98aac742a2c18a38d3e603854557c2404bda2dd7
[profile/ivi/kernel-x86-ivi.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30
31 #include "xhci.h"
32
33 #define DRIVER_AUTHOR "Sarah Sharp"
34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35
36 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
37 static int link_quirk;
38 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
39 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
40
41 /* TODO: copied from ehci-hcd.c - can this be refactored? */
42 /*
43  * xhci_handshake - spin reading hc until handshake completes or fails
44  * @ptr: address of hc register to be read
45  * @mask: bits to look at in result of read
46  * @done: value of those bits when handshake succeeds
47  * @usec: timeout in microseconds
48  *
49  * Returns negative errno, or zero on success
50  *
51  * Success happens when the "mask" bits have the specified value (hardware
52  * handshake done).  There are two failure modes:  "usec" have passed (major
53  * hardware flakeout), or the register reads as all-ones (hardware removed).
54  */
55 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
56                       u32 mask, u32 done, int usec)
57 {
58         u32     result;
59
60         do {
61                 result = xhci_readl(xhci, ptr);
62                 if (result == ~(u32)0)          /* card removed */
63                         return -ENODEV;
64                 result &= mask;
65                 if (result == done)
66                         return 0;
67                 udelay(1);
68                 usec--;
69         } while (usec > 0);
70         return -ETIMEDOUT;
71 }
72
73 /*
74  * Disable interrupts and begin the xHCI halting process.
75  */
76 void xhci_quiesce(struct xhci_hcd *xhci)
77 {
78         u32 halted;
79         u32 cmd;
80         u32 mask;
81
82         mask = ~(XHCI_IRQS);
83         halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
84         if (!halted)
85                 mask &= ~CMD_RUN;
86
87         cmd = xhci_readl(xhci, &xhci->op_regs->command);
88         cmd &= mask;
89         xhci_writel(xhci, cmd, &xhci->op_regs->command);
90 }
91
92 /*
93  * Force HC into halt state.
94  *
95  * Disable any IRQs and clear the run/stop bit.
96  * HC will complete any current and actively pipelined transactions, and
97  * should halt within 16 ms of the run/stop bit being cleared.
98  * Read HC Halted bit in the status register to see when the HC is finished.
99  */
100 int xhci_halt(struct xhci_hcd *xhci)
101 {
102         int ret;
103         xhci_dbg(xhci, "// Halt the HC\n");
104         xhci_quiesce(xhci);
105
106         ret = xhci_handshake(xhci, &xhci->op_regs->status,
107                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
108         if (!ret) {
109                 xhci->xhc_state |= XHCI_STATE_HALTED;
110                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
111         } else
112                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
113                                 XHCI_MAX_HALT_USEC);
114         return ret;
115 }
116
117 /*
118  * Set the run bit and wait for the host to be running.
119  */
120 static int xhci_start(struct xhci_hcd *xhci)
121 {
122         u32 temp;
123         int ret;
124
125         temp = xhci_readl(xhci, &xhci->op_regs->command);
126         temp |= (CMD_RUN);
127         xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
128                         temp);
129         xhci_writel(xhci, temp, &xhci->op_regs->command);
130
131         /*
132          * Wait for the HCHalted Status bit to be 0 to indicate the host is
133          * running.
134          */
135         ret = xhci_handshake(xhci, &xhci->op_regs->status,
136                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
137         if (ret == -ETIMEDOUT)
138                 xhci_err(xhci, "Host took too long to start, "
139                                 "waited %u microseconds.\n",
140                                 XHCI_MAX_HALT_USEC);
141         if (!ret)
142                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
143         return ret;
144 }
145
146 /*
147  * Reset a halted HC.
148  *
149  * This resets pipelines, timers, counters, state machines, etc.
150  * Transactions will be terminated immediately, and operational registers
151  * will be set to their defaults.
152  */
153 int xhci_reset(struct xhci_hcd *xhci)
154 {
155         u32 command;
156         u32 state;
157         int ret, i;
158
159         state = xhci_readl(xhci, &xhci->op_regs->status);
160         if ((state & STS_HALT) == 0) {
161                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
162                 return 0;
163         }
164
165         xhci_dbg(xhci, "// Reset the HC\n");
166         command = xhci_readl(xhci, &xhci->op_regs->command);
167         command |= CMD_RESET;
168         xhci_writel(xhci, command, &xhci->op_regs->command);
169
170         ret = xhci_handshake(xhci, &xhci->op_regs->command,
171                         CMD_RESET, 0, 10 * 1000 * 1000);
172         if (ret)
173                 return ret;
174
175         xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
176         /*
177          * xHCI cannot write to any doorbells or operational registers other
178          * than status until the "Controller Not Ready" flag is cleared.
179          */
180         ret = xhci_handshake(xhci, &xhci->op_regs->status,
181                         STS_CNR, 0, 10 * 1000 * 1000);
182
183         for (i = 0; i < 2; ++i) {
184                 xhci->bus_state[i].port_c_suspend = 0;
185                 xhci->bus_state[i].suspended_ports = 0;
186                 xhci->bus_state[i].resuming_ports = 0;
187         }
188
189         return ret;
190 }
191
192 #ifdef CONFIG_PCI
193 static int xhci_free_msi(struct xhci_hcd *xhci)
194 {
195         int i;
196
197         if (!xhci->msix_entries)
198                 return -EINVAL;
199
200         for (i = 0; i < xhci->msix_count; i++)
201                 if (xhci->msix_entries[i].vector)
202                         free_irq(xhci->msix_entries[i].vector,
203                                         xhci_to_hcd(xhci));
204         return 0;
205 }
206
207 /*
208  * Set up MSI
209  */
210 static int xhci_setup_msi(struct xhci_hcd *xhci)
211 {
212         int ret;
213         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
214
215         ret = pci_enable_msi(pdev);
216         if (ret) {
217                 xhci_dbg(xhci, "failed to allocate MSI entry\n");
218                 return ret;
219         }
220
221         ret = request_irq(pdev->irq, xhci_msi_irq,
222                                 0, "xhci_hcd", xhci_to_hcd(xhci));
223         if (ret) {
224                 xhci_dbg(xhci, "disable MSI interrupt\n");
225                 pci_disable_msi(pdev);
226         }
227
228         return ret;
229 }
230
231 /*
232  * Free IRQs
233  * free all IRQs request
234  */
235 static void xhci_free_irq(struct xhci_hcd *xhci)
236 {
237         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
238         int ret;
239
240         /* return if using legacy interrupt */
241         if (xhci_to_hcd(xhci)->irq > 0)
242                 return;
243
244         ret = xhci_free_msi(xhci);
245         if (!ret)
246                 return;
247         if (pdev->irq > 0)
248                 free_irq(pdev->irq, xhci_to_hcd(xhci));
249
250         return;
251 }
252
253 /*
254  * Set up MSI-X
255  */
256 static int xhci_setup_msix(struct xhci_hcd *xhci)
257 {
258         int i, ret = 0;
259         struct usb_hcd *hcd = xhci_to_hcd(xhci);
260         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
261
262         /*
263          * calculate number of msi-x vectors supported.
264          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
265          *   with max number of interrupters based on the xhci HCSPARAMS1.
266          * - num_online_cpus: maximum msi-x vectors per CPUs core.
267          *   Add additional 1 vector to ensure always available interrupt.
268          */
269         xhci->msix_count = min(num_online_cpus() + 1,
270                                 HCS_MAX_INTRS(xhci->hcs_params1));
271
272         xhci->msix_entries =
273                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
274                                 GFP_KERNEL);
275         if (!xhci->msix_entries) {
276                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
277                 return -ENOMEM;
278         }
279
280         for (i = 0; i < xhci->msix_count; i++) {
281                 xhci->msix_entries[i].entry = i;
282                 xhci->msix_entries[i].vector = 0;
283         }
284
285         ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
286         if (ret) {
287                 xhci_dbg(xhci, "Failed to enable MSI-X\n");
288                 goto free_entries;
289         }
290
291         for (i = 0; i < xhci->msix_count; i++) {
292                 ret = request_irq(xhci->msix_entries[i].vector,
293                                 xhci_msi_irq,
294                                 0, "xhci_hcd", xhci_to_hcd(xhci));
295                 if (ret)
296                         goto disable_msix;
297         }
298
299         hcd->msix_enabled = 1;
300         return ret;
301
302 disable_msix:
303         xhci_dbg(xhci, "disable MSI-X interrupt\n");
304         xhci_free_irq(xhci);
305         pci_disable_msix(pdev);
306 free_entries:
307         kfree(xhci->msix_entries);
308         xhci->msix_entries = NULL;
309         return ret;
310 }
311
312 /* Free any IRQs and disable MSI-X */
313 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
314 {
315         struct usb_hcd *hcd = xhci_to_hcd(xhci);
316         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
317
318         xhci_free_irq(xhci);
319
320         if (xhci->msix_entries) {
321                 pci_disable_msix(pdev);
322                 kfree(xhci->msix_entries);
323                 xhci->msix_entries = NULL;
324         } else {
325                 pci_disable_msi(pdev);
326         }
327
328         hcd->msix_enabled = 0;
329         return;
330 }
331
332 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
333 {
334         int i;
335
336         if (xhci->msix_entries) {
337                 for (i = 0; i < xhci->msix_count; i++)
338                         synchronize_irq(xhci->msix_entries[i].vector);
339         }
340 }
341
342 static int xhci_try_enable_msi(struct usb_hcd *hcd)
343 {
344         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
345         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
346         int ret;
347
348         /*
349          * Some Fresco Logic host controllers advertise MSI, but fail to
350          * generate interrupts.  Don't even try to enable MSI.
351          */
352         if (xhci->quirks & XHCI_BROKEN_MSI)
353                 goto legacy_irq;
354
355         /* unregister the legacy interrupt */
356         if (hcd->irq)
357                 free_irq(hcd->irq, hcd);
358         hcd->irq = 0;
359
360         ret = xhci_setup_msix(xhci);
361         if (ret)
362                 /* fall back to msi*/
363                 ret = xhci_setup_msi(xhci);
364
365         if (!ret)
366                 /* hcd->irq is 0, we have MSI */
367                 return 0;
368
369         if (!pdev->irq) {
370                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
371                 return -EINVAL;
372         }
373
374  legacy_irq:
375         /* fall back to legacy interrupt*/
376         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
377                         hcd->irq_descr, hcd);
378         if (ret) {
379                 xhci_err(xhci, "request interrupt %d failed\n",
380                                 pdev->irq);
381                 return ret;
382         }
383         hcd->irq = pdev->irq;
384         return 0;
385 }
386
387 #else
388
389 static int xhci_try_enable_msi(struct usb_hcd *hcd)
390 {
391         return 0;
392 }
393
394 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
395 {
396 }
397
398 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
399 {
400 }
401
402 #endif
403
404 static void compliance_mode_recovery(unsigned long arg)
405 {
406         struct xhci_hcd *xhci;
407         struct usb_hcd *hcd;
408         u32 temp;
409         int i;
410
411         xhci = (struct xhci_hcd *)arg;
412
413         for (i = 0; i < xhci->num_usb3_ports; i++) {
414                 temp = xhci_readl(xhci, xhci->usb3_ports[i]);
415                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
416                         /*
417                          * Compliance Mode Detected. Letting USB Core
418                          * handle the Warm Reset
419                          */
420                         xhci_dbg(xhci, "Compliance mode detected->port %d\n",
421                                         i + 1);
422                         xhci_dbg(xhci, "Attempting compliance mode recovery\n");
423                         hcd = xhci->shared_hcd;
424
425                         if (hcd->state == HC_STATE_SUSPENDED)
426                                 usb_hcd_resume_root_hub(hcd);
427
428                         usb_hcd_poll_rh_status(hcd);
429                 }
430         }
431
432         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
433                 mod_timer(&xhci->comp_mode_recovery_timer,
434                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
435 }
436
437 /*
438  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
439  * that causes ports behind that hardware to enter compliance mode sometimes.
440  * The quirk creates a timer that polls every 2 seconds the link state of
441  * each host controller's port and recovers it by issuing a Warm reset
442  * if Compliance mode is detected, otherwise the port will become "dead" (no
443  * device connections or disconnections will be detected anymore). Becasue no
444  * status event is generated when entering compliance mode (per xhci spec),
445  * this quirk is needed on systems that have the failing hardware installed.
446  */
447 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
448 {
449         xhci->port_status_u0 = 0;
450         init_timer(&xhci->comp_mode_recovery_timer);
451
452         xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
453         xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
454         xhci->comp_mode_recovery_timer.expires = jiffies +
455                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
456
457         set_timer_slack(&xhci->comp_mode_recovery_timer,
458                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
459         add_timer(&xhci->comp_mode_recovery_timer);
460         xhci_dbg(xhci, "Compliance mode recovery timer initialized\n");
461 }
462
463 /*
464  * This function identifies the systems that have installed the SN65LVPE502CP
465  * USB3.0 re-driver and that need the Compliance Mode Quirk.
466  * Systems:
467  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
468  */
469 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
470 {
471         const char *dmi_product_name, *dmi_sys_vendor;
472
473         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
474         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
475         if (!dmi_product_name || !dmi_sys_vendor)
476                 return false;
477
478         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
479                 return false;
480
481         if (strstr(dmi_product_name, "Z420") ||
482                         strstr(dmi_product_name, "Z620") ||
483                         strstr(dmi_product_name, "Z820") ||
484                         strstr(dmi_product_name, "Z1 Workstation"))
485                 return true;
486
487         return false;
488 }
489
490 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
491 {
492         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
493 }
494
495
496 /*
497  * Initialize memory for HCD and xHC (one-time init).
498  *
499  * Program the PAGESIZE register, initialize the device context array, create
500  * device contexts (?), set up a command ring segment (or two?), create event
501  * ring (one for now).
