Set TT think time - convert from ns to FS bit times.
5177                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
5178                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
5179                  *
5180                  * xHCI 1.0: this field shall be 0 if the device is not a
5181                  * High-spped hub.
5182                  */
5183                 think_time = tt->think_time;
5184                 if (think_time != 0)
5185                         think_time = (think_time / 666) - 1;
5186                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5187                         slot_ctx->tt_info |=
5188                                 cpu_to_le32(TT_THINK_TIME(think_time));
5189         } else {
5190                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5191                                 "TT think time or number of ports\n",
5192                                 (unsigned int) xhci->hci_version);
5193         }
5194         slot_ctx->dev_state = 0;
5195         spin_unlock_irqrestore(&xhci->lock, flags);
5196
5197         xhci_dbg(xhci, "Set up %s for hub device.\n",
5198                         (xhci->hci_version > 0x95) ?
5199                         "configure endpoint" : "evaluate context");
5200
5201         /* Issue and wait for the configure endpoint or
5202          * evaluate context command.
5203          */
5204         if (xhci->hci_version > 0x95)
5205                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5206                                 false, false);
5207         else
5208                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5209                                 true, false);
5210
5211         xhci_free_command(xhci, config_cmd);
5212         return ret;
5213 }
5214
5215 static int xhci_get_frame(struct usb_hcd *hcd)
5216 {
5217         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5218         /* EHCI mods by the periodic size.  Why? */
5219         return readl(&xhci->run_regs->microframe_index) >> 3;
5220 }
5221
5222 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5223 {
5224         xhci->usb2_rhub.hcd = hcd;
5225         hcd->speed = HCD_USB2;
5226         hcd->self.root_hub->speed = USB_SPEED_HIGH;
5227         /*
5228          * USB 2.0 roothub under xHCI has an integrated TT,
5229          * (rate matching hub) as opposed to having an OHCI/UHCI
5230          * companion controller.
5231          */
5232         hcd->has_tt = 1;
5233 }
5234
5235 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5236 {
5237         unsigned int minor_rev;
5238
5239         /*
5240          * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5241          * should return 0x31 for sbrn, or that the minor revision
5242          * is a two digit BCD containig minor and sub-minor numbers.
5243          * This was later clarified in xHCI 1.2.
5244          *
5245          * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5246          * minor revision set to 0x1 instead of 0x10.
5247          */
5248         if (xhci->usb3_rhub.min_rev == 0x1)
5249                 minor_rev = 1;
5250         else
5251                 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5252
5253         switch (minor_rev) {
5254         case 2:
5255                 hcd->speed = HCD_USB32;
5256                 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5257                 hcd->self.root_hub->rx_lanes = 2;
5258                 hcd->self.root_hub->tx_lanes = 2;
5259                 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5260                 break;
5261         case 1:
5262                 hcd->speed = HCD_USB31;
5263                 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5264                 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5265                 break;
5266         }
5267         xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5268                   minor_rev, minor_rev ? "Enhanced " : "");
5269
5270         xhci->usb3_rhub.hcd = hcd;
5271 }
5272
5273 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5274 {
5275         struct xhci_hcd         *xhci;
5276         /*
5277          * TODO: Check with DWC3 clients for sysdev according to
5278          * quirks
5279          */
5280         struct device           *dev = hcd->self.sysdev;
5281         int                     retval;
5282
5283         /* Accept arbitrarily long scatter-gather lists */
5284         hcd->self.sg_tablesize = ~0;
5285
5286         /* support to build packet from discontinuous buffers */
5287         hcd->self.no_sg_constraint = 1;
5288
5289         /* XHCI controllers don't stop the ep queue on short packets :| */
5290         hcd->self.no_stop_on_short = 1;
5291
5292         xhci = hcd_to_xhci(hcd);
5293
5294         if (!usb_hcd_is_primary_hcd(hcd)) {
5295                 xhci_hcd_init_usb3_data(xhci, hcd);
5296                 return 0;
5297         }
5298
5299         mutex_init(&xhci->mutex);
5300         xhci->main_hcd = hcd;
5301         xhci->cap_regs = hcd->regs;
5302         xhci->op_regs = hcd->regs +
5303                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5304         xhci->run_regs = hcd->regs +
5305                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5306         /* Cache read-only capability registers */
5307         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5308         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5309         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5310         xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5311         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5312         if (xhci->hci_version > 0x100)
5313                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5314
5315         xhci->quirks |= quirks;
5316
5317         get_quirks(dev, xhci);
5318
5319         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5320          * success event after a short transfer. This quirk will ignore such
5321          * spurious event.
