Merge 5.17-rc6 into usb-next
[platform/kernel/linux-starfive.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28
29 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42         struct xhci_segment *seg = ring->first_seg;
43
44         if (!td || !td->start_seg)
45                 return false;
46         do {
47                 if (seg == td->start_seg)
48                         return true;
49                 seg = seg->next;
50         } while (seg && seg != ring->first_seg);
51
52         return false;
53 }
54
55 /*
56  * xhci_handshake - spin reading hc until handshake completes or fails
57  * @ptr: address of hc register to be read
58  * @mask: bits to look at in result of read
59  * @done: value of those bits when handshake succeeds
60  * @usec: timeout in microseconds
61  *
62  * Returns negative errno, or zero on success
63  *
64  * Success happens when the "mask" bits have the specified value (hardware
65  * handshake done).  There are two failure modes:  "usec" have passed (major
66  * hardware flakeout), or the register reads as all-ones (hardware removed).
67  */
68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
69 {
70         u32     result;
71         int     ret;
72
73         ret = readl_poll_timeout_atomic(ptr, result,
74                                         (result & mask) == done ||
75                                         result == U32_MAX,
76                                         1, usec);
77         if (result == U32_MAX)          /* card removed */
78                 return -ENODEV;
79
80         return ret;
81 }
82
83 /*
84  * Disable interrupts and begin the xHCI halting process.
85  */
86 void xhci_quiesce(struct xhci_hcd *xhci)
87 {
88         u32 halted;
89         u32 cmd;
90         u32 mask;
91
92         mask = ~(XHCI_IRQS);
93         halted = readl(&xhci->op_regs->status) & STS_HALT;
94         if (!halted)
95                 mask &= ~CMD_RUN;
96
97         cmd = readl(&xhci->op_regs->command);
98         cmd &= mask;
99         writel(cmd, &xhci->op_regs->command);
100 }
101
102 /*
103  * Force HC into halt state.
104  *
105  * Disable any IRQs and clear the run/stop bit.
106  * HC will complete any current and actively pipelined transactions, and
107  * should halt within 16 ms of the run/stop bit being cleared.
108  * Read HC Halted bit in the status register to see when the HC is finished.
109  */
110 int xhci_halt(struct xhci_hcd *xhci)
111 {
112         int ret;
113         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
114         xhci_quiesce(xhci);
115
116         ret = xhci_handshake(&xhci->op_regs->status,
117                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
118         if (ret) {
119                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
120                 return ret;
121         }
122         xhci->xhc_state |= XHCI_STATE_HALTED;
123         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
124         return ret;
125 }
126
127 /*
128  * Set the run bit and wait for the host to be running.
129  */
130 int xhci_start(struct xhci_hcd *xhci)
131 {
132         u32 temp;
133         int ret;
134
135         temp = readl(&xhci->op_regs->command);
136         temp |= (CMD_RUN);
137         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
138                         temp);
139         writel(temp, &xhci->op_regs->command);
140
141         /*
142          * Wait for the HCHalted Status bit to be 0 to indicate the host is
143          * running.
144          */
145         ret = xhci_handshake(&xhci->op_regs->status,
146                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
147         if (ret == -ETIMEDOUT)
148                 xhci_err(xhci, "Host took too long to start, "
149                                 "waited %u microseconds.\n",
150                                 XHCI_MAX_HALT_USEC);
151         if (!ret)
152                 /* clear state flags. Including dying, halted or removing */
153                 xhci->xhc_state = 0;
154
155         return ret;
156 }
157
158 /*
159  * Reset a halted HC.
160  *
161  * This resets pipelines, timers, counters, state machines, etc.
162  * Transactions will be terminated immediately, and operational registers
163  * will be set to their defaults.
164  */
165 int xhci_reset(struct xhci_hcd *xhci)
166 {
167         u32 command;
168         u32 state;
169         int ret;
170
171         state = readl(&xhci->op_regs->status);
172
173         if (state == ~(u32)0) {
174                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
175                 return -ENODEV;
176         }
177
178         if ((state & STS_HALT) == 0) {
179                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
180                 return 0;
181         }
182
183         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
184         command = readl(&xhci->op_regs->command);
185         command |= CMD_RESET;
186         writel(command, &xhci->op_regs->command);
187
188         /* Existing Intel xHCI controllers require a delay of 1 mS,
189          * after setting the CMD_RESET bit, and before accessing any
190          * HC registers. This allows the HC to complete the
191          * reset operation and be ready for HC register access.
192          * Without this delay, the subsequent HC register access,
193          * may result in a system hang very rarely.
194          */
195         if (xhci->quirks & XHCI_INTEL_HOST)
196                 udelay(1000);
197
198         ret = xhci_handshake(&xhci->op_regs->command,
199                         CMD_RESET, 0, 10 * 1000 * 1000);
200         if (ret)
201                 return ret;
202
203         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
204                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
205
206         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
207                          "Wait for controller to be ready for doorbell rings");
208         /*
209          * xHCI cannot write to any doorbells or operational registers other
210          * than status until the "Controller Not Ready" flag is cleared.
211          */
212         ret = xhci_handshake(&xhci->op_regs->status,
213                         STS_CNR, 0, 10 * 1000 * 1000);
214
215         xhci->usb2_rhub.bus_state.port_c_suspend = 0;
216         xhci->usb2_rhub.bus_state.suspended_ports = 0;
217         xhci->usb2_rhub.bus_state.resuming_ports = 0;
218         xhci->usb3_rhub.bus_state.port_c_suspend = 0;
219         xhci->usb3_rhub.bus_state.suspended_ports = 0;
220         xhci->usb3_rhub.bus_state.resuming_ports = 0;
221
222         return ret;
223 }
224
225 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
226 {
227         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
228         int err, i;
229         u64 val;
230         u32 intrs;
231
232         /*
233          * Some Renesas controllers get into a weird state if they are
234          * reset while programmed with 64bit addresses (they will preserve
235          * the top half of the address in internal, non visible
236          * registers). You end up with half the address coming from the
237          * kernel, and the other half coming from the firmware. Also,
238          * changing the programming leads to extra accesses even if the
239          * controller is supposed to be halted. The controller ends up with
240          * a fatal fault, and is then ripe for being properly reset.
241          *
242          * Special care is taken to only apply this if the device is behind
243          * an iommu. Doing anything when there is no iommu is definitely
244          * unsafe...
245          */
246         if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
247                 return;
248
249         xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
250
251         /* Clear HSEIE so that faults do not get signaled */
252         val = readl(&xhci->op_regs->command);
253         val &= ~CMD_HSEIE;
254         writel(val, &xhci->op_regs->command);
255
256         /* Clear HSE (aka FATAL) */
257         val = readl(&xhci->op_regs->status);
258         val |= STS_FATAL;
259         writel(val, &xhci->op_regs->status);
260
261         /* Now zero the registers, and brace for impact */
262         val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263         if (upper_32_bits(val))
264                 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266         if (upper_32_bits(val))
267                 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
268
269         intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
270                       ARRAY_SIZE(xhci->run_regs->ir_set));
271
272         for (i = 0; i < intrs; i++) {
273                 struct xhci_intr_reg __iomem *ir;
274
275                 ir = &xhci->run_regs->ir_set[i];
276                 val = xhci_read_64(xhci, &ir->erst_base);
277                 if (upper_32_bits(val))
278                         xhci_write_64(xhci, 0, &ir->erst_base);
279                 val= xhci_read_64(xhci, &ir->erst_dequeue);
280                 if (upper_32_bits(val))
281                         xhci_write_64(xhci, 0, &ir->erst_dequeue);
282         }
283
284         /* Wait for the fault to appear. It will be cleared on reset */
285         err = xhci_handshake(&xhci->op_regs->status,
286                              STS_FATAL, STS_FATAL,
287                              XHCI_MAX_HALT_USEC);
288         if (!err)
289                 xhci_info(xhci, "Fault detected\n");
290 }
291
292 #ifdef CONFIG_USB_PCI
293 /*
294  * Set up MSI
295  */
296 static int xhci_setup_msi(struct xhci_hcd *xhci)
297 {
298         int ret;
299         /*
300          * TODO:Check with MSI Soc for sysdev
301          */
302         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
303
304         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
305         if (ret < 0) {
306                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
307                                 "failed to allocate MSI entry");
308                 return ret;
309         }
310
311         ret = request_irq(pdev->irq, xhci_msi_irq,
312                                 0, "xhci_hcd", xhci_to_hcd(xhci));
313         if (ret) {
314                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
315                                 "disable MSI interrupt");
316                 pci_free_irq_vectors(pdev);
317         }
318
319         return ret;
320 }
321
322 /*
323  * Set up MSI-X
324  */
325 static int xhci_setup_msix(struct xhci_hcd *xhci)
326 {
327         int i, ret = 0;
328         struct usb_hcd *hcd = xhci_to_hcd(xhci);
329         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
330
331         /*
332          * calculate number of msi-x vectors supported.
333          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
334          *   with max number of interrupters based on the xhci HCSPARAMS1.
335          * - num_online_cpus: maximum msi-x vectors per CPUs core.
336          *   Add additional 1 vector to ensure always available interrupt.
337          */
338         xhci->msix_count = min(num_online_cpus() + 1,
339                                 HCS_MAX_INTRS(xhci->hcs_params1));
340
341         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
342                         PCI_IRQ_MSIX);
343         if (ret < 0) {
344                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
345                                 "Failed to enable MSI-X");
346                 return ret;
347         }
348
349         for (i = 0; i < xhci->msix_count; i++) {
350                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
351                                 "xhci_hcd", xhci_to_hcd(xhci));
352                 if (ret)
353                         goto disable_msix;
354         }
355
356         hcd->msix_enabled = 1;
357         return ret;
358
359 disable_msix:
360         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
361         while (--i >= 0)
362                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
363         pci_free_irq_vectors(pdev);
364         return ret;
365 }
366
367 /* Free any IRQs and disable MSI-X */
368 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
369 {
370         struct usb_hcd *hcd = xhci_to_hcd(xhci);
371         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
372
373         if (xhci->quirks & XHCI_PLAT)
374                 return;
375
376         /* return if using legacy interrupt */
377         if (hcd->irq > 0)
378                 return;
379
380         if (hcd->msix_enabled) {
381                 int i;
382
383                 for (i = 0; i < xhci->msix_count; i++)
384                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
385         } else {
386                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
387         }
388
389         pci_free_irq_vectors(pdev);
390         hcd->msix_enabled = 0;
391 }
392
393 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
394 {
395         struct usb_hcd *hcd = xhci_to_hcd(xhci);
396
397         if (hcd->msix_enabled) {
398                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
399                 int i;
400
401                 for (i = 0; i < xhci->msix_count; i++)
402                         synchronize_irq(pci_irq_vector(pdev, i));
403         }
404 }
405
406 static int xhci_try_enable_msi(struct usb_hcd *hcd)
407 {
408         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
409         struct pci_dev  *pdev;
410         int ret;
411
412         /* The xhci platform device has set up IRQs through usb_add_hcd. */
413         if (xhci->quirks & XHCI_PLAT)
414                 return 0;
415
416         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
417         /*
418          * Some Fresco Logic host controllers advertise MSI, but fail to
419          * generate interrupts.  Don't even try to enable MSI.
420          */
421         if (xhci->quirks & XHCI_BROKEN_MSI)
422                 goto legacy_irq;
423
424         /* unregister the legacy interrupt */
425         if (hcd->irq)
426                 free_irq(hcd->irq, hcd);
427         hcd->irq = 0;
428
429         ret = xhci_setup_msix(xhci);
430         if (ret)
431                 /* fall back to msi*/
432                 ret = xhci_setup_msi(xhci);
433
434         if (!ret) {
435                 hcd->msi_enabled = 1;
436                 return 0;
437         }
438
439         if (!pdev->irq) {
440                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
441                 return -EINVAL;
442         }
443
444  legacy_irq:
445         if (!strlen(hcd->irq_descr))
446                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
447                          hcd->driver->description, hcd->self.busnum);
448
449         /* fall back to legacy interrupt*/
450         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
451                         hcd->irq_descr, hcd);
452         if (ret) {
453                 xhci_err(xhci, "request interrupt %d failed\n",
454                                 pdev->irq);
455                 return ret;
456         }
457         hcd->irq = pdev->irq;
458         return 0;
459 }
460
461 #else
462
463 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
464 {
465         return 0;
466 }
467
468 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
469 {
470 }
471
472 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
473 {
474 }
475
476 #endif
477
478 static void compliance_mode_recovery(struct timer_list *t)
479 {
480         struct xhci_hcd *xhci;
481         struct usb_hcd *hcd;
482         struct xhci_hub *rhub;
483         u32 temp;
484         int i;
485
486         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
487         rhub = &xhci->usb3_rhub;
488
489         for (i = 0; i < rhub->num_ports; i++) {
490                 temp = readl(rhub->ports[i]->addr);
491                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
492                         /*
493                          * Compliance Mode Detected. Letting USB Core
494                          * handle the Warm Reset
495                          */
496                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497                                         "Compliance mode detected->port %d",
498                                         i + 1);
499                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
500                                         "Attempting compliance mode recovery");
501                         hcd = xhci->shared_hcd;
502
503                         if (hcd->state == HC_STATE_SUSPENDED)
504                                 usb_hcd_resume_root_hub(hcd);
505
506                         usb_hcd_poll_rh_status(hcd);
507                 }
508         }
509
510         if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
511                 mod_timer(&xhci->comp_mode_recovery_timer,
512                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
513 }
514
515 /*
516  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
517  * that causes ports behind that hardware to enter compliance mode sometimes.
518  * The quirk creates a timer that polls every 2 seconds the link state of
519  * each host controller's port and recovers it by issuing a Warm reset
520  * if Compliance mode is detected, otherwise the port will become "dead" (no
521  * device connections or disconnections will be detected anymore). Becasue no
522  * status event is generated when entering compliance mode (per xhci spec),
523  * this quirk is needed on systems that have the failing hardware installed.
524  */
525 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
526 {
527         xhci->port_status_u0 = 0;
528         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
529                     0);
530         xhci->comp_mode_recovery_timer.expires = jiffies +
531                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
532
533         add_timer(&xhci->comp_mode_recovery_timer);
534         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
535                         "Compliance mode recovery timer initialized");
536 }
537
538 /*
539  * This function identifies the systems that have installed the SN65LVPE502CP
540  * USB3.0 re-driver and that need the Compliance Mode Quirk.
541  * Systems:
542  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
543  */
544 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
545 {
546         const char *dmi_product_name, *dmi_sys_vendor;
547
548         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
549         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
550         if (!dmi_product_name || !dmi_sys_vendor)
551                 return false;
552
553         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
554                 return false;
555
556         if (strstr(dmi_product_name, "Z420") ||
557                         strstr(dmi_product_name, "Z620") ||
558                         strstr(dmi_product_name, "Z820") ||
559                         strstr(dmi_product_name, "Z1 Workstation"))
560                 return true;
561
562         return false;
563 }
564
565 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
566 {
567         return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
568 }
569
570
571 /*
572  * Initialize memory for HCD and xHC (one-time init).
573  *
574  * Program the PAGESIZE register, initialize the device context array, create
575  * device contexts (?), set up a command ring segment (or two?), create event
576  * ring (one for now).
577  */
578 static int xhci_init(struct usb_hcd *hcd)
579 {
580         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
581         int retval = 0;
582
583         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
584         spin_lock_init(&xhci->lock);
585         if (xhci->hci_version == 0x95 && link_quirk) {
586                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
587                                 "QUIRK: Not clearing Link TRB chain bits.");
588                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
589         } else {
590                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
591                                 "xHCI doesn't need link TRB QUIRK");
592         }
593         retval = xhci_mem_init(xhci, GFP_KERNEL);
594         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
595
596         /* Initializing Compliance Mode Recovery Data If Needed */
597         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
598                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
599                 compliance_mode_recovery_timer_init(xhci);
600         }
601
602         return retval;
603 }
604
605 /*-------------------------------------------------------------------------*/
606
607
608 static int xhci_run_finished(struct xhci_hcd *xhci)
609 {
610         if (xhci_start(xhci)) {
611                 xhci_halt(xhci);
612                 return -ENODEV;
613         }
614         xhci->shared_hcd->state = HC_STATE_RUNNING;
615         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
616
617         if (xhci->quirks & XHCI_NEC_HOST)
618                 xhci_ring_cmd_db(xhci);
619
620         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
621                         "Finished xhci_run for USB3 roothub");
622         return 0;
623 }
624
625 /*
626  * Start the HC after it was halted.
627  *
628  * This function is called by the USB core when the HC driver is added.
629  * Its opposite is xhci_stop().
630  *
631  * xhci_init() must be called once before this function can be called.
632  * Reset the HC, enable device slot contexts, program DCBAAP, and
633  * set command ring pointer and event ring pointer.
634  *
635  * Setup MSI-X vectors and enable interrupts.
636  */
637 int xhci_run(struct usb_hcd *hcd)
638 {
639         u32 temp;
640         u64 temp_64;
641         int ret;
642         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
643
644         /* Start the xHCI host controller running only after the USB 2.0 roothub
645          * is setup.
646          */
647
648         hcd->uses_new_polling = 1;
649         if (!usb_hcd_is_primary_hcd(hcd))
650                 return xhci_run_finished(xhci);
651
652         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
653
654         ret = xhci_try_enable_msi(hcd);
655         if (ret)
656                 return ret;
657
658         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
659         temp_64 &= ~ERST_PTR_MASK;
660         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
662
663         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
664                         "// Set the interrupt modulation register");
665         temp = readl(&xhci->ir_set->irq_control);
666         temp &= ~ER_IRQ_INTERVAL_MASK;
667         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
668         writel(temp, &xhci->ir_set->irq_control);
669
670         /* Set the HCD state before we enable the irqs */
671         temp = readl(&xhci->op_regs->command);
672         temp |= (CMD_EIE);
673         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
674                         "// Enable interrupts, cmd = 0x%x.", temp);
675         writel(temp, &xhci->op_regs->command);
676
677         temp = readl(&xhci->ir_set->irq_pending);
678         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
679                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
680                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
681         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
682
683         if (xhci->quirks & XHCI_NEC_HOST) {
684                 struct xhci_command *command;
685
686                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
687                 if (!command)
688                         return -ENOMEM;
689
690                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
691                                 TRB_TYPE(TRB_NEC_GET_FW));
692                 if (ret)
693                         xhci_free_command(xhci, command);
694         }
695         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
696                         "Finished xhci_run for USB2 roothub");
697
698         xhci_create_dbc_dev(xhci);
699
700         xhci_debugfs_init(xhci);
701
702         return 0;
703 }
704 EXPORT_SYMBOL_GPL(xhci_run);
705
706 /*
707  * Stop xHCI driver.
708  *
709  * This function is called by the USB core when the HC driver is removed.
710  * Its opposite is xhci_run().
711  *
712  * Disable device contexts, disable IRQs, and quiesce the HC.
713  * Reset the HC, finish any completed transactions, and cleanup memory.
714  */
715 static void xhci_stop(struct usb_hcd *hcd)
716 {
717         u32 temp;
718         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
719
720         mutex_lock(&xhci->mutex);
721
722         /* Only halt host and free memory after both hcds are removed */
723         if (!usb_hcd_is_primary_hcd(hcd)) {
724                 mutex_unlock(&xhci->mutex);
725                 return;
726         }
727
728         xhci_remove_dbc_dev(xhci);
729
730         spin_lock_irq(&xhci->lock);
731         xhci->xhc_state |= XHCI_STATE_HALTED;
732         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
733         xhci_halt(xhci);
734         xhci_reset(xhci);
735         spin_unlock_irq(&xhci->lock);
736
737         xhci_cleanup_msix(xhci);
738
739         /* Deleting Compliance Mode Recovery Timer */
740         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
741                         (!(xhci_all_ports_seen_u0(xhci)))) {
742                 del_timer_sync(&xhci->comp_mode_recovery_timer);
743                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
744                                 "%s: compliance mode recovery timer deleted",
745                                 __func__);
746         }
747
748         if (xhci->quirks & XHCI_AMD_PLL_FIX)
749                 usb_amd_dev_put();
750
751         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
752                         "// Disabling event ring interrupts");
753         temp = readl(&xhci->op_regs->status);
754         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
755         temp = readl(&xhci->ir_set->irq_pending);
756         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
757
758         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
759         xhci_mem_cleanup(xhci);
760         xhci_debugfs_exit(xhci);
761         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
762                         "xhci_stop completed - status = %x",
763                         readl(&xhci->op_regs->status));
764         mutex_unlock(&xhci->mutex);
765 }
766
767 /*
768  * Shutdown HC (not bus-specific)
769  *
770  * This is called when the machine is rebooting or halting.  We assume that the
771  * machine will be powered off, and the HC's internal state will be reset.
772  * Don't bother to free memory.
773  *
774  * This will only ever be called with the main usb_hcd (the USB3 roothub).
