Merge tag 'v5.15.57' into rpi-5.15.y
[platform/kernel/linux-rpi.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28
29 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42         struct xhci_segment *seg = ring->first_seg;
43
44         if (!td || !td->start_seg)
45                 return false;
46         do {
47                 if (seg == td->start_seg)
48                         return true;
49                 seg = seg->next;
50         } while (seg && seg != ring->first_seg);
51
52         return false;
53 }
54
55 /*
56  * xhci_handshake - spin reading hc until handshake completes or fails
57  * @ptr: address of hc register to be read
58  * @mask: bits to look at in result of read
59  * @done: value of those bits when handshake succeeds
60  * @usec: timeout in microseconds
61  *
62  * Returns negative errno, or zero on success
63  *
64  * Success happens when the "mask" bits have the specified value (hardware
65  * handshake done).  There are two failure modes:  "usec" have passed (major
66  * hardware flakeout), or the register reads as all-ones (hardware removed).
67  */
68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
69 {
70         u32     result;
71         int     ret;
72
73         ret = readl_poll_timeout_atomic(ptr, result,
74                                         (result & mask) == done ||
75                                         result == U32_MAX,
76                                         1, timeout_us);
77         if (result == U32_MAX)          /* card removed */
78                 return -ENODEV;
79
80         return ret;
81 }
82
83 /*
84  * Disable interrupts and begin the xHCI halting process.
85  */
86 void xhci_quiesce(struct xhci_hcd *xhci)
87 {
88         u32 halted;
89         u32 cmd;
90         u32 mask;
91
92         mask = ~(XHCI_IRQS);
93         halted = readl(&xhci->op_regs->status) & STS_HALT;
94         if (!halted)
95                 mask &= ~CMD_RUN;
96
97         cmd = readl(&xhci->op_regs->command);
98         cmd &= mask;
99         writel(cmd, &xhci->op_regs->command);
100 }
101
102 /*
103  * Force HC into halt state.
104  *
105  * Disable any IRQs and clear the run/stop bit.
106  * HC will complete any current and actively pipelined transactions, and
107  * should halt within 16 ms of the run/stop bit being cleared.
108  * Read HC Halted bit in the status register to see when the HC is finished.
109  */
110 int xhci_halt(struct xhci_hcd *xhci)
111 {
112         int ret;
113         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
114         xhci_quiesce(xhci);
115
116         ret = xhci_handshake(&xhci->op_regs->status,
117                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
118         if (ret) {
119                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
120                 return ret;
121         }
122         xhci->xhc_state |= XHCI_STATE_HALTED;
123         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
124         return ret;
125 }
126
127 /*
128  * Set the run bit and wait for the host to be running.
129  */
130 int xhci_start(struct xhci_hcd *xhci)
131 {
132         u32 temp;
133         int ret;
134
135         temp = readl(&xhci->op_regs->command);
136         temp |= (CMD_RUN);
137         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
138                         temp);
139         writel(temp, &xhci->op_regs->command);
140
141         /*
142          * Wait for the HCHalted Status bit to be 0 to indicate the host is
143          * running.
144          */
145         ret = xhci_handshake(&xhci->op_regs->status,
146                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
147         if (ret == -ETIMEDOUT)
148                 xhci_err(xhci, "Host took too long to start, "
149                                 "waited %u microseconds.\n",
150                                 XHCI_MAX_HALT_USEC);
151         if (!ret)
152                 /* clear state flags. Including dying, halted or removing */
153                 xhci->xhc_state = 0;
154
155         return ret;
156 }
157
158 /*
159  * Reset a halted HC.
160  *
161  * This resets pipelines, timers, counters, state machines, etc.
162  * Transactions will be terminated immediately, and operational registers
163  * will be set to their defaults.
164  */
165 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
166 {
167         u32 command;
168         u32 state;
169         int ret;
170
171         state = readl(&xhci->op_regs->status);
172
173         if (state == ~(u32)0) {
174                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
175                 return -ENODEV;
176         }
177
178         if ((state & STS_HALT) == 0) {
179                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
180                 return 0;
181         }
182
183         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
184         command = readl(&xhci->op_regs->command);
185         command |= CMD_RESET;
186         writel(command, &xhci->op_regs->command);
187
188         /* Existing Intel xHCI controllers require a delay of 1 mS,
189          * after setting the CMD_RESET bit, and before accessing any
190          * HC registers. This allows the HC to complete the
191          * reset operation and be ready for HC register access.
192          * Without this delay, the subsequent HC register access,
193          * may result in a system hang very rarely.
194          */
195         if (xhci->quirks & XHCI_INTEL_HOST)
196                 udelay(1000);
197
198         ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
199         if (ret)
200                 return ret;
201
202         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
203                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
204
205         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
206                          "Wait for controller to be ready for doorbell rings");
207         /*
208          * xHCI cannot write to any doorbells or operational registers other
209          * than status until the "Controller Not Ready" flag is cleared.
210          */
211         ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
212
213         xhci->usb2_rhub.bus_state.port_c_suspend = 0;
214         xhci->usb2_rhub.bus_state.suspended_ports = 0;
215         xhci->usb2_rhub.bus_state.resuming_ports = 0;
216         xhci->usb3_rhub.bus_state.port_c_suspend = 0;
217         xhci->usb3_rhub.bus_state.suspended_ports = 0;
218         xhci->usb3_rhub.bus_state.resuming_ports = 0;
219
220         return ret;
221 }
222
223 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
224 {
225         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
226         int err, i;
227         u64 val;
228         u32 intrs;
229
230         /*
231          * Some Renesas controllers get into a weird state if they are
232          * reset while programmed with 64bit addresses (they will preserve
233          * the top half of the address in internal, non visible
234          * registers). You end up with half the address coming from the
235          * kernel, and the other half coming from the firmware. Also,
236          * changing the programming leads to extra accesses even if the
237          * controller is supposed to be halted. The controller ends up with
238          * a fatal fault, and is then ripe for being properly reset.
239          *
240          * Special care is taken to only apply this if the device is behind
241          * an iommu. Doing anything when there is no iommu is definitely
242          * unsafe...
243          */
244         if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
245                 return;
246
247         xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
248
249         /* Clear HSEIE so that faults do not get signaled */
250         val = readl(&xhci->op_regs->command);
251         val &= ~CMD_HSEIE;
252         writel(val, &xhci->op_regs->command);
253
254         /* Clear HSE (aka FATAL) */
255         val = readl(&xhci->op_regs->status);
256         val |= STS_FATAL;
257         writel(val, &xhci->op_regs->status);
258
259         /* Now zero the registers, and brace for impact */
260         val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
261         if (upper_32_bits(val))
262                 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
263         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
264         if (upper_32_bits(val))
265                 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
266
267         intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
268                       ARRAY_SIZE(xhci->run_regs->ir_set));
269
270         for (i = 0; i < intrs; i++) {
271                 struct xhci_intr_reg __iomem *ir;
272
273                 ir = &xhci->run_regs->ir_set[i];
274                 val = xhci_read_64(xhci, &ir->erst_base);
275                 if (upper_32_bits(val))
276                         xhci_write_64(xhci, 0, &ir->erst_base);
277                 val= xhci_read_64(xhci, &ir->erst_dequeue);
278                 if (upper_32_bits(val))
279                         xhci_write_64(xhci, 0, &ir->erst_dequeue);
280         }
281
282         /* Wait for the fault to appear. It will be cleared on reset */
283         err = xhci_handshake(&xhci->op_regs->status,
284                              STS_FATAL, STS_FATAL,
285                              XHCI_MAX_HALT_USEC);
286         if (!err)
287                 xhci_info(xhci, "Fault detected\n");
288 }
289
290 #ifdef CONFIG_USB_PCI
291 /*
292  * Set up MSI
293  */
294 static int xhci_setup_msi(struct xhci_hcd *xhci)
295 {
296         int ret;
297         /*
298          * TODO:Check with MSI Soc for sysdev
299          */
300         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
301
302         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
303         if (ret < 0) {
304                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
305                                 "failed to allocate MSI entry");
306                 return ret;
307         }
308
309         ret = request_irq(pdev->irq, xhci_msi_irq,
310                                 0, "xhci_hcd", xhci_to_hcd(xhci));
311         if (ret) {
312                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
313                                 "disable MSI interrupt");
314                 pci_free_irq_vectors(pdev);
315         }
316
317         return ret;
318 }
319
320 /*
321  * Set up MSI-X
322  */
323 static int xhci_setup_msix(struct xhci_hcd *xhci)
324 {
325         int i, ret = 0;
326         struct usb_hcd *hcd = xhci_to_hcd(xhci);
327         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
328
329         /*
330          * calculate number of msi-x vectors supported.
331          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
332          *   with max number of interrupters based on the xhci HCSPARAMS1.
333          * - num_online_cpus: maximum msi-x vectors per CPUs core.
334          *   Add additional 1 vector to ensure always available interrupt.
335          */
336         xhci->msix_count = min(num_online_cpus() + 1,
337                                 HCS_MAX_INTRS(xhci->hcs_params1));
338
339         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
340                         PCI_IRQ_MSIX);
341         if (ret < 0) {
342                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
343                                 "Failed to enable MSI-X");
344                 return ret;
345         }
346
347         for (i = 0; i < xhci->msix_count; i++) {
348                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
349                                 "xhci_hcd", xhci_to_hcd(xhci));
350                 if (ret)
351                         goto disable_msix;
352         }
353
354         hcd->msix_enabled = 1;
355         return ret;
356
357 disable_msix:
358         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
359         while (--i >= 0)
360                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
361         pci_free_irq_vectors(pdev);
362         return ret;
363 }
364
365 /* Free any IRQs and disable MSI-X */
366 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
367 {
368         struct usb_hcd *hcd = xhci_to_hcd(xhci);
369         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
370
371         if (xhci->quirks & XHCI_PLAT)
372                 return;
373
374         /* return if using legacy interrupt */
375         if (hcd->irq > 0)
376                 return;
377
378         if (hcd->msix_enabled) {
379                 int i;
380
381                 for (i = 0; i < xhci->msix_count; i++)
382                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
383         } else {
384                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
385         }
386
387         pci_free_irq_vectors(pdev);
388         hcd->msix_enabled = 0;
389 }
390
391 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
392 {
393         struct usb_hcd *hcd = xhci_to_hcd(xhci);
394
395         if (hcd->msix_enabled) {
396                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
397                 int i;
398
399                 for (i = 0; i < xhci->msix_count; i++)
400                         synchronize_irq(pci_irq_vector(pdev, i));
401         }
402 }
403
404 static int xhci_try_enable_msi(struct usb_hcd *hcd)
405 {
406         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
407         struct pci_dev  *pdev;
408         int ret;
409
410         /* The xhci platform device has set up IRQs through usb_add_hcd. */
411         if (xhci->quirks & XHCI_PLAT)
412                 return 0;
413
414         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
415         /*
416          * Some Fresco Logic host controllers advertise MSI, but fail to
417          * generate interrupts.  Don't even try to enable MSI.
418          */
419         if (xhci->quirks & XHCI_BROKEN_MSI)
420                 goto legacy_irq;
421
422         /* unregister the legacy interrupt */
423         if (hcd->irq)
424                 free_irq(hcd->irq, hcd);
425         hcd->irq = 0;
426
427         ret = xhci_setup_msix(xhci);
428         if (ret)
429                 /* fall back to msi*/
430                 ret = xhci_setup_msi(xhci);
431
432         if (!ret) {
433                 hcd->msi_enabled = 1;
434                 return 0;
435         }
436
437         if (!pdev->irq) {
438                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
439                 return -EINVAL;
440         }
441
442  legacy_irq:
443         if (!strlen(hcd->irq_descr))
444                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
445                          hcd->driver->description, hcd->self.busnum);
446
447         /* fall back to legacy interrupt*/
448         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
449                         hcd->irq_descr, hcd);
450         if (ret) {
451                 xhci_err(xhci, "request interrupt %d failed\n",
452                                 pdev->irq);
453                 return ret;
454         }
455         hcd->irq = pdev->irq;
456         return 0;
457 }
458
459 #else
460
461 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
462 {
463         return 0;
464 }
465
466 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
467 {
468 }
469
470 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
471 {
472 }
473
474 #endif
475
476 static void compliance_mode_recovery(struct timer_list *t)
477 {
478         struct xhci_hcd *xhci;
479         struct usb_hcd *hcd;
480         struct xhci_hub *rhub;
481         u32 temp;
482         int i;
483
484         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
485         rhub = &xhci->usb3_rhub;
486
487         for (i = 0; i < rhub->num_ports; i++) {
488                 temp = readl(rhub->ports[i]->addr);
489                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
490                         /*
491                          * Compliance Mode Detected. Letting USB Core
492                          * handle the Warm Reset
493                          */
494                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
495                                         "Compliance mode detected->port %d",
496                                         i + 1);
497                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
498                                         "Attempting compliance mode recovery");
499                         hcd = xhci->shared_hcd;
500
501                         if (hcd->state == HC_STATE_SUSPENDED)
502                                 usb_hcd_resume_root_hub(hcd);
503
504                         usb_hcd_poll_rh_status(hcd);
505                 }
506         }
507
508         if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
509                 mod_timer(&xhci->comp_mode_recovery_timer,
510                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
511 }
512
513 /*
514  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
515  * that causes ports behind that hardware to enter compliance mode sometimes.
516  * The quirk creates a timer that polls every 2 seconds the link state of
517  * each host controller's port and recovers it by issuing a Warm reset
518  * if Compliance mode is detected, otherwise the port will become "dead" (no
519  * device connections or disconnections will be detected anymore). Becasue no
520  * status event is generated when entering compliance mode (per xhci spec),
521  * this quirk is needed on systems that have the failing hardware installed.
522  */
523 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
524 {
525         xhci->port_status_u0 = 0;
526         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
527                     0);
528         xhci->comp_mode_recovery_timer.expires = jiffies +
529                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
530
531         add_timer(&xhci->comp_mode_recovery_timer);
532         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
533                         "Compliance mode recovery timer initialized");
534 }
535
536 /*
537  * This function identifies the systems that have installed the SN65LVPE502CP
538  * USB3.0 re-driver and that need the Compliance Mode Quirk.
539  * Systems:
540  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
541  */
542 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
543 {
544         const char *dmi_product_name, *dmi_sys_vendor;
545
546         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
547         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
548         if (!dmi_product_name || !dmi_sys_vendor)
549                 return false;
550
551         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
552                 return false;
553
554         if (strstr(dmi_product_name, "Z420") ||
555                         strstr(dmi_product_name, "Z620") ||
556                         strstr(dmi_product_name, "Z820") ||
557                         strstr(dmi_product_name, "Z1 Workstation"))
558                 return true;
559
560         return false;
561 }
562
563 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
564 {
565         return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
566 }
567
568
569 /*
570  * Initialize memory for HCD and xHC (one-time init).
571  *
572  * Program the PAGESIZE register, initialize the device context array, create
573  * device contexts (?), set up a command ring segment (or two?), create event
574  * ring (one for now).
575  */
576 static int xhci_init(struct usb_hcd *hcd)
577 {
578         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
579         int retval = 0;
580
581         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
582         spin_lock_init(&xhci->lock);
583         if (xhci->hci_version == 0x95 && link_quirk) {
584                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
585                                 "QUIRK: Not clearing Link TRB chain bits.");
586                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
587         } else {
588                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
589                                 "xHCI doesn't need link TRB QUIRK");
590         }
591         retval = xhci_mem_init(xhci, GFP_KERNEL);
592         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
593
594         /* Initializing Compliance Mode Recovery Data If Needed */
595         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
596                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
597                 compliance_mode_recovery_timer_init(xhci);
598         }
599
600         return retval;
601 }
602
603 /*-------------------------------------------------------------------------*/
604
605
606 static int xhci_run_finished(struct xhci_hcd *xhci)
607 {
608         if (xhci_start(xhci)) {
609                 xhci_halt(xhci);
610                 return -ENODEV;
611         }
612         xhci->shared_hcd->state = HC_STATE_RUNNING;
613         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
614
615         if (xhci->quirks & XHCI_NEC_HOST)
616                 xhci_ring_cmd_db(xhci);
617
618         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
619                         "Finished xhci_run for USB3 roothub");
620         return 0;
621 }
622
623 /*
624  * Start the HC after it was halted.
625  *
626  * This function is called by the USB core when the HC driver is added.
627  * Its opposite is xhci_stop().
628  *
629  * xhci_init() must be called once before this function can be called.
630  * Reset the HC, enable device slot contexts, program DCBAAP, and
631  * set command ring pointer and event ring pointer.
632  *
633  * Setup MSI-X vectors and enable interrupts.
634  */
635 int xhci_run(struct usb_hcd *hcd)
636 {
637         u32 temp;
638         u64 temp_64;
639         int ret;
640         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
641
642         /* Start the xHCI host controller running only after the USB 2.0 roothub
643          * is setup.
644          */
645
646         hcd->uses_new_polling = 1;
647         if (!usb_hcd_is_primary_hcd(hcd))
648                 return xhci_run_finished(xhci);
649
650         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
651
652         ret = xhci_try_enable_msi(hcd);
653         if (ret)
654                 return ret;
655
656         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
657         temp_64 &= ~ERST_PTR_MASK;
658         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
659                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
660
661         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
662                         "// Set the interrupt modulation register");
663         temp = readl(&xhci->ir_set->irq_control);
664         temp &= ~ER_IRQ_INTERVAL_MASK;
665         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
666         writel(temp, &xhci->ir_set->irq_control);
667
668         /* Set the HCD state before we enable the irqs */
669         temp = readl(&xhci->op_regs->command);
670         temp |= (CMD_EIE);
671         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
672                         "// Enable interrupts, cmd = 0x%x.", temp);
673         writel(temp, &xhci->op_regs->command);
674
675         temp = readl(&xhci->ir_set->irq_pending);
676         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
677                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
678                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
679         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
680
681         if (xhci->quirks & XHCI_NEC_HOST) {
682                 struct xhci_command *command;
683
684                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
685                 if (!command)
686                         return -ENOMEM;
687
688                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
689                                 TRB_TYPE(TRB_NEC_GET_FW));
690                 if (ret)
691                         xhci_free_command(xhci, command);
692         }
693         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
694                         "Finished xhci_run for USB2 roothub");
695
696         xhci_dbc_init(xhci);
697
698         xhci_debugfs_init(xhci);
699
700         return 0;
701 }
702 EXPORT_SYMBOL_GPL(xhci_run);
703
704 /*
705  * Stop xHCI driver.
706  *
707  * This function is called by the USB core when the HC driver is removed.
708  * Its opposite is xhci_run().
709  *
710  * Disable device contexts, disable IRQs, and quiesce the HC.
711  * Reset the HC, finish any completed transactions, and cleanup memory.
712  */
713 static void xhci_stop(struct usb_hcd *hcd)
714 {
715         u32 temp;
716         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
717
718         mutex_lock(&xhci->mutex);
719
720         /* Only halt host and free memory after both hcds are removed */
721         if (!usb_hcd_is_primary_hcd(hcd)) {
722                 mutex_unlock(&xhci->mutex);
723                 return;
724         }
725
726         xhci_dbc_exit(xhci);
727
728         spin_lock_irq(&xhci->lock);
729         xhci->xhc_state |= XHCI_STATE_HALTED;
730         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
731         xhci_halt(xhci);
732         xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
733         spin_unlock_irq(&xhci->lock);
734
735         xhci_cleanup_msix(xhci);
736
737         /* Deleting Compliance Mode Recovery Timer */
738         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
739                         (!(xhci_all_ports_seen_u0(xhci)))) {
740                 del_timer_sync(&xhci->comp_mode_recovery_timer);
741                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
742                                 "%s: compliance mode recovery timer deleted",
743                                 __func__);
744         }
745
746         if (xhci->quirks & XHCI_AMD_PLL_FIX)
747                 usb_amd_dev_put();
748
749         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
750                         "// Disabling event ring interrupts");
751         temp = readl(&xhci->op_regs->status);
752         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
753         temp = readl(&xhci->ir_set->irq_pending);
754         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
755
756         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
757         xhci_mem_cleanup(xhci);
758         xhci_debugfs_exit(xhci);
759         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
760                         "xhci_stop completed - status = %x",
761                         readl(&xhci->op_regs->status));
762         mutex_unlock(&xhci->mutex);
763 }
764
765 /*
766  * Shutdown HC (not bus-specific)
767  *
768  * This is called when the machine is rebooting or halting.  We assume that the
769  * machine will be powered off, and the HC's internal state will be reset.
770  * Don't bother to free memory.
771  *
772  * This will only ever be called with the main usb_hcd (the USB3 roothub).
773  */
774 void xhci_shutdown(struct usb_hcd *hcd)
775 {
776         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
777         unsigned long flags;
778         int i;
779
780         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
781                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
782
783         /* Don't poll the roothubs after shutdown. */
784         xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
785                         __func__, hcd->self.busnum);
786         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
787         del_timer_sync(&hcd->rh_timer);
788
789         if (xhci->shared_hcd) {
790                 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
791                 del_timer_sync(&xhci->shared_hcd->rh_timer);
792         }
793
794         spin_lock_irqsave(&xhci->lock, flags);
795         xhci_halt(xhci);
796
797         /* Power off USB2 ports*/
798         for (i = 0; i < xhci->usb2_rhub.num_ports; i++)
799                 xhci_set_port_power(xhci, xhci->main_hcd, i, false, &flags);
800
801         /* Power off USB3 ports*/
802         for (i = 0; i < xhci->usb3_rhub.num_ports; i++)
803                 xhci_set_port_power(xhci, xhci->shared_hcd, i, false, &flags);
804
805         /* Workaround for spurious wakeups at shutdown with HSW */
806         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
807                 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
808         spin_unlock_irqrestore(&xhci->lock, flags);
809
810         xhci_cleanup_msix(xhci);
811
812         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
813                         "xhci_shutdown completed - status = %x",
814                         readl(&xhci->op_regs->status));
815 }
816 EXPORT_SYMBOL_GPL(xhci_shutdown);
817
818 #ifdef CONFIG_PM
819 static void xhci_save_registers(struct xhci_hcd *xhci)
820 {
821         xhci->s3.command = readl(&xhci->op_regs->command);
822         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
823         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
824         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
825         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
826         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
827         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
828         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
829         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
830 }
831
832 static void xhci_restore_registers(struct xhci_hcd *xhci)
833 {
834         writel(xhci->s3.command, &xhci->op_regs->command);
835         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
836         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
837         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
838         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
839         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
840         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
841         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
842         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
843 }
844
845 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
846 {
847         u64     val_64;
848
849         /* step 2: initialize command ring buffer */
850         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
851         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
852                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
853                                       xhci->cmd_ring->dequeue) &
854                  (u64) ~CMD_RING_RSVD_BITS) |
855                 xhci->cmd_ring->cycle_state;
856         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
857                         "// Setting command ring address to 0x%llx",
858                         (long unsigned long) val_64);
859         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
860 }
861
862 /*
863  * The whole command ring must be cleared to zero when we suspend the host.