5322          */
5323         if (xhci->hci_version > 0x96)
5324                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5325
5326         /* Make sure the HC is halted. */
5327         retval = xhci_halt(xhci);
5328         if (retval)
5329                 return retval;
5330
5331         xhci_zero_64b_regs(xhci);
5332
5333         xhci_dbg(xhci, "Resetting HCD\n");
5334         /* Reset the internal HC memory state and registers. */
5335         retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5336         if (retval)
5337                 return retval;
5338         xhci_dbg(xhci, "Reset complete\n");
5339
5340         /*
5341          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5342          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5343          * address memory pointers actually. So, this driver clears the AC64
5344          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5345          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5346          */
5347         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5348                 xhci->hcc_params &= ~BIT(0);
5349
5350         /* Set dma_mask and coherent_dma_mask to 64-bits,
5351          * if xHC supports 64-bit addressing */
5352         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5353                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5354                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5355                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5356         } else {
5357                 /*
5358                  * This is to avoid error in cases where a 32-bit USB
5359                  * controller is used on a 64-bit capable system.
5360                  */
5361                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5362                 if (retval)
5363                         return retval;
5364                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5365                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5366         }
5367
5368         xhci_dbg(xhci, "Calling HCD init\n");
5369         /* Initialize HCD and host controller data structures. */
5370         retval = xhci_init(hcd);
5371         if (retval)
5372                 return retval;
5373         xhci_dbg(xhci, "Called HCD init\n");
5374
5375         if (xhci_hcd_is_usb3(hcd))
5376                 xhci_hcd_init_usb3_data(xhci, hcd);
5377         else
5378                 xhci_hcd_init_usb2_data(xhci, hcd);
5379
5380         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5381                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5382
5383         return 0;
5384 }
5385 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5386
5387 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5388                 struct usb_host_endpoint *ep)
5389 {
5390         struct xhci_hcd *xhci;
5391         struct usb_device *udev;
5392         unsigned int slot_id;
5393         unsigned int ep_index;
5394         unsigned long flags;
5395
5396         xhci = hcd_to_xhci(hcd);
5397
5398         spin_lock_irqsave(&xhci->lock, flags);
5399         udev = (struct usb_device *)ep->hcpriv;
5400         slot_id = udev->slot_id;
5401         ep_index = xhci_get_endpoint_index(&ep->desc);
5402
5403         xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5404         xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5405         spin_unlock_irqrestore(&xhci->lock, flags);
5406 }
5407
5408 static const struct hc_driver xhci_hc_driver = {
5409         .description =          "xhci-hcd",
5410         .product_desc =         "xHCI Host Controller",
5411         .hcd_priv_size =        sizeof(struct xhci_hcd),
5412
5413         /*
5414          * generic hardware linkage
5415          */
5416         .irq =                  xhci_irq,
5417         .flags =                HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5418                                 HCD_BH,
5419
5420         /*
5421          * basic lifecycle operations
5422          */
5423         .reset =                NULL, /* set in xhci_init_driver() */
5424         .start =                xhci_run,
5425         .stop =                 xhci_stop,
5426         .shutdown =             xhci_shutdown,
5427
5428         /*
5429          * managing i/o requests and associated device resources
5430          */
5431         .map_urb_for_dma =      xhci_map_urb_for_dma,
5432         .unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5433         .urb_enqueue =          xhci_urb_enqueue,