502  */
503 int xhci_init(struct usb_hcd *hcd)
504 {
505         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
506         int retval = 0;
507
508         xhci_dbg(xhci, "xhci_init\n");
509         spin_lock_init(&xhci->lock);
510         if (xhci->hci_version == 0x95 && link_quirk) {
511                 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
512                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
513         } else {
514                 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
515         }
516         retval = xhci_mem_init(xhci, GFP_KERNEL);
517         xhci_dbg(xhci, "Finished xhci_init\n");
518
519         /* Initializing Compliance Mode Recovery Data If Needed */
520         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
521                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
522                 compliance_mode_recovery_timer_init(xhci);
523         }
524
525         return retval;
526 }
527
528 /*-------------------------------------------------------------------------*/
529
530
531 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
532 static void xhci_event_ring_work(unsigned long arg)
533 {
534         unsigned long flags;
535         int temp;
536         u64 temp_64;
537         struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
538         int i, j;
539
540         xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
541
542         spin_lock_irqsave(&xhci->lock, flags);
543         temp = xhci_readl(xhci, &xhci->op_regs->status);
544         xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
545         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
546                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
547                 xhci_dbg(xhci, "HW died, polling stopped.\n");
548                 spin_unlock_irqrestore(&xhci->lock, flags);
549                 return;
550         }
551
552         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
553         xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
554         xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
555         xhci->error_bitmask = 0;
556         xhci_dbg(xhci, "Event ring:\n");
557         xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
558         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
559         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
560         temp_64 &= ~ERST_PTR_MASK;
561         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
562         xhci_dbg(xhci, "Command ring:\n");
563         xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
564         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
565         xhci_dbg_cmd_ptrs(xhci);
566         for (i = 0; i < MAX_HC_SLOTS; ++i) {
567                 if (!xhci->devs[i])
568                         continue;
569                 for (j = 0; j < 31; ++j) {
570                         xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
571                 }
572         }
573         spin_unlock_irqrestore(&xhci->lock, flags);
574
575         if (!xhci->zombie)
576                 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
577         else
578                 xhci_dbg(xhci, "Quit polling the event ring.\n");
579 }
580 #endif
581
582 static int xhci_run_finished(struct xhci_hcd *xhci)
583 {
584         if (xhci_start(xhci)) {
585                 xhci_halt(xhci);
586                 return -ENODEV;
587         }
588         xhci->shared_hcd->state = HC_STATE_RUNNING;
589         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
590
591         if (xhci->quirks & XHCI_NEC_HOST)
592                 xhci_ring_cmd_db(xhci);
593
594         xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
595         return 0;
596 }
597
598 /*
599  * Start the HC after it was halted.
600  *
601  * This function is called by the USB core when the HC driver is added.
602  * Its opposite is xhci_stop().
603  *
604  * xhci_init() must be called once before this function can be called.
605  * Reset the HC, enable device slot contexts, program DCBAAP, and
606  * set command ring pointer and event ring pointer.
607  *
608  * Setup MSI-X vectors and enable interrupts.
609  */
610 int xhci_run(struct usb_hcd *hcd)
611 {
612         u32 temp;
613         u64 temp_64;
614         int ret;
615         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
616
617         /* Start the xHCI host controller running only after the USB 2.0 roothub
618          * is setup.
619          */
620
621         hcd->uses_new_polling = 1;
622         if (!usb_hcd_is_primary_hcd(hcd))
623                 return xhci_run_finished(xhci);
624
625         xhci_dbg(xhci, "xhci_run\n");
626
627         ret = xhci_try_enable_msi(hcd);
628         if (ret)
629                 return ret;
630
631 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
632         init_timer(&xhci->event_ring_timer);
633         xhci->event_ring_timer.data = (unsigned long) xhci;
634         xhci->event_ring_timer.function = xhci_event_ring_work;
635         /* Poll the event ring */
636         xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
637         xhci->zombie = 0;
638         xhci_dbg(xhci, "Setting event ring polling timer\n");
639         add_timer(&xhci->event_ring_timer);
640 #endif
641
642         xhci_dbg(xhci, "Command ring memory map follows:\n");
643         xhci_debug_ring(xhci, xhci->cmd_ring);
644         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
645         xhci_dbg_cmd_ptrs(xhci);
646
647         xhci_dbg(xhci, "ERST memory map follows:\n");
648         xhci_dbg_erst(xhci, &xhci->erst);
649         xhci_dbg(xhci, "Event ring:\n");
650         xhci_debug_ring(xhci, xhci->event_ring);
651         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
652         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
653         temp_64 &= ~ERST_PTR_MASK;
654         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
655
656         xhci_dbg(xhci, "// Set the interrupt modulation register\n");
657         temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
658         temp &= ~ER_IRQ_INTERVAL_MASK;
659         temp |= (u32) 160;
660         xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
661
662         /* Set the HCD state before we enable the irqs */
663         temp = xhci_readl(xhci, &xhci->op_regs->command);
664         temp |= (CMD_EIE);
665         xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
666                         temp);
667         xhci_writel(xhci, temp, &xhci->op_regs->command);
668
669         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
670         xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
671                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
672         xhci_writel(xhci, ER_IRQ_ENABLE(temp),
673                         &xhci->ir_set->irq_pending);
674         xhci_print_ir_set(xhci, 0);
675
676         if (xhci->quirks & XHCI_NEC_HOST)
677                 xhci_queue_vendor_command(xhci, 0, 0, 0,
678                                 TRB_TYPE(TRB_NEC_GET_FW));
679
680         xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
681         return 0;
682 }
683
684 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
685 {
686         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
687
688         spin_lock_irq(&xhci->lock);
689         xhci_halt(xhci);
690
691         /* The shared_hcd is going to be deallocated shortly (the USB core only
692          * calls this function when allocation fails in usb_add_hcd(), or
693          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
694          */
695         xhci->shared_hcd = NULL;
696         spin_unlock_irq(&xhci->lock);
697 }
698
699 /*
700  * Stop xHCI driver.
701  *
702  * This function is called by the USB core when the HC driver is removed.
703  * Its opposite is xhci_run().
704  *
705  * Disable device contexts, disable IRQs, and quiesce the HC.
706  * Reset the HC, finish any completed transactions, and cleanup memory.
707  */
708 void xhci_stop(struct usb_hcd *hcd)
709 {
710         u32 temp;
711         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
712
713         if (!usb_hcd_is_primary_hcd(hcd)) {
714                 xhci_only_stop_hcd(xhci->shared_hcd);
715                 return;
716         }
717
718         spin_lock_irq(&xhci->lock);
719         /* Make sure the xHC is halted for a USB3 roothub
720          * (xhci_stop() could be called as part of failed init).
721          */
722         xhci_halt(xhci);
723         xhci_reset(xhci);
724         spin_unlock_irq(&xhci->lock);
725
726         xhci_cleanup_msix(xhci);
727
728 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
729         /* Tell the event ring poll function not to reschedule */
730         xhci->zombie = 1;
731         del_timer_sync(&xhci->event_ring_timer);
732 #endif
733
734         /* Deleting Compliance Mode Recovery Timer */
735         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
736                         (!(xhci_all_ports_seen_u0(xhci)))) {
737                 del_timer_sync(&xhci->comp_mode_recovery_timer);
738                 xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n",
739                                 __func__);
740         }
741
742         if (xhci->quirks & XHCI_AMD_PLL_FIX)
743                 usb_amd_dev_put();
744
745         xhci_dbg(xhci, "// Disabling event ring interrupts\n");
746         temp = xhci_readl(xhci, &xhci->op_regs->status);
747         xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
748         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
749         xhci_writel(xhci, ER_IRQ_DISABLE(temp),
750                         &xhci->ir_set->irq_pending);
751         xhci_print_ir_set(xhci, 0);
752
753         xhci_dbg(xhci, "cleaning up memory\n");
754         xhci_mem_cleanup(xhci);
755         xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
756                     xhci_readl(xhci, &xhci->op_regs->status));
757 }
758
759 /*
760  * Shutdown HC (not bus-specific)
761  *
762  * This is called when the machine is rebooting or halting.  We assume that the
763  * machine will be powered off, and the HC's internal state will be reset.
764  * Don't bother to free memory.
765  *
766  * This will only ever be called with the main usb_hcd (the USB3 roothub).
767  */
768 void xhci_shutdown(struct usb_hcd *hcd)
769 {
770         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
771
772         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
773                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
774
775         spin_lock_irq(&xhci->lock);
776         xhci_halt(xhci);
777         spin_unlock_irq(&xhci->lock);
778
779         xhci_cleanup_msix(xhci);
780
781         xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
782                     xhci_readl(xhci, &xhci->op_regs->status));
783 }
784
785 #ifdef CONFIG_PM
786 static void xhci_save_registers(struct xhci_hcd *xhci)
787 {
788         xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
789         xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
790         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
791         xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
792         xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
793         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
794         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
795         xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
796         xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
797 }
798
799 static void xhci_restore_registers(struct xhci_hcd *xhci)
800 {
801         xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
802         xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
803         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
804         xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
805         xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
806         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
807         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
808         xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
809         xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
810 }
811
812 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
813 {
814         u64     val_64;
815
816         /* step 2: initialize command ring buffer */
817         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
818         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
819                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
820                                       xhci->cmd_ring->dequeue) &
821                  (u64) ~CMD_RING_RSVD_BITS) |
822                 xhci->cmd_ring->cycle_state;
823         xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
824                         (long unsigned long) val_64);
825         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
826 }
827
828 /*
829  * The whole command ring must be cleared to zero when we suspend the host.
830  *
831  * The host doesn't save the command ring pointer in the suspend well, so we
832  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
833  * aligned, because of the reserved bits in the command ring dequeue pointer
834  * register.  Therefore, we can't just set the dequeue pointer back in the
835  * middle of the ring (TRBs are 16-byte aligned).
836  */
837 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
838 {
839         struct xhci_ring *ring;
840         struct xhci_segment *seg;
841
842         ring = xhci->cmd_ring;
843         seg = ring->deq_seg;
844         do {
845                 memset(seg->trbs, 0,
846                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
847                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
848                         cpu_to_le32(~TRB_CYCLE);
849                 seg = seg->next;
850         } while (seg != ring->deq_seg);
851
852         /* Reset the software enqueue and dequeue pointers */
853         ring->deq_seg = ring->first_seg;
854         ring->dequeue = ring->first_seg->trbs;
855         ring->enq_seg = ring->deq_seg;
856         ring->enqueue = ring->dequeue;
857
858         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
859         /*
860          * Ring is now zeroed, so the HW should look for change of ownership
861          * when the cycle bit is set to 1.
862          */
863         ring->cycle_state = 1;
864
865         /*
866          * Reset the hardware dequeue pointer.
867          * Yes, this will need to be re-written after resume, but we're paranoid
868          * and want to make sure the hardware doesn't access bogus memory
869          * because, say, the BIOS or an SMI started the host without changing
870          * the command ring pointers.
871          */
872         xhci_set_cmd_ring_deq(xhci);
873 }
874
875 /*
876  * Stop HC (not bus-specific)
877  *
878  * This is called when the machine transition into S3/S4 mode.
879  *
880  */
881 int xhci_suspend(struct xhci_hcd *xhci)
882 {
883         int                     rc = 0;
884         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
885         u32                     command;
886
887         if (hcd->state != HC_STATE_SUSPENDED ||
888                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
889                 return -EINVAL;
890
891         /* Don't poll the roothubs on bus suspend. */
892         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
893         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
894         del_timer_sync(&hcd->rh_timer);
895
896         spin_lock_irq(&xhci->lock);
897         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
898         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
899         /* step 1: stop endpoint */
900         /* skipped assuming that port suspend has done */
901
902         /* step 2: clear Run/Stop bit */
903         command = xhci_readl(xhci, &xhci->op_regs->command);
904         command &= ~CMD_RUN;
905         xhci_writel(xhci, command, &xhci->op_regs->command);
906         if (xhci_handshake(xhci, &xhci->op_regs->status,
907                       STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
908                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
909                 spin_unlock_irq(&xhci->lock);
910                 return -ETIMEDOUT;
911         }
912         xhci_clear_command_ring(xhci);
913
914         /* step 3: save registers */
915         xhci_save_registers(xhci);
916
917         /* step 4: set CSS flag */
918         command = xhci_readl(xhci, &xhci->op_regs->command);
919         command |= CMD_CSS;
920         xhci_writel(xhci, command, &xhci->op_regs->command);
921         if (xhci_handshake(xhci, &xhci->op_regs->status,
922                                 STS_SAVE, 0, 10 * 1000)) {
923                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
924                 spin_unlock_irq(&xhci->lock);
925                 return -ETIMEDOUT;
926         }
927         spin_unlock_irq(&xhci->lock);
928
929         /*
930          * Deleting Compliance Mode Recovery Timer because the xHCI Host
931          * is about to be suspended.
932          */
933         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
934                         (!(xhci_all_ports_seen_u0(xhci)))) {
935                 del_timer_sync(&xhci->comp_mode_recovery_timer);
936                 xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n",
937                                 __func__);
938         }
939
940         /* step 5: remove core well power */
941         /* synchronize irq when using MSI-X */
942         xhci_msix_sync_irqs(xhci);
943
944         return rc;
945 }
946
947 /*
948  * start xHC (not bus-specific)
949  *
950  * This is called when the machine transition from S3/S4 mode.
951  *
952  */
953 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
954 {
955         u32                     command, temp = 0;
956         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
957         struct usb_hcd          *secondary_hcd;
958         int                     retval = 0;
959         bool                    comp_timer_running = false;
960
961         /* Wait a bit if either of the roothubs need to settle from the
962          * transition into bus suspend.
