bdb6dd819a3baab6b767eef6dc149f4336ca25b8
[platform/kernel/linux-rpi.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/iommu.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/log2.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/slab.h>
19 #include <linux/dmi.h>
20 #include <linux/dma-mapping.h>
21
22 #include "xhci.h"
23 #include "xhci-trace.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29
30 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40
41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43         struct xhci_segment *seg = ring->first_seg;
44
45         if (!td || !td->start_seg)
46                 return false;
47         do {
48                 if (seg == td->start_seg)
49                         return true;
50                 seg = seg->next;
51         } while (seg && seg != ring->first_seg);
52
53         return false;
54 }
55
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
70 {
71         u32     result;
72         int     ret;
73
74         ret = readl_poll_timeout_atomic(ptr, result,
75                                         (result & mask) == done ||
76                                         result == U32_MAX,
77                                         1, timeout_us);
78         if (result == U32_MAX)          /* card removed */
79                 return -ENODEV;
80
81         return ret;
82 }
83
84 /*
85  * Disable interrupts and begin the xHCI halting process.
86  */
87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89         u32 halted;
90         u32 cmd;
91         u32 mask;
92
93         mask = ~(XHCI_IRQS);
94         halted = readl(&xhci->op_regs->status) & STS_HALT;
95         if (!halted)
96                 mask &= ~CMD_RUN;
97
98         cmd = readl(&xhci->op_regs->command);
99         cmd &= mask;
100         writel(cmd, &xhci->op_regs->command);
101 }
102
103 /*
104  * Force HC into halt state.
105  *
106  * Disable any IRQs and clear the run/stop bit.
107  * HC will complete any current and actively pipelined transactions, and
108  * should halt within 16 ms of the run/stop bit being cleared.
109  * Read HC Halted bit in the status register to see when the HC is finished.
110  */
111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113         int ret;
114
115         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
116         xhci_quiesce(xhci);
117
118         ret = xhci_handshake(&xhci->op_regs->status,
119                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
120         if (ret) {
121                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
122                 return ret;
123         }
124
125         xhci->xhc_state |= XHCI_STATE_HALTED;
126         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
127
128         return ret;
129 }
130
131 /*
132  * Set the run bit and wait for the host to be running.
133  */
134 int xhci_start(struct xhci_hcd *xhci)
135 {
136         u32 temp;
137         int ret;
138
139         temp = readl(&xhci->op_regs->command);
140         temp |= (CMD_RUN);
141         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
142                         temp);
143         writel(temp, &xhci->op_regs->command);
144
145         /*
146          * Wait for the HCHalted Status bit to be 0 to indicate the host is
147          * running.
148          */
149         ret = xhci_handshake(&xhci->op_regs->status,
150                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
151         if (ret == -ETIMEDOUT)
152                 xhci_err(xhci, "Host took too long to start, "
153                                 "waited %u microseconds.\n",
154                                 XHCI_MAX_HALT_USEC);
155         if (!ret) {
156                 /* clear state flags. Including dying, halted or removing */
157                 xhci->xhc_state = 0;
158                 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
159         }
160
161         return ret;
162 }
163
164 /*
165  * Reset a halted HC.
166  *
167  * This resets pipelines, timers, counters, state machines, etc.
168  * Transactions will be terminated immediately, and operational registers
169  * will be set to their defaults.
170  */
171 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
172 {
173         u32 command;
174         u32 state;
175         int ret;
176
177         state = readl(&xhci->op_regs->status);
178
179         if (state == ~(u32)0) {
180                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
181                 return -ENODEV;
182         }
183
184         if ((state & STS_HALT) == 0) {
185                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
186                 return 0;
187         }
188
189         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
190         command = readl(&xhci->op_regs->command);
191         command |= CMD_RESET;
192         writel(command, &xhci->op_regs->command);
193
194         /* Existing Intel xHCI controllers require a delay of 1 mS,
195          * after setting the CMD_RESET bit, and before accessing any
196          * HC registers. This allows the HC to complete the
197          * reset operation and be ready for HC register access.
198          * Without this delay, the subsequent HC register access,
199          * may result in a system hang very rarely.
200          */
201         if (xhci->quirks & XHCI_INTEL_HOST)
202                 udelay(1000);
203
204         ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
205         if (ret)
206                 return ret;
207
208         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
209                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
210
211         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
212                          "Wait for controller to be ready for doorbell rings");
213         /*
214          * xHCI cannot write to any doorbells or operational registers other
215          * than status until the "Controller Not Ready" flag is cleared.
216          */
217         ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
218
219         xhci->usb2_rhub.bus_state.port_c_suspend = 0;
220         xhci->usb2_rhub.bus_state.suspended_ports = 0;
221         xhci->usb2_rhub.bus_state.resuming_ports = 0;
222         xhci->usb3_rhub.bus_state.port_c_suspend = 0;
223         xhci->usb3_rhub.bus_state.suspended_ports = 0;
224         xhci->usb3_rhub.bus_state.resuming_ports = 0;
225
226         return ret;
227 }
228
229 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
230 {
231         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
232         struct iommu_domain *domain;
233         int err, i;
234         u64 val;
235         u32 intrs;
236
237         /*
238          * Some Renesas controllers get into a weird state if they are
239          * reset while programmed with 64bit addresses (they will preserve
240          * the top half of the address in internal, non visible
241          * registers). You end up with half the address coming from the
242          * kernel, and the other half coming from the firmware. Also,
243          * changing the programming leads to extra accesses even if the
244          * controller is supposed to be halted. The controller ends up with
245          * a fatal fault, and is then ripe for being properly reset.
246          *
247          * Special care is taken to only apply this if the device is behind
248          * an iommu. Doing anything when there is no iommu is definitely
249          * unsafe...
250          */
251         domain = iommu_get_domain_for_dev(dev);
252         if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
253             domain->type == IOMMU_DOMAIN_IDENTITY)
254                 return;
255
256         xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
257
258         /* Clear HSEIE so that faults do not get signaled */
259         val = readl(&xhci->op_regs->command);
260         val &= ~CMD_HSEIE;
261         writel(val, &xhci->op_regs->command);
262
263         /* Clear HSE (aka FATAL) */
264         val = readl(&xhci->op_regs->status);
265         val |= STS_FATAL;
266         writel(val, &xhci->op_regs->status);
267
268         /* Now zero the registers, and brace for impact */
269         val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
270         if (upper_32_bits(val))
271                 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
272         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
273         if (upper_32_bits(val))
274                 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
275
276         intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
277                       ARRAY_SIZE(xhci->run_regs->ir_set));
278
279         for (i = 0; i < intrs; i++) {
280                 struct xhci_intr_reg __iomem *ir;
281
282                 ir = &xhci->run_regs->ir_set[i];
283                 val = xhci_read_64(xhci, &ir->erst_base);
284                 if (upper_32_bits(val))
285                         xhci_write_64(xhci, 0, &ir->erst_base);
286                 val= xhci_read_64(xhci, &ir->erst_dequeue);
287                 if (upper_32_bits(val))
288                         xhci_write_64(xhci, 0, &ir->erst_dequeue);
289         }
290
291         /* Wait for the fault to appear. It will be cleared on reset */
292         err = xhci_handshake(&xhci->op_regs->status,
293                              STS_FATAL, STS_FATAL,
294                              XHCI_MAX_HALT_USEC);
295         if (!err)
296                 xhci_info(xhci, "Fault detected\n");
297 }
298
299 static int xhci_enable_interrupter(struct xhci_interrupter *ir)
300 {
301         u32 iman;
302
303         if (!ir || !ir->ir_set)
304                 return -EINVAL;
305
306         iman = readl(&ir->ir_set->irq_pending);
307         writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
308
309         return 0;
310 }
311
312 static int xhci_disable_interrupter(struct xhci_interrupter *ir)
313 {
314         u32 iman;
315
316         if (!ir || !ir->ir_set)
317                 return -EINVAL;
318
319         iman = readl(&ir->ir_set->irq_pending);
320         writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
321
322         return 0;
323 }
324
325 #ifdef CONFIG_USB_PCI
326 /*
327  * Set up MSI
328  */
329 static int xhci_setup_msi(struct xhci_hcd *xhci)
330 {
331         int ret;
332         /*
333          * TODO:Check with MSI Soc for sysdev
334          */
335         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
336
337         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
338         if (ret < 0) {
339                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
340                                 "failed to allocate MSI entry");
341                 return ret;
342         }
343
344         ret = request_irq(pdev->irq, xhci_msi_irq,
345                                 0, "xhci_hcd", xhci_to_hcd(xhci));
346         if (ret) {
347                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
348                                 "disable MSI interrupt");
349                 pci_free_irq_vectors(pdev);
350         }
351
352         return ret;
353 }
354
355 /*
356  * Set up MSI-X
357  */
358 static int xhci_setup_msix(struct xhci_hcd *xhci)
359 {
360         int i, ret;
361         struct usb_hcd *hcd = xhci_to_hcd(xhci);
362         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
363
364         /*
365          * calculate number of msi-x vectors supported.
366          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
367          *   with max number of interrupters based on the xhci HCSPARAMS1.
368          * - num_online_cpus: maximum msi-x vectors per CPUs core.
369          *   Add additional 1 vector to ensure always available interrupt.
370          */
371         xhci->msix_count = min(num_online_cpus() + 1,
372                                 HCS_MAX_INTRS(xhci->hcs_params1));
373
374         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
375                         PCI_IRQ_MSIX);
376         if (ret < 0) {
377                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
378                                 "Failed to enable MSI-X");
379                 return ret;
380         }
381
382         for (i = 0; i < xhci->msix_count; i++) {
383                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
384                                 "xhci_hcd", xhci_to_hcd(xhci));
385                 if (ret)
386                         goto disable_msix;
387         }
388
389         hcd->msix_enabled = 1;
390         return ret;
391
392 disable_msix:
393         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
394         while (--i >= 0)
395                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
396         pci_free_irq_vectors(pdev);
397         return ret;
398 }
399
400 /* Free any IRQs and disable MSI-X */
401 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
402 {
403         struct usb_hcd *hcd = xhci_to_hcd(xhci);
404         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
405
406         if (xhci->quirks & XHCI_PLAT)
407                 return;
408
409         /* return if using legacy interrupt */
410         if (hcd->irq > 0)
411                 return;
412
413         if (hcd->msix_enabled) {
414                 int i;
415
416                 for (i = 0; i < xhci->msix_count; i++)
417                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
418         } else {
419                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
420         }
421
422         pci_free_irq_vectors(pdev);
423         hcd->msix_enabled = 0;
424 }
425
426 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
427 {
428         struct usb_hcd *hcd = xhci_to_hcd(xhci);
429
430         if (hcd->msix_enabled) {
431                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
432                 int i;
433
434                 for (i = 0; i < xhci->msix_count; i++)
435                         synchronize_irq(pci_irq_vector(pdev, i));
436         }
437 }
438
439 static int xhci_try_enable_msi(struct usb_hcd *hcd)
440 {
441         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
442         struct pci_dev  *pdev;
443         int ret;
444
445         /* The xhci platform device has set up IRQs through usb_add_hcd. */
446         if (xhci->quirks & XHCI_PLAT)
447                 return 0;
448
449         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
450         /*
451          * Some Fresco Logic host controllers advertise MSI, but fail to
452          * generate interrupts.  Don't even try to enable MSI.
453          */
454         if (xhci->quirks & XHCI_BROKEN_MSI)
455                 goto legacy_irq;
456
457         /* unregister the legacy interrupt */
458         if (hcd->irq)
459                 free_irq(hcd->irq, hcd);
460         hcd->irq = 0;
461
462         ret = xhci_setup_msix(xhci);
463         if (ret)
464                 /* fall back to msi*/
465                 ret = xhci_setup_msi(xhci);
466
467         if (!ret) {
468                 hcd->msi_enabled = 1;
469                 return 0;
470         }
471
472         if (!pdev->irq) {
473                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
474                 return -EINVAL;
475         }
476
477  legacy_irq:
478         if (!strlen(hcd->irq_descr))
479                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
480                          hcd->driver->description, hcd->self.busnum);
481
482         /* fall back to legacy interrupt*/
483         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
484                         hcd->irq_descr, hcd);
485         if (ret) {
486                 xhci_err(xhci, "request interrupt %d failed\n",
487                                 pdev->irq);
488                 return ret;
489         }
490         hcd->irq = pdev->irq;
491         return 0;
492 }
493
494 #else
495
496 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
497 {
498         return 0;
499 }
500
501 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
502 {
503 }
504
505 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
506 {
507 }
508
509 #endif
510
511 static void compliance_mode_recovery(struct timer_list *t)
512 {
513         struct xhci_hcd *xhci;
514         struct usb_hcd *hcd;
515         struct xhci_hub *rhub;
516         u32 temp;
517         int i;
518
519         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
520         rhub = &xhci->usb3_rhub;
521         hcd = rhub->hcd;
522
523         if (!hcd)
524                 return;
525
526         for (i = 0; i < rhub->num_ports; i++) {
527                 temp = readl(rhub->ports[i]->addr);
528                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
529                         /*
530                          * Compliance Mode Detected. Letting USB Core
531                          * handle the Warm Reset
532                          */
533                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
534                                         "Compliance mode detected->port %d",
535                                         i + 1);
536                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
537                                         "Attempting compliance mode recovery");
538
539                         if (hcd->state == HC_STATE_SUSPENDED)
540                                 usb_hcd_resume_root_hub(hcd);
541
542                         usb_hcd_poll_rh_status(hcd);
543                 }
544         }
545
546         if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
547                 mod_timer(&xhci->comp_mode_recovery_timer,
548                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
549 }
550
551 /*
552  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
553  * that causes ports behind that hardware to enter compliance mode sometimes.
554  * The quirk creates a timer that polls every 2 seconds the link state of
555  * each host controller's port and recovers it by issuing a Warm reset
556  * if Compliance mode is detected, otherwise the port will become "dead" (no
557  * device connections or disconnections will be detected anymore). Becasue no
558  * status event is generated when entering compliance mode (per xhci spec),
559  * this quirk is needed on systems that have the failing hardware installed.
560  */
561 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
562 {
563         xhci->port_status_u0 = 0;
564         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
565                     0);
566         xhci->comp_mode_recovery_timer.expires = jiffies +
567                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
568
569         add_timer(&xhci->comp_mode_recovery_timer);
570         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
571                         "Compliance mode recovery timer initialized");
572 }
573
574 /*
575  * This function identifies the systems that have installed the SN65LVPE502CP
576  * USB3.0 re-driver and that need the Compliance Mode Quirk.
577  * Systems:
578  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
579  */
580 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
581 {
582         const char *dmi_product_name, *dmi_sys_vendor;
583
584         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
585         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
586         if (!dmi_product_name || !dmi_sys_vendor)
587                 return false;
588
589         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
590                 return false;
591
592         if (strstr(dmi_product_name, "Z420") ||
593                         strstr(dmi_product_name, "Z620") ||
594                         strstr(dmi_product_name, "Z820") ||
595                         strstr(dmi_product_name, "Z1 Workstation"))
596                 return true;
597
598         return false;
599 }
600
601 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
602 {
603         return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
604 }
605
606
607 /*
608  * Initialize memory for HCD and xHC (one-time init).
609  *
610  * Program the PAGESIZE register, initialize the device context array, create
611  * device contexts (?), set up a command ring segment (or two?), create event
612  * ring (one for now).
613  */
614 static int xhci_init(struct usb_hcd *hcd)
615 {
616         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
617         int retval;
618
619         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
620         spin_lock_init(&xhci->lock);
621         if (xhci->hci_version == 0x95 && link_quirk) {
622                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
623                                 "QUIRK: Not clearing Link TRB chain bits.");
624                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
625         } else {
626                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
627                                 "xHCI doesn't need link TRB QUIRK");
628         }
629         retval = xhci_mem_init(xhci, GFP_KERNEL);
630         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
631
632         /* Initializing Compliance Mode Recovery Data If Needed */
633         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
634                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
635                 compliance_mode_recovery_timer_init(xhci);
636         }
637
638         return retval;
639 }
640
641 /*-------------------------------------------------------------------------*/
642
643 static int xhci_run_finished(struct xhci_hcd *xhci)
644 {
645         struct xhci_interrupter *ir = xhci->interrupter;
646         unsigned long   flags;
647         u32             temp;
648
649         /*
650          * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
651          * Protect the short window before host is running with a lock
652          */
653         spin_lock_irqsave(&xhci->lock, flags);
654
655         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
656         temp = readl(&xhci->op_regs->command);
657         temp |= (CMD_EIE);
658         writel(temp, &xhci->op_regs->command);
659
660         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
661         xhci_enable_interrupter(ir);
662
663         if (xhci_start(xhci)) {
664                 xhci_halt(xhci);
665                 spin_unlock_irqrestore(&xhci->lock, flags);
666                 return -ENODEV;
667         }
668
669         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
670
671         if (xhci->quirks & XHCI_NEC_HOST)
672                 xhci_ring_cmd_db(xhci);
673
674         spin_unlock_irqrestore(&xhci->lock, flags);
675
676         return 0;
677 }
678
679 /*
680  * Start the HC after it was halted.
681  *
682  * This function is called by the USB core when the HC driver is added.
683  * Its opposite is xhci_stop().
684  *
685  * xhci_init() must be called once before this function can be called.
686  * Reset the HC, enable device slot contexts, program DCBAAP, and
687  * set command ring pointer and event ring pointer.
688  *
689  * Setup MSI-X vectors and enable interrupts.
690  */
691 int xhci_run(struct usb_hcd *hcd)
692 {
693         u32 temp;
694         u64 temp_64;
695         int ret;
696         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
697         struct xhci_interrupter *ir = xhci->interrupter;
698         /* Start the xHCI host controller running only after the USB 2.0 roothub
699          * is setup.
700          */
701
702         hcd->uses_new_polling = 1;
703         if (!usb_hcd_is_primary_hcd(hcd))
704                 return xhci_run_finished(xhci);
705
706         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
707
708         ret = xhci_try_enable_msi(hcd);
709         if (ret)
710                 return ret;
711
712         temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
713         temp_64 &= ~ERST_PTR_MASK;
714         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
715                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
716
717         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
718                         "// Set the interrupt modulation register");
719         temp = readl(&ir->ir_set->irq_control);
720         temp &= ~ER_IRQ_INTERVAL_MASK;
721         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
722         writel(temp, &ir->ir_set->irq_control);
723
724         if (xhci->quirks & XHCI_NEC_HOST) {
725                 struct xhci_command *command;
726
727                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
728                 if (!command)
729                         return -ENOMEM;
730
731                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
732                                 TRB_TYPE(TRB_NEC_GET_FW));
733                 if (ret)
734                         xhci_free_command(xhci, command);
735         }
736         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
737                         "Finished %s for main hcd", __func__);
738
739         xhci_create_dbc_dev(xhci);
740
741         xhci_debugfs_init(xhci);
742
743         if (xhci_has_one_roothub(xhci))
744                 return xhci_run_finished(xhci);
745
746         set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
747
748         return 0;
749 }
750 EXPORT_SYMBOL_GPL(xhci_run);
751
752 /*
753  * Stop xHCI driver.
754  *
755  * This function is called by the USB core when the HC driver is removed.
756  * Its opposite is xhci_run().
757  *
758  * Disable device contexts, disable IRQs, and quiesce the HC.
759  * Reset the HC, finish any completed transactions, and cleanup memory.
760  */
761 static void xhci_stop(struct usb_hcd *hcd)
762 {
763         u32 temp;
764         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
765         struct xhci_interrupter *ir = xhci->interrupter;
766
767         mutex_lock(&xhci->mutex);
768
769         /* Only halt host and free memory after both hcds are removed */
770         if (!usb_hcd_is_primary_hcd(hcd)) {
771                 mutex_unlock(&xhci->mutex);
772                 return;
773         }
774
775         xhci_remove_dbc_dev(xhci);
776
777         spin_lock_irq(&xhci->lock);
778         xhci->xhc_state |= XHCI_STATE_HALTED;
779         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
780         xhci_halt(xhci);
781         xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
782         spin_unlock_irq(&xhci->lock);
783
784         xhci_cleanup_msix(xhci);
785
786         /* Deleting Compliance Mode Recovery Timer */
787         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
788                         (!(xhci_all_ports_seen_u0(xhci)))) {
789                 del_timer_sync(&xhci->comp_mode_recovery_timer);
790                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
791                                 "%s: compliance mode recovery timer deleted",
792                                 __func__);
793         }
794
795         if (xhci->quirks & XHCI_AMD_PLL_FIX)
796                 usb_amd_dev_put();
797
798         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
799                         "// Disabling event ring interrupts");
800         temp = readl(&xhci->op_regs->status);
801         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
802         xhci_disable_interrupter(ir);
803
804         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
805         xhci_mem_cleanup(xhci);
806         xhci_debugfs_exit(xhci);
807         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
808                         "xhci_stop completed - status = %x",
809                         readl(&xhci->op_regs->status));
810         mutex_unlock(&xhci->mutex);
811 }
812
813 /*
814  * Shutdown HC (not bus-specific)
815  *
816  * This is called when the machine is rebooting or halting.  We assume that the
817  * machine will be powered off, and the HC's internal state will be reset.
818  * Don't bother to free memory.
819  *
820  * This will only ever be called with the main usb_hcd (the USB3 roothub).