5434         .urb_dequeue =          xhci_urb_dequeue,
5435         .alloc_dev =            xhci_alloc_dev,
5436         .free_dev =             xhci_free_dev,
5437         .alloc_streams =        xhci_alloc_streams,
5438         .free_streams =         xhci_free_streams,
5439         .add_endpoint =         xhci_add_endpoint,
5440         .drop_endpoint =        xhci_drop_endpoint,
5441         .endpoint_disable =     xhci_endpoint_disable,
5442         .endpoint_reset =       xhci_endpoint_reset,
5443         .check_bandwidth =      xhci_check_bandwidth,
5444         .reset_bandwidth =      xhci_reset_bandwidth,
5445         .address_device =       xhci_address_device,
5446         .enable_device =        xhci_enable_device,
5447         .update_hub_device =    xhci_update_hub_device,
5448         .reset_device =         xhci_discover_or_reset_device,
5449
5450         /*
5451          * scheduling support
5452          */
5453         .get_frame_number =     xhci_get_frame,
5454
5455         /*
5456          * root hub support
5457          */
5458         .hub_control =          xhci_hub_control,
5459         .hub_status_data =      xhci_hub_status_data,
5460         .bus_suspend =          xhci_bus_suspend,
5461         .bus_resume =           xhci_bus_resume,
5462         .get_resuming_ports =   xhci_get_resuming_ports,
5463
5464         /*
5465          * call back when device connected and addressed
5466          */
5467         .update_device =        xhci_update_device,
5468         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5469         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5470         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5471         .find_raw_port_number = xhci_find_raw_port_number,
5472         .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5473 };
5474
5475 void xhci_init_driver(struct hc_driver *drv,
5476                       const struct xhci_driver_overrides *over)
5477 {
5478         BUG_ON(!over);
5479
5480         /* Copy the generic table to drv then apply the overrides */
5481         *drv = xhci_hc_driver;
5482
5483         if (over) {
5484                 drv->hcd_priv_size += over->extra_priv_size;
5485                 if (over->reset)
5486                         drv->reset = over->reset;
5487                 if (over->start)
5488                         drv->start = over->start;
5489                 if (over->add_endpoint)
5490                         drv->add_endpoint = over->add_endpoint;
5491                 if (over->drop_endpoint)
5492                         drv->drop_endpoint = over->drop_endpoint;
5493                 if (over->check_bandwidth)
5494                         drv->check_bandwidth = over->check_bandwidth;
5495                 if (over->reset_bandwidth)
5496                         drv->reset_bandwidth = over->reset_bandwidth;
5497         }
5498 }
5499 EXPORT_SYMBOL_GPL(xhci_init_driver);
5500
5501 MODULE_DESCRIPTION(DRIVER_DESC);
5502 MODULE_AUTHOR(DRIVER_AUTHOR);
5503 MODULE_LICENSE("GPL");
5504
5505 static int __init xhci_hcd_init(void)
5506 {
5507         /*
5508          * Check the compiler generated sizes of structures that must be laid
5509          * out in specific ways for hardware access.
5510          */
5511         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5512         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5513         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5514         /* xhci_device_control has eight fields, and also
5515          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5516          */
5517         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5518         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5519         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5520         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5521         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5522         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5523         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5524
5525         if (usb_disabled())
5526                 return -ENODEV;
5527
5528         xhci_debugfs_create_root();
5529         xhci_dbc_init();
5530
5531         return 0;
5532 }
5533
5534 /*
5535  * If an init function is provided, an exit function must also be provided
5536  * to allow module unload.
5537  */
5538 static void __exit xhci_hcd_fini(void)
5539 {
5540         xhci_debugfs_remove_root();
5541         xhci_dbc_exit();
5542 }
5543
5544 module_init(xhci_hcd_init);
5545 module_exit(xhci_hcd_fini);