864  *
865  * The host doesn't save the command ring pointer in the suspend well, so we
866  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
867  * aligned, because of the reserved bits in the command ring dequeue pointer
868  * register.  Therefore, we can't just set the dequeue pointer back in the
869  * middle of the ring (TRBs are 16-byte aligned).
870  */
871 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
872 {
873         struct xhci_ring *ring;
874         struct xhci_segment *seg;
875
876         ring = xhci->cmd_ring;
877         seg = ring->deq_seg;
878         do {
879                 memset(seg->trbs, 0,
880                         sizeof(union xhci_trb) * (ring->trbs_per_seg - 1));
881                 seg->trbs[ring->trbs_per_seg - 1].link.control &=
882                         cpu_to_le32(~TRB_CYCLE);
883                 seg = seg->next;
884         } while (seg != ring->deq_seg);
885
886         /* Reset the software enqueue and dequeue pointers */
887         ring->deq_seg = ring->first_seg;
888         ring->dequeue = ring->first_seg->trbs;
889         ring->enq_seg = ring->deq_seg;
890         ring->enqueue = ring->dequeue;
891
892         ring->num_trbs_free = ring->num_segs * (ring->trbs_per_seg - 1) - 1;
893         /*
894          * Ring is now zeroed, so the HW should look for change of ownership
895          * when the cycle bit is set to 1.
896          */
897         ring->cycle_state = 1;
898
899         /*
900          * Reset the hardware dequeue pointer.
901          * Yes, this will need to be re-written after resume, but we're paranoid
902          * and want to make sure the hardware doesn't access bogus memory
903          * because, say, the BIOS or an SMI started the host without changing
904          * the command ring pointers.
905          */
906         xhci_set_cmd_ring_deq(xhci);
907 }
908
909 /*
910  * Disable port wake bits if do_wakeup is not set.
911  *
912  * Also clear a possible internal port wake state left hanging for ports that
913  * detected termination but never successfully enumerated (trained to 0U).
914  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
915  * at enumeration clears this wake, force one here as well for unconnected ports
916  */
917
918 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
919                                        struct xhci_hub *rhub,
920                                        bool do_wakeup)
921 {
922         unsigned long flags;
923         u32 t1, t2, portsc;
924         int i;
925
926         spin_lock_irqsave(&xhci->lock, flags);
927
928         for (i = 0; i < rhub->num_ports; i++) {
929                 portsc = readl(rhub->ports[i]->addr);
930                 t1 = xhci_port_state_to_neutral(portsc);
931                 t2 = t1;
932
933                 /* clear wake bits if do_wake is not set */
934                 if (!do_wakeup)
935                         t2 &= ~PORT_WAKE_BITS;
936
937                 /* Don't touch csc bit if connected or connect change is set */
938                 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
939                         t2 |= PORT_CSC;
940
941                 if (t1 != t2) {
942                         writel(t2, rhub->ports[i]->addr);
943                         xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
944                                  rhub->hcd->self.busnum, i + 1, portsc, t2);
945                 }
946         }
947         spin_unlock_irqrestore(&xhci->lock, flags);
948 }
949
950 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
951 {
952         struct xhci_port        **ports;
953         int                     port_index;
954         u32                     status;
955         u32                     portsc;
956
957         status = readl(&xhci->op_regs->status);
958         if (status & STS_EINT)
959                 return true;
960         /*
961          * Checking STS_EINT is not enough as there is a lag between a change
962          * bit being set and the Port Status Change Event that it generated
963          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
964          */
965
966         port_index = xhci->usb2_rhub.num_ports;
967         ports = xhci->usb2_rhub.ports;
968         while (port_index--) {
969                 portsc = readl(ports[port_index]->addr);
970                 if (portsc & PORT_CHANGE_MASK ||
971                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
972                         return true;
973         }
974         port_index = xhci->usb3_rhub.num_ports;
975         ports = xhci->usb3_rhub.ports;
976         while (port_index--) {
977                 portsc = readl(ports[port_index]->addr);
978                 if (portsc & PORT_CHANGE_MASK ||
979                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
980                         return true;
981         }
982         return false;
983 }
984
985 /*
986  * Stop HC (not bus-specific)
987  *
988  * This is called when the machine transition into S3/S4 mode.
989  *
990  */
991 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
992 {
993         int                     rc = 0;
994         unsigned int            delay = XHCI_MAX_HALT_USEC * 2;
995         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
996         u32                     command;
997         u32                     res;
998
999         if (!hcd->state)
1000                 return 0;
1001
1002         if (hcd->state != HC_STATE_SUSPENDED ||
1003                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
1004                 return -EINVAL;
1005
1006         /* Clear root port wake on bits if wakeup not allowed. */
1007         xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
1008         xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
1009
1010         if (!HCD_HW_ACCESSIBLE(hcd))
1011                 return 0;
1012
1013         xhci_dbc_suspend(xhci);
1014
1015         /* Don't poll the roothubs on bus suspend. */
1016         xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
1017                  __func__, hcd->self.busnum);
1018         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1019         del_timer_sync(&hcd->rh_timer);
1020         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1021         del_timer_sync(&xhci->shared_hcd->rh_timer);
1022
1023         if (xhci->quirks & XHCI_SUSPEND_DELAY)
1024                 usleep_range(1000, 1500);
1025
1026         spin_lock_irq(&xhci->lock);
1027         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1028         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1029         /* step 1: stop endpoint */
1030         /* skipped assuming that port suspend has done */
1031
1032         /* step 2: clear Run/Stop bit */
1033         command = readl(&xhci->op_regs->command);
1034         command &= ~CMD_RUN;
1035         writel(command, &xhci->op_regs->command);
1036
1037         /* Some chips from Fresco Logic need an extraordinary delay */
1038         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1039
1040         if (xhci_handshake(&xhci->op_regs->status,
1041                       STS_HALT, STS_HALT, delay)) {
1042                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1043                 spin_unlock_irq(&xhci->lock);
1044                 return -ETIMEDOUT;
1045         }
1046         xhci_clear_command_ring(xhci);
1047
1048         /* step 3: save registers */
1049         xhci_save_registers(xhci);
1050
1051         /* step 4: set CSS flag */
1052         command = readl(&xhci->op_regs->command);
1053         command |= CMD_CSS;
1054         writel(command, &xhci->op_regs->command);
1055         xhci->broken_suspend = 0;
1056         if (xhci_handshake(&xhci->op_regs->status,
1057                                 STS_SAVE, 0, 20 * 1000)) {
1058         /*
1059          * AMD SNPS xHC 3.0 occasionally does not clear the
1060          * SSS bit of USBSTS and when driver tries to poll
1061          * to see if the xHC clears BIT(8) which never happens
1062          * and driver assumes that controller is not responding
1063          * and times out. To workaround this, its good to check
1064          * if SRE and HCE bits are not set (as per xhci
1065          * Section 5.4.2) and bypass the timeout.
1066          */
1067                 res = readl(&xhci->op_regs->status);
1068                 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1069                     (((res & STS_SRE) == 0) &&
1070                                 ((res & STS_HCE) == 0))) {
1071                         xhci->broken_suspend = 1;
1072                 } else {
1073                         xhci_warn(xhci, "WARN: xHC save state timeout\n");
1074                         spin_unlock_irq(&xhci->lock);
1075                         return -ETIMEDOUT;
1076                 }
1077         }
1078         spin_unlock_irq(&xhci->lock);
1079
1080         /*
1081          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1082          * is about to be suspended.
1083          */
1084         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1085                         (!(xhci_all_ports_seen_u0(xhci)))) {
1086                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1087                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1088                                 "%s: compliance mode recovery timer deleted",
1089                                 __func__);
1090         }
1091
1092         /* step 5: remove core well power */
1093         /* synchronize irq when using MSI-X */
1094         xhci_msix_sync_irqs(xhci);
1095
1096         return rc;
1097 }
1098 EXPORT_SYMBOL_GPL(xhci_suspend);
1099
1100 /*
1101  * start xHC (not bus-specific)
1102  *
1103  * This is called when the machine transition from S3/S4 mode.
1104  *
1105  */
1106 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1107 {
1108         u32                     command, temp = 0;
1109         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1110         struct usb_hcd          *secondary_hcd;
1111         int                     retval = 0;
1112         bool                    comp_timer_running = false;
1113         bool                    pending_portevent = false;
1114         bool                    reinit_xhc = false;
1115
1116         if (!hcd->state)
1117                 return 0;
1118
1119         /* Wait a bit if either of the roothubs need to settle from the
1120          * transition into bus suspend.
1121          */
1122
1123         if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1124             time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1125                 msleep(100);
1126
1127         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1128         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1129
1130         spin_lock_irq(&xhci->lock);
1131
1132         if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1133                 reinit_xhc = true;
1134
1135         if (!reinit_xhc) {
1136                 /*
1137                  * Some controllers might lose power during suspend, so wait
1138                  * for controller not ready bit to clear, just as in xHC init.
1139                  */
1140                 retval = xhci_handshake(&xhci->op_regs->status,
1141                                         STS_CNR, 0, 10 * 1000 * 1000);
1142                 if (retval) {
1143                         xhci_warn(xhci, "Controller not ready at resume %d\n",
1144                                   retval);
1145                         spin_unlock_irq(&xhci->lock);
1146                         return retval;
1147                 }
1148                 /* step 1: restore register */
1149                 xhci_restore_registers(xhci);
1150                 /* step 2: initialize command ring buffer */
1151                 xhci_set_cmd_ring_deq(xhci);
1152                 /* step 3: restore state and start state*/
1153                 /* step 3: set CRS flag */
1154                 command = readl(&xhci->op_regs->command);
1155                 command |= CMD_CRS;
1156                 writel(command, &xhci->op_regs->command);
1157                 /*
1158                  * Some controllers take up to 55+ ms to complete the controller
1159                  * restore so setting the timeout to 100ms. Xhci specification
1160                  * doesn't mention any timeout value.
1161                  */
1162                 if (xhci_handshake(&xhci->op_regs->status,
1163                               STS_RESTORE, 0, 100 * 1000)) {
1164                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1165                         spin_unlock_irq(&xhci->lock);
1166                         return -ETIMEDOUT;
1167                 }
1168         }
1169
1170         temp = readl(&xhci->op_regs->status);
1171
1172         /* re-initialize the HC on Restore Error, or Host Controller Error */
1173         if (temp & (STS_SRE | STS_HCE)) {
1174                 reinit_xhc = true;
1175                 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1176         }
1177
1178         if (reinit_xhc) {
1179                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1180                                 !(xhci_all_ports_seen_u0(xhci))) {
1181                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1182                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1183                                 "Compliance Mode Recovery Timer deleted!");
1184                 }
1185
1186                 /* Let the USB core know _both_ roothubs lost power. */
1187                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1188                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1189
1190                 xhci_dbg(xhci, "Stop HCD\n");
1191                 xhci_halt(xhci);
1192                 xhci_zero_64b_regs(xhci);
1193                 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1194                 spin_unlock_irq(&xhci->lock);
1195                 if (retval)
1196                         return retval;
1197                 xhci_cleanup_msix(xhci);
1198
1199                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1200                 temp = readl(&xhci->op_regs->status);
1201                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1202                 temp = readl(&xhci->ir_set->irq_pending);
1203                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1204
1205                 xhci_dbg(xhci, "cleaning up memory\n");
1206                 xhci_mem_cleanup(xhci);
1207                 xhci_debugfs_exit(xhci);
1208                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1209                             readl(&xhci->op_regs->status));
1210
1211                 /* USB core calls the PCI reinit and start functions twice:
1212                  * first with the primary HCD, and then with the secondary HCD.
1213                  * If we don't do the same, the host will never be started.
1214                  */
1215                 if (!usb_hcd_is_primary_hcd(hcd))
1216                         secondary_hcd = hcd;
1217                 else
1218                         secondary_hcd = xhci->shared_hcd;
1219
1220                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1221                 retval = xhci_init(hcd->primary_hcd);
1222                 if (retval)
1223                         return retval;
1224                 comp_timer_running = true;
1225
1226                 xhci_dbg(xhci, "Start the primary HCD\n");
1227                 retval = xhci_run(hcd->primary_hcd);
1228                 if (!retval) {
1229                         xhci_dbg(xhci, "Start the secondary HCD\n");
1230                         retval = xhci_run(secondary_hcd);
1231                 }
1232                 hcd->state = HC_STATE_SUSPENDED;
1233                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1234                 goto done;
1235         }
1236
1237         /* step 4: set Run/Stop bit */
1238         command = readl(&xhci->op_regs->command);
1239         command |= CMD_RUN;
1240         writel(command, &xhci->op_regs->command);
1241         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1242                   0, 250 * 1000);
1243
1244         /* step 5: walk topology and initialize portsc,
1245          * portpmsc and portli
1246          */
1247         /* this is done in bus_resume */
1248
1249         /* step 6: restart each of the previously
1250          * Running endpoints by ringing their doorbells
1251          */
1252
1253         spin_unlock_irq(&xhci->lock);
1254
1255         xhci_dbc_resume(xhci);
1256
1257  done:
1258         if (retval == 0) {
1259                 /*
1260                  * Resume roothubs only if there are pending events.
1261                  * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1262                  * the first wake signalling failed, give it that chance.
1263                  */
1264                 pending_portevent = xhci_pending_portevent(xhci);
1265                 if (!pending_portevent) {
1266                         msleep(120);
1267                         pending_portevent = xhci_pending_portevent(xhci);
1268                 }
1269
1270                 if (pending_portevent) {
1271                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1272                         usb_hcd_resume_root_hub(hcd);
1273                 }
1274         }
1275         /*
1276          * If system is subject to the Quirk, Compliance Mode Timer needs to
1277          * be re-initialized Always after a system resume. Ports are subject
1278          * to suffer the Compliance Mode issue again. It doesn't matter if
1279          * ports have entered previously to U0 before system's suspension.
1280          */
1281         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1282                 compliance_mode_recovery_timer_init(xhci);
1283
1284         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1285                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1286
1287         /* Re-enable port polling. */
1288         xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1289                  __func__, hcd->self.busnum);
1290         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1291         usb_hcd_poll_rh_status(xhci->shared_hcd);
1292         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1293         usb_hcd_poll_rh_status(hcd);
1294
1295         return retval;
1296 }
1297 EXPORT_SYMBOL_GPL(xhci_resume);
1298 #endif  /* CONFIG_PM */
1299
1300 /*-------------------------------------------------------------------------*/
1301
1302 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1303 {
1304         void *temp;
1305         int ret = 0;
1306         unsigned int buf_len;
1307         enum dma_data_direction dir;
1308
1309         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1310         buf_len = urb->transfer_buffer_length;
1311
1312         temp = kzalloc_node(buf_len, GFP_ATOMIC,
1313                             dev_to_node(hcd->self.sysdev));
1314
1315         if (usb_urb_dir_out(urb))
1316                 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1317                                    temp, buf_len, 0);
1318
1319         urb->transfer_buffer = temp;
1320         urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1321                                            urb->transfer_buffer,
1322                                            urb->transfer_buffer_length,
1323                                            dir);
1324
1325         if (dma_mapping_error(hcd->self.sysdev,
1326                               urb->transfer_dma)) {
1327                 ret = -EAGAIN;
1328                 kfree(temp);
1329         } else {
1330                 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1331         }
1332
1333         return ret;
1334 }
1335
1336 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1337                                           struct urb *urb)
1338 {
1339         bool ret = false;
1340         unsigned int i;
1341         unsigned int len = 0;
1342         unsigned int trb_size;
1343         unsigned int max_pkt;
1344         struct scatterlist *sg;
1345         struct scatterlist *tail_sg;
1346
1347         tail_sg = urb->sg;
1348         max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1349
1350         if (!urb->num_sgs)
1351                 return ret;
1352
1353         if (urb->dev->speed >= USB_SPEED_SUPER)
1354                 trb_size = TRB_CACHE_SIZE_SS;
1355         else
1356                 trb_size = TRB_CACHE_SIZE_HS;
1357
1358         if (urb->transfer_buffer_length != 0 &&
1359             !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1360                 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1361                         len = len + sg->length;
1362                         if (i > trb_size - 2) {
1363                                 len = len - tail_sg->length;
1364                                 if (len < max_pkt) {
1365                                         ret = true;
1366                                         break;
1367                                 }
1368
1369                                 tail_sg = sg_next(tail_sg);
1370                         }
1371                 }
1372         }
1373         return ret;
1374 }
1375
1376 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1377 {
1378         unsigned int len;
1379         unsigned int buf_len;
1380         enum dma_data_direction dir;
1381
1382         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1383
1384         buf_len = urb->transfer_buffer_length;
1385
1386         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1387             (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1388                 dma_unmap_single(hcd->self.sysdev,
1389                                  urb->transfer_dma,
1390                                  urb->transfer_buffer_length,
1391                                  dir);
1392
1393         if (usb_urb_dir_in(urb)) {
1394                 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1395                                            urb->transfer_buffer,
1396                                            buf_len,
1397                                            0);
1398                 if (len != buf_len) {
1399                         xhci_dbg(hcd_to_xhci(hcd),
1400                                  "Copy from tmp buf to urb sg list failed\n");
1401                         urb->actual_length = len;
1402                 }
1403         }
1404         urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1405         kfree(urb->transfer_buffer);
1406         urb->transfer_buffer = NULL;
1407 }
1408
1409 /*
1410  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1411  * we'll copy the actual data into the TRB address register. This is limited to
1412  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1413  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1414  */
1415 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1416                                 gfp_t mem_flags)
1417 {
1418         struct xhci_hcd *xhci;
1419
1420         xhci = hcd_to_xhci(hcd);
1421
1422         if (xhci_urb_suitable_for_idt(urb))
1423                 return 0;
1424
1425         if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1426                 if (xhci_urb_temp_buffer_required(hcd, urb))
1427                         return xhci_map_temp_buffer(hcd, urb);
1428         }
1429         return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1430 }
1431
1432 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1433 {
1434         struct xhci_hcd *xhci;
1435         bool unmap_temp_buf = false;
1436
1437         xhci = hcd_to_xhci(hcd);
1438
1439         if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1440                 unmap_temp_buf = true;
1441
1442         if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1443                 xhci_unmap_temp_buf(hcd, urb);
1444         else
1445                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1446 }
1447
1448 /**
1449  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1450  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1451  * value to right shift 1 for the bitmask.
1452  *
1453  * Index  = (epnum * 2) + direction - 1,
1454  * where direction = 0 for OUT, 1 for IN.
1455  * For control endpoints, the IN index is used (OUT index is unused), so
1456  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1457  */
1458 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1459 {
1460         unsigned int index;
1461         if (usb_endpoint_xfer_control(desc))
1462                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1463         else
1464                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1465                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1466         return index;
1467 }
1468 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1469
1470 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1471  * address from the XHCI endpoint index.
1472  */
1473 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1474 {
1475         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1476         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1477         return direction | number;
1478 }
1479
1480 /* Find the flag for this endpoint (for use in the control context).  Use the
1481  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1482  * bit 1, etc.
1483  */
1484 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1485 {
1486         return 1 << (xhci_get_endpoint_index(desc) + 1);
1487 }
1488
1489 /* Compute the last valid endpoint context index.  Basically, this is the
1490  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1491  * we find the most significant bit set in the added contexts flags.
1492  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1493  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1494  */
1495 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1496 {
1497         return fls(added_ctxs) - 1;
1498 }
1499
1500 /* Returns 1 if the arguments are OK;
1501  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1502  */
1503 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1504                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1505                 const char *func) {
1506         struct xhci_hcd *xhci;
1507         struct xhci_virt_device *virt_dev;
1508
1509         if (!hcd || (check_ep && !ep) || !udev) {
1510                 pr_debug("xHCI %s called with invalid args\n", func);
1511                 return -EINVAL;
1512         }
1513         if (!udev->parent) {
1514                 pr_debug("xHCI %s called for root hub\n", func);
1515                 return 0;
1516         }
1517
1518         xhci = hcd_to_xhci(hcd);
1519         if (check_virt_dev) {
1520                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1521                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1522                                         func);
1523                         return -EINVAL;
1524                 }
1525
1526                 virt_dev = xhci->devs[udev->slot_id];
1527                 if (virt_dev->udev != udev) {
1528                         xhci_dbg(xhci, "xHCI %s called with udev and "
1529                                           "virt_dev does not match\n", func);
1530                         return -EINVAL;
1531                 }
1532         }
1533
1534         if (xhci->xhc_state & XHCI_STATE_HALTED)
1535                 return -ENODEV;
1536
1537         return 1;
1538 }
1539
1540 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1541                 struct usb_device *udev, struct xhci_command *command,
1542                 bool ctx_change, bool must_succeed);
1543
1544 /*
1545  * Full speed devices may have a max packet size greater than 8 bytes, but the
1546  * USB core doesn't know that until it reads the first 8 bytes of the
1547  * descriptor.  If the usb_device's max packet size changes after that point,
1548  * we need to issue an evaluate context command and wait on it.