821  */
822 void xhci_shutdown(struct usb_hcd *hcd)
823 {
824         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
825
826         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
827                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
828
829         /* Don't poll the roothubs after shutdown. */
830         xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
831                         __func__, hcd->self.busnum);
832         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
833         del_timer_sync(&hcd->rh_timer);
834
835         if (xhci->shared_hcd) {
836                 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
837                 del_timer_sync(&xhci->shared_hcd->rh_timer);
838         }
839
840         spin_lock_irq(&xhci->lock);
841         xhci_halt(xhci);
842
843         /*
844          * Workaround for spurious wakeps at shutdown with HSW, and for boot
845          * firmware delay in ADL-P PCH if port are left in U3 at shutdown
846          */
847         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
848             xhci->quirks & XHCI_RESET_TO_DEFAULT)
849                 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
850
851         spin_unlock_irq(&xhci->lock);
852
853         xhci_cleanup_msix(xhci);
854
855         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
856                         "xhci_shutdown completed - status = %x",
857                         readl(&xhci->op_regs->status));
858 }
859 EXPORT_SYMBOL_GPL(xhci_shutdown);
860
861 #ifdef CONFIG_PM
862 static void xhci_save_registers(struct xhci_hcd *xhci)
863 {
864         struct xhci_interrupter *ir = xhci->interrupter;
865
866         xhci->s3.command = readl(&xhci->op_regs->command);
867         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
868         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
869         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
870
871         if (!ir)
872                 return;
873
874         ir->s3_erst_size = readl(&ir->ir_set->erst_size);
875         ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
876         ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
877         ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
878         ir->s3_irq_control = readl(&ir->ir_set->irq_control);
879 }
880
881 static void xhci_restore_registers(struct xhci_hcd *xhci)
882 {
883         struct xhci_interrupter *ir = xhci->interrupter;
884
885         writel(xhci->s3.command, &xhci->op_regs->command);
886         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
887         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
888         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
889         writel(ir->s3_erst_size, &ir->ir_set->erst_size);
890         xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
891         xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
892         writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
893         writel(ir->s3_irq_control, &ir->ir_set->irq_control);
894 }
895
896 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
897 {
898         u64     val_64;
899
900         /* step 2: initialize command ring buffer */
901         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
902         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
903                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
904                                       xhci->cmd_ring->dequeue) &
905                  (u64) ~CMD_RING_RSVD_BITS) |
906                 xhci->cmd_ring->cycle_state;
907         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
908                         "// Setting command ring address to 0x%llx",
909                         (long unsigned long) val_64);
910         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
911 }
912
913 /*
914  * The whole command ring must be cleared to zero when we suspend the host.
915  *
916  * The host doesn't save the command ring pointer in the suspend well, so we
917  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
918  * aligned, because of the reserved bits in the command ring dequeue pointer
919  * register.  Therefore, we can't just set the dequeue pointer back in the
920  * middle of the ring (TRBs are 16-byte aligned).
921  */
922 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
923 {
924         struct xhci_ring *ring;
925         struct xhci_segment *seg;
926
927         ring = xhci->cmd_ring;
928         seg = ring->deq_seg;
929         do {
930                 memset(seg->trbs, 0,
931                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
932                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
933                         cpu_to_le32(~TRB_CYCLE);
934                 seg = seg->next;
935         } while (seg != ring->deq_seg);
936
937         /* Reset the software enqueue and dequeue pointers */
938         ring->deq_seg = ring->first_seg;
939         ring->dequeue = ring->first_seg->trbs;
940         ring->enq_seg = ring->deq_seg;
941         ring->enqueue = ring->dequeue;
942
943         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
944         /*
945          * Ring is now zeroed, so the HW should look for change of ownership
946          * when the cycle bit is set to 1.
947          */
948         ring->cycle_state = 1;
949
950         /*
951          * Reset the hardware dequeue pointer.
952          * Yes, this will need to be re-written after resume, but we're paranoid
953          * and want to make sure the hardware doesn't access bogus memory
954          * because, say, the BIOS or an SMI started the host without changing
955          * the command ring pointers.
956          */
957         xhci_set_cmd_ring_deq(xhci);
958 }
959
960 /*
961  * Disable port wake bits if do_wakeup is not set.
962  *
963  * Also clear a possible internal port wake state left hanging for ports that
964  * detected termination but never successfully enumerated (trained to 0U).
965  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
966  * at enumeration clears this wake, force one here as well for unconnected ports
967  */
968
969 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
970                                        struct xhci_hub *rhub,
971                                        bool do_wakeup)
972 {
973         unsigned long flags;
974         u32 t1, t2, portsc;
975         int i;
976
977         spin_lock_irqsave(&xhci->lock, flags);
978
979         for (i = 0; i < rhub->num_ports; i++) {
980                 portsc = readl(rhub->ports[i]->addr);
981                 t1 = xhci_port_state_to_neutral(portsc);
982                 t2 = t1;
983
984                 /* clear wake bits if do_wake is not set */
985                 if (!do_wakeup)
986                         t2 &= ~PORT_WAKE_BITS;
987
988                 /* Don't touch csc bit if connected or connect change is set */
989                 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
990                         t2 |= PORT_CSC;
991
992                 if (t1 != t2) {
993                         writel(t2, rhub->ports[i]->addr);
994                         xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
995                                  rhub->hcd->self.busnum, i + 1, portsc, t2);
996                 }
997         }
998         spin_unlock_irqrestore(&xhci->lock, flags);
999 }
1000
1001 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
1002 {
1003         struct xhci_port        **ports;
1004         int                     port_index;
1005         u32                     status;
1006         u32                     portsc;
1007
1008         status = readl(&xhci->op_regs->status);
1009         if (status & STS_EINT)
1010                 return true;
1011         /*
1012          * Checking STS_EINT is not enough as there is a lag between a change
1013          * bit being set and the Port Status Change Event that it generated
1014          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
1015          */
1016
1017         port_index = xhci->usb2_rhub.num_ports;
1018         ports = xhci->usb2_rhub.ports;
1019         while (port_index--) {
1020                 portsc = readl(ports[port_index]->addr);
1021                 if (portsc & PORT_CHANGE_MASK ||
1022                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
1023                         return true;
1024         }
1025         port_index = xhci->usb3_rhub.num_ports;
1026         ports = xhci->usb3_rhub.ports;
1027         while (port_index--) {
1028                 portsc = readl(ports[port_index]->addr);
1029                 if (portsc & PORT_CHANGE_MASK ||
1030                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
1031                         return true;
1032         }
1033         return false;
1034 }
1035
1036 /*
1037  * Stop HC (not bus-specific)
1038  *
1039  * This is called when the machine transition into S3/S4 mode.
1040  *
1041  */
1042 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
1043 {
1044         int                     rc = 0;
1045         unsigned int            delay = XHCI_MAX_HALT_USEC * 2;
1046         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1047         u32                     command;
1048         u32                     res;
1049
1050         if (!hcd->state)
1051                 return 0;
1052
1053         if (hcd->state != HC_STATE_SUSPENDED ||
1054             (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
1055                 return -EINVAL;
1056
1057         /* Clear root port wake on bits if wakeup not allowed. */
1058         xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
1059         xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
1060
1061         if (!HCD_HW_ACCESSIBLE(hcd))
1062                 return 0;
1063
1064         xhci_dbc_suspend(xhci);
1065
1066         /* Don't poll the roothubs on bus suspend. */
1067         xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
1068                  __func__, hcd->self.busnum);
1069         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1070         del_timer_sync(&hcd->rh_timer);
1071         if (xhci->shared_hcd) {
1072                 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1073                 del_timer_sync(&xhci->shared_hcd->rh_timer);
1074         }
1075
1076         if (xhci->quirks & XHCI_SUSPEND_DELAY)
1077                 usleep_range(1000, 1500);
1078
1079         spin_lock_irq(&xhci->lock);
1080         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1081         if (xhci->shared_hcd)
1082                 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1083         /* step 1: stop endpoint */
1084         /* skipped assuming that port suspend has done */
1085
1086         /* step 2: clear Run/Stop bit */
1087         command = readl(&xhci->op_regs->command);
1088         command &= ~CMD_RUN;
1089         writel(command, &xhci->op_regs->command);
1090
1091         /* Some chips from Fresco Logic need an extraordinary delay */
1092         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1093
1094         if (xhci_handshake(&xhci->op_regs->status,
1095                       STS_HALT, STS_HALT, delay)) {
1096                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1097                 spin_unlock_irq(&xhci->lock);
1098                 return -ETIMEDOUT;
1099         }
1100         xhci_clear_command_ring(xhci);
1101
1102         /* step 3: save registers */
1103         xhci_save_registers(xhci);
1104
1105         /* step 4: set CSS flag */
1106         command = readl(&xhci->op_regs->command);
1107         command |= CMD_CSS;
1108         writel(command, &xhci->op_regs->command);
1109         xhci->broken_suspend = 0;
1110         if (xhci_handshake(&xhci->op_regs->status,
1111                                 STS_SAVE, 0, 20 * 1000)) {
1112         /*
1113          * AMD SNPS xHC 3.0 occasionally does not clear the
1114          * SSS bit of USBSTS and when driver tries to poll
1115          * to see if the xHC clears BIT(8) which never happens
1116          * and driver assumes that controller is not responding
1117          * and times out. To workaround this, its good to check
1118          * if SRE and HCE bits are not set (as per xhci
1119          * Section 5.4.2) and bypass the timeout.
1120          */
1121                 res = readl(&xhci->op_regs->status);
1122                 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1123                     (((res & STS_SRE) == 0) &&
1124                                 ((res & STS_HCE) == 0))) {
1125                         xhci->broken_suspend = 1;
1126                 } else {
1127                         xhci_warn(xhci, "WARN: xHC save state timeout\n");
1128                         spin_unlock_irq(&xhci->lock);
1129                         return -ETIMEDOUT;
1130                 }
1131         }
1132         spin_unlock_irq(&xhci->lock);
1133
1134         /*
1135          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1136          * is about to be suspended.
1137          */
1138         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1139                         (!(xhci_all_ports_seen_u0(xhci)))) {
1140                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1141                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1142                                 "%s: compliance mode recovery timer deleted",
1143                                 __func__);
1144         }
1145
1146         /* step 5: remove core well power */
1147         /* synchronize irq when using MSI-X */
1148         xhci_msix_sync_irqs(xhci);
1149
1150         return rc;
1151 }
1152 EXPORT_SYMBOL_GPL(xhci_suspend);
1153
1154 /*
1155  * start xHC (not bus-specific)
1156  *
1157  * This is called when the machine transition from S3/S4 mode.
1158  *
1159  */
1160 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1161 {
1162         u32                     command, temp = 0;
1163         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1164         int                     retval = 0;
1165         bool                    comp_timer_running = false;
1166         bool                    pending_portevent = false;
1167         bool                    reinit_xhc = false;
1168
1169         if (!hcd->state)
1170                 return 0;
1171
1172         /* Wait a bit if either of the roothubs need to settle from the
1173          * transition into bus suspend.
1174          */
1175
1176         if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1177             time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1178                 msleep(100);
1179
1180         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1181         if (xhci->shared_hcd)
1182                 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1183
1184         spin_lock_irq(&xhci->lock);
1185
1186         if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1187                 reinit_xhc = true;
1188
1189         if (!reinit_xhc) {
1190                 /*
1191                  * Some controllers might lose power during suspend, so wait
1192                  * for controller not ready bit to clear, just as in xHC init.
1193                  */
1194                 retval = xhci_handshake(&xhci->op_regs->status,
1195                                         STS_CNR, 0, 10 * 1000 * 1000);
1196                 if (retval) {
1197                         xhci_warn(xhci, "Controller not ready at resume %d\n",
1198                                   retval);
1199                         spin_unlock_irq(&xhci->lock);
1200                         return retval;
1201                 }
1202                 /* step 1: restore register */
1203                 xhci_restore_registers(xhci);
1204                 /* step 2: initialize command ring buffer */
1205                 xhci_set_cmd_ring_deq(xhci);
1206                 /* step 3: restore state and start state*/
1207                 /* step 3: set CRS flag */
1208                 command = readl(&xhci->op_regs->command);
1209                 command |= CMD_CRS;
1210                 writel(command, &xhci->op_regs->command);
1211                 /*
1212                  * Some controllers take up to 55+ ms to complete the controller
1213                  * restore so setting the timeout to 100ms. Xhci specification
1214                  * doesn't mention any timeout value.
1215                  */
1216                 if (xhci_handshake(&xhci->op_regs->status,
1217                               STS_RESTORE, 0, 100 * 1000)) {
1218                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1219                         spin_unlock_irq(&xhci->lock);
1220                         return -ETIMEDOUT;
1221                 }
1222         }
1223
1224         temp = readl(&xhci->op_regs->status);
1225
1226         /* re-initialize the HC on Restore Error, or Host Controller Error */
1227         if (temp & (STS_SRE | STS_HCE)) {
1228                 reinit_xhc = true;
1229                 if (!xhci->broken_suspend)
1230                         xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1231         }
1232
1233         if (reinit_xhc) {
1234                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1235                                 !(xhci_all_ports_seen_u0(xhci))) {
1236                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1237                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1238                                 "Compliance Mode Recovery Timer deleted!");
1239                 }
1240
1241                 /* Let the USB core know _both_ roothubs lost power. */
1242                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1243                 if (xhci->shared_hcd)
1244                         usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1245
1246                 xhci_dbg(xhci, "Stop HCD\n");
1247                 xhci_halt(xhci);
1248                 xhci_zero_64b_regs(xhci);
1249                 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1250                 spin_unlock_irq(&xhci->lock);
1251                 if (retval)
1252                         return retval;
1253                 xhci_cleanup_msix(xhci);
1254
1255                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1256                 temp = readl(&xhci->op_regs->status);
1257                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1258                 xhci_disable_interrupter(xhci->interrupter);
1259
1260                 xhci_dbg(xhci, "cleaning up memory\n");
1261                 xhci_mem_cleanup(xhci);
1262                 xhci_debugfs_exit(xhci);
1263                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1264                             readl(&xhci->op_regs->status));
1265
1266                 /* USB core calls the PCI reinit and start functions twice:
1267                  * first with the primary HCD, and then with the secondary HCD.
1268                  * If we don't do the same, the host will never be started.
1269                  */
1270                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1271                 retval = xhci_init(hcd);
1272                 if (retval)
1273                         return retval;
1274                 comp_timer_running = true;
1275
1276                 xhci_dbg(xhci, "Start the primary HCD\n");
1277                 retval = xhci_run(hcd);
1278                 if (!retval && xhci->shared_hcd) {
1279                         xhci_dbg(xhci, "Start the secondary HCD\n");
1280                         retval = xhci_run(xhci->shared_hcd);
1281                 }
1282
1283                 hcd->state = HC_STATE_SUSPENDED;
1284                 if (xhci->shared_hcd)
1285                         xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1286                 goto done;
1287         }
1288
1289         /* step 4: set Run/Stop bit */
1290         command = readl(&xhci->op_regs->command);
1291         command |= CMD_RUN;
1292         writel(command, &xhci->op_regs->command);
1293         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1294                   0, 250 * 1000);
1295
1296         /* step 5: walk topology and initialize portsc,
1297          * portpmsc and portli
1298          */
1299         /* this is done in bus_resume */
1300
1301         /* step 6: restart each of the previously
1302          * Running endpoints by ringing their doorbells
1303          */
1304
1305         spin_unlock_irq(&xhci->lock);
1306
1307         xhci_dbc_resume(xhci);
1308
1309  done:
1310         if (retval == 0) {
1311                 /*
1312                  * Resume roothubs only if there are pending events.
1313                  * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1314                  * the first wake signalling failed, give it that chance.
1315                  */
1316                 pending_portevent = xhci_pending_portevent(xhci);
1317                 if (!pending_portevent) {
1318                         msleep(120);
1319                         pending_portevent = xhci_pending_portevent(xhci);
1320                 }
1321
1322                 if (pending_portevent) {
1323                         if (xhci->shared_hcd)
1324                                 usb_hcd_resume_root_hub(xhci->shared_hcd);
1325                         usb_hcd_resume_root_hub(hcd);
1326                 }
1327         }
1328         /*
1329          * If system is subject to the Quirk, Compliance Mode Timer needs to
1330          * be re-initialized Always after a system resume. Ports are subject
1331          * to suffer the Compliance Mode issue again. It doesn't matter if
1332          * ports have entered previously to U0 before system's suspension.
1333          */
1334         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1335                 compliance_mode_recovery_timer_init(xhci);
1336
1337         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1338                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1339
1340         /* Re-enable port polling. */
1341         xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1342                  __func__, hcd->self.busnum);
1343         if (xhci->shared_hcd) {
1344                 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1345                 usb_hcd_poll_rh_status(xhci->shared_hcd);
1346         }
1347         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1348         usb_hcd_poll_rh_status(hcd);
1349
1350         return retval;
1351 }
1352 EXPORT_SYMBOL_GPL(xhci_resume);
1353 #endif  /* CONFIG_PM */
1354
1355 /*-------------------------------------------------------------------------*/
1356
1357 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1358 {
1359         void *temp;
1360         int ret = 0;
1361         unsigned int buf_len;
1362         enum dma_data_direction dir;
1363
1364         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1365         buf_len = urb->transfer_buffer_length;
1366
1367         temp = kzalloc_node(buf_len, GFP_ATOMIC,
1368                             dev_to_node(hcd->self.sysdev));
1369
1370         if (usb_urb_dir_out(urb))
1371                 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1372                                    temp, buf_len, 0);
1373
1374         urb->transfer_buffer = temp;
1375         urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1376                                            urb->transfer_buffer,
1377                                            urb->transfer_buffer_length,
1378                                            dir);
1379
1380         if (dma_mapping_error(hcd->self.sysdev,
1381                               urb->transfer_dma)) {
1382                 ret = -EAGAIN;
1383                 kfree(temp);
1384         } else {
1385                 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1386         }
1387
1388         return ret;
1389 }
1390
1391 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1392                                           struct urb *urb)
1393 {
1394         bool ret = false;
1395         unsigned int i;
1396         unsigned int len = 0;
1397         unsigned int trb_size;
1398         unsigned int max_pkt;
1399         struct scatterlist *sg;
1400         struct scatterlist *tail_sg;
1401
1402         tail_sg = urb->sg;
1403         max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1404
1405         if (!urb->num_sgs)
1406                 return ret;
1407
1408         if (urb->dev->speed >= USB_SPEED_SUPER)
1409                 trb_size = TRB_CACHE_SIZE_SS;
1410         else
1411                 trb_size = TRB_CACHE_SIZE_HS;
1412
1413         if (urb->transfer_buffer_length != 0 &&
1414             !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1415                 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1416                         len = len + sg->length;
1417                         if (i > trb_size - 2) {
1418                                 len = len - tail_sg->length;
1419                                 if (len < max_pkt) {
1420                                         ret = true;
1421                                         break;
1422                                 }
1423
1424                                 tail_sg = sg_next(tail_sg);
1425                         }
1426                 }
1427         }
1428         return ret;
1429 }
1430
1431 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1432 {
1433         unsigned int len;
1434         unsigned int buf_len;
1435         enum dma_data_direction dir;
1436
1437         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1438
1439         buf_len = urb->transfer_buffer_length;
1440
1441         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1442             (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1443                 dma_unmap_single(hcd->self.sysdev,
1444                                  urb->transfer_dma,
1445                                  urb->transfer_buffer_length,
1446                                  dir);
1447
1448         if (usb_urb_dir_in(urb)) {
1449                 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1450                                            urb->transfer_buffer,
1451                                            buf_len,
1452                                            0);
1453                 if (len != buf_len) {
1454                         xhci_dbg(hcd_to_xhci(hcd),
1455                                  "Copy from tmp buf to urb sg list failed\n");
1456                         urb->actual_length = len;
1457                 }
1458         }
1459         urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1460         kfree(urb->transfer_buffer);
1461         urb->transfer_buffer = NULL;
1462 }
1463
1464 /*
1465  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1466  * we'll copy the actual data into the TRB address register. This is limited to
1467  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1468  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1469  */
1470 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1471                                 gfp_t mem_flags)
1472 {
1473         struct xhci_hcd *xhci;
1474
1475         xhci = hcd_to_xhci(hcd);
1476
1477         if (xhci_urb_suitable_for_idt(urb))
1478                 return 0;
1479
1480         if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1481                 if (xhci_urb_temp_buffer_required(hcd, urb))
1482                         return xhci_map_temp_buffer(hcd, urb);
1483         }
1484         return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1485 }
1486
1487 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1488 {
1489         struct xhci_hcd *xhci;
1490         bool unmap_temp_buf = false;
1491
1492         xhci = hcd_to_xhci(hcd);
1493
1494         if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1495                 unmap_temp_buf = true;
1496
1497         if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1498                 xhci_unmap_temp_buf(hcd, urb);
1499         else
1500                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1501 }
1502
1503 /**
1504  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1505  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1506  * value to right shift 1 for the bitmask.
1507  *
1508  * Index  = (epnum * 2) + direction - 1,
1509  * where direction = 0 for OUT, 1 for IN.
1510  * For control endpoints, the IN index is used (OUT index is unused), so
1511  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1512  */
1513 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1514 {
1515         unsigned int index;
1516         if (usb_endpoint_xfer_control(desc))
1517                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1518         else
1519                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1520                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1521         return index;
1522 }
1523 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1524
1525 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1526  * address from the XHCI endpoint index.
1527  */
1528 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1529 {
1530         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1531         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1532         return direction | number;
1533 }
1534
1535 /* Find the flag for this endpoint (for use in the control context).  Use the
1536  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1537  * bit 1, etc.