775  */
776 void xhci_shutdown(struct usb_hcd *hcd)
777 {
778         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
779
780         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
781                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
782
783         spin_lock_irq(&xhci->lock);
784         xhci_halt(xhci);
785         /* Workaround for spurious wakeups at shutdown with HSW */
786         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
787                 xhci_reset(xhci);
788         spin_unlock_irq(&xhci->lock);
789
790         xhci_cleanup_msix(xhci);
791
792         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
793                         "xhci_shutdown completed - status = %x",
794                         readl(&xhci->op_regs->status));
795 }
796 EXPORT_SYMBOL_GPL(xhci_shutdown);
797
798 #ifdef CONFIG_PM
799 static void xhci_save_registers(struct xhci_hcd *xhci)
800 {
801         xhci->s3.command = readl(&xhci->op_regs->command);
802         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
803         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
804         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
805         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
806         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
807         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
808         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
809         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
810 }
811
812 static void xhci_restore_registers(struct xhci_hcd *xhci)
813 {
814         writel(xhci->s3.command, &xhci->op_regs->command);
815         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
816         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
817         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
818         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
819         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
820         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
821         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
822         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
823 }
824
825 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
826 {
827         u64     val_64;
828
829         /* step 2: initialize command ring buffer */
830         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
831         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
832                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
833                                       xhci->cmd_ring->dequeue) &
834                  (u64) ~CMD_RING_RSVD_BITS) |
835                 xhci->cmd_ring->cycle_state;
836         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
837                         "// Setting command ring address to 0x%llx",
838                         (long unsigned long) val_64);
839         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
840 }
841
842 /*
843  * The whole command ring must be cleared to zero when we suspend the host.
844  *
845  * The host doesn't save the command ring pointer in the suspend well, so we
846  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
847  * aligned, because of the reserved bits in the command ring dequeue pointer
848  * register.  Therefore, we can't just set the dequeue pointer back in the
849  * middle of the ring (TRBs are 16-byte aligned).
850  */
851 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
852 {
853         struct xhci_ring *ring;
854         struct xhci_segment *seg;
855
856         ring = xhci->cmd_ring;
857         seg = ring->deq_seg;
858         do {
859                 memset(seg->trbs, 0,
860                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
861                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
862                         cpu_to_le32(~TRB_CYCLE);
863                 seg = seg->next;
864         } while (seg != ring->deq_seg);
865
866         /* Reset the software enqueue and dequeue pointers */
867         ring->deq_seg = ring->first_seg;
868         ring->dequeue = ring->first_seg->trbs;
869         ring->enq_seg = ring->deq_seg;
870         ring->enqueue = ring->dequeue;
871
872         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
873         /*
874          * Ring is now zeroed, so the HW should look for change of ownership
875          * when the cycle bit is set to 1.
876          */
877         ring->cycle_state = 1;
878
879         /*
880          * Reset the hardware dequeue pointer.
881          * Yes, this will need to be re-written after resume, but we're paranoid
882          * and want to make sure the hardware doesn't access bogus memory
883          * because, say, the BIOS or an SMI started the host without changing
884          * the command ring pointers.
885          */
886         xhci_set_cmd_ring_deq(xhci);
887 }
888
889 /*
890  * Disable port wake bits if do_wakeup is not set.
891  *
892  * Also clear a possible internal port wake state left hanging for ports that
893  * detected termination but never successfully enumerated (trained to 0U).
894  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
895  * at enumeration clears this wake, force one here as well for unconnected ports
896  */
897
898 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
899                                        struct xhci_hub *rhub,
900                                        bool do_wakeup)
901 {
902         unsigned long flags;
903         u32 t1, t2, portsc;
904         int i;
905
906         spin_lock_irqsave(&xhci->lock, flags);
907
908         for (i = 0; i < rhub->num_ports; i++) {
909                 portsc = readl(rhub->ports[i]->addr);
910                 t1 = xhci_port_state_to_neutral(portsc);
911                 t2 = t1;
912
913                 /* clear wake bits if do_wake is not set */
914                 if (!do_wakeup)
915                         t2 &= ~PORT_WAKE_BITS;
916
917                 /* Don't touch csc bit if connected or connect change is set */
918                 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
919                         t2 |= PORT_CSC;
920
921                 if (t1 != t2) {
922                         writel(t2, rhub->ports[i]->addr);
923                         xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
924                                  rhub->hcd->self.busnum, i + 1, portsc, t2);
925                 }
926         }
927         spin_unlock_irqrestore(&xhci->lock, flags);
928 }
929
930 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
931 {
932         struct xhci_port        **ports;
933         int                     port_index;
934         u32                     status;
935         u32                     portsc;
936
937         status = readl(&xhci->op_regs->status);
938         if (status & STS_EINT)
939                 return true;
940         /*
941          * Checking STS_EINT is not enough as there is a lag between a change
942          * bit being set and the Port Status Change Event that it generated
943          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
944          */
945
946         port_index = xhci->usb2_rhub.num_ports;
947         ports = xhci->usb2_rhub.ports;
948         while (port_index--) {
949                 portsc = readl(ports[port_index]->addr);
950                 if (portsc & PORT_CHANGE_MASK ||
951                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
952                         return true;
953         }
954         port_index = xhci->usb3_rhub.num_ports;
955         ports = xhci->usb3_rhub.ports;
956         while (port_index--) {
957                 portsc = readl(ports[port_index]->addr);
958                 if (portsc & PORT_CHANGE_MASK ||
959                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
960                         return true;
961         }
962         return false;
963 }
964
965 /*
966  * Stop HC (not bus-specific)
967  *
968  * This is called when the machine transition into S3/S4 mode.
969  *
970  */
971 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
972 {
973         int                     rc = 0;
974         unsigned int            delay = XHCI_MAX_HALT_USEC * 2;
975         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
976         u32                     command;
977         u32                     res;
978
979         if (!hcd->state)
980                 return 0;
981
982         if (hcd->state != HC_STATE_SUSPENDED ||
983                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
984                 return -EINVAL;
985
986         /* Clear root port wake on bits if wakeup not allowed. */
987         xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
988         xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
989
990         if (!HCD_HW_ACCESSIBLE(hcd))
991                 return 0;
992
993         xhci_dbc_suspend(xhci);
994
995         /* Don't poll the roothubs on bus suspend. */
996         xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
997                  __func__, hcd->self.busnum);
998         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
999         del_timer_sync(&hcd->rh_timer);
1000         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1001         del_timer_sync(&xhci->shared_hcd->rh_timer);
1002
1003         if (xhci->quirks & XHCI_SUSPEND_DELAY)
1004                 usleep_range(1000, 1500);
1005
1006         spin_lock_irq(&xhci->lock);
1007         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1008         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1009         /* step 1: stop endpoint */
1010         /* skipped assuming that port suspend has done */
1011
1012         /* step 2: clear Run/Stop bit */
1013         command = readl(&xhci->op_regs->command);
1014         command &= ~CMD_RUN;
1015         writel(command, &xhci->op_regs->command);
1016
1017         /* Some chips from Fresco Logic need an extraordinary delay */
1018         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1019
1020         if (xhci_handshake(&xhci->op_regs->status,
1021                       STS_HALT, STS_HALT, delay)) {
1022                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1023                 spin_unlock_irq(&xhci->lock);
1024                 return -ETIMEDOUT;
1025         }
1026         xhci_clear_command_ring(xhci);
1027
1028         /* step 3: save registers */
1029         xhci_save_registers(xhci);
1030
1031         /* step 4: set CSS flag */
1032         command = readl(&xhci->op_regs->command);
1033         command |= CMD_CSS;
1034         writel(command, &xhci->op_regs->command);
1035         xhci->broken_suspend = 0;
1036         if (xhci_handshake(&xhci->op_regs->status,
1037                                 STS_SAVE, 0, 20 * 1000)) {
1038         /*
1039          * AMD SNPS xHC 3.0 occasionally does not clear the
1040          * SSS bit of USBSTS and when driver tries to poll
1041          * to see if the xHC clears BIT(8) which never happens
1042          * and driver assumes that controller is not responding
1043          * and times out. To workaround this, its good to check
1044          * if SRE and HCE bits are not set (as per xhci
1045          * Section 5.4.2) and bypass the timeout.
1046          */
1047                 res = readl(&xhci->op_regs->status);
1048                 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1049                     (((res & STS_SRE) == 0) &&
1050                                 ((res & STS_HCE) == 0))) {
1051                         xhci->broken_suspend = 1;
1052                 } else {
1053                         xhci_warn(xhci, "WARN: xHC save state timeout\n");
1054                         spin_unlock_irq(&xhci->lock);
1055                         return -ETIMEDOUT;
1056                 }
1057         }
1058         spin_unlock_irq(&xhci->lock);
1059
1060         /*
1061          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1062          * is about to be suspended.
1063          */
1064         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1065                         (!(xhci_all_ports_seen_u0(xhci)))) {
1066                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1067                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1068                                 "%s: compliance mode recovery timer deleted",
1069                                 __func__);
1070         }
1071
1072         /* step 5: remove core well power */
1073         /* synchronize irq when using MSI-X */
1074         xhci_msix_sync_irqs(xhci);
1075
1076         return rc;
1077 }
1078 EXPORT_SYMBOL_GPL(xhci_suspend);
1079
1080 /*
1081  * start xHC (not bus-specific)
1082  *
1083  * This is called when the machine transition from S3/S4 mode.
1084  *
1085  */
1086 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1087 {
1088         u32                     command, temp = 0;
1089         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1090         struct usb_hcd          *secondary_hcd;
1091         int                     retval = 0;
1092         bool                    comp_timer_running = false;
1093         bool                    pending_portevent = false;
1094         bool                    reinit_xhc = false;
1095
1096         if (!hcd->state)
1097                 return 0;
1098
1099         /* Wait a bit if either of the roothubs need to settle from the
1100          * transition into bus suspend.
1101          */
1102
1103         if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1104             time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1105                 msleep(100);
1106
1107         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1108         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1109
1110         spin_lock_irq(&xhci->lock);
1111
1112         if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1113                 reinit_xhc = true;
1114
1115         if (!reinit_xhc) {
1116                 /*
1117                  * Some controllers might lose power during suspend, so wait
1118                  * for controller not ready bit to clear, just as in xHC init.
1119                  */
1120                 retval = xhci_handshake(&xhci->op_regs->status,
1121                                         STS_CNR, 0, 10 * 1000 * 1000);
1122                 if (retval) {
1123                         xhci_warn(xhci, "Controller not ready at resume %d\n",
1124                                   retval);
1125                         spin_unlock_irq(&xhci->lock);
1126                         return retval;
1127                 }
1128                 /* step 1: restore register */
1129                 xhci_restore_registers(xhci);
1130                 /* step 2: initialize command ring buffer */
1131                 xhci_set_cmd_ring_deq(xhci);
1132                 /* step 3: restore state and start state*/
1133                 /* step 3: set CRS flag */
1134                 command = readl(&xhci->op_regs->command);
1135                 command |= CMD_CRS;
1136                 writel(command, &xhci->op_regs->command);
1137                 /*
1138                  * Some controllers take up to 55+ ms to complete the controller
1139                  * restore so setting the timeout to 100ms. Xhci specification
1140                  * doesn't mention any timeout value.
1141                  */
1142                 if (xhci_handshake(&xhci->op_regs->status,
1143                               STS_RESTORE, 0, 100 * 1000)) {
1144                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1145                         spin_unlock_irq(&xhci->lock);
1146                         return -ETIMEDOUT;
1147                 }
1148         }
1149
1150         temp = readl(&xhci->op_regs->status);
1151
1152         /* re-initialize the HC on Restore Error, or Host Controller Error */
1153         if (temp & (STS_SRE | STS_HCE)) {
1154                 reinit_xhc = true;
1155                 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1156         }
1157
1158         if (reinit_xhc) {
1159                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1160                                 !(xhci_all_ports_seen_u0(xhci))) {
1161                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1162                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1163                                 "Compliance Mode Recovery Timer deleted!");
1164                 }
1165
1166                 /* Let the USB core know _both_ roothubs lost power. */
1167                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1168                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1169
1170                 xhci_dbg(xhci, "Stop HCD\n");
1171                 xhci_halt(xhci);
1172                 xhci_zero_64b_regs(xhci);
1173                 retval = xhci_reset(xhci);
1174                 spin_unlock_irq(&xhci->lock);
1175                 if (retval)
1176                         return retval;
1177                 xhci_cleanup_msix(xhci);
1178
1179                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1180                 temp = readl(&xhci->op_regs->status);
1181                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1182                 temp = readl(&xhci->ir_set->irq_pending);
1183                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1184
1185                 xhci_dbg(xhci, "cleaning up memory\n");
1186                 xhci_mem_cleanup(xhci);
1187                 xhci_debugfs_exit(xhci);
1188                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1189                             readl(&xhci->op_regs->status));
1190
1191                 /* USB core calls the PCI reinit and start functions twice:
1192                  * first with the primary HCD, and then with the secondary HCD.
1193                  * If we don't do the same, the host will never be started.
1194                  */
1195                 if (!usb_hcd_is_primary_hcd(hcd))
1196                         secondary_hcd = hcd;
1197                 else
1198                         secondary_hcd = xhci->shared_hcd;
1199
1200                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1201                 retval = xhci_init(hcd->primary_hcd);
1202                 if (retval)
1203                         return retval;
1204                 comp_timer_running = true;
1205
1206                 xhci_dbg(xhci, "Start the primary HCD\n");
1207                 retval = xhci_run(hcd->primary_hcd);
1208                 if (!retval) {
1209                         xhci_dbg(xhci, "Start the secondary HCD\n");
1210                         retval = xhci_run(secondary_hcd);
1211                 }
1212                 hcd->state = HC_STATE_SUSPENDED;
1213                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1214                 goto done;
1215         }
1216
1217         /* step 4: set Run/Stop bit */
1218         command = readl(&xhci->op_regs->command);
1219         command |= CMD_RUN;
1220         writel(command, &xhci->op_regs->command);
1221         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1222                   0, 250 * 1000);
1223
1224         /* step 5: walk topology and initialize portsc,
1225          * portpmsc and portli
1226          */
1227         /* this is done in bus_resume */
1228
1229         /* step 6: restart each of the previously
1230          * Running endpoints by ringing their doorbells
1231          */
1232
1233         spin_unlock_irq(&xhci->lock);
1234
1235         xhci_dbc_resume(xhci);
1236
1237  done:
1238         if (retval == 0) {
1239                 /*
1240                  * Resume roothubs only if there are pending events.
1241                  * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1242                  * the first wake signalling failed, give it that chance.
1243                  */
1244                 pending_portevent = xhci_pending_portevent(xhci);
1245                 if (!pending_portevent) {
1246                         msleep(120);
1247                         pending_portevent = xhci_pending_portevent(xhci);
1248                 }
1249
1250                 if (pending_portevent) {
1251                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1252                         usb_hcd_resume_root_hub(hcd);
1253                 }
1254         }
1255         /*
1256          * If system is subject to the Quirk, Compliance Mode Timer needs to
1257          * be re-initialized Always after a system resume. Ports are subject
1258          * to suffer the Compliance Mode issue again. It doesn't matter if
1259          * ports have entered previously to U0 before system's suspension.
1260          */
1261         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1262                 compliance_mode_recovery_timer_init(xhci);
1263
1264         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1265                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1266
1267         /* Re-enable port polling. */
1268         xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1269                  __func__, hcd->self.busnum);
1270         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1271         usb_hcd_poll_rh_status(xhci->shared_hcd);
1272         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1273         usb_hcd_poll_rh_status(hcd);
1274
1275         return retval;
1276 }
1277 EXPORT_SYMBOL_GPL(xhci_resume);
1278 #endif  /* CONFIG_PM */
1279
1280 /*-------------------------------------------------------------------------*/
1281
1282 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1283 {
1284         void *temp;
1285         int ret = 0;
1286         unsigned int buf_len;
1287         enum dma_data_direction dir;
1288
1289         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1290         buf_len = urb->transfer_buffer_length;
1291
1292         temp = kzalloc_node(buf_len, GFP_ATOMIC,
1293                             dev_to_node(hcd->self.sysdev));
1294
1295         if (usb_urb_dir_out(urb))
1296                 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1297                                    temp, buf_len, 0);
1298
1299         urb->transfer_buffer = temp;
1300         urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1301                                            urb->transfer_buffer,
1302                                            urb->transfer_buffer_length,
1303                                            dir);
1304
1305         if (dma_mapping_error(hcd->self.sysdev,
1306                               urb->transfer_dma)) {
1307                 ret = -EAGAIN;
1308                 kfree(temp);
1309         } else {
1310                 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1311         }
1312
1313         return ret;
1314 }
1315
1316 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1317                                           struct urb *urb)
1318 {
1319         bool ret = false;
1320         unsigned int i;
1321         unsigned int len = 0;
1322         unsigned int trb_size;
1323         unsigned int max_pkt;
1324         struct scatterlist *sg;
1325         struct scatterlist *tail_sg;
1326
1327         tail_sg = urb->sg;
1328         max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1329
1330         if (!urb->num_sgs)
1331                 return ret;
1332
1333         if (urb->dev->speed >= USB_SPEED_SUPER)
1334                 trb_size = TRB_CACHE_SIZE_SS;
1335         else
1336                 trb_size = TRB_CACHE_SIZE_HS;
1337
1338         if (urb->transfer_buffer_length != 0 &&
1339             !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1340                 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1341                         len = len + sg->length;
1342                         if (i > trb_size - 2) {
1343                                 len = len - tail_sg->length;
1344                                 if (len < max_pkt) {
1345                                         ret = true;
1346                                         break;
1347                                 }
1348
1349                                 tail_sg = sg_next(tail_sg);
1350                         }
1351                 }
1352         }
1353         return ret;
1354 }
1355
1356 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1357 {
1358         unsigned int len;
1359         unsigned int buf_len;
1360         enum dma_data_direction dir;
1361
1362         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1363
1364         buf_len = urb->transfer_buffer_length;
1365
1366         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1367             (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1368                 dma_unmap_single(hcd->self.sysdev,
1369                                  urb->transfer_dma,
1370                                  urb->transfer_buffer_length,
1371                                  dir);
1372
1373         if (usb_urb_dir_in(urb)) {
1374                 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1375                                            urb->transfer_buffer,
1376                                            buf_len,
1377                                            0);
1378                 if (len != buf_len) {
1379                         xhci_dbg(hcd_to_xhci(hcd),
1380                                  "Copy from tmp buf to urb sg list failed\n");
1381                         urb->actual_length = len;
1382                 }
1383         }
1384         urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1385         kfree(urb->transfer_buffer);
1386         urb->transfer_buffer = NULL;
1387 }
1388
1389 /*
1390  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1391  * we'll copy the actual data into the TRB address register. This is limited to
1392  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1393  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1394  */
1395 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1396                                 gfp_t mem_flags)
1397 {
1398         struct xhci_hcd *xhci;
1399
1400         xhci = hcd_to_xhci(hcd);
1401
1402         if (xhci_urb_suitable_for_idt(urb))
1403                 return 0;
1404
1405         if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1406                 if (xhci_urb_temp_buffer_required(hcd, urb))
1407                         return xhci_map_temp_buffer(hcd, urb);
1408         }
1409         return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1410 }
1411
1412 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1413 {
1414         struct xhci_hcd *xhci;
1415         bool unmap_temp_buf = false;
1416
1417         xhci = hcd_to_xhci(hcd);
1418
1419         if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1420                 unmap_temp_buf = true;
1421
1422         if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1423                 xhci_unmap_temp_buf(hcd, urb);
1424         else
1425                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1426 }
1427
1428 /**
1429  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1430  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1431  * value to right shift 1 for the bitmask.
1432  *
1433  * Index  = (epnum * 2) + direction - 1,
1434  * where direction = 0 for OUT, 1 for IN.
1435  * For control endpoints, the IN index is used (OUT index is unused), so
1436  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1437  */
1438 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1439 {
1440         unsigned int index;
1441         if (usb_endpoint_xfer_control(desc))
1442                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1443         else
1444                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1445                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1446         return index;
1447 }
1448 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1449
1450 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1451  * address from the XHCI endpoint index.
1452  */
1453 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1454 {
1455         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1456         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1457         return direction | number;
1458 }
1459
1460 /* Find the flag for this endpoint (for use in the control context).  Use the
1461  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1462  * bit 1, etc.
1463  */
1464 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1465 {
1466         return 1 << (xhci_get_endpoint_index(desc) + 1);
1467 }
1468
1469 /* Compute the last valid endpoint context index.  Basically, this is the
1470  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1471  * we find the most significant bit set in the added contexts flags.