1549  */
1550 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1551                 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1552 {
1553         struct xhci_container_ctx *out_ctx;
1554         struct xhci_input_control_ctx *ctrl_ctx;
1555         struct xhci_ep_ctx *ep_ctx;
1556         struct xhci_command *command;
1557         int max_packet_size;
1558         int hw_max_packet_size;
1559         int ret = 0;
1560
1561         out_ctx = xhci->devs[slot_id]->out_ctx;
1562         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1563         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1564         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1565         if (hw_max_packet_size != max_packet_size) {
1566                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1567                                 "Max Packet Size for ep 0 changed.");
1568                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1569                                 "Max packet size in usb_device = %d",
1570                                 max_packet_size);
1571                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1572                                 "Max packet size in xHCI HW = %d",
1573                                 hw_max_packet_size);
1574                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1575                                 "Issuing evaluate context command.");
1576
1577                 /* Set up the input context flags for the command */
1578                 /* FIXME: This won't work if a non-default control endpoint
1579                  * changes max packet sizes.
1580                  */
1581
1582                 command = xhci_alloc_command(xhci, true, mem_flags);
1583                 if (!command)
1584                         return -ENOMEM;
1585
1586                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1587                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1588                 if (!ctrl_ctx) {
1589                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1590                                         __func__);
1591                         ret = -ENOMEM;
1592                         goto command_cleanup;
1593                 }
1594                 /* Set up the modified control endpoint 0 */
1595                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1596                                 xhci->devs[slot_id]->out_ctx, ep_index);
1597
1598                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1599                 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1600                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1601                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1602
1603                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1604                 ctrl_ctx->drop_flags = 0;
1605
1606                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1607                                 true, false);
1608
1609                 /* Clean up the input context for later use by bandwidth
1610                  * functions.
1611                  */
1612                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1613 command_cleanup:
1614                 kfree(command->completion);
1615                 kfree(command);
1616         }
1617         return ret;
1618 }
1619
1620 /*
1621  * RPI: Fixup endpoint intervals when requested
1622  * - Check interval versus the (cached) endpoint context
1623  * - set the endpoint interval to the new value
1624  * - force an endpoint configure command
1625  * XXX: bandwidth is not recalculated. We should probably do that.
1626  */
1627
1628 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1629 {
1630         return 1 << (ep_index + 1);
1631 }
1632
1633 static void xhci_fixup_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1634                                 struct usb_host_endpoint *ep, int interval)
1635 {
1636         struct xhci_hcd *xhci;
1637         struct xhci_ep_ctx *ep_ctx_out, *ep_ctx_in;
1638         struct xhci_command *command;
1639         struct xhci_input_control_ctx *ctrl_ctx;
1640         struct xhci_virt_device *vdev;
1641         int xhci_interval;
1642         int ret;
1643         int ep_index;
1644         unsigned long flags;
1645         u32 ep_info_tmp;
1646
1647         xhci = hcd_to_xhci(hcd);
1648         ep_index = xhci_get_endpoint_index(&ep->desc);
1649
1650         /* FS/LS interval translations */
1651         if ((udev->speed == USB_SPEED_FULL ||
1652              udev->speed == USB_SPEED_LOW))
1653                 interval *= 8;
1654
1655         mutex_lock(&xhci->mutex);
1656
1657         spin_lock_irqsave(&xhci->lock, flags);
1658
1659         vdev = xhci->devs[udev->slot_id];
1660         /* Get context-derived endpoint interval */
1661         ep_ctx_out = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
1662         ep_ctx_in = xhci_get_ep_ctx(xhci, vdev->in_ctx, ep_index);
1663         xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx_out->ep_info));
1664
1665         if (interval == xhci_interval) {
1666                 spin_unlock_irqrestore(&xhci->lock, flags);
1667                 mutex_unlock(&xhci->mutex);
1668                 return;
1669         }
1670
1671         xhci_dbg(xhci, "Fixup interval=%d xhci_interval=%d\n",
1672                  interval, xhci_interval);
1673         command = xhci_alloc_command_with_ctx(xhci, true, GFP_ATOMIC);
1674         if (!command) {
1675                 /* Failure here is benign, poll at the original rate */
1676                 spin_unlock_irqrestore(&xhci->lock, flags);
1677                 mutex_unlock(&xhci->mutex);
1678                 return;
1679         }
1680
1681         /* xHCI uses exponents for intervals... */
1682         xhci_interval = fls(interval) - 1;
1683         xhci_interval = clamp_val(xhci_interval, 3, 10);
1684         ep_info_tmp = le32_to_cpu(ep_ctx_out->ep_info);
1685         ep_info_tmp &= ~EP_INTERVAL(255);
1686         ep_info_tmp |= EP_INTERVAL(xhci_interval);
1687
1688         /* Keep the endpoint context up-to-date while issuing the command. */
1689         xhci_endpoint_copy(xhci, vdev->in_ctx,
1690                            vdev->out_ctx, ep_index);
1691         ep_ctx_in->ep_info = cpu_to_le32(ep_info_tmp);
1692
1693         /*
1694          * We need to drop the lock, so take an explicit copy
1695          * of the ep context.
1696          */
1697         xhci_endpoint_copy(xhci, command->in_ctx, vdev->in_ctx, ep_index);
1698
1699         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1700         if (!ctrl_ctx) {
1701                 xhci_warn(xhci,
1702                           "%s: Could not get input context, bad type.\n",
1703                           __func__);
1704                 spin_unlock_irqrestore(&xhci->lock, flags);
1705                 xhci_free_command(xhci, command);
1706                 mutex_unlock(&xhci->mutex);
1707                 return;
1708         }
1709         ctrl_ctx->add_flags = xhci_get_endpoint_flag_from_index(ep_index);
1710         ctrl_ctx->drop_flags = 0;
1711
1712         spin_unlock_irqrestore(&xhci->lock, flags);
1713
1714         ret = xhci_configure_endpoint(xhci, udev, command,
1715                                       false, false);
1716         if (ret)
1717                 xhci_warn(xhci, "%s: Configure endpoint failed: %d\n",
1718                           __func__, ret);
1719         xhci_free_command(xhci, command);
1720         mutex_unlock(&xhci->mutex);
1721 }
1722
1723 /*
1724  * non-error returns are a promise to giveback() the urb later
1725  * we drop ownership so next owner (or urb unlink) can get it
1726  */
1727 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1728 {
1729         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1730         unsigned long flags;
1731         int ret = 0;
1732         unsigned int slot_id, ep_index;
1733         unsigned int *ep_state;
1734         struct urb_priv *urb_priv;
1735         int num_tds;
1736
1737         if (!urb)
1738                 return -EINVAL;
1739         ret = xhci_check_args(hcd, urb->dev, urb->ep,
1740                                         true, true, __func__);
1741         if (ret <= 0)
1742                 return ret ? ret : -EINVAL;
1743
1744         slot_id = urb->dev->slot_id;
1745         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1746         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1747
1748         if (!HCD_HW_ACCESSIBLE(hcd))
1749                 return -ESHUTDOWN;
1750
1751         if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1752                 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1753                 return -ENODEV;
1754         }
1755
1756         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1757                 num_tds = urb->number_of_packets;
1758         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1759             urb->transfer_buffer_length > 0 &&
1760             urb->transfer_flags & URB_ZERO_PACKET &&
1761             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1762                 num_tds = 2;
1763         else
1764                 num_tds = 1;
1765
1766         urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1767         if (!urb_priv)
1768                 return -ENOMEM;
1769
1770         urb_priv->num_tds = num_tds;
1771         urb_priv->num_tds_done = 0;
1772         urb->hcpriv = urb_priv;
1773
1774         trace_xhci_urb_enqueue(urb);
1775
1776         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1777                 /* Check to see if the max packet size for the default control
1778                  * endpoint changed during FS device enumeration
1779                  */
1780                 if (urb->dev->speed == USB_SPEED_FULL) {
1781                         ret = xhci_check_maxpacket(xhci, slot_id,
1782                                         ep_index, urb, mem_flags);
1783                         if (ret < 0) {
1784                                 xhci_urb_free_priv(urb_priv);
1785                                 urb->hcpriv = NULL;
1786                                 return ret;
1787                         }
1788                 }
1789         }
1790
1791         spin_lock_irqsave(&xhci->lock, flags);
1792
1793         if (xhci->xhc_state & XHCI_STATE_DYING) {
1794                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1795                          urb->ep->desc.bEndpointAddress, urb);
1796                 ret = -ESHUTDOWN;
1797                 goto free_priv;
1798         }
1799         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1800                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1801                           *ep_state);
1802                 ret = -EINVAL;
1803                 goto free_priv;
1804         }
1805         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1806                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1807                 ret = -EINVAL;
1808                 goto free_priv;
1809         }
1810
1811         switch (usb_endpoint_type(&urb->ep->desc)) {
1812
1813         case USB_ENDPOINT_XFER_CONTROL:
1814                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1815                                          slot_id, ep_index);
1816                 break;
1817         case USB_ENDPOINT_XFER_BULK:
1818                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1819                                          slot_id, ep_index);
1820                 break;
1821         case USB_ENDPOINT_XFER_INT:
1822                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1823                                 slot_id, ep_index);
1824                 break;
1825         case USB_ENDPOINT_XFER_ISOC:
1826                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1827                                 slot_id, ep_index);
1828         }
1829
1830         if (ret) {
1831 free_priv:
1832                 xhci_urb_free_priv(urb_priv);
1833                 urb->hcpriv = NULL;
1834         }
1835         spin_unlock_irqrestore(&xhci->lock, flags);
1836         return ret;
1837 }
1838
1839 /*
1840  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1841  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1842  * should pick up where it left off in the TD, unless a Set Transfer Ring
1843  * Dequeue Pointer is issued.
1844  *
1845  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1846  * the ring.  Since the ring is a contiguous structure, they can't be physically
1847  * removed.  Instead, there are two options:
1848  *
1849  *  1) If the HC is in the middle of processing the URB to be canceled, we
1850  *     simply move the ring's dequeue pointer past those TRBs using the Set
1851  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1852  *     when drivers timeout on the last submitted URB and attempt to cancel.
1853  *
1854  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1855  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1856  *     HC will need to invalidate the any TRBs it has cached after the stop
1857  *     endpoint command, as noted in the xHCI 0.95 errata.
1858  *
1859  *  3) The TD may have completed by the time the Stop Endpoint Command
1860  *     completes, so software needs to handle that case too.
1861  *
1862  * This function should protect against the TD enqueueing code ringing the
1863  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1864  * It also needs to account for multiple cancellations on happening at the same
1865  * time for the same endpoint.
1866  *
1867  * Note that this function can be called in any context, or so says
1868  * usb_hcd_unlink_urb()
1869  */
1870 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1871 {
1872         unsigned long flags;
1873         int ret, i;
1874         u32 temp;
1875         struct xhci_hcd *xhci;
1876         struct urb_priv *urb_priv;
1877         struct xhci_td *td;
1878         unsigned int ep_index;
1879         struct xhci_ring *ep_ring;
1880         struct xhci_virt_ep *ep;
1881         struct xhci_command *command;
1882         struct xhci_virt_device *vdev;
1883
1884         xhci = hcd_to_xhci(hcd);
1885         spin_lock_irqsave(&xhci->lock, flags);
1886
1887         trace_xhci_urb_dequeue(urb);
1888
1889         /* Make sure the URB hasn't completed or been unlinked already */
1890         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1891         if (ret)
1892                 goto done;
1893
1894         /* give back URB now if we can't queue it for cancel */
1895         vdev = xhci->devs[urb->dev->slot_id];
1896         urb_priv = urb->hcpriv;
1897         if (!vdev || !urb_priv)
1898                 goto err_giveback;
1899
1900         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1901         ep = &vdev->eps[ep_index];
1902         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1903         if (!ep || !ep_ring)
1904                 goto err_giveback;
1905
1906         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1907         temp = readl(&xhci->op_regs->status);
1908         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1909                 xhci_hc_died(xhci);
1910                 goto done;
1911         }
1912
1913         /*
1914          * check ring is not re-allocated since URB was enqueued. If it is, then
1915          * make sure none of the ring related pointers in this URB private data
1916          * are touched, such as td_list, otherwise we overwrite freed data
1917          */
1918         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1919                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1920                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1921                         td = &urb_priv->td[i];
1922                         if (!list_empty(&td->cancelled_td_list))
1923                                 list_del_init(&td->cancelled_td_list);
1924                 }
1925                 goto err_giveback;
1926         }
1927
1928         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1929                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1930                                 "HC halted, freeing TD manually.");
1931                 for (i = urb_priv->num_tds_done;
1932                      i < urb_priv->num_tds;
1933                      i++) {
1934                         td = &urb_priv->td[i];
1935                         if (!list_empty(&td->td_list))
1936                                 list_del_init(&td->td_list);
1937                         if (!list_empty(&td->cancelled_td_list))
1938                                 list_del_init(&td->cancelled_td_list);
1939                 }
1940                 goto err_giveback;
1941         }
1942
1943         i = urb_priv->num_tds_done;
1944         if (i < urb_priv->num_tds)
1945                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1946                                 "Cancel URB %p, dev %s, ep 0x%x, "
1947                                 "starting at offset 0x%llx",
1948                                 urb, urb->dev->devpath,
1949                                 urb->ep->desc.bEndpointAddress,
1950                                 (unsigned long long) xhci_trb_virt_to_dma(
1951                                         urb_priv->td[i].start_seg,
1952                                         urb_priv->td[i].first_trb));
1953
1954         for (; i < urb_priv->num_tds; i++) {
1955                 td = &urb_priv->td[i];
1956                 /* TD can already be on cancelled list if ep halted on it */
1957                 if (list_empty(&td->cancelled_td_list)) {
1958                         td->cancel_status = TD_DIRTY;
1959                         list_add_tail(&td->cancelled_td_list,
1960                                       &ep->cancelled_td_list);
1961                 }
1962         }
1963
1964         /* Queue a stop endpoint command, but only if this is
1965          * the first cancellation to be handled.
1966          */
1967         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1968                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1969                 if (!command) {
1970                         ret = -ENOMEM;
1971                         goto done;
1972                 }
1973                 ep->ep_state |= EP_STOP_CMD_PENDING;
1974                 ep->stop_cmd_timer.expires = jiffies +
1975                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1976                 add_timer(&ep->stop_cmd_timer);
1977                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1978                                          ep_index, 0);
1979                 xhci_ring_cmd_db(xhci);
1980         }
1981 done:
1982         spin_unlock_irqrestore(&xhci->lock, flags);
1983         return ret;
1984
1985 err_giveback:
1986         if (urb_priv)
1987                 xhci_urb_free_priv(urb_priv);
1988         usb_hcd_unlink_urb_from_ep(hcd, urb);
1989         spin_unlock_irqrestore(&xhci->lock, flags);
1990         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1991         return ret;
1992 }
1993
1994 /* Drop an endpoint from a new bandwidth configuration for this device.
1995  * Only one call to this function is allowed per endpoint before
1996  * check_bandwidth() or reset_bandwidth() must be called.
1997  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1998  * add the endpoint to the schedule with possibly new parameters denoted by a
1999  * different endpoint descriptor in usb_host_endpoint.
2000  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
2001  * not allowed.
2002  *
2003  * The USB core will not allow URBs to be queued to an endpoint that is being
2004  * disabled, so there's no need for mutual exclusion to protect
2005  * the xhci->devs[slot_id] structure.
2006  */
2007 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
2008                        struct usb_host_endpoint *ep)
2009 {
2010         struct xhci_hcd *xhci;
2011         struct xhci_container_ctx *in_ctx, *out_ctx;
2012         struct xhci_input_control_ctx *ctrl_ctx;
2013         unsigned int ep_index;
2014         struct xhci_ep_ctx *ep_ctx;
2015         u32 drop_flag;
2016         u32 new_add_flags, new_drop_flags;
2017         int ret;
2018
2019         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
2020         if (ret <= 0)
2021                 return ret;
2022         xhci = hcd_to_xhci(hcd);
2023         if (xhci->xhc_state & XHCI_STATE_DYING)
2024                 return -ENODEV;
2025
2026         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2027         drop_flag = xhci_get_endpoint_flag(&ep->desc);
2028         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
2029                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
2030                                 __func__, drop_flag);
2031                 return 0;
2032         }
2033
2034         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
2035         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
2036         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2037         if (!ctrl_ctx) {
2038                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2039                                 __func__);
2040                 return 0;
2041         }
2042
2043         ep_index = xhci_get_endpoint_index(&ep->desc);
2044         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
2045         /* If the HC already knows the endpoint is disabled,
2046          * or the HCD has noted it is disabled, ignore this request
2047          */
2048         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
2049             le32_to_cpu(ctrl_ctx->drop_flags) &
2050             xhci_get_endpoint_flag(&ep->desc)) {
2051                 /* Do not warn when called after a usb_device_reset */
2052                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
2053                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
2054                                   __func__, ep);
2055                 return 0;
2056         }
2057
2058         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
2059         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2060
2061         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
2062         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2063
2064         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
2065
2066         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
2067
2068         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2069                         (unsigned int) ep->desc.bEndpointAddress,
2070                         udev->slot_id,
2071                         (unsigned int) new_drop_flags,
2072                         (unsigned int) new_add_flags);
2073         return 0;
2074 }
2075 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
2076
2077 /* Add an endpoint to a new possible bandwidth configuration for this device.
2078  * Only one call to this function is allowed per endpoint before
2079  * check_bandwidth() or reset_bandwidth() must be called.
2080  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
2081  * add the endpoint to the schedule with possibly new parameters denoted by a
2082  * different endpoint descriptor in usb_host_endpoint.
2083  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
2084  * not allowed.
2085  *
2086  * The USB core will not allow URBs to be queued to an endpoint until the
2087  * configuration or alt setting is installed in the device, so there's no need
2088  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
2089  */
2090 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
2091                       struct usb_host_endpoint *ep)
2092 {
2093         struct xhci_hcd *xhci;
2094         struct xhci_container_ctx *in_ctx;
2095         unsigned int ep_index;
2096         struct xhci_input_control_ctx *ctrl_ctx;
2097         struct xhci_ep_ctx *ep_ctx;
2098         u32 added_ctxs;
2099         u32 new_add_flags, new_drop_flags;
2100         struct xhci_virt_device *virt_dev;
2101         int ret = 0;
2102
2103         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
2104         if (ret <= 0) {
2105                 /* So we won't queue a reset ep command for a root hub */
2106                 ep->hcpriv = NULL;
2107                 return ret;
2108         }
2109         xhci = hcd_to_xhci(hcd);
2110         if (xhci->xhc_state & XHCI_STATE_DYING)
2111                 return -ENODEV;
2112
2113         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
2114         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
2115                 /* FIXME when we have to issue an evaluate endpoint command to
2116                  * deal with ep0 max packet size changing once we get the
2117                  * descriptors
2118                  */
2119                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
2120                                 __func__, added_ctxs);
2121                 return 0;
2122         }
2123
2124         virt_dev = xhci->devs[udev->slot_id];
2125         in_ctx = virt_dev->in_ctx;
2126         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2127         if (!ctrl_ctx) {
2128                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2129                                 __func__);
2130                 return 0;
2131         }
2132
2133         ep_index = xhci_get_endpoint_index(&ep->desc);
2134         /* If this endpoint is already in use, and the upper layers are trying
2135          * to add it again without dropping it, reject the addition.
2136          */
2137         if (virt_dev->eps[ep_index].ring &&
2138                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2139                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
2140                                 "without dropping it.\n",
2141                                 (unsigned int) ep->desc.bEndpointAddress);
2142                 return -EINVAL;
2143         }
2144
2145         /* If the HCD has already noted the endpoint is enabled,
2146          * ignore this request.
2147          */
2148         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2149                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2150                                 __func__, ep);
2151                 return 0;
2152         }
2153
2154         /*
2155          * Configuration and alternate setting changes must be done in
2156          * process context, not interrupt context (or so documenation
2157          * for usb_set_interface() and usb_set_configuration() claim).
2158          */
2159         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2160                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2161                                 __func__, ep->desc.bEndpointAddress);
2162                 return -ENOMEM;
2163         }
2164
2165         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2166         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2167
2168         /* If xhci_endpoint_disable() was called for this endpoint, but the
2169          * xHC hasn't been notified yet through the check_bandwidth() call,
2170          * this re-adds a new state for the endpoint from the new endpoint
2171          * descriptors.  We must drop and re-add this endpoint, so we leave the
2172          * drop flags alone.
2173          */
2174         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2175
2176         /* Store the usb_device pointer for later use */
2177         ep->hcpriv = udev;
2178
2179         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2180         trace_xhci_add_endpoint(ep_ctx);
2181
2182         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2183                         (unsigned int) ep->desc.bEndpointAddress,
2184                         udev->slot_id,
2185                         (unsigned int) new_drop_flags,
2186                         (unsigned int) new_add_flags);
2187         return 0;
2188 }
2189 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2190
2191 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2192 {
2193         struct xhci_input_control_ctx *ctrl_ctx;
2194         struct xhci_ep_ctx *ep_ctx;
2195         struct xhci_slot_ctx *slot_ctx;
2196         int i;
2197
2198         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2199         if (!ctrl_ctx) {
2200                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2201                                 __func__);
2202                 return;
2203         }
2204
2205         /* When a device's add flag and drop flag are zero, any subsequent
2206          * configure endpoint command will leave that endpoint's state
2207          * untouched.  Make sure we don't leave any old state in the input
2208          * endpoint contexts.