963          */
964         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
965                         time_before(jiffies,
966                                 xhci->bus_state[1].next_statechange))
967                 msleep(100);
968
969         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
970         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
971
972         spin_lock_irq(&xhci->lock);
973         if (xhci->quirks & XHCI_RESET_ON_RESUME)
974                 hibernated = true;
975
976         if (!hibernated) {
977                 /* step 1: restore register */
978                 xhci_restore_registers(xhci);
979                 /* step 2: initialize command ring buffer */
980                 xhci_set_cmd_ring_deq(xhci);
981                 /* step 3: restore state and start state*/
982                 /* step 3: set CRS flag */
983                 command = xhci_readl(xhci, &xhci->op_regs->command);
984                 command |= CMD_CRS;
985                 xhci_writel(xhci, command, &xhci->op_regs->command);
986                 if (xhci_handshake(xhci, &xhci->op_regs->status,
987                               STS_RESTORE, 0, 10 * 1000)) {
988                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
989                         spin_unlock_irq(&xhci->lock);
990                         return -ETIMEDOUT;
991                 }
992                 temp = xhci_readl(xhci, &xhci->op_regs->status);
993         }
994
995         /* If restore operation fails, re-initialize the HC during resume */
996         if ((temp & STS_SRE) || hibernated) {
997
998                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
999                                 !(xhci_all_ports_seen_u0(xhci))) {
1000                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1001                         xhci_dbg(xhci, "Compliance Mode Recovery Timer deleted!\n");
1002                 }
1003
1004                 /* Let the USB core know _both_ roothubs lost power. */
1005                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1006                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1007
1008                 xhci_dbg(xhci, "Stop HCD\n");
1009                 xhci_halt(xhci);
1010                 xhci_reset(xhci);
1011                 spin_unlock_irq(&xhci->lock);
1012                 xhci_cleanup_msix(xhci);
1013
1014 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
1015                 /* Tell the event ring poll function not to reschedule */
1016                 xhci->zombie = 1;
1017                 del_timer_sync(&xhci->event_ring_timer);
1018 #endif
1019
1020                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1021                 temp = xhci_readl(xhci, &xhci->op_regs->status);
1022                 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
1023                 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
1024                 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
1025                                 &xhci->ir_set->irq_pending);
1026                 xhci_print_ir_set(xhci, 0);
1027
1028                 xhci_dbg(xhci, "cleaning up memory\n");
1029                 xhci_mem_cleanup(xhci);
1030                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1031                             xhci_readl(xhci, &xhci->op_regs->status));
1032
1033                 /* USB core calls the PCI reinit and start functions twice:
1034                  * first with the primary HCD, and then with the secondary HCD.
1035                  * If we don't do the same, the host will never be started.
1036                  */
1037                 if (!usb_hcd_is_primary_hcd(hcd))
1038                         secondary_hcd = hcd;
1039                 else
1040                         secondary_hcd = xhci->shared_hcd;
1041
1042                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1043                 retval = xhci_init(hcd->primary_hcd);
1044                 if (retval)
1045                         return retval;
1046                 comp_timer_running = true;
1047
1048                 xhci_dbg(xhci, "Start the primary HCD\n");
1049                 retval = xhci_run(hcd->primary_hcd);
1050                 if (!retval) {
1051                         xhci_dbg(xhci, "Start the secondary HCD\n");
1052                         retval = xhci_run(secondary_hcd);
1053                 }
1054                 hcd->state = HC_STATE_SUSPENDED;
1055                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1056                 goto done;
1057         }
1058
1059         /* step 4: set Run/Stop bit */
1060         command = xhci_readl(xhci, &xhci->op_regs->command);
1061         command |= CMD_RUN;
1062         xhci_writel(xhci, command, &xhci->op_regs->command);
1063         xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1064                   0, 250 * 1000);
1065
1066         /* step 5: walk topology and initialize portsc,
1067          * portpmsc and portli
1068          */
1069         /* this is done in bus_resume */
1070
1071         /* step 6: restart each of the previously
1072          * Running endpoints by ringing their doorbells
1073          */
1074
1075         spin_unlock_irq(&xhci->lock);
1076
1077  done:
1078         if (retval == 0) {
1079                 usb_hcd_resume_root_hub(hcd);
1080                 usb_hcd_resume_root_hub(xhci->shared_hcd);
1081         }
1082
1083         /*
1084          * If system is subject to the Quirk, Compliance Mode Timer needs to
1085          * be re-initialized Always after a system resume. Ports are subject
1086          * to suffer the Compliance Mode issue again. It doesn't matter if
1087          * ports have entered previously to U0 before system's suspension.
1088          */
1089         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1090                 compliance_mode_recovery_timer_init(xhci);
1091
1092         /* Re-enable port polling. */
1093         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1094         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1095         usb_hcd_poll_rh_status(hcd);
1096
1097         return retval;
1098 }
1099 #endif  /* CONFIG_PM */
1100
1101 /*-------------------------------------------------------------------------*/
1102
1103 /**
1104  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1105  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1106  * value to right shift 1 for the bitmask.
1107  *
1108  * Index  = (epnum * 2) + direction - 1,
1109  * where direction = 0 for OUT, 1 for IN.
1110  * For control endpoints, the IN index is used (OUT index is unused), so
1111  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1112  */
1113 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1114 {
1115         unsigned int index;
1116         if (usb_endpoint_xfer_control(desc))
1117                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1118         else
1119                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1120                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1121         return index;
1122 }
1123
1124 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1125  * address from the XHCI endpoint index.
1126  */
1127 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1128 {
1129         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1130         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1131         return direction | number;
1132 }
1133
1134 /* Find the flag for this endpoint (for use in the control context).  Use the
1135  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1136  * bit 1, etc.
1137  */
1138 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1139 {
1140         return 1 << (xhci_get_endpoint_index(desc) + 1);
1141 }
1142
1143 /* Find the flag for this endpoint (for use in the control context).  Use the
1144  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1145  * bit 1, etc.
1146  */
1147 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1148 {
1149         return 1 << (ep_index + 1);
1150 }
1151
1152 /* Compute the last valid endpoint context index.  Basically, this is the
1153  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1154  * we find the most significant bit set in the added contexts flags.
1155  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1156  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1157  */
1158 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1159 {
1160         return fls(added_ctxs) - 1;
1161 }
1162
1163 /* Returns 1 if the arguments are OK;
1164  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1165  */
1166 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1167                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1168                 const char *func) {
1169         struct xhci_hcd *xhci;
1170         struct xhci_virt_device *virt_dev;
1171
1172         if (!hcd || (check_ep && !ep) || !udev) {
1173                 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1174                                 func);
1175                 return -EINVAL;
1176         }
1177         if (!udev->parent) {
1178                 printk(KERN_DEBUG "xHCI %s called for root hub\n",
1179                                 func);
1180                 return 0;
1181         }
1182
1183         xhci = hcd_to_xhci(hcd);
1184         if (check_virt_dev) {
1185                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1186                         printk(KERN_DEBUG "xHCI %s called with unaddressed "
1187                                                 "device\n", func);
1188                         return -EINVAL;
1189                 }
1190
1191                 virt_dev = xhci->devs[udev->slot_id];
1192                 if (virt_dev->udev != udev) {
1193                         printk(KERN_DEBUG "xHCI %s called with udev and "
1194                                           "virt_dev does not match\n", func);
1195                         return -EINVAL;
1196                 }
1197         }
1198
1199         if (xhci->xhc_state & XHCI_STATE_HALTED)
1200                 return -ENODEV;
1201
1202         return 1;
1203 }
1204
1205 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1206                 struct usb_device *udev, struct xhci_command *command,
1207                 bool ctx_change, bool must_succeed);
1208
1209 /*
1210  * Full speed devices may have a max packet size greater than 8 bytes, but the
1211  * USB core doesn't know that until it reads the first 8 bytes of the
1212  * descriptor.  If the usb_device's max packet size changes after that point,
1213  * we need to issue an evaluate context command and wait on it.
1214  */
1215 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1216                 unsigned int ep_index, struct urb *urb)
1217 {
1218         struct xhci_container_ctx *in_ctx;
1219         struct xhci_container_ctx *out_ctx;
1220         struct xhci_input_control_ctx *ctrl_ctx;
1221         struct xhci_ep_ctx *ep_ctx;
1222         int max_packet_size;
1223         int hw_max_packet_size;
1224         int ret = 0;
1225
1226         out_ctx = xhci->devs[slot_id]->out_ctx;
1227         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1228         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1229         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1230         if (hw_max_packet_size != max_packet_size) {
1231                 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1232                 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1233                                 max_packet_size);
1234                 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1235                                 hw_max_packet_size);
1236                 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1237
1238                 /* Set up the input context flags for the command */
1239                 /* FIXME: This won't work if a non-default control endpoint
1240                  * changes max packet sizes.
1241                  */
1242                 in_ctx = xhci->devs[slot_id]->in_ctx;
1243                 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1244                 if (!ctrl_ctx) {
1245                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1246                                         __func__);
1247                         return -ENOMEM;
1248                 }
1249                 /* Set up the modified control endpoint 0 */
1250                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1251                                 xhci->devs[slot_id]->out_ctx, ep_index);
1252
1253                 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1254                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1255                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1256
1257                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1258                 ctrl_ctx->drop_flags = 0;
1259
1260                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1261                 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1262                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1263                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1264
1265                 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1266                                 true, false);
1267
1268                 /* Clean up the input context for later use by bandwidth
1269                  * functions.
1270                  */
1271                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1272         }
1273         return ret;
1274 }
1275
1276 /*
1277  * non-error returns are a promise to giveback() the urb later
1278  * we drop ownership so next owner (or urb unlink) can get it
1279  */
1280 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1281 {
1282         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1283         struct xhci_td *buffer;
1284         unsigned long flags;
1285         int ret = 0;
1286         unsigned int slot_id, ep_index;
1287         struct urb_priv *urb_priv;
1288         int size, i;
1289
1290         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1291                                         true, true, __func__) <= 0)
1292                 return -EINVAL;
1293
1294         slot_id = urb->dev->slot_id;
1295         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1296
1297         if (!HCD_HW_ACCESSIBLE(hcd)) {
1298                 if (!in_interrupt())
1299                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1300                 ret = -ESHUTDOWN;
1301                 goto exit;
1302         }
1303
1304         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1305                 size = urb->number_of_packets;
1306         else
1307                 size = 1;
1308
1309         urb_priv = kzalloc(sizeof(struct urb_priv) +
1310                                   size * sizeof(struct xhci_td *), mem_flags);
1311         if (!urb_priv)
1312                 return -ENOMEM;
1313
1314         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1315         if (!buffer) {
1316                 kfree(urb_priv);
1317                 return -ENOMEM;
1318         }
1319
1320         for (i = 0; i < size; i++) {
1321                 urb_priv->td[i] = buffer;
1322                 buffer++;
1323         }
1324
1325         urb_priv->length = size;
1326         urb_priv->td_cnt = 0;
1327         urb->hcpriv = urb_priv;
1328
1329         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1330                 /* Check to see if the max packet size for the default control
1331                  * endpoint changed during FS device enumeration
1332                  */
1333                 if (urb->dev->speed == USB_SPEED_FULL) {
1334                         ret = xhci_check_maxpacket(xhci, slot_id,
1335                                         ep_index, urb);
1336                         if (ret < 0) {
1337                                 xhci_urb_free_priv(xhci, urb_priv);
1338                                 urb->hcpriv = NULL;
1339                                 return ret;
1340                         }
1341                 }
1342
1343                 /* We have a spinlock and interrupts disabled, so we must pass
1344                  * atomic context to this function, which may allocate memory.
1345                  */
1346                 spin_lock_irqsave(&xhci->lock, flags);
1347                 if (xhci->xhc_state & XHCI_STATE_DYING)
1348                         goto dying;
1349                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1350                                 slot_id, ep_index);
1351                 if (ret)
1352                         goto free_priv;
1353                 spin_unlock_irqrestore(&xhci->lock, flags);
1354         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1355                 spin_lock_irqsave(&xhci->lock, flags);
1356                 if (xhci->xhc_state & XHCI_STATE_DYING)
1357                         goto dying;
1358                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1359                                 EP_GETTING_STREAMS) {
1360                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1361                                         "is transitioning to using streams.\n");
1362                         ret = -EINVAL;
1363                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1364                                 EP_GETTING_NO_STREAMS) {
1365                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1366                                         "is transitioning to "
1367                                         "not having streams.\n");
1368                         ret = -EINVAL;
1369                 } else {
1370                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1371                                         slot_id, ep_index);
1372                 }
1373                 if (ret)
1374                         goto free_priv;
1375                 spin_unlock_irqrestore(&xhci->lock, flags);
1376         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1377                 spin_lock_irqsave(&xhci->lock, flags);
1378                 if (xhci->xhc_state & XHCI_STATE_DYING)
1379                         goto dying;
1380                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1381                                 slot_id, ep_index);
1382                 if (ret)
1383                         goto free_priv;
1384                 spin_unlock_irqrestore(&xhci->lock, flags);
1385         } else {
1386                 spin_lock_irqsave(&xhci->lock, flags);
1387                 if (xhci->xhc_state & XHCI_STATE_DYING)
1388                         goto dying;
1389                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1390                                 slot_id, ep_index);
1391                 if (ret)
1392                         goto free_priv;
1393                 spin_unlock_irqrestore(&xhci->lock, flags);
1394         }
1395 exit:
1396         return ret;
1397 dying:
1398         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1399                         "non-responsive xHCI host.\n",
1400                         urb->ep->desc.bEndpointAddress, urb);
1401         ret = -ESHUTDOWN;
1402 free_priv:
1403         xhci_urb_free_priv(xhci, urb_priv);
1404         urb->hcpriv = NULL;
1405         spin_unlock_irqrestore(&xhci->lock, flags);
1406         return ret;
1407 }
1408
1409 /* Get the right ring for the given URB.
1410  * If the endpoint supports streams, boundary check the URB's stream ID.
1411  * If the endpoint doesn't support streams, return the singular endpoint ring.