1472  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1473  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1474  */
1475 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1476 {
1477         return fls(added_ctxs) - 1;
1478 }
1479
1480 /* Returns 1 if the arguments are OK;
1481  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1482  */
1483 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1484                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1485                 const char *func) {
1486         struct xhci_hcd *xhci;
1487         struct xhci_virt_device *virt_dev;
1488
1489         if (!hcd || (check_ep && !ep) || !udev) {
1490                 pr_debug("xHCI %s called with invalid args\n", func);
1491                 return -EINVAL;
1492         }
1493         if (!udev->parent) {
1494                 pr_debug("xHCI %s called for root hub\n", func);
1495                 return 0;
1496         }
1497
1498         xhci = hcd_to_xhci(hcd);
1499         if (check_virt_dev) {
1500                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1501                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1502                                         func);
1503                         return -EINVAL;
1504                 }
1505
1506                 virt_dev = xhci->devs[udev->slot_id];
1507                 if (virt_dev->udev != udev) {
1508                         xhci_dbg(xhci, "xHCI %s called with udev and "
1509                                           "virt_dev does not match\n", func);
1510                         return -EINVAL;
1511                 }
1512         }
1513
1514         if (xhci->xhc_state & XHCI_STATE_HALTED)
1515                 return -ENODEV;
1516
1517         return 1;
1518 }
1519
1520 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1521                 struct usb_device *udev, struct xhci_command *command,
1522                 bool ctx_change, bool must_succeed);
1523
1524 /*
1525  * Full speed devices may have a max packet size greater than 8 bytes, but the
1526  * USB core doesn't know that until it reads the first 8 bytes of the
1527  * descriptor.  If the usb_device's max packet size changes after that point,
1528  * we need to issue an evaluate context command and wait on it.
1529  */
1530 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1531                 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1532 {
1533         struct xhci_container_ctx *out_ctx;
1534         struct xhci_input_control_ctx *ctrl_ctx;
1535         struct xhci_ep_ctx *ep_ctx;
1536         struct xhci_command *command;
1537         int max_packet_size;
1538         int hw_max_packet_size;
1539         int ret = 0;
1540
1541         out_ctx = xhci->devs[slot_id]->out_ctx;
1542         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1543         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1544         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1545         if (hw_max_packet_size != max_packet_size) {
1546                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1547                                 "Max Packet Size for ep 0 changed.");
1548                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1549                                 "Max packet size in usb_device = %d",
1550                                 max_packet_size);
1551                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1552                                 "Max packet size in xHCI HW = %d",
1553                                 hw_max_packet_size);
1554                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1555                                 "Issuing evaluate context command.");
1556
1557                 /* Set up the input context flags for the command */
1558                 /* FIXME: This won't work if a non-default control endpoint
1559                  * changes max packet sizes.
1560                  */
1561
1562                 command = xhci_alloc_command(xhci, true, mem_flags);
1563                 if (!command)
1564                         return -ENOMEM;
1565
1566                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1567                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1568                 if (!ctrl_ctx) {
1569                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1570                                         __func__);
1571                         ret = -ENOMEM;
1572                         goto command_cleanup;
1573                 }
1574                 /* Set up the modified control endpoint 0 */
1575                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1576                                 xhci->devs[slot_id]->out_ctx, ep_index);
1577
1578                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1579                 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1580                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1581                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1582
1583                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1584                 ctrl_ctx->drop_flags = 0;
1585
1586                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1587                                 true, false);
1588
1589                 /* Clean up the input context for later use by bandwidth
1590                  * functions.
1591                  */
1592                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1593 command_cleanup:
1594                 kfree(command->completion);
1595                 kfree(command);
1596         }
1597         return ret;
1598 }
1599
1600 /*
1601  * non-error returns are a promise to giveback() the urb later
1602  * we drop ownership so next owner (or urb unlink) can get it
1603  */
1604 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1605 {
1606         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1607         unsigned long flags;
1608         int ret = 0;
1609         unsigned int slot_id, ep_index;
1610         unsigned int *ep_state;
1611         struct urb_priv *urb_priv;
1612         int num_tds;
1613
1614         if (!urb)
1615                 return -EINVAL;
1616         ret = xhci_check_args(hcd, urb->dev, urb->ep,
1617                                         true, true, __func__);
1618         if (ret <= 0)
1619                 return ret ? ret : -EINVAL;
1620
1621         slot_id = urb->dev->slot_id;
1622         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1623         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1624
1625         if (!HCD_HW_ACCESSIBLE(hcd))
1626                 return -ESHUTDOWN;
1627
1628         if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1629                 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1630                 return -ENODEV;
1631         }
1632
1633         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1634                 num_tds = urb->number_of_packets;
1635         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1636             urb->transfer_buffer_length > 0 &&
1637             urb->transfer_flags & URB_ZERO_PACKET &&
1638             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1639                 num_tds = 2;
1640         else
1641                 num_tds = 1;
1642
1643         urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1644         if (!urb_priv)
1645                 return -ENOMEM;
1646
1647         urb_priv->num_tds = num_tds;
1648         urb_priv->num_tds_done = 0;
1649         urb->hcpriv = urb_priv;
1650
1651         trace_xhci_urb_enqueue(urb);
1652
1653         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1654                 /* Check to see if the max packet size for the default control
1655                  * endpoint changed during FS device enumeration
1656                  */
1657                 if (urb->dev->speed == USB_SPEED_FULL) {
1658                         ret = xhci_check_maxpacket(xhci, slot_id,
1659                                         ep_index, urb, mem_flags);
1660                         if (ret < 0) {
1661                                 xhci_urb_free_priv(urb_priv);
1662                                 urb->hcpriv = NULL;
1663                                 return ret;
1664                         }
1665                 }
1666         }
1667
1668         spin_lock_irqsave(&xhci->lock, flags);
1669
1670         if (xhci->xhc_state & XHCI_STATE_DYING) {
1671                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1672                          urb->ep->desc.bEndpointAddress, urb);
1673                 ret = -ESHUTDOWN;
1674                 goto free_priv;
1675         }
1676         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1677                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1678                           *ep_state);
1679                 ret = -EINVAL;
1680                 goto free_priv;
1681         }
1682         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1683                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1684                 ret = -EINVAL;
1685                 goto free_priv;
1686         }
1687
1688         switch (usb_endpoint_type(&urb->ep->desc)) {
1689
1690         case USB_ENDPOINT_XFER_CONTROL:
1691                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1692                                          slot_id, ep_index);
1693                 break;
1694         case USB_ENDPOINT_XFER_BULK:
1695                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1696                                          slot_id, ep_index);
1697                 break;
1698         case USB_ENDPOINT_XFER_INT:
1699                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1700                                 slot_id, ep_index);
1701                 break;
1702         case USB_ENDPOINT_XFER_ISOC:
1703                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1704                                 slot_id, ep_index);
1705         }
1706
1707         if (ret) {
1708 free_priv:
1709                 xhci_urb_free_priv(urb_priv);
1710                 urb->hcpriv = NULL;
1711         }
1712         spin_unlock_irqrestore(&xhci->lock, flags);
1713         return ret;
1714 }
1715
1716 /*
1717  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1718  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1719  * should pick up where it left off in the TD, unless a Set Transfer Ring
1720  * Dequeue Pointer is issued.
1721  *
1722  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1723  * the ring.  Since the ring is a contiguous structure, they can't be physically
1724  * removed.  Instead, there are two options:
1725  *
1726  *  1) If the HC is in the middle of processing the URB to be canceled, we
1727  *     simply move the ring's dequeue pointer past those TRBs using the Set
1728  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1729  *     when drivers timeout on the last submitted URB and attempt to cancel.
1730  *
1731  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1732  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1733  *     HC will need to invalidate the any TRBs it has cached after the stop
1734  *     endpoint command, as noted in the xHCI 0.95 errata.
1735  *
1736  *  3) The TD may have completed by the time the Stop Endpoint Command
1737  *     completes, so software needs to handle that case too.
1738  *
1739  * This function should protect against the TD enqueueing code ringing the
1740  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1741  * It also needs to account for multiple cancellations on happening at the same
1742  * time for the same endpoint.
1743  *
1744  * Note that this function can be called in any context, or so says
1745  * usb_hcd_unlink_urb()
1746  */
1747 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1748 {
1749         unsigned long flags;
1750         int ret, i;
1751         u32 temp;
1752         struct xhci_hcd *xhci;
1753         struct urb_priv *urb_priv;
1754         struct xhci_td *td;
1755         unsigned int ep_index;
1756         struct xhci_ring *ep_ring;
1757         struct xhci_virt_ep *ep;
1758         struct xhci_command *command;
1759         struct xhci_virt_device *vdev;
1760
1761         xhci = hcd_to_xhci(hcd);
1762         spin_lock_irqsave(&xhci->lock, flags);
1763
1764         trace_xhci_urb_dequeue(urb);
1765
1766         /* Make sure the URB hasn't completed or been unlinked already */
1767         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1768         if (ret)
1769                 goto done;
1770
1771         /* give back URB now if we can't queue it for cancel */
1772         vdev = xhci->devs[urb->dev->slot_id];
1773         urb_priv = urb->hcpriv;
1774         if (!vdev || !urb_priv)
1775                 goto err_giveback;
1776
1777         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1778         ep = &vdev->eps[ep_index];
1779         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1780         if (!ep || !ep_ring)
1781                 goto err_giveback;
1782
1783         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1784         temp = readl(&xhci->op_regs->status);
1785         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1786                 xhci_hc_died(xhci);
1787                 goto done;
1788         }
1789
1790         /*
1791          * check ring is not re-allocated since URB was enqueued. If it is, then
1792          * make sure none of the ring related pointers in this URB private data
1793          * are touched, such as td_list, otherwise we overwrite freed data
1794          */
1795         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1796                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1797                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1798                         td = &urb_priv->td[i];
1799                         if (!list_empty(&td->cancelled_td_list))
1800                                 list_del_init(&td->cancelled_td_list);
1801                 }
1802                 goto err_giveback;
1803         }
1804
1805         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1806                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1807                                 "HC halted, freeing TD manually.");
1808                 for (i = urb_priv->num_tds_done;
1809                      i < urb_priv->num_tds;
1810                      i++) {
1811                         td = &urb_priv->td[i];
1812                         if (!list_empty(&td->td_list))
1813                                 list_del_init(&td->td_list);
1814                         if (!list_empty(&td->cancelled_td_list))
1815                                 list_del_init(&td->cancelled_td_list);
1816                 }
1817                 goto err_giveback;
1818         }
1819
1820         i = urb_priv->num_tds_done;
1821         if (i < urb_priv->num_tds)
1822                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1823                                 "Cancel URB %p, dev %s, ep 0x%x, "
1824                                 "starting at offset 0x%llx",
1825                                 urb, urb->dev->devpath,
1826                                 urb->ep->desc.bEndpointAddress,
1827                                 (unsigned long long) xhci_trb_virt_to_dma(
1828                                         urb_priv->td[i].start_seg,
1829                                         urb_priv->td[i].first_trb));
1830
1831         for (; i < urb_priv->num_tds; i++) {
1832                 td = &urb_priv->td[i];
1833                 /* TD can already be on cancelled list if ep halted on it */
1834                 if (list_empty(&td->cancelled_td_list)) {
1835                         td->cancel_status = TD_DIRTY;
1836                         list_add_tail(&td->cancelled_td_list,
1837                                       &ep->cancelled_td_list);
1838                 }
1839         }
1840
1841         /* Queue a stop endpoint command, but only if this is
1842          * the first cancellation to be handled.
1843          */
1844         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1845                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1846                 if (!command) {
1847                         ret = -ENOMEM;
1848                         goto done;
1849                 }
1850                 ep->ep_state |= EP_STOP_CMD_PENDING;
1851                 ep->stop_cmd_timer.expires = jiffies +
1852                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1853                 add_timer(&ep->stop_cmd_timer);
1854                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1855                                          ep_index, 0);
1856                 xhci_ring_cmd_db(xhci);
1857         }
1858 done:
1859         spin_unlock_irqrestore(&xhci->lock, flags);
1860         return ret;
1861
1862 err_giveback:
1863         if (urb_priv)
1864                 xhci_urb_free_priv(urb_priv);
1865         usb_hcd_unlink_urb_from_ep(hcd, urb);
1866         spin_unlock_irqrestore(&xhci->lock, flags);
1867         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1868         return ret;
1869 }
1870
1871 /* Drop an endpoint from a new bandwidth configuration for this device.
1872  * Only one call to this function is allowed per endpoint before
1873  * check_bandwidth() or reset_bandwidth() must be called.
1874  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1875  * add the endpoint to the schedule with possibly new parameters denoted by a
1876  * different endpoint descriptor in usb_host_endpoint.
1877  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1878  * not allowed.
1879  *
1880  * The USB core will not allow URBs to be queued to an endpoint that is being
1881  * disabled, so there's no need for mutual exclusion to protect
1882  * the xhci->devs[slot_id] structure.
1883  */
1884 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1885                        struct usb_host_endpoint *ep)
1886 {
1887         struct xhci_hcd *xhci;
1888         struct xhci_container_ctx *in_ctx, *out_ctx;
1889         struct xhci_input_control_ctx *ctrl_ctx;
1890         unsigned int ep_index;
1891         struct xhci_ep_ctx *ep_ctx;
1892         u32 drop_flag;
1893         u32 new_add_flags, new_drop_flags;
1894         int ret;
1895
1896         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1897         if (ret <= 0)
1898                 return ret;
1899         xhci = hcd_to_xhci(hcd);
1900         if (xhci->xhc_state & XHCI_STATE_DYING)
1901                 return -ENODEV;
1902
1903         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1904         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1905         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1906                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1907                                 __func__, drop_flag);
1908                 return 0;
1909         }
1910
1911         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1912         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1913         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1914         if (!ctrl_ctx) {
1915                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1916                                 __func__);
1917                 return 0;
1918         }
1919
1920         ep_index = xhci_get_endpoint_index(&ep->desc);
1921         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1922         /* If the HC already knows the endpoint is disabled,
1923          * or the HCD has noted it is disabled, ignore this request
1924          */
1925         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1926             le32_to_cpu(ctrl_ctx->drop_flags) &
1927             xhci_get_endpoint_flag(&ep->desc)) {
1928                 /* Do not warn when called after a usb_device_reset */
1929                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1930                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1931                                   __func__, ep);
1932                 return 0;
1933         }
1934
1935         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1936         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1937
1938         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1939         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1940
1941         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1942
1943         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1944
1945         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1946                         (unsigned int) ep->desc.bEndpointAddress,
1947                         udev->slot_id,
1948                         (unsigned int) new_drop_flags,
1949                         (unsigned int) new_add_flags);
1950         return 0;
1951 }
1952 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1953
1954 /* Add an endpoint to a new possible bandwidth configuration for this device.
1955  * Only one call to this function is allowed per endpoint before
1956  * check_bandwidth() or reset_bandwidth() must be called.
1957  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1958  * add the endpoint to the schedule with possibly new parameters denoted by a
1959  * different endpoint descriptor in usb_host_endpoint.
1960  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1961  * not allowed.
1962  *
1963  * The USB core will not allow URBs to be queued to an endpoint until the
1964  * configuration or alt setting is installed in the device, so there's no need
1965  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1966  */
1967 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1968                       struct usb_host_endpoint *ep)
1969 {
1970         struct xhci_hcd *xhci;
1971         struct xhci_container_ctx *in_ctx;
1972         unsigned int ep_index;
1973         struct xhci_input_control_ctx *ctrl_ctx;
1974         struct xhci_ep_ctx *ep_ctx;
1975         u32 added_ctxs;
1976         u32 new_add_flags, new_drop_flags;
1977         struct xhci_virt_device *virt_dev;
1978         int ret = 0;
1979
1980         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1981         if (ret <= 0) {
1982                 /* So we won't queue a reset ep command for a root hub */
1983                 ep->hcpriv = NULL;
1984                 return ret;
1985         }
1986         xhci = hcd_to_xhci(hcd);
1987         if (xhci->xhc_state & XHCI_STATE_DYING)
1988                 return -ENODEV;
1989
1990         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1991         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1992                 /* FIXME when we have to issue an evaluate endpoint command to
1993                  * deal with ep0 max packet size changing once we get the
1994                  * descriptors
1995                  */
1996                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1997                                 __func__, added_ctxs);
1998                 return 0;
1999         }
2000
2001         virt_dev = xhci->devs[udev->slot_id];
2002         in_ctx = virt_dev->in_ctx;
2003         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2004         if (!ctrl_ctx) {
2005                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2006                                 __func__);
2007                 return 0;
2008         }
2009
2010         ep_index = xhci_get_endpoint_index(&ep->desc);
2011         /* If this endpoint is already in use, and the upper layers are trying
2012          * to add it again without dropping it, reject the addition.
2013          */
2014         if (virt_dev->eps[ep_index].ring &&
2015                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2016                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
2017                                 "without dropping it.\n",
2018                                 (unsigned int) ep->desc.bEndpointAddress);
2019                 return -EINVAL;
2020         }
2021
2022         /* If the HCD has already noted the endpoint is enabled,
2023          * ignore this request.
2024          */
2025         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2026                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2027                                 __func__, ep);
2028                 return 0;
2029         }
2030
2031         /*
2032          * Configuration and alternate setting changes must be done in
2033          * process context, not interrupt context (or so documenation
2034          * for usb_set_interface() and usb_set_configuration() claim).
2035          */
2036         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2037                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2038                                 __func__, ep->desc.bEndpointAddress);
2039                 return -ENOMEM;
2040         }
2041
2042         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2043         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2044
2045         /* If xhci_endpoint_disable() was called for this endpoint, but the
2046          * xHC hasn't been notified yet through the check_bandwidth() call,
2047          * this re-adds a new state for the endpoint from the new endpoint
2048          * descriptors.  We must drop and re-add this endpoint, so we leave the
2049          * drop flags alone.
2050          */
2051         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2052
2053         /* Store the usb_device pointer for later use */
2054         ep->hcpriv = udev;
2055
2056         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2057         trace_xhci_add_endpoint(ep_ctx);
2058
2059         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2060                         (unsigned int) ep->desc.bEndpointAddress,
2061                         udev->slot_id,
2062                         (unsigned int) new_drop_flags,
2063                         (unsigned int) new_add_flags);
2064         return 0;
2065 }
2066 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2067
2068 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2069 {
2070         struct xhci_input_control_ctx *ctrl_ctx;
2071         struct xhci_ep_ctx *ep_ctx;
2072         struct xhci_slot_ctx *slot_ctx;
2073         int i;
2074
2075         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2076         if (!ctrl_ctx) {
2077                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2078                                 __func__);
2079                 return;
2080         }
2081
2082         /* When a device's add flag and drop flag are zero, any subsequent
2083          * configure endpoint command will leave that endpoint's state
2084          * untouched.  Make sure we don't leave any old state in the input
2085          * endpoint contexts.
2086          */
2087         ctrl_ctx->drop_flags = 0;
2088         ctrl_ctx->add_flags = 0;
2089         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2090         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2091         /* Endpoint 0 is always valid */
2092         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2093         for (i = 1; i < 31; i++) {
2094                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2095                 ep_ctx->ep_info = 0;
2096                 ep_ctx->ep_info2 = 0;
2097                 ep_ctx->deq = 0;
2098                 ep_ctx->tx_info = 0;
2099         }
2100 }
2101
2102 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2103                 struct usb_device *udev, u32 *cmd_status)
2104 {
2105         int ret;
2106
2107         switch (*cmd_status) {
2108         case COMP_COMMAND_ABORTED:
2109         case COMP_COMMAND_RING_STOPPED:
2110                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2111                 ret = -ETIME;
2112                 break;
2113         case COMP_RESOURCE_ERROR:
2114                 dev_warn(&udev->dev,
2115                          "Not enough host controller resources for new device state.\n");
2116                 ret = -ENOMEM;
2117                 /* FIXME: can we allocate more resources for the HC? */
2118                 break;
2119         case COMP_BANDWIDTH_ERROR:
2120         case COMP_SECONDARY_BANDWIDTH_ERROR:
2121                 dev_warn(&udev->dev,
2122                          "Not enough bandwidth for new device state.\n");
2123                 ret = -ENOSPC;
2124                 /* FIXME: can we go back to the old state? */
2125                 break;
2126         case COMP_TRB_ERROR:
2127                 /* the HCD set up something wrong */
2128                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2129                                 "add flag = 1, "
2130                                 "and endpoint is not disabled.\n");
2131                 ret = -EINVAL;
2132                 break;
2133         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2134                 dev_warn(&udev->dev,
2135                          "ERROR: Incompatible device for endpoint configure command.\n");
2136                 ret = -ENODEV;
2137                 break;
2138         case COMP_SUCCESS:
2139                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2140                                 "Successful Endpoint Configure command");
2141                 ret = 0;
2142                 break;
2143         default:
2144                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2145                                 *cmd_status);
2146                 ret = -EINVAL;
2147                 break;
2148         }
2149         return ret;
2150 }
2151
2152 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2153                 struct usb_device *udev, u32 *cmd_status)
2154 {
2155         int ret;
2156
2157         switch (*cmd_status) {
2158         case COMP_COMMAND_ABORTED:
2159         case COMP_COMMAND_RING_STOPPED:
2160                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2161                 ret = -ETIME;
2162                 break;
2163         case COMP_PARAMETER_ERROR:
2164                 dev_warn(&udev->dev,
2165                          "WARN: xHCI driver setup invalid evaluate context command.\n");
2166                 ret = -EINVAL;
2167                 break;
2168         case COMP_SLOT_NOT_ENABLED_ERROR:
2169                 dev_warn(&udev->dev,
2170                         "WARN: slot not enabled for evaluate context command.\n");
2171                 ret = -EINVAL;
2172                 break;
2173         case COMP_CONTEXT_STATE_ERROR:
2174                 dev_warn(&udev->dev,
2175                         "WARN: invalid context state for evaluate context command.\n");
2176                 ret = -EINVAL;
2177                 break;
2178         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2179                 dev_warn(&udev->dev,
2180                         "ERROR: Incompatible device for evaluate context command.\n");
2181                 ret = -ENODEV;
2182                 break;
2183         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2184                 /* Max Exit Latency too large error */
2185                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2186                 ret = -EINVAL;
2187                 break;
2188         case COMP_SUCCESS:
2189                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2190                                 "Successful evaluate context command");
2191                 ret = 0;
2192                 break;
2193         default:
2194                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2195                         *cmd_status);
2196                 ret = -EINVAL;
2197                 break;
2198         }
2199         return ret;
2200 }
2201
2202 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2203                 struct xhci_input_control_ctx *ctrl_ctx)
2204 {
2205         u32 valid_add_flags;
2206         u32 valid_drop_flags;
2207
2208         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2209          * (bit 1).  The default control endpoint is added during the Address
2210          * Device command and is never removed until the slot is disabled.