1538  */
1539 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1540 {
1541         return 1 << (xhci_get_endpoint_index(desc) + 1);
1542 }
1543
1544 /* Compute the last valid endpoint context index.  Basically, this is the
1545  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1546  * we find the most significant bit set in the added contexts flags.
1547  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1548  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1549  */
1550 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1551 {
1552         return fls(added_ctxs) - 1;
1553 }
1554
1555 /* Returns 1 if the arguments are OK;
1556  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1557  */
1558 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1559                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1560                 const char *func) {
1561         struct xhci_hcd *xhci;
1562         struct xhci_virt_device *virt_dev;
1563
1564         if (!hcd || (check_ep && !ep) || !udev) {
1565                 pr_debug("xHCI %s called with invalid args\n", func);
1566                 return -EINVAL;
1567         }
1568         if (!udev->parent) {
1569                 pr_debug("xHCI %s called for root hub\n", func);
1570                 return 0;
1571         }
1572
1573         xhci = hcd_to_xhci(hcd);
1574         if (check_virt_dev) {
1575                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1576                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1577                                         func);
1578                         return -EINVAL;
1579                 }
1580
1581                 virt_dev = xhci->devs[udev->slot_id];
1582                 if (virt_dev->udev != udev) {
1583                         xhci_dbg(xhci, "xHCI %s called with udev and "
1584                                           "virt_dev does not match\n", func);
1585                         return -EINVAL;
1586                 }
1587         }
1588
1589         if (xhci->xhc_state & XHCI_STATE_HALTED)
1590                 return -ENODEV;
1591
1592         return 1;
1593 }
1594
1595 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1596                 struct usb_device *udev, struct xhci_command *command,
1597                 bool ctx_change, bool must_succeed);
1598
1599 /*
1600  * Full speed devices may have a max packet size greater than 8 bytes, but the
1601  * USB core doesn't know that until it reads the first 8 bytes of the
1602  * descriptor.  If the usb_device's max packet size changes after that point,
1603  * we need to issue an evaluate context command and wait on it.
1604  */
1605 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1606                 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1607 {
1608         struct xhci_container_ctx *out_ctx;
1609         struct xhci_input_control_ctx *ctrl_ctx;
1610         struct xhci_ep_ctx *ep_ctx;
1611         struct xhci_command *command;
1612         int max_packet_size;
1613         int hw_max_packet_size;
1614         int ret = 0;
1615
1616         out_ctx = xhci->devs[slot_id]->out_ctx;
1617         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1618         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1619         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1620         if (hw_max_packet_size != max_packet_size) {
1621                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1622                                 "Max Packet Size for ep 0 changed.");
1623                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1624                                 "Max packet size in usb_device = %d",
1625                                 max_packet_size);
1626                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1627                                 "Max packet size in xHCI HW = %d",
1628                                 hw_max_packet_size);
1629                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1630                                 "Issuing evaluate context command.");
1631
1632                 /* Set up the input context flags for the command */
1633                 /* FIXME: This won't work if a non-default control endpoint
1634                  * changes max packet sizes.
1635                  */
1636
1637                 command = xhci_alloc_command(xhci, true, mem_flags);
1638                 if (!command)
1639                         return -ENOMEM;
1640
1641                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1642                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1643                 if (!ctrl_ctx) {
1644                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1645                                         __func__);
1646                         ret = -ENOMEM;
1647                         goto command_cleanup;
1648                 }
1649                 /* Set up the modified control endpoint 0 */
1650                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1651                                 xhci->devs[slot_id]->out_ctx, ep_index);
1652
1653                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1654                 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1655                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1656                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1657
1658                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1659                 ctrl_ctx->drop_flags = 0;
1660
1661                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1662                                 true, false);
1663
1664                 /* Clean up the input context for later use by bandwidth
1665                  * functions.
1666                  */
1667                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1668 command_cleanup:
1669                 kfree(command->completion);
1670                 kfree(command);
1671         }
1672         return ret;
1673 }
1674
1675 /*
1676  * non-error returns are a promise to giveback() the urb later
1677  * we drop ownership so next owner (or urb unlink) can get it
1678  */
1679 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1680 {
1681         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1682         unsigned long flags;
1683         int ret = 0;
1684         unsigned int slot_id, ep_index;
1685         unsigned int *ep_state;
1686         struct urb_priv *urb_priv;
1687         int num_tds;
1688
1689         if (!urb)
1690                 return -EINVAL;
1691         ret = xhci_check_args(hcd, urb->dev, urb->ep,
1692                                         true, true, __func__);
1693         if (ret <= 0)
1694                 return ret ? ret : -EINVAL;
1695
1696         slot_id = urb->dev->slot_id;
1697         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1698         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1699
1700         if (!HCD_HW_ACCESSIBLE(hcd))
1701                 return -ESHUTDOWN;
1702
1703         if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1704                 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1705                 return -ENODEV;
1706         }
1707
1708         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1709                 num_tds = urb->number_of_packets;
1710         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1711             urb->transfer_buffer_length > 0 &&
1712             urb->transfer_flags & URB_ZERO_PACKET &&
1713             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1714                 num_tds = 2;
1715         else
1716                 num_tds = 1;
1717
1718         urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1719         if (!urb_priv)
1720                 return -ENOMEM;
1721
1722         urb_priv->num_tds = num_tds;
1723         urb_priv->num_tds_done = 0;
1724         urb->hcpriv = urb_priv;
1725
1726         trace_xhci_urb_enqueue(urb);
1727
1728         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1729                 /* Check to see if the max packet size for the default control
1730                  * endpoint changed during FS device enumeration
1731                  */
1732                 if (urb->dev->speed == USB_SPEED_FULL) {
1733                         ret = xhci_check_maxpacket(xhci, slot_id,
1734                                         ep_index, urb, mem_flags);
1735                         if (ret < 0) {
1736                                 xhci_urb_free_priv(urb_priv);
1737                                 urb->hcpriv = NULL;
1738                                 return ret;
1739                         }
1740                 }
1741         }
1742
1743         spin_lock_irqsave(&xhci->lock, flags);
1744
1745         if (xhci->xhc_state & XHCI_STATE_DYING) {
1746                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1747                          urb->ep->desc.bEndpointAddress, urb);
1748                 ret = -ESHUTDOWN;
1749                 goto free_priv;
1750         }
1751         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1752                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1753                           *ep_state);
1754                 ret = -EINVAL;
1755                 goto free_priv;
1756         }
1757         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1758                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1759                 ret = -EINVAL;
1760                 goto free_priv;
1761         }
1762
1763         switch (usb_endpoint_type(&urb->ep->desc)) {
1764
1765         case USB_ENDPOINT_XFER_CONTROL:
1766                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1767                                          slot_id, ep_index);
1768                 break;
1769         case USB_ENDPOINT_XFER_BULK:
1770                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1771                                          slot_id, ep_index);
1772                 break;
1773         case USB_ENDPOINT_XFER_INT:
1774                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1775                                 slot_id, ep_index);
1776                 break;
1777         case USB_ENDPOINT_XFER_ISOC:
1778                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1779                                 slot_id, ep_index);
1780         }
1781
1782         if (ret) {
1783 free_priv:
1784                 xhci_urb_free_priv(urb_priv);
1785                 urb->hcpriv = NULL;
1786         }
1787         spin_unlock_irqrestore(&xhci->lock, flags);
1788         return ret;
1789 }
1790
1791 /*
1792  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1793  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1794  * should pick up where it left off in the TD, unless a Set Transfer Ring
1795  * Dequeue Pointer is issued.
1796  *
1797  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1798  * the ring.  Since the ring is a contiguous structure, they can't be physically
1799  * removed.  Instead, there are two options:
1800  *
1801  *  1) If the HC is in the middle of processing the URB to be canceled, we
1802  *     simply move the ring's dequeue pointer past those TRBs using the Set
1803  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1804  *     when drivers timeout on the last submitted URB and attempt to cancel.
1805  *
1806  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1807  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1808  *     HC will need to invalidate the any TRBs it has cached after the stop
1809  *     endpoint command, as noted in the xHCI 0.95 errata.
1810  *
1811  *  3) The TD may have completed by the time the Stop Endpoint Command
1812  *     completes, so software needs to handle that case too.
1813  *
1814  * This function should protect against the TD enqueueing code ringing the
1815  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1816  * It also needs to account for multiple cancellations on happening at the same
1817  * time for the same endpoint.
1818  *
1819  * Note that this function can be called in any context, or so says
1820  * usb_hcd_unlink_urb()
1821  */
1822 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1823 {
1824         unsigned long flags;
1825         int ret, i;
1826         u32 temp;
1827         struct xhci_hcd *xhci;
1828         struct urb_priv *urb_priv;
1829         struct xhci_td *td;
1830         unsigned int ep_index;
1831         struct xhci_ring *ep_ring;
1832         struct xhci_virt_ep *ep;
1833         struct xhci_command *command;
1834         struct xhci_virt_device *vdev;
1835
1836         xhci = hcd_to_xhci(hcd);
1837         spin_lock_irqsave(&xhci->lock, flags);
1838
1839         trace_xhci_urb_dequeue(urb);
1840
1841         /* Make sure the URB hasn't completed or been unlinked already */
1842         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1843         if (ret)
1844                 goto done;
1845
1846         /* give back URB now if we can't queue it for cancel */
1847         vdev = xhci->devs[urb->dev->slot_id];
1848         urb_priv = urb->hcpriv;
1849         if (!vdev || !urb_priv)
1850                 goto err_giveback;
1851
1852         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1853         ep = &vdev->eps[ep_index];
1854         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1855         if (!ep || !ep_ring)
1856                 goto err_giveback;
1857
1858         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1859         temp = readl(&xhci->op_regs->status);
1860         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1861                 xhci_hc_died(xhci);
1862                 goto done;
1863         }
1864
1865         /*
1866          * check ring is not re-allocated since URB was enqueued. If it is, then
1867          * make sure none of the ring related pointers in this URB private data
1868          * are touched, such as td_list, otherwise we overwrite freed data
1869          */
1870         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1871                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1872                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1873                         td = &urb_priv->td[i];
1874                         if (!list_empty(&td->cancelled_td_list))
1875                                 list_del_init(&td->cancelled_td_list);
1876                 }
1877                 goto err_giveback;
1878         }
1879
1880         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1881                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1882                                 "HC halted, freeing TD manually.");
1883                 for (i = urb_priv->num_tds_done;
1884                      i < urb_priv->num_tds;
1885                      i++) {
1886                         td = &urb_priv->td[i];
1887                         if (!list_empty(&td->td_list))
1888                                 list_del_init(&td->td_list);
1889                         if (!list_empty(&td->cancelled_td_list))
1890                                 list_del_init(&td->cancelled_td_list);
1891                 }
1892                 goto err_giveback;
1893         }
1894
1895         i = urb_priv->num_tds_done;
1896         if (i < urb_priv->num_tds)
1897                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1898                                 "Cancel URB %p, dev %s, ep 0x%x, "
1899                                 "starting at offset 0x%llx",
1900                                 urb, urb->dev->devpath,
1901                                 urb->ep->desc.bEndpointAddress,
1902                                 (unsigned long long) xhci_trb_virt_to_dma(
1903                                         urb_priv->td[i].start_seg,
1904                                         urb_priv->td[i].first_trb));
1905
1906         for (; i < urb_priv->num_tds; i++) {
1907                 td = &urb_priv->td[i];
1908                 /* TD can already be on cancelled list if ep halted on it */
1909                 if (list_empty(&td->cancelled_td_list)) {
1910                         td->cancel_status = TD_DIRTY;
1911                         list_add_tail(&td->cancelled_td_list,
1912                                       &ep->cancelled_td_list);
1913                 }
1914         }
1915
1916         /* Queue a stop endpoint command, but only if this is
1917          * the first cancellation to be handled.
1918          */
1919         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1920                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1921                 if (!command) {
1922                         ret = -ENOMEM;
1923                         goto done;
1924                 }
1925                 ep->ep_state |= EP_STOP_CMD_PENDING;
1926                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1927                                          ep_index, 0);
1928                 xhci_ring_cmd_db(xhci);
1929         }
1930 done:
1931         spin_unlock_irqrestore(&xhci->lock, flags);
1932         return ret;
1933
1934 err_giveback:
1935         if (urb_priv)
1936                 xhci_urb_free_priv(urb_priv);
1937         usb_hcd_unlink_urb_from_ep(hcd, urb);
1938         spin_unlock_irqrestore(&xhci->lock, flags);
1939         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1940         return ret;
1941 }
1942
1943 /* Drop an endpoint from a new bandwidth configuration for this device.
1944  * Only one call to this function is allowed per endpoint before
1945  * check_bandwidth() or reset_bandwidth() must be called.
1946  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1947  * add the endpoint to the schedule with possibly new parameters denoted by a
1948  * different endpoint descriptor in usb_host_endpoint.
1949  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1950  * not allowed.
1951  *
1952  * The USB core will not allow URBs to be queued to an endpoint that is being
1953  * disabled, so there's no need for mutual exclusion to protect
1954  * the xhci->devs[slot_id] structure.
1955  */
1956 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1957                        struct usb_host_endpoint *ep)
1958 {
1959         struct xhci_hcd *xhci;
1960         struct xhci_container_ctx *in_ctx, *out_ctx;
1961         struct xhci_input_control_ctx *ctrl_ctx;
1962         unsigned int ep_index;
1963         struct xhci_ep_ctx *ep_ctx;
1964         u32 drop_flag;
1965         u32 new_add_flags, new_drop_flags;
1966         int ret;
1967
1968         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1969         if (ret <= 0)
1970                 return ret;
1971         xhci = hcd_to_xhci(hcd);
1972         if (xhci->xhc_state & XHCI_STATE_DYING)
1973                 return -ENODEV;
1974
1975         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1976         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1977         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1978                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1979                                 __func__, drop_flag);
1980                 return 0;
1981         }
1982
1983         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1984         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1985         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1986         if (!ctrl_ctx) {
1987                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1988                                 __func__);
1989                 return 0;
1990         }
1991
1992         ep_index = xhci_get_endpoint_index(&ep->desc);
1993         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1994         /* If the HC already knows the endpoint is disabled,
1995          * or the HCD has noted it is disabled, ignore this request
1996          */
1997         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1998             le32_to_cpu(ctrl_ctx->drop_flags) &
1999             xhci_get_endpoint_flag(&ep->desc)) {
2000                 /* Do not warn when called after a usb_device_reset */
2001                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
2002                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
2003                                   __func__, ep);
2004                 return 0;
2005         }
2006
2007         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
2008         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2009
2010         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
2011         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2012
2013         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
2014
2015         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
2016
2017         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2018                         (unsigned int) ep->desc.bEndpointAddress,
2019                         udev->slot_id,
2020                         (unsigned int) new_drop_flags,
2021                         (unsigned int) new_add_flags);
2022         return 0;
2023 }
2024 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
2025
2026 /* Add an endpoint to a new possible bandwidth configuration for this device.
2027  * Only one call to this function is allowed per endpoint before
2028  * check_bandwidth() or reset_bandwidth() must be called.
2029  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
2030  * add the endpoint to the schedule with possibly new parameters denoted by a
2031  * different endpoint descriptor in usb_host_endpoint.
2032  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
2033  * not allowed.
2034  *
2035  * The USB core will not allow URBs to be queued to an endpoint until the
2036  * configuration or alt setting is installed in the device, so there's no need
2037  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
2038  */
2039 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
2040                       struct usb_host_endpoint *ep)
2041 {
2042         struct xhci_hcd *xhci;
2043         struct xhci_container_ctx *in_ctx;
2044         unsigned int ep_index;
2045         struct xhci_input_control_ctx *ctrl_ctx;
2046         struct xhci_ep_ctx *ep_ctx;
2047         u32 added_ctxs;
2048         u32 new_add_flags, new_drop_flags;
2049         struct xhci_virt_device *virt_dev;
2050         int ret = 0;
2051
2052         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
2053         if (ret <= 0) {
2054                 /* So we won't queue a reset ep command for a root hub */
2055                 ep->hcpriv = NULL;
2056                 return ret;
2057         }
2058         xhci = hcd_to_xhci(hcd);
2059         if (xhci->xhc_state & XHCI_STATE_DYING)
2060                 return -ENODEV;
2061
2062         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
2063         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
2064                 /* FIXME when we have to issue an evaluate endpoint command to
2065                  * deal with ep0 max packet size changing once we get the
2066                  * descriptors
2067                  */
2068                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
2069                                 __func__, added_ctxs);
2070                 return 0;
2071         }
2072
2073         virt_dev = xhci->devs[udev->slot_id];
2074         in_ctx = virt_dev->in_ctx;
2075         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2076         if (!ctrl_ctx) {
2077                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2078                                 __func__);
2079                 return 0;
2080         }
2081
2082         ep_index = xhci_get_endpoint_index(&ep->desc);
2083         /* If this endpoint is already in use, and the upper layers are trying
2084          * to add it again without dropping it, reject the addition.
2085          */
2086         if (virt_dev->eps[ep_index].ring &&
2087                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2088                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
2089                                 "without dropping it.\n",
2090                                 (unsigned int) ep->desc.bEndpointAddress);
2091                 return -EINVAL;
2092         }
2093
2094         /* If the HCD has already noted the endpoint is enabled,
2095          * ignore this request.
2096          */
2097         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2098                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2099                                 __func__, ep);
2100                 return 0;
2101         }
2102
2103         /*
2104          * Configuration and alternate setting changes must be done in
2105          * process context, not interrupt context (or so documenation
2106          * for usb_set_interface() and usb_set_configuration() claim).
2107          */
2108         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2109                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2110                                 __func__, ep->desc.bEndpointAddress);
2111                 return -ENOMEM;
2112         }
2113
2114         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2115         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2116
2117         /* If xhci_endpoint_disable() was called for this endpoint, but the
2118          * xHC hasn't been notified yet through the check_bandwidth() call,
2119          * this re-adds a new state for the endpoint from the new endpoint
2120          * descriptors.  We must drop and re-add this endpoint, so we leave the
2121          * drop flags alone.
2122          */
2123         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2124
2125         /* Store the usb_device pointer for later use */
2126         ep->hcpriv = udev;
2127
2128         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2129         trace_xhci_add_endpoint(ep_ctx);
2130
2131         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2132                         (unsigned int) ep->desc.bEndpointAddress,
2133                         udev->slot_id,
2134                         (unsigned int) new_drop_flags,
2135                         (unsigned int) new_add_flags);
2136         return 0;
2137 }
2138 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2139
2140 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2141 {
2142         struct xhci_input_control_ctx *ctrl_ctx;
2143         struct xhci_ep_ctx *ep_ctx;
2144         struct xhci_slot_ctx *slot_ctx;
2145         int i;
2146
2147         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2148         if (!ctrl_ctx) {
2149                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2150                                 __func__);
2151                 return;
2152         }
2153
2154         /* When a device's add flag and drop flag are zero, any subsequent
2155          * configure endpoint command will leave that endpoint's state
2156          * untouched.  Make sure we don't leave any old state in the input
2157          * endpoint contexts.
2158          */
2159         ctrl_ctx->drop_flags = 0;
2160         ctrl_ctx->add_flags = 0;
2161         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2162         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2163         /* Endpoint 0 is always valid */
2164         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2165         for (i = 1; i < 31; i++) {
2166                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2167                 ep_ctx->ep_info = 0;
2168                 ep_ctx->ep_info2 = 0;
2169                 ep_ctx->deq = 0;
2170                 ep_ctx->tx_info = 0;
2171         }
2172 }
2173
2174 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2175                 struct usb_device *udev, u32 *cmd_status)
2176 {
2177         int ret;
2178
2179         switch (*cmd_status) {
2180         case COMP_COMMAND_ABORTED:
2181         case COMP_COMMAND_RING_STOPPED:
2182                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2183                 ret = -ETIME;
2184                 break;
2185         case COMP_RESOURCE_ERROR:
2186                 dev_warn(&udev->dev,
2187                          "Not enough host controller resources for new device state.\n");
2188                 ret = -ENOMEM;
2189                 /* FIXME: can we allocate more resources for the HC? */
2190                 break;
2191         case COMP_BANDWIDTH_ERROR:
2192         case COMP_SECONDARY_BANDWIDTH_ERROR:
2193                 dev_warn(&udev->dev,
2194                          "Not enough bandwidth for new device state.\n");
2195                 ret = -ENOSPC;
2196                 /* FIXME: can we go back to the old state? */
2197                 break;
2198         case COMP_TRB_ERROR:
2199                 /* the HCD set up something wrong */
2200                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2201                                 "add flag = 1, "
2202                                 "and endpoint is not disabled.\n");
2203                 ret = -EINVAL;
2204                 break;
2205         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2206                 dev_warn(&udev->dev,
2207                          "ERROR: Incompatible device for endpoint configure command.\n");
2208                 ret = -ENODEV;
2209                 break;
2210         case COMP_SUCCESS:
2211                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2212                                 "Successful Endpoint Configure command");
2213                 ret = 0;
2214                 break;
2215         default:
2216                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2217                                 *cmd_status);
2218                 ret = -EINVAL;
2219                 break;
2220         }
2221         return ret;
2222 }
2223
2224 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2225                 struct usb_device *udev, u32 *cmd_status)
2226 {
2227         int ret;
2228
2229         switch (*cmd_status) {
2230         case COMP_COMMAND_ABORTED:
2231         case COMP_COMMAND_RING_STOPPED:
2232                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2233                 ret = -ETIME;
2234                 break;
2235         case COMP_PARAMETER_ERROR:
2236                 dev_warn(&udev->dev,
2237                          "WARN: xHCI driver setup invalid evaluate context command.\n");
2238                 ret = -EINVAL;
2239                 break;
2240         case COMP_SLOT_NOT_ENABLED_ERROR:
2241                 dev_warn(&udev->dev,
2242                         "WARN: slot not enabled for evaluate context command.\n");
2243                 ret = -EINVAL;
2244                 break;
2245         case COMP_CONTEXT_STATE_ERROR:
2246                 dev_warn(&udev->dev,
2247                         "WARN: invalid context state for evaluate context command.\n");
2248                 ret = -EINVAL;
2249                 break;
2250         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2251                 dev_warn(&udev->dev,
2252                         "ERROR: Incompatible device for evaluate context command.\n");
2253                 ret = -ENODEV;
2254                 break;
2255         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2256                 /* Max Exit Latency too large error */
2257                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2258                 ret = -EINVAL;
2259                 break;
2260         case COMP_SUCCESS:
2261                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2262                                 "Successful evaluate context command");
2263                 ret = 0;
2264                 break;
2265         default:
2266                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2267                         *cmd_status);
2268                 ret = -EINVAL;
2269                 break;
2270         }
2271         return ret;
2272 }
2273
2274 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2275                 struct xhci_input_control_ctx *ctrl_ctx)
2276 {
2277         u32 valid_add_flags;
2278         u32 valid_drop_flags;
2279
2280         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2281          * (bit 1).  The default control endpoint is added during the Address
2282          * Device command and is never removed until the slot is disabled.