2209          */
2210         ctrl_ctx->drop_flags = 0;
2211         ctrl_ctx->add_flags = 0;
2212         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2213         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2214         /* Endpoint 0 is always valid */
2215         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2216         for (i = 1; i < 31; i++) {
2217                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2218                 ep_ctx->ep_info = 0;
2219                 ep_ctx->ep_info2 = 0;
2220                 ep_ctx->deq = 0;
2221                 ep_ctx->tx_info = 0;
2222         }
2223 }
2224
2225 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2226                 struct usb_device *udev, u32 *cmd_status)
2227 {
2228         int ret;
2229
2230         switch (*cmd_status) {
2231         case COMP_COMMAND_ABORTED:
2232         case COMP_COMMAND_RING_STOPPED:
2233                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2234                 ret = -ETIME;
2235                 break;
2236         case COMP_RESOURCE_ERROR:
2237                 dev_warn(&udev->dev,
2238                          "Not enough host controller resources for new device state.\n");
2239                 ret = -ENOMEM;
2240                 /* FIXME: can we allocate more resources for the HC? */
2241                 break;
2242         case COMP_BANDWIDTH_ERROR:
2243         case COMP_SECONDARY_BANDWIDTH_ERROR:
2244                 dev_warn(&udev->dev,
2245                          "Not enough bandwidth for new device state.\n");
2246                 ret = -ENOSPC;
2247                 /* FIXME: can we go back to the old state? */
2248                 break;
2249         case COMP_TRB_ERROR:
2250                 /* the HCD set up something wrong */
2251                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2252                                 "add flag = 1, "
2253                                 "and endpoint is not disabled.\n");
2254                 ret = -EINVAL;
2255                 break;
2256         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2257                 dev_warn(&udev->dev,
2258                          "ERROR: Incompatible device for endpoint configure command.\n");
2259                 ret = -ENODEV;
2260                 break;
2261         case COMP_SUCCESS:
2262                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2263                                 "Successful Endpoint Configure command");
2264                 ret = 0;
2265                 break;
2266         default:
2267                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2268                                 *cmd_status);
2269                 ret = -EINVAL;
2270                 break;
2271         }
2272         return ret;
2273 }
2274
2275 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2276                 struct usb_device *udev, u32 *cmd_status)
2277 {
2278         int ret;
2279
2280         switch (*cmd_status) {
2281         case COMP_COMMAND_ABORTED:
2282         case COMP_COMMAND_RING_STOPPED:
2283                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2284                 ret = -ETIME;
2285                 break;
2286         case COMP_PARAMETER_ERROR:
2287                 dev_warn(&udev->dev,
2288                          "WARN: xHCI driver setup invalid evaluate context command.\n");
2289                 ret = -EINVAL;
2290                 break;
2291         case COMP_SLOT_NOT_ENABLED_ERROR:
2292                 dev_warn(&udev->dev,
2293                         "WARN: slot not enabled for evaluate context command.\n");
2294                 ret = -EINVAL;
2295                 break;
2296         case COMP_CONTEXT_STATE_ERROR:
2297                 dev_warn(&udev->dev,
2298                         "WARN: invalid context state for evaluate context command.\n");
2299                 ret = -EINVAL;
2300                 break;
2301         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2302                 dev_warn(&udev->dev,
2303                         "ERROR: Incompatible device for evaluate context command.\n");
2304                 ret = -ENODEV;
2305                 break;
2306         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2307                 /* Max Exit Latency too large error */
2308                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2309                 ret = -EINVAL;
2310                 break;
2311         case COMP_SUCCESS:
2312                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2313                                 "Successful evaluate context command");
2314                 ret = 0;
2315                 break;
2316         default:
2317                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2318                         *cmd_status);
2319                 ret = -EINVAL;
2320                 break;
2321         }
2322         return ret;
2323 }
2324
2325 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2326                 struct xhci_input_control_ctx *ctrl_ctx)
2327 {
2328         u32 valid_add_flags;
2329         u32 valid_drop_flags;
2330
2331         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2332          * (bit 1).  The default control endpoint is added during the Address
2333          * Device command and is never removed until the slot is disabled.
2334          */
2335         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2336         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2337
2338         /* Use hweight32 to count the number of ones in the add flags, or
2339          * number of endpoints added.  Don't count endpoints that are changed
2340          * (both added and dropped).
2341          */
2342         return hweight32(valid_add_flags) -
2343                 hweight32(valid_add_flags & valid_drop_flags);
2344 }
2345
2346 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2347                 struct xhci_input_control_ctx *ctrl_ctx)
2348 {
2349         u32 valid_add_flags;
2350         u32 valid_drop_flags;
2351
2352         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2353         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2354
2355         return hweight32(valid_drop_flags) -
2356                 hweight32(valid_add_flags & valid_drop_flags);
2357 }
2358
2359 /*
2360  * We need to reserve the new number of endpoints before the configure endpoint
2361  * command completes.  We can't subtract the dropped endpoints from the number
2362  * of active endpoints until the command completes because we can oversubscribe
2363  * the host in this case:
2364  *
2365  *  - the first configure endpoint command drops more endpoints than it adds
2366  *  - a second configure endpoint command that adds more endpoints is queued
2367  *  - the first configure endpoint command fails, so the config is unchanged
2368  *  - the second command may succeed, even though there isn't enough resources
2369  *
2370  * Must be called with xhci->lock held.
2371  */
2372 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2373                 struct xhci_input_control_ctx *ctrl_ctx)
2374 {
2375         u32 added_eps;
2376
2377         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2378         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2379                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2380                                 "Not enough ep ctxs: "
2381                                 "%u active, need to add %u, limit is %u.",
2382                                 xhci->num_active_eps, added_eps,
2383                                 xhci->limit_active_eps);
2384                 return -ENOMEM;
2385         }
2386         xhci->num_active_eps += added_eps;
2387         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2388                         "Adding %u ep ctxs, %u now active.", added_eps,
2389                         xhci->num_active_eps);
2390         return 0;
2391 }
2392
2393 /*
2394  * The configure endpoint was failed by the xHC for some other reason, so we
2395  * need to revert the resources that failed configuration would have used.
2396  *
2397  * Must be called with xhci->lock held.
2398  */
2399 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2400                 struct xhci_input_control_ctx *ctrl_ctx)
2401 {
2402         u32 num_failed_eps;
2403
2404         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2405         xhci->num_active_eps -= num_failed_eps;
2406         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2407                         "Removing %u failed ep ctxs, %u now active.",
2408                         num_failed_eps,
2409                         xhci->num_active_eps);
2410 }
2411
2412 /*
2413  * Now that the command has completed, clean up the active endpoint count by
2414  * subtracting out the endpoints that were dropped (but not changed).
2415  *
2416  * Must be called with xhci->lock held.
2417  */
2418 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2419                 struct xhci_input_control_ctx *ctrl_ctx)
2420 {
2421         u32 num_dropped_eps;
2422
2423         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2424         xhci->num_active_eps -= num_dropped_eps;
2425         if (num_dropped_eps)
2426                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2427                                 "Removing %u dropped ep ctxs, %u now active.",
2428                                 num_dropped_eps,
2429                                 xhci->num_active_eps);
2430 }
2431
2432 static unsigned int xhci_get_block_size(struct usb_device *udev)
2433 {
2434         switch (udev->speed) {
2435         case USB_SPEED_LOW:
2436         case USB_SPEED_FULL:
2437                 return FS_BLOCK;
2438         case USB_SPEED_HIGH:
2439                 return HS_BLOCK;
2440         case USB_SPEED_SUPER:
2441         case USB_SPEED_SUPER_PLUS:
2442                 return SS_BLOCK;
2443         case USB_SPEED_UNKNOWN:
2444         case USB_SPEED_WIRELESS:
2445         default:
2446                 /* Should never happen */
2447                 return 1;
2448         }
2449 }
2450
2451 static unsigned int
2452 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2453 {
2454         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2455                 return LS_OVERHEAD;
2456         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2457                 return FS_OVERHEAD;
2458         return HS_OVERHEAD;
2459 }
2460
2461 /* If we are changing a LS/FS device under a HS hub,
2462  * make sure (if we are activating a new TT) that the HS bus has enough
2463  * bandwidth for this new TT.
2464  */
2465 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2466                 struct xhci_virt_device *virt_dev,
2467                 int old_active_eps)
2468 {
2469         struct xhci_interval_bw_table *bw_table;
2470         struct xhci_tt_bw_info *tt_info;
2471
2472         /* Find the bandwidth table for the root port this TT is attached to. */
2473         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2474         tt_info = virt_dev->tt_info;
2475         /* If this TT already had active endpoints, the bandwidth for this TT
2476          * has already been added.  Removing all periodic endpoints (and thus
2477          * making the TT enactive) will only decrease the bandwidth used.
2478          */
2479         if (old_active_eps)
2480                 return 0;
2481         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2482                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2483                         return -ENOMEM;
2484                 return 0;
2485         }
2486         /* Not sure why we would have no new active endpoints...
2487          *
2488          * Maybe because of an Evaluate Context change for a hub update or a
2489          * control endpoint 0 max packet size change?
2490          * FIXME: skip the bandwidth calculation in that case.
2491          */
2492         return 0;
2493 }
2494
2495 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2496                 struct xhci_virt_device *virt_dev)
2497 {
2498         unsigned int bw_reserved;
2499
2500         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2501         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2502                 return -ENOMEM;
2503
2504         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2505         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2506                 return -ENOMEM;
2507
2508         return 0;
2509 }
2510
2511 /*
2512  * This algorithm is a very conservative estimate of the worst-case scheduling
2513  * scenario for any one interval.  The hardware dynamically schedules the
2514  * packets, so we can't tell which microframe could be the limiting factor in
2515  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2516  *
2517  * Obviously, we can't solve an NP complete problem to find the minimum worst
2518  * case scenario.  Instead, we come up with an estimate that is no less than
2519  * the worst case bandwidth used for any one microframe, but may be an
2520  * over-estimate.
2521  *
2522  * We walk the requirements for each endpoint by interval, starting with the
2523  * smallest interval, and place packets in the schedule where there is only one
2524  * possible way to schedule packets for that interval.  In order to simplify
2525  * this algorithm, we record the largest max packet size for each interval, and
2526  * assume all packets will be that size.
2527  *
2528  * For interval 0, we obviously must schedule all packets for each interval.
2529  * The bandwidth for interval 0 is just the amount of data to be transmitted
2530  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2531  * the number of packets).
2532  *
2533  * For interval 1, we have two possible microframes to schedule those packets
2534  * in.  For this algorithm, if we can schedule the same number of packets for
2535  * each possible scheduling opportunity (each microframe), we will do so.  The
2536  * remaining number of packets will be saved to be transmitted in the gaps in
2537  * the next interval's scheduling sequence.
2538  *
2539  * As we move those remaining packets to be scheduled with interval 2 packets,
2540  * we have to double the number of remaining packets to transmit.  This is
2541  * because the intervals are actually powers of 2, and we would be transmitting
2542  * the previous interval's packets twice in this interval.  We also have to be
2543  * sure that when we look at the largest max packet size for this interval, we
2544  * also look at the largest max packet size for the remaining packets and take
2545  * the greater of the two.
2546  *
2547  * The algorithm continues to evenly distribute packets in each scheduling
2548  * opportunity, and push the remaining packets out, until we get to the last
2549  * interval.  Then those packets and their associated overhead are just added
2550  * to the bandwidth used.
2551  */
2552 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2553                 struct xhci_virt_device *virt_dev,
2554                 int old_active_eps)
2555 {
2556         unsigned int bw_reserved;
2557         unsigned int max_bandwidth;
2558         unsigned int bw_used;
2559         unsigned int block_size;
2560         struct xhci_interval_bw_table *bw_table;
2561         unsigned int packet_size = 0;
2562         unsigned int overhead = 0;
2563         unsigned int packets_transmitted = 0;
2564         unsigned int packets_remaining = 0;
2565         unsigned int i;
2566
2567         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2568                 return xhci_check_ss_bw(xhci, virt_dev);
2569
2570         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2571                 max_bandwidth = HS_BW_LIMIT;
2572                 /* Convert percent of bus BW reserved to blocks reserved */
2573                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2574         } else {
2575                 max_bandwidth = FS_BW_LIMIT;
2576                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2577         }
2578
2579         bw_table = virt_dev->bw_table;
2580         /* We need to translate the max packet size and max ESIT payloads into
2581          * the units the hardware uses.
2582          */
2583         block_size = xhci_get_block_size(virt_dev->udev);
2584
2585         /* If we are manipulating a LS/FS device under a HS hub, double check
2586          * that the HS bus has enough bandwidth if we are activing a new TT.
2587          */
2588         if (virt_dev->tt_info) {
2589                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2590                                 "Recalculating BW for rootport %u",
2591                                 virt_dev->real_port);
2592                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2593                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2594                                         "newly activated TT.\n");
2595                         return -ENOMEM;
2596                 }
2597                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2598                                 "Recalculating BW for TT slot %u port %u",
2599                                 virt_dev->tt_info->slot_id,
2600                                 virt_dev->tt_info->ttport);
2601         } else {
2602                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2603                                 "Recalculating BW for rootport %u",
2604                                 virt_dev->real_port);
2605         }
2606
2607         /* Add in how much bandwidth will be used for interval zero, or the
2608          * rounded max ESIT payload + number of packets * largest overhead.
2609          */
2610         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2611                 bw_table->interval_bw[0].num_packets *
2612                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2613
2614         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2615                 unsigned int bw_added;
2616                 unsigned int largest_mps;
2617                 unsigned int interval_overhead;
2618
2619                 /*
2620                  * How many packets could we transmit in this interval?
2621                  * If packets didn't fit in the previous interval, we will need
2622                  * to transmit that many packets twice within this interval.
2623                  */
2624                 packets_remaining = 2 * packets_remaining +
2625                         bw_table->interval_bw[i].num_packets;
2626
2627                 /* Find the largest max packet size of this or the previous
2628                  * interval.
2629                  */
2630                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2631                         largest_mps = 0;
2632                 else {
2633                         struct xhci_virt_ep *virt_ep;
2634                         struct list_head *ep_entry;
2635
2636                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2637                         virt_ep = list_entry(ep_entry,
2638                                         struct xhci_virt_ep, bw_endpoint_list);
2639                         /* Convert to blocks, rounding up */
2640                         largest_mps = DIV_ROUND_UP(
2641                                         virt_ep->bw_info.max_packet_size,
2642                                         block_size);
2643                 }
2644                 if (largest_mps > packet_size)
2645                         packet_size = largest_mps;
2646
2647                 /* Use the larger overhead of this or the previous interval. */
2648                 interval_overhead = xhci_get_largest_overhead(
2649                                 &bw_table->interval_bw[i]);
2650                 if (interval_overhead > overhead)
2651                         overhead = interval_overhead;
2652
2653                 /* How many packets can we evenly distribute across
2654                  * (1 << (i + 1)) possible scheduling opportunities?
2655                  */
2656                 packets_transmitted = packets_remaining >> (i + 1);
2657
2658                 /* Add in the bandwidth used for those scheduled packets */
2659                 bw_added = packets_transmitted * (overhead + packet_size);
2660
2661                 /* How many packets do we have remaining to transmit? */
2662                 packets_remaining = packets_remaining % (1 << (i + 1));
2663
2664                 /* What largest max packet size should those packets have? */
2665                 /* If we've transmitted all packets, don't carry over the
2666                  * largest packet size.
2667                  */
2668                 if (packets_remaining == 0) {
2669                         packet_size = 0;
2670                         overhead = 0;
2671                 } else if (packets_transmitted > 0) {
2672                         /* Otherwise if we do have remaining packets, and we've
2673                          * scheduled some packets in this interval, take the
2674                          * largest max packet size from endpoints with this
2675                          * interval.
2676                          */
2677                         packet_size = largest_mps;
2678                         overhead = interval_overhead;
2679                 }
2680                 /* Otherwise carry over packet_size and overhead from the last
2681                  * time we had a remainder.
2682                  */
2683                 bw_used += bw_added;
2684                 if (bw_used > max_bandwidth) {
2685                         xhci_warn(xhci, "Not enough bandwidth. "
2686                                         "Proposed: %u, Max: %u\n",
2687                                 bw_used, max_bandwidth);
2688                         return -ENOMEM;
2689                 }
2690         }
2691         /*
2692          * Ok, we know we have some packets left over after even-handedly
2693          * scheduling interval 15.  We don't know which microframes they will
2694          * fit into, so we over-schedule and say they will be scheduled every
2695          * microframe.
2696          */
2697         if (packets_remaining > 0)
2698                 bw_used += overhead + packet_size;
2699
2700         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2701                 unsigned int port_index = virt_dev->real_port - 1;
2702
2703                 /* OK, we're manipulating a HS device attached to a
2704                  * root port bandwidth domain.  Include the number of active TTs
2705                  * in the bandwidth used.
2706                  */
2707                 bw_used += TT_HS_OVERHEAD *
2708                         xhci->rh_bw[port_index].num_active_tts;
2709         }
2710
2711         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2712                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2713                 "Available: %u " "percent",
2714                 bw_used, max_bandwidth, bw_reserved,
2715                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2716                 max_bandwidth);
2717
2718         bw_used += bw_reserved;
2719         if (bw_used > max_bandwidth) {
2720                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2721                                 bw_used, max_bandwidth);
2722                 return -ENOMEM;
2723         }
2724
2725         bw_table->bw_used = bw_used;
2726         return 0;
2727 }
2728
2729 static bool xhci_is_async_ep(unsigned int ep_type)
2730 {
2731         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2732                                         ep_type != ISOC_IN_EP &&
2733                                         ep_type != INT_IN_EP);
2734 }
2735
2736 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2737 {
2738         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2739 }
2740
2741 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2742 {
2743         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2744
2745         if (ep_bw->ep_interval == 0)
2746                 return SS_OVERHEAD_BURST +
2747                         (ep_bw->mult * ep_bw->num_packets *
2748                                         (SS_OVERHEAD + mps));
2749         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2750                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2751                                 1 << ep_bw->ep_interval);
2752
2753 }
2754
2755 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2756                 struct xhci_bw_info *ep_bw,
2757                 struct xhci_interval_bw_table *bw_table,
2758                 struct usb_device *udev,
2759                 struct xhci_virt_ep *virt_ep,
2760                 struct xhci_tt_bw_info *tt_info)
2761 {
2762         struct xhci_interval_bw *interval_bw;
2763         int normalized_interval;
2764
2765         if (xhci_is_async_ep(ep_bw->type))
2766                 return;
2767
2768         if (udev->speed >= USB_SPEED_SUPER) {
2769                 if (xhci_is_sync_in_ep(ep_bw->type))
2770                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2771                                 xhci_get_ss_bw_consumed(ep_bw);
2772                 else
2773                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2774                                 xhci_get_ss_bw_consumed(ep_bw);
2775                 return;
2776         }
2777
2778         /* SuperSpeed endpoints never get added to intervals in the table, so
2779          * this check is only valid for HS/FS/LS devices.
2780          */
2781         if (list_empty(&virt_ep->bw_endpoint_list))
2782                 return;
2783         /* For LS/FS devices, we need to translate the interval expressed in
2784          * microframes to frames.
2785          */
2786         if (udev->speed == USB_SPEED_HIGH)
2787                 normalized_interval = ep_bw->ep_interval;
2788         else
2789                 normalized_interval = ep_bw->ep_interval - 3;
2790
2791         if (normalized_interval == 0)
2792                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2793         interval_bw = &bw_table->interval_bw[normalized_interval];
2794         interval_bw->num_packets -= ep_bw->num_packets;
2795         switch (udev->speed) {
2796         case USB_SPEED_LOW:
2797                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2798                 break;
2799         case USB_SPEED_FULL:
2800                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2801                 break;
2802         case USB_SPEED_HIGH:
2803                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2804                 break;
2805         case USB_SPEED_SUPER:
2806         case USB_SPEED_SUPER_PLUS:
2807         case USB_SPEED_UNKNOWN:
2808         case USB_SPEED_WIRELESS:
2809                 /* Should never happen because only LS/FS/HS endpoints will get
2810                  * added to the endpoint list.
2811                  */
2812                 return;
2813         }
2814         if (tt_info)
2815                 tt_info->active_eps -= 1;
2816         list_del_init(&virt_ep->bw_endpoint_list);
2817 }
2818
2819 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2820                 struct xhci_bw_info *ep_bw,
2821                 struct xhci_interval_bw_table *bw_table,
2822                 struct usb_device *udev,
2823                 struct xhci_virt_ep *virt_ep,
2824                 struct xhci_tt_bw_info *tt_info)
2825 {
2826         struct xhci_interval_bw *interval_bw;
2827         struct xhci_virt_ep *smaller_ep;
2828         int normalized_interval;
2829
2830         if (xhci_is_async_ep(ep_bw->type))
2831                 return;
2832
2833         if (udev->speed == USB_SPEED_SUPER) {
2834                 if (xhci_is_sync_in_ep(ep_bw->type))
2835                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2836                                 xhci_get_ss_bw_consumed(ep_bw);
2837                 else
2838                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2839                                 xhci_get_ss_bw_consumed(ep_bw);
2840                 return;
2841         }
2842
2843         /* For LS/FS devices, we need to translate the interval expressed in
2844          * microframes to frames.
2845          */
2846         if (udev->speed == USB_SPEED_HIGH)
2847                 normalized_interval = ep_bw->ep_interval;
2848         else
2849                 normalized_interval = ep_bw->ep_interval - 3;
2850
2851         if (normalized_interval == 0)
2852                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2853         interval_bw = &bw_table->interval_bw[normalized_interval];
2854         interval_bw->num_packets += ep_bw->num_packets;
2855         switch (udev->speed) {
2856         case USB_SPEED_LOW:
2857                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2858                 break;
2859         case USB_SPEED_FULL:
2860                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2861                 break;
2862         case USB_SPEED_HIGH:
2863                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2864                 break;
2865         case USB_SPEED_SUPER:
2866         case USB_SPEED_SUPER_PLUS:
2867         case USB_SPEED_UNKNOWN:
2868         case USB_SPEED_WIRELESS:
2869                 /* Should never happen because only LS/FS/HS endpoints will get
2870                  * added to the endpoint list.