2211          */
2212         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2213         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2214
2215         /* Use hweight32 to count the number of ones in the add flags, or
2216          * number of endpoints added.  Don't count endpoints that are changed
2217          * (both added and dropped).
2218          */
2219         return hweight32(valid_add_flags) -
2220                 hweight32(valid_add_flags & valid_drop_flags);
2221 }
2222
2223 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2224                 struct xhci_input_control_ctx *ctrl_ctx)
2225 {
2226         u32 valid_add_flags;
2227         u32 valid_drop_flags;
2228
2229         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2230         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2231
2232         return hweight32(valid_drop_flags) -
2233                 hweight32(valid_add_flags & valid_drop_flags);
2234 }
2235
2236 /*
2237  * We need to reserve the new number of endpoints before the configure endpoint
2238  * command completes.  We can't subtract the dropped endpoints from the number
2239  * of active endpoints until the command completes because we can oversubscribe
2240  * the host in this case:
2241  *
2242  *  - the first configure endpoint command drops more endpoints than it adds
2243  *  - a second configure endpoint command that adds more endpoints is queued
2244  *  - the first configure endpoint command fails, so the config is unchanged
2245  *  - the second command may succeed, even though there isn't enough resources
2246  *
2247  * Must be called with xhci->lock held.
2248  */
2249 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2250                 struct xhci_input_control_ctx *ctrl_ctx)
2251 {
2252         u32 added_eps;
2253
2254         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2255         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2256                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2257                                 "Not enough ep ctxs: "
2258                                 "%u active, need to add %u, limit is %u.",
2259                                 xhci->num_active_eps, added_eps,
2260                                 xhci->limit_active_eps);
2261                 return -ENOMEM;
2262         }
2263         xhci->num_active_eps += added_eps;
2264         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2265                         "Adding %u ep ctxs, %u now active.", added_eps,
2266                         xhci->num_active_eps);
2267         return 0;
2268 }
2269
2270 /*
2271  * The configure endpoint was failed by the xHC for some other reason, so we
2272  * need to revert the resources that failed configuration would have used.
2273  *
2274  * Must be called with xhci->lock held.
2275  */
2276 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2277                 struct xhci_input_control_ctx *ctrl_ctx)
2278 {
2279         u32 num_failed_eps;
2280
2281         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2282         xhci->num_active_eps -= num_failed_eps;
2283         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2284                         "Removing %u failed ep ctxs, %u now active.",
2285                         num_failed_eps,
2286                         xhci->num_active_eps);
2287 }
2288
2289 /*
2290  * Now that the command has completed, clean up the active endpoint count by
2291  * subtracting out the endpoints that were dropped (but not changed).
2292  *
2293  * Must be called with xhci->lock held.
2294  */
2295 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2296                 struct xhci_input_control_ctx *ctrl_ctx)
2297 {
2298         u32 num_dropped_eps;
2299
2300         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2301         xhci->num_active_eps -= num_dropped_eps;
2302         if (num_dropped_eps)
2303                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2304                                 "Removing %u dropped ep ctxs, %u now active.",
2305                                 num_dropped_eps,
2306                                 xhci->num_active_eps);
2307 }
2308
2309 static unsigned int xhci_get_block_size(struct usb_device *udev)
2310 {
2311         switch (udev->speed) {
2312         case USB_SPEED_LOW:
2313         case USB_SPEED_FULL:
2314                 return FS_BLOCK;
2315         case USB_SPEED_HIGH:
2316                 return HS_BLOCK;
2317         case USB_SPEED_SUPER:
2318         case USB_SPEED_SUPER_PLUS:
2319                 return SS_BLOCK;
2320         case USB_SPEED_UNKNOWN:
2321         case USB_SPEED_WIRELESS:
2322         default:
2323                 /* Should never happen */
2324                 return 1;
2325         }
2326 }
2327
2328 static unsigned int
2329 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2330 {
2331         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2332                 return LS_OVERHEAD;
2333         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2334                 return FS_OVERHEAD;
2335         return HS_OVERHEAD;
2336 }
2337
2338 /* If we are changing a LS/FS device under a HS hub,
2339  * make sure (if we are activating a new TT) that the HS bus has enough
2340  * bandwidth for this new TT.
2341  */
2342 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2343                 struct xhci_virt_device *virt_dev,
2344                 int old_active_eps)
2345 {
2346         struct xhci_interval_bw_table *bw_table;
2347         struct xhci_tt_bw_info *tt_info;
2348
2349         /* Find the bandwidth table for the root port this TT is attached to. */
2350         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2351         tt_info = virt_dev->tt_info;
2352         /* If this TT already had active endpoints, the bandwidth for this TT
2353          * has already been added.  Removing all periodic endpoints (and thus
2354          * making the TT enactive) will only decrease the bandwidth used.
2355          */
2356         if (old_active_eps)
2357                 return 0;
2358         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2359                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2360                         return -ENOMEM;
2361                 return 0;
2362         }
2363         /* Not sure why we would have no new active endpoints...
2364          *
2365          * Maybe because of an Evaluate Context change for a hub update or a
2366          * control endpoint 0 max packet size change?
2367          * FIXME: skip the bandwidth calculation in that case.
2368          */
2369         return 0;
2370 }
2371
2372 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2373                 struct xhci_virt_device *virt_dev)
2374 {
2375         unsigned int bw_reserved;
2376
2377         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2378         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2379                 return -ENOMEM;
2380
2381         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2382         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2383                 return -ENOMEM;
2384
2385         return 0;
2386 }
2387
2388 /*
2389  * This algorithm is a very conservative estimate of the worst-case scheduling
2390  * scenario for any one interval.  The hardware dynamically schedules the
2391  * packets, so we can't tell which microframe could be the limiting factor in
2392  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2393  *
2394  * Obviously, we can't solve an NP complete problem to find the minimum worst
2395  * case scenario.  Instead, we come up with an estimate that is no less than
2396  * the worst case bandwidth used for any one microframe, but may be an
2397  * over-estimate.
2398  *
2399  * We walk the requirements for each endpoint by interval, starting with the
2400  * smallest interval, and place packets in the schedule where there is only one
2401  * possible way to schedule packets for that interval.  In order to simplify
2402  * this algorithm, we record the largest max packet size for each interval, and
2403  * assume all packets will be that size.
2404  *
2405  * For interval 0, we obviously must schedule all packets for each interval.
2406  * The bandwidth for interval 0 is just the amount of data to be transmitted
2407  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2408  * the number of packets).
2409  *
2410  * For interval 1, we have two possible microframes to schedule those packets
2411  * in.  For this algorithm, if we can schedule the same number of packets for
2412  * each possible scheduling opportunity (each microframe), we will do so.  The
2413  * remaining number of packets will be saved to be transmitted in the gaps in
2414  * the next interval's scheduling sequence.
2415  *
2416  * As we move those remaining packets to be scheduled with interval 2 packets,
2417  * we have to double the number of remaining packets to transmit.  This is
2418  * because the intervals are actually powers of 2, and we would be transmitting
2419  * the previous interval's packets twice in this interval.  We also have to be
2420  * sure that when we look at the largest max packet size for this interval, we
2421  * also look at the largest max packet size for the remaining packets and take
2422  * the greater of the two.
2423  *
2424  * The algorithm continues to evenly distribute packets in each scheduling
2425  * opportunity, and push the remaining packets out, until we get to the last
2426  * interval.  Then those packets and their associated overhead are just added
2427  * to the bandwidth used.
2428  */
2429 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2430                 struct xhci_virt_device *virt_dev,
2431                 int old_active_eps)
2432 {
2433         unsigned int bw_reserved;
2434         unsigned int max_bandwidth;
2435         unsigned int bw_used;
2436         unsigned int block_size;
2437         struct xhci_interval_bw_table *bw_table;
2438         unsigned int packet_size = 0;
2439         unsigned int overhead = 0;
2440         unsigned int packets_transmitted = 0;
2441         unsigned int packets_remaining = 0;
2442         unsigned int i;
2443
2444         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2445                 return xhci_check_ss_bw(xhci, virt_dev);
2446
2447         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2448                 max_bandwidth = HS_BW_LIMIT;
2449                 /* Convert percent of bus BW reserved to blocks reserved */
2450                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2451         } else {
2452                 max_bandwidth = FS_BW_LIMIT;
2453                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2454         }
2455
2456         bw_table = virt_dev->bw_table;
2457         /* We need to translate the max packet size and max ESIT payloads into
2458          * the units the hardware uses.
2459          */
2460         block_size = xhci_get_block_size(virt_dev->udev);
2461
2462         /* If we are manipulating a LS/FS device under a HS hub, double check
2463          * that the HS bus has enough bandwidth if we are activing a new TT.
2464          */
2465         if (virt_dev->tt_info) {
2466                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2467                                 "Recalculating BW for rootport %u",
2468                                 virt_dev->real_port);
2469                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2470                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2471                                         "newly activated TT.\n");
2472                         return -ENOMEM;
2473                 }
2474                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2475                                 "Recalculating BW for TT slot %u port %u",
2476                                 virt_dev->tt_info->slot_id,
2477                                 virt_dev->tt_info->ttport);
2478         } else {
2479                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2480                                 "Recalculating BW for rootport %u",
2481                                 virt_dev->real_port);
2482         }
2483
2484         /* Add in how much bandwidth will be used for interval zero, or the
2485          * rounded max ESIT payload + number of packets * largest overhead.
2486          */
2487         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2488                 bw_table->interval_bw[0].num_packets *
2489                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2490
2491         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2492                 unsigned int bw_added;
2493                 unsigned int largest_mps;
2494                 unsigned int interval_overhead;
2495
2496                 /*
2497                  * How many packets could we transmit in this interval?
2498                  * If packets didn't fit in the previous interval, we will need
2499                  * to transmit that many packets twice within this interval.
2500                  */
2501                 packets_remaining = 2 * packets_remaining +
2502                         bw_table->interval_bw[i].num_packets;
2503
2504                 /* Find the largest max packet size of this or the previous
2505                  * interval.
2506                  */
2507                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2508                         largest_mps = 0;
2509                 else {
2510                         struct xhci_virt_ep *virt_ep;
2511                         struct list_head *ep_entry;
2512
2513                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2514                         virt_ep = list_entry(ep_entry,
2515                                         struct xhci_virt_ep, bw_endpoint_list);
2516                         /* Convert to blocks, rounding up */
2517                         largest_mps = DIV_ROUND_UP(
2518                                         virt_ep->bw_info.max_packet_size,
2519                                         block_size);
2520                 }
2521                 if (largest_mps > packet_size)
2522                         packet_size = largest_mps;
2523
2524                 /* Use the larger overhead of this or the previous interval. */
2525                 interval_overhead = xhci_get_largest_overhead(
2526                                 &bw_table->interval_bw[i]);
2527                 if (interval_overhead > overhead)
2528                         overhead = interval_overhead;
2529
2530                 /* How many packets can we evenly distribute across
2531                  * (1 << (i + 1)) possible scheduling opportunities?
2532                  */
2533                 packets_transmitted = packets_remaining >> (i + 1);
2534
2535                 /* Add in the bandwidth used for those scheduled packets */
2536                 bw_added = packets_transmitted * (overhead + packet_size);
2537
2538                 /* How many packets do we have remaining to transmit? */
2539                 packets_remaining = packets_remaining % (1 << (i + 1));
2540
2541                 /* What largest max packet size should those packets have? */
2542                 /* If we've transmitted all packets, don't carry over the
2543                  * largest packet size.
2544                  */
2545                 if (packets_remaining == 0) {
2546                         packet_size = 0;
2547                         overhead = 0;
2548                 } else if (packets_transmitted > 0) {
2549                         /* Otherwise if we do have remaining packets, and we've
2550                          * scheduled some packets in this interval, take the
2551                          * largest max packet size from endpoints with this
2552                          * interval.
2553                          */
2554                         packet_size = largest_mps;
2555                         overhead = interval_overhead;
2556                 }
2557                 /* Otherwise carry over packet_size and overhead from the last
2558                  * time we had a remainder.
2559                  */
2560                 bw_used += bw_added;
2561                 if (bw_used > max_bandwidth) {
2562                         xhci_warn(xhci, "Not enough bandwidth. "
2563                                         "Proposed: %u, Max: %u\n",
2564                                 bw_used, max_bandwidth);
2565                         return -ENOMEM;
2566                 }
2567         }
2568         /*
2569          * Ok, we know we have some packets left over after even-handedly
2570          * scheduling interval 15.  We don't know which microframes they will
2571          * fit into, so we over-schedule and say they will be scheduled every
2572          * microframe.
2573          */
2574         if (packets_remaining > 0)
2575                 bw_used += overhead + packet_size;
2576
2577         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2578                 unsigned int port_index = virt_dev->real_port - 1;
2579
2580                 /* OK, we're manipulating a HS device attached to a
2581                  * root port bandwidth domain.  Include the number of active TTs
2582                  * in the bandwidth used.
2583                  */
2584                 bw_used += TT_HS_OVERHEAD *
2585                         xhci->rh_bw[port_index].num_active_tts;
2586         }
2587
2588         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2589                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2590                 "Available: %u " "percent",
2591                 bw_used, max_bandwidth, bw_reserved,
2592                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2593                 max_bandwidth);
2594
2595         bw_used += bw_reserved;
2596         if (bw_used > max_bandwidth) {
2597                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2598                                 bw_used, max_bandwidth);
2599                 return -ENOMEM;
2600         }
2601
2602         bw_table->bw_used = bw_used;
2603         return 0;
2604 }
2605
2606 static bool xhci_is_async_ep(unsigned int ep_type)
2607 {
2608         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2609                                         ep_type != ISOC_IN_EP &&
2610                                         ep_type != INT_IN_EP);
2611 }
2612
2613 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2614 {
2615         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2616 }
2617
2618 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2619 {
2620         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2621
2622         if (ep_bw->ep_interval == 0)
2623                 return SS_OVERHEAD_BURST +
2624                         (ep_bw->mult * ep_bw->num_packets *
2625                                         (SS_OVERHEAD + mps));
2626         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2627                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2628                                 1 << ep_bw->ep_interval);
2629
2630 }
2631
2632 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2633                 struct xhci_bw_info *ep_bw,
2634                 struct xhci_interval_bw_table *bw_table,
2635                 struct usb_device *udev,
2636                 struct xhci_virt_ep *virt_ep,
2637                 struct xhci_tt_bw_info *tt_info)
2638 {
2639         struct xhci_interval_bw *interval_bw;
2640         int normalized_interval;
2641
2642         if (xhci_is_async_ep(ep_bw->type))
2643                 return;
2644
2645         if (udev->speed >= USB_SPEED_SUPER) {
2646                 if (xhci_is_sync_in_ep(ep_bw->type))
2647                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2648                                 xhci_get_ss_bw_consumed(ep_bw);
2649                 else
2650                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2651                                 xhci_get_ss_bw_consumed(ep_bw);
2652                 return;
2653         }
2654
2655         /* SuperSpeed endpoints never get added to intervals in the table, so
2656          * this check is only valid for HS/FS/LS devices.
2657          */
2658         if (list_empty(&virt_ep->bw_endpoint_list))
2659                 return;
2660         /* For LS/FS devices, we need to translate the interval expressed in
2661          * microframes to frames.
2662          */
2663         if (udev->speed == USB_SPEED_HIGH)
2664                 normalized_interval = ep_bw->ep_interval;
2665         else
2666                 normalized_interval = ep_bw->ep_interval - 3;
2667
2668         if (normalized_interval == 0)
2669                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2670         interval_bw = &bw_table->interval_bw[normalized_interval];
2671         interval_bw->num_packets -= ep_bw->num_packets;
2672         switch (udev->speed) {
2673         case USB_SPEED_LOW:
2674                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2675                 break;
2676         case USB_SPEED_FULL:
2677                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2678                 break;
2679         case USB_SPEED_HIGH:
2680                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2681                 break;
2682         case USB_SPEED_SUPER:
2683         case USB_SPEED_SUPER_PLUS:
2684         case USB_SPEED_UNKNOWN:
2685         case USB_SPEED_WIRELESS:
2686                 /* Should never happen because only LS/FS/HS endpoints will get
2687                  * added to the endpoint list.
2688                  */
2689                 return;
2690         }
2691         if (tt_info)
2692                 tt_info->active_eps -= 1;
2693         list_del_init(&virt_ep->bw_endpoint_list);
2694 }
2695
2696 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2697                 struct xhci_bw_info *ep_bw,
2698                 struct xhci_interval_bw_table *bw_table,
2699                 struct usb_device *udev,
2700                 struct xhci_virt_ep *virt_ep,
2701                 struct xhci_tt_bw_info *tt_info)
2702 {
2703         struct xhci_interval_bw *interval_bw;
2704         struct xhci_virt_ep *smaller_ep;
2705         int normalized_interval;
2706
2707         if (xhci_is_async_ep(ep_bw->type))
2708                 return;
2709
2710         if (udev->speed == USB_SPEED_SUPER) {
2711                 if (xhci_is_sync_in_ep(ep_bw->type))
2712                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2713                                 xhci_get_ss_bw_consumed(ep_bw);
2714                 else
2715                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2716                                 xhci_get_ss_bw_consumed(ep_bw);
2717                 return;
2718         }
2719
2720         /* For LS/FS devices, we need to translate the interval expressed in
2721          * microframes to frames.
2722          */
2723         if (udev->speed == USB_SPEED_HIGH)
2724                 normalized_interval = ep_bw->ep_interval;
2725         else
2726                 normalized_interval = ep_bw->ep_interval - 3;
2727
2728         if (normalized_interval == 0)
2729                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2730         interval_bw = &bw_table->interval_bw[normalized_interval];
2731         interval_bw->num_packets += ep_bw->num_packets;
2732         switch (udev->speed) {
2733         case USB_SPEED_LOW:
2734                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2735                 break;
2736         case USB_SPEED_FULL:
2737                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2738                 break;
2739         case USB_SPEED_HIGH:
2740                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2741                 break;
2742         case USB_SPEED_SUPER:
2743         case USB_SPEED_SUPER_PLUS:
2744         case USB_SPEED_UNKNOWN:
2745         case USB_SPEED_WIRELESS:
2746                 /* Should never happen because only LS/FS/HS endpoints will get
2747                  * added to the endpoint list.
2748                  */
2749                 return;
2750         }
2751
2752         if (tt_info)
2753                 tt_info->active_eps += 1;
2754         /* Insert the endpoint into the list, largest max packet size first. */
2755         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2756                         bw_endpoint_list) {
2757                 if (ep_bw->max_packet_size >=
2758                                 smaller_ep->bw_info.max_packet_size) {
2759                         /* Add the new ep before the smaller endpoint */
2760                         list_add_tail(&virt_ep->bw_endpoint_list,
2761                                         &smaller_ep->bw_endpoint_list);
2762                         return;
2763                 }
2764         }
2765         /* Add the new endpoint at the end of the list. */
2766         list_add_tail(&virt_ep->bw_endpoint_list,
2767                         &interval_bw->endpoints);
2768 }
2769
2770 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2771                 struct xhci_virt_device *virt_dev,
2772                 int old_active_eps)
2773 {
2774         struct xhci_root_port_bw_info *rh_bw_info;
2775         if (!virt_dev->tt_info)
2776                 return;
2777
2778         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2779         if (old_active_eps == 0 &&
2780                                 virt_dev->tt_info->active_eps != 0) {
2781                 rh_bw_info->num_active_tts += 1;
2782                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2783         } else if (old_active_eps != 0 &&
2784                                 virt_dev->tt_info->active_eps == 0) {
2785                 rh_bw_info->num_active_tts -= 1;
2786                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2787         }
2788 }
2789
2790 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2791                 struct xhci_virt_device *virt_dev,
2792                 struct xhci_container_ctx *in_ctx)
2793 {
2794         struct xhci_bw_info ep_bw_info[31];
2795         int i;
2796         struct xhci_input_control_ctx *ctrl_ctx;
2797         int old_active_eps = 0;
2798
2799         if (virt_dev->tt_info)
2800                 old_active_eps = virt_dev->tt_info->active_eps;
2801
2802         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2803         if (!ctrl_ctx) {
2804                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2805                                 __func__);
2806                 return -ENOMEM;
2807         }
2808
2809         for (i = 0; i < 31; i++) {
2810                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2811                         continue;
2812
2813                 /* Make a copy of the BW info in case we need to revert this */
2814                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2815                                 sizeof(ep_bw_info[i]));
2816                 /* Drop the endpoint from the interval table if the endpoint is
2817                  * being dropped or changed.