1412  */
1413 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1414                 struct urb *urb)
1415 {
1416         unsigned int slot_id;
1417         unsigned int ep_index;
1418         unsigned int stream_id;
1419         struct xhci_virt_ep *ep;
1420
1421         slot_id = urb->dev->slot_id;
1422         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1423         stream_id = urb->stream_id;
1424         ep = &xhci->devs[slot_id]->eps[ep_index];
1425         /* Common case: no streams */
1426         if (!(ep->ep_state & EP_HAS_STREAMS))
1427                 return ep->ring;
1428
1429         if (stream_id == 0) {
1430                 xhci_warn(xhci,
1431                                 "WARN: Slot ID %u, ep index %u has streams, "
1432                                 "but URB has no stream ID.\n",
1433                                 slot_id, ep_index);
1434                 return NULL;
1435         }
1436
1437         if (stream_id < ep->stream_info->num_streams)
1438                 return ep->stream_info->stream_rings[stream_id];
1439
1440         xhci_warn(xhci,
1441                         "WARN: Slot ID %u, ep index %u has "
1442                         "stream IDs 1 to %u allocated, "
1443                         "but stream ID %u is requested.\n",
1444                         slot_id, ep_index,
1445                         ep->stream_info->num_streams - 1,
1446                         stream_id);
1447         return NULL;
1448 }
1449
1450 /*
1451  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1452  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1453  * should pick up where it left off in the TD, unless a Set Transfer Ring
1454  * Dequeue Pointer is issued.
1455  *
1456  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1457  * the ring.  Since the ring is a contiguous structure, they can't be physically
1458  * removed.  Instead, there are two options:
1459  *
1460  *  1) If the HC is in the middle of processing the URB to be canceled, we
1461  *     simply move the ring's dequeue pointer past those TRBs using the Set
1462  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1463  *     when drivers timeout on the last submitted URB and attempt to cancel.
1464  *
1465  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1466  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1467  *     HC will need to invalidate the any TRBs it has cached after the stop
1468  *     endpoint command, as noted in the xHCI 0.95 errata.
1469  *
1470  *  3) The TD may have completed by the time the Stop Endpoint Command
1471  *     completes, so software needs to handle that case too.
1472  *
1473  * This function should protect against the TD enqueueing code ringing the
1474  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1475  * It also needs to account for multiple cancellations on happening at the same
1476  * time for the same endpoint.
1477  *
1478  * Note that this function can be called in any context, or so says
1479  * usb_hcd_unlink_urb()
1480  */
1481 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1482 {
1483         unsigned long flags;
1484         int ret, i;
1485         u32 temp;
1486         struct xhci_hcd *xhci;
1487         struct urb_priv *urb_priv;
1488         struct xhci_td *td;
1489         unsigned int ep_index;
1490         struct xhci_ring *ep_ring;
1491         struct xhci_virt_ep *ep;
1492
1493         xhci = hcd_to_xhci(hcd);
1494         spin_lock_irqsave(&xhci->lock, flags);
1495         /* Make sure the URB hasn't completed or been unlinked already */
1496         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1497         if (ret || !urb->hcpriv)
1498                 goto done;
1499         temp = xhci_readl(xhci, &xhci->op_regs->status);
1500         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1501                 xhci_dbg(xhci, "HW died, freeing TD.\n");
1502                 urb_priv = urb->hcpriv;
1503                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1504                         td = urb_priv->td[i];
1505                         if (!list_empty(&td->td_list))
1506                                 list_del_init(&td->td_list);
1507                         if (!list_empty(&td->cancelled_td_list))
1508                                 list_del_init(&td->cancelled_td_list);
1509                 }
1510
1511                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1512                 spin_unlock_irqrestore(&xhci->lock, flags);
1513                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1514                 xhci_urb_free_priv(xhci, urb_priv);
1515                 return ret;
1516         }
1517         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1518                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1519                 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1520                                 "non-responsive xHCI host.\n",
1521                                 urb->ep->desc.bEndpointAddress, urb);
1522                 /* Let the stop endpoint command watchdog timer (which set this
1523                  * state) finish cleaning up the endpoint TD lists.  We must
1524                  * have caught it in the middle of dropping a lock and giving
1525                  * back an URB.
1526                  */
1527                 goto done;
1528         }
1529
1530         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1531         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1532         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1533         if (!ep_ring) {
1534                 ret = -EINVAL;
1535                 goto done;
1536         }
1537
1538         urb_priv = urb->hcpriv;
1539         i = urb_priv->td_cnt;
1540         if (i < urb_priv->length)
1541                 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1542                                 "starting at offset 0x%llx\n",
1543                                 urb, urb->dev->devpath,
1544                                 urb->ep->desc.bEndpointAddress,
1545                                 (unsigned long long) xhci_trb_virt_to_dma(
1546                                         urb_priv->td[i]->start_seg,
1547                                         urb_priv->td[i]->first_trb));
1548
1549         for (; i < urb_priv->length; i++) {
1550                 td = urb_priv->td[i];
1551                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1552         }
1553
1554         /* Queue a stop endpoint command, but only if this is
1555          * the first cancellation to be handled.
1556          */
1557         if (!(ep->ep_state & EP_HALT_PENDING)) {
1558                 ep->ep_state |= EP_HALT_PENDING;
1559                 ep->stop_cmds_pending++;
1560                 ep->stop_cmd_timer.expires = jiffies +
1561                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1562                 add_timer(&ep->stop_cmd_timer);
1563                 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1564                 xhci_ring_cmd_db(xhci);
1565         }
1566 done:
1567         spin_unlock_irqrestore(&xhci->lock, flags);
1568         return ret;
1569 }
1570
1571 /* Drop an endpoint from a new bandwidth configuration for this device.
1572  * Only one call to this function is allowed per endpoint before
1573  * check_bandwidth() or reset_bandwidth() must be called.
1574  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1575  * add the endpoint to the schedule with possibly new parameters denoted by a
1576  * different endpoint descriptor in usb_host_endpoint.
1577  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1578  * not allowed.
1579  *
1580  * The USB core will not allow URBs to be queued to an endpoint that is being
1581  * disabled, so there's no need for mutual exclusion to protect
1582  * the xhci->devs[slot_id] structure.
1583  */
1584 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1585                 struct usb_host_endpoint *ep)
1586 {
1587         struct xhci_hcd *xhci;
1588         struct xhci_container_ctx *in_ctx, *out_ctx;
1589         struct xhci_input_control_ctx *ctrl_ctx;
1590         struct xhci_slot_ctx *slot_ctx;
1591         unsigned int last_ctx;
1592         unsigned int ep_index;
1593         struct xhci_ep_ctx *ep_ctx;
1594         u32 drop_flag;
1595         u32 new_add_flags, new_drop_flags, new_slot_info;
1596         int ret;
1597
1598         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1599         if (ret <= 0)
1600                 return ret;
1601         xhci = hcd_to_xhci(hcd);
1602         if (xhci->xhc_state & XHCI_STATE_DYING)
1603                 return -ENODEV;
1604
1605         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1606         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1607         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1608                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1609                                 __func__, drop_flag);
1610                 return 0;
1611         }
1612
1613         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1614         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1615         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1616         if (!ctrl_ctx) {
1617                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1618                                 __func__);
1619                 return 0;
1620         }
1621
1622         ep_index = xhci_get_endpoint_index(&ep->desc);
1623         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1624         /* If the HC already knows the endpoint is disabled,
1625          * or the HCD has noted it is disabled, ignore this request
1626          */
1627         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1628              cpu_to_le32(EP_STATE_DISABLED)) ||
1629             le32_to_cpu(ctrl_ctx->drop_flags) &
1630             xhci_get_endpoint_flag(&ep->desc)) {
1631                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1632                                 __func__, ep);
1633                 return 0;
1634         }
1635
1636         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1637         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1638
1639         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1640         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1641
1642         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1643         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1644         /* Update the last valid endpoint context, if we deleted the last one */
1645         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1646             LAST_CTX(last_ctx)) {
1647                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1648                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1649         }
1650         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1651
1652         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1653
1654         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1655                         (unsigned int) ep->desc.bEndpointAddress,
1656                         udev->slot_id,
1657                         (unsigned int) new_drop_flags,
1658                         (unsigned int) new_add_flags,
1659                         (unsigned int) new_slot_info);
1660         return 0;
1661 }
1662
1663 /* Add an endpoint to a new possible bandwidth configuration for this device.
1664  * Only one call to this function is allowed per endpoint before
1665  * check_bandwidth() or reset_bandwidth() must be called.
1666  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1667  * add the endpoint to the schedule with possibly new parameters denoted by a
1668  * different endpoint descriptor in usb_host_endpoint.
1669  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1670  * not allowed.
1671  *
1672  * The USB core will not allow URBs to be queued to an endpoint until the
1673  * configuration or alt setting is installed in the device, so there's no need
1674  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1675  */
1676 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1677                 struct usb_host_endpoint *ep)
1678 {
1679         struct xhci_hcd *xhci;
1680         struct xhci_container_ctx *in_ctx, *out_ctx;
1681         unsigned int ep_index;
1682         struct xhci_slot_ctx *slot_ctx;
1683         struct xhci_input_control_ctx *ctrl_ctx;
1684         u32 added_ctxs;
1685         unsigned int last_ctx;
1686         u32 new_add_flags, new_drop_flags, new_slot_info;
1687         struct xhci_virt_device *virt_dev;
1688         int ret = 0;
1689
1690         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1691         if (ret <= 0) {
1692                 /* So we won't queue a reset ep command for a root hub */
1693                 ep->hcpriv = NULL;
1694                 return ret;
1695         }
1696         xhci = hcd_to_xhci(hcd);
1697         if (xhci->xhc_state & XHCI_STATE_DYING)
1698                 return -ENODEV;
1699
1700         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1701         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1702         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1703                 /* FIXME when we have to issue an evaluate endpoint command to
1704                  * deal with ep0 max packet size changing once we get the
1705                  * descriptors
1706                  */
1707                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1708                                 __func__, added_ctxs);
1709                 return 0;
1710         }
1711
1712         virt_dev = xhci->devs[udev->slot_id];
1713         in_ctx = virt_dev->in_ctx;
1714         out_ctx = virt_dev->out_ctx;
1715         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1716         if (!ctrl_ctx) {
1717                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1718                                 __func__);
1719                 return 0;
1720         }
1721
1722         ep_index = xhci_get_endpoint_index(&ep->desc);
1723         /* If this endpoint is already in use, and the upper layers are trying
1724          * to add it again without dropping it, reject the addition.
1725          */
1726         if (virt_dev->eps[ep_index].ring &&
1727                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1728                                 xhci_get_endpoint_flag(&ep->desc))) {
1729                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1730                                 "without dropping it.\n",
1731                                 (unsigned int) ep->desc.bEndpointAddress);
1732                 return -EINVAL;
1733         }
1734
1735         /* If the HCD has already noted the endpoint is enabled,
1736          * ignore this request.
1737          */
1738         if (le32_to_cpu(ctrl_ctx->add_flags) &
1739             xhci_get_endpoint_flag(&ep->desc)) {
1740                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1741                                 __func__, ep);
1742                 return 0;
1743         }
1744
1745         /*
1746          * Configuration and alternate setting changes must be done in
1747          * process context, not interrupt context (or so documenation
1748          * for usb_set_interface() and usb_set_configuration() claim).
1749          */
1750         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1751                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1752                                 __func__, ep->desc.bEndpointAddress);
1753                 return -ENOMEM;
1754         }
1755
1756         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1757         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1758
1759         /* If xhci_endpoint_disable() was called for this endpoint, but the
1760          * xHC hasn't been notified yet through the check_bandwidth() call,
1761          * this re-adds a new state for the endpoint from the new endpoint
1762          * descriptors.  We must drop and re-add this endpoint, so we leave the
1763          * drop flags alone.
1764          */
1765         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1766
1767         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1768         /* Update the last valid endpoint context, if we just added one past */
1769         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1770             LAST_CTX(last_ctx)) {
1771                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1772                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1773         }
1774         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1775
1776         /* Store the usb_device pointer for later use */
1777         ep->hcpriv = udev;
1778
1779         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1780                         (unsigned int) ep->desc.bEndpointAddress,
1781                         udev->slot_id,
1782                         (unsigned int) new_drop_flags,
1783                         (unsigned int) new_add_flags,
1784                         (unsigned int) new_slot_info);
1785         return 0;
1786 }
1787
1788 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1789 {
1790         struct xhci_input_control_ctx *ctrl_ctx;
1791         struct xhci_ep_ctx *ep_ctx;
1792         struct xhci_slot_ctx *slot_ctx;
1793         int i;
1794
1795         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1796         if (!ctrl_ctx) {
1797                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1798                                 __func__);
1799                 return;
1800         }
1801
1802         /* When a device's add flag and drop flag are zero, any subsequent
1803          * configure endpoint command will leave that endpoint's state
1804          * untouched.  Make sure we don't leave any old state in the input
1805          * endpoint contexts.
1806          */
1807         ctrl_ctx->drop_flags = 0;
1808         ctrl_ctx->add_flags = 0;
1809         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1810         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1811         /* Endpoint 0 is always valid */
1812         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1813         for (i = 1; i < 31; ++i) {
1814                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1815                 ep_ctx->ep_info = 0;
1816                 ep_ctx->ep_info2 = 0;
1817                 ep_ctx->deq = 0;
1818                 ep_ctx->tx_info = 0;
1819         }
1820 }
1821
1822 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1823                 struct usb_device *udev, u32 *cmd_status)
1824 {
1825         int ret;
1826
1827         switch (*cmd_status) {
1828         case COMP_ENOMEM:
1829                 dev_warn(&udev->dev, "Not enough host controller resources "
1830                                 "for new device state.\n");
1831                 ret = -ENOMEM;
1832                 /* FIXME: can we allocate more resources for the HC? */
1833                 break;
1834         case COMP_BW_ERR:
1835         case COMP_2ND_BW_ERR:
1836                 dev_warn(&udev->dev, "Not enough bandwidth "
1837                                 "for new device state.\n");
1838                 ret = -ENOSPC;
1839                 /* FIXME: can we go back to the old state? */
1840                 break;
1841         case COMP_TRB_ERR:
1842                 /* the HCD set up something wrong */
1843                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1844                                 "add flag = 1, "
1845                                 "and endpoint is not disabled.\n");
1846                 ret = -EINVAL;
1847                 break;
1848         case COMP_DEV_ERR:
1849                 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1850                                 "configure command.\n");
1851                 ret = -ENODEV;
1852                 break;
1853         case COMP_SUCCESS:
1854                 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1855                 ret = 0;
1856                 break;
1857         default:
1858                 xhci_err(xhci, "ERROR: unexpected command completion "
1859                                 "code 0x%x.\n", *cmd_status);
1860                 ret = -EINVAL;
1861                 break;
1862         }
1863         return ret;
1864 }
1865
1866 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1867                 struct usb_device *udev, u32 *cmd_status)
1868 {
1869         int ret;
1870         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1871
1872         switch (*cmd_status) {
1873         case COMP_EINVAL:
1874                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1875                                 "context command.\n");
1876                 ret = -EINVAL;
1877                 break;
1878         case COMP_EBADSLT:
1879                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1880                                 "evaluate context command.\n");
1881                 ret = -EINVAL;
1882                 break;
1883         case COMP_CTX_STATE:
1884                 dev_warn(&udev->dev, "WARN: invalid context state for "
1885                                 "evaluate context command.\n");
1886                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1887                 ret = -EINVAL;
1888                 break;
1889         case COMP_DEV_ERR:
1890                 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1891                                 "context command.\n");
1892                 ret = -ENODEV;
1893                 break;
1894         case COMP_MEL_ERR:
1895                 /* Max Exit Latency too large error */
1896                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1897                 ret = -EINVAL;
1898                 break;
1899         case COMP_SUCCESS:
1900                 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1901                 ret = 0;
1902                 break;
1903         default:
1904                 xhci_err(xhci, "ERROR: unexpected command completion "
1905                                 "code 0x%x.\n", *cmd_status);
1906                 ret = -EINVAL;
1907                 break;
1908         }
1909         return ret;
1910 }
1911
1912 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1913                 struct xhci_input_control_ctx *ctrl_ctx)
1914 {
1915         u32 valid_add_flags;
1916         u32 valid_drop_flags;
1917
1918         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1919          * (bit 1).  The default control endpoint is added during the Address
1920          * Device command and is never removed until the slot is disabled.