2871                  */
2872                 return;
2873         }
2874
2875         if (tt_info)
2876                 tt_info->active_eps += 1;
2877         /* Insert the endpoint into the list, largest max packet size first. */
2878         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2879                         bw_endpoint_list) {
2880                 if (ep_bw->max_packet_size >=
2881                                 smaller_ep->bw_info.max_packet_size) {
2882                         /* Add the new ep before the smaller endpoint */
2883                         list_add_tail(&virt_ep->bw_endpoint_list,
2884                                         &smaller_ep->bw_endpoint_list);
2885                         return;
2886                 }
2887         }
2888         /* Add the new endpoint at the end of the list. */
2889         list_add_tail(&virt_ep->bw_endpoint_list,
2890                         &interval_bw->endpoints);
2891 }
2892
2893 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2894                 struct xhci_virt_device *virt_dev,
2895                 int old_active_eps)
2896 {
2897         struct xhci_root_port_bw_info *rh_bw_info;
2898         if (!virt_dev->tt_info)
2899                 return;
2900
2901         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2902         if (old_active_eps == 0 &&
2903                                 virt_dev->tt_info->active_eps != 0) {
2904                 rh_bw_info->num_active_tts += 1;
2905                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2906         } else if (old_active_eps != 0 &&
2907                                 virt_dev->tt_info->active_eps == 0) {
2908                 rh_bw_info->num_active_tts -= 1;
2909                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2910         }
2911 }
2912
2913 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2914                 struct xhci_virt_device *virt_dev,
2915                 struct xhci_container_ctx *in_ctx)
2916 {
2917         struct xhci_bw_info ep_bw_info[31];
2918         int i;
2919         struct xhci_input_control_ctx *ctrl_ctx;
2920         int old_active_eps = 0;
2921
2922         if (virt_dev->tt_info)
2923                 old_active_eps = virt_dev->tt_info->active_eps;
2924
2925         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2926         if (!ctrl_ctx) {
2927                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2928                                 __func__);
2929                 return -ENOMEM;
2930         }
2931
2932         for (i = 0; i < 31; i++) {
2933                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2934                         continue;
2935
2936                 /* Make a copy of the BW info in case we need to revert this */
2937                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2938                                 sizeof(ep_bw_info[i]));
2939                 /* Drop the endpoint from the interval table if the endpoint is
2940                  * being dropped or changed.
2941                  */
2942                 if (EP_IS_DROPPED(ctrl_ctx, i))
2943                         xhci_drop_ep_from_interval_table(xhci,
2944                                         &virt_dev->eps[i].bw_info,
2945                                         virt_dev->bw_table,
2946                                         virt_dev->udev,
2947                                         &virt_dev->eps[i],
2948                                         virt_dev->tt_info);
2949         }
2950         /* Overwrite the information stored in the endpoints' bw_info */
2951         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2952         for (i = 0; i < 31; i++) {
2953                 /* Add any changed or added endpoints to the interval table */
2954                 if (EP_IS_ADDED(ctrl_ctx, i))
2955                         xhci_add_ep_to_interval_table(xhci,
2956                                         &virt_dev->eps[i].bw_info,
2957                                         virt_dev->bw_table,
2958                                         virt_dev->udev,
2959                                         &virt_dev->eps[i],
2960                                         virt_dev->tt_info);
2961         }
2962
2963         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2964                 /* Ok, this fits in the bandwidth we have.
2965                  * Update the number of active TTs.
2966                  */
2967                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2968                 return 0;
2969         }
2970
2971         /* We don't have enough bandwidth for this, revert the stored info. */
2972         for (i = 0; i < 31; i++) {
2973                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2974                         continue;
2975
2976                 /* Drop the new copies of any added or changed endpoints from
2977                  * the interval table.
2978                  */
2979                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2980                         xhci_drop_ep_from_interval_table(xhci,
2981                                         &virt_dev->eps[i].bw_info,
2982                                         virt_dev->bw_table,
2983                                         virt_dev->udev,
2984                                         &virt_dev->eps[i],
2985                                         virt_dev->tt_info);
2986                 }
2987                 /* Revert the endpoint back to its old information */
2988                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2989                                 sizeof(ep_bw_info[i]));
2990                 /* Add any changed or dropped endpoints back into the table */
2991                 if (EP_IS_DROPPED(ctrl_ctx, i))
2992                         xhci_add_ep_to_interval_table(xhci,
2993                                         &virt_dev->eps[i].bw_info,
2994                                         virt_dev->bw_table,
2995                                         virt_dev->udev,
2996                                         &virt_dev->eps[i],
2997                                         virt_dev->tt_info);
2998         }
2999         return -ENOMEM;
3000 }
3001
3002
3003 /* Issue a configure endpoint command or evaluate context command
3004  * and wait for it to finish.
3005  */
3006 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
3007                 struct usb_device *udev,
3008                 struct xhci_command *command,
3009                 bool ctx_change, bool must_succeed)
3010 {
3011         int ret;
3012         unsigned long flags;
3013         struct xhci_input_control_ctx *ctrl_ctx;
3014         struct xhci_virt_device *virt_dev;
3015         struct xhci_slot_ctx *slot_ctx;
3016
3017         if (!command)
3018                 return -EINVAL;
3019
3020         spin_lock_irqsave(&xhci->lock, flags);
3021
3022         if (xhci->xhc_state & XHCI_STATE_DYING) {
3023                 spin_unlock_irqrestore(&xhci->lock, flags);
3024                 return -ESHUTDOWN;
3025         }
3026
3027         virt_dev = xhci->devs[udev->slot_id];
3028
3029         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3030         if (!ctrl_ctx) {
3031                 spin_unlock_irqrestore(&xhci->lock, flags);
3032                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3033                                 __func__);
3034                 return -ENOMEM;
3035         }
3036
3037         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
3038                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
3039                 spin_unlock_irqrestore(&xhci->lock, flags);
3040                 xhci_warn(xhci, "Not enough host resources, "
3041                                 "active endpoint contexts = %u\n",
3042                                 xhci->num_active_eps);
3043                 return -ENOMEM;
3044         }
3045         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
3046             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
3047                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
3048                         xhci_free_host_resources(xhci, ctrl_ctx);
3049                 spin_unlock_irqrestore(&xhci->lock, flags);
3050                 xhci_warn(xhci, "Not enough bandwidth\n");
3051                 return -ENOMEM;
3052         }
3053
3054         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3055
3056         trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
3057         trace_xhci_configure_endpoint(slot_ctx);
3058
3059         if (!ctx_change)
3060                 ret = xhci_queue_configure_endpoint(xhci, command,
3061                                 command->in_ctx->dma,
3062                                 udev->slot_id, must_succeed);
3063         else
3064                 ret = xhci_queue_evaluate_context(xhci, command,
3065                                 command->in_ctx->dma,
3066                                 udev->slot_id, must_succeed);
3067         if (ret < 0) {
3068                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
3069                         xhci_free_host_resources(xhci, ctrl_ctx);
3070                 spin_unlock_irqrestore(&xhci->lock, flags);
3071                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
3072                                 "FIXME allocate a new ring segment");
3073                 return -ENOMEM;
3074         }
3075         xhci_ring_cmd_db(xhci);
3076         spin_unlock_irqrestore(&xhci->lock, flags);
3077
3078         /* Wait for the configure endpoint command to complete */
3079         wait_for_completion(command->completion);
3080
3081         if (!ctx_change)
3082                 ret = xhci_configure_endpoint_result(xhci, udev,
3083                                                      &command->status);
3084         else
3085                 ret = xhci_evaluate_context_result(xhci, udev,
3086                                                    &command->status);
3087
3088         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3089                 spin_lock_irqsave(&xhci->lock, flags);
3090                 /* If the command failed, remove the reserved resources.
3091                  * Otherwise, clean up the estimate to include dropped eps.
3092                  */
3093                 if (ret)
3094                         xhci_free_host_resources(xhci, ctrl_ctx);
3095                 else
3096                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
3097                 spin_unlock_irqrestore(&xhci->lock, flags);
3098         }
3099         return ret;
3100 }
3101
3102 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
3103         struct xhci_virt_device *vdev, int i)
3104 {
3105         struct xhci_virt_ep *ep = &vdev->eps[i];
3106
3107         if (ep->ep_state & EP_HAS_STREAMS) {
3108                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
3109                                 xhci_get_endpoint_address(i));
3110                 xhci_free_stream_info(xhci, ep->stream_info);
3111                 ep->stream_info = NULL;
3112                 ep->ep_state &= ~EP_HAS_STREAMS;
3113         }
3114 }
3115
3116 /* Called after one or more calls to xhci_add_endpoint() or
3117  * xhci_drop_endpoint().  If this call fails, the USB core is expected
3118  * to call xhci_reset_bandwidth().
3119  *
3120  * Since we are in the middle of changing either configuration or
3121  * installing a new alt setting, the USB core won't allow URBs to be
3122  * enqueued for any endpoint on the old config or interface.  Nothing
3123  * else should be touching the xhci->devs[slot_id] structure, so we
3124  * don't need to take the xhci->lock for manipulating that.
3125  */
3126 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3127 {
3128         int i;
3129         int ret = 0;
3130         struct xhci_hcd *xhci;
3131         struct xhci_virt_device *virt_dev;
3132         struct xhci_input_control_ctx *ctrl_ctx;
3133         struct xhci_slot_ctx *slot_ctx;
3134         struct xhci_command *command;
3135
3136         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3137         if (ret <= 0)
3138                 return ret;
3139         xhci = hcd_to_xhci(hcd);
3140         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3141                 (xhci->xhc_state & XHCI_STATE_REMOVING))
3142                 return -ENODEV;
3143
3144         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3145         virt_dev = xhci->devs[udev->slot_id];
3146
3147         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3148         if (!command)
3149                 return -ENOMEM;
3150
3151         command->in_ctx = virt_dev->in_ctx;
3152
3153         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3154         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3155         if (!ctrl_ctx) {
3156                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3157                                 __func__);
3158                 ret = -ENOMEM;
3159                 goto command_cleanup;
3160         }
3161         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3162         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3163         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3164
3165         /* Don't issue the command if there's no endpoints to update. */
3166         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3167             ctrl_ctx->drop_flags == 0) {
3168                 ret = 0;
3169                 goto command_cleanup;
3170         }
3171         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3172         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3173         for (i = 31; i >= 1; i--) {
3174                 __le32 le32 = cpu_to_le32(BIT(i));
3175
3176                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3177                     || (ctrl_ctx->add_flags & le32) || i == 1) {
3178                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3179                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3180                         break;
3181                 }
3182         }
3183
3184         ret = xhci_configure_endpoint(xhci, udev, command,
3185                         false, false);
3186         if (ret)
3187                 /* Callee should call reset_bandwidth() */
3188                 goto command_cleanup;
3189
3190         /* Free any rings that were dropped, but not changed. */
3191         for (i = 1; i < 31; i++) {
3192                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3193                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3194                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3195                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3196                 }
3197         }
3198         xhci_zero_in_ctx(xhci, virt_dev);
3199         /*
3200          * Install any rings for completely new endpoints or changed endpoints,
3201          * and free any old rings from changed endpoints.
3202          */
3203         for (i = 1; i < 31; i++) {
3204                 if (!virt_dev->eps[i].new_ring)
3205                         continue;
3206                 /* Only free the old ring if it exists.
3207                  * It may not if this is the first add of an endpoint.
3208                  */
3209                 if (virt_dev->eps[i].ring) {
3210                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3211                 }
3212                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3213                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3214                 virt_dev->eps[i].new_ring = NULL;
3215                 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3216         }
3217 command_cleanup:
3218         kfree(command->completion);
3219         kfree(command);
3220
3221         return ret;
3222 }
3223 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3224
3225 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3226 {
3227         struct xhci_hcd *xhci;
3228         struct xhci_virt_device *virt_dev;
3229         int i, ret;
3230
3231         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3232         if (ret <= 0)
3233                 return;
3234         xhci = hcd_to_xhci(hcd);
3235
3236         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3237         virt_dev = xhci->devs[udev->slot_id];
3238         /* Free any rings allocated for added endpoints */
3239         for (i = 0; i < 31; i++) {
3240                 if (virt_dev->eps[i].new_ring) {
3241                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3242                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3243                         virt_dev->eps[i].new_ring = NULL;
3244                 }
3245         }
3246         xhci_zero_in_ctx(xhci, virt_dev);
3247 }
3248 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3249
3250 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3251                 struct xhci_container_ctx *in_ctx,
3252                 struct xhci_container_ctx *out_ctx,
3253                 struct xhci_input_control_ctx *ctrl_ctx,
3254                 u32 add_flags, u32 drop_flags)
3255 {
3256         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3257         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3258         xhci_slot_copy(xhci, in_ctx, out_ctx);
3259         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3260 }
3261
3262 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3263                                   struct usb_host_endpoint *host_ep)
3264 {
3265         struct xhci_hcd         *xhci;
3266         struct xhci_virt_device *vdev;
3267         struct xhci_virt_ep     *ep;
3268         struct usb_device       *udev;
3269         unsigned long           flags;
3270         unsigned int            ep_index;
3271
3272         xhci = hcd_to_xhci(hcd);
3273 rescan:
3274         spin_lock_irqsave(&xhci->lock, flags);
3275
3276         udev = (struct usb_device *)host_ep->hcpriv;
3277         if (!udev || !udev->slot_id)
3278                 goto done;
3279
3280         vdev = xhci->devs[udev->slot_id];
3281         if (!vdev)
3282                 goto done;
3283
3284         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3285         ep = &vdev->eps[ep_index];
3286         if (!ep)
3287                 goto done;
3288
3289         /* wait for hub_tt_work to finish clearing hub TT */
3290         if (ep->ep_state & EP_CLEARING_TT) {
3291                 spin_unlock_irqrestore(&xhci->lock, flags);
3292                 schedule_timeout_uninterruptible(1);
3293                 goto rescan;
3294         }
3295
3296         if (ep->ep_state)
3297                 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3298                          ep->ep_state);
3299 done:
3300         host_ep->hcpriv = NULL;
3301         spin_unlock_irqrestore(&xhci->lock, flags);
3302 }
3303
3304 /*
3305  * Called after usb core issues a clear halt control message.
3306  * The host side of the halt should already be cleared by a reset endpoint
3307  * command issued when the STALL event was received.
3308  *
3309  * The reset endpoint command may only be issued to endpoints in the halted
3310  * state. For software that wishes to reset the data toggle or sequence number
3311  * of an endpoint that isn't in the halted state this function will issue a
3312  * configure endpoint command with the Drop and Add bits set for the target
3313  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3314  */
3315
3316 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3317                 struct usb_host_endpoint *host_ep)
3318 {
3319         struct xhci_hcd *xhci;
3320         struct usb_device *udev;
3321         struct xhci_virt_device *vdev;
3322         struct xhci_virt_ep *ep;
3323         struct xhci_input_control_ctx *ctrl_ctx;
3324         struct xhci_command *stop_cmd, *cfg_cmd;
3325         unsigned int ep_index;
3326         unsigned long flags;
3327         u32 ep_flag;
3328         int err;
3329
3330         xhci = hcd_to_xhci(hcd);
3331         if (!host_ep->hcpriv)
3332                 return;
3333         udev = (struct usb_device *) host_ep->hcpriv;
3334         vdev = xhci->devs[udev->slot_id];
3335
3336         /*
3337          * vdev may be lost due to xHC restore error and re-initialization
3338          * during S3/S4 resume. A new vdev will be allocated later by
3339          * xhci_discover_or_reset_device()
3340          */
3341         if (!udev->slot_id || !vdev)
3342                 return;
3343         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3344         ep = &vdev->eps[ep_index];
3345         if (!ep)
3346                 return;
3347
3348         /* Bail out if toggle is already being cleared by a endpoint reset */
3349         spin_lock_irqsave(&xhci->lock, flags);
3350         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3351                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3352                 spin_unlock_irqrestore(&xhci->lock, flags);
3353                 return;
3354         }
3355         spin_unlock_irqrestore(&xhci->lock, flags);
3356         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3357         if (usb_endpoint_xfer_control(&host_ep->desc) ||
3358             usb_endpoint_xfer_isoc(&host_ep->desc))
3359                 return;
3360
3361         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3362
3363         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3364                 return;
3365
3366         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3367         if (!stop_cmd)
3368                 return;
3369
3370         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3371         if (!cfg_cmd)
3372                 goto cleanup;
3373
3374         spin_lock_irqsave(&xhci->lock, flags);
3375
3376         /* block queuing new trbs and ringing ep doorbell */
3377         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3378
3379         /*
3380          * Make sure endpoint ring is empty before resetting the toggle/seq.
3381          * Driver is required to synchronously cancel all transfer request.
3382          * Stop the endpoint to force xHC to update the output context
3383          */
3384
3385         if (!list_empty(&ep->ring->td_list)) {
3386                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3387                 spin_unlock_irqrestore(&xhci->lock, flags);
3388                 xhci_free_command(xhci, cfg_cmd);
3389                 goto cleanup;
3390         }
3391
3392         err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3393                                         ep_index, 0);
3394         if (err < 0) {
3395                 spin_unlock_irqrestore(&xhci->lock, flags);
3396                 xhci_free_command(xhci, cfg_cmd);
3397                 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3398                                 __func__, err);
3399                 goto cleanup;
3400         }
3401
3402         xhci_ring_cmd_db(xhci);
3403         spin_unlock_irqrestore(&xhci->lock, flags);
3404
3405         wait_for_completion(stop_cmd->completion);
3406
3407         spin_lock_irqsave(&xhci->lock, flags);
3408
3409         /* config ep command clears toggle if add and drop ep flags are set */
3410         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3411         if (!ctrl_ctx) {
3412                 spin_unlock_irqrestore(&xhci->lock, flags);
3413                 xhci_free_command(xhci, cfg_cmd);
3414                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3415                                 __func__);
3416                 goto cleanup;
3417         }
3418
3419         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3420                                            ctrl_ctx, ep_flag, ep_flag);
3421         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3422
3423         err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3424                                       udev->slot_id, false);
3425         if (err < 0) {
3426                 spin_unlock_irqrestore(&xhci->lock, flags);
3427                 xhci_free_command(xhci, cfg_cmd);
3428                 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3429                                 __func__, err);
3430                 goto cleanup;
3431         }
3432
3433         xhci_ring_cmd_db(xhci);
3434         spin_unlock_irqrestore(&xhci->lock, flags);
3435
3436         wait_for_completion(cfg_cmd->completion);
3437
3438         xhci_free_command(xhci, cfg_cmd);
3439 cleanup:
3440         xhci_free_command(xhci, stop_cmd);
3441         spin_lock_irqsave(&xhci->lock, flags);
3442         if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3443                 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3444         spin_unlock_irqrestore(&xhci->lock, flags);
3445 }
3446
3447 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3448                 struct usb_device *udev, struct usb_host_endpoint *ep,
3449                 unsigned int slot_id)
3450 {
3451         int ret;
3452         unsigned int ep_index;
3453         unsigned int ep_state;
3454
3455         if (!ep)
3456                 return -EINVAL;
3457         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3458         if (ret <= 0)
3459                 return ret ? ret : -EINVAL;
3460         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3461                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3462                                 " descriptor for ep 0x%x does not support streams\n",
3463                                 ep->desc.bEndpointAddress);
3464                 return -EINVAL;
3465         }
3466
3467         ep_index = xhci_get_endpoint_index(&ep->desc);
3468         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3469         if (ep_state & EP_HAS_STREAMS ||
3470                         ep_state & EP_GETTING_STREAMS) {
3471                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3472                                 "already has streams set up.\n",
3473                                 ep->desc.bEndpointAddress);
3474                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3475                                 "dynamic stream context array reallocation.\n");
3476                 return -EINVAL;
3477         }
3478         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3479                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3480                                 "endpoint 0x%x; URBs are pending.\n",
3481                                 ep->desc.bEndpointAddress);
3482                 return -EINVAL;
3483         }
3484         return 0;
3485 }
3486
3487 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3488                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3489 {
3490         unsigned int max_streams;
3491
3492         /* The stream context array size must be a power of two */
3493         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3494         /*
3495          * Find out how many primary stream array entries the host controller
3496          * supports.  Later we may use secondary stream arrays (similar to 2nd
3497          * level page entries), but that's an optional feature for xHCI host
3498          * controllers. xHCs must support at least 4 stream IDs.
3499          */
3500         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3501         if (*num_stream_ctxs > max_streams) {
3502                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3503                                 max_streams);
3504                 *num_stream_ctxs = max_streams;
3505                 *num_streams = max_streams;
3506         }
3507 }
3508
3509 /* Returns an error code if one of the endpoint already has streams.
3510  * This does not change any data structures, it only checks and gathers
3511  * information.