2818                  */
2819                 if (EP_IS_DROPPED(ctrl_ctx, i))
2820                         xhci_drop_ep_from_interval_table(xhci,
2821                                         &virt_dev->eps[i].bw_info,
2822                                         virt_dev->bw_table,
2823                                         virt_dev->udev,
2824                                         &virt_dev->eps[i],
2825                                         virt_dev->tt_info);
2826         }
2827         /* Overwrite the information stored in the endpoints' bw_info */
2828         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2829         for (i = 0; i < 31; i++) {
2830                 /* Add any changed or added endpoints to the interval table */
2831                 if (EP_IS_ADDED(ctrl_ctx, i))
2832                         xhci_add_ep_to_interval_table(xhci,
2833                                         &virt_dev->eps[i].bw_info,
2834                                         virt_dev->bw_table,
2835                                         virt_dev->udev,
2836                                         &virt_dev->eps[i],
2837                                         virt_dev->tt_info);
2838         }
2839
2840         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2841                 /* Ok, this fits in the bandwidth we have.
2842                  * Update the number of active TTs.
2843                  */
2844                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2845                 return 0;
2846         }
2847
2848         /* We don't have enough bandwidth for this, revert the stored info. */
2849         for (i = 0; i < 31; i++) {
2850                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2851                         continue;
2852
2853                 /* Drop the new copies of any added or changed endpoints from
2854                  * the interval table.
2855                  */
2856                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2857                         xhci_drop_ep_from_interval_table(xhci,
2858                                         &virt_dev->eps[i].bw_info,
2859                                         virt_dev->bw_table,
2860                                         virt_dev->udev,
2861                                         &virt_dev->eps[i],
2862                                         virt_dev->tt_info);
2863                 }
2864                 /* Revert the endpoint back to its old information */
2865                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2866                                 sizeof(ep_bw_info[i]));
2867                 /* Add any changed or dropped endpoints back into the table */
2868                 if (EP_IS_DROPPED(ctrl_ctx, i))
2869                         xhci_add_ep_to_interval_table(xhci,
2870                                         &virt_dev->eps[i].bw_info,
2871                                         virt_dev->bw_table,
2872                                         virt_dev->udev,
2873                                         &virt_dev->eps[i],
2874                                         virt_dev->tt_info);
2875         }
2876         return -ENOMEM;
2877 }
2878
2879
2880 /* Issue a configure endpoint command or evaluate context command
2881  * and wait for it to finish.
2882  */
2883 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2884                 struct usb_device *udev,
2885                 struct xhci_command *command,
2886                 bool ctx_change, bool must_succeed)
2887 {
2888         int ret;
2889         unsigned long flags;
2890         struct xhci_input_control_ctx *ctrl_ctx;
2891         struct xhci_virt_device *virt_dev;
2892         struct xhci_slot_ctx *slot_ctx;
2893
2894         if (!command)
2895                 return -EINVAL;
2896
2897         spin_lock_irqsave(&xhci->lock, flags);
2898
2899         if (xhci->xhc_state & XHCI_STATE_DYING) {
2900                 spin_unlock_irqrestore(&xhci->lock, flags);
2901                 return -ESHUTDOWN;
2902         }
2903
2904         virt_dev = xhci->devs[udev->slot_id];
2905
2906         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2907         if (!ctrl_ctx) {
2908                 spin_unlock_irqrestore(&xhci->lock, flags);
2909                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2910                                 __func__);
2911                 return -ENOMEM;
2912         }
2913
2914         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2915                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2916                 spin_unlock_irqrestore(&xhci->lock, flags);
2917                 xhci_warn(xhci, "Not enough host resources, "
2918                                 "active endpoint contexts = %u\n",
2919                                 xhci->num_active_eps);
2920                 return -ENOMEM;
2921         }
2922         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2923             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2924                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2925                         xhci_free_host_resources(xhci, ctrl_ctx);
2926                 spin_unlock_irqrestore(&xhci->lock, flags);
2927                 xhci_warn(xhci, "Not enough bandwidth\n");
2928                 return -ENOMEM;
2929         }
2930
2931         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2932
2933         trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2934         trace_xhci_configure_endpoint(slot_ctx);
2935
2936         if (!ctx_change)
2937                 ret = xhci_queue_configure_endpoint(xhci, command,
2938                                 command->in_ctx->dma,
2939                                 udev->slot_id, must_succeed);
2940         else
2941                 ret = xhci_queue_evaluate_context(xhci, command,
2942                                 command->in_ctx->dma,
2943                                 udev->slot_id, must_succeed);
2944         if (ret < 0) {
2945                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2946                         xhci_free_host_resources(xhci, ctrl_ctx);
2947                 spin_unlock_irqrestore(&xhci->lock, flags);
2948                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2949                                 "FIXME allocate a new ring segment");
2950                 return -ENOMEM;
2951         }
2952         xhci_ring_cmd_db(xhci);
2953         spin_unlock_irqrestore(&xhci->lock, flags);
2954
2955         /* Wait for the configure endpoint command to complete */
2956         wait_for_completion(command->completion);
2957
2958         if (!ctx_change)
2959                 ret = xhci_configure_endpoint_result(xhci, udev,
2960                                                      &command->status);
2961         else
2962                 ret = xhci_evaluate_context_result(xhci, udev,
2963                                                    &command->status);
2964
2965         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2966                 spin_lock_irqsave(&xhci->lock, flags);
2967                 /* If the command failed, remove the reserved resources.
2968                  * Otherwise, clean up the estimate to include dropped eps.
2969                  */
2970                 if (ret)
2971                         xhci_free_host_resources(xhci, ctrl_ctx);
2972                 else
2973                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2974                 spin_unlock_irqrestore(&xhci->lock, flags);
2975         }
2976         return ret;
2977 }
2978
2979 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2980         struct xhci_virt_device *vdev, int i)
2981 {
2982         struct xhci_virt_ep *ep = &vdev->eps[i];
2983
2984         if (ep->ep_state & EP_HAS_STREAMS) {
2985                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2986                                 xhci_get_endpoint_address(i));
2987                 xhci_free_stream_info(xhci, ep->stream_info);
2988                 ep->stream_info = NULL;
2989                 ep->ep_state &= ~EP_HAS_STREAMS;
2990         }
2991 }
2992
2993 /* Called after one or more calls to xhci_add_endpoint() or
2994  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2995  * to call xhci_reset_bandwidth().
2996  *
2997  * Since we are in the middle of changing either configuration or
2998  * installing a new alt setting, the USB core won't allow URBs to be
2999  * enqueued for any endpoint on the old config or interface.  Nothing
3000  * else should be touching the xhci->devs[slot_id] structure, so we
3001  * don't need to take the xhci->lock for manipulating that.
3002  */
3003 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3004 {
3005         int i;
3006         int ret = 0;
3007         struct xhci_hcd *xhci;
3008         struct xhci_virt_device *virt_dev;
3009         struct xhci_input_control_ctx *ctrl_ctx;
3010         struct xhci_slot_ctx *slot_ctx;
3011         struct xhci_command *command;
3012
3013         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3014         if (ret <= 0)
3015                 return ret;
3016         xhci = hcd_to_xhci(hcd);
3017         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3018                 (xhci->xhc_state & XHCI_STATE_REMOVING))
3019                 return -ENODEV;
3020
3021         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3022         virt_dev = xhci->devs[udev->slot_id];
3023
3024         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3025         if (!command)
3026                 return -ENOMEM;
3027
3028         command->in_ctx = virt_dev->in_ctx;
3029
3030         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3031         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3032         if (!ctrl_ctx) {
3033                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3034                                 __func__);
3035                 ret = -ENOMEM;
3036                 goto command_cleanup;
3037         }
3038         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3039         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3040         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3041
3042         /* Don't issue the command if there's no endpoints to update. */
3043         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3044             ctrl_ctx->drop_flags == 0) {
3045                 ret = 0;
3046                 goto command_cleanup;
3047         }
3048         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3049         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3050         for (i = 31; i >= 1; i--) {
3051                 __le32 le32 = cpu_to_le32(BIT(i));
3052
3053                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3054                     || (ctrl_ctx->add_flags & le32) || i == 1) {
3055                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3056                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3057                         break;
3058                 }
3059         }
3060
3061         ret = xhci_configure_endpoint(xhci, udev, command,
3062                         false, false);
3063         if (ret)
3064                 /* Callee should call reset_bandwidth() */
3065                 goto command_cleanup;
3066
3067         /* Free any rings that were dropped, but not changed. */
3068         for (i = 1; i < 31; i++) {
3069                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3070                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3071                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3072                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3073                 }
3074         }
3075         xhci_zero_in_ctx(xhci, virt_dev);
3076         /*
3077          * Install any rings for completely new endpoints or changed endpoints,
3078          * and free any old rings from changed endpoints.
3079          */
3080         for (i = 1; i < 31; i++) {
3081                 if (!virt_dev->eps[i].new_ring)
3082                         continue;
3083                 /* Only free the old ring if it exists.
3084                  * It may not if this is the first add of an endpoint.
3085                  */
3086                 if (virt_dev->eps[i].ring) {
3087                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3088                 }
3089                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3090                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3091                 virt_dev->eps[i].new_ring = NULL;
3092                 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3093         }
3094 command_cleanup:
3095         kfree(command->completion);
3096         kfree(command);
3097
3098         return ret;
3099 }
3100 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3101
3102 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3103 {
3104         struct xhci_hcd *xhci;
3105         struct xhci_virt_device *virt_dev;
3106         int i, ret;
3107
3108         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3109         if (ret <= 0)
3110                 return;
3111         xhci = hcd_to_xhci(hcd);
3112
3113         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3114         virt_dev = xhci->devs[udev->slot_id];
3115         /* Free any rings allocated for added endpoints */
3116         for (i = 0; i < 31; i++) {
3117                 if (virt_dev->eps[i].new_ring) {
3118                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3119                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3120                         virt_dev->eps[i].new_ring = NULL;
3121                 }
3122         }
3123         xhci_zero_in_ctx(xhci, virt_dev);
3124 }
3125 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3126
3127 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3128                 struct xhci_container_ctx *in_ctx,
3129                 struct xhci_container_ctx *out_ctx,
3130                 struct xhci_input_control_ctx *ctrl_ctx,
3131                 u32 add_flags, u32 drop_flags)
3132 {
3133         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3134         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3135         xhci_slot_copy(xhci, in_ctx, out_ctx);
3136         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3137 }
3138
3139 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3140                                   struct usb_host_endpoint *host_ep)
3141 {
3142         struct xhci_hcd         *xhci;
3143         struct xhci_virt_device *vdev;
3144         struct xhci_virt_ep     *ep;
3145         struct usb_device       *udev;
3146         unsigned long           flags;
3147         unsigned int            ep_index;
3148
3149         xhci = hcd_to_xhci(hcd);
3150 rescan:
3151         spin_lock_irqsave(&xhci->lock, flags);
3152
3153         udev = (struct usb_device *)host_ep->hcpriv;
3154         if (!udev || !udev->slot_id)
3155                 goto done;
3156
3157         vdev = xhci->devs[udev->slot_id];
3158         if (!vdev)
3159                 goto done;
3160
3161         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3162         ep = &vdev->eps[ep_index];
3163
3164         /* wait for hub_tt_work to finish clearing hub TT */
3165         if (ep->ep_state & EP_CLEARING_TT) {
3166                 spin_unlock_irqrestore(&xhci->lock, flags);
3167                 schedule_timeout_uninterruptible(1);
3168                 goto rescan;
3169         }
3170
3171         if (ep->ep_state)
3172                 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3173                          ep->ep_state);
3174 done:
3175         host_ep->hcpriv = NULL;
3176         spin_unlock_irqrestore(&xhci->lock, flags);
3177 }
3178
3179 /*
3180  * Called after usb core issues a clear halt control message.
3181  * The host side of the halt should already be cleared by a reset endpoint
3182  * command issued when the STALL event was received.
3183  *
3184  * The reset endpoint command may only be issued to endpoints in the halted
3185  * state. For software that wishes to reset the data toggle or sequence number
3186  * of an endpoint that isn't in the halted state this function will issue a
3187  * configure endpoint command with the Drop and Add bits set for the target
3188  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3189  */
3190
3191 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3192                 struct usb_host_endpoint *host_ep)
3193 {
3194         struct xhci_hcd *xhci;
3195         struct usb_device *udev;
3196         struct xhci_virt_device *vdev;
3197         struct xhci_virt_ep *ep;
3198         struct xhci_input_control_ctx *ctrl_ctx;
3199         struct xhci_command *stop_cmd, *cfg_cmd;
3200         unsigned int ep_index;
3201         unsigned long flags;
3202         u32 ep_flag;
3203         int err;
3204
3205         xhci = hcd_to_xhci(hcd);
3206         if (!host_ep->hcpriv)
3207                 return;
3208         udev = (struct usb_device *) host_ep->hcpriv;
3209         vdev = xhci->devs[udev->slot_id];
3210
3211         /*
3212          * vdev may be lost due to xHC restore error and re-initialization
3213          * during S3/S4 resume. A new vdev will be allocated later by
3214          * xhci_discover_or_reset_device()
3215          */
3216         if (!udev->slot_id || !vdev)
3217                 return;
3218         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3219         ep = &vdev->eps[ep_index];
3220
3221         /* Bail out if toggle is already being cleared by a endpoint reset */
3222         spin_lock_irqsave(&xhci->lock, flags);
3223         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3224                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3225                 spin_unlock_irqrestore(&xhci->lock, flags);
3226                 return;
3227         }
3228         spin_unlock_irqrestore(&xhci->lock, flags);
3229         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3230         if (usb_endpoint_xfer_control(&host_ep->desc) ||
3231             usb_endpoint_xfer_isoc(&host_ep->desc))
3232                 return;
3233
3234         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3235
3236         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3237                 return;
3238
3239         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3240         if (!stop_cmd)
3241                 return;
3242
3243         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3244         if (!cfg_cmd)
3245                 goto cleanup;
3246
3247         spin_lock_irqsave(&xhci->lock, flags);
3248
3249         /* block queuing new trbs and ringing ep doorbell */
3250         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3251
3252         /*
3253          * Make sure endpoint ring is empty before resetting the toggle/seq.
3254          * Driver is required to synchronously cancel all transfer request.
3255          * Stop the endpoint to force xHC to update the output context
3256          */
3257
3258         if (!list_empty(&ep->ring->td_list)) {
3259                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3260                 spin_unlock_irqrestore(&xhci->lock, flags);
3261                 xhci_free_command(xhci, cfg_cmd);
3262                 goto cleanup;
3263         }
3264
3265         err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3266                                         ep_index, 0);
3267         if (err < 0) {
3268                 spin_unlock_irqrestore(&xhci->lock, flags);
3269                 xhci_free_command(xhci, cfg_cmd);
3270                 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3271                                 __func__, err);
3272                 goto cleanup;
3273         }
3274
3275         xhci_ring_cmd_db(xhci);
3276         spin_unlock_irqrestore(&xhci->lock, flags);
3277
3278         wait_for_completion(stop_cmd->completion);
3279
3280         spin_lock_irqsave(&xhci->lock, flags);
3281
3282         /* config ep command clears toggle if add and drop ep flags are set */
3283         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3284         if (!ctrl_ctx) {
3285                 spin_unlock_irqrestore(&xhci->lock, flags);
3286                 xhci_free_command(xhci, cfg_cmd);
3287                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3288                                 __func__);
3289                 goto cleanup;
3290         }
3291
3292         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3293                                            ctrl_ctx, ep_flag, ep_flag);
3294         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3295
3296         err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3297                                       udev->slot_id, false);
3298         if (err < 0) {
3299                 spin_unlock_irqrestore(&xhci->lock, flags);
3300                 xhci_free_command(xhci, cfg_cmd);
3301                 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3302                                 __func__, err);
3303                 goto cleanup;
3304         }
3305
3306         xhci_ring_cmd_db(xhci);
3307         spin_unlock_irqrestore(&xhci->lock, flags);
3308
3309         wait_for_completion(cfg_cmd->completion);
3310
3311         xhci_free_command(xhci, cfg_cmd);
3312 cleanup:
3313         xhci_free_command(xhci, stop_cmd);
3314         spin_lock_irqsave(&xhci->lock, flags);
3315         if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3316                 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3317         spin_unlock_irqrestore(&xhci->lock, flags);
3318 }
3319
3320 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3321                 struct usb_device *udev, struct usb_host_endpoint *ep,
3322                 unsigned int slot_id)
3323 {
3324         int ret;
3325         unsigned int ep_index;
3326         unsigned int ep_state;
3327
3328         if (!ep)
3329                 return -EINVAL;
3330         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3331         if (ret <= 0)
3332                 return ret ? ret : -EINVAL;
3333         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3334                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3335                                 " descriptor for ep 0x%x does not support streams\n",
3336                                 ep->desc.bEndpointAddress);
3337                 return -EINVAL;
3338         }
3339
3340         ep_index = xhci_get_endpoint_index(&ep->desc);
3341         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3342         if (ep_state & EP_HAS_STREAMS ||
3343                         ep_state & EP_GETTING_STREAMS) {
3344                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3345                                 "already has streams set up.\n",
3346                                 ep->desc.bEndpointAddress);
3347                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3348                                 "dynamic stream context array reallocation.\n");
3349                 return -EINVAL;
3350         }
3351         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3352                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3353                                 "endpoint 0x%x; URBs are pending.\n",
3354                                 ep->desc.bEndpointAddress);
3355                 return -EINVAL;
3356         }
3357         return 0;
3358 }
3359
3360 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3361                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3362 {
3363         unsigned int max_streams;
3364
3365         /* The stream context array size must be a power of two */
3366         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3367         /*
3368          * Find out how many primary stream array entries the host controller
3369          * supports.  Later we may use secondary stream arrays (similar to 2nd
3370          * level page entries), but that's an optional feature for xHCI host
3371          * controllers. xHCs must support at least 4 stream IDs.
3372          */
3373         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3374         if (*num_stream_ctxs > max_streams) {
3375                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3376                                 max_streams);
3377                 *num_stream_ctxs = max_streams;
3378                 *num_streams = max_streams;
3379         }
3380 }
3381
3382 /* Returns an error code if one of the endpoint already has streams.
3383  * This does not change any data structures, it only checks and gathers
3384  * information.
3385  */
3386 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3387                 struct usb_device *udev,
3388                 struct usb_host_endpoint **eps, unsigned int num_eps,
3389                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3390 {
3391         unsigned int max_streams;
3392         unsigned int endpoint_flag;
3393         int i;
3394         int ret;
3395
3396         for (i = 0; i < num_eps; i++) {
3397                 ret = xhci_check_streams_endpoint(xhci, udev,
3398                                 eps[i], udev->slot_id);
3399                 if (ret < 0)
3400                         return ret;
3401
3402                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3403                 if (max_streams < (*num_streams - 1)) {
3404                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3405                                         eps[i]->desc.bEndpointAddress,
3406                                         max_streams);
3407                         *num_streams = max_streams+1;
3408                 }
3409
3410                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3411                 if (*changed_ep_bitmask & endpoint_flag)
3412                         return -EINVAL;
3413                 *changed_ep_bitmask |= endpoint_flag;
3414         }
3415         return 0;
3416 }
3417
3418 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3419                 struct usb_device *udev,
3420                 struct usb_host_endpoint **eps, unsigned int num_eps)
3421 {
3422         u32 changed_ep_bitmask = 0;
3423         unsigned int slot_id;
3424         unsigned int ep_index;
3425         unsigned int ep_state;
3426         int i;
3427
3428         slot_id = udev->slot_id;
3429         if (!xhci->devs[slot_id])
3430                 return 0;
3431
3432         for (i = 0; i < num_eps; i++) {
3433                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3434                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3435                 /* Are streams already being freed for the endpoint? */
3436                 if (ep_state & EP_GETTING_NO_STREAMS) {
3437                         xhci_warn(xhci, "WARN Can't disable streams for "
3438                                         "endpoint 0x%x, "
3439                                         "streams are being disabled already\n",
3440                                         eps[i]->desc.bEndpointAddress);
3441                         return 0;
3442                 }
3443                 /* Are there actually any streams to free? */
3444                 if (!(ep_state & EP_HAS_STREAMS) &&
3445                                 !(ep_state & EP_GETTING_STREAMS)) {
3446                         xhci_warn(xhci, "WARN Can't disable streams for "
3447                                         "endpoint 0x%x, "
3448                                         "streams are already disabled!\n",
3449                                         eps[i]->desc.bEndpointAddress);
3450                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3451                                         "with non-streams endpoint\n");
3452                         return 0;
3453                 }
3454                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3455         }
3456         return changed_ep_bitmask;
3457 }
3458
3459 /*
3460  * The USB device drivers use this function (through the HCD interface in USB
3461  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3462  * coordinate mass storage command queueing across multiple endpoints (basically
3463  * a stream ID == a task ID).