2283          */
2284         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2285         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2286
2287         /* Use hweight32 to count the number of ones in the add flags, or
2288          * number of endpoints added.  Don't count endpoints that are changed
2289          * (both added and dropped).
2290          */
2291         return hweight32(valid_add_flags) -
2292                 hweight32(valid_add_flags & valid_drop_flags);
2293 }
2294
2295 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2296                 struct xhci_input_control_ctx *ctrl_ctx)
2297 {
2298         u32 valid_add_flags;
2299         u32 valid_drop_flags;
2300
2301         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2302         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2303
2304         return hweight32(valid_drop_flags) -
2305                 hweight32(valid_add_flags & valid_drop_flags);
2306 }
2307
2308 /*
2309  * We need to reserve the new number of endpoints before the configure endpoint
2310  * command completes.  We can't subtract the dropped endpoints from the number
2311  * of active endpoints until the command completes because we can oversubscribe
2312  * the host in this case:
2313  *
2314  *  - the first configure endpoint command drops more endpoints than it adds
2315  *  - a second configure endpoint command that adds more endpoints is queued
2316  *  - the first configure endpoint command fails, so the config is unchanged
2317  *  - the second command may succeed, even though there isn't enough resources
2318  *
2319  * Must be called with xhci->lock held.
2320  */
2321 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2322                 struct xhci_input_control_ctx *ctrl_ctx)
2323 {
2324         u32 added_eps;
2325
2326         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2327         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2328                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2329                                 "Not enough ep ctxs: "
2330                                 "%u active, need to add %u, limit is %u.",
2331                                 xhci->num_active_eps, added_eps,
2332                                 xhci->limit_active_eps);
2333                 return -ENOMEM;
2334         }
2335         xhci->num_active_eps += added_eps;
2336         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2337                         "Adding %u ep ctxs, %u now active.", added_eps,
2338                         xhci->num_active_eps);
2339         return 0;
2340 }
2341
2342 /*
2343  * The configure endpoint was failed by the xHC for some other reason, so we
2344  * need to revert the resources that failed configuration would have used.
2345  *
2346  * Must be called with xhci->lock held.
2347  */
2348 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2349                 struct xhci_input_control_ctx *ctrl_ctx)
2350 {
2351         u32 num_failed_eps;
2352
2353         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2354         xhci->num_active_eps -= num_failed_eps;
2355         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2356                         "Removing %u failed ep ctxs, %u now active.",
2357                         num_failed_eps,
2358                         xhci->num_active_eps);
2359 }
2360
2361 /*
2362  * Now that the command has completed, clean up the active endpoint count by
2363  * subtracting out the endpoints that were dropped (but not changed).
2364  *
2365  * Must be called with xhci->lock held.
2366  */
2367 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2368                 struct xhci_input_control_ctx *ctrl_ctx)
2369 {
2370         u32 num_dropped_eps;
2371
2372         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2373         xhci->num_active_eps -= num_dropped_eps;
2374         if (num_dropped_eps)
2375                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2376                                 "Removing %u dropped ep ctxs, %u now active.",
2377                                 num_dropped_eps,
2378                                 xhci->num_active_eps);
2379 }
2380
2381 static unsigned int xhci_get_block_size(struct usb_device *udev)
2382 {
2383         switch (udev->speed) {
2384         case USB_SPEED_LOW:
2385         case USB_SPEED_FULL:
2386                 return FS_BLOCK;
2387         case USB_SPEED_HIGH:
2388                 return HS_BLOCK;
2389         case USB_SPEED_SUPER:
2390         case USB_SPEED_SUPER_PLUS:
2391                 return SS_BLOCK;
2392         case USB_SPEED_UNKNOWN:
2393         case USB_SPEED_WIRELESS:
2394         default:
2395                 /* Should never happen */
2396                 return 1;
2397         }
2398 }
2399
2400 static unsigned int
2401 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2402 {
2403         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2404                 return LS_OVERHEAD;
2405         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2406                 return FS_OVERHEAD;
2407         return HS_OVERHEAD;
2408 }
2409
2410 /* If we are changing a LS/FS device under a HS hub,
2411  * make sure (if we are activating a new TT) that the HS bus has enough
2412  * bandwidth for this new TT.
2413  */
2414 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2415                 struct xhci_virt_device *virt_dev,
2416                 int old_active_eps)
2417 {
2418         struct xhci_interval_bw_table *bw_table;
2419         struct xhci_tt_bw_info *tt_info;
2420
2421         /* Find the bandwidth table for the root port this TT is attached to. */
2422         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2423         tt_info = virt_dev->tt_info;
2424         /* If this TT already had active endpoints, the bandwidth for this TT
2425          * has already been added.  Removing all periodic endpoints (and thus
2426          * making the TT enactive) will only decrease the bandwidth used.
2427          */
2428         if (old_active_eps)
2429                 return 0;
2430         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2431                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2432                         return -ENOMEM;
2433                 return 0;
2434         }
2435         /* Not sure why we would have no new active endpoints...
2436          *
2437          * Maybe because of an Evaluate Context change for a hub update or a
2438          * control endpoint 0 max packet size change?
2439          * FIXME: skip the bandwidth calculation in that case.
2440          */
2441         return 0;
2442 }
2443
2444 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2445                 struct xhci_virt_device *virt_dev)
2446 {
2447         unsigned int bw_reserved;
2448
2449         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2450         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2451                 return -ENOMEM;
2452
2453         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2454         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2455                 return -ENOMEM;
2456
2457         return 0;
2458 }
2459
2460 /*
2461  * This algorithm is a very conservative estimate of the worst-case scheduling
2462  * scenario for any one interval.  The hardware dynamically schedules the
2463  * packets, so we can't tell which microframe could be the limiting factor in
2464  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2465  *
2466  * Obviously, we can't solve an NP complete problem to find the minimum worst
2467  * case scenario.  Instead, we come up with an estimate that is no less than
2468  * the worst case bandwidth used for any one microframe, but may be an
2469  * over-estimate.
2470  *
2471  * We walk the requirements for each endpoint by interval, starting with the
2472  * smallest interval, and place packets in the schedule where there is only one
2473  * possible way to schedule packets for that interval.  In order to simplify
2474  * this algorithm, we record the largest max packet size for each interval, and
2475  * assume all packets will be that size.
2476  *
2477  * For interval 0, we obviously must schedule all packets for each interval.
2478  * The bandwidth for interval 0 is just the amount of data to be transmitted
2479  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2480  * the number of packets).
2481  *
2482  * For interval 1, we have two possible microframes to schedule those packets
2483  * in.  For this algorithm, if we can schedule the same number of packets for
2484  * each possible scheduling opportunity (each microframe), we will do so.  The
2485  * remaining number of packets will be saved to be transmitted in the gaps in
2486  * the next interval's scheduling sequence.
2487  *
2488  * As we move those remaining packets to be scheduled with interval 2 packets,
2489  * we have to double the number of remaining packets to transmit.  This is
2490  * because the intervals are actually powers of 2, and we would be transmitting
2491  * the previous interval's packets twice in this interval.  We also have to be
2492  * sure that when we look at the largest max packet size for this interval, we
2493  * also look at the largest max packet size for the remaining packets and take
2494  * the greater of the two.
2495  *
2496  * The algorithm continues to evenly distribute packets in each scheduling
2497  * opportunity, and push the remaining packets out, until we get to the last
2498  * interval.  Then those packets and their associated overhead are just added
2499  * to the bandwidth used.
2500  */
2501 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2502                 struct xhci_virt_device *virt_dev,
2503                 int old_active_eps)
2504 {
2505         unsigned int bw_reserved;
2506         unsigned int max_bandwidth;
2507         unsigned int bw_used;
2508         unsigned int block_size;
2509         struct xhci_interval_bw_table *bw_table;
2510         unsigned int packet_size = 0;
2511         unsigned int overhead = 0;
2512         unsigned int packets_transmitted = 0;
2513         unsigned int packets_remaining = 0;
2514         unsigned int i;
2515
2516         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2517                 return xhci_check_ss_bw(xhci, virt_dev);
2518
2519         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2520                 max_bandwidth = HS_BW_LIMIT;
2521                 /* Convert percent of bus BW reserved to blocks reserved */
2522                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2523         } else {
2524                 max_bandwidth = FS_BW_LIMIT;
2525                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2526         }
2527
2528         bw_table = virt_dev->bw_table;
2529         /* We need to translate the max packet size and max ESIT payloads into
2530          * the units the hardware uses.
2531          */
2532         block_size = xhci_get_block_size(virt_dev->udev);
2533
2534         /* If we are manipulating a LS/FS device under a HS hub, double check
2535          * that the HS bus has enough bandwidth if we are activing a new TT.
2536          */
2537         if (virt_dev->tt_info) {
2538                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2539                                 "Recalculating BW for rootport %u",
2540                                 virt_dev->real_port);
2541                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2542                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2543                                         "newly activated TT.\n");
2544                         return -ENOMEM;
2545                 }
2546                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2547                                 "Recalculating BW for TT slot %u port %u",
2548                                 virt_dev->tt_info->slot_id,
2549                                 virt_dev->tt_info->ttport);
2550         } else {
2551                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2552                                 "Recalculating BW for rootport %u",
2553                                 virt_dev->real_port);
2554         }
2555
2556         /* Add in how much bandwidth will be used for interval zero, or the
2557          * rounded max ESIT payload + number of packets * largest overhead.
2558          */
2559         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2560                 bw_table->interval_bw[0].num_packets *
2561                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2562
2563         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2564                 unsigned int bw_added;
2565                 unsigned int largest_mps;
2566                 unsigned int interval_overhead;
2567
2568                 /*
2569                  * How many packets could we transmit in this interval?
2570                  * If packets didn't fit in the previous interval, we will need
2571                  * to transmit that many packets twice within this interval.
2572                  */
2573                 packets_remaining = 2 * packets_remaining +
2574                         bw_table->interval_bw[i].num_packets;
2575
2576                 /* Find the largest max packet size of this or the previous
2577                  * interval.
2578                  */
2579                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2580                         largest_mps = 0;
2581                 else {
2582                         struct xhci_virt_ep *virt_ep;
2583                         struct list_head *ep_entry;
2584
2585                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2586                         virt_ep = list_entry(ep_entry,
2587                                         struct xhci_virt_ep, bw_endpoint_list);
2588                         /* Convert to blocks, rounding up */
2589                         largest_mps = DIV_ROUND_UP(
2590                                         virt_ep->bw_info.max_packet_size,
2591                                         block_size);
2592                 }
2593                 if (largest_mps > packet_size)
2594                         packet_size = largest_mps;
2595
2596                 /* Use the larger overhead of this or the previous interval. */
2597                 interval_overhead = xhci_get_largest_overhead(
2598                                 &bw_table->interval_bw[i]);
2599                 if (interval_overhead > overhead)
2600                         overhead = interval_overhead;
2601
2602                 /* How many packets can we evenly distribute across
2603                  * (1 << (i + 1)) possible scheduling opportunities?
2604                  */
2605                 packets_transmitted = packets_remaining >> (i + 1);
2606
2607                 /* Add in the bandwidth used for those scheduled packets */
2608                 bw_added = packets_transmitted * (overhead + packet_size);
2609
2610                 /* How many packets do we have remaining to transmit? */
2611                 packets_remaining = packets_remaining % (1 << (i + 1));
2612
2613                 /* What largest max packet size should those packets have? */
2614                 /* If we've transmitted all packets, don't carry over the
2615                  * largest packet size.
2616                  */
2617                 if (packets_remaining == 0) {
2618                         packet_size = 0;
2619                         overhead = 0;
2620                 } else if (packets_transmitted > 0) {
2621                         /* Otherwise if we do have remaining packets, and we've
2622                          * scheduled some packets in this interval, take the
2623                          * largest max packet size from endpoints with this
2624                          * interval.
2625                          */
2626                         packet_size = largest_mps;
2627                         overhead = interval_overhead;
2628                 }
2629                 /* Otherwise carry over packet_size and overhead from the last
2630                  * time we had a remainder.
2631                  */
2632                 bw_used += bw_added;
2633                 if (bw_used > max_bandwidth) {
2634                         xhci_warn(xhci, "Not enough bandwidth. "
2635                                         "Proposed: %u, Max: %u\n",
2636                                 bw_used, max_bandwidth);
2637                         return -ENOMEM;
2638                 }
2639         }
2640         /*
2641          * Ok, we know we have some packets left over after even-handedly
2642          * scheduling interval 15.  We don't know which microframes they will
2643          * fit into, so we over-schedule and say they will be scheduled every
2644          * microframe.
2645          */
2646         if (packets_remaining > 0)
2647                 bw_used += overhead + packet_size;
2648
2649         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2650                 unsigned int port_index = virt_dev->real_port - 1;
2651
2652                 /* OK, we're manipulating a HS device attached to a
2653                  * root port bandwidth domain.  Include the number of active TTs
2654                  * in the bandwidth used.
2655                  */
2656                 bw_used += TT_HS_OVERHEAD *
2657                         xhci->rh_bw[port_index].num_active_tts;
2658         }
2659
2660         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2661                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2662                 "Available: %u " "percent",
2663                 bw_used, max_bandwidth, bw_reserved,
2664                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2665                 max_bandwidth);
2666
2667         bw_used += bw_reserved;
2668         if (bw_used > max_bandwidth) {
2669                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2670                                 bw_used, max_bandwidth);
2671                 return -ENOMEM;
2672         }
2673
2674         bw_table->bw_used = bw_used;
2675         return 0;
2676 }
2677
2678 static bool xhci_is_async_ep(unsigned int ep_type)
2679 {
2680         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2681                                         ep_type != ISOC_IN_EP &&
2682                                         ep_type != INT_IN_EP);
2683 }
2684
2685 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2686 {
2687         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2688 }
2689
2690 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2691 {
2692         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2693
2694         if (ep_bw->ep_interval == 0)
2695                 return SS_OVERHEAD_BURST +
2696                         (ep_bw->mult * ep_bw->num_packets *
2697                                         (SS_OVERHEAD + mps));
2698         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2699                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2700                                 1 << ep_bw->ep_interval);
2701
2702 }
2703
2704 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2705                 struct xhci_bw_info *ep_bw,
2706                 struct xhci_interval_bw_table *bw_table,
2707                 struct usb_device *udev,
2708                 struct xhci_virt_ep *virt_ep,
2709                 struct xhci_tt_bw_info *tt_info)
2710 {
2711         struct xhci_interval_bw *interval_bw;
2712         int normalized_interval;
2713
2714         if (xhci_is_async_ep(ep_bw->type))
2715                 return;
2716
2717         if (udev->speed >= USB_SPEED_SUPER) {
2718                 if (xhci_is_sync_in_ep(ep_bw->type))
2719                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2720                                 xhci_get_ss_bw_consumed(ep_bw);
2721                 else
2722                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2723                                 xhci_get_ss_bw_consumed(ep_bw);
2724                 return;
2725         }
2726
2727         /* SuperSpeed endpoints never get added to intervals in the table, so
2728          * this check is only valid for HS/FS/LS devices.
2729          */
2730         if (list_empty(&virt_ep->bw_endpoint_list))
2731                 return;
2732         /* For LS/FS devices, we need to translate the interval expressed in
2733          * microframes to frames.
2734          */
2735         if (udev->speed == USB_SPEED_HIGH)
2736                 normalized_interval = ep_bw->ep_interval;
2737         else
2738                 normalized_interval = ep_bw->ep_interval - 3;
2739
2740         if (normalized_interval == 0)
2741                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2742         interval_bw = &bw_table->interval_bw[normalized_interval];
2743         interval_bw->num_packets -= ep_bw->num_packets;
2744         switch (udev->speed) {
2745         case USB_SPEED_LOW:
2746                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2747                 break;
2748         case USB_SPEED_FULL:
2749                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2750                 break;
2751         case USB_SPEED_HIGH:
2752                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2753                 break;
2754         case USB_SPEED_SUPER:
2755         case USB_SPEED_SUPER_PLUS:
2756         case USB_SPEED_UNKNOWN:
2757         case USB_SPEED_WIRELESS:
2758                 /* Should never happen because only LS/FS/HS endpoints will get
2759                  * added to the endpoint list.
2760                  */
2761                 return;
2762         }
2763         if (tt_info)
2764                 tt_info->active_eps -= 1;
2765         list_del_init(&virt_ep->bw_endpoint_list);
2766 }
2767
2768 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2769                 struct xhci_bw_info *ep_bw,
2770                 struct xhci_interval_bw_table *bw_table,
2771                 struct usb_device *udev,
2772                 struct xhci_virt_ep *virt_ep,
2773                 struct xhci_tt_bw_info *tt_info)
2774 {
2775         struct xhci_interval_bw *interval_bw;
2776         struct xhci_virt_ep *smaller_ep;
2777         int normalized_interval;
2778
2779         if (xhci_is_async_ep(ep_bw->type))
2780                 return;
2781
2782         if (udev->speed == USB_SPEED_SUPER) {
2783                 if (xhci_is_sync_in_ep(ep_bw->type))
2784                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2785                                 xhci_get_ss_bw_consumed(ep_bw);
2786                 else
2787                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2788                                 xhci_get_ss_bw_consumed(ep_bw);
2789                 return;
2790         }
2791
2792         /* For LS/FS devices, we need to translate the interval expressed in
2793          * microframes to frames.
2794          */
2795         if (udev->speed == USB_SPEED_HIGH)
2796                 normalized_interval = ep_bw->ep_interval;
2797         else
2798                 normalized_interval = ep_bw->ep_interval - 3;
2799
2800         if (normalized_interval == 0)
2801                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2802         interval_bw = &bw_table->interval_bw[normalized_interval];
2803         interval_bw->num_packets += ep_bw->num_packets;
2804         switch (udev->speed) {
2805         case USB_SPEED_LOW:
2806                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2807                 break;
2808         case USB_SPEED_FULL:
2809                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2810                 break;
2811         case USB_SPEED_HIGH:
2812                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2813                 break;
2814         case USB_SPEED_SUPER:
2815         case USB_SPEED_SUPER_PLUS:
2816         case USB_SPEED_UNKNOWN:
2817         case USB_SPEED_WIRELESS:
2818                 /* Should never happen because only LS/FS/HS endpoints will get
2819                  * added to the endpoint list.
2820                  */
2821                 return;
2822         }
2823
2824         if (tt_info)
2825                 tt_info->active_eps += 1;
2826         /* Insert the endpoint into the list, largest max packet size first. */
2827         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2828                         bw_endpoint_list) {
2829                 if (ep_bw->max_packet_size >=
2830                                 smaller_ep->bw_info.max_packet_size) {
2831                         /* Add the new ep before the smaller endpoint */
2832                         list_add_tail(&virt_ep->bw_endpoint_list,
2833                                         &smaller_ep->bw_endpoint_list);
2834                         return;
2835                 }
2836         }
2837         /* Add the new endpoint at the end of the list. */
2838         list_add_tail(&virt_ep->bw_endpoint_list,
2839                         &interval_bw->endpoints);
2840 }
2841
2842 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2843                 struct xhci_virt_device *virt_dev,
2844                 int old_active_eps)
2845 {
2846         struct xhci_root_port_bw_info *rh_bw_info;
2847         if (!virt_dev->tt_info)
2848                 return;
2849
2850         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2851         if (old_active_eps == 0 &&
2852                                 virt_dev->tt_info->active_eps != 0) {
2853                 rh_bw_info->num_active_tts += 1;
2854                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2855         } else if (old_active_eps != 0 &&
2856                                 virt_dev->tt_info->active_eps == 0) {
2857                 rh_bw_info->num_active_tts -= 1;
2858                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2859         }
2860 }
2861
2862 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2863                 struct xhci_virt_device *virt_dev,
2864                 struct xhci_container_ctx *in_ctx)
2865 {
2866         struct xhci_bw_info ep_bw_info[31];
2867         int i;
2868         struct xhci_input_control_ctx *ctrl_ctx;
2869         int old_active_eps = 0;
2870
2871         if (virt_dev->tt_info)
2872                 old_active_eps = virt_dev->tt_info->active_eps;
2873
2874         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2875         if (!ctrl_ctx) {
2876                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2877                                 __func__);
2878                 return -ENOMEM;
2879         }
2880
2881         for (i = 0; i < 31; i++) {
2882                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2883                         continue;
2884
2885                 /* Make a copy of the BW info in case we need to revert this */
2886                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2887                                 sizeof(ep_bw_info[i]));
2888                 /* Drop the endpoint from the interval table if the endpoint is
2889                  * being dropped or changed.