1921          */
1922         valid_add_flags = ctrl_ctx->add_flags >> 2;
1923         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1924
1925         /* Use hweight32 to count the number of ones in the add flags, or
1926          * number of endpoints added.  Don't count endpoints that are changed
1927          * (both added and dropped).
1928          */
1929         return hweight32(valid_add_flags) -
1930                 hweight32(valid_add_flags & valid_drop_flags);
1931 }
1932
1933 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1934                 struct xhci_input_control_ctx *ctrl_ctx)
1935 {
1936         u32 valid_add_flags;
1937         u32 valid_drop_flags;
1938
1939         valid_add_flags = ctrl_ctx->add_flags >> 2;
1940         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1941
1942         return hweight32(valid_drop_flags) -
1943                 hweight32(valid_add_flags & valid_drop_flags);
1944 }
1945
1946 /*
1947  * We need to reserve the new number of endpoints before the configure endpoint
1948  * command completes.  We can't subtract the dropped endpoints from the number
1949  * of active endpoints until the command completes because we can oversubscribe
1950  * the host in this case:
1951  *
1952  *  - the first configure endpoint command drops more endpoints than it adds
1953  *  - a second configure endpoint command that adds more endpoints is queued
1954  *  - the first configure endpoint command fails, so the config is unchanged
1955  *  - the second command may succeed, even though there isn't enough resources
1956  *
1957  * Must be called with xhci->lock held.
1958  */
1959 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1960                 struct xhci_input_control_ctx *ctrl_ctx)
1961 {
1962         u32 added_eps;
1963
1964         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1965         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1966                 xhci_dbg(xhci, "Not enough ep ctxs: "
1967                                 "%u active, need to add %u, limit is %u.\n",
1968                                 xhci->num_active_eps, added_eps,
1969                                 xhci->limit_active_eps);
1970                 return -ENOMEM;
1971         }
1972         xhci->num_active_eps += added_eps;
1973         xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1974                         xhci->num_active_eps);
1975         return 0;
1976 }
1977
1978 /*
1979  * The configure endpoint was failed by the xHC for some other reason, so we
1980  * need to revert the resources that failed configuration would have used.
1981  *
1982  * Must be called with xhci->lock held.
1983  */
1984 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1985                 struct xhci_input_control_ctx *ctrl_ctx)
1986 {
1987         u32 num_failed_eps;
1988
1989         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1990         xhci->num_active_eps -= num_failed_eps;
1991         xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1992                         num_failed_eps,
1993                         xhci->num_active_eps);
1994 }
1995
1996 /*
1997  * Now that the command has completed, clean up the active endpoint count by
1998  * subtracting out the endpoints that were dropped (but not changed).
1999  *
2000  * Must be called with xhci->lock held.
2001  */
2002 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2003                 struct xhci_input_control_ctx *ctrl_ctx)
2004 {
2005         u32 num_dropped_eps;
2006
2007         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2008         xhci->num_active_eps -= num_dropped_eps;
2009         if (num_dropped_eps)
2010                 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
2011                                 num_dropped_eps,
2012                                 xhci->num_active_eps);
2013 }
2014
2015 static unsigned int xhci_get_block_size(struct usb_device *udev)
2016 {
2017         switch (udev->speed) {
2018         case USB_SPEED_LOW:
2019         case USB_SPEED_FULL:
2020                 return FS_BLOCK;
2021         case USB_SPEED_HIGH:
2022                 return HS_BLOCK;
2023         case USB_SPEED_SUPER:
2024                 return SS_BLOCK;
2025         case USB_SPEED_UNKNOWN:
2026         case USB_SPEED_WIRELESS:
2027         default:
2028                 /* Should never happen */
2029                 return 1;
2030         }
2031 }
2032
2033 static unsigned int
2034 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2035 {
2036         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2037                 return LS_OVERHEAD;
2038         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2039                 return FS_OVERHEAD;
2040         return HS_OVERHEAD;
2041 }
2042
2043 /* If we are changing a LS/FS device under a HS hub,
2044  * make sure (if we are activating a new TT) that the HS bus has enough
2045  * bandwidth for this new TT.
2046  */
2047 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2048                 struct xhci_virt_device *virt_dev,
2049                 int old_active_eps)
2050 {
2051         struct xhci_interval_bw_table *bw_table;
2052         struct xhci_tt_bw_info *tt_info;
2053
2054         /* Find the bandwidth table for the root port this TT is attached to. */
2055         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2056         tt_info = virt_dev->tt_info;
2057         /* If this TT already had active endpoints, the bandwidth for this TT
2058          * has already been added.  Removing all periodic endpoints (and thus
2059          * making the TT enactive) will only decrease the bandwidth used.
2060          */
2061         if (old_active_eps)
2062                 return 0;
2063         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2064                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2065                         return -ENOMEM;
2066                 return 0;
2067         }
2068         /* Not sure why we would have no new active endpoints...
2069          *
2070          * Maybe because of an Evaluate Context change for a hub update or a
2071          * control endpoint 0 max packet size change?
2072          * FIXME: skip the bandwidth calculation in that case.
2073          */
2074         return 0;
2075 }
2076
2077 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2078                 struct xhci_virt_device *virt_dev)
2079 {
2080         unsigned int bw_reserved;
2081
2082         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2083         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2084                 return -ENOMEM;
2085
2086         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2087         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2088                 return -ENOMEM;
2089
2090         return 0;
2091 }
2092
2093 /*
2094  * This algorithm is a very conservative estimate of the worst-case scheduling
2095  * scenario for any one interval.  The hardware dynamically schedules the
2096  * packets, so we can't tell which microframe could be the limiting factor in
2097  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2098  *
2099  * Obviously, we can't solve an NP complete problem to find the minimum worst
2100  * case scenario.  Instead, we come up with an estimate that is no less than
2101  * the worst case bandwidth used for any one microframe, but may be an
2102  * over-estimate.
2103  *
2104  * We walk the requirements for each endpoint by interval, starting with the
2105  * smallest interval, and place packets in the schedule where there is only one
2106  * possible way to schedule packets for that interval.  In order to simplify
2107  * this algorithm, we record the largest max packet size for each interval, and
2108  * assume all packets will be that size.
2109  *
2110  * For interval 0, we obviously must schedule all packets for each interval.
2111  * The bandwidth for interval 0 is just the amount of data to be transmitted
2112  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2113  * the number of packets).
2114  *
2115  * For interval 1, we have two possible microframes to schedule those packets
2116  * in.  For this algorithm, if we can schedule the same number of packets for
2117  * each possible scheduling opportunity (each microframe), we will do so.  The
2118  * remaining number of packets will be saved to be transmitted in the gaps in
2119  * the next interval's scheduling sequence.
2120  *
2121  * As we move those remaining packets to be scheduled with interval 2 packets,
2122  * we have to double the number of remaining packets to transmit.  This is
2123  * because the intervals are actually powers of 2, and we would be transmitting
2124  * the previous interval's packets twice in this interval.  We also have to be
2125  * sure that when we look at the largest max packet size for this interval, we
2126  * also look at the largest max packet size for the remaining packets and take
2127  * the greater of the two.
2128  *
2129  * The algorithm continues to evenly distribute packets in each scheduling
2130  * opportunity, and push the remaining packets out, until we get to the last
2131  * interval.  Then those packets and their associated overhead are just added
2132  * to the bandwidth used.
2133  */
2134 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2135                 struct xhci_virt_device *virt_dev,
2136                 int old_active_eps)
2137 {
2138         unsigned int bw_reserved;
2139         unsigned int max_bandwidth;
2140         unsigned int bw_used;
2141         unsigned int block_size;
2142         struct xhci_interval_bw_table *bw_table;
2143         unsigned int packet_size = 0;
2144         unsigned int overhead = 0;
2145         unsigned int packets_transmitted = 0;
2146         unsigned int packets_remaining = 0;
2147         unsigned int i;
2148
2149         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2150                 return xhci_check_ss_bw(xhci, virt_dev);
2151
2152         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2153                 max_bandwidth = HS_BW_LIMIT;
2154                 /* Convert percent of bus BW reserved to blocks reserved */
2155                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2156         } else {
2157                 max_bandwidth = FS_BW_LIMIT;
2158                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2159         }
2160
2161         bw_table = virt_dev->bw_table;
2162         /* We need to translate the max packet size and max ESIT payloads into
2163          * the units the hardware uses.
2164          */
2165         block_size = xhci_get_block_size(virt_dev->udev);
2166
2167         /* If we are manipulating a LS/FS device under a HS hub, double check
2168          * that the HS bus has enough bandwidth if we are activing a new TT.
2169          */
2170         if (virt_dev->tt_info) {
2171                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2172                                 virt_dev->real_port);
2173                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2174                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2175                                         "newly activated TT.\n");
2176                         return -ENOMEM;
2177                 }
2178                 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2179                                 virt_dev->tt_info->slot_id,
2180                                 virt_dev->tt_info->ttport);
2181         } else {
2182                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2183                                 virt_dev->real_port);
2184         }
2185
2186         /* Add in how much bandwidth will be used for interval zero, or the
2187          * rounded max ESIT payload + number of packets * largest overhead.
2188          */
2189         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2190                 bw_table->interval_bw[0].num_packets *
2191                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2192
2193         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2194                 unsigned int bw_added;
2195                 unsigned int largest_mps;
2196                 unsigned int interval_overhead;
2197
2198                 /*
2199                  * How many packets could we transmit in this interval?
2200                  * If packets didn't fit in the previous interval, we will need
2201                  * to transmit that many packets twice within this interval.
2202                  */
2203                 packets_remaining = 2 * packets_remaining +
2204                         bw_table->interval_bw[i].num_packets;
2205
2206                 /* Find the largest max packet size of this or the previous
2207                  * interval.
2208                  */
2209                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2210                         largest_mps = 0;
2211                 else {
2212                         struct xhci_virt_ep *virt_ep;
2213                         struct list_head *ep_entry;
2214
2215                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2216                         virt_ep = list_entry(ep_entry,
2217                                         struct xhci_virt_ep, bw_endpoint_list);
2218                         /* Convert to blocks, rounding up */
2219                         largest_mps = DIV_ROUND_UP(
2220                                         virt_ep->bw_info.max_packet_size,
2221                                         block_size);
2222                 }
2223                 if (largest_mps > packet_size)
2224                         packet_size = largest_mps;
2225
2226                 /* Use the larger overhead of this or the previous interval. */
2227                 interval_overhead = xhci_get_largest_overhead(
2228                                 &bw_table->interval_bw[i]);
2229                 if (interval_overhead > overhead)
2230                         overhead = interval_overhead;
2231
2232                 /* How many packets can we evenly distribute across
2233                  * (1 << (i + 1)) possible scheduling opportunities?
2234                  */
2235                 packets_transmitted = packets_remaining >> (i + 1);
2236
2237                 /* Add in the bandwidth used for those scheduled packets */
2238                 bw_added = packets_transmitted * (overhead + packet_size);
2239
2240                 /* How many packets do we have remaining to transmit? */
2241                 packets_remaining = packets_remaining % (1 << (i + 1));
2242
2243                 /* What largest max packet size should those packets have? */
2244                 /* If we've transmitted all packets, don't carry over the
2245                  * largest packet size.
2246                  */
2247                 if (packets_remaining == 0) {
2248                         packet_size = 0;
2249                         overhead = 0;
2250                 } else if (packets_transmitted > 0) {
2251                         /* Otherwise if we do have remaining packets, and we've
2252                          * scheduled some packets in this interval, take the
2253                          * largest max packet size from endpoints with this
2254                          * interval.
2255                          */
2256                         packet_size = largest_mps;
2257                         overhead = interval_overhead;
2258                 }
2259                 /* Otherwise carry over packet_size and overhead from the last
2260                  * time we had a remainder.
2261                  */
2262                 bw_used += bw_added;
2263                 if (bw_used > max_bandwidth) {
2264                         xhci_warn(xhci, "Not enough bandwidth. "
2265                                         "Proposed: %u, Max: %u\n",
2266                                 bw_used, max_bandwidth);
2267                         return -ENOMEM;
2268                 }
2269         }
2270         /*
2271          * Ok, we know we have some packets left over after even-handedly
2272          * scheduling interval 15.  We don't know which microframes they will
2273          * fit into, so we over-schedule and say they will be scheduled every
2274          * microframe.