3464  *
3465  * Setting up streams involves allocating the same size stream context array
3466  * for each endpoint and issuing a configure endpoint command for all endpoints.
3467  *
3468  * Don't allow the call to succeed if one endpoint only supports one stream
3469  * (which means it doesn't support streams at all).
3470  *
3471  * Drivers may get less stream IDs than they asked for, if the host controller
3472  * hardware or endpoints claim they can't support the number of requested
3473  * stream IDs.
3474  */
3475 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3476                 struct usb_host_endpoint **eps, unsigned int num_eps,
3477                 unsigned int num_streams, gfp_t mem_flags)
3478 {
3479         int i, ret;
3480         struct xhci_hcd *xhci;
3481         struct xhci_virt_device *vdev;
3482         struct xhci_command *config_cmd;
3483         struct xhci_input_control_ctx *ctrl_ctx;
3484         unsigned int ep_index;
3485         unsigned int num_stream_ctxs;
3486         unsigned int max_packet;
3487         unsigned long flags;
3488         u32 changed_ep_bitmask = 0;
3489
3490         if (!eps)
3491                 return -EINVAL;
3492
3493         /* Add one to the number of streams requested to account for
3494          * stream 0 that is reserved for xHCI usage.
3495          */
3496         num_streams += 1;
3497         xhci = hcd_to_xhci(hcd);
3498         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3499                         num_streams);
3500
3501         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3502         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3503                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3504                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3505                 return -ENOSYS;
3506         }
3507
3508         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3509         if (!config_cmd)
3510                 return -ENOMEM;
3511
3512         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3513         if (!ctrl_ctx) {
3514                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3515                                 __func__);
3516                 xhci_free_command(xhci, config_cmd);
3517                 return -ENOMEM;
3518         }
3519
3520         /* Check to make sure all endpoints are not already configured for
3521          * streams.  While we're at it, find the maximum number of streams that
3522          * all the endpoints will support and check for duplicate endpoints.
3523          */
3524         spin_lock_irqsave(&xhci->lock, flags);
3525         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3526                         num_eps, &num_streams, &changed_ep_bitmask);
3527         if (ret < 0) {
3528                 xhci_free_command(xhci, config_cmd);
3529                 spin_unlock_irqrestore(&xhci->lock, flags);
3530                 return ret;
3531         }
3532         if (num_streams <= 1) {
3533                 xhci_warn(xhci, "WARN: endpoints can't handle "
3534                                 "more than one stream.\n");
3535                 xhci_free_command(xhci, config_cmd);
3536                 spin_unlock_irqrestore(&xhci->lock, flags);
3537                 return -EINVAL;
3538         }
3539         vdev = xhci->devs[udev->slot_id];
3540         /* Mark each endpoint as being in transition, so
3541          * xhci_urb_enqueue() will reject all URBs.
3542          */
3543         for (i = 0; i < num_eps; i++) {
3544                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3545                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3546         }
3547         spin_unlock_irqrestore(&xhci->lock, flags);
3548
3549         /* Setup internal data structures and allocate HW data structures for
3550          * streams (but don't install the HW structures in the input context
3551          * until we're sure all memory allocation succeeded).
3552          */
3553         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3554         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3555                         num_stream_ctxs, num_streams);
3556
3557         for (i = 0; i < num_eps; i++) {
3558                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3559                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3560                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3561                                 num_stream_ctxs,
3562                                 num_streams,
3563                                 max_packet, mem_flags);
3564                 if (!vdev->eps[ep_index].stream_info)
3565                         goto cleanup;
3566                 /* Set maxPstreams in endpoint context and update deq ptr to
3567                  * point to stream context array. FIXME
3568                  */
3569         }
3570
3571         /* Set up the input context for a configure endpoint command. */
3572         for (i = 0; i < num_eps; i++) {
3573                 struct xhci_ep_ctx *ep_ctx;
3574
3575                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3576                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3577
3578                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3579                                 vdev->out_ctx, ep_index);
3580                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3581                                 vdev->eps[ep_index].stream_info);
3582         }
3583         /* Tell the HW to drop its old copy of the endpoint context info
3584          * and add the updated copy from the input context.
3585          */
3586         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3587                         vdev->out_ctx, ctrl_ctx,
3588                         changed_ep_bitmask, changed_ep_bitmask);
3589
3590         /* Issue and wait for the configure endpoint command */
3591         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3592                         false, false);
3593
3594         /* xHC rejected the configure endpoint command for some reason, so we
3595          * leave the old ring intact and free our internal streams data
3596          * structure.
3597          */
3598         if (ret < 0)
3599                 goto cleanup;
3600
3601         spin_lock_irqsave(&xhci->lock, flags);
3602         for (i = 0; i < num_eps; i++) {
3603                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3604                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3605                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3606                          udev->slot_id, ep_index);
3607                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3608         }
3609         xhci_free_command(xhci, config_cmd);
3610         spin_unlock_irqrestore(&xhci->lock, flags);
3611
3612         for (i = 0; i < num_eps; i++) {
3613                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3614                 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3615         }
3616         /* Subtract 1 for stream 0, which drivers can't use */
3617         return num_streams - 1;
3618
3619 cleanup:
3620         /* If it didn't work, free the streams! */
3621         for (i = 0; i < num_eps; i++) {
3622                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3623                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3624                 vdev->eps[ep_index].stream_info = NULL;
3625                 /* FIXME Unset maxPstreams in endpoint context and
3626                  * update deq ptr to point to normal string ring.
3627                  */
3628                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3629                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3630                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3631         }
3632         xhci_free_command(xhci, config_cmd);
3633         return -ENOMEM;
3634 }
3635
3636 /* Transition the endpoint from using streams to being a "normal" endpoint
3637  * without streams.
3638  *
3639  * Modify the endpoint context state, submit a configure endpoint command,
3640  * and free all endpoint rings for streams if that completes successfully.
3641  */
3642 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3643                 struct usb_host_endpoint **eps, unsigned int num_eps,
3644                 gfp_t mem_flags)
3645 {
3646         int i, ret;
3647         struct xhci_hcd *xhci;
3648         struct xhci_virt_device *vdev;
3649         struct xhci_command *command;
3650         struct xhci_input_control_ctx *ctrl_ctx;
3651         unsigned int ep_index;
3652         unsigned long flags;
3653         u32 changed_ep_bitmask;
3654
3655         xhci = hcd_to_xhci(hcd);
3656         vdev = xhci->devs[udev->slot_id];
3657
3658         /* Set up a configure endpoint command to remove the streams rings */
3659         spin_lock_irqsave(&xhci->lock, flags);
3660         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3661                         udev, eps, num_eps);
3662         if (changed_ep_bitmask == 0) {
3663                 spin_unlock_irqrestore(&xhci->lock, flags);
3664                 return -EINVAL;
3665         }
3666
3667         /* Use the xhci_command structure from the first endpoint.  We may have
3668          * allocated too many, but the driver may call xhci_free_streams() for
3669          * each endpoint it grouped into one call to xhci_alloc_streams().
3670          */
3671         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3672         command = vdev->eps[ep_index].stream_info->free_streams_command;
3673         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3674         if (!ctrl_ctx) {
3675                 spin_unlock_irqrestore(&xhci->lock, flags);
3676                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3677                                 __func__);
3678                 return -EINVAL;
3679         }
3680
3681         for (i = 0; i < num_eps; i++) {
3682                 struct xhci_ep_ctx *ep_ctx;
3683
3684                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3685                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3686                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3687                         EP_GETTING_NO_STREAMS;
3688
3689                 xhci_endpoint_copy(xhci, command->in_ctx,
3690                                 vdev->out_ctx, ep_index);
3691                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3692                                 &vdev->eps[ep_index]);
3693         }
3694         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3695                         vdev->out_ctx, ctrl_ctx,
3696                         changed_ep_bitmask, changed_ep_bitmask);
3697         spin_unlock_irqrestore(&xhci->lock, flags);
3698
3699         /* Issue and wait for the configure endpoint command,
3700          * which must succeed.
3701          */
3702         ret = xhci_configure_endpoint(xhci, udev, command,
3703                         false, true);
3704
3705         /* xHC rejected the configure endpoint command for some reason, so we
3706          * leave the streams rings intact.
3707          */
3708         if (ret < 0)
3709                 return ret;
3710
3711         spin_lock_irqsave(&xhci->lock, flags);
3712         for (i = 0; i < num_eps; i++) {
3713                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3714                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3715                 vdev->eps[ep_index].stream_info = NULL;
3716                 /* FIXME Unset maxPstreams in endpoint context and
3717                  * update deq ptr to point to normal string ring.
3718                  */
3719                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3720                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3721         }
3722         spin_unlock_irqrestore(&xhci->lock, flags);
3723
3724         return 0;
3725 }
3726
3727 /*
3728  * Deletes endpoint resources for endpoints that were active before a Reset
3729  * Device command, or a Disable Slot command.  The Reset Device command leaves
3730  * the control endpoint intact, whereas the Disable Slot command deletes it.
3731  *
3732  * Must be called with xhci->lock held.
3733  */
3734 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3735         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3736 {
3737         int i;
3738         unsigned int num_dropped_eps = 0;
3739         unsigned int drop_flags = 0;
3740
3741         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3742                 if (virt_dev->eps[i].ring) {
3743                         drop_flags |= 1 << i;
3744                         num_dropped_eps++;
3745                 }
3746         }
3747         xhci->num_active_eps -= num_dropped_eps;
3748         if (num_dropped_eps)
3749                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3750                                 "Dropped %u ep ctxs, flags = 0x%x, "
3751                                 "%u now active.",
3752                                 num_dropped_eps, drop_flags,
3753                                 xhci->num_active_eps);
3754 }
3755
3756 /*
3757  * This submits a Reset Device Command, which will set the device state to 0,
3758  * set the device address to 0, and disable all the endpoints except the default
3759  * control endpoint.  The USB core should come back and call
3760  * xhci_address_device(), and then re-set up the configuration.  If this is
3761  * called because of a usb_reset_and_verify_device(), then the old alternate
3762  * settings will be re-installed through the normal bandwidth allocation
3763  * functions.
3764  *
3765  * Wait for the Reset Device command to finish.  Remove all structures
3766  * associated with the endpoints that were disabled.  Clear the input device
3767  * structure? Reset the control endpoint 0 max packet size?
3768  *
3769  * If the virt_dev to be reset does not exist or does not match the udev,
3770  * it means the device is lost, possibly due to the xHC restore error and
3771  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3772  * re-allocate the device.
3773  */
3774 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3775                 struct usb_device *udev)
3776 {
3777         int ret, i;
3778         unsigned long flags;
3779         struct xhci_hcd *xhci;
3780         unsigned int slot_id;
3781         struct xhci_virt_device *virt_dev;
3782         struct xhci_command *reset_device_cmd;
3783         struct xhci_slot_ctx *slot_ctx;
3784         int old_active_eps = 0;
3785
3786         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3787         if (ret <= 0)
3788                 return ret;
3789         xhci = hcd_to_xhci(hcd);
3790         slot_id = udev->slot_id;
3791         virt_dev = xhci->devs[slot_id];
3792         if (!virt_dev) {
3793                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3794                                 "not exist. Re-allocate the device\n", slot_id);
3795                 ret = xhci_alloc_dev(hcd, udev);
3796                 if (ret == 1)
3797                         return 0;
3798                 else
3799                         return -EINVAL;
3800         }
3801
3802         if (virt_dev->tt_info)
3803                 old_active_eps = virt_dev->tt_info->active_eps;
3804
3805         if (virt_dev->udev != udev) {
3806                 /* If the virt_dev and the udev does not match, this virt_dev
3807                  * may belong to another udev.
3808                  * Re-allocate the device.
3809                  */
3810                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3811                                 "not match the udev. Re-allocate the device\n",
3812                                 slot_id);
3813                 ret = xhci_alloc_dev(hcd, udev);
3814                 if (ret == 1)
3815                         return 0;
3816                 else
3817                         return -EINVAL;
3818         }
3819
3820         /* If device is not setup, there is no point in resetting it */
3821         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3822         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3823                                                 SLOT_STATE_DISABLED)
3824                 return 0;
3825
3826         trace_xhci_discover_or_reset_device(slot_ctx);
3827
3828         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3829         /* Allocate the command structure that holds the struct completion.
3830          * Assume we're in process context, since the normal device reset
3831          * process has to wait for the device anyway.  Storage devices are
3832          * reset as part of error handling, so use GFP_NOIO instead of
3833          * GFP_KERNEL.
3834          */
3835         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3836         if (!reset_device_cmd) {
3837                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3838                 return -ENOMEM;
3839         }
3840
3841         /* Attempt to submit the Reset Device command to the command ring */
3842         spin_lock_irqsave(&xhci->lock, flags);
3843
3844         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3845         if (ret) {
3846                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3847                 spin_unlock_irqrestore(&xhci->lock, flags);
3848                 goto command_cleanup;
3849         }
3850         xhci_ring_cmd_db(xhci);
3851         spin_unlock_irqrestore(&xhci->lock, flags);
3852
3853         /* Wait for the Reset Device command to finish */
3854         wait_for_completion(reset_device_cmd->completion);
3855
3856         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3857          * unless we tried to reset a slot ID that wasn't enabled,
3858          * or the device wasn't in the addressed or configured state.
3859          */
3860         ret = reset_device_cmd->status;
3861         switch (ret) {
3862         case COMP_COMMAND_ABORTED:
3863         case COMP_COMMAND_RING_STOPPED:
3864                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3865                 ret = -ETIME;
3866                 goto command_cleanup;
3867         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3868         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3869                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3870                                 slot_id,
3871                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3872                 xhci_dbg(xhci, "Not freeing device rings.\n");
3873                 /* Don't treat this as an error.  May change my mind later. */
3874                 ret = 0;
3875                 goto command_cleanup;
3876         case COMP_SUCCESS:
3877                 xhci_dbg(xhci, "Successful reset device command.\n");
3878                 break;
3879         default:
3880                 if (xhci_is_vendor_info_code(xhci, ret))
3881                         break;
3882                 xhci_warn(xhci, "Unknown completion code %u for "
3883                                 "reset device command.\n", ret);
3884                 ret = -EINVAL;
3885                 goto command_cleanup;
3886         }
3887
3888         /* Free up host controller endpoint resources */
3889         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3890                 spin_lock_irqsave(&xhci->lock, flags);
3891                 /* Don't delete the default control endpoint resources */
3892                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3893                 spin_unlock_irqrestore(&xhci->lock, flags);
3894         }
3895
3896         /* Everything but endpoint 0 is disabled, so free the rings. */
3897         for (i = 1; i < 31; i++) {
3898                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3899
3900                 if (ep->ep_state & EP_HAS_STREAMS) {
3901                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3902                                         xhci_get_endpoint_address(i));
3903                         xhci_free_stream_info(xhci, ep->stream_info);
3904                         ep->stream_info = NULL;
3905                         ep->ep_state &= ~EP_HAS_STREAMS;
3906                 }
3907
3908                 if (ep->ring) {
3909                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3910                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3911                 }
3912                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3913                         xhci_drop_ep_from_interval_table(xhci,
3914                                         &virt_dev->eps[i].bw_info,
3915                                         virt_dev->bw_table,
3916                                         udev,
3917                                         &virt_dev->eps[i],
3918                                         virt_dev->tt_info);
3919                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3920         }
3921         /* If necessary, update the number of active TTs on this root port */
3922         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3923         virt_dev->flags = 0;
3924         ret = 0;
3925
3926 command_cleanup:
3927         xhci_free_command(xhci, reset_device_cmd);
3928         return ret;
3929 }
3930
3931 /*
3932  * At this point, the struct usb_device is about to go away, the device has
3933  * disconnected, and all traffic has been stopped and the endpoints have been
3934  * disabled.  Free any HC data structures associated with that device.
3935  */
3936 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3937 {
3938         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3939         struct xhci_virt_device *virt_dev;
3940         struct xhci_slot_ctx *slot_ctx;
3941         int i, ret;
3942
3943         /*
3944          * We called pm_runtime_get_noresume when the device was attached.
3945          * Decrement the counter here to allow controller to runtime suspend
3946          * if no devices remain.
3947          */
3948         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3949                 pm_runtime_put_noidle(hcd->self.controller);
3950
3951         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3952         /* If the host is halted due to driver unload, we still need to free the
3953          * device.
3954          */
3955         if (ret <= 0 && ret != -ENODEV)
3956                 return;
3957
3958         virt_dev = xhci->devs[udev->slot_id];
3959         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3960         trace_xhci_free_dev(slot_ctx);
3961
3962         /* Stop any wayward timer functions (which may grab the lock) */
3963         for (i = 0; i < 31; i++) {
3964                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3965                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3966         }
3967         virt_dev->udev = NULL;
3968         xhci_disable_slot(xhci, udev->slot_id);
3969         xhci_free_virt_device(xhci, udev->slot_id);
3970 }
3971
3972 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3973 {
3974         struct xhci_command *command;
3975         unsigned long flags;
3976         u32 state;
3977         int ret = 0;
3978
3979         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3980         if (!command)
3981                 return -ENOMEM;
3982
3983         xhci_debugfs_remove_slot(xhci, slot_id);
3984
3985         spin_lock_irqsave(&xhci->lock, flags);
3986         /* Don't disable the slot if the host controller is dead. */
3987         state = readl(&xhci->op_regs->status);
3988         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3989                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3990                 spin_unlock_irqrestore(&xhci->lock, flags);
3991                 kfree(command);
3992                 return -ENODEV;
3993         }
3994
3995         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3996                                 slot_id);
3997         if (ret) {
3998                 spin_unlock_irqrestore(&xhci->lock, flags);
3999                 kfree(command);
4000                 return ret;
4001         }
4002         xhci_ring_cmd_db(xhci);
4003         spin_unlock_irqrestore(&xhci->lock, flags);
4004
4005         wait_for_completion(command->completion);
4006
4007         if (command->status != COMP_SUCCESS)
4008                 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4009                           slot_id, command->status);
4010
4011         xhci_free_command(xhci, command);
4012
4013         return ret;
4014 }
4015
4016 /*
4017  * Checks if we have enough host controller resources for the default control
4018  * endpoint.
4019  *
4020  * Must be called with xhci->lock held.
4021  */
4022 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4023 {
4024         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4025                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4026                                 "Not enough ep ctxs: "
4027                                 "%u active, need to add 1, limit is %u.",
4028                                 xhci->num_active_eps, xhci->limit_active_eps);
4029                 return -ENOMEM;
4030         }
4031         xhci->num_active_eps += 1;
4032         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4033                         "Adding 1 ep ctx, %u now active.",
4034                         xhci->num_active_eps);
4035         return 0;
4036 }
4037
4038
4039 /*
4040  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4041  * timed out, or allocating memory failed.  Returns 1 on success.
4042  */
4043 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4044 {
4045         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4046         struct xhci_virt_device *vdev;
4047         struct xhci_slot_ctx *slot_ctx;
4048         unsigned long flags;
4049         int ret, slot_id;
4050         struct xhci_command *command;
4051
4052         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4053         if (!command)
4054                 return 0;
4055
4056         spin_lock_irqsave(&xhci->lock, flags);
4057         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4058         if (ret) {
4059                 spin_unlock_irqrestore(&xhci->lock, flags);
4060                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4061                 xhci_free_command(xhci, command);
4062                 return 0;
4063         }
4064         xhci_ring_cmd_db(xhci);
4065         spin_unlock_irqrestore(&xhci->lock, flags);
4066
4067         wait_for_completion(command->completion);
4068         slot_id = command->slot_id;
4069
4070         if (!slot_id || command->status != COMP_SUCCESS) {
4071                 xhci_err(xhci, "Error while assigning device slot ID\n");
4072                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4073                                 HCS_MAX_SLOTS(
4074                                         readl(&xhci->cap_regs->hcs_params1)));
4075                 xhci_free_command(xhci, command);
4076                 return 0;
4077         }
4078
4079         xhci_free_command(xhci, command);
4080
4081         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4082                 spin_lock_irqsave(&xhci->lock, flags);
4083                 ret = xhci_reserve_host_control_ep_resources(xhci);
4084                 if (ret) {
4085                         spin_unlock_irqrestore(&xhci->lock, flags);
4086                         xhci_warn(xhci, "Not enough host resources, "
4087                                         "active endpoint contexts = %u\n",
4088                                         xhci->num_active_eps);
4089                         goto disable_slot;
4090                 }
4091                 spin_unlock_irqrestore(&xhci->lock, flags);
4092         }
4093         /* Use GFP_NOIO, since this function can be called from
4094          * xhci_discover_or_reset_device(), which may be called as part of
4095          * mass storage driver error handling.