2890                  */
2891                 if (EP_IS_DROPPED(ctrl_ctx, i))
2892                         xhci_drop_ep_from_interval_table(xhci,
2893                                         &virt_dev->eps[i].bw_info,
2894                                         virt_dev->bw_table,
2895                                         virt_dev->udev,
2896                                         &virt_dev->eps[i],
2897                                         virt_dev->tt_info);
2898         }
2899         /* Overwrite the information stored in the endpoints' bw_info */
2900         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2901         for (i = 0; i < 31; i++) {
2902                 /* Add any changed or added endpoints to the interval table */
2903                 if (EP_IS_ADDED(ctrl_ctx, i))
2904                         xhci_add_ep_to_interval_table(xhci,
2905                                         &virt_dev->eps[i].bw_info,
2906                                         virt_dev->bw_table,
2907                                         virt_dev->udev,
2908                                         &virt_dev->eps[i],
2909                                         virt_dev->tt_info);
2910         }
2911
2912         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2913                 /* Ok, this fits in the bandwidth we have.
2914                  * Update the number of active TTs.
2915                  */
2916                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2917                 return 0;
2918         }
2919
2920         /* We don't have enough bandwidth for this, revert the stored info. */
2921         for (i = 0; i < 31; i++) {
2922                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2923                         continue;
2924
2925                 /* Drop the new copies of any added or changed endpoints from
2926                  * the interval table.
2927                  */
2928                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2929                         xhci_drop_ep_from_interval_table(xhci,
2930                                         &virt_dev->eps[i].bw_info,
2931                                         virt_dev->bw_table,
2932                                         virt_dev->udev,
2933                                         &virt_dev->eps[i],
2934                                         virt_dev->tt_info);
2935                 }
2936                 /* Revert the endpoint back to its old information */
2937                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2938                                 sizeof(ep_bw_info[i]));
2939                 /* Add any changed or dropped endpoints back into the table */
2940                 if (EP_IS_DROPPED(ctrl_ctx, i))
2941                         xhci_add_ep_to_interval_table(xhci,
2942                                         &virt_dev->eps[i].bw_info,
2943                                         virt_dev->bw_table,
2944                                         virt_dev->udev,
2945                                         &virt_dev->eps[i],
2946                                         virt_dev->tt_info);
2947         }
2948         return -ENOMEM;
2949 }
2950
2951
2952 /* Issue a configure endpoint command or evaluate context command
2953  * and wait for it to finish.
2954  */
2955 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2956                 struct usb_device *udev,
2957                 struct xhci_command *command,
2958                 bool ctx_change, bool must_succeed)
2959 {
2960         int ret;
2961         unsigned long flags;
2962         struct xhci_input_control_ctx *ctrl_ctx;
2963         struct xhci_virt_device *virt_dev;
2964         struct xhci_slot_ctx *slot_ctx;
2965
2966         if (!command)
2967                 return -EINVAL;
2968
2969         spin_lock_irqsave(&xhci->lock, flags);
2970
2971         if (xhci->xhc_state & XHCI_STATE_DYING) {
2972                 spin_unlock_irqrestore(&xhci->lock, flags);
2973                 return -ESHUTDOWN;
2974         }
2975
2976         virt_dev = xhci->devs[udev->slot_id];
2977
2978         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2979         if (!ctrl_ctx) {
2980                 spin_unlock_irqrestore(&xhci->lock, flags);
2981                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2982                                 __func__);
2983                 return -ENOMEM;
2984         }
2985
2986         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2987                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2988                 spin_unlock_irqrestore(&xhci->lock, flags);
2989                 xhci_warn(xhci, "Not enough host resources, "
2990                                 "active endpoint contexts = %u\n",
2991                                 xhci->num_active_eps);
2992                 return -ENOMEM;
2993         }
2994         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2995             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2996                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2997                         xhci_free_host_resources(xhci, ctrl_ctx);
2998                 spin_unlock_irqrestore(&xhci->lock, flags);
2999                 xhci_warn(xhci, "Not enough bandwidth\n");
3000                 return -ENOMEM;
3001         }
3002
3003         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3004
3005         trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
3006         trace_xhci_configure_endpoint(slot_ctx);
3007
3008         if (!ctx_change)
3009                 ret = xhci_queue_configure_endpoint(xhci, command,
3010                                 command->in_ctx->dma,
3011                                 udev->slot_id, must_succeed);
3012         else
3013                 ret = xhci_queue_evaluate_context(xhci, command,
3014                                 command->in_ctx->dma,
3015                                 udev->slot_id, must_succeed);
3016         if (ret < 0) {
3017                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
3018                         xhci_free_host_resources(xhci, ctrl_ctx);
3019                 spin_unlock_irqrestore(&xhci->lock, flags);
3020                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
3021                                 "FIXME allocate a new ring segment");
3022                 return -ENOMEM;
3023         }
3024         xhci_ring_cmd_db(xhci);
3025         spin_unlock_irqrestore(&xhci->lock, flags);
3026
3027         /* Wait for the configure endpoint command to complete */
3028         wait_for_completion(command->completion);
3029
3030         if (!ctx_change)
3031                 ret = xhci_configure_endpoint_result(xhci, udev,
3032                                                      &command->status);
3033         else
3034                 ret = xhci_evaluate_context_result(xhci, udev,
3035                                                    &command->status);
3036
3037         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3038                 spin_lock_irqsave(&xhci->lock, flags);
3039                 /* If the command failed, remove the reserved resources.
3040                  * Otherwise, clean up the estimate to include dropped eps.
3041                  */
3042                 if (ret)
3043                         xhci_free_host_resources(xhci, ctrl_ctx);
3044                 else
3045                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
3046                 spin_unlock_irqrestore(&xhci->lock, flags);
3047         }
3048         return ret;
3049 }
3050
3051 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
3052         struct xhci_virt_device *vdev, int i)
3053 {
3054         struct xhci_virt_ep *ep = &vdev->eps[i];
3055
3056         if (ep->ep_state & EP_HAS_STREAMS) {
3057                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
3058                                 xhci_get_endpoint_address(i));
3059                 xhci_free_stream_info(xhci, ep->stream_info);
3060                 ep->stream_info = NULL;
3061                 ep->ep_state &= ~EP_HAS_STREAMS;
3062         }
3063 }
3064
3065 /* Called after one or more calls to xhci_add_endpoint() or
3066  * xhci_drop_endpoint().  If this call fails, the USB core is expected
3067  * to call xhci_reset_bandwidth().
3068  *
3069  * Since we are in the middle of changing either configuration or
3070  * installing a new alt setting, the USB core won't allow URBs to be
3071  * enqueued for any endpoint on the old config or interface.  Nothing
3072  * else should be touching the xhci->devs[slot_id] structure, so we
3073  * don't need to take the xhci->lock for manipulating that.
3074  */
3075 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3076 {
3077         int i;
3078         int ret = 0;
3079         struct xhci_hcd *xhci;
3080         struct xhci_virt_device *virt_dev;
3081         struct xhci_input_control_ctx *ctrl_ctx;
3082         struct xhci_slot_ctx *slot_ctx;
3083         struct xhci_command *command;
3084
3085         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3086         if (ret <= 0)
3087                 return ret;
3088         xhci = hcd_to_xhci(hcd);
3089         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3090                 (xhci->xhc_state & XHCI_STATE_REMOVING))
3091                 return -ENODEV;
3092
3093         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3094         virt_dev = xhci->devs[udev->slot_id];
3095
3096         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3097         if (!command)
3098                 return -ENOMEM;
3099
3100         command->in_ctx = virt_dev->in_ctx;
3101
3102         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3103         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3104         if (!ctrl_ctx) {
3105                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3106                                 __func__);
3107                 ret = -ENOMEM;
3108                 goto command_cleanup;
3109         }
3110         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3111         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3112         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3113
3114         /* Don't issue the command if there's no endpoints to update. */
3115         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3116             ctrl_ctx->drop_flags == 0) {
3117                 ret = 0;
3118                 goto command_cleanup;
3119         }
3120         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3121         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3122         for (i = 31; i >= 1; i--) {
3123                 __le32 le32 = cpu_to_le32(BIT(i));
3124
3125                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3126                     || (ctrl_ctx->add_flags & le32) || i == 1) {
3127                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3128                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3129                         break;
3130                 }
3131         }
3132
3133         ret = xhci_configure_endpoint(xhci, udev, command,
3134                         false, false);
3135         if (ret)
3136                 /* Callee should call reset_bandwidth() */
3137                 goto command_cleanup;
3138
3139         /* Free any rings that were dropped, but not changed. */
3140         for (i = 1; i < 31; i++) {
3141                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3142                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3143                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3144                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3145                 }
3146         }
3147         xhci_zero_in_ctx(xhci, virt_dev);
3148         /*
3149          * Install any rings for completely new endpoints or changed endpoints,
3150          * and free any old rings from changed endpoints.
3151          */
3152         for (i = 1; i < 31; i++) {
3153                 if (!virt_dev->eps[i].new_ring)
3154                         continue;
3155                 /* Only free the old ring if it exists.
3156                  * It may not if this is the first add of an endpoint.
3157                  */
3158                 if (virt_dev->eps[i].ring) {
3159                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3160                 }
3161                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3162                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3163                 virt_dev->eps[i].new_ring = NULL;
3164                 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3165         }
3166 command_cleanup:
3167         kfree(command->completion);
3168         kfree(command);
3169
3170         return ret;
3171 }
3172 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3173
3174 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3175 {
3176         struct xhci_hcd *xhci;
3177         struct xhci_virt_device *virt_dev;
3178         int i, ret;
3179
3180         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3181         if (ret <= 0)
3182                 return;
3183         xhci = hcd_to_xhci(hcd);
3184
3185         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3186         virt_dev = xhci->devs[udev->slot_id];
3187         /* Free any rings allocated for added endpoints */
3188         for (i = 0; i < 31; i++) {
3189                 if (virt_dev->eps[i].new_ring) {
3190                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3191                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3192                         virt_dev->eps[i].new_ring = NULL;
3193                 }
3194         }
3195         xhci_zero_in_ctx(xhci, virt_dev);
3196 }
3197 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3198
3199 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3200                 struct xhci_container_ctx *in_ctx,
3201                 struct xhci_container_ctx *out_ctx,
3202                 struct xhci_input_control_ctx *ctrl_ctx,
3203                 u32 add_flags, u32 drop_flags)
3204 {
3205         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3206         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3207         xhci_slot_copy(xhci, in_ctx, out_ctx);
3208         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3209 }
3210
3211 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3212                                   struct usb_host_endpoint *host_ep)
3213 {
3214         struct xhci_hcd         *xhci;
3215         struct xhci_virt_device *vdev;
3216         struct xhci_virt_ep     *ep;
3217         struct usb_device       *udev;
3218         unsigned long           flags;
3219         unsigned int            ep_index;
3220
3221         xhci = hcd_to_xhci(hcd);
3222 rescan:
3223         spin_lock_irqsave(&xhci->lock, flags);
3224
3225         udev = (struct usb_device *)host_ep->hcpriv;
3226         if (!udev || !udev->slot_id)
3227                 goto done;
3228
3229         vdev = xhci->devs[udev->slot_id];
3230         if (!vdev)
3231                 goto done;
3232
3233         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3234         ep = &vdev->eps[ep_index];
3235
3236         /* wait for hub_tt_work to finish clearing hub TT */
3237         if (ep->ep_state & EP_CLEARING_TT) {
3238                 spin_unlock_irqrestore(&xhci->lock, flags);
3239                 schedule_timeout_uninterruptible(1);
3240                 goto rescan;
3241         }
3242
3243         if (ep->ep_state)
3244                 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3245                          ep->ep_state);
3246 done:
3247         host_ep->hcpriv = NULL;
3248         spin_unlock_irqrestore(&xhci->lock, flags);
3249 }
3250
3251 /*
3252  * Called after usb core issues a clear halt control message.
3253  * The host side of the halt should already be cleared by a reset endpoint
3254  * command issued when the STALL event was received.
3255  *
3256  * The reset endpoint command may only be issued to endpoints in the halted
3257  * state. For software that wishes to reset the data toggle or sequence number
3258  * of an endpoint that isn't in the halted state this function will issue a
3259  * configure endpoint command with the Drop and Add bits set for the target
3260  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3261  */
3262
3263 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3264                 struct usb_host_endpoint *host_ep)
3265 {
3266         struct xhci_hcd *xhci;
3267         struct usb_device *udev;
3268         struct xhci_virt_device *vdev;
3269         struct xhci_virt_ep *ep;
3270         struct xhci_input_control_ctx *ctrl_ctx;
3271         struct xhci_command *stop_cmd, *cfg_cmd;
3272         unsigned int ep_index;
3273         unsigned long flags;
3274         u32 ep_flag;
3275         int err;
3276
3277         xhci = hcd_to_xhci(hcd);
3278         if (!host_ep->hcpriv)
3279                 return;
3280         udev = (struct usb_device *) host_ep->hcpriv;
3281         vdev = xhci->devs[udev->slot_id];
3282
3283         /*
3284          * vdev may be lost due to xHC restore error and re-initialization
3285          * during S3/S4 resume. A new vdev will be allocated later by
3286          * xhci_discover_or_reset_device()
3287          */
3288         if (!udev->slot_id || !vdev)
3289                 return;
3290         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3291         ep = &vdev->eps[ep_index];
3292
3293         /* Bail out if toggle is already being cleared by a endpoint reset */
3294         spin_lock_irqsave(&xhci->lock, flags);
3295         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3296                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3297                 spin_unlock_irqrestore(&xhci->lock, flags);
3298                 return;
3299         }
3300         spin_unlock_irqrestore(&xhci->lock, flags);
3301         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3302         if (usb_endpoint_xfer_control(&host_ep->desc) ||
3303             usb_endpoint_xfer_isoc(&host_ep->desc))
3304                 return;
3305
3306         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3307
3308         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3309                 return;
3310
3311         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3312         if (!stop_cmd)
3313                 return;
3314
3315         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3316         if (!cfg_cmd)
3317                 goto cleanup;
3318
3319         spin_lock_irqsave(&xhci->lock, flags);
3320
3321         /* block queuing new trbs and ringing ep doorbell */
3322         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3323
3324         /*
3325          * Make sure endpoint ring is empty before resetting the toggle/seq.
3326          * Driver is required to synchronously cancel all transfer request.
3327          * Stop the endpoint to force xHC to update the output context
3328          */
3329
3330         if (!list_empty(&ep->ring->td_list)) {
3331                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3332                 spin_unlock_irqrestore(&xhci->lock, flags);
3333                 xhci_free_command(xhci, cfg_cmd);
3334                 goto cleanup;
3335         }
3336
3337         err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3338                                         ep_index, 0);
3339         if (err < 0) {
3340                 spin_unlock_irqrestore(&xhci->lock, flags);
3341                 xhci_free_command(xhci, cfg_cmd);
3342                 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3343                                 __func__, err);
3344                 goto cleanup;
3345         }
3346
3347         xhci_ring_cmd_db(xhci);
3348         spin_unlock_irqrestore(&xhci->lock, flags);
3349
3350         wait_for_completion(stop_cmd->completion);
3351
3352         spin_lock_irqsave(&xhci->lock, flags);
3353
3354         /* config ep command clears toggle if add and drop ep flags are set */
3355         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3356         if (!ctrl_ctx) {
3357                 spin_unlock_irqrestore(&xhci->lock, flags);
3358                 xhci_free_command(xhci, cfg_cmd);
3359                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3360                                 __func__);
3361                 goto cleanup;
3362         }
3363
3364         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3365                                            ctrl_ctx, ep_flag, ep_flag);
3366         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3367
3368         err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3369                                       udev->slot_id, false);
3370         if (err < 0) {
3371                 spin_unlock_irqrestore(&xhci->lock, flags);
3372                 xhci_free_command(xhci, cfg_cmd);
3373                 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3374                                 __func__, err);
3375                 goto cleanup;
3376         }
3377
3378         xhci_ring_cmd_db(xhci);
3379         spin_unlock_irqrestore(&xhci->lock, flags);
3380
3381         wait_for_completion(cfg_cmd->completion);
3382
3383         xhci_free_command(xhci, cfg_cmd);
3384 cleanup:
3385         xhci_free_command(xhci, stop_cmd);
3386         spin_lock_irqsave(&xhci->lock, flags);
3387         if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3388                 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3389         spin_unlock_irqrestore(&xhci->lock, flags);
3390 }
3391
3392 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3393                 struct usb_device *udev, struct usb_host_endpoint *ep,
3394                 unsigned int slot_id)
3395 {
3396         int ret;
3397         unsigned int ep_index;
3398         unsigned int ep_state;
3399
3400         if (!ep)
3401                 return -EINVAL;
3402         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3403         if (ret <= 0)
3404                 return ret ? ret : -EINVAL;
3405         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3406                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3407                                 " descriptor for ep 0x%x does not support streams\n",
3408                                 ep->desc.bEndpointAddress);
3409                 return -EINVAL;
3410         }
3411
3412         ep_index = xhci_get_endpoint_index(&ep->desc);
3413         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3414         if (ep_state & EP_HAS_STREAMS ||
3415                         ep_state & EP_GETTING_STREAMS) {
3416                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3417                                 "already has streams set up.\n",
3418                                 ep->desc.bEndpointAddress);
3419                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3420                                 "dynamic stream context array reallocation.\n");
3421                 return -EINVAL;
3422         }
3423         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3424                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3425                                 "endpoint 0x%x; URBs are pending.\n",
3426                                 ep->desc.bEndpointAddress);
3427                 return -EINVAL;
3428         }
3429         return 0;
3430 }
3431
3432 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3433                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3434 {
3435         unsigned int max_streams;
3436
3437         /* The stream context array size must be a power of two */
3438         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3439         /*
3440          * Find out how many primary stream array entries the host controller
3441          * supports.  Later we may use secondary stream arrays (similar to 2nd
3442          * level page entries), but that's an optional feature for xHCI host
3443          * controllers. xHCs must support at least 4 stream IDs.
3444          */
3445         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3446         if (*num_stream_ctxs > max_streams) {
3447                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3448                                 max_streams);
3449                 *num_stream_ctxs = max_streams;
3450                 *num_streams = max_streams;
3451         }
3452 }
3453
3454 /* Returns an error code if one of the endpoint already has streams.
3455  * This does not change any data structures, it only checks and gathers
3456  * information.
3457  */
3458 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3459                 struct usb_device *udev,
3460                 struct usb_host_endpoint **eps, unsigned int num_eps,
3461                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3462 {
3463         unsigned int max_streams;
3464         unsigned int endpoint_flag;
3465         int i;
3466         int ret;
3467
3468         for (i = 0; i < num_eps; i++) {
3469                 ret = xhci_check_streams_endpoint(xhci, udev,
3470                                 eps[i], udev->slot_id);
3471                 if (ret < 0)
3472                         return ret;
3473
3474                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3475                 if (max_streams < (*num_streams - 1)) {
3476                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3477                                         eps[i]->desc.bEndpointAddress,
3478                                         max_streams);
3479                         *num_streams = max_streams+1;
3480                 }
3481
3482                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3483                 if (*changed_ep_bitmask & endpoint_flag)
3484                         return -EINVAL;
3485                 *changed_ep_bitmask |= endpoint_flag;
3486         }
3487         return 0;
3488 }
3489
3490 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3491                 struct usb_device *udev,
3492                 struct usb_host_endpoint **eps, unsigned int num_eps)
3493 {
3494         u32 changed_ep_bitmask = 0;
3495         unsigned int slot_id;
3496         unsigned int ep_index;
3497         unsigned int ep_state;
3498         int i;
3499
3500         slot_id = udev->slot_id;
3501         if (!xhci->devs[slot_id])
3502                 return 0;
3503
3504         for (i = 0; i < num_eps; i++) {
3505                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3506                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3507                 /* Are streams already being freed for the endpoint? */
3508                 if (ep_state & EP_GETTING_NO_STREAMS) {
3509                         xhci_warn(xhci, "WARN Can't disable streams for "
3510                                         "endpoint 0x%x, "
3511                                         "streams are being disabled already\n",
3512                                         eps[i]->desc.bEndpointAddress);
3513                         return 0;
3514                 }
3515                 /* Are there actually any streams to free? */
3516                 if (!(ep_state & EP_HAS_STREAMS) &&
3517                                 !(ep_state & EP_GETTING_STREAMS)) {
3518                         xhci_warn(xhci, "WARN Can't disable streams for "
3519                                         "endpoint 0x%x, "
3520                                         "streams are already disabled!\n",
3521                                         eps[i]->desc.bEndpointAddress);
3522                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3523                                         "with non-streams endpoint\n");
3524                         return 0;
3525                 }
3526                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3527         }
3528         return changed_ep_bitmask;
3529 }
3530
3531 /*
3532  * The USB device drivers use this function (through the HCD interface in USB
3533  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3534  * coordinate mass storage command queueing across multiple endpoints (basically
3535  * a stream ID == a task ID).