2275          */
2276         if (packets_remaining > 0)
2277                 bw_used += overhead + packet_size;
2278
2279         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2280                 unsigned int port_index = virt_dev->real_port - 1;
2281
2282                 /* OK, we're manipulating a HS device attached to a
2283                  * root port bandwidth domain.  Include the number of active TTs
2284                  * in the bandwidth used.
2285                  */
2286                 bw_used += TT_HS_OVERHEAD *
2287                         xhci->rh_bw[port_index].num_active_tts;
2288         }
2289
2290         xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2291                 "Available: %u " "percent\n",
2292                 bw_used, max_bandwidth, bw_reserved,
2293                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2294                 max_bandwidth);
2295
2296         bw_used += bw_reserved;
2297         if (bw_used > max_bandwidth) {
2298                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2299                                 bw_used, max_bandwidth);
2300                 return -ENOMEM;
2301         }
2302
2303         bw_table->bw_used = bw_used;
2304         return 0;
2305 }
2306
2307 static bool xhci_is_async_ep(unsigned int ep_type)
2308 {
2309         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2310                                         ep_type != ISOC_IN_EP &&
2311                                         ep_type != INT_IN_EP);
2312 }
2313
2314 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2315 {
2316         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2317 }
2318
2319 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2320 {
2321         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2322
2323         if (ep_bw->ep_interval == 0)
2324                 return SS_OVERHEAD_BURST +
2325                         (ep_bw->mult * ep_bw->num_packets *
2326                                         (SS_OVERHEAD + mps));
2327         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2328                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2329                                 1 << ep_bw->ep_interval);
2330
2331 }
2332
2333 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2334                 struct xhci_bw_info *ep_bw,
2335                 struct xhci_interval_bw_table *bw_table,
2336                 struct usb_device *udev,
2337                 struct xhci_virt_ep *virt_ep,
2338                 struct xhci_tt_bw_info *tt_info)
2339 {
2340         struct xhci_interval_bw *interval_bw;
2341         int normalized_interval;
2342
2343         if (xhci_is_async_ep(ep_bw->type))
2344                 return;
2345
2346         if (udev->speed == USB_SPEED_SUPER) {
2347                 if (xhci_is_sync_in_ep(ep_bw->type))
2348                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2349                                 xhci_get_ss_bw_consumed(ep_bw);
2350                 else
2351                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2352                                 xhci_get_ss_bw_consumed(ep_bw);
2353                 return;
2354         }
2355
2356         /* SuperSpeed endpoints never get added to intervals in the table, so
2357          * this check is only valid for HS/FS/LS devices.
2358          */
2359         if (list_empty(&virt_ep->bw_endpoint_list))
2360                 return;
2361         /* For LS/FS devices, we need to translate the interval expressed in
2362          * microframes to frames.
2363          */
2364         if (udev->speed == USB_SPEED_HIGH)
2365                 normalized_interval = ep_bw->ep_interval;
2366         else
2367                 normalized_interval = ep_bw->ep_interval - 3;
2368
2369         if (normalized_interval == 0)
2370                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2371         interval_bw = &bw_table->interval_bw[normalized_interval];
2372         interval_bw->num_packets -= ep_bw->num_packets;
2373         switch (udev->speed) {
2374         case USB_SPEED_LOW:
2375                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2376                 break;
2377         case USB_SPEED_FULL:
2378                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2379                 break;
2380         case USB_SPEED_HIGH:
2381                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2382                 break;
2383         case USB_SPEED_SUPER:
2384         case USB_SPEED_UNKNOWN:
2385         case USB_SPEED_WIRELESS:
2386                 /* Should never happen because only LS/FS/HS endpoints will get
2387                  * added to the endpoint list.
2388                  */
2389                 return;
2390         }
2391         if (tt_info)
2392                 tt_info->active_eps -= 1;
2393         list_del_init(&virt_ep->bw_endpoint_list);
2394 }
2395
2396 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2397                 struct xhci_bw_info *ep_bw,
2398                 struct xhci_interval_bw_table *bw_table,
2399                 struct usb_device *udev,
2400                 struct xhci_virt_ep *virt_ep,
2401                 struct xhci_tt_bw_info *tt_info)
2402 {
2403         struct xhci_interval_bw *interval_bw;
2404         struct xhci_virt_ep *smaller_ep;
2405         int normalized_interval;
2406
2407         if (xhci_is_async_ep(ep_bw->type))
2408                 return;
2409
2410         if (udev->speed == USB_SPEED_SUPER) {
2411                 if (xhci_is_sync_in_ep(ep_bw->type))
2412                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2413                                 xhci_get_ss_bw_consumed(ep_bw);
2414                 else
2415                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2416                                 xhci_get_ss_bw_consumed(ep_bw);
2417                 return;
2418         }
2419
2420         /* For LS/FS devices, we need to translate the interval expressed in
2421          * microframes to frames.
2422          */
2423         if (udev->speed == USB_SPEED_HIGH)
2424                 normalized_interval = ep_bw->ep_interval;
2425         else
2426                 normalized_interval = ep_bw->ep_interval - 3;
2427
2428         if (normalized_interval == 0)
2429                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2430         interval_bw = &bw_table->interval_bw[normalized_interval];
2431         interval_bw->num_packets += ep_bw->num_packets;
2432         switch (udev->speed) {
2433         case USB_SPEED_LOW:
2434                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2435                 break;
2436         case USB_SPEED_FULL:
2437                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2438                 break;
2439         case USB_SPEED_HIGH:
2440                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2441                 break;
2442         case USB_SPEED_SUPER:
2443         case USB_SPEED_UNKNOWN:
2444         case USB_SPEED_WIRELESS:
2445                 /* Should never happen because only LS/FS/HS endpoints will get
2446                  * added to the endpoint list.
2447                  */
2448                 return;
2449         }
2450
2451         if (tt_info)
2452                 tt_info->active_eps += 1;
2453         /* Insert the endpoint into the list, largest max packet size first. */
2454         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2455                         bw_endpoint_list) {
2456                 if (ep_bw->max_packet_size >=
2457                                 smaller_ep->bw_info.max_packet_size) {
2458                         /* Add the new ep before the smaller endpoint */
2459                         list_add_tail(&virt_ep->bw_endpoint_list,
2460                                         &smaller_ep->bw_endpoint_list);
2461                         return;
2462                 }
2463         }
2464         /* Add the new endpoint at the end of the list. */
2465         list_add_tail(&virt_ep->bw_endpoint_list,
2466                         &interval_bw->endpoints);
2467 }
2468
2469 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2470                 struct xhci_virt_device *virt_dev,
2471                 int old_active_eps)
2472 {
2473         struct xhci_root_port_bw_info *rh_bw_info;
2474         if (!virt_dev->tt_info)
2475                 return;
2476
2477         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2478         if (old_active_eps == 0 &&
2479                                 virt_dev->tt_info->active_eps != 0) {
2480                 rh_bw_info->num_active_tts += 1;
2481                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2482         } else if (old_active_eps != 0 &&
2483                                 virt_dev->tt_info->active_eps == 0) {
2484                 rh_bw_info->num_active_tts -= 1;
2485                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2486         }
2487 }
2488
2489 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2490                 struct xhci_virt_device *virt_dev,
2491                 struct xhci_container_ctx *in_ctx)
2492 {
2493         struct xhci_bw_info ep_bw_info[31];
2494         int i;
2495         struct xhci_input_control_ctx *ctrl_ctx;
2496         int old_active_eps = 0;
2497
2498         if (virt_dev->tt_info)
2499                 old_active_eps = virt_dev->tt_info->active_eps;
2500
2501         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2502         if (!ctrl_ctx) {
2503                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2504                                 __func__);
2505                 return -ENOMEM;
2506         }
2507
2508         for (i = 0; i < 31; i++) {
2509                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2510                         continue;
2511
2512                 /* Make a copy of the BW info in case we need to revert this */
2513                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2514                                 sizeof(ep_bw_info[i]));
2515                 /* Drop the endpoint from the interval table if the endpoint is
2516                  * being dropped or changed.
2517                  */
2518                 if (EP_IS_DROPPED(ctrl_ctx, i))
2519                         xhci_drop_ep_from_interval_table(xhci,
2520                                         &virt_dev->eps[i].bw_info,
2521                                         virt_dev->bw_table,
2522                                         virt_dev->udev,
2523                                         &virt_dev->eps[i],
2524                                         virt_dev->tt_info);
2525         }
2526         /* Overwrite the information stored in the endpoints' bw_info */
2527         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2528         for (i = 0; i < 31; i++) {
2529                 /* Add any changed or added endpoints to the interval table */
2530                 if (EP_IS_ADDED(ctrl_ctx, i))
2531                         xhci_add_ep_to_interval_table(xhci,
2532                                         &virt_dev->eps[i].bw_info,
2533                                         virt_dev->bw_table,
2534                                         virt_dev->udev,
2535                                         &virt_dev->eps[i],
2536                                         virt_dev->tt_info);
2537         }
2538
2539         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2540                 /* Ok, this fits in the bandwidth we have.
2541                  * Update the number of active TTs.
2542                  */
2543                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2544                 return 0;
2545         }
2546
2547         /* We don't have enough bandwidth for this, revert the stored info. */
2548         for (i = 0; i < 31; i++) {
2549                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2550                         continue;
2551
2552                 /* Drop the new copies of any added or changed endpoints from
2553                  * the interval table.
2554                  */
2555                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2556                         xhci_drop_ep_from_interval_table(xhci,
2557                                         &virt_dev->eps[i].bw_info,
2558                                         virt_dev->bw_table,
2559                                         virt_dev->udev,
2560                                         &virt_dev->eps[i],
2561                                         virt_dev->tt_info);
2562                 }
2563                 /* Revert the endpoint back to its old information */
2564                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2565                                 sizeof(ep_bw_info[i]));
2566                 /* Add any changed or dropped endpoints back into the table */
2567                 if (EP_IS_DROPPED(ctrl_ctx, i))
2568                         xhci_add_ep_to_interval_table(xhci,
2569                                         &virt_dev->eps[i].bw_info,
2570                                         virt_dev->bw_table,
2571                                         virt_dev->udev,
2572                                         &virt_dev->eps[i],
2573                                         virt_dev->tt_info);
2574         }
2575         return -ENOMEM;
2576 }
2577
2578
2579 /* Issue a configure endpoint command or evaluate context command
2580  * and wait for it to finish.
2581  */
2582 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2583                 struct usb_device *udev,
2584                 struct xhci_command *command,
2585                 bool ctx_change, bool must_succeed)
2586 {
2587         int ret;
2588         int timeleft;
2589         unsigned long flags;
2590         struct xhci_container_ctx *in_ctx;
2591         struct xhci_input_control_ctx *ctrl_ctx;
2592         struct completion *cmd_completion;
2593         u32 *cmd_status;
2594         struct xhci_virt_device *virt_dev;
2595         union xhci_trb *cmd_trb;
2596
2597         spin_lock_irqsave(&xhci->lock, flags);
2598         virt_dev = xhci->devs[udev->slot_id];
2599
2600         if (command)
2601                 in_ctx = command->in_ctx;
2602         else
2603                 in_ctx = virt_dev->in_ctx;
2604         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2605         if (!ctrl_ctx) {
2606                 spin_unlock_irqrestore(&xhci->lock, flags);
2607                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2608                                 __func__);
2609                 return -ENOMEM;
2610         }
2611
2612         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2613                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2614                 spin_unlock_irqrestore(&xhci->lock, flags);
2615                 xhci_warn(xhci, "Not enough host resources, "
2616                                 "active endpoint contexts = %u\n",
2617                                 xhci->num_active_eps);
2618                 return -ENOMEM;
2619         }
2620         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2621                         xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2622                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2623                         xhci_free_host_resources(xhci, ctrl_ctx);
2624                 spin_unlock_irqrestore(&xhci->lock, flags);
2625                 xhci_warn(xhci, "Not enough bandwidth\n");
2626                 return -ENOMEM;
2627         }
2628
2629         if (command) {
2630                 cmd_completion = command->completion;
2631                 cmd_status = &command->status;
2632                 command->command_trb = xhci->cmd_ring->enqueue;
2633
2634                 /* Enqueue pointer can be left pointing to the link TRB,
2635                  * we must handle that
2636                  */
2637                 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2638                         command->command_trb =
2639                                 xhci->cmd_ring->enq_seg->next->trbs;
2640
2641                 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2642         } else {
2643                 cmd_completion = &virt_dev->cmd_completion;
2644                 cmd_status = &virt_dev->cmd_status;
2645         }
2646         init_completion(cmd_completion);
2647
2648         cmd_trb = xhci->cmd_ring->dequeue;
2649         if (!ctx_change)
2650                 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2651                                 udev->slot_id, must_succeed);
2652         else
2653                 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2654                                 udev->slot_id, must_succeed);
2655         if (ret < 0) {
2656                 if (command)
2657                         list_del(&command->cmd_list);
2658                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2659                         xhci_free_host_resources(xhci, ctrl_ctx);
2660                 spin_unlock_irqrestore(&xhci->lock, flags);
2661                 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2662                 return -ENOMEM;
2663         }
2664         xhci_ring_cmd_db(xhci);
2665         spin_unlock_irqrestore(&xhci->lock, flags);
2666
2667         /* Wait for the configure endpoint command to complete */
2668         timeleft = wait_for_completion_interruptible_timeout(
2669                         cmd_completion,
2670                         XHCI_CMD_DEFAULT_TIMEOUT);
2671         if (timeleft <= 0) {
2672                 xhci_warn(xhci, "%s while waiting for %s command\n",
2673                                 timeleft == 0 ? "Timeout" : "Signal",
2674                                 ctx_change == 0 ?
2675                                         "configure endpoint" :
2676                                         "evaluate context");
2677                 /* cancel the configure endpoint command */
2678                 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2679                 if (ret < 0)
2680                         return ret;
2681                 return -ETIME;
2682         }
2683
2684         if (!ctx_change)
2685                 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2686         else
2687                 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2688
2689         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2690                 spin_lock_irqsave(&xhci->lock, flags);
2691                 /* If the command failed, remove the reserved resources.