4096          */
4097         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4098                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4099                 goto disable_slot;
4100         }
4101         vdev = xhci->devs[slot_id];
4102         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4103         trace_xhci_alloc_dev(slot_ctx);
4104
4105         udev->slot_id = slot_id;
4106
4107         xhci_debugfs_create_slot(xhci, slot_id);
4108
4109         /*
4110          * If resetting upon resume, we can't put the controller into runtime
4111          * suspend if there is a device attached.
4112          */
4113         if (xhci->quirks & XHCI_RESET_ON_RESUME)
4114                 pm_runtime_get_noresume(hcd->self.controller);
4115
4116         /* Is this a LS or FS device under a HS hub? */
4117         /* Hub or peripherial? */
4118         return 1;
4119
4120 disable_slot:
4121         xhci_disable_slot(xhci, udev->slot_id);
4122         xhci_free_virt_device(xhci, udev->slot_id);
4123
4124         return 0;
4125 }
4126
4127 /*
4128  * Issue an Address Device command and optionally send a corresponding
4129  * SetAddress request to the device.
4130  */
4131 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4132                              enum xhci_setup_dev setup)
4133 {
4134         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4135         unsigned long flags;
4136         struct xhci_virt_device *virt_dev;
4137         int ret = 0;
4138         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4139         struct xhci_slot_ctx *slot_ctx;
4140         struct xhci_input_control_ctx *ctrl_ctx;
4141         u64 temp_64;
4142         struct xhci_command *command = NULL;
4143
4144         mutex_lock(&xhci->mutex);
4145
4146         if (xhci->xhc_state) {  /* dying, removing or halted */
4147                 ret = -ESHUTDOWN;
4148                 goto out;
4149         }
4150
4151         if (!udev->slot_id) {
4152                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4153                                 "Bad Slot ID %d", udev->slot_id);
4154                 ret = -EINVAL;
4155                 goto out;
4156         }
4157
4158         virt_dev = xhci->devs[udev->slot_id];
4159
4160         if (WARN_ON(!virt_dev)) {
4161                 /*
4162                  * In plug/unplug torture test with an NEC controller,
4163                  * a zero-dereference was observed once due to virt_dev = 0.
4164                  * Print useful debug rather than crash if it is observed again!
4165                  */
4166                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4167                         udev->slot_id);
4168                 ret = -EINVAL;
4169                 goto out;
4170         }
4171         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4172         trace_xhci_setup_device_slot(slot_ctx);
4173
4174         if (setup == SETUP_CONTEXT_ONLY) {
4175                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4176                     SLOT_STATE_DEFAULT) {
4177                         xhci_dbg(xhci, "Slot already in default state\n");
4178                         goto out;
4179                 }
4180         }
4181
4182         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4183         if (!command) {
4184                 ret = -ENOMEM;
4185                 goto out;
4186         }
4187
4188         command->in_ctx = virt_dev->in_ctx;
4189
4190         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4191         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4192         if (!ctrl_ctx) {
4193                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4194                                 __func__);
4195                 ret = -EINVAL;
4196                 goto out;
4197         }
4198         /*
4199          * If this is the first Set Address since device plug-in or
4200          * virt_device realloaction after a resume with an xHCI power loss,
4201          * then set up the slot context.
4202          */
4203         if (!slot_ctx->dev_info)
4204                 xhci_setup_addressable_virt_dev(xhci, udev);
4205         /* Otherwise, update the control endpoint ring enqueue pointer. */
4206         else
4207                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4208         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4209         ctrl_ctx->drop_flags = 0;
4210
4211         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4212                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4213
4214         trace_xhci_address_ctrl_ctx(ctrl_ctx);
4215         spin_lock_irqsave(&xhci->lock, flags);
4216         trace_xhci_setup_device(virt_dev);
4217         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4218                                         udev->slot_id, setup);
4219         if (ret) {
4220                 spin_unlock_irqrestore(&xhci->lock, flags);
4221                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4222                                 "FIXME: allocate a command ring segment");
4223                 goto out;
4224         }
4225         xhci_ring_cmd_db(xhci);
4226         spin_unlock_irqrestore(&xhci->lock, flags);
4227
4228         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4229         wait_for_completion(command->completion);
4230
4231         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4232          * the SetAddress() "recovery interval" required by USB and aborting the
4233          * command on a timeout.
4234          */
4235         switch (command->status) {
4236         case COMP_COMMAND_ABORTED:
4237         case COMP_COMMAND_RING_STOPPED:
4238                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4239                 ret = -ETIME;
4240                 break;
4241         case COMP_CONTEXT_STATE_ERROR:
4242         case COMP_SLOT_NOT_ENABLED_ERROR:
4243                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4244                          act, udev->slot_id);
4245                 ret = -EINVAL;
4246                 break;
4247         case COMP_USB_TRANSACTION_ERROR:
4248                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4249
4250                 mutex_unlock(&xhci->mutex);
4251                 ret = xhci_disable_slot(xhci, udev->slot_id);
4252                 xhci_free_virt_device(xhci, udev->slot_id);
4253                 if (!ret)
4254                         xhci_alloc_dev(hcd, udev);
4255                 kfree(command->completion);
4256                 kfree(command);
4257                 return -EPROTO;
4258         case COMP_INCOMPATIBLE_DEVICE_ERROR:
4259                 dev_warn(&udev->dev,
4260                          "ERROR: Incompatible device for setup %s command\n", act);
4261                 ret = -ENODEV;
4262                 break;
4263         case COMP_SUCCESS:
4264                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4265                                "Successful setup %s command", act);
4266                 break;
4267         default:
4268                 xhci_err(xhci,
4269                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
4270                          act, command->status);
4271                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4272                 ret = -EINVAL;
4273                 break;
4274         }
4275         if (ret)
4276                 goto out;
4277         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4278         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4279                         "Op regs DCBAA ptr = %#016llx", temp_64);
4280         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4281                 "Slot ID %d dcbaa entry @%p = %#016llx",
4282                 udev->slot_id,
4283                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4284                 (unsigned long long)
4285                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4286         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4287                         "Output Context DMA address = %#08llx",
4288                         (unsigned long long)virt_dev->out_ctx->dma);
4289         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4290                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4291         /*
4292          * USB core uses address 1 for the roothubs, so we add one to the
4293          * address given back to us by the HC.
4294          */
4295         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4296                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4297         /* Zero the input context control for later use */
4298         ctrl_ctx->add_flags = 0;
4299         ctrl_ctx->drop_flags = 0;
4300         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4301         udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4302
4303         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4304                        "Internal device address = %d",
4305                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4306 out:
4307         mutex_unlock(&xhci->mutex);
4308         if (command) {
4309                 kfree(command->completion);
4310                 kfree(command);
4311         }
4312         return ret;
4313 }
4314
4315 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4316 {
4317         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4318 }
4319
4320 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4321 {
4322         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4323 }
4324
4325 /*
4326  * Transfer the port index into real index in the HW port status
4327  * registers. Caculate offset between the port's PORTSC register
4328  * and port status base. Divide the number of per port register
4329  * to get the real index. The raw port number bases 1.
4330  */
4331 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4332 {
4333         struct xhci_hub *rhub;
4334
4335         rhub = xhci_get_rhub(hcd);
4336         return rhub->ports[port1 - 1]->hw_portnum + 1;
4337 }
4338
4339 /*
4340  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4341  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4342  */
4343 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4344                         struct usb_device *udev, u16 max_exit_latency)
4345 {
4346         struct xhci_virt_device *virt_dev;
4347         struct xhci_command *command;
4348         struct xhci_input_control_ctx *ctrl_ctx;
4349         struct xhci_slot_ctx *slot_ctx;
4350         unsigned long flags;
4351         int ret;
4352
4353         command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4354         if (!command)
4355                 return -ENOMEM;
4356
4357         spin_lock_irqsave(&xhci->lock, flags);
4358
4359         virt_dev = xhci->devs[udev->slot_id];
4360
4361         /*
4362          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4363          * xHC was re-initialized. Exit latency will be set later after
4364          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4365          */
4366
4367         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4368                 spin_unlock_irqrestore(&xhci->lock, flags);
4369                 return 0;
4370         }
4371
4372         /* Attempt to issue an Evaluate Context command to change the MEL. */
4373         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4374         if (!ctrl_ctx) {
4375                 spin_unlock_irqrestore(&xhci->lock, flags);
4376                 xhci_free_command(xhci, command);
4377                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4378                                 __func__);
4379                 return -ENOMEM;
4380         }
4381
4382         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4383         spin_unlock_irqrestore(&xhci->lock, flags);
4384
4385         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4386         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4387         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4388         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4389         slot_ctx->dev_state = 0;
4390
4391         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4392                         "Set up evaluate context for LPM MEL change.");
4393
4394         /* Issue and wait for the evaluate context command. */
4395         ret = xhci_configure_endpoint(xhci, udev, command,
4396                         true, true);
4397
4398         if (!ret) {
4399                 spin_lock_irqsave(&xhci->lock, flags);
4400                 virt_dev->current_mel = max_exit_latency;
4401                 spin_unlock_irqrestore(&xhci->lock, flags);
4402         }
4403
4404         xhci_free_command(xhci, command);
4405
4406         return ret;
4407 }
4408
4409 #ifdef CONFIG_PM
4410
4411 /* BESL to HIRD Encoding array for USB2 LPM */
4412 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4413         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4414
4415 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4416 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4417                                         struct usb_device *udev)
4418 {
4419         int u2del, besl, besl_host;
4420         int besl_device = 0;
4421         u32 field;
4422
4423         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4424         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4425
4426         if (field & USB_BESL_SUPPORT) {
4427                 for (besl_host = 0; besl_host < 16; besl_host++) {
4428                         if (xhci_besl_encoding[besl_host] >= u2del)
4429                                 break;
4430                 }
4431                 /* Use baseline BESL value as default */
4432                 if (field & USB_BESL_BASELINE_VALID)
4433                         besl_device = USB_GET_BESL_BASELINE(field);
4434                 else if (field & USB_BESL_DEEP_VALID)
4435                         besl_device = USB_GET_BESL_DEEP(field);
4436         } else {
4437                 if (u2del <= 50)
4438                         besl_host = 0;
4439                 else
4440                         besl_host = (u2del - 51) / 75 + 1;
4441         }
4442
4443         besl = besl_host + besl_device;
4444         if (besl > 15)
4445                 besl = 15;
4446
4447         return besl;
4448 }
4449
4450 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4451 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4452 {
4453         u32 field;
4454         int l1;
4455         int besld = 0;
4456         int hirdm = 0;
4457
4458         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4459
4460         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4461         l1 = udev->l1_params.timeout / 256;
4462
4463         /* device has preferred BESLD */
4464         if (field & USB_BESL_DEEP_VALID) {
4465                 besld = USB_GET_BESL_DEEP(field);
4466                 hirdm = 1;
4467         }
4468
4469         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4470 }
4471
4472 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4473                         struct usb_device *udev, int enable)
4474 {
4475         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4476         struct xhci_port **ports;
4477         __le32 __iomem  *pm_addr, *hlpm_addr;
4478         u32             pm_val, hlpm_val, field;
4479         unsigned int    port_num;
4480         unsigned long   flags;
4481         int             hird, exit_latency;
4482         int             ret;
4483
4484         if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4485                 return -EPERM;
4486
4487         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4488                         !udev->lpm_capable)
4489                 return -EPERM;
4490
4491         if (!udev->parent || udev->parent->parent ||
4492                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4493                 return -EPERM;
4494
4495         if (udev->usb2_hw_lpm_capable != 1)
4496                 return -EPERM;
4497
4498         spin_lock_irqsave(&xhci->lock, flags);
4499
4500         ports = xhci->usb2_rhub.ports;
4501         port_num = udev->portnum - 1;
4502         pm_addr = ports[port_num]->addr + PORTPMSC;
4503         pm_val = readl(pm_addr);
4504         hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4505
4506         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4507                         enable ? "enable" : "disable", port_num + 1);
4508
4509         if (enable) {
4510                 /* Host supports BESL timeout instead of HIRD */
4511                 if (udev->usb2_hw_lpm_besl_capable) {
4512                         /* if device doesn't have a preferred BESL value use a
4513                          * default one which works with mixed HIRD and BESL
4514                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4515                          */
4516                         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4517                         if ((field & USB_BESL_SUPPORT) &&
4518                             (field & USB_BESL_BASELINE_VALID))
4519                                 hird = USB_GET_BESL_BASELINE(field);
4520                         else
4521                                 hird = udev->l1_params.besl;
4522
4523                         exit_latency = xhci_besl_encoding[hird];
4524                         spin_unlock_irqrestore(&xhci->lock, flags);
4525
4526                         ret = xhci_change_max_exit_latency(xhci, udev,
4527                                                            exit_latency);
4528                         if (ret < 0)
4529                                 return ret;
4530                         spin_lock_irqsave(&xhci->lock, flags);
4531
4532                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4533                         writel(hlpm_val, hlpm_addr);
4534                         /* flush write */
4535                         readl(hlpm_addr);
4536                 } else {
4537                         hird = xhci_calculate_hird_besl(xhci, udev);
4538                 }
4539
4540                 pm_val &= ~PORT_HIRD_MASK;
4541                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4542                 writel(pm_val, pm_addr);
4543                 pm_val = readl(pm_addr);
4544                 pm_val |= PORT_HLE;
4545                 writel(pm_val, pm_addr);
4546                 /* flush write */
4547                 readl(pm_addr);
4548         } else {
4549                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4550                 writel(pm_val, pm_addr);
4551                 /* flush write */
4552                 readl(pm_addr);
4553                 if (udev->usb2_hw_lpm_besl_capable) {
4554                         spin_unlock_irqrestore(&xhci->lock, flags);
4555                         xhci_change_max_exit_latency(xhci, udev, 0);
4556                         readl_poll_timeout(ports[port_num]->addr, pm_val,
4557                                            (pm_val & PORT_PLS_MASK) == XDEV_U0,
4558                                            100, 10000);
4559                         return 0;
4560                 }
4561         }
4562
4563         spin_unlock_irqrestore(&xhci->lock, flags);
4564         return 0;
4565 }
4566
4567 /* check if a usb2 port supports a given extened capability protocol
4568  * only USB2 ports extended protocol capability values are cached.
4569  * Return 1 if capability is supported
4570  */
4571 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4572                                            unsigned capability)
4573 {
4574         u32 port_offset, port_count;
4575         int i;
4576
4577         for (i = 0; i < xhci->num_ext_caps; i++) {
4578                 if (xhci->ext_caps[i] & capability) {
4579                         /* port offsets starts at 1 */
4580                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4581                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4582                         if (port >= port_offset &&
4583                             port < port_offset + port_count)
4584                                 return 1;
4585                 }
4586         }
4587         return 0;
4588 }
4589
4590 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4591 {
4592         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4593         int             portnum = udev->portnum - 1;
4594
4595         if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4596                 return 0;
4597
4598         /* we only support lpm for non-hub device connected to root hub yet */
4599         if (!udev->parent || udev->parent->parent ||
4600                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4601                 return 0;
4602
4603         if (xhci->hw_lpm_support == 1 &&
4604                         xhci_check_usb2_port_capability(
4605                                 xhci, portnum, XHCI_HLC)) {
4606                 udev->usb2_hw_lpm_capable = 1;
4607                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4608                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4609                 if (xhci_check_usb2_port_capability(xhci, portnum,
4610                                         XHCI_BLC))
4611                         udev->usb2_hw_lpm_besl_capable = 1;
4612         }
4613
4614         return 0;
4615 }
4616
4617 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4618
4619 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4620 static unsigned long long xhci_service_interval_to_ns(
4621                 struct usb_endpoint_descriptor *desc)
4622 {
4623         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4624 }
4625
4626 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4627                 enum usb3_link_state state)
4628 {
4629         unsigned long long sel;
4630         unsigned long long pel;
4631         unsigned int max_sel_pel;
4632         char *state_name;
4633
4634         switch (state) {
4635         case USB3_LPM_U1:
4636                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4637                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4638                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4639                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4640                 state_name = "U1";
4641                 break;
4642         case USB3_LPM_U2:
4643                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4644                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4645                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4646                 state_name = "U2";
4647                 break;
4648         default:
4649                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4650                                 __func__);
4651                 return USB3_LPM_DISABLED;
4652         }
4653
4654         if (sel <= max_sel_pel && pel <= max_sel_pel)
4655                 return USB3_LPM_DEVICE_INITIATED;
4656
4657         if (sel > max_sel_pel)
4658                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4659                                 "due to long SEL %llu ms\n",
4660                                 state_name, sel);
4661         else
4662                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4663                                 "due to long PEL %llu ms\n",
4664                                 state_name, pel);
4665         return USB3_LPM_DISABLED;
4666 }
4667
4668 /* The U1 timeout should be the maximum of the following values:
4669  *  - For control endpoints, U1 system exit latency (SEL) * 3
4670  *  - For bulk endpoints, U1 SEL * 5
4671  *  - For interrupt endpoints:
4672  *    - Notification EPs, U1 SEL * 3
4673  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4674  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4675  */
4676 static unsigned long long xhci_calculate_intel_u1_timeout(
4677                 struct usb_device *udev,
4678                 struct usb_endpoint_descriptor *desc)
4679 {
4680         unsigned long long timeout_ns;
4681         int ep_type;
4682         int intr_type;
4683
4684         ep_type = usb_endpoint_type(desc);
4685         switch (ep_type) {
4686         case USB_ENDPOINT_XFER_CONTROL:
4687                 timeout_ns = udev->u1_params.sel * 3;
4688                 break;
4689         case USB_ENDPOINT_XFER_BULK:
4690                 timeout_ns = udev->u1_params.sel * 5;
4691                 break;
4692         case USB_ENDPOINT_XFER_INT:
4693                 intr_type = usb_endpoint_interrupt_type(desc);
4694                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4695                         timeout_ns = udev->u1_params.sel * 3;
4696                         break;
4697                 }
4698                 /* Otherwise the calculation is the same as isoc eps */
4699                 fallthrough;
4700         case USB_ENDPOINT_XFER_ISOC:
4701                 timeout_ns = xhci_service_interval_to_ns(desc);
4702                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4703                 if (timeout_ns < udev->u1_params.sel * 2)
4704                         timeout_ns = udev->u1_params.sel * 2;
4705                 break;
4706         default:
4707                 return 0;
4708         }
4709
4710         return timeout_ns;
4711 }
4712
4713 /* Returns the hub-encoded U1 timeout value. */
4714 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4715                 struct usb_device *udev,
4716                 struct usb_endpoint_descriptor *desc)
4717 {
4718         unsigned long long timeout_ns;
4719
4720         /* Prevent U1 if service interval is shorter than U1 exit latency */
4721         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4722                 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4723                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4724                         return USB3_LPM_DISABLED;
4725                 }
4726         }
4727
4728         if (xhci->quirks & XHCI_INTEL_HOST)
4729                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4730         else
4731                 timeout_ns = udev->u1_params.sel;
4732
4733         /* The U1 timeout is encoded in 1us intervals.
4734          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4735          */
4736         if (timeout_ns == USB3_LPM_DISABLED)
4737                 timeout_ns = 1;
4738         else
4739                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4740
4741         /* If the necessary timeout value is bigger than what we can set in the
4742          * USB 3.0 hub, we have to disable hub-initiated U1.
4743          */
4744         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4745                 return timeout_ns;
4746         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4747                         "due to long timeout %llu ms\n", timeout_ns);
4748         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4749 }
4750
4751 /* The U2 timeout should be the maximum of:
4752  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4753  *  - largest bInterval of any active periodic endpoint (to avoid going
4754  *    into lower power link states between intervals).
4755  *  - the U2 Exit Latency of the device
4756  */
4757 static unsigned long long xhci_calculate_intel_u2_timeout(
4758                 struct usb_device *udev,
4759                 struct usb_endpoint_descriptor *desc)
4760 {
4761         unsigned long long timeout_ns;
4762         unsigned long long u2_del_ns;
4763
4764         timeout_ns = 10 * 1000 * 1000;
4765
4766         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4767                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4768                 timeout_ns = xhci_service_interval_to_ns(desc);
4769
4770         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4771         if (u2_del_ns > timeout_ns)
4772                 timeout_ns = u2_del_ns;
4773
4774         return timeout_ns;
4775 }
4776
4777 /* Returns the hub-encoded U2 timeout value. */
4778 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4779                 struct usb_device *udev,
4780                 struct usb_endpoint_descriptor *desc)
4781 {
4782         unsigned long long timeout_ns;
4783
4784         /* Prevent U2 if service interval is shorter than U2 exit latency */
4785         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4786                 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4787                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4788                         return USB3_LPM_DISABLED;
4789                 }
4790         }
4791
4792         if (xhci->quirks & XHCI_INTEL_HOST)
4793                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4794         else
4795                 timeout_ns = udev->u2_params.sel;
4796
4797         /* The U2 timeout is encoded in 256us intervals */
4798         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4799         /* If the necessary timeout value is bigger than what we can set in the
4800          * USB 3.0 hub, we have to disable hub-initiated U2.