3536  *
3537  * Setting up streams involves allocating the same size stream context array
3538  * for each endpoint and issuing a configure endpoint command for all endpoints.
3539  *
3540  * Don't allow the call to succeed if one endpoint only supports one stream
3541  * (which means it doesn't support streams at all).
3542  *
3543  * Drivers may get less stream IDs than they asked for, if the host controller
3544  * hardware or endpoints claim they can't support the number of requested
3545  * stream IDs.
3546  */
3547 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3548                 struct usb_host_endpoint **eps, unsigned int num_eps,
3549                 unsigned int num_streams, gfp_t mem_flags)
3550 {
3551         int i, ret;
3552         struct xhci_hcd *xhci;
3553         struct xhci_virt_device *vdev;
3554         struct xhci_command *config_cmd;
3555         struct xhci_input_control_ctx *ctrl_ctx;
3556         unsigned int ep_index;
3557         unsigned int num_stream_ctxs;
3558         unsigned int max_packet;
3559         unsigned long flags;
3560         u32 changed_ep_bitmask = 0;
3561
3562         if (!eps)
3563                 return -EINVAL;
3564
3565         /* Add one to the number of streams requested to account for
3566          * stream 0 that is reserved for xHCI usage.
3567          */
3568         num_streams += 1;
3569         xhci = hcd_to_xhci(hcd);
3570         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3571                         num_streams);
3572
3573         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3574         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3575                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3576                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3577                 return -ENOSYS;
3578         }
3579
3580         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3581         if (!config_cmd)
3582                 return -ENOMEM;
3583
3584         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3585         if (!ctrl_ctx) {
3586                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3587                                 __func__);
3588                 xhci_free_command(xhci, config_cmd);
3589                 return -ENOMEM;
3590         }
3591
3592         /* Check to make sure all endpoints are not already configured for
3593          * streams.  While we're at it, find the maximum number of streams that
3594          * all the endpoints will support and check for duplicate endpoints.
3595          */
3596         spin_lock_irqsave(&xhci->lock, flags);
3597         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3598                         num_eps, &num_streams, &changed_ep_bitmask);
3599         if (ret < 0) {
3600                 xhci_free_command(xhci, config_cmd);
3601                 spin_unlock_irqrestore(&xhci->lock, flags);
3602                 return ret;
3603         }
3604         if (num_streams <= 1) {
3605                 xhci_warn(xhci, "WARN: endpoints can't handle "
3606                                 "more than one stream.\n");
3607                 xhci_free_command(xhci, config_cmd);
3608                 spin_unlock_irqrestore(&xhci->lock, flags);
3609                 return -EINVAL;
3610         }
3611         vdev = xhci->devs[udev->slot_id];
3612         /* Mark each endpoint as being in transition, so
3613          * xhci_urb_enqueue() will reject all URBs.
3614          */
3615         for (i = 0; i < num_eps; i++) {
3616                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3617                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3618         }
3619         spin_unlock_irqrestore(&xhci->lock, flags);
3620
3621         /* Setup internal data structures and allocate HW data structures for
3622          * streams (but don't install the HW structures in the input context
3623          * until we're sure all memory allocation succeeded).
3624          */
3625         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3626         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3627                         num_stream_ctxs, num_streams);
3628
3629         for (i = 0; i < num_eps; i++) {
3630                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3631                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3632                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3633                                 num_stream_ctxs,
3634                                 num_streams,
3635                                 max_packet, mem_flags);
3636                 if (!vdev->eps[ep_index].stream_info)
3637                         goto cleanup;
3638                 /* Set maxPstreams in endpoint context and update deq ptr to
3639                  * point to stream context array. FIXME
3640                  */
3641         }
3642
3643         /* Set up the input context for a configure endpoint command. */
3644         for (i = 0; i < num_eps; i++) {
3645                 struct xhci_ep_ctx *ep_ctx;
3646
3647                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3648                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3649
3650                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3651                                 vdev->out_ctx, ep_index);
3652                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3653                                 vdev->eps[ep_index].stream_info);
3654         }
3655         /* Tell the HW to drop its old copy of the endpoint context info
3656          * and add the updated copy from the input context.
3657          */
3658         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3659                         vdev->out_ctx, ctrl_ctx,
3660                         changed_ep_bitmask, changed_ep_bitmask);
3661
3662         /* Issue and wait for the configure endpoint command */
3663         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3664                         false, false);
3665
3666         /* xHC rejected the configure endpoint command for some reason, so we
3667          * leave the old ring intact and free our internal streams data
3668          * structure.
3669          */
3670         if (ret < 0)
3671                 goto cleanup;
3672
3673         spin_lock_irqsave(&xhci->lock, flags);
3674         for (i = 0; i < num_eps; i++) {
3675                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3676                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3677                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3678                          udev->slot_id, ep_index);
3679                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3680         }
3681         xhci_free_command(xhci, config_cmd);
3682         spin_unlock_irqrestore(&xhci->lock, flags);
3683
3684         for (i = 0; i < num_eps; i++) {
3685                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3686                 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3687         }
3688         /* Subtract 1 for stream 0, which drivers can't use */
3689         return num_streams - 1;
3690
3691 cleanup:
3692         /* If it didn't work, free the streams! */
3693         for (i = 0; i < num_eps; i++) {
3694                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3695                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3696                 vdev->eps[ep_index].stream_info = NULL;
3697                 /* FIXME Unset maxPstreams in endpoint context and
3698                  * update deq ptr to point to normal string ring.
3699                  */
3700                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3701                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3702                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3703         }
3704         xhci_free_command(xhci, config_cmd);
3705         return -ENOMEM;
3706 }
3707
3708 /* Transition the endpoint from using streams to being a "normal" endpoint
3709  * without streams.
3710  *
3711  * Modify the endpoint context state, submit a configure endpoint command,
3712  * and free all endpoint rings for streams if that completes successfully.
3713  */
3714 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3715                 struct usb_host_endpoint **eps, unsigned int num_eps,
3716                 gfp_t mem_flags)
3717 {
3718         int i, ret;
3719         struct xhci_hcd *xhci;
3720         struct xhci_virt_device *vdev;
3721         struct xhci_command *command;
3722         struct xhci_input_control_ctx *ctrl_ctx;
3723         unsigned int ep_index;
3724         unsigned long flags;
3725         u32 changed_ep_bitmask;
3726
3727         xhci = hcd_to_xhci(hcd);
3728         vdev = xhci->devs[udev->slot_id];
3729
3730         /* Set up a configure endpoint command to remove the streams rings */
3731         spin_lock_irqsave(&xhci->lock, flags);
3732         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3733                         udev, eps, num_eps);
3734         if (changed_ep_bitmask == 0) {
3735                 spin_unlock_irqrestore(&xhci->lock, flags);
3736                 return -EINVAL;
3737         }
3738
3739         /* Use the xhci_command structure from the first endpoint.  We may have
3740          * allocated too many, but the driver may call xhci_free_streams() for
3741          * each endpoint it grouped into one call to xhci_alloc_streams().
3742          */
3743         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3744         command = vdev->eps[ep_index].stream_info->free_streams_command;
3745         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3746         if (!ctrl_ctx) {
3747                 spin_unlock_irqrestore(&xhci->lock, flags);
3748                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3749                                 __func__);
3750                 return -EINVAL;
3751         }
3752
3753         for (i = 0; i < num_eps; i++) {
3754                 struct xhci_ep_ctx *ep_ctx;
3755
3756                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3757                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3758                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3759                         EP_GETTING_NO_STREAMS;
3760
3761                 xhci_endpoint_copy(xhci, command->in_ctx,
3762                                 vdev->out_ctx, ep_index);
3763                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3764                                 &vdev->eps[ep_index]);
3765         }
3766         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3767                         vdev->out_ctx, ctrl_ctx,
3768                         changed_ep_bitmask, changed_ep_bitmask);
3769         spin_unlock_irqrestore(&xhci->lock, flags);
3770
3771         /* Issue and wait for the configure endpoint command,
3772          * which must succeed.
3773          */
3774         ret = xhci_configure_endpoint(xhci, udev, command,
3775                         false, true);
3776
3777         /* xHC rejected the configure endpoint command for some reason, so we
3778          * leave the streams rings intact.
3779          */
3780         if (ret < 0)
3781                 return ret;
3782
3783         spin_lock_irqsave(&xhci->lock, flags);
3784         for (i = 0; i < num_eps; i++) {
3785                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3786                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3787                 vdev->eps[ep_index].stream_info = NULL;
3788                 /* FIXME Unset maxPstreams in endpoint context and
3789                  * update deq ptr to point to normal string ring.
3790                  */
3791                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3792                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3793         }
3794         spin_unlock_irqrestore(&xhci->lock, flags);
3795
3796         return 0;
3797 }
3798
3799 /*
3800  * Deletes endpoint resources for endpoints that were active before a Reset
3801  * Device command, or a Disable Slot command.  The Reset Device command leaves
3802  * the control endpoint intact, whereas the Disable Slot command deletes it.
3803  *
3804  * Must be called with xhci->lock held.
3805  */
3806 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3807         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3808 {
3809         int i;
3810         unsigned int num_dropped_eps = 0;
3811         unsigned int drop_flags = 0;
3812
3813         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3814                 if (virt_dev->eps[i].ring) {
3815                         drop_flags |= 1 << i;
3816                         num_dropped_eps++;
3817                 }
3818         }
3819         xhci->num_active_eps -= num_dropped_eps;
3820         if (num_dropped_eps)
3821                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3822                                 "Dropped %u ep ctxs, flags = 0x%x, "
3823                                 "%u now active.",
3824                                 num_dropped_eps, drop_flags,
3825                                 xhci->num_active_eps);
3826 }
3827
3828 /*
3829  * This submits a Reset Device Command, which will set the device state to 0,
3830  * set the device address to 0, and disable all the endpoints except the default
3831  * control endpoint.  The USB core should come back and call
3832  * xhci_address_device(), and then re-set up the configuration.  If this is
3833  * called because of a usb_reset_and_verify_device(), then the old alternate
3834  * settings will be re-installed through the normal bandwidth allocation
3835  * functions.
3836  *
3837  * Wait for the Reset Device command to finish.  Remove all structures
3838  * associated with the endpoints that were disabled.  Clear the input device
3839  * structure? Reset the control endpoint 0 max packet size?
3840  *
3841  * If the virt_dev to be reset does not exist or does not match the udev,
3842  * it means the device is lost, possibly due to the xHC restore error and
3843  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3844  * re-allocate the device.
3845  */
3846 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3847                 struct usb_device *udev)
3848 {
3849         int ret, i;
3850         unsigned long flags;
3851         struct xhci_hcd *xhci;
3852         unsigned int slot_id;
3853         struct xhci_virt_device *virt_dev;
3854         struct xhci_command *reset_device_cmd;
3855         struct xhci_slot_ctx *slot_ctx;
3856         int old_active_eps = 0;
3857
3858         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3859         if (ret <= 0)
3860                 return ret;
3861         xhci = hcd_to_xhci(hcd);
3862         slot_id = udev->slot_id;
3863         virt_dev = xhci->devs[slot_id];
3864         if (!virt_dev) {
3865                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3866                                 "not exist. Re-allocate the device\n", slot_id);
3867                 ret = xhci_alloc_dev(hcd, udev);
3868                 if (ret == 1)
3869                         return 0;
3870                 else
3871                         return -EINVAL;
3872         }
3873
3874         if (virt_dev->tt_info)
3875                 old_active_eps = virt_dev->tt_info->active_eps;
3876
3877         if (virt_dev->udev != udev) {
3878                 /* If the virt_dev and the udev does not match, this virt_dev
3879                  * may belong to another udev.
3880                  * Re-allocate the device.
3881                  */
3882                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3883                                 "not match the udev. Re-allocate the device\n",
3884                                 slot_id);
3885                 ret = xhci_alloc_dev(hcd, udev);
3886                 if (ret == 1)
3887                         return 0;
3888                 else
3889                         return -EINVAL;
3890         }
3891
3892         /* If device is not setup, there is no point in resetting it */
3893         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3894         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3895                                                 SLOT_STATE_DISABLED)
3896                 return 0;
3897
3898         trace_xhci_discover_or_reset_device(slot_ctx);
3899
3900         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3901         /* Allocate the command structure that holds the struct completion.
3902          * Assume we're in process context, since the normal device reset
3903          * process has to wait for the device anyway.  Storage devices are
3904          * reset as part of error handling, so use GFP_NOIO instead of
3905          * GFP_KERNEL.
3906          */
3907         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3908         if (!reset_device_cmd) {
3909                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3910                 return -ENOMEM;
3911         }
3912
3913         /* Attempt to submit the Reset Device command to the command ring */
3914         spin_lock_irqsave(&xhci->lock, flags);
3915
3916         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3917         if (ret) {
3918                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3919                 spin_unlock_irqrestore(&xhci->lock, flags);
3920                 goto command_cleanup;
3921         }
3922         xhci_ring_cmd_db(xhci);
3923         spin_unlock_irqrestore(&xhci->lock, flags);
3924
3925         /* Wait for the Reset Device command to finish */
3926         wait_for_completion(reset_device_cmd->completion);
3927
3928         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3929          * unless we tried to reset a slot ID that wasn't enabled,
3930          * or the device wasn't in the addressed or configured state.
3931          */
3932         ret = reset_device_cmd->status;
3933         switch (ret) {
3934         case COMP_COMMAND_ABORTED:
3935         case COMP_COMMAND_RING_STOPPED:
3936                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3937                 ret = -ETIME;
3938                 goto command_cleanup;
3939         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3940         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3941                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3942                                 slot_id,
3943                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3944                 xhci_dbg(xhci, "Not freeing device rings.\n");
3945                 /* Don't treat this as an error.  May change my mind later. */
3946                 ret = 0;
3947                 goto command_cleanup;
3948         case COMP_SUCCESS:
3949                 xhci_dbg(xhci, "Successful reset device command.\n");
3950                 break;
3951         default:
3952                 if (xhci_is_vendor_info_code(xhci, ret))
3953                         break;
3954                 xhci_warn(xhci, "Unknown completion code %u for "
3955                                 "reset device command.\n", ret);
3956                 ret = -EINVAL;
3957                 goto command_cleanup;
3958         }
3959
3960         /* Free up host controller endpoint resources */
3961         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3962                 spin_lock_irqsave(&xhci->lock, flags);
3963                 /* Don't delete the default control endpoint resources */
3964                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3965                 spin_unlock_irqrestore(&xhci->lock, flags);
3966         }
3967
3968         /* Everything but endpoint 0 is disabled, so free the rings. */
3969         for (i = 1; i < 31; i++) {
3970                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3971
3972                 if (ep->ep_state & EP_HAS_STREAMS) {
3973                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3974                                         xhci_get_endpoint_address(i));
3975                         xhci_free_stream_info(xhci, ep->stream_info);
3976                         ep->stream_info = NULL;
3977                         ep->ep_state &= ~EP_HAS_STREAMS;
3978                 }
3979
3980                 if (ep->ring) {
3981                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3982                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3983                 }
3984                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3985                         xhci_drop_ep_from_interval_table(xhci,
3986                                         &virt_dev->eps[i].bw_info,
3987                                         virt_dev->bw_table,
3988                                         udev,
3989                                         &virt_dev->eps[i],
3990                                         virt_dev->tt_info);
3991                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3992         }
3993         /* If necessary, update the number of active TTs on this root port */
3994         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3995         virt_dev->flags = 0;
3996         ret = 0;
3997
3998 command_cleanup:
3999         xhci_free_command(xhci, reset_device_cmd);
4000         return ret;
4001 }
4002
4003 /*
4004  * At this point, the struct usb_device is about to go away, the device has
4005  * disconnected, and all traffic has been stopped and the endpoints have been
4006  * disabled.  Free any HC data structures associated with that device.
4007  */
4008 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4009 {
4010         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4011         struct xhci_virt_device *virt_dev;
4012         struct xhci_slot_ctx *slot_ctx;
4013         unsigned long flags;
4014         int i, ret;
4015
4016         /*
4017          * We called pm_runtime_get_noresume when the device was attached.
4018          * Decrement the counter here to allow controller to runtime suspend
4019          * if no devices remain.
4020          */
4021         if (xhci->quirks & XHCI_RESET_ON_RESUME)
4022                 pm_runtime_put_noidle(hcd->self.controller);
4023
4024         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
4025         /* If the host is halted due to driver unload, we still need to free the
4026          * device.
4027          */
4028         if (ret <= 0 && ret != -ENODEV)
4029                 return;
4030
4031         virt_dev = xhci->devs[udev->slot_id];
4032         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4033         trace_xhci_free_dev(slot_ctx);
4034
4035         /* Stop any wayward timer functions (which may grab the lock) */
4036         for (i = 0; i < 31; i++)
4037                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
4038         virt_dev->udev = NULL;
4039         xhci_disable_slot(xhci, udev->slot_id);
4040
4041         spin_lock_irqsave(&xhci->lock, flags);
4042         xhci_free_virt_device(xhci, udev->slot_id);
4043         spin_unlock_irqrestore(&xhci->lock, flags);
4044
4045 }
4046
4047 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
4048 {
4049         struct xhci_command *command;
4050         unsigned long flags;
4051         u32 state;
4052         int ret;
4053
4054         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4055         if (!command)
4056                 return -ENOMEM;
4057
4058         xhci_debugfs_remove_slot(xhci, slot_id);
4059
4060         spin_lock_irqsave(&xhci->lock, flags);
4061         /* Don't disable the slot if the host controller is dead. */
4062         state = readl(&xhci->op_regs->status);
4063         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4064                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
4065                 spin_unlock_irqrestore(&xhci->lock, flags);
4066                 kfree(command);
4067                 return -ENODEV;
4068         }
4069
4070         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4071                                 slot_id);
4072         if (ret) {
4073                 spin_unlock_irqrestore(&xhci->lock, flags);
4074                 kfree(command);
4075                 return ret;
4076         }
4077         xhci_ring_cmd_db(xhci);
4078         spin_unlock_irqrestore(&xhci->lock, flags);
4079
4080         wait_for_completion(command->completion);
4081
4082         if (command->status != COMP_SUCCESS)
4083                 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4084                           slot_id, command->status);
4085
4086         xhci_free_command(xhci, command);
4087
4088         return 0;
4089 }
4090
4091 /*
4092  * Checks if we have enough host controller resources for the default control
4093  * endpoint.
4094  *
4095  * Must be called with xhci->lock held.
4096  */
4097 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4098 {
4099         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4100                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4101                                 "Not enough ep ctxs: "
4102                                 "%u active, need to add 1, limit is %u.",
4103                                 xhci->num_active_eps, xhci->limit_active_eps);
4104                 return -ENOMEM;
4105         }
4106         xhci->num_active_eps += 1;
4107         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4108                         "Adding 1 ep ctx, %u now active.",
4109                         xhci->num_active_eps);
4110         return 0;
4111 }
4112
4113
4114 /*
4115  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4116  * timed out, or allocating memory failed.  Returns 1 on success.
4117  */
4118 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4119 {
4120         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4121         struct xhci_virt_device *vdev;
4122         struct xhci_slot_ctx *slot_ctx;
4123         unsigned long flags;
4124         int ret, slot_id;
4125         struct xhci_command *command;
4126
4127         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4128         if (!command)
4129                 return 0;
4130
4131         spin_lock_irqsave(&xhci->lock, flags);
4132         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4133         if (ret) {
4134                 spin_unlock_irqrestore(&xhci->lock, flags);
4135                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4136                 xhci_free_command(xhci, command);
4137                 return 0;
4138         }
4139         xhci_ring_cmd_db(xhci);
4140         spin_unlock_irqrestore(&xhci->lock, flags);
4141
4142         wait_for_completion(command->completion);
4143         slot_id = command->slot_id;
4144
4145         if (!slot_id || command->status != COMP_SUCCESS) {
4146                 xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4147                          xhci_trb_comp_code_string(command->status));
4148                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4149                                 HCS_MAX_SLOTS(
4150                                         readl(&xhci->cap_regs->hcs_params1)));
4151                 xhci_free_command(xhci, command);
4152                 return 0;
4153         }
4154
4155         xhci_free_command(xhci, command);
4156
4157         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4158                 spin_lock_irqsave(&xhci->lock, flags);
4159                 ret = xhci_reserve_host_control_ep_resources(xhci);
4160                 if (ret) {
4161                         spin_unlock_irqrestore(&xhci->lock, flags);
4162                         xhci_warn(xhci, "Not enough host resources, "
4163                                         "active endpoint contexts = %u\n",
4164                                         xhci->num_active_eps);
4165                         goto disable_slot;
4166                 }
4167                 spin_unlock_irqrestore(&xhci->lock, flags);
4168         }
4169         /* Use GFP_NOIO, since this function can be called from
4170          * xhci_discover_or_reset_device(), which may be called as part of
4171          * mass storage driver error handling.
4172          */
4173         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4174                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4175                 goto disable_slot;
4176         }
4177         vdev = xhci->devs[slot_id];
4178         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4179         trace_xhci_alloc_dev(slot_ctx);
4180
4181         udev->slot_id = slot_id;
4182
4183         xhci_debugfs_create_slot(xhci, slot_id);
4184
4185         /*
4186          * If resetting upon resume, we can't put the controller into runtime
4187          * suspend if there is a device attached.