3512  */
3513 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3514                 struct usb_device *udev,
3515                 struct usb_host_endpoint **eps, unsigned int num_eps,
3516                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3517 {
3518         unsigned int max_streams;
3519         unsigned int endpoint_flag;
3520         int i;
3521         int ret;
3522
3523         for (i = 0; i < num_eps; i++) {
3524                 ret = xhci_check_streams_endpoint(xhci, udev,
3525                                 eps[i], udev->slot_id);
3526                 if (ret < 0)
3527                         return ret;
3528
3529                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3530                 if (max_streams < (*num_streams - 1)) {
3531                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3532                                         eps[i]->desc.bEndpointAddress,
3533                                         max_streams);
3534                         *num_streams = max_streams+1;
3535                 }
3536
3537                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3538                 if (*changed_ep_bitmask & endpoint_flag)
3539                         return -EINVAL;
3540                 *changed_ep_bitmask |= endpoint_flag;
3541         }
3542         return 0;
3543 }
3544
3545 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3546                 struct usb_device *udev,
3547                 struct usb_host_endpoint **eps, unsigned int num_eps)
3548 {
3549         u32 changed_ep_bitmask = 0;
3550         unsigned int slot_id;
3551         unsigned int ep_index;
3552         unsigned int ep_state;
3553         int i;
3554
3555         slot_id = udev->slot_id;
3556         if (!xhci->devs[slot_id])
3557                 return 0;
3558
3559         for (i = 0; i < num_eps; i++) {
3560                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3561                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3562                 /* Are streams already being freed for the endpoint? */
3563                 if (ep_state & EP_GETTING_NO_STREAMS) {
3564                         xhci_warn(xhci, "WARN Can't disable streams for "
3565                                         "endpoint 0x%x, "
3566                                         "streams are being disabled already\n",
3567                                         eps[i]->desc.bEndpointAddress);
3568                         return 0;
3569                 }
3570                 /* Are there actually any streams to free? */
3571                 if (!(ep_state & EP_HAS_STREAMS) &&
3572                                 !(ep_state & EP_GETTING_STREAMS)) {
3573                         xhci_warn(xhci, "WARN Can't disable streams for "
3574                                         "endpoint 0x%x, "
3575                                         "streams are already disabled!\n",
3576                                         eps[i]->desc.bEndpointAddress);
3577                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3578                                         "with non-streams endpoint\n");
3579                         return 0;
3580                 }
3581                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3582         }
3583         return changed_ep_bitmask;
3584 }
3585
3586 /*
3587  * The USB device drivers use this function (through the HCD interface in USB
3588  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3589  * coordinate mass storage command queueing across multiple endpoints (basically
3590  * a stream ID == a task ID).
3591  *
3592  * Setting up streams involves allocating the same size stream context array
3593  * for each endpoint and issuing a configure endpoint command for all endpoints.
3594  *
3595  * Don't allow the call to succeed if one endpoint only supports one stream
3596  * (which means it doesn't support streams at all).
3597  *
3598  * Drivers may get less stream IDs than they asked for, if the host controller
3599  * hardware or endpoints claim they can't support the number of requested
3600  * stream IDs.
3601  */
3602 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3603                 struct usb_host_endpoint **eps, unsigned int num_eps,
3604                 unsigned int num_streams, gfp_t mem_flags)
3605 {
3606         int i, ret;
3607         struct xhci_hcd *xhci;
3608         struct xhci_virt_device *vdev;
3609         struct xhci_command *config_cmd;
3610         struct xhci_input_control_ctx *ctrl_ctx;
3611         unsigned int ep_index;
3612         unsigned int num_stream_ctxs;
3613         unsigned int max_packet;
3614         unsigned long flags;
3615         u32 changed_ep_bitmask = 0;
3616
3617         if (!eps)
3618                 return -EINVAL;
3619
3620         /* Add one to the number of streams requested to account for
3621          * stream 0 that is reserved for xHCI usage.
3622          */
3623         num_streams += 1;
3624         xhci = hcd_to_xhci(hcd);
3625         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3626                         num_streams);
3627
3628         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3629         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3630                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3631                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3632                 return -ENOSYS;
3633         }
3634
3635         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3636         if (!config_cmd)
3637                 return -ENOMEM;
3638
3639         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3640         if (!ctrl_ctx) {
3641                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3642                                 __func__);
3643                 xhci_free_command(xhci, config_cmd);
3644                 return -ENOMEM;
3645         }
3646
3647         /* Check to make sure all endpoints are not already configured for
3648          * streams.  While we're at it, find the maximum number of streams that
3649          * all the endpoints will support and check for duplicate endpoints.
3650          */
3651         spin_lock_irqsave(&xhci->lock, flags);
3652         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3653                         num_eps, &num_streams, &changed_ep_bitmask);
3654         if (ret < 0) {
3655                 xhci_free_command(xhci, config_cmd);
3656                 spin_unlock_irqrestore(&xhci->lock, flags);
3657                 return ret;
3658         }
3659         if (num_streams <= 1) {
3660                 xhci_warn(xhci, "WARN: endpoints can't handle "
3661                                 "more than one stream.\n");
3662                 xhci_free_command(xhci, config_cmd);
3663                 spin_unlock_irqrestore(&xhci->lock, flags);
3664                 return -EINVAL;
3665         }
3666         vdev = xhci->devs[udev->slot_id];
3667         /* Mark each endpoint as being in transition, so
3668          * xhci_urb_enqueue() will reject all URBs.
3669          */
3670         for (i = 0; i < num_eps; i++) {
3671                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3672                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3673         }
3674         spin_unlock_irqrestore(&xhci->lock, flags);
3675
3676         /* Setup internal data structures and allocate HW data structures for
3677          * streams (but don't install the HW structures in the input context
3678          * until we're sure all memory allocation succeeded).
3679          */
3680         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3681         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3682                         num_stream_ctxs, num_streams);
3683
3684         for (i = 0; i < num_eps; i++) {
3685                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3686                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3687                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3688                                 num_stream_ctxs,
3689                                 num_streams,
3690                                 max_packet, mem_flags);
3691                 if (!vdev->eps[ep_index].stream_info)
3692                         goto cleanup;
3693                 /* Set maxPstreams in endpoint context and update deq ptr to
3694                  * point to stream context array. FIXME
3695                  */
3696         }
3697
3698         /* Set up the input context for a configure endpoint command. */
3699         for (i = 0; i < num_eps; i++) {
3700                 struct xhci_ep_ctx *ep_ctx;
3701
3702                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3703                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3704
3705                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3706                                 vdev->out_ctx, ep_index);
3707                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3708                                 vdev->eps[ep_index].stream_info);
3709         }
3710         /* Tell the HW to drop its old copy of the endpoint context info
3711          * and add the updated copy from the input context.
3712          */
3713         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3714                         vdev->out_ctx, ctrl_ctx,
3715                         changed_ep_bitmask, changed_ep_bitmask);
3716
3717         /* Issue and wait for the configure endpoint command */
3718         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3719                         false, false);
3720
3721         /* xHC rejected the configure endpoint command for some reason, so we
3722          * leave the old ring intact and free our internal streams data
3723          * structure.
3724          */
3725         if (ret < 0)
3726                 goto cleanup;
3727
3728         spin_lock_irqsave(&xhci->lock, flags);
3729         for (i = 0; i < num_eps; i++) {
3730                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3731                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3732                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3733                          udev->slot_id, ep_index);
3734                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3735         }
3736         xhci_free_command(xhci, config_cmd);
3737         spin_unlock_irqrestore(&xhci->lock, flags);
3738
3739         for (i = 0; i < num_eps; i++) {
3740                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3741                 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3742         }
3743         /* Subtract 1 for stream 0, which drivers can't use */
3744         return num_streams - 1;
3745
3746 cleanup:
3747         /* If it didn't work, free the streams! */
3748         for (i = 0; i < num_eps; i++) {
3749                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3750                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3751                 vdev->eps[ep_index].stream_info = NULL;
3752                 /* FIXME Unset maxPstreams in endpoint context and
3753                  * update deq ptr to point to normal string ring.
3754                  */
3755                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3756                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3757                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3758         }
3759         xhci_free_command(xhci, config_cmd);
3760         return -ENOMEM;
3761 }
3762
3763 /* Transition the endpoint from using streams to being a "normal" endpoint
3764  * without streams.
3765  *
3766  * Modify the endpoint context state, submit a configure endpoint command,
3767  * and free all endpoint rings for streams if that completes successfully.
3768  */
3769 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3770                 struct usb_host_endpoint **eps, unsigned int num_eps,
3771                 gfp_t mem_flags)
3772 {
3773         int i, ret;
3774         struct xhci_hcd *xhci;
3775         struct xhci_virt_device *vdev;
3776         struct xhci_command *command;
3777         struct xhci_input_control_ctx *ctrl_ctx;
3778         unsigned int ep_index;
3779         unsigned long flags;
3780         u32 changed_ep_bitmask;
3781
3782         xhci = hcd_to_xhci(hcd);
3783         vdev = xhci->devs[udev->slot_id];
3784
3785         /* Set up a configure endpoint command to remove the streams rings */
3786         spin_lock_irqsave(&xhci->lock, flags);
3787         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3788                         udev, eps, num_eps);
3789         if (changed_ep_bitmask == 0) {
3790                 spin_unlock_irqrestore(&xhci->lock, flags);
3791                 return -EINVAL;
3792         }
3793
3794         /* Use the xhci_command structure from the first endpoint.  We may have
3795          * allocated too many, but the driver may call xhci_free_streams() for
3796          * each endpoint it grouped into one call to xhci_alloc_streams().
3797          */
3798         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3799         command = vdev->eps[ep_index].stream_info->free_streams_command;
3800         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3801         if (!ctrl_ctx) {
3802                 spin_unlock_irqrestore(&xhci->lock, flags);
3803                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3804                                 __func__);
3805                 return -EINVAL;
3806         }
3807
3808         for (i = 0; i < num_eps; i++) {
3809                 struct xhci_ep_ctx *ep_ctx;
3810
3811                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3812                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3813                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3814                         EP_GETTING_NO_STREAMS;
3815
3816                 xhci_endpoint_copy(xhci, command->in_ctx,
3817                                 vdev->out_ctx, ep_index);
3818                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3819                                 &vdev->eps[ep_index]);
3820         }
3821         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3822                         vdev->out_ctx, ctrl_ctx,
3823                         changed_ep_bitmask, changed_ep_bitmask);
3824         spin_unlock_irqrestore(&xhci->lock, flags);
3825
3826         /* Issue and wait for the configure endpoint command,
3827          * which must succeed.
3828          */
3829         ret = xhci_configure_endpoint(xhci, udev, command,
3830                         false, true);
3831
3832         /* xHC rejected the configure endpoint command for some reason, so we
3833          * leave the streams rings intact.
3834          */
3835         if (ret < 0)
3836                 return ret;
3837
3838         spin_lock_irqsave(&xhci->lock, flags);
3839         for (i = 0; i < num_eps; i++) {
3840                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3841                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3842                 vdev->eps[ep_index].stream_info = NULL;
3843                 /* FIXME Unset maxPstreams in endpoint context and
3844                  * update deq ptr to point to normal string ring.
3845                  */
3846                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3847                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3848         }
3849         spin_unlock_irqrestore(&xhci->lock, flags);
3850
3851         return 0;
3852 }
3853
3854 /*
3855  * Deletes endpoint resources for endpoints that were active before a Reset
3856  * Device command, or a Disable Slot command.  The Reset Device command leaves
3857  * the control endpoint intact, whereas the Disable Slot command deletes it.
3858  *
3859  * Must be called with xhci->lock held.
3860  */
3861 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3862         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3863 {
3864         int i;
3865         unsigned int num_dropped_eps = 0;
3866         unsigned int drop_flags = 0;
3867
3868         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3869                 if (virt_dev->eps[i].ring) {
3870                         drop_flags |= 1 << i;
3871                         num_dropped_eps++;
3872                 }
3873         }
3874         xhci->num_active_eps -= num_dropped_eps;
3875         if (num_dropped_eps)
3876                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3877                                 "Dropped %u ep ctxs, flags = 0x%x, "
3878                                 "%u now active.",
3879                                 num_dropped_eps, drop_flags,
3880                                 xhci->num_active_eps);
3881 }
3882
3883 /*
3884  * This submits a Reset Device Command, which will set the device state to 0,
3885  * set the device address to 0, and disable all the endpoints except the default
3886  * control endpoint.  The USB core should come back and call
3887  * xhci_address_device(), and then re-set up the configuration.  If this is
3888  * called because of a usb_reset_and_verify_device(), then the old alternate
3889  * settings will be re-installed through the normal bandwidth allocation
3890  * functions.
3891  *
3892  * Wait for the Reset Device command to finish.  Remove all structures
3893  * associated with the endpoints that were disabled.  Clear the input device
3894  * structure? Reset the control endpoint 0 max packet size?
3895  *
3896  * If the virt_dev to be reset does not exist or does not match the udev,
3897  * it means the device is lost, possibly due to the xHC restore error and
3898  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3899  * re-allocate the device.
3900  */
3901 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3902                 struct usb_device *udev)
3903 {
3904         int ret, i;
3905         unsigned long flags;
3906         struct xhci_hcd *xhci;
3907         unsigned int slot_id;
3908         struct xhci_virt_device *virt_dev;
3909         struct xhci_command *reset_device_cmd;
3910         struct xhci_slot_ctx *slot_ctx;
3911         int old_active_eps = 0;
3912
3913         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3914         if (ret <= 0)
3915                 return ret;
3916         xhci = hcd_to_xhci(hcd);
3917         slot_id = udev->slot_id;
3918         virt_dev = xhci->devs[slot_id];
3919         if (!virt_dev) {
3920                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3921                                 "not exist. Re-allocate the device\n", slot_id);
3922                 ret = xhci_alloc_dev(hcd, udev);
3923                 if (ret == 1)
3924                         return 0;
3925                 else
3926                         return -EINVAL;
3927         }
3928
3929         if (virt_dev->tt_info)
3930                 old_active_eps = virt_dev->tt_info->active_eps;
3931
3932         if (virt_dev->udev != udev) {
3933                 /* If the virt_dev and the udev does not match, this virt_dev
3934                  * may belong to another udev.
3935                  * Re-allocate the device.
3936                  */
3937                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3938                                 "not match the udev. Re-allocate the device\n",
3939                                 slot_id);
3940                 ret = xhci_alloc_dev(hcd, udev);
3941                 if (ret == 1)
3942                         return 0;
3943                 else
3944                         return -EINVAL;
3945         }
3946
3947         /* If device is not setup, there is no point in resetting it */
3948         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3949         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3950                                                 SLOT_STATE_DISABLED)
3951                 return 0;
3952
3953         trace_xhci_discover_or_reset_device(slot_ctx);
3954
3955         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3956         /* Allocate the command structure that holds the struct completion.
3957          * Assume we're in process context, since the normal device reset
3958          * process has to wait for the device anyway.  Storage devices are
3959          * reset as part of error handling, so use GFP_NOIO instead of
3960          * GFP_KERNEL.
3961          */
3962         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3963         if (!reset_device_cmd) {
3964                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3965                 return -ENOMEM;
3966         }
3967
3968         /* Attempt to submit the Reset Device command to the command ring */
3969         spin_lock_irqsave(&xhci->lock, flags);
3970
3971         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3972         if (ret) {
3973                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3974                 spin_unlock_irqrestore(&xhci->lock, flags);
3975                 goto command_cleanup;
3976         }
3977         xhci_ring_cmd_db(xhci);
3978         spin_unlock_irqrestore(&xhci->lock, flags);
3979
3980         /* Wait for the Reset Device command to finish */
3981         wait_for_completion(reset_device_cmd->completion);
3982
3983         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3984          * unless we tried to reset a slot ID that wasn't enabled,
3985          * or the device wasn't in the addressed or configured state.
3986          */
3987         ret = reset_device_cmd->status;
3988         switch (ret) {
3989         case COMP_COMMAND_ABORTED:
3990         case COMP_COMMAND_RING_STOPPED:
3991                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3992                 ret = -ETIME;
3993                 goto command_cleanup;
3994         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3995         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3996                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3997                                 slot_id,
3998                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3999                 xhci_dbg(xhci, "Not freeing device rings.\n");
4000                 /* Don't treat this as an error.  May change my mind later. */
4001                 ret = 0;
4002                 goto command_cleanup;
4003         case COMP_SUCCESS:
4004                 xhci_dbg(xhci, "Successful reset device command.\n");
4005                 break;
4006         default:
4007                 if (xhci_is_vendor_info_code(xhci, ret))
4008                         break;
4009                 xhci_warn(xhci, "Unknown completion code %u for "
4010                                 "reset device command.\n", ret);
4011                 ret = -EINVAL;
4012                 goto command_cleanup;
4013         }
4014
4015         /* Free up host controller endpoint resources */
4016         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4017                 spin_lock_irqsave(&xhci->lock, flags);
4018                 /* Don't delete the default control endpoint resources */
4019                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
4020                 spin_unlock_irqrestore(&xhci->lock, flags);
4021         }
4022
4023         /* Everything but endpoint 0 is disabled, so free the rings. */
4024         for (i = 1; i < 31; i++) {
4025                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
4026
4027                 if (ep->ep_state & EP_HAS_STREAMS) {
4028                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
4029                                         xhci_get_endpoint_address(i));
4030                         xhci_free_stream_info(xhci, ep->stream_info);
4031                         ep->stream_info = NULL;
4032                         ep->ep_state &= ~EP_HAS_STREAMS;
4033                 }
4034
4035                 if (ep->ring) {
4036                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
4037                         xhci_free_endpoint_ring(xhci, virt_dev, i);
4038                 }
4039                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
4040                         xhci_drop_ep_from_interval_table(xhci,
4041                                         &virt_dev->eps[i].bw_info,
4042                                         virt_dev->bw_table,
4043                                         udev,
4044                                         &virt_dev->eps[i],
4045                                         virt_dev->tt_info);
4046                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
4047         }
4048         /* If necessary, update the number of active TTs on this root port */
4049         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
4050         virt_dev->flags = 0;
4051         ret = 0;
4052
4053 command_cleanup:
4054         xhci_free_command(xhci, reset_device_cmd);
4055         return ret;
4056 }
4057
4058 /*
4059  * At this point, the struct usb_device is about to go away, the device has
4060  * disconnected, and all traffic has been stopped and the endpoints have been
4061  * disabled.  Free any HC data structures associated with that device.
4062  */
4063 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4064 {
4065         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4066         struct xhci_virt_device *virt_dev;
4067         struct xhci_slot_ctx *slot_ctx;
4068         int i, ret;
4069
4070         /*
4071          * We called pm_runtime_get_noresume when the device was attached.
4072          * Decrement the counter here to allow controller to runtime suspend
4073          * if no devices remain.
4074          */
4075         if (xhci->quirks & XHCI_RESET_ON_RESUME)
4076                 pm_runtime_put_noidle(hcd->self.controller);
4077
4078         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
4079         /* If the host is halted due to driver unload, we still need to free the
4080          * device.
4081          */
4082         if (ret <= 0 && ret != -ENODEV)
4083                 return;
4084
4085         virt_dev = xhci->devs[udev->slot_id];
4086         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4087         trace_xhci_free_dev(slot_ctx);
4088
4089         /* Stop any wayward timer functions (which may grab the lock) */
4090         for (i = 0; i < 31; i++) {
4091                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
4092                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
4093         }
4094         virt_dev->udev = NULL;
4095         xhci_disable_slot(xhci, udev->slot_id);
4096         xhci_free_virt_device(xhci, udev->slot_id);
4097 }
4098
4099 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
4100 {
4101         struct xhci_command *command;
4102         unsigned long flags;
4103         u32 state;
4104         int ret = 0;
4105
4106         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4107         if (!command)
4108                 return -ENOMEM;
4109
4110         xhci_debugfs_remove_slot(xhci, slot_id);
4111
4112         spin_lock_irqsave(&xhci->lock, flags);
4113         /* Don't disable the slot if the host controller is dead. */
4114         state = readl(&xhci->op_regs->status);
4115         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4116                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
4117                 spin_unlock_irqrestore(&xhci->lock, flags);
4118                 kfree(command);
4119                 return -ENODEV;
4120         }
4121
4122         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4123                                 slot_id);
4124         if (ret) {
4125                 spin_unlock_irqrestore(&xhci->lock, flags);
4126                 kfree(command);
4127                 return ret;
4128         }
4129         xhci_ring_cmd_db(xhci);
4130         spin_unlock_irqrestore(&xhci->lock, flags);
4131
4132         wait_for_completion(command->completion);
4133
4134         if (command->status != COMP_SUCCESS)
4135                 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4136                           slot_id, command->status);
4137
4138         xhci_free_command(xhci, command);
4139
4140         return ret;
4141 }
4142
4143 /*
4144  * Checks if we have enough host controller resources for the default control
4145  * endpoint.
4146  *
4147  * Must be called with xhci->lock held.
4148  */
4149 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4150 {
4151         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4152                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4153                                 "Not enough ep ctxs: "
4154                                 "%u active, need to add 1, limit is %u.",
4155                                 xhci->num_active_eps, xhci->limit_active_eps);
4156                 return -ENOMEM;
4157         }
4158         xhci->num_active_eps += 1;
4159         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4160                         "Adding 1 ep ctx, %u now active.",
4161                         xhci->num_active_eps);
4162         return 0;
4163 }
4164
4165
4166 /*
4167  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4168  * timed out, or allocating memory failed.  Returns 1 on success.
4169  */
4170 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4171 {
4172         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4173         struct xhci_virt_device *vdev;
4174         struct xhci_slot_ctx *slot_ctx;
4175         unsigned long flags;
4176         int ret, slot_id;
4177         struct xhci_command *command;
4178
4179         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4180         if (!command)
4181                 return 0;
4182
4183         spin_lock_irqsave(&xhci->lock, flags);
4184         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4185         if (ret) {
4186                 spin_unlock_irqrestore(&xhci->lock, flags);
4187                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4188                 xhci_free_command(xhci, command);
4189                 return 0;
4190         }
4191         xhci_ring_cmd_db(xhci);
4192         spin_unlock_irqrestore(&xhci->lock, flags);
4193
4194         wait_for_completion(command->completion);
4195         slot_id = command->slot_id;
4196
4197         if (!slot_id || command->status != COMP_SUCCESS) {
4198                 xhci_err(xhci, "Error while assigning device slot ID\n");
4199                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4200                                 HCS_MAX_SLOTS(
4201                                         readl(&xhci->cap_regs->hcs_params1)));
4202                 xhci_free_command(xhci, command);
4203                 return 0;
4204         }
4205
4206         xhci_free_command(xhci, command);
4207
4208         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4209                 spin_lock_irqsave(&xhci->lock, flags);
4210                 ret = xhci_reserve_host_control_ep_resources(xhci);
4211                 if (ret) {
4212                         spin_unlock_irqrestore(&xhci->lock, flags);
4213                         xhci_warn(xhci, "Not enough host resources, "
4214                                         "active endpoint contexts = %u\n",
4215                                         xhci->num_active_eps);
4216                         goto disable_slot;
4217                 }
4218                 spin_unlock_irqrestore(&xhci->lock, flags);
4219         }
4220         /* Use GFP_NOIO, since this function can be called from
4221          * xhci_discover_or_reset_device(), which may be called as part of
4222          * mass storage driver error handling.