4801          */
4802         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4803                 return timeout_ns;
4804         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4805                         "due to long timeout %llu ms\n", timeout_ns);
4806         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4807 }
4808
4809 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4810                 struct usb_device *udev,
4811                 struct usb_endpoint_descriptor *desc,
4812                 enum usb3_link_state state,
4813                 u16 *timeout)
4814 {
4815         if (state == USB3_LPM_U1)
4816                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4817         else if (state == USB3_LPM_U2)
4818                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4819
4820         return USB3_LPM_DISABLED;
4821 }
4822
4823 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4824                 struct usb_device *udev,
4825                 struct usb_endpoint_descriptor *desc,
4826                 enum usb3_link_state state,
4827                 u16 *timeout)
4828 {
4829         u16 alt_timeout;
4830
4831         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4832                 desc, state, timeout);
4833
4834         /* If we found we can't enable hub-initiated LPM, and
4835          * the U1 or U2 exit latency was too high to allow
4836          * device-initiated LPM as well, then we will disable LPM
4837          * for this device, so stop searching any further.
4838          */
4839         if (alt_timeout == USB3_LPM_DISABLED) {
4840                 *timeout = alt_timeout;
4841                 return -E2BIG;
4842         }
4843         if (alt_timeout > *timeout)
4844                 *timeout = alt_timeout;
4845         return 0;
4846 }
4847
4848 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4849                 struct usb_device *udev,
4850                 struct usb_host_interface *alt,
4851                 enum usb3_link_state state,
4852                 u16 *timeout)
4853 {
4854         int j;
4855
4856         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4857                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4858                                         &alt->endpoint[j].desc, state, timeout))
4859                         return -E2BIG;
4860         }
4861         return 0;
4862 }
4863
4864 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4865                 enum usb3_link_state state)
4866 {
4867         struct usb_device *parent;
4868         unsigned int num_hubs;
4869
4870         if (state == USB3_LPM_U2)
4871                 return 0;
4872
4873         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4874         for (parent = udev->parent, num_hubs = 0; parent->parent;
4875                         parent = parent->parent)
4876                 num_hubs++;
4877
4878         if (num_hubs < 2)
4879                 return 0;
4880
4881         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4882                         " below second-tier hub.\n");
4883         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4884                         "to decrease power consumption.\n");
4885         return -E2BIG;
4886 }
4887
4888 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4889                 struct usb_device *udev,
4890                 enum usb3_link_state state)
4891 {
4892         if (xhci->quirks & XHCI_INTEL_HOST)
4893                 return xhci_check_intel_tier_policy(udev, state);
4894         else
4895                 return 0;
4896 }
4897
4898 /* Returns the U1 or U2 timeout that should be enabled.
4899  * If the tier check or timeout setting functions return with a non-zero exit
4900  * code, that means the timeout value has been finalized and we shouldn't look
4901  * at any more endpoints.
4902  */
4903 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4904                         struct usb_device *udev, enum usb3_link_state state)
4905 {
4906         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4907         struct usb_host_config *config;
4908         char *state_name;
4909         int i;
4910         u16 timeout = USB3_LPM_DISABLED;
4911
4912         if (state == USB3_LPM_U1)
4913                 state_name = "U1";
4914         else if (state == USB3_LPM_U2)
4915                 state_name = "U2";
4916         else {
4917                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4918                                 state);
4919                 return timeout;
4920         }
4921
4922         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4923                 return timeout;
4924
4925         /* Gather some information about the currently installed configuration
4926          * and alternate interface settings.
4927          */
4928         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4929                         state, &timeout))
4930                 return timeout;
4931
4932         config = udev->actconfig;
4933         if (!config)
4934                 return timeout;
4935
4936         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4937                 struct usb_driver *driver;
4938                 struct usb_interface *intf = config->interface[i];
4939
4940                 if (!intf)
4941                         continue;
4942
4943                 /* Check if any currently bound drivers want hub-initiated LPM
4944                  * disabled.
4945                  */
4946                 if (intf->dev.driver) {
4947                         driver = to_usb_driver(intf->dev.driver);
4948                         if (driver && driver->disable_hub_initiated_lpm) {
4949                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4950                                         state_name, driver->name);
4951                                 timeout = xhci_get_timeout_no_hub_lpm(udev,
4952                                                                       state);
4953                                 if (timeout == USB3_LPM_DISABLED)
4954                                         return timeout;
4955                         }
4956                 }
4957
4958                 /* Not sure how this could happen... */
4959                 if (!intf->cur_altsetting)
4960                         continue;
4961
4962                 if (xhci_update_timeout_for_interface(xhci, udev,
4963                                         intf->cur_altsetting,
4964                                         state, &timeout))
4965                         return timeout;
4966         }
4967         return timeout;
4968 }
4969
4970 static int calculate_max_exit_latency(struct usb_device *udev,
4971                 enum usb3_link_state state_changed,
4972                 u16 hub_encoded_timeout)
4973 {
4974         unsigned long long u1_mel_us = 0;
4975         unsigned long long u2_mel_us = 0;
4976         unsigned long long mel_us = 0;
4977         bool disabling_u1;
4978         bool disabling_u2;
4979         bool enabling_u1;
4980         bool enabling_u2;
4981
4982         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4983                         hub_encoded_timeout == USB3_LPM_DISABLED);
4984         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4985                         hub_encoded_timeout == USB3_LPM_DISABLED);
4986
4987         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4988                         hub_encoded_timeout != USB3_LPM_DISABLED);
4989         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4990                         hub_encoded_timeout != USB3_LPM_DISABLED);
4991
4992         /* If U1 was already enabled and we're not disabling it,
4993          * or we're going to enable U1, account for the U1 max exit latency.
4994          */
4995         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4996                         enabling_u1)
4997                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4998         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4999                         enabling_u2)
5000                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5001
5002         mel_us = max(u1_mel_us, u2_mel_us);
5003
5004         /* xHCI host controller max exit latency field is only 16 bits wide. */
5005         if (mel_us > MAX_EXIT) {
5006                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5007                                 "is too big.\n", mel_us);
5008                 return -E2BIG;
5009         }
5010         return mel_us;
5011 }
5012
5013 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5014 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5015                         struct usb_device *udev, enum usb3_link_state state)
5016 {
5017         struct xhci_hcd *xhci;
5018         u16 hub_encoded_timeout;
5019         int mel;
5020         int ret;
5021
5022         xhci = hcd_to_xhci(hcd);
5023         /* The LPM timeout values are pretty host-controller specific, so don't
5024          * enable hub-initiated timeouts unless the vendor has provided
5025          * information about their timeout algorithm.
5026          */
5027         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5028                         !xhci->devs[udev->slot_id])
5029                 return USB3_LPM_DISABLED;
5030
5031         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5032         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5033         if (mel < 0) {
5034                 /* Max Exit Latency is too big, disable LPM. */
5035                 hub_encoded_timeout = USB3_LPM_DISABLED;
5036                 mel = 0;
5037         }
5038
5039         ret = xhci_change_max_exit_latency(xhci, udev, mel);
5040         if (ret)
5041                 return ret;
5042         return hub_encoded_timeout;
5043 }
5044
5045 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5046                         struct usb_device *udev, enum usb3_link_state state)
5047 {
5048         struct xhci_hcd *xhci;
5049         u16 mel;
5050
5051         xhci = hcd_to_xhci(hcd);
5052         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5053                         !xhci->devs[udev->slot_id])
5054                 return 0;
5055
5056         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5057         return xhci_change_max_exit_latency(xhci, udev, mel);
5058 }
5059 #else /* CONFIG_PM */
5060
5061 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5062                                 struct usb_device *udev, int enable)
5063 {
5064         return 0;
5065 }
5066
5067 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5068 {
5069         return 0;
5070 }
5071
5072 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5073                         struct usb_device *udev, enum usb3_link_state state)
5074 {
5075         return USB3_LPM_DISABLED;
5076 }
5077
5078 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5079                         struct usb_device *udev, enum usb3_link_state state)
5080 {
5081         return 0;
5082 }
5083 #endif  /* CONFIG_PM */
5084
5085 /*-------------------------------------------------------------------------*/
5086
5087 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5088  * internal data structures for the device.
5089  */
5090 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5091                         struct usb_tt *tt, gfp_t mem_flags)
5092 {
5093         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5094         struct xhci_virt_device *vdev;
5095         struct xhci_command *config_cmd;
5096         struct xhci_input_control_ctx *ctrl_ctx;
5097         struct xhci_slot_ctx *slot_ctx;
5098         unsigned long flags;
5099         unsigned think_time;
5100         int ret;
5101
5102         /* Ignore root hubs */
5103         if (!hdev->parent)
5104                 return 0;
5105
5106         vdev = xhci->devs[hdev->slot_id];
5107         if (!vdev) {
5108                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5109                 return -EINVAL;
5110         }
5111
5112         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5113         if (!config_cmd)
5114                 return -ENOMEM;
5115
5116         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5117         if (!ctrl_ctx) {
5118                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5119                                 __func__);
5120                 xhci_free_command(xhci, config_cmd);
5121                 return -ENOMEM;
5122         }
5123
5124         spin_lock_irqsave(&xhci->lock, flags);
5125         if (hdev->speed == USB_SPEED_HIGH &&
5126                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5127                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5128                 xhci_free_command(xhci, config_cmd);
5129                 spin_unlock_irqrestore(&xhci->lock, flags);
5130                 return -ENOMEM;
5131         }
5132
5133         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5134         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5135         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5136         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5137         /*
5138          * refer to section 6.2.2: MTT should be 0 for full speed hub,
5139          * but it may be already set to 1 when setup an xHCI virtual
5140          * device, so clear it anyway.
5141          */
5142         if (tt->multi)
5143                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5144         else if (hdev->speed == USB_SPEED_FULL)
5145                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5146
5147         if (xhci->hci_version > 0x95) {
5148                 xhci_dbg(xhci, "xHCI version %x needs hub "
5149                                 "TT think time and number of ports\n",
5150                                 (unsigned int) xhci->hci_version);
5151                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5152                 /* Set TT think time - convert from ns to FS bit times.
5153                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
5154                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
5155                  *
5156                  * xHCI 1.0: this field shall be 0 if the device is not a
5157                  * High-spped hub.
5158                  */
5159                 think_time = tt->think_time;
5160                 if (think_time != 0)
5161                         think_time = (think_time / 666) - 1;
5162                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5163                         slot_ctx->tt_info |=
5164                                 cpu_to_le32(TT_THINK_TIME(think_time));
5165         } else {
5166                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5167                                 "TT think time or number of ports\n",
5168                                 (unsigned int) xhci->hci_version);
5169         }
5170         slot_ctx->dev_state = 0;
5171         spin_unlock_irqrestore(&xhci->lock, flags);
5172
5173         xhci_dbg(xhci, "Set up %s for hub device.\n",
5174                         (xhci->hci_version > 0x95) ?
5175                         "configure endpoint" : "evaluate context");
5176
5177         /* Issue and wait for the configure endpoint or
5178          * evaluate context command.
5179          */
5180         if (xhci->hci_version > 0x95)
5181                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5182                                 false, false);
5183         else
5184                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5185                                 true, false);
5186
5187         xhci_free_command(xhci, config_cmd);
5188         return ret;
5189 }
5190
5191 static int xhci_get_frame(struct usb_hcd *hcd)
5192 {
5193         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5194         /* EHCI mods by the periodic size.  Why? */
5195         return readl(&xhci->run_regs->microframe_index) >> 3;
5196 }
5197
5198 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5199 {
5200         struct xhci_hcd         *xhci;
5201         /*
5202          * TODO: Check with DWC3 clients for sysdev according to
5203          * quirks
5204          */
5205         struct device           *dev = hcd->self.sysdev;
5206         unsigned int            minor_rev;
5207         int                     retval;
5208
5209         /* Accept arbitrarily long scatter-gather lists */
5210         hcd->self.sg_tablesize = ~0;
5211
5212         /* support to build packet from discontinuous buffers */
5213         hcd->self.no_sg_constraint = 1;
5214
5215         /* XHCI controllers don't stop the ep queue on short packets :| */
5216         hcd->self.no_stop_on_short = 1;
5217
5218         xhci = hcd_to_xhci(hcd);
5219
5220         if (usb_hcd_is_primary_hcd(hcd)) {
5221                 xhci->main_hcd = hcd;
5222                 xhci->usb2_rhub.hcd = hcd;
5223                 /* Mark the first roothub as being USB 2.0.
5224                  * The xHCI driver will register the USB 3.0 roothub.
5225                  */
5226                 hcd->speed = HCD_USB2;
5227                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5228                 /*
5229                  * USB 2.0 roothub under xHCI has an integrated TT,
5230                  * (rate matching hub) as opposed to having an OHCI/UHCI
5231                  * companion controller.
5232                  */
5233                 hcd->has_tt = 1;
5234         } else {
5235                 /*
5236                  * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5237                  * should return 0x31 for sbrn, or that the minor revision
5238                  * is a two digit BCD containig minor and sub-minor numbers.
5239                  * This was later clarified in xHCI 1.2.
5240                  *
5241                  * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5242                  * minor revision set to 0x1 instead of 0x10.
5243                  */
5244                 if (xhci->usb3_rhub.min_rev == 0x1)
5245                         minor_rev = 1;
5246                 else
5247                         minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5248
5249                 switch (minor_rev) {
5250                 case 2:
5251                         hcd->speed = HCD_USB32;
5252                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5253                         hcd->self.root_hub->rx_lanes = 2;
5254                         hcd->self.root_hub->tx_lanes = 2;
5255                         hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5256                         break;
5257                 case 1:
5258                         hcd->speed = HCD_USB31;
5259                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5260                         hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5261                         break;
5262                 }
5263                 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5264                           minor_rev,
5265                           minor_rev ? "Enhanced " : "");
5266
5267                 xhci->usb3_rhub.hcd = hcd;
5268                 /* xHCI private pointer was set in xhci_pci_probe for the second
5269                  * registered roothub.
5270                  */
5271                 return 0;
5272         }
5273
5274         mutex_init(&xhci->mutex);
5275         xhci->cap_regs = hcd->regs;
5276         xhci->op_regs = hcd->regs +
5277                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5278         xhci->run_regs = hcd->regs +
5279                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5280         /* Cache read-only capability registers */
5281         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5282         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5283         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5284         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5285         xhci->hci_version = HC_VERSION(xhci->hcc_params);
5286         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5287         if (xhci->hci_version > 0x100)
5288                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5289
5290         xhci->quirks |= quirks;
5291
5292         get_quirks(dev, xhci);
5293
5294         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5295          * success event after a short transfer. This quirk will ignore such
5296          * spurious event.
5297          */
5298         if (xhci->hci_version > 0x96)
5299                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5300
5301         /* Make sure the HC is halted. */
5302         retval = xhci_halt(xhci);
5303         if (retval)
5304                 return retval;
5305
5306         xhci_zero_64b_regs(xhci);
5307
5308         xhci_dbg(xhci, "Resetting HCD\n");
5309         /* Reset the internal HC memory state and registers. */
5310         retval = xhci_reset(xhci);
5311         if (retval)
5312                 return retval;
5313         xhci_dbg(xhci, "Reset complete\n");
5314
5315         /*
5316          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5317          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5318          * address memory pointers actually. So, this driver clears the AC64
5319          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5320          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5321          */
5322         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5323                 xhci->hcc_params &= ~BIT(0);
5324
5325         /* Set dma_mask and coherent_dma_mask to 64-bits,
5326          * if xHC supports 64-bit addressing */
5327         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5328                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5329                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5330                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5331         } else {
5332                 /*
5333                  * This is to avoid error in cases where a 32-bit USB
5334                  * controller is used on a 64-bit capable system.
5335                  */
5336                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5337                 if (retval)
5338                         return retval;
5339                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5340                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5341         }
5342
5343         xhci_dbg(xhci, "Calling HCD init\n");
5344         /* Initialize HCD and host controller data structures. */
5345         retval = xhci_init(hcd);
5346         if (retval)
5347                 return retval;
5348         xhci_dbg(xhci, "Called HCD init\n");
5349
5350         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5351                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5352
5353         return 0;
5354 }
5355 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5356
5357 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5358                 struct usb_host_endpoint *ep)
5359 {
5360         struct xhci_hcd *xhci;
5361         struct usb_device *udev;
5362         unsigned int slot_id;
5363         unsigned int ep_index;
5364         unsigned long flags;
5365
5366         xhci = hcd_to_xhci(hcd);
5367
5368         spin_lock_irqsave(&xhci->lock, flags);
5369         udev = (struct usb_device *)ep->hcpriv;
5370         slot_id = udev->slot_id;
5371         ep_index = xhci_get_endpoint_index(&ep->desc);
5372
5373         xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5374         xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5375         spin_unlock_irqrestore(&xhci->lock, flags);
5376 }
5377
5378 static const struct hc_driver xhci_hc_driver = {
5379         .description =          "xhci-hcd",
5380         .product_desc =         "xHCI Host Controller",
5381         .hcd_priv_size =        sizeof(struct xhci_hcd),
5382
5383         /*
5384          * generic hardware linkage
5385          */
5386         .irq =                  xhci_irq,
5387         .flags =                HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5388                                 HCD_BH,
5389
5390         /*
5391          * basic lifecycle operations
5392          */
5393         .reset =                NULL, /* set in xhci_init_driver() */
5394         .start =                xhci_run,
5395         .stop =                 xhci_stop,
5396         .shutdown =             xhci_shutdown,
5397
5398         /*
5399          * managing i/o requests and associated device resources
5400          */
5401         .map_urb_for_dma =      xhci_map_urb_for_dma,
5402         .unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5403         .urb_enqueue =          xhci_urb_enqueue,
5404         .urb_dequeue =          xhci_urb_dequeue,
5405         .alloc_dev =            xhci_alloc_dev,
5406         .free_dev =             xhci_free_dev,
5407         .alloc_streams =        xhci_alloc_streams,
5408         .free_streams =         xhci_free_streams,
5409         .add_endpoint =         xhci_add_endpoint,
5410         .drop_endpoint =        xhci_drop_endpoint,
5411         .endpoint_disable =     xhci_endpoint_disable,
5412         .endpoint_reset =       xhci_endpoint_reset,
5413         .check_bandwidth =      xhci_check_bandwidth,
5414         .reset_bandwidth =      xhci_reset_bandwidth,
5415         .address_device =       xhci_address_device,
5416         .enable_device =        xhci_enable_device,
5417         .update_hub_device =    xhci_update_hub_device,
5418         .reset_device =         xhci_discover_or_reset_device,
5419
5420         /*
5421          * scheduling support
5422          */
5423         .get_frame_number =     xhci_get_frame,
5424
5425         /*
5426          * root hub support
5427          */
5428         .hub_control =          xhci_hub_control,
5429         .hub_status_data =      xhci_hub_status_data,
5430         .bus_suspend =          xhci_bus_suspend,
5431         .bus_resume =           xhci_bus_resume,
5432         .get_resuming_ports =   xhci_get_resuming_ports,
5433
5434         /*
5435          * call back when device connected and addressed
5436          */
5437         .update_device =        xhci_update_device,
5438         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5439         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5440         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5441         .find_raw_port_number = xhci_find_raw_port_number,
5442         .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5443 };
5444
5445 void xhci_init_driver(struct hc_driver *drv,
5446                       const struct xhci_driver_overrides *over)
5447 {
5448         BUG_ON(!over);
5449
5450         /* Copy the generic table to drv then apply the overrides */
5451         *drv = xhci_hc_driver;
5452
5453         if (over) {
5454                 drv->hcd_priv_size += over->extra_priv_size;
5455                 if (over->reset)
5456                         drv->reset = over->reset;
5457                 if (over->start)
5458                         drv->start = over->start;
5459                 if (over->add_endpoint)
5460                         drv->add_endpoint = over->add_endpoint;
5461                 if (over->drop_endpoint)
5462                         drv->drop_endpoint = over->drop_endpoint;
5463                 if (over->check_bandwidth)
5464                         drv->check_bandwidth = over->check_bandwidth;
5465                 if (over->reset_bandwidth)
5466                         drv->reset_bandwidth = over->reset_bandwidth;
5467         }
5468 }
5469 EXPORT_SYMBOL_GPL(xhci_init_driver);
5470
5471 MODULE_DESCRIPTION(DRIVER_DESC);
5472 MODULE_AUTHOR(DRIVER_AUTHOR);
5473 MODULE_LICENSE("GPL");
5474
5475 static int __init xhci_hcd_init(void)
5476 {
5477         /*
5478          * Check the compiler generated sizes of structures that must be laid
5479          * out in specific ways for hardware access.
5480          */
5481         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5482         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5483         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5484         /* xhci_device_control has eight fields, and also
5485          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5486          */
5487         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5488         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5489         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5490         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5491         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5492         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5493         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5494
5495         if (usb_disabled())
5496                 return -ENODEV;
5497
5498         xhci_debugfs_create_root();
5499         xhci_dbc_init();
5500
5501         return 0;
5502 }
5503
5504 /*
5505  * If an init function is provided, an exit function must also be provided
5506  * to allow module unload.
5507  */
5508 static void __exit xhci_hcd_fini(void)
5509 {
5510         xhci_debugfs_remove_root();
5511         xhci_dbc_exit();
5512 }
5513
5514 module_init(xhci_hcd_init);
5515 module_exit(xhci_hcd_fini);