4188          */
4189         if (xhci->quirks & XHCI_RESET_ON_RESUME)
4190                 pm_runtime_get_noresume(hcd->self.controller);
4191
4192         /* Is this a LS or FS device under a HS hub? */
4193         /* Hub or peripherial? */
4194         return 1;
4195
4196 disable_slot:
4197         xhci_disable_slot(xhci, udev->slot_id);
4198         xhci_free_virt_device(xhci, udev->slot_id);
4199
4200         return 0;
4201 }
4202
4203 /*
4204  * Issue an Address Device command and optionally send a corresponding
4205  * SetAddress request to the device.
4206  */
4207 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4208                              enum xhci_setup_dev setup)
4209 {
4210         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4211         unsigned long flags;
4212         struct xhci_virt_device *virt_dev;
4213         int ret = 0;
4214         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4215         struct xhci_slot_ctx *slot_ctx;
4216         struct xhci_input_control_ctx *ctrl_ctx;
4217         u64 temp_64;
4218         struct xhci_command *command = NULL;
4219
4220         mutex_lock(&xhci->mutex);
4221
4222         if (xhci->xhc_state) {  /* dying, removing or halted */
4223                 ret = -ESHUTDOWN;
4224                 goto out;
4225         }
4226
4227         if (!udev->slot_id) {
4228                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4229                                 "Bad Slot ID %d", udev->slot_id);
4230                 ret = -EINVAL;
4231                 goto out;
4232         }
4233
4234         virt_dev = xhci->devs[udev->slot_id];
4235
4236         if (WARN_ON(!virt_dev)) {
4237                 /*
4238                  * In plug/unplug torture test with an NEC controller,
4239                  * a zero-dereference was observed once due to virt_dev = 0.
4240                  * Print useful debug rather than crash if it is observed again!
4241                  */
4242                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4243                         udev->slot_id);
4244                 ret = -EINVAL;
4245                 goto out;
4246         }
4247         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4248         trace_xhci_setup_device_slot(slot_ctx);
4249
4250         if (setup == SETUP_CONTEXT_ONLY) {
4251                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4252                     SLOT_STATE_DEFAULT) {
4253                         xhci_dbg(xhci, "Slot already in default state\n");
4254                         goto out;
4255                 }
4256         }
4257
4258         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4259         if (!command) {
4260                 ret = -ENOMEM;
4261                 goto out;
4262         }
4263
4264         command->in_ctx = virt_dev->in_ctx;
4265
4266         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4267         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4268         if (!ctrl_ctx) {
4269                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4270                                 __func__);
4271                 ret = -EINVAL;
4272                 goto out;
4273         }
4274         /*
4275          * If this is the first Set Address since device plug-in or
4276          * virt_device realloaction after a resume with an xHCI power loss,
4277          * then set up the slot context.
4278          */
4279         if (!slot_ctx->dev_info)
4280                 xhci_setup_addressable_virt_dev(xhci, udev);
4281         /* Otherwise, update the control endpoint ring enqueue pointer. */
4282         else
4283                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4284         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4285         ctrl_ctx->drop_flags = 0;
4286
4287         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4288                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4289
4290         trace_xhci_address_ctrl_ctx(ctrl_ctx);
4291         spin_lock_irqsave(&xhci->lock, flags);
4292         trace_xhci_setup_device(virt_dev);
4293         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4294                                         udev->slot_id, setup);
4295         if (ret) {
4296                 spin_unlock_irqrestore(&xhci->lock, flags);
4297                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4298                                 "FIXME: allocate a command ring segment");
4299                 goto out;
4300         }
4301         xhci_ring_cmd_db(xhci);
4302         spin_unlock_irqrestore(&xhci->lock, flags);
4303
4304         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4305         wait_for_completion(command->completion);
4306
4307         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4308          * the SetAddress() "recovery interval" required by USB and aborting the
4309          * command on a timeout.
4310          */
4311         switch (command->status) {
4312         case COMP_COMMAND_ABORTED:
4313         case COMP_COMMAND_RING_STOPPED:
4314                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4315                 ret = -ETIME;
4316                 break;
4317         case COMP_CONTEXT_STATE_ERROR:
4318         case COMP_SLOT_NOT_ENABLED_ERROR:
4319                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4320                          act, udev->slot_id);
4321                 ret = -EINVAL;
4322                 break;
4323         case COMP_USB_TRANSACTION_ERROR:
4324                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4325
4326                 mutex_unlock(&xhci->mutex);
4327                 ret = xhci_disable_slot(xhci, udev->slot_id);
4328                 xhci_free_virt_device(xhci, udev->slot_id);
4329                 if (!ret)
4330                         xhci_alloc_dev(hcd, udev);
4331                 kfree(command->completion);
4332                 kfree(command);
4333                 return -EPROTO;
4334         case COMP_INCOMPATIBLE_DEVICE_ERROR:
4335                 dev_warn(&udev->dev,
4336                          "ERROR: Incompatible device for setup %s command\n", act);
4337                 ret = -ENODEV;
4338                 break;
4339         case COMP_SUCCESS:
4340                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4341                                "Successful setup %s command", act);
4342                 break;
4343         default:
4344                 xhci_err(xhci,
4345                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
4346                          act, command->status);
4347                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4348                 ret = -EINVAL;
4349                 break;
4350         }
4351         if (ret)
4352                 goto out;
4353         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4354         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4355                         "Op regs DCBAA ptr = %#016llx", temp_64);
4356         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4357                 "Slot ID %d dcbaa entry @%p = %#016llx",
4358                 udev->slot_id,
4359                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4360                 (unsigned long long)
4361                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4362         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4363                         "Output Context DMA address = %#08llx",
4364                         (unsigned long long)virt_dev->out_ctx->dma);
4365         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4366                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4367         /*
4368          * USB core uses address 1 for the roothubs, so we add one to the
4369          * address given back to us by the HC.
4370          */
4371         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4372                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4373         /* Zero the input context control for later use */
4374         ctrl_ctx->add_flags = 0;
4375         ctrl_ctx->drop_flags = 0;
4376         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4377         udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4378
4379         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4380                        "Internal device address = %d",
4381                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4382 out:
4383         mutex_unlock(&xhci->mutex);
4384         if (command) {
4385                 kfree(command->completion);
4386                 kfree(command);
4387         }
4388         return ret;
4389 }
4390
4391 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4392 {
4393         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4394 }
4395
4396 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4397 {
4398         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4399 }
4400
4401 /*
4402  * Transfer the port index into real index in the HW port status
4403  * registers. Caculate offset between the port's PORTSC register
4404  * and port status base. Divide the number of per port register
4405  * to get the real index. The raw port number bases 1.
4406  */
4407 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4408 {
4409         struct xhci_hub *rhub;
4410
4411         rhub = xhci_get_rhub(hcd);
4412         return rhub->ports[port1 - 1]->hw_portnum + 1;
4413 }
4414
4415 /*
4416  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4417  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4418  */
4419 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4420                         struct usb_device *udev, u16 max_exit_latency)
4421 {
4422         struct xhci_virt_device *virt_dev;
4423         struct xhci_command *command;
4424         struct xhci_input_control_ctx *ctrl_ctx;
4425         struct xhci_slot_ctx *slot_ctx;
4426         unsigned long flags;
4427         int ret;
4428
4429         command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4430         if (!command)
4431                 return -ENOMEM;
4432
4433         spin_lock_irqsave(&xhci->lock, flags);
4434
4435         virt_dev = xhci->devs[udev->slot_id];
4436
4437         /*
4438          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4439          * xHC was re-initialized. Exit latency will be set later after
4440          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4441          */
4442
4443         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4444                 spin_unlock_irqrestore(&xhci->lock, flags);
4445                 return 0;
4446         }
4447
4448         /* Attempt to issue an Evaluate Context command to change the MEL. */
4449         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4450         if (!ctrl_ctx) {
4451                 spin_unlock_irqrestore(&xhci->lock, flags);
4452                 xhci_free_command(xhci, command);
4453                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4454                                 __func__);
4455                 return -ENOMEM;
4456         }
4457
4458         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4459         spin_unlock_irqrestore(&xhci->lock, flags);
4460
4461         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4462         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4463         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4464         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4465         slot_ctx->dev_state = 0;
4466
4467         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4468                         "Set up evaluate context for LPM MEL change.");
4469
4470         /* Issue and wait for the evaluate context command. */
4471         ret = xhci_configure_endpoint(xhci, udev, command,
4472                         true, true);
4473
4474         if (!ret) {
4475                 spin_lock_irqsave(&xhci->lock, flags);
4476                 virt_dev->current_mel = max_exit_latency;
4477                 spin_unlock_irqrestore(&xhci->lock, flags);
4478         }
4479
4480         xhci_free_command(xhci, command);
4481
4482         return ret;
4483 }
4484
4485 #ifdef CONFIG_PM
4486
4487 /* BESL to HIRD Encoding array for USB2 LPM */
4488 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4489         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4490
4491 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4492 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4493                                         struct usb_device *udev)
4494 {
4495         int u2del, besl, besl_host;
4496         int besl_device = 0;
4497         u32 field;
4498
4499         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4500         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4501
4502         if (field & USB_BESL_SUPPORT) {
4503                 for (besl_host = 0; besl_host < 16; besl_host++) {
4504                         if (xhci_besl_encoding[besl_host] >= u2del)
4505                                 break;
4506                 }
4507                 /* Use baseline BESL value as default */
4508                 if (field & USB_BESL_BASELINE_VALID)
4509                         besl_device = USB_GET_BESL_BASELINE(field);
4510                 else if (field & USB_BESL_DEEP_VALID)
4511                         besl_device = USB_GET_BESL_DEEP(field);
4512         } else {
4513                 if (u2del <= 50)
4514                         besl_host = 0;
4515                 else
4516                         besl_host = (u2del - 51) / 75 + 1;
4517         }
4518
4519         besl = besl_host + besl_device;
4520         if (besl > 15)
4521                 besl = 15;
4522
4523         return besl;
4524 }
4525
4526 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4527 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4528 {
4529         u32 field;
4530         int l1;
4531         int besld = 0;
4532         int hirdm = 0;
4533
4534         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4535
4536         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4537         l1 = udev->l1_params.timeout / 256;
4538
4539         /* device has preferred BESLD */
4540         if (field & USB_BESL_DEEP_VALID) {
4541                 besld = USB_GET_BESL_DEEP(field);
4542                 hirdm = 1;
4543         }
4544
4545         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4546 }
4547
4548 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4549                         struct usb_device *udev, int enable)
4550 {
4551         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4552         struct xhci_port **ports;
4553         __le32 __iomem  *pm_addr, *hlpm_addr;
4554         u32             pm_val, hlpm_val, field;
4555         unsigned int    port_num;
4556         unsigned long   flags;
4557         int             hird, exit_latency;
4558         int             ret;
4559
4560         if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4561                 return -EPERM;
4562
4563         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4564                         !udev->lpm_capable)
4565                 return -EPERM;
4566
4567         if (!udev->parent || udev->parent->parent ||
4568                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4569                 return -EPERM;
4570
4571         if (udev->usb2_hw_lpm_capable != 1)
4572                 return -EPERM;
4573
4574         spin_lock_irqsave(&xhci->lock, flags);
4575
4576         ports = xhci->usb2_rhub.ports;
4577         port_num = udev->portnum - 1;
4578         pm_addr = ports[port_num]->addr + PORTPMSC;
4579         pm_val = readl(pm_addr);
4580         hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4581
4582         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4583                         enable ? "enable" : "disable", port_num + 1);
4584
4585         if (enable) {
4586                 /* Host supports BESL timeout instead of HIRD */
4587                 if (udev->usb2_hw_lpm_besl_capable) {
4588                         /* if device doesn't have a preferred BESL value use a
4589                          * default one which works with mixed HIRD and BESL
4590                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4591                          */
4592                         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4593                         if ((field & USB_BESL_SUPPORT) &&
4594                             (field & USB_BESL_BASELINE_VALID))
4595                                 hird = USB_GET_BESL_BASELINE(field);
4596                         else
4597                                 hird = udev->l1_params.besl;
4598
4599                         exit_latency = xhci_besl_encoding[hird];
4600                         spin_unlock_irqrestore(&xhci->lock, flags);
4601
4602                         ret = xhci_change_max_exit_latency(xhci, udev,
4603                                                            exit_latency);
4604                         if (ret < 0)
4605                                 return ret;
4606                         spin_lock_irqsave(&xhci->lock, flags);
4607
4608                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4609                         writel(hlpm_val, hlpm_addr);
4610                         /* flush write */
4611                         readl(hlpm_addr);
4612                 } else {
4613                         hird = xhci_calculate_hird_besl(xhci, udev);
4614                 }
4615
4616                 pm_val &= ~PORT_HIRD_MASK;
4617                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4618                 writel(pm_val, pm_addr);
4619                 pm_val = readl(pm_addr);
4620                 pm_val |= PORT_HLE;
4621                 writel(pm_val, pm_addr);
4622                 /* flush write */
4623                 readl(pm_addr);
4624         } else {
4625                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4626                 writel(pm_val, pm_addr);
4627                 /* flush write */
4628                 readl(pm_addr);
4629                 if (udev->usb2_hw_lpm_besl_capable) {
4630                         spin_unlock_irqrestore(&xhci->lock, flags);
4631                         xhci_change_max_exit_latency(xhci, udev, 0);
4632                         readl_poll_timeout(ports[port_num]->addr, pm_val,
4633                                            (pm_val & PORT_PLS_MASK) == XDEV_U0,
4634                                            100, 10000);
4635                         return 0;
4636                 }
4637         }
4638
4639         spin_unlock_irqrestore(&xhci->lock, flags);
4640         return 0;
4641 }
4642
4643 /* check if a usb2 port supports a given extened capability protocol
4644  * only USB2 ports extended protocol capability values are cached.
4645  * Return 1 if capability is supported
4646  */
4647 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4648                                            unsigned capability)
4649 {
4650         u32 port_offset, port_count;
4651         int i;
4652
4653         for (i = 0; i < xhci->num_ext_caps; i++) {
4654                 if (xhci->ext_caps[i] & capability) {
4655                         /* port offsets starts at 1 */
4656                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4657                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4658                         if (port >= port_offset &&
4659                             port < port_offset + port_count)
4660                                 return 1;
4661                 }
4662         }
4663         return 0;
4664 }
4665
4666 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4667 {
4668         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4669         int             portnum = udev->portnum - 1;
4670
4671         if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4672                 return 0;
4673
4674         /* we only support lpm for non-hub device connected to root hub yet */
4675         if (!udev->parent || udev->parent->parent ||
4676                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4677                 return 0;
4678
4679         if (xhci->hw_lpm_support == 1 &&
4680                         xhci_check_usb2_port_capability(
4681                                 xhci, portnum, XHCI_HLC)) {
4682                 udev->usb2_hw_lpm_capable = 1;
4683                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4684                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4685                 if (xhci_check_usb2_port_capability(xhci, portnum,
4686                                         XHCI_BLC))
4687                         udev->usb2_hw_lpm_besl_capable = 1;
4688         }
4689
4690         return 0;
4691 }
4692
4693 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4694
4695 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4696 static unsigned long long xhci_service_interval_to_ns(
4697                 struct usb_endpoint_descriptor *desc)
4698 {
4699         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4700 }
4701
4702 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4703                 enum usb3_link_state state)
4704 {
4705         unsigned long long sel;
4706         unsigned long long pel;
4707         unsigned int max_sel_pel;
4708         char *state_name;
4709
4710         switch (state) {
4711         case USB3_LPM_U1:
4712                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4713                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4714                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4715                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4716                 state_name = "U1";
4717                 break;
4718         case USB3_LPM_U2:
4719                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4720                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4721                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4722                 state_name = "U2";
4723                 break;
4724         default:
4725                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4726                                 __func__);
4727                 return USB3_LPM_DISABLED;
4728         }
4729
4730         if (sel <= max_sel_pel && pel <= max_sel_pel)
4731                 return USB3_LPM_DEVICE_INITIATED;
4732
4733         if (sel > max_sel_pel)
4734                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4735                                 "due to long SEL %llu ms\n",
4736                                 state_name, sel);
4737         else
4738                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4739                                 "due to long PEL %llu ms\n",
4740                                 state_name, pel);
4741         return USB3_LPM_DISABLED;
4742 }
4743
4744 /* The U1 timeout should be the maximum of the following values:
4745  *  - For control endpoints, U1 system exit latency (SEL) * 3
4746  *  - For bulk endpoints, U1 SEL * 5
4747  *  - For interrupt endpoints:
4748  *    - Notification EPs, U1 SEL * 3
4749  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4750  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4751  */
4752 static unsigned long long xhci_calculate_intel_u1_timeout(
4753                 struct usb_device *udev,
4754                 struct usb_endpoint_descriptor *desc)
4755 {
4756         unsigned long long timeout_ns;
4757         int ep_type;
4758         int intr_type;
4759
4760         ep_type = usb_endpoint_type(desc);
4761         switch (ep_type) {
4762         case USB_ENDPOINT_XFER_CONTROL:
4763                 timeout_ns = udev->u1_params.sel * 3;
4764                 break;
4765         case USB_ENDPOINT_XFER_BULK:
4766                 timeout_ns = udev->u1_params.sel * 5;
4767                 break;
4768         case USB_ENDPOINT_XFER_INT:
4769                 intr_type = usb_endpoint_interrupt_type(desc);
4770                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4771                         timeout_ns = udev->u1_params.sel * 3;
4772                         break;
4773                 }
4774                 /* Otherwise the calculation is the same as isoc eps */
4775                 fallthrough;
4776         case USB_ENDPOINT_XFER_ISOC:
4777                 timeout_ns = xhci_service_interval_to_ns(desc);
4778                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4779                 if (timeout_ns < udev->u1_params.sel * 2)
4780                         timeout_ns = udev->u1_params.sel * 2;
4781                 break;
4782         default:
4783                 return 0;
4784         }
4785
4786         return timeout_ns;
4787 }
4788
4789 /* Returns the hub-encoded U1 timeout value. */
4790 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4791                 struct usb_device *udev,
4792                 struct usb_endpoint_descriptor *desc)
4793 {
4794         unsigned long long timeout_ns;
4795
4796         /* Prevent U1 if service interval is shorter than U1 exit latency */
4797         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4798                 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4799                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4800                         return USB3_LPM_DISABLED;
4801                 }
4802         }
4803
4804         if (xhci->quirks & XHCI_INTEL_HOST)
4805                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4806         else
4807                 timeout_ns = udev->u1_params.sel;
4808
4809         /* The U1 timeout is encoded in 1us intervals.
4810          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4811          */
4812         if (timeout_ns == USB3_LPM_DISABLED)
4813                 timeout_ns = 1;
4814         else
4815                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4816
4817         /* If the necessary timeout value is bigger than what we can set in the
4818          * USB 3.0 hub, we have to disable hub-initiated U1.
4819          */
4820         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4821                 return timeout_ns;
4822         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4823                         "due to long timeout %llu ms\n", timeout_ns);
4824         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4825 }
4826
4827 /* The U2 timeout should be the maximum of:
4828  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4829  *  - largest bInterval of any active periodic endpoint (to avoid going
4830  *    into lower power link states between intervals).
4831  *  - the U2 Exit Latency of the device
4832  */
4833 static unsigned long long xhci_calculate_intel_u2_timeout(
4834                 struct usb_device *udev,
4835                 struct usb_endpoint_descriptor *desc)
4836 {
4837         unsigned long long timeout_ns;
4838         unsigned long long u2_del_ns;
4839
4840         timeout_ns = 10 * 1000 * 1000;
4841
4842         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4843                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4844                 timeout_ns = xhci_service_interval_to_ns(desc);
4845
4846         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4847         if (u2_del_ns > timeout_ns)
4848                 timeout_ns = u2_del_ns;
4849
4850         return timeout_ns;
4851 }
4852
4853 /* Returns the hub-encoded U2 timeout value. */
4854 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4855                 struct usb_device *udev,
4856                 struct usb_endpoint_descriptor *desc)
4857 {
4858         unsigned long long timeout_ns;
4859
4860         /* Prevent U2 if service interval is shorter than U2 exit latency */
4861         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4862                 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4863                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4864                         return USB3_LPM_DISABLED;
4865                 }
4866         }
4867
4868         if (xhci->quirks & XHCI_INTEL_HOST)
4869                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4870         else
4871                 timeout_ns = udev->u2_params.sel;
4872
4873         /* The U2 timeout is encoded in 256us intervals */
4874         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4875         /* If the necessary timeout value is bigger than what we can set in the
4876          * USB 3.0 hub, we have to disable hub-initiated U2.
4877          */
4878         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4879                 return timeout_ns;
4880         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4881                         "due to long timeout %llu ms\n", timeout_ns);
4882         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4883 }
4884
4885 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4886                 struct usb_device *udev,
4887                 struct usb_endpoint_descriptor *desc,
4888                 enum usb3_link_state state,
4889                 u16 *timeout)
4890 {
4891         if (state == USB3_LPM_U1)
4892                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4893         else if (state == USB3_LPM_U2)
4894                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4895
4896         return USB3_LPM_DISABLED;
4897 }
4898
4899 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4900                 struct usb_device *udev,
4901                 struct usb_endpoint_descriptor *desc,
4902                 enum usb3_link_state state,
4903                 u16 *timeout)
4904 {
4905         u16 alt_timeout;
4906
4907         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4908                 desc, state, timeout);
4909
4910         /* If we found we can't enable hub-initiated LPM, and
4911          * the U1 or U2 exit latency was too high to allow
4912          * device-initiated LPM as well, then we will disable LPM
4913          * for this device, so stop searching any further.