4223          */
4224         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4225                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4226                 goto disable_slot;
4227         }
4228         vdev = xhci->devs[slot_id];
4229         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4230         trace_xhci_alloc_dev(slot_ctx);
4231
4232         udev->slot_id = slot_id;
4233
4234         xhci_debugfs_create_slot(xhci, slot_id);
4235
4236         /*
4237          * If resetting upon resume, we can't put the controller into runtime
4238          * suspend if there is a device attached.
4239          */
4240         if (xhci->quirks & XHCI_RESET_ON_RESUME)
4241                 pm_runtime_get_noresume(hcd->self.controller);
4242
4243         /* Is this a LS or FS device under a HS hub? */
4244         /* Hub or peripherial? */
4245         return 1;
4246
4247 disable_slot:
4248         xhci_disable_slot(xhci, udev->slot_id);
4249         xhci_free_virt_device(xhci, udev->slot_id);
4250
4251         return 0;
4252 }
4253
4254 /*
4255  * Issue an Address Device command and optionally send a corresponding
4256  * SetAddress request to the device.
4257  */
4258 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4259                              enum xhci_setup_dev setup)
4260 {
4261         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4262         unsigned long flags;
4263         struct xhci_virt_device *virt_dev;
4264         int ret = 0;
4265         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4266         struct xhci_slot_ctx *slot_ctx;
4267         struct xhci_input_control_ctx *ctrl_ctx;
4268         u64 temp_64;
4269         struct xhci_command *command = NULL;
4270
4271         mutex_lock(&xhci->mutex);
4272
4273         if (xhci->xhc_state) {  /* dying, removing or halted */
4274                 ret = -ESHUTDOWN;
4275                 goto out;
4276         }
4277
4278         if (!udev->slot_id) {
4279                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4280                                 "Bad Slot ID %d", udev->slot_id);
4281                 ret = -EINVAL;
4282                 goto out;
4283         }
4284
4285         virt_dev = xhci->devs[udev->slot_id];
4286
4287         if (WARN_ON(!virt_dev)) {
4288                 /*
4289                  * In plug/unplug torture test with an NEC controller,
4290                  * a zero-dereference was observed once due to virt_dev = 0.
4291                  * Print useful debug rather than crash if it is observed again!
4292                  */
4293                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4294                         udev->slot_id);
4295                 ret = -EINVAL;
4296                 goto out;
4297         }
4298         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4299         trace_xhci_setup_device_slot(slot_ctx);
4300
4301         if (setup == SETUP_CONTEXT_ONLY) {
4302                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4303                     SLOT_STATE_DEFAULT) {
4304                         xhci_dbg(xhci, "Slot already in default state\n");
4305                         goto out;
4306                 }
4307         }
4308
4309         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4310         if (!command) {
4311                 ret = -ENOMEM;
4312                 goto out;
4313         }
4314
4315         command->in_ctx = virt_dev->in_ctx;
4316
4317         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4318         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4319         if (!ctrl_ctx) {
4320                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4321                                 __func__);
4322                 ret = -EINVAL;
4323                 goto out;
4324         }
4325         /*
4326          * If this is the first Set Address since device plug-in or
4327          * virt_device realloaction after a resume with an xHCI power loss,
4328          * then set up the slot context.
4329          */
4330         if (!slot_ctx->dev_info)
4331                 xhci_setup_addressable_virt_dev(xhci, udev);
4332         /* Otherwise, update the control endpoint ring enqueue pointer. */
4333         else
4334                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4335         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4336         ctrl_ctx->drop_flags = 0;
4337
4338         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4339                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4340
4341         trace_xhci_address_ctrl_ctx(ctrl_ctx);
4342         spin_lock_irqsave(&xhci->lock, flags);
4343         trace_xhci_setup_device(virt_dev);
4344         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4345                                         udev->slot_id, setup);
4346         if (ret) {
4347                 spin_unlock_irqrestore(&xhci->lock, flags);
4348                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4349                                 "FIXME: allocate a command ring segment");
4350                 goto out;
4351         }
4352         xhci_ring_cmd_db(xhci);
4353         spin_unlock_irqrestore(&xhci->lock, flags);
4354
4355         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4356         wait_for_completion(command->completion);
4357
4358         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4359          * the SetAddress() "recovery interval" required by USB and aborting the
4360          * command on a timeout.
4361          */
4362         switch (command->status) {
4363         case COMP_COMMAND_ABORTED:
4364         case COMP_COMMAND_RING_STOPPED:
4365                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4366                 ret = -ETIME;
4367                 break;
4368         case COMP_CONTEXT_STATE_ERROR:
4369         case COMP_SLOT_NOT_ENABLED_ERROR:
4370                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4371                          act, udev->slot_id);
4372                 ret = -EINVAL;
4373                 break;
4374         case COMP_USB_TRANSACTION_ERROR:
4375                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4376
4377                 mutex_unlock(&xhci->mutex);
4378                 ret = xhci_disable_slot(xhci, udev->slot_id);
4379                 xhci_free_virt_device(xhci, udev->slot_id);
4380                 if (!ret)
4381                         xhci_alloc_dev(hcd, udev);
4382                 kfree(command->completion);
4383                 kfree(command);
4384                 return -EPROTO;
4385         case COMP_INCOMPATIBLE_DEVICE_ERROR:
4386                 dev_warn(&udev->dev,
4387                          "ERROR: Incompatible device for setup %s command\n", act);
4388                 ret = -ENODEV;
4389                 break;
4390         case COMP_SUCCESS:
4391                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4392                                "Successful setup %s command", act);
4393                 break;
4394         default:
4395                 xhci_err(xhci,
4396                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
4397                          act, command->status);
4398                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4399                 ret = -EINVAL;
4400                 break;
4401         }
4402         if (ret)
4403                 goto out;
4404         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4405         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4406                         "Op regs DCBAA ptr = %#016llx", temp_64);
4407         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4408                 "Slot ID %d dcbaa entry @%p = %#016llx",
4409                 udev->slot_id,
4410                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4411                 (unsigned long long)
4412                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4413         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4414                         "Output Context DMA address = %#08llx",
4415                         (unsigned long long)virt_dev->out_ctx->dma);
4416         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4417                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4418         /*
4419          * USB core uses address 1 for the roothubs, so we add one to the
4420          * address given back to us by the HC.
4421          */
4422         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4423                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4424         /* Zero the input context control for later use */
4425         ctrl_ctx->add_flags = 0;
4426         ctrl_ctx->drop_flags = 0;
4427         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4428         udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4429
4430         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4431                        "Internal device address = %d",
4432                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4433 out:
4434         mutex_unlock(&xhci->mutex);
4435         if (command) {
4436                 kfree(command->completion);
4437                 kfree(command);
4438         }
4439         return ret;
4440 }
4441
4442 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4443 {
4444         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4445 }
4446
4447 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4448 {
4449         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4450 }
4451
4452 /*
4453  * Transfer the port index into real index in the HW port status
4454  * registers. Caculate offset between the port's PORTSC register
4455  * and port status base. Divide the number of per port register
4456  * to get the real index. The raw port number bases 1.
4457  */
4458 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4459 {
4460         struct xhci_hub *rhub;
4461
4462         rhub = xhci_get_rhub(hcd);
4463         return rhub->ports[port1 - 1]->hw_portnum + 1;
4464 }
4465
4466 /*
4467  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4468  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4469  */
4470 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4471                         struct usb_device *udev, u16 max_exit_latency)
4472 {
4473         struct xhci_virt_device *virt_dev;
4474         struct xhci_command *command;
4475         struct xhci_input_control_ctx *ctrl_ctx;
4476         struct xhci_slot_ctx *slot_ctx;
4477         unsigned long flags;
4478         int ret;
4479
4480         spin_lock_irqsave(&xhci->lock, flags);
4481
4482         virt_dev = xhci->devs[udev->slot_id];
4483
4484         /*
4485          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4486          * xHC was re-initialized. Exit latency will be set later after
4487          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4488          */
4489
4490         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4491                 spin_unlock_irqrestore(&xhci->lock, flags);
4492                 return 0;
4493         }
4494
4495         /* Attempt to issue an Evaluate Context command to change the MEL. */
4496         command = xhci->lpm_command;
4497         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4498         if (!ctrl_ctx) {
4499                 spin_unlock_irqrestore(&xhci->lock, flags);
4500                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4501                                 __func__);
4502                 return -ENOMEM;
4503         }
4504
4505         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4506         spin_unlock_irqrestore(&xhci->lock, flags);
4507
4508         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4509         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4510         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4511         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4512         slot_ctx->dev_state = 0;
4513
4514         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4515                         "Set up evaluate context for LPM MEL change.");
4516
4517         /* Issue and wait for the evaluate context command. */
4518         ret = xhci_configure_endpoint(xhci, udev, command,
4519                         true, true);
4520
4521         if (!ret) {
4522                 spin_lock_irqsave(&xhci->lock, flags);
4523                 virt_dev->current_mel = max_exit_latency;
4524                 spin_unlock_irqrestore(&xhci->lock, flags);
4525         }
4526         return ret;
4527 }
4528
4529 #ifdef CONFIG_PM
4530
4531 /* BESL to HIRD Encoding array for USB2 LPM */
4532 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4533         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4534
4535 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4536 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4537                                         struct usb_device *udev)
4538 {
4539         int u2del, besl, besl_host;
4540         int besl_device = 0;
4541         u32 field;
4542
4543         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4544         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4545
4546         if (field & USB_BESL_SUPPORT) {
4547                 for (besl_host = 0; besl_host < 16; besl_host++) {
4548                         if (xhci_besl_encoding[besl_host] >= u2del)
4549                                 break;
4550                 }
4551                 /* Use baseline BESL value as default */
4552                 if (field & USB_BESL_BASELINE_VALID)
4553                         besl_device = USB_GET_BESL_BASELINE(field);
4554                 else if (field & USB_BESL_DEEP_VALID)
4555                         besl_device = USB_GET_BESL_DEEP(field);
4556         } else {
4557                 if (u2del <= 50)
4558                         besl_host = 0;
4559                 else
4560                         besl_host = (u2del - 51) / 75 + 1;
4561         }
4562
4563         besl = besl_host + besl_device;
4564         if (besl > 15)
4565                 besl = 15;
4566
4567         return besl;
4568 }
4569
4570 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4571 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4572 {
4573         u32 field;
4574         int l1;
4575         int besld = 0;
4576         int hirdm = 0;
4577
4578         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4579
4580         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4581         l1 = udev->l1_params.timeout / 256;
4582
4583         /* device has preferred BESLD */
4584         if (field & USB_BESL_DEEP_VALID) {
4585                 besld = USB_GET_BESL_DEEP(field);
4586                 hirdm = 1;
4587         }
4588
4589         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4590 }
4591
4592 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4593                         struct usb_device *udev, int enable)
4594 {
4595         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4596         struct xhci_port **ports;
4597         __le32 __iomem  *pm_addr, *hlpm_addr;
4598         u32             pm_val, hlpm_val, field;
4599         unsigned int    port_num;
4600         unsigned long   flags;
4601         int             hird, exit_latency;
4602         int             ret;
4603
4604         if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4605                 return -EPERM;
4606
4607         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4608                         !udev->lpm_capable)
4609                 return -EPERM;
4610
4611         if (!udev->parent || udev->parent->parent ||
4612                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4613                 return -EPERM;
4614
4615         if (udev->usb2_hw_lpm_capable != 1)
4616                 return -EPERM;
4617
4618         spin_lock_irqsave(&xhci->lock, flags);
4619
4620         ports = xhci->usb2_rhub.ports;
4621         port_num = udev->portnum - 1;
4622         pm_addr = ports[port_num]->addr + PORTPMSC;
4623         pm_val = readl(pm_addr);
4624         hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4625
4626         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4627                         enable ? "enable" : "disable", port_num + 1);
4628
4629         if (enable) {
4630                 /* Host supports BESL timeout instead of HIRD */
4631                 if (udev->usb2_hw_lpm_besl_capable) {
4632                         /* if device doesn't have a preferred BESL value use a
4633                          * default one which works with mixed HIRD and BESL
4634                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4635                          */
4636                         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4637                         if ((field & USB_BESL_SUPPORT) &&
4638                             (field & USB_BESL_BASELINE_VALID))
4639                                 hird = USB_GET_BESL_BASELINE(field);
4640                         else
4641                                 hird = udev->l1_params.besl;
4642
4643                         exit_latency = xhci_besl_encoding[hird];
4644                         spin_unlock_irqrestore(&xhci->lock, flags);
4645
4646                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4647                          * input context for link powermanagement evaluate
4648                          * context commands. It is protected by hcd->bandwidth
4649                          * mutex and is shared by all devices. We need to set
4650                          * the max ext latency in USB 2 BESL LPM as well, so
4651                          * use the same mutex and xhci_change_max_exit_latency()
4652                          */
4653                         mutex_lock(hcd->bandwidth_mutex);
4654                         ret = xhci_change_max_exit_latency(xhci, udev,
4655                                                            exit_latency);
4656                         mutex_unlock(hcd->bandwidth_mutex);
4657
4658                         if (ret < 0)
4659                                 return ret;
4660                         spin_lock_irqsave(&xhci->lock, flags);
4661
4662                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4663                         writel(hlpm_val, hlpm_addr);
4664                         /* flush write */
4665                         readl(hlpm_addr);
4666                 } else {
4667                         hird = xhci_calculate_hird_besl(xhci, udev);
4668                 }
4669
4670                 pm_val &= ~PORT_HIRD_MASK;
4671                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4672                 writel(pm_val, pm_addr);
4673                 pm_val = readl(pm_addr);
4674                 pm_val |= PORT_HLE;
4675                 writel(pm_val, pm_addr);
4676                 /* flush write */
4677                 readl(pm_addr);
4678         } else {
4679                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4680                 writel(pm_val, pm_addr);
4681                 /* flush write */
4682                 readl(pm_addr);
4683                 if (udev->usb2_hw_lpm_besl_capable) {
4684                         spin_unlock_irqrestore(&xhci->lock, flags);
4685                         mutex_lock(hcd->bandwidth_mutex);
4686                         xhci_change_max_exit_latency(xhci, udev, 0);
4687                         mutex_unlock(hcd->bandwidth_mutex);
4688                         readl_poll_timeout(ports[port_num]->addr, pm_val,
4689                                            (pm_val & PORT_PLS_MASK) == XDEV_U0,
4690                                            100, 10000);
4691                         return 0;
4692                 }
4693         }
4694
4695         spin_unlock_irqrestore(&xhci->lock, flags);
4696         return 0;
4697 }
4698
4699 /* check if a usb2 port supports a given extened capability protocol
4700  * only USB2 ports extended protocol capability values are cached.
4701  * Return 1 if capability is supported
4702  */
4703 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4704                                            unsigned capability)
4705 {
4706         u32 port_offset, port_count;
4707         int i;
4708
4709         for (i = 0; i < xhci->num_ext_caps; i++) {
4710                 if (xhci->ext_caps[i] & capability) {
4711                         /* port offsets starts at 1 */
4712                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4713                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4714                         if (port >= port_offset &&
4715                             port < port_offset + port_count)
4716                                 return 1;
4717                 }
4718         }
4719         return 0;
4720 }
4721
4722 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4723 {
4724         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4725         int             portnum = udev->portnum - 1;
4726
4727         if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4728                 return 0;
4729
4730         /* we only support lpm for non-hub device connected to root hub yet */
4731         if (!udev->parent || udev->parent->parent ||
4732                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4733                 return 0;
4734
4735         if (xhci->hw_lpm_support == 1 &&
4736                         xhci_check_usb2_port_capability(
4737                                 xhci, portnum, XHCI_HLC)) {
4738                 udev->usb2_hw_lpm_capable = 1;
4739                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4740                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4741                 if (xhci_check_usb2_port_capability(xhci, portnum,
4742                                         XHCI_BLC))
4743                         udev->usb2_hw_lpm_besl_capable = 1;
4744         }
4745
4746         return 0;
4747 }
4748
4749 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4750
4751 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4752 static unsigned long long xhci_service_interval_to_ns(
4753                 struct usb_endpoint_descriptor *desc)
4754 {
4755         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4756 }
4757
4758 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4759                 enum usb3_link_state state)
4760 {
4761         unsigned long long sel;
4762         unsigned long long pel;
4763         unsigned int max_sel_pel;
4764         char *state_name;
4765
4766         switch (state) {
4767         case USB3_LPM_U1:
4768                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4769                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4770                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4771                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4772                 state_name = "U1";
4773                 break;
4774         case USB3_LPM_U2:
4775                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4776                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4777                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4778                 state_name = "U2";
4779                 break;
4780         default:
4781                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4782                                 __func__);
4783                 return USB3_LPM_DISABLED;
4784         }
4785
4786         if (sel <= max_sel_pel && pel <= max_sel_pel)
4787                 return USB3_LPM_DEVICE_INITIATED;
4788
4789         if (sel > max_sel_pel)
4790                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4791                                 "due to long SEL %llu ms\n",
4792                                 state_name, sel);
4793         else
4794                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4795                                 "due to long PEL %llu ms\n",
4796                                 state_name, pel);
4797         return USB3_LPM_DISABLED;
4798 }
4799
4800 /* The U1 timeout should be the maximum of the following values:
4801  *  - For control endpoints, U1 system exit latency (SEL) * 3
4802  *  - For bulk endpoints, U1 SEL * 5
4803  *  - For interrupt endpoints:
4804  *    - Notification EPs, U1 SEL * 3
4805  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4806  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4807  */
4808 static unsigned long long xhci_calculate_intel_u1_timeout(
4809                 struct usb_device *udev,
4810                 struct usb_endpoint_descriptor *desc)
4811 {
4812         unsigned long long timeout_ns;
4813         int ep_type;
4814         int intr_type;
4815
4816         ep_type = usb_endpoint_type(desc);
4817         switch (ep_type) {
4818         case USB_ENDPOINT_XFER_CONTROL:
4819                 timeout_ns = udev->u1_params.sel * 3;
4820                 break;
4821         case USB_ENDPOINT_XFER_BULK:
4822                 timeout_ns = udev->u1_params.sel * 5;
4823                 break;
4824         case USB_ENDPOINT_XFER_INT:
4825                 intr_type = usb_endpoint_interrupt_type(desc);
4826                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4827                         timeout_ns = udev->u1_params.sel * 3;
4828                         break;
4829                 }
4830                 /* Otherwise the calculation is the same as isoc eps */
4831                 fallthrough;
4832         case USB_ENDPOINT_XFER_ISOC:
4833                 timeout_ns = xhci_service_interval_to_ns(desc);
4834                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4835                 if (timeout_ns < udev->u1_params.sel * 2)
4836                         timeout_ns = udev->u1_params.sel * 2;
4837                 break;
4838         default:
4839                 return 0;
4840         }
4841
4842         return timeout_ns;
4843 }
4844
4845 /* Returns the hub-encoded U1 timeout value. */
4846 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4847                 struct usb_device *udev,
4848                 struct usb_endpoint_descriptor *desc)
4849 {
4850         unsigned long long timeout_ns;
4851
4852         /* Prevent U1 if service interval is shorter than U1 exit latency */
4853         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4854                 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4855                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4856                         return USB3_LPM_DISABLED;
4857                 }
4858         }
4859
4860         if (xhci->quirks & XHCI_INTEL_HOST)
4861                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4862         else
4863                 timeout_ns = udev->u1_params.sel;
4864
4865         /* The U1 timeout is encoded in 1us intervals.
4866          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4867          */
4868         if (timeout_ns == USB3_LPM_DISABLED)
4869                 timeout_ns = 1;
4870         else
4871                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4872
4873         /* If the necessary timeout value is bigger than what we can set in the
4874          * USB 3.0 hub, we have to disable hub-initiated U1.
4875          */
4876         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4877                 return timeout_ns;
4878         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4879                         "due to long timeout %llu ms\n", timeout_ns);
4880         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4881 }
4882
4883 /* The U2 timeout should be the maximum of:
4884  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4885  *  - largest bInterval of any active periodic endpoint (to avoid going
4886  *    into lower power link states between intervals).
4887  *  - the U2 Exit Latency of the device
4888  */
4889 static unsigned long long xhci_calculate_intel_u2_timeout(
4890                 struct usb_device *udev,
4891                 struct usb_endpoint_descriptor *desc)
4892 {
4893         unsigned long long timeout_ns;
4894         unsigned long long u2_del_ns;
4895
4896         timeout_ns = 10 * 1000 * 1000;
4897
4898         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4899                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4900                 timeout_ns = xhci_service_interval_to_ns(desc);
4901
4902         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4903         if (u2_del_ns > timeout_ns)
4904                 timeout_ns = u2_del_ns;
4905
4906         return timeout_ns;
4907 }
4908
4909 /* Returns the hub-encoded U2 timeout value. */
4910 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4911                 struct usb_device *udev,
4912                 struct usb_endpoint_descriptor *desc)
4913 {
4914         unsigned long long timeout_ns;
4915
4916         /* Prevent U2 if service interval is shorter than U2 exit latency */
4917         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4918                 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4919                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4920                         return USB3_LPM_DISABLED;
4921                 }
4922         }
4923
4924         if (xhci->quirks & XHCI_INTEL_HOST)
4925                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4926         else
4927                 timeout_ns = udev->u2_params.sel;
4928
4929         /* The U2 timeout is encoded in 256us intervals */
4930         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4931         /* If the necessary timeout value is bigger than what we can set in the
4932          * USB 3.0 hub, we have to disable hub-initiated U2.