2692                  * Otherwise, clean up the estimate to include dropped eps.
2693                  */
2694                 if (ret)
2695                         xhci_free_host_resources(xhci, ctrl_ctx);
2696                 else
2697                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2698                 spin_unlock_irqrestore(&xhci->lock, flags);
2699         }
2700         return ret;
2701 }
2702
2703 /* Called after one or more calls to xhci_add_endpoint() or
2704  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2705  * to call xhci_reset_bandwidth().
2706  *
2707  * Since we are in the middle of changing either configuration or
2708  * installing a new alt setting, the USB core won't allow URBs to be
2709  * enqueued for any endpoint on the old config or interface.  Nothing
2710  * else should be touching the xhci->devs[slot_id] structure, so we
2711  * don't need to take the xhci->lock for manipulating that.
2712  */
2713 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2714 {
2715         int i;
2716         int ret = 0;
2717         struct xhci_hcd *xhci;
2718         struct xhci_virt_device *virt_dev;
2719         struct xhci_input_control_ctx *ctrl_ctx;
2720         struct xhci_slot_ctx *slot_ctx;
2721
2722         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2723         if (ret <= 0)
2724                 return ret;
2725         xhci = hcd_to_xhci(hcd);
2726         if (xhci->xhc_state & XHCI_STATE_DYING)
2727                 return -ENODEV;
2728
2729         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2730         virt_dev = xhci->devs[udev->slot_id];
2731
2732         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2733         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2734         if (!ctrl_ctx) {
2735                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2736                                 __func__);
2737                 return -ENOMEM;
2738         }
2739         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2740         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2741         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2742
2743         /* Don't issue the command if there's no endpoints to update. */
2744         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2745                         ctrl_ctx->drop_flags == 0)
2746                 return 0;
2747
2748         xhci_dbg(xhci, "New Input Control Context:\n");
2749         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2750         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2751                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2752
2753         ret = xhci_configure_endpoint(xhci, udev, NULL,
2754                         false, false);
2755         if (ret) {
2756                 /* Callee should call reset_bandwidth() */
2757                 return ret;
2758         }
2759
2760         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2761         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2762                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2763
2764         /* Free any rings that were dropped, but not changed. */
2765         for (i = 1; i < 31; ++i) {
2766                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2767                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2768                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2769         }
2770         xhci_zero_in_ctx(xhci, virt_dev);
2771         /*
2772          * Install any rings for completely new endpoints or changed endpoints,
2773          * and free or cache any old rings from changed endpoints.
2774          */
2775         for (i = 1; i < 31; ++i) {
2776                 if (!virt_dev->eps[i].new_ring)
2777                         continue;
2778                 /* Only cache or free the old ring if it exists.
2779                  * It may not if this is the first add of an endpoint.
2780                  */
2781                 if (virt_dev->eps[i].ring) {
2782                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2783                 }
2784                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2785                 virt_dev->eps[i].new_ring = NULL;
2786         }
2787
2788         return ret;
2789 }
2790
2791 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2792 {
2793         struct xhci_hcd *xhci;
2794         struct xhci_virt_device *virt_dev;
2795         int i, ret;
2796
2797         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2798         if (ret <= 0)
2799                 return;
2800         xhci = hcd_to_xhci(hcd);
2801
2802         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2803         virt_dev = xhci->devs[udev->slot_id];
2804         /* Free any rings allocated for added endpoints */
2805         for (i = 0; i < 31; ++i) {
2806                 if (virt_dev->eps[i].new_ring) {
2807                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2808                         virt_dev->eps[i].new_ring = NULL;
2809                 }
2810         }
2811         xhci_zero_in_ctx(xhci, virt_dev);
2812 }
2813
2814 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2815                 struct xhci_container_ctx *in_ctx,
2816                 struct xhci_container_ctx *out_ctx,
2817                 struct xhci_input_control_ctx *ctrl_ctx,
2818                 u32 add_flags, u32 drop_flags)
2819 {
2820         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2821         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2822         xhci_slot_copy(xhci, in_ctx, out_ctx);
2823         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2824
2825         xhci_dbg(xhci, "Input Context:\n");
2826         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2827 }
2828
2829 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2830                 unsigned int slot_id, unsigned int ep_index,
2831                 struct xhci_dequeue_state *deq_state)
2832 {
2833         struct xhci_input_control_ctx *ctrl_ctx;
2834         struct xhci_container_ctx *in_ctx;
2835         struct xhci_ep_ctx *ep_ctx;
2836         u32 added_ctxs;
2837         dma_addr_t addr;
2838
2839         in_ctx = xhci->devs[slot_id]->in_ctx;
2840         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2841         if (!ctrl_ctx) {
2842                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2843                                 __func__);
2844                 return;
2845         }
2846
2847         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2848                         xhci->devs[slot_id]->out_ctx, ep_index);
2849         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2850         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2851                         deq_state->new_deq_ptr);
2852         if (addr == 0) {
2853                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2854                                 "reset ep command\n");
2855                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2856                                 deq_state->new_deq_seg,
2857                                 deq_state->new_deq_ptr);
2858                 return;
2859         }
2860         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2861
2862         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2863         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2864                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2865                         added_ctxs, added_ctxs);
2866 }
2867
2868 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2869                 struct usb_device *udev, unsigned int ep_index)
2870 {
2871         struct xhci_dequeue_state deq_state;
2872         struct xhci_virt_ep *ep;
2873
2874         xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2875         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2876         /* We need to move the HW's dequeue pointer past this TD,
2877          * or it will attempt to resend it on the next doorbell ring.
2878          */
2879         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2880                         ep_index, ep->stopped_stream, ep->stopped_td,
2881                         &deq_state);
2882
2883         /* HW with the reset endpoint quirk will use the saved dequeue state to
2884          * issue a configure endpoint command later.
2885          */
2886         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2887                 xhci_dbg(xhci, "Queueing new dequeue state\n");
2888                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2889                                 ep_index, ep->stopped_stream, &deq_state);
2890         } else {
2891                 /* Better hope no one uses the input context between now and the
2892                  * reset endpoint completion!
2893                  * XXX: No idea how this hardware will react when stream rings
2894                  * are enabled.
2895                  */
2896                 xhci_dbg(xhci, "Setting up input context for "
2897                                 "configure endpoint command\n");
2898                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2899                                 ep_index, &deq_state);
2900         }
2901 }
2902
2903 /* Deal with stalled endpoints.  The core should have sent the control message
2904  * to clear the halt condition.  However, we need to make the xHCI hardware
2905  * reset its sequence number, since a device will expect a sequence number of
2906  * zero after the halt condition is cleared.
2907  * Context: in_interrupt
2908  */
2909 void xhci_endpoint_reset(struct usb_hcd *hcd,
2910                 struct usb_host_endpoint *ep)
2911 {
2912         struct xhci_hcd *xhci;
2913         struct usb_device *udev;
2914         unsigned int ep_index;
2915         unsigned long flags;
2916         int ret;
2917         struct xhci_virt_ep *virt_ep;
2918
2919         xhci = hcd_to_xhci(hcd);
2920         udev = (struct usb_device *) ep->hcpriv;
2921         /* Called with a root hub endpoint (or an endpoint that wasn't added
2922          * with xhci_add_endpoint()
2923          */
2924         if (!ep->hcpriv)
2925                 return;
2926         ep_index = xhci_get_endpoint_index(&ep->desc);
2927         virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2928         if (!virt_ep->stopped_td) {
2929                 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2930                                 ep->desc.bEndpointAddress);
2931                 return;
2932         }
2933         if (usb_endpoint_xfer_control(&ep->desc)) {
2934                 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2935                 return;
2936         }
2937
2938         xhci_dbg(xhci, "Queueing reset endpoint command\n");
2939         spin_lock_irqsave(&xhci->lock, flags);
2940         ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2941         /*
2942          * Can't change the ring dequeue pointer until it's transitioned to the
2943          * stopped state, which is only upon a successful reset endpoint
2944          * command.  Better hope that last command worked!
2945          */
2946         if (!ret) {
2947                 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2948                 kfree(virt_ep->stopped_td);
2949                 xhci_ring_cmd_db(xhci);
2950         }
2951         virt_ep->stopped_td = NULL;
2952         virt_ep->stopped_trb = NULL;
2953         virt_ep->stopped_stream = 0;
2954         spin_unlock_irqrestore(&xhci->lock, flags);
2955
2956         if (ret)
2957                 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2958 }
2959
2960 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2961                 struct usb_device *udev, struct usb_host_endpoint *ep,
2962                 unsigned int slot_id)
2963 {
2964         int ret;
2965         unsigned int ep_index;
2966         unsigned int ep_state;
2967
2968         if (!ep)
2969                 return -EINVAL;
2970         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2971         if (ret <= 0)
2972                 return -EINVAL;
2973         if (ep->ss_ep_comp.bmAttributes == 0) {
2974                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2975                                 " descriptor for ep 0x%x does not support streams\n",
2976                                 ep->desc.bEndpointAddress);
2977                 return -EINVAL;
2978         }
2979
2980         ep_index = xhci_get_endpoint_index(&ep->desc);
2981         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2982         if (ep_state & EP_HAS_STREAMS ||
2983                         ep_state & EP_GETTING_STREAMS) {
2984                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2985                                 "already has streams set up.\n",
2986                                 ep->desc.bEndpointAddress);
2987                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2988                                 "dynamic stream context array reallocation.\n");
2989                 return -EINVAL;
2990         }
2991         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2992                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2993                                 "endpoint 0x%x; URBs are pending.\n",
2994                                 ep->desc.bEndpointAddress);
2995                 return -EINVAL;
2996         }
2997         return 0;
2998 }
2999
3000 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3001                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3002 {
3003         unsigned int max_streams;
3004
3005         /* The stream context array size must be a power of two */
3006         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3007         /*
3008          * Find out how many primary stream array entries the host controller
3009          * supports.  Later we may use secondary stream arrays (similar to 2nd
3010          * level page entries), but that's an optional feature for xHCI host
3011          * controllers. xHCs must support at least 4 stream IDs.
3012          */
3013         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3014         if (*num_stream_ctxs > max_streams) {
3015                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3016                                 max_streams);
3017                 *num_stream_ctxs = max_streams;
3018                 *num_streams = max_streams;
3019         }
3020 }
3021
3022 /* Returns an error code if one of the endpoint already has streams.
3023  * This does not change any data structures, it only checks and gathers
3024  * information.
3025  */
3026 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3027                 struct usb_device *udev,
3028                 struct usb_host_endpoint **eps, unsigned int num_eps,
3029                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3030 {
3031         unsigned int max_streams;
3032         unsigned int endpoint_flag;
3033         int i;
3034         int ret;
3035
3036         for (i = 0; i < num_eps; i++) {
3037                 ret = xhci_check_streams_endpoint(xhci, udev,
3038                                 eps[i], udev->slot_id);
3039                 if (ret < 0)
3040                         return ret;
3041
3042                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3043                 if (max_streams < (*num_streams - 1)) {
3044                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3045                                         eps[i]->desc.bEndpointAddress,
3046                                         max_streams);
3047                         *num_streams = max_streams+1;
3048                 }
3049
3050                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3051                 if (*changed_ep_bitmask & endpoint_flag)
3052                         return -EINVAL;
3053                 *changed_ep_bitmask |= endpoint_flag;
3054         }
3055         return 0;
3056 }
3057
3058 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3059                 struct usb_device *udev,
3060                 struct usb_host_endpoint **eps, unsigned int num_eps)
3061 {
3062         u32 changed_ep_bitmask = 0;
3063         unsigned int slot_id;
3064         unsigned int ep_index;
3065         unsigned int ep_state;
3066         int i;
3067
3068         slot_id = udev->slot_id;
3069         if (!xhci->devs[slot_id])
3070                 return 0;
3071
3072         for (i = 0; i < num_eps; i++) {
3073                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3074                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3075                 /* Are streams already being freed for the endpoint? */
3076                 if (ep_state & EP_GETTING_NO_STREAMS) {
3077                         xhci_warn(xhci, "WARN Can't disable streams for "
3078                                         "endpoint 0x%x\n, "
3079                                         "streams are being disabled already.",
3080                                         eps[i]->desc.bEndpointAddress);
3081                         return 0;
3082                 }
3083                 /* Are there actually any streams to free? */
3084                 if (!(ep_state & EP_HAS_STREAMS) &&
3085                                 !(ep_state & EP_GETTING_STREAMS)) {
3086                         xhci_warn(xhci, "WARN Can't disable streams for "
3087                                         "endpoint 0x%x\n, "
3088                                         "streams are already disabled!",
3089                                         eps[i]->desc.bEndpointAddress);
3090                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3091                                         "with non-streams endpoint\n");
3092                         return 0;
3093                 }
3094                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3095         }
3096         return changed_ep_bitmask;
3097 }
3098
3099 /*
3100  * The USB device drivers use this function (though the HCD interface in USB
3101  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3102  * coordinate mass storage command queueing across multiple endpoints (basically
3103  * a stream ID == a task ID).
3104  *
3105  * Setting up streams involves allocating the same size stream context array
3106  * for each endpoint and issuing a configure endpoint command for all endpoints.
3107  *
3108  * Don't allow the call to succeed if one endpoint only supports one stream
3109  * (which means it doesn't support streams at all).
3110  *
3111  * Drivers may get less stream IDs than they asked for, if the host controller
3112  * hardware or endpoints claim they can't support the number of requested
3113  * stream IDs.
3114  */
3115 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3116                 struct usb_host_endpoint **eps, unsigned int num_eps,
3117                 unsigned int num_streams, gfp_t mem_flags)
3118 {
3119         int i, ret;
3120         struct xhci_hcd *xhci;
3121         struct xhci_virt_device *vdev;
3122         struct xhci_command *config_cmd;
3123         struct xhci_input_control_ctx *ctrl_ctx;
3124         unsigned int ep_index;
3125         unsigned int num_stream_ctxs;
3126         unsigned long flags;
3127         u32 changed_ep_bitmask = 0;
3128
3129         if (!eps)
3130                 return -EINVAL;
3131
3132         /* Add one to the number of streams requested to account for
3133          * stream 0 that is reserved for xHCI usage.