4914          */
4915         if (alt_timeout == USB3_LPM_DISABLED) {
4916                 *timeout = alt_timeout;
4917                 return -E2BIG;
4918         }
4919         if (alt_timeout > *timeout)
4920                 *timeout = alt_timeout;
4921         return 0;
4922 }
4923
4924 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4925                 struct usb_device *udev,
4926                 struct usb_host_interface *alt,
4927                 enum usb3_link_state state,
4928                 u16 *timeout)
4929 {
4930         int j;
4931
4932         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4933                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4934                                         &alt->endpoint[j].desc, state, timeout))
4935                         return -E2BIG;
4936         }
4937         return 0;
4938 }
4939
4940 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4941                 enum usb3_link_state state)
4942 {
4943         struct usb_device *parent;
4944         unsigned int num_hubs;
4945
4946         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4947         for (parent = udev->parent, num_hubs = 0; parent->parent;
4948                         parent = parent->parent)
4949                 num_hubs++;
4950
4951         if (num_hubs < 2)
4952                 return 0;
4953
4954         dev_dbg(&udev->dev, "Disabling U1/U2 link state for device"
4955                         " below second-tier hub.\n");
4956         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4957                         "to decrease power consumption.\n");
4958         return -E2BIG;
4959 }
4960
4961 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4962                 struct usb_device *udev,
4963                 enum usb3_link_state state)
4964 {
4965         if (xhci->quirks & XHCI_INTEL_HOST)
4966                 return xhci_check_intel_tier_policy(udev, state);
4967         else
4968                 return 0;
4969 }
4970
4971 /* Returns the U1 or U2 timeout that should be enabled.
4972  * If the tier check or timeout setting functions return with a non-zero exit
4973  * code, that means the timeout value has been finalized and we shouldn't look
4974  * at any more endpoints.
4975  */
4976 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4977                         struct usb_device *udev, enum usb3_link_state state)
4978 {
4979         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4980         struct usb_host_config *config;
4981         char *state_name;
4982         int i;
4983         u16 timeout = USB3_LPM_DISABLED;
4984
4985         if (state == USB3_LPM_U1)
4986                 state_name = "U1";
4987         else if (state == USB3_LPM_U2)
4988                 state_name = "U2";
4989         else {
4990                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4991                                 state);
4992                 return timeout;
4993         }
4994
4995         /* Gather some information about the currently installed configuration
4996          * and alternate interface settings.
4997          */
4998         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4999                         state, &timeout))
5000                 return timeout;
5001
5002         config = udev->actconfig;
5003         if (!config)
5004                 return timeout;
5005
5006         for (i = 0; i < config->desc.bNumInterfaces; i++) {
5007                 struct usb_driver *driver;
5008                 struct usb_interface *intf = config->interface[i];
5009
5010                 if (!intf)
5011                         continue;
5012
5013                 /* Check if any currently bound drivers want hub-initiated LPM
5014                  * disabled.
5015                  */
5016                 if (intf->dev.driver) {
5017                         driver = to_usb_driver(intf->dev.driver);
5018                         if (driver && driver->disable_hub_initiated_lpm) {
5019                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
5020                                         state_name, driver->name);
5021                                 timeout = xhci_get_timeout_no_hub_lpm(udev,
5022                                                                       state);
5023                                 if (timeout == USB3_LPM_DISABLED)
5024                                         return timeout;
5025                         }
5026                 }
5027
5028                 /* Not sure how this could happen... */
5029                 if (!intf->cur_altsetting)
5030                         continue;
5031
5032                 if (xhci_update_timeout_for_interface(xhci, udev,
5033                                         intf->cur_altsetting,
5034                                         state, &timeout))
5035                         return timeout;
5036         }
5037         return timeout;
5038 }
5039
5040 static int calculate_max_exit_latency(struct usb_device *udev,
5041                 enum usb3_link_state state_changed,
5042                 u16 hub_encoded_timeout)
5043 {
5044         unsigned long long u1_mel_us = 0;
5045         unsigned long long u2_mel_us = 0;
5046         unsigned long long mel_us = 0;
5047         bool disabling_u1;
5048         bool disabling_u2;
5049         bool enabling_u1;
5050         bool enabling_u2;
5051
5052         disabling_u1 = (state_changed == USB3_LPM_U1 &&
5053                         hub_encoded_timeout == USB3_LPM_DISABLED);
5054         disabling_u2 = (state_changed == USB3_LPM_U2 &&
5055                         hub_encoded_timeout == USB3_LPM_DISABLED);
5056
5057         enabling_u1 = (state_changed == USB3_LPM_U1 &&
5058                         hub_encoded_timeout != USB3_LPM_DISABLED);
5059         enabling_u2 = (state_changed == USB3_LPM_U2 &&
5060                         hub_encoded_timeout != USB3_LPM_DISABLED);
5061
5062         /* If U1 was already enabled and we're not disabling it,
5063          * or we're going to enable U1, account for the U1 max exit latency.
5064          */
5065         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5066                         enabling_u1)
5067                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5068         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5069                         enabling_u2)
5070                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5071
5072         mel_us = max(u1_mel_us, u2_mel_us);
5073
5074         /* xHCI host controller max exit latency field is only 16 bits wide. */
5075         if (mel_us > MAX_EXIT) {
5076                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5077                                 "is too big.\n", mel_us);
5078                 return -E2BIG;
5079         }
5080         return mel_us;
5081 }
5082
5083 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5084 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5085                         struct usb_device *udev, enum usb3_link_state state)
5086 {
5087         struct xhci_hcd *xhci;
5088         struct xhci_port *port;
5089         u16 hub_encoded_timeout;
5090         int mel;
5091         int ret;
5092
5093         xhci = hcd_to_xhci(hcd);
5094         /* The LPM timeout values are pretty host-controller specific, so don't
5095          * enable hub-initiated timeouts unless the vendor has provided
5096          * information about their timeout algorithm.
5097          */
5098         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5099                         !xhci->devs[udev->slot_id])
5100                 return USB3_LPM_DISABLED;
5101
5102         if (xhci_check_tier_policy(xhci, udev, state) < 0)
5103                 return USB3_LPM_DISABLED;
5104
5105         /* If connected to root port then check port can handle lpm */
5106         if (udev->parent && !udev->parent->parent) {
5107                 port = xhci->usb3_rhub.ports[udev->portnum - 1];
5108                 if (port->lpm_incapable)
5109                         return USB3_LPM_DISABLED;
5110         }
5111
5112         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5113         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5114         if (mel < 0) {
5115                 /* Max Exit Latency is too big, disable LPM. */
5116                 hub_encoded_timeout = USB3_LPM_DISABLED;
5117                 mel = 0;
5118         }
5119
5120         ret = xhci_change_max_exit_latency(xhci, udev, mel);
5121         if (ret)
5122                 return ret;
5123         return hub_encoded_timeout;
5124 }
5125
5126 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5127                         struct usb_device *udev, enum usb3_link_state state)
5128 {
5129         struct xhci_hcd *xhci;
5130         u16 mel;
5131
5132         xhci = hcd_to_xhci(hcd);
5133         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5134                         !xhci->devs[udev->slot_id])
5135                 return 0;
5136
5137         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5138         return xhci_change_max_exit_latency(xhci, udev, mel);
5139 }
5140 #else /* CONFIG_PM */
5141
5142 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5143                                 struct usb_device *udev, int enable)
5144 {
5145         return 0;
5146 }
5147
5148 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5149 {
5150         return 0;
5151 }
5152
5153 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5154                         struct usb_device *udev, enum usb3_link_state state)
5155 {
5156         return USB3_LPM_DISABLED;
5157 }
5158
5159 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5160                         struct usb_device *udev, enum usb3_link_state state)
5161 {
5162         return 0;
5163 }
5164 #endif  /* CONFIG_PM */
5165
5166 /*-------------------------------------------------------------------------*/
5167
5168 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5169  * internal data structures for the device.
5170  */
5171 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5172                         struct usb_tt *tt, gfp_t mem_flags)
5173 {
5174         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5175         struct xhci_virt_device *vdev;
5176         struct xhci_command *config_cmd;
5177         struct xhci_input_control_ctx *ctrl_ctx;
5178         struct xhci_slot_ctx *slot_ctx;
5179         unsigned long flags;
5180         unsigned think_time;
5181         int ret;
5182
5183         /* Ignore root hubs */
5184         if (!hdev->parent)
5185                 return 0;
5186
5187         vdev = xhci->devs[hdev->slot_id];
5188         if (!vdev) {
5189                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5190                 return -EINVAL;
5191         }
5192
5193         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5194         if (!config_cmd)
5195                 return -ENOMEM;
5196
5197         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5198         if (!ctrl_ctx) {
5199                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5200                                 __func__);
5201                 xhci_free_command(xhci, config_cmd);
5202                 return -ENOMEM;
5203         }
5204
5205         spin_lock_irqsave(&xhci->lock, flags);
5206         if (hdev->speed == USB_SPEED_HIGH &&
5207                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5208                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5209                 xhci_free_command(xhci, config_cmd);
5210                 spin_unlock_irqrestore(&xhci->lock, flags);
5211                 return -ENOMEM;
5212         }
5213
5214         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5215         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5216         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5217         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5218         /*
5219          * refer to section 6.2.2: MTT should be 0 for full speed hub,
5220          * but it may be already set to 1 when setup an xHCI virtual
5221          * device, so clear it anyway.
5222          */
5223         if (tt->multi)
5224                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5225         else if (hdev->speed == USB_SPEED_FULL)
5226                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5227
5228         if (xhci->hci_version > 0x95) {
5229                 xhci_dbg(xhci, "xHCI version %x needs hub "
5230                                 "TT think time and number of ports\n",
5231                                 (unsigned int) xhci->hci_version);
5232                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5233                 /* Set TT think time - convert from ns to FS bit times.
5234                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
5235                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
5236                  *
5237                  * xHCI 1.0: this field shall be 0 if the device is not a
5238                  * High-spped hub.
5239                  */
5240                 think_time = tt->think_time;
5241                 if (think_time != 0)
5242                         think_time = (think_time / 666) - 1;
5243                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5244                         slot_ctx->tt_info |=
5245                                 cpu_to_le32(TT_THINK_TIME(think_time));
5246         } else {
5247                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5248                                 "TT think time or number of ports\n",
5249                                 (unsigned int) xhci->hci_version);
5250         }
5251         slot_ctx->dev_state = 0;
5252         spin_unlock_irqrestore(&xhci->lock, flags);
5253
5254         xhci_dbg(xhci, "Set up %s for hub device.\n",
5255                         (xhci->hci_version > 0x95) ?
5256                         "configure endpoint" : "evaluate context");
5257
5258         /* Issue and wait for the configure endpoint or
5259          * evaluate context command.
5260          */
5261         if (xhci->hci_version > 0x95)
5262                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5263                                 false, false);
5264         else
5265                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5266                                 true, false);
5267
5268         xhci_free_command(xhci, config_cmd);
5269         return ret;
5270 }
5271 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5272
5273 static int xhci_get_frame(struct usb_hcd *hcd)
5274 {
5275         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5276         /* EHCI mods by the periodic size.  Why? */
5277         return readl(&xhci->run_regs->microframe_index) >> 3;
5278 }
5279
5280 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5281 {
5282         xhci->usb2_rhub.hcd = hcd;
5283         hcd->speed = HCD_USB2;
5284         hcd->self.root_hub->speed = USB_SPEED_HIGH;
5285         /*
5286          * USB 2.0 roothub under xHCI has an integrated TT,
5287          * (rate matching hub) as opposed to having an OHCI/UHCI
5288          * companion controller.
5289          */
5290         hcd->has_tt = 1;
5291 }
5292
5293 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5294 {
5295         unsigned int minor_rev;
5296
5297         /*
5298          * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5299          * should return 0x31 for sbrn, or that the minor revision
5300          * is a two digit BCD containig minor and sub-minor numbers.
5301          * This was later clarified in xHCI 1.2.
5302          *
5303          * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5304          * minor revision set to 0x1 instead of 0x10.
5305          */
5306         if (xhci->usb3_rhub.min_rev == 0x1)
5307                 minor_rev = 1;
5308         else
5309                 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5310
5311         switch (minor_rev) {
5312         case 2:
5313                 hcd->speed = HCD_USB32;
5314                 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5315                 hcd->self.root_hub->rx_lanes = 2;
5316                 hcd->self.root_hub->tx_lanes = 2;
5317                 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5318                 break;
5319         case 1:
5320                 hcd->speed = HCD_USB31;
5321                 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5322                 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5323                 break;
5324         }
5325         xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5326                   minor_rev, minor_rev ? "Enhanced " : "");
5327
5328         xhci->usb3_rhub.hcd = hcd;
5329 }
5330
5331 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5332 {
5333         struct xhci_hcd         *xhci;
5334         /*
5335          * TODO: Check with DWC3 clients for sysdev according to
5336          * quirks
5337          */
5338         struct device           *dev = hcd->self.sysdev;
5339         int                     retval;
5340
5341         /* Accept arbitrarily long scatter-gather lists */
5342         hcd->self.sg_tablesize = ~0;
5343
5344         /* support to build packet from discontinuous buffers */
5345         hcd->self.no_sg_constraint = 1;
5346
5347         /* XHCI controllers don't stop the ep queue on short packets :| */
5348         hcd->self.no_stop_on_short = 1;
5349
5350         xhci = hcd_to_xhci(hcd);
5351
5352         if (!usb_hcd_is_primary_hcd(hcd)) {
5353                 xhci_hcd_init_usb3_data(xhci, hcd);
5354                 return 0;
5355         }
5356
5357         mutex_init(&xhci->mutex);
5358         xhci->main_hcd = hcd;
5359         xhci->cap_regs = hcd->regs;
5360         xhci->op_regs = hcd->regs +
5361                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5362         xhci->run_regs = hcd->regs +
5363                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5364         /* Cache read-only capability registers */
5365         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5366         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5367         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5368         xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5369         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5370         if (xhci->hci_version > 0x100)
5371                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5372
5373         /* xhci-plat or xhci-pci might have set max_interrupters already */
5374         if ((!xhci->max_interrupters) ||
5375             xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5376                 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5377
5378         xhci->quirks |= quirks;
5379
5380         get_quirks(dev, xhci);
5381
5382         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5383          * success event after a short transfer. This quirk will ignore such
5384          * spurious event.
5385          */
5386         if (xhci->hci_version > 0x96)
5387                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5388
5389         /* Make sure the HC is halted. */
5390         retval = xhci_halt(xhci);
5391         if (retval)
5392                 return retval;
5393
5394         xhci_zero_64b_regs(xhci);
5395
5396         xhci_dbg(xhci, "Resetting HCD\n");
5397         /* Reset the internal HC memory state and registers. */
5398         retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5399         if (retval)
5400                 return retval;
5401         xhci_dbg(xhci, "Reset complete\n");
5402
5403         /*
5404          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5405          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5406          * address memory pointers actually. So, this driver clears the AC64
5407          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5408          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5409          */
5410         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5411                 xhci->hcc_params &= ~BIT(0);
5412
5413         /* Set dma_mask and coherent_dma_mask to 64-bits,
5414          * if xHC supports 64-bit addressing */
5415         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5416                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5417                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5418                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5419         } else {
5420                 /*
5421                  * This is to avoid error in cases where a 32-bit USB
5422                  * controller is used on a 64-bit capable system.
5423                  */
5424                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5425                 if (retval)
5426                         return retval;
5427                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5428                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5429         }
5430
5431         xhci_dbg(xhci, "Calling HCD init\n");
5432         /* Initialize HCD and host controller data structures. */
5433         retval = xhci_init(hcd);
5434         if (retval)
5435                 return retval;
5436         xhci_dbg(xhci, "Called HCD init\n");
5437
5438         if (xhci_hcd_is_usb3(hcd))
5439                 xhci_hcd_init_usb3_data(xhci, hcd);
5440         else
5441                 xhci_hcd_init_usb2_data(xhci, hcd);
5442
5443         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5444                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5445
5446         return 0;
5447 }
5448 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5449
5450 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5451                 struct usb_host_endpoint *ep)
5452 {
5453         struct xhci_hcd *xhci;
5454         struct usb_device *udev;
5455         unsigned int slot_id;
5456         unsigned int ep_index;
5457         unsigned long flags;
5458
5459         xhci = hcd_to_xhci(hcd);
5460
5461         spin_lock_irqsave(&xhci->lock, flags);
5462         udev = (struct usb_device *)ep->hcpriv;
5463         slot_id = udev->slot_id;
5464         ep_index = xhci_get_endpoint_index(&ep->desc);
5465
5466         xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5467         xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5468         spin_unlock_irqrestore(&xhci->lock, flags);
5469 }
5470
5471 static const struct hc_driver xhci_hc_driver = {
5472         .description =          "xhci-hcd",
5473         .product_desc =         "xHCI Host Controller",
5474         .hcd_priv_size =        sizeof(struct xhci_hcd),
5475
5476         /*
5477          * generic hardware linkage
5478          */
5479         .irq =                  xhci_irq,
5480         .flags =                HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5481                                 HCD_BH,
5482
5483         /*
5484          * basic lifecycle operations
5485          */
5486         .reset =                NULL, /* set in xhci_init_driver() */
5487         .start =                xhci_run,
5488         .stop =                 xhci_stop,
5489         .shutdown =             xhci_shutdown,
5490
5491         /*
5492          * managing i/o requests and associated device resources
5493          */
5494         .map_urb_for_dma =      xhci_map_urb_for_dma,
5495         .unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5496         .urb_enqueue =          xhci_urb_enqueue,
5497         .urb_dequeue =          xhci_urb_dequeue,
5498         .alloc_dev =            xhci_alloc_dev,
5499         .free_dev =             xhci_free_dev,
5500         .alloc_streams =        xhci_alloc_streams,
5501         .free_streams =         xhci_free_streams,
5502         .add_endpoint =         xhci_add_endpoint,
5503         .drop_endpoint =        xhci_drop_endpoint,
5504         .endpoint_disable =     xhci_endpoint_disable,
5505         .endpoint_reset =       xhci_endpoint_reset,
5506         .check_bandwidth =      xhci_check_bandwidth,
5507         .reset_bandwidth =      xhci_reset_bandwidth,
5508         .address_device =       xhci_address_device,
5509         .enable_device =        xhci_enable_device,
5510         .update_hub_device =    xhci_update_hub_device,
5511         .reset_device =         xhci_discover_or_reset_device,
5512
5513         /*
5514          * scheduling support
5515          */
5516         .get_frame_number =     xhci_get_frame,
5517
5518         /*
5519          * root hub support
5520          */
5521         .hub_control =          xhci_hub_control,
5522         .hub_status_data =      xhci_hub_status_data,
5523         .bus_suspend =          xhci_bus_suspend,
5524         .bus_resume =           xhci_bus_resume,
5525         .get_resuming_ports =   xhci_get_resuming_ports,
5526
5527         /*
5528          * call back when device connected and addressed
5529          */
5530         .update_device =        xhci_update_device,
5531         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5532         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5533         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5534         .find_raw_port_number = xhci_find_raw_port_number,
5535         .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5536 };
5537
5538 void xhci_init_driver(struct hc_driver *drv,
5539                       const struct xhci_driver_overrides *over)
5540 {
5541         BUG_ON(!over);
5542
5543         /* Copy the generic table to drv then apply the overrides */
5544         *drv = xhci_hc_driver;
5545
5546         if (over) {
5547                 drv->hcd_priv_size += over->extra_priv_size;
5548                 if (over->reset)
5549                         drv->reset = over->reset;
5550                 if (over->start)
5551                         drv->start = over->start;
5552                 if (over->add_endpoint)
5553                         drv->add_endpoint = over->add_endpoint;
5554                 if (over->drop_endpoint)
5555                         drv->drop_endpoint = over->drop_endpoint;
5556                 if (over->check_bandwidth)
5557                         drv->check_bandwidth = over->check_bandwidth;
5558                 if (over->reset_bandwidth)
5559                         drv->reset_bandwidth = over->reset_bandwidth;
5560                 if (over->update_hub_device)
5561                         drv->update_hub_device = over->update_hub_device;
5562                 if (over->hub_control)
5563                         drv->hub_control = over->hub_control;
5564         }
5565 }
5566 EXPORT_SYMBOL_GPL(xhci_init_driver);
5567
5568 MODULE_DESCRIPTION(DRIVER_DESC);
5569 MODULE_AUTHOR(DRIVER_AUTHOR);
5570 MODULE_LICENSE("GPL");
5571
5572 static int __init xhci_hcd_init(void)
5573 {
5574         /*
5575          * Check the compiler generated sizes of structures that must be laid
5576          * out in specific ways for hardware access.
5577          */
5578         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5579         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5580         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5581         /* xhci_device_control has eight fields, and also
5582          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5583          */
5584         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5585         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5586         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5587         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5588         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5589         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5590         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5591
5592         if (usb_disabled())
5593                 return -ENODEV;
5594
5595         xhci_debugfs_create_root();
5596         xhci_dbc_init();
5597
5598         return 0;
5599 }
5600
5601 /*
5602  * If an init function is provided, an exit function must also be provided
5603  * to allow module unload.
5604  */
5605 static void __exit xhci_hcd_fini(void)
5606 {
5607         xhci_debugfs_remove_root();
5608         xhci_dbc_exit();
5609 }
5610
5611 module_init(xhci_hcd_init);
5612 module_exit(xhci_hcd_fini);