4933          */
4934         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4935                 return timeout_ns;
4936         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4937                         "due to long timeout %llu ms\n", timeout_ns);
4938         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4939 }
4940
4941 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4942                 struct usb_device *udev,
4943                 struct usb_endpoint_descriptor *desc,
4944                 enum usb3_link_state state,
4945                 u16 *timeout)
4946 {
4947         if (state == USB3_LPM_U1)
4948                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4949         else if (state == USB3_LPM_U2)
4950                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4951
4952         return USB3_LPM_DISABLED;
4953 }
4954
4955 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4956                 struct usb_device *udev,
4957                 struct usb_endpoint_descriptor *desc,
4958                 enum usb3_link_state state,
4959                 u16 *timeout)
4960 {
4961         u16 alt_timeout;
4962
4963         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4964                 desc, state, timeout);
4965
4966         /* If we found we can't enable hub-initiated LPM, and
4967          * the U1 or U2 exit latency was too high to allow
4968          * device-initiated LPM as well, then we will disable LPM
4969          * for this device, so stop searching any further.
4970          */
4971         if (alt_timeout == USB3_LPM_DISABLED) {
4972                 *timeout = alt_timeout;
4973                 return -E2BIG;
4974         }
4975         if (alt_timeout > *timeout)
4976                 *timeout = alt_timeout;
4977         return 0;
4978 }
4979
4980 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4981                 struct usb_device *udev,
4982                 struct usb_host_interface *alt,
4983                 enum usb3_link_state state,
4984                 u16 *timeout)
4985 {
4986         int j;
4987
4988         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4989                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4990                                         &alt->endpoint[j].desc, state, timeout))
4991                         return -E2BIG;
4992         }
4993         return 0;
4994 }
4995
4996 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4997                 enum usb3_link_state state)
4998 {
4999         struct usb_device *parent;
5000         unsigned int num_hubs;
5001
5002         if (state == USB3_LPM_U2)
5003                 return 0;
5004
5005         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
5006         for (parent = udev->parent, num_hubs = 0; parent->parent;
5007                         parent = parent->parent)
5008                 num_hubs++;
5009
5010         if (num_hubs < 2)
5011                 return 0;
5012
5013         dev_dbg(&udev->dev, "Disabling U1 link state for device"
5014                         " below second-tier hub.\n");
5015         dev_dbg(&udev->dev, "Plug device into first-tier hub "
5016                         "to decrease power consumption.\n");
5017         return -E2BIG;
5018 }
5019
5020 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
5021                 struct usb_device *udev,
5022                 enum usb3_link_state state)
5023 {
5024         if (xhci->quirks & XHCI_INTEL_HOST)
5025                 return xhci_check_intel_tier_policy(udev, state);
5026         else
5027                 return 0;
5028 }
5029
5030 /* Returns the U1 or U2 timeout that should be enabled.
5031  * If the tier check or timeout setting functions return with a non-zero exit
5032  * code, that means the timeout value has been finalized and we shouldn't look
5033  * at any more endpoints.
5034  */
5035 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
5036                         struct usb_device *udev, enum usb3_link_state state)
5037 {
5038         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5039         struct usb_host_config *config;
5040         char *state_name;
5041         int i;
5042         u16 timeout = USB3_LPM_DISABLED;
5043
5044         if (state == USB3_LPM_U1)
5045                 state_name = "U1";
5046         else if (state == USB3_LPM_U2)
5047                 state_name = "U2";
5048         else {
5049                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
5050                                 state);
5051                 return timeout;
5052         }
5053
5054         if (xhci_check_tier_policy(xhci, udev, state) < 0)
5055                 return timeout;
5056
5057         /* Gather some information about the currently installed configuration
5058          * and alternate interface settings.
5059          */
5060         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
5061                         state, &timeout))
5062                 return timeout;
5063
5064         config = udev->actconfig;
5065         if (!config)
5066                 return timeout;
5067
5068         for (i = 0; i < config->desc.bNumInterfaces; i++) {
5069                 struct usb_driver *driver;
5070                 struct usb_interface *intf = config->interface[i];
5071
5072                 if (!intf)
5073                         continue;
5074
5075                 /* Check if any currently bound drivers want hub-initiated LPM
5076                  * disabled.
5077                  */
5078                 if (intf->dev.driver) {
5079                         driver = to_usb_driver(intf->dev.driver);
5080                         if (driver && driver->disable_hub_initiated_lpm) {
5081                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
5082                                         state_name, driver->name);
5083                                 timeout = xhci_get_timeout_no_hub_lpm(udev,
5084                                                                       state);
5085                                 if (timeout == USB3_LPM_DISABLED)
5086                                         return timeout;
5087                         }
5088                 }
5089
5090                 /* Not sure how this could happen... */
5091                 if (!intf->cur_altsetting)
5092                         continue;
5093
5094                 if (xhci_update_timeout_for_interface(xhci, udev,
5095                                         intf->cur_altsetting,
5096                                         state, &timeout))
5097                         return timeout;
5098         }
5099         return timeout;
5100 }
5101
5102 static int calculate_max_exit_latency(struct usb_device *udev,
5103                 enum usb3_link_state state_changed,
5104                 u16 hub_encoded_timeout)
5105 {
5106         unsigned long long u1_mel_us = 0;
5107         unsigned long long u2_mel_us = 0;
5108         unsigned long long mel_us = 0;
5109         bool disabling_u1;
5110         bool disabling_u2;
5111         bool enabling_u1;
5112         bool enabling_u2;
5113
5114         disabling_u1 = (state_changed == USB3_LPM_U1 &&
5115                         hub_encoded_timeout == USB3_LPM_DISABLED);
5116         disabling_u2 = (state_changed == USB3_LPM_U2 &&
5117                         hub_encoded_timeout == USB3_LPM_DISABLED);
5118
5119         enabling_u1 = (state_changed == USB3_LPM_U1 &&
5120                         hub_encoded_timeout != USB3_LPM_DISABLED);
5121         enabling_u2 = (state_changed == USB3_LPM_U2 &&
5122                         hub_encoded_timeout != USB3_LPM_DISABLED);
5123
5124         /* If U1 was already enabled and we're not disabling it,
5125          * or we're going to enable U1, account for the U1 max exit latency.
5126          */
5127         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5128                         enabling_u1)
5129                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5130         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5131                         enabling_u2)
5132                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5133
5134         if (u1_mel_us > u2_mel_us)
5135                 mel_us = u1_mel_us;
5136         else
5137                 mel_us = u2_mel_us;
5138         /* xHCI host controller max exit latency field is only 16 bits wide. */
5139         if (mel_us > MAX_EXIT) {
5140                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5141                                 "is too big.\n", mel_us);
5142                 return -E2BIG;
5143         }
5144         return mel_us;
5145 }
5146
5147 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5148 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5149                         struct usb_device *udev, enum usb3_link_state state)
5150 {
5151         struct xhci_hcd *xhci;
5152         u16 hub_encoded_timeout;
5153         int mel;
5154         int ret;
5155
5156         xhci = hcd_to_xhci(hcd);
5157         /* The LPM timeout values are pretty host-controller specific, so don't
5158          * enable hub-initiated timeouts unless the vendor has provided
5159          * information about their timeout algorithm.
5160          */
5161         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5162                         !xhci->devs[udev->slot_id])
5163                 return USB3_LPM_DISABLED;
5164
5165         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5166         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5167         if (mel < 0) {
5168                 /* Max Exit Latency is too big, disable LPM. */
5169                 hub_encoded_timeout = USB3_LPM_DISABLED;
5170                 mel = 0;
5171         }
5172
5173         ret = xhci_change_max_exit_latency(xhci, udev, mel);
5174         if (ret)
5175                 return ret;
5176         return hub_encoded_timeout;
5177 }
5178
5179 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5180                         struct usb_device *udev, enum usb3_link_state state)
5181 {
5182         struct xhci_hcd *xhci;
5183         u16 mel;
5184
5185         xhci = hcd_to_xhci(hcd);
5186         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5187                         !xhci->devs[udev->slot_id])
5188                 return 0;
5189
5190         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5191         return xhci_change_max_exit_latency(xhci, udev, mel);
5192 }
5193 #else /* CONFIG_PM */
5194
5195 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5196                                 struct usb_device *udev, int enable)
5197 {
5198         return 0;
5199 }
5200
5201 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5202 {
5203         return 0;
5204 }
5205
5206 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5207                         struct usb_device *udev, enum usb3_link_state state)
5208 {
5209         return USB3_LPM_DISABLED;
5210 }
5211
5212 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5213                         struct usb_device *udev, enum usb3_link_state state)
5214 {
5215         return 0;
5216 }
5217 #endif  /* CONFIG_PM */
5218
5219 /*-------------------------------------------------------------------------*/
5220
5221 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5222  * internal data structures for the device.
5223  */
5224 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5225                         struct usb_tt *tt, gfp_t mem_flags)
5226 {
5227         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5228         struct xhci_virt_device *vdev;
5229         struct xhci_command *config_cmd;
5230         struct xhci_input_control_ctx *ctrl_ctx;
5231         struct xhci_slot_ctx *slot_ctx;
5232         unsigned long flags;
5233         unsigned think_time;
5234         int ret;
5235
5236         /* Ignore root hubs */
5237         if (!hdev->parent)
5238                 return 0;
5239
5240         vdev = xhci->devs[hdev->slot_id];
5241         if (!vdev) {
5242                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5243                 return -EINVAL;
5244         }
5245
5246         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5247         if (!config_cmd)
5248                 return -ENOMEM;
5249
5250         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5251         if (!ctrl_ctx) {
5252                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5253                                 __func__);
5254                 xhci_free_command(xhci, config_cmd);
5255                 return -ENOMEM;
5256         }
5257
5258         spin_lock_irqsave(&xhci->lock, flags);
5259         if (hdev->speed == USB_SPEED_HIGH &&
5260                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5261                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5262                 xhci_free_command(xhci, config_cmd);
5263                 spin_unlock_irqrestore(&xhci->lock, flags);
5264                 return -ENOMEM;
5265         }
5266
5267         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5268         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5269         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5270         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5271         /*
5272          * refer to section 6.2.2: MTT should be 0 for full speed hub,
5273          * but it may be already set to 1 when setup an xHCI virtual
5274          * device, so clear it anyway.
5275          */
5276         if (tt->multi)
5277                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5278         else if (hdev->speed == USB_SPEED_FULL)
5279                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5280
5281         if (xhci->hci_version > 0x95) {
5282                 xhci_dbg(xhci, "xHCI version %x needs hub "
5283                                 "TT think time and number of ports\n",
5284                                 (unsigned int) xhci->hci_version);
5285                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5286                 /* Set TT think time - convert from ns to FS bit times.
5287                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
5288                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
5289                  *
5290                  * xHCI 1.0: this field shall be 0 if the device is not a
5291                  * High-spped hub.
5292                  */
5293                 think_time = tt->think_time;
5294                 if (think_time != 0)
5295                         think_time = (think_time / 666) - 1;
5296                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5297                         slot_ctx->tt_info |=
5298                                 cpu_to_le32(TT_THINK_TIME(think_time));
5299         } else {
5300                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5301                                 "TT think time or number of ports\n",
5302                                 (unsigned int) xhci->hci_version);
5303         }
5304         slot_ctx->dev_state = 0;
5305         spin_unlock_irqrestore(&xhci->lock, flags);
5306
5307         xhci_dbg(xhci, "Set up %s for hub device.\n",
5308                         (xhci->hci_version > 0x95) ?
5309                         "configure endpoint" : "evaluate context");
5310
5311         /* Issue and wait for the configure endpoint or
5312          * evaluate context command.
5313          */
5314         if (xhci->hci_version > 0x95)
5315                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5316                                 false, false);
5317         else
5318                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5319                                 true, false);
5320
5321         xhci_free_command(xhci, config_cmd);
5322         return ret;
5323 }
5324
5325 static int xhci_get_frame(struct usb_hcd *hcd)
5326 {
5327         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5328         /* EHCI mods by the periodic size.  Why? */
5329         return readl(&xhci->run_regs->microframe_index) >> 3;
5330 }
5331
5332 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5333 {
5334         struct xhci_hcd         *xhci;
5335         /*
5336          * TODO: Check with DWC3 clients for sysdev according to
5337          * quirks
5338          */
5339         struct device           *dev = hcd->self.sysdev;
5340         unsigned int            minor_rev;
5341         int                     retval;
5342
5343         /* Accept arbitrarily long scatter-gather lists */
5344         hcd->self.sg_tablesize = ~0;
5345
5346         /* support to build packet from discontinuous buffers */
5347         hcd->self.no_sg_constraint = 1;
5348
5349         /* XHCI controllers don't stop the ep queue on short packets :| */
5350         hcd->self.no_stop_on_short = 1;
5351
5352         xhci = hcd_to_xhci(hcd);
5353
5354         if (usb_hcd_is_primary_hcd(hcd)) {
5355                 xhci->main_hcd = hcd;
5356                 xhci->usb2_rhub.hcd = hcd;
5357                 /* Mark the first roothub as being USB 2.0.
5358                  * The xHCI driver will register the USB 3.0 roothub.
5359                  */
5360                 hcd->speed = HCD_USB2;
5361                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5362                 /*
5363                  * USB 2.0 roothub under xHCI has an integrated TT,
5364                  * (rate matching hub) as opposed to having an OHCI/UHCI
5365                  * companion controller.
5366                  */
5367                 hcd->has_tt = 1;
5368         } else {
5369                 /*
5370                  * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5371                  * should return 0x31 for sbrn, or that the minor revision
5372                  * is a two digit BCD containig minor and sub-minor numbers.
5373                  * This was later clarified in xHCI 1.2.
5374                  *
5375                  * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5376                  * minor revision set to 0x1 instead of 0x10.
5377                  */
5378                 if (xhci->usb3_rhub.min_rev == 0x1)
5379                         minor_rev = 1;
5380                 else
5381                         minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5382
5383                 switch (minor_rev) {
5384                 case 2:
5385                         hcd->speed = HCD_USB32;
5386                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5387                         hcd->self.root_hub->rx_lanes = 2;
5388                         hcd->self.root_hub->tx_lanes = 2;
5389                         hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5390                         break;
5391                 case 1:
5392                         hcd->speed = HCD_USB31;
5393                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5394                         hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5395                         break;
5396                 }
5397                 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5398                           minor_rev,
5399                           minor_rev ? "Enhanced " : "");
5400
5401                 xhci->usb3_rhub.hcd = hcd;
5402                 /* xHCI private pointer was set in xhci_pci_probe for the second
5403                  * registered roothub.
5404                  */
5405                 return 0;
5406         }
5407
5408         mutex_init(&xhci->mutex);
5409         xhci->cap_regs = hcd->regs;
5410         xhci->op_regs = hcd->regs +
5411                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5412         xhci->run_regs = hcd->regs +
5413                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5414         /* Cache read-only capability registers */
5415         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5416         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5417         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5418         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5419         xhci->hci_version = HC_VERSION(xhci->hcc_params);
5420         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5421         if (xhci->hci_version > 0x100)
5422                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5423
5424         xhci->quirks |= quirks;
5425
5426         get_quirks(dev, xhci);
5427
5428         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5429          * success event after a short transfer. This quirk will ignore such
5430          * spurious event.
5431          */
5432         if (xhci->hci_version > 0x96)
5433                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5434
5435         /* Make sure the HC is halted. */
5436         retval = xhci_halt(xhci);
5437         if (retval)
5438                 return retval;
5439
5440         xhci_zero_64b_regs(xhci);
5441
5442         xhci_dbg(xhci, "Resetting HCD\n");
5443         /* Reset the internal HC memory state and registers. */
5444         retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5445         if (retval)
5446                 return retval;
5447         xhci_dbg(xhci, "Reset complete\n");
5448
5449         /*
5450          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5451          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5452          * address memory pointers actually. So, this driver clears the AC64
5453          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5454          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5455          */
5456         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5457                 xhci->hcc_params &= ~BIT(0);
5458
5459         /* Set dma_mask and coherent_dma_mask to 64-bits,
5460          * if xHC supports 64-bit addressing */
5461         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5462                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5463                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5464                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5465         } else {
5466                 /*
5467                  * This is to avoid error in cases where a 32-bit USB
5468                  * controller is used on a 64-bit capable system.
5469                  */
5470                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5471                 if (retval)
5472                         return retval;
5473                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5474                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5475         }
5476
5477         xhci_dbg(xhci, "Calling HCD init\n");
5478         /* Initialize HCD and host controller data structures. */
5479         retval = xhci_init(hcd);
5480         if (retval)
5481                 return retval;
5482         xhci_dbg(xhci, "Called HCD init\n");
5483
5484         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5485                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5486
5487         return 0;
5488 }
5489 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5490
5491 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5492                 struct usb_host_endpoint *ep)
5493 {
5494         struct xhci_hcd *xhci;
5495         struct usb_device *udev;
5496         unsigned int slot_id;
5497         unsigned int ep_index;
5498         unsigned long flags;
5499
5500         xhci = hcd_to_xhci(hcd);
5501
5502         spin_lock_irqsave(&xhci->lock, flags);
5503         udev = (struct usb_device *)ep->hcpriv;
5504         slot_id = udev->slot_id;
5505         ep_index = xhci_get_endpoint_index(&ep->desc);
5506
5507         xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5508         xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5509         spin_unlock_irqrestore(&xhci->lock, flags);
5510 }
5511
5512 static const struct hc_driver xhci_hc_driver = {
5513         .description =          "xhci-hcd",
5514         .product_desc =         "xHCI Host Controller",
5515         .hcd_priv_size =        sizeof(struct xhci_hcd),
5516
5517         /*
5518          * generic hardware linkage
5519          */
5520         .irq =                  xhci_irq,
5521         .flags =                HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5522                                 HCD_BH,
5523
5524         /*
5525          * basic lifecycle operations
5526          */
5527         .reset =                NULL, /* set in xhci_init_driver() */
5528         .start =                xhci_run,
5529         .stop =                 xhci_stop,
5530         .shutdown =             xhci_shutdown,
5531
5532         /*
5533          * managing i/o requests and associated device resources
5534          */
5535         .map_urb_for_dma =      xhci_map_urb_for_dma,
5536         .unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5537         .urb_enqueue =          xhci_urb_enqueue,
5538         .urb_dequeue =          xhci_urb_dequeue,
5539         .alloc_dev =            xhci_alloc_dev,
5540         .free_dev =             xhci_free_dev,
5541         .alloc_streams =        xhci_alloc_streams,
5542         .free_streams =         xhci_free_streams,
5543         .add_endpoint =         xhci_add_endpoint,
5544         .drop_endpoint =        xhci_drop_endpoint,
5545         .endpoint_disable =     xhci_endpoint_disable,
5546         .endpoint_reset =       xhci_endpoint_reset,
5547         .check_bandwidth =      xhci_check_bandwidth,
5548         .reset_bandwidth =      xhci_reset_bandwidth,
5549         .fixup_endpoint =       xhci_fixup_endpoint,
5550         .address_device =       xhci_address_device,
5551         .enable_device =        xhci_enable_device,
5552         .update_hub_device =    xhci_update_hub_device,
5553         .reset_device =         xhci_discover_or_reset_device,
5554
5555         /*
5556          * scheduling support
5557          */
5558         .get_frame_number =     xhci_get_frame,
5559
5560         /*
5561          * root hub support
5562          */
5563         .hub_control =          xhci_hub_control,
5564         .hub_status_data =      xhci_hub_status_data,
5565         .bus_suspend =          xhci_bus_suspend,
5566         .bus_resume =           xhci_bus_resume,
5567         .get_resuming_ports =   xhci_get_resuming_ports,
5568
5569         /*
5570          * call back when device connected and addressed
5571          */
5572         .update_device =        xhci_update_device,
5573         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5574         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5575         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5576         .find_raw_port_number = xhci_find_raw_port_number,
5577         .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5578 };
5579
5580 void xhci_init_driver(struct hc_driver *drv,
5581                       const struct xhci_driver_overrides *over)
5582 {
5583         BUG_ON(!over);
5584
5585         /* Copy the generic table to drv then apply the overrides */
5586         *drv = xhci_hc_driver;
5587
5588         if (over) {
5589                 drv->hcd_priv_size += over->extra_priv_size;
5590                 if (over->reset)
5591                         drv->reset = over->reset;
5592                 if (over->start)
5593                         drv->start = over->start;
5594                 if (over->add_endpoint)
5595                         drv->add_endpoint = over->add_endpoint;
5596                 if (over->drop_endpoint)
5597                         drv->drop_endpoint = over->drop_endpoint;
5598                 if (over->check_bandwidth)
5599                         drv->check_bandwidth = over->check_bandwidth;
5600                 if (over->reset_bandwidth)
5601                         drv->reset_bandwidth = over->reset_bandwidth;
5602         }
5603 }
5604 EXPORT_SYMBOL_GPL(xhci_init_driver);
5605
5606 MODULE_DESCRIPTION(DRIVER_DESC);
5607 MODULE_AUTHOR(DRIVER_AUTHOR);
5608 MODULE_LICENSE("GPL");
5609
5610 static int __init xhci_hcd_init(void)
5611 {
5612         /*
5613          * Check the compiler generated sizes of structures that must be laid
5614          * out in specific ways for hardware access.
5615          */
5616         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5617         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5618         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5619         /* xhci_device_control has eight fields, and also
5620          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5621          */
5622         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5623         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5624         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5625         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5626         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5627         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5628         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5629
5630         if (usb_disabled())
5631                 return -ENODEV;
5632
5633         xhci_debugfs_create_root();
5634
5635         return 0;
5636 }
5637
5638 /*
5639  * If an init function is provided, an exit function must also be provided
5640  * to allow module unload.
5641  */
5642 static void __exit xhci_hcd_fini(void)
5643 {
5644         xhci_debugfs_remove_root();
5645 }
5646
5647 module_init(xhci_hcd_init);
5648 module_exit(xhci_hcd_fini);