3134          */
3135         num_streams += 1;
3136         xhci = hcd_to_xhci(hcd);
3137         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3138                         num_streams);
3139
3140         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3141         if (!config_cmd) {
3142                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3143                 return -ENOMEM;
3144         }
3145         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3146         if (!ctrl_ctx) {
3147                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3148                                 __func__);
3149                 xhci_free_command(xhci, config_cmd);
3150                 return -ENOMEM;
3151         }
3152
3153         /* Check to make sure all endpoints are not already configured for
3154          * streams.  While we're at it, find the maximum number of streams that
3155          * all the endpoints will support and check for duplicate endpoints.
3156          */
3157         spin_lock_irqsave(&xhci->lock, flags);
3158         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3159                         num_eps, &num_streams, &changed_ep_bitmask);
3160         if (ret < 0) {
3161                 xhci_free_command(xhci, config_cmd);
3162                 spin_unlock_irqrestore(&xhci->lock, flags);
3163                 return ret;
3164         }
3165         if (num_streams <= 1) {
3166                 xhci_warn(xhci, "WARN: endpoints can't handle "
3167                                 "more than one stream.\n");
3168                 xhci_free_command(xhci, config_cmd);
3169                 spin_unlock_irqrestore(&xhci->lock, flags);
3170                 return -EINVAL;
3171         }
3172         vdev = xhci->devs[udev->slot_id];
3173         /* Mark each endpoint as being in transition, so
3174          * xhci_urb_enqueue() will reject all URBs.
3175          */
3176         for (i = 0; i < num_eps; i++) {
3177                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3178                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3179         }
3180         spin_unlock_irqrestore(&xhci->lock, flags);
3181
3182         /* Setup internal data structures and allocate HW data structures for
3183          * streams (but don't install the HW structures in the input context
3184          * until we're sure all memory allocation succeeded).
3185          */
3186         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3187         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3188                         num_stream_ctxs, num_streams);
3189
3190         for (i = 0; i < num_eps; i++) {
3191                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3192                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3193                                 num_stream_ctxs,
3194                                 num_streams, mem_flags);
3195                 if (!vdev->eps[ep_index].stream_info)
3196                         goto cleanup;
3197                 /* Set maxPstreams in endpoint context and update deq ptr to
3198                  * point to stream context array. FIXME
3199                  */
3200         }
3201
3202         /* Set up the input context for a configure endpoint command. */
3203         for (i = 0; i < num_eps; i++) {
3204                 struct xhci_ep_ctx *ep_ctx;
3205
3206                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3207                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3208
3209                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3210                                 vdev->out_ctx, ep_index);
3211                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3212                                 vdev->eps[ep_index].stream_info);
3213         }
3214         /* Tell the HW to drop its old copy of the endpoint context info
3215          * and add the updated copy from the input context.
3216          */
3217         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3218                         vdev->out_ctx, ctrl_ctx,
3219                         changed_ep_bitmask, changed_ep_bitmask);
3220
3221         /* Issue and wait for the configure endpoint command */
3222         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3223                         false, false);
3224
3225         /* xHC rejected the configure endpoint command for some reason, so we
3226          * leave the old ring intact and free our internal streams data
3227          * structure.
3228          */
3229         if (ret < 0)
3230                 goto cleanup;
3231
3232         spin_lock_irqsave(&xhci->lock, flags);
3233         for (i = 0; i < num_eps; i++) {
3234                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3235                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3236                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3237                          udev->slot_id, ep_index);
3238                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3239         }
3240         xhci_free_command(xhci, config_cmd);
3241         spin_unlock_irqrestore(&xhci->lock, flags);
3242
3243         /* Subtract 1 for stream 0, which drivers can't use */
3244         return num_streams - 1;
3245
3246 cleanup:
3247         /* If it didn't work, free the streams! */
3248         for (i = 0; i < num_eps; i++) {
3249                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3250                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3251                 vdev->eps[ep_index].stream_info = NULL;
3252                 /* FIXME Unset maxPstreams in endpoint context and
3253                  * update deq ptr to point to normal string ring.
3254                  */
3255                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3256                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3257                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3258         }
3259         xhci_free_command(xhci, config_cmd);
3260         return -ENOMEM;
3261 }
3262
3263 /* Transition the endpoint from using streams to being a "normal" endpoint
3264  * without streams.
3265  *
3266  * Modify the endpoint context state, submit a configure endpoint command,
3267  * and free all endpoint rings for streams if that completes successfully.
3268  */
3269 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3270                 struct usb_host_endpoint **eps, unsigned int num_eps,
3271                 gfp_t mem_flags)
3272 {
3273         int i, ret;
3274         struct xhci_hcd *xhci;
3275         struct xhci_virt_device *vdev;
3276         struct xhci_command *command;
3277         struct xhci_input_control_ctx *ctrl_ctx;
3278         unsigned int ep_index;
3279         unsigned long flags;
3280         u32 changed_ep_bitmask;
3281
3282         xhci = hcd_to_xhci(hcd);
3283         vdev = xhci->devs[udev->slot_id];
3284
3285         /* Set up a configure endpoint command to remove the streams rings */
3286         spin_lock_irqsave(&xhci->lock, flags);
3287         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3288                         udev, eps, num_eps);
3289         if (changed_ep_bitmask == 0) {
3290                 spin_unlock_irqrestore(&xhci->lock, flags);
3291                 return -EINVAL;
3292         }
3293
3294         /* Use the xhci_command structure from the first endpoint.  We may have
3295          * allocated too many, but the driver may call xhci_free_streams() for
3296          * each endpoint it grouped into one call to xhci_alloc_streams().
3297          */
3298         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3299         command = vdev->eps[ep_index].stream_info->free_streams_command;
3300         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3301         if (!ctrl_ctx) {
3302                 spin_unlock_irqrestore(&xhci->lock, flags);
3303                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3304                                 __func__);
3305                 return -EINVAL;
3306         }
3307
3308         for (i = 0; i < num_eps; i++) {
3309                 struct xhci_ep_ctx *ep_ctx;
3310
3311                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3312                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3313                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3314                         EP_GETTING_NO_STREAMS;
3315
3316                 xhci_endpoint_copy(xhci, command->in_ctx,
3317                                 vdev->out_ctx, ep_index);
3318                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3319                                 &vdev->eps[ep_index]);
3320         }
3321         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3322                         vdev->out_ctx, ctrl_ctx,
3323                         changed_ep_bitmask, changed_ep_bitmask);
3324         spin_unlock_irqrestore(&xhci->lock, flags);
3325
3326         /* Issue and wait for the configure endpoint command,
3327          * which must succeed.
3328          */
3329         ret = xhci_configure_endpoint(xhci, udev, command,
3330                         false, true);
3331
3332         /* xHC rejected the configure endpoint command for some reason, so we
3333          * leave the streams rings intact.
3334          */
3335         if (ret < 0)
3336                 return ret;
3337
3338         spin_lock_irqsave(&xhci->lock, flags);
3339         for (i = 0; i < num_eps; i++) {
3340                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3341                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3342                 vdev->eps[ep_index].stream_info = NULL;
3343                 /* FIXME Unset maxPstreams in endpoint context and
3344                  * update deq ptr to point to normal string ring.
3345                  */
3346                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3347                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3348         }
3349         spin_unlock_irqrestore(&xhci->lock, flags);
3350
3351         return 0;
3352 }
3353
3354 /*
3355  * Deletes endpoint resources for endpoints that were active before a Reset
3356  * Device command, or a Disable Slot command.  The Reset Device command leaves
3357  * the control endpoint intact, whereas the Disable Slot command deletes it.
3358  *
3359  * Must be called with xhci->lock held.
3360  */
3361 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3362         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3363 {
3364         int i;
3365         unsigned int num_dropped_eps = 0;
3366         unsigned int drop_flags = 0;
3367
3368         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3369                 if (virt_dev->eps[i].ring) {
3370                         drop_flags |= 1 << i;
3371                         num_dropped_eps++;
3372                 }
3373         }
3374         xhci->num_active_eps -= num_dropped_eps;
3375         if (num_dropped_eps)
3376                 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3377                                 "%u now active.\n",
3378                                 num_dropped_eps, drop_flags,
3379                                 xhci->num_active_eps);
3380 }
3381
3382 /*
3383  * This submits a Reset Device Command, which will set the device state to 0,
3384  * set the device address to 0, and disable all the endpoints except the default
3385  * control endpoint.  The USB core should come back and call
3386  * xhci_address_device(), and then re-set up the configuration.  If this is
3387  * called because of a usb_reset_and_verify_device(), then the old alternate
3388  * settings will be re-installed through the normal bandwidth allocation
3389  * functions.
3390  *
3391  * Wait for the Reset Device command to finish.  Remove all structures
3392  * associated with the endpoints that were disabled.  Clear the input device
3393  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3394  *
3395  * If the virt_dev to be reset does not exist or does not match the udev,
3396  * it means the device is lost, possibly due to the xHC restore error and
3397  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3398  * re-allocate the device.
3399  */
3400 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3401 {
3402         int ret, i;
3403         unsigned long flags;
3404         struct xhci_hcd *xhci;
3405         unsigned int slot_id;
3406         struct xhci_virt_device *virt_dev;
3407         struct xhci_command *reset_device_cmd;
3408         int timeleft;
3409         int last_freed_endpoint;
3410         struct xhci_slot_ctx *slot_ctx;
3411         int old_active_eps = 0;
3412
3413         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3414         if (ret <= 0)
3415                 return ret;
3416         xhci = hcd_to_xhci(hcd);
3417         slot_id = udev->slot_id;
3418         virt_dev = xhci->devs[slot_id];
3419         if (!virt_dev) {
3420                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3421                                 "not exist. Re-allocate the device\n", slot_id);
3422                 ret = xhci_alloc_dev(hcd, udev);
3423                 if (ret == 1)
3424                         return 0;
3425                 else
3426                         return -EINVAL;
3427         }
3428
3429         if (virt_dev->udev != udev) {
3430                 /* If the virt_dev and the udev does not match, this virt_dev
3431                  * may belong to another udev.
3432                  * Re-allocate the device.
3433                  */
3434                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3435                                 "not match the udev. Re-allocate the device\n",
3436                                 slot_id);
3437                 ret = xhci_alloc_dev(hcd, udev);
3438                 if (ret == 1)
3439                         return 0;
3440                 else
3441                         return -EINVAL;
3442         }
3443
3444         /* If device is not setup, there is no point in resetting it */
3445         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3446         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3447                                                 SLOT_STATE_DISABLED)
3448                 return 0;
3449
3450         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3451         /* Allocate the command structure that holds the struct completion.
3452          * Assume we're in process context, since the normal device reset
3453          * process has to wait for the device anyway.  Storage devices are
3454          * reset as part of error handling, so use GFP_NOIO instead of
3455          * GFP_KERNEL.
3456          */
3457         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3458         if (!reset_device_cmd) {
3459                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3460                 return -ENOMEM;
3461         }
3462
3463         /* Attempt to submit the Reset Device command to the command ring */
3464         spin_lock_irqsave(&xhci->lock, flags);
3465         reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3466
3467         /* Enqueue pointer can be left pointing to the link TRB,
3468          * we must handle that
3469          */
3470         if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3471                 reset_device_cmd->command_trb =
3472                         xhci->cmd_ring->enq_seg->next->trbs;
3473
3474         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3475         ret = xhci_queue_reset_device(xhci, slot_id);
3476         if (ret) {
3477                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3478                 list_del(&reset_device_cmd->cmd_list);
3479                 spin_unlock_irqrestore(&xhci->lock, flags);
3480                 goto command_cleanup;
3481         }
3482         xhci_ring_cmd_db(xhci);
3483         spin_unlock_irqrestore(&xhci->lock, flags);
3484
3485         /* Wait for the Reset Device command to finish */
3486         timeleft = wait_for_completion_interruptible_timeout(
3487                         reset_device_cmd->completion,
3488                         USB_CTRL_SET_TIMEOUT);
3489         if (timeleft <= 0) {
3490                 xhci_warn(xhci, "%s while waiting for reset device command\n",
3491                                 timeleft == 0 ? "Timeout" : "Signal");
3492                 spin_lock_irqsave(&xhci->lock, flags);
3493                 /* The timeout might have raced with the event ring handler, so
3494                  * only delete from the list if the item isn't poisoned.
3495                  */
3496                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3497                         list_del(&reset_device_cmd->cmd_list);
3498                 spin_unlock_irqrestore(&xhci->lock, flags);
3499                 ret = -ETIME;
3500                 goto command_cleanup;
3501         }
3502
3503         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3504          * unless we tried to reset a slot ID that wasn't enabled,
3505          * or the device wasn't in the addressed or configured state.
3506          */
3507         ret = reset_device_cmd->status;
3508         switch (ret) {
3509         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3510         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3511                 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3512                                 slot_id,
3513                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3514                 xhci_info(xhci, "Not freeing device rings.\n");
3515                 /* Don't treat this as an error.  May change my mind later. */
3516                 ret = 0;
3517                 goto command_cleanup;
3518         case COMP_SUCCESS:
3519                 xhci_dbg(xhci, "Successful reset device command.\n");
3520                 break;
3521         default:
3522                 if (xhci_is_vendor_info_code(xhci, ret))
3523                         break;
3524                 xhci_warn(xhci, "Unknown completion code %u for "
3525                                 "reset device command.\n", ret);
3526                 ret = -EINVAL;
3527                 goto command_cleanup;
3528         }
3529
3530         /* Free up host controller endpoint resources */
3531         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3532                 spin_lock_irqsave(&xhci->lock, flags);
3533                 /* Don't delete the default control endpoint resources */
3534                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3535                 spin_unlock_irqrestore(&xhci->lock, flags);
3536         }
3537
3538         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3539         last_freed_endpoint = 1;
3540         for (i = 1; i < 31; ++i) {
3541                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3542
3543                 if (ep->ep_state & EP_HAS_STREAMS) {
3544                         xhci_free_stream_info(xhci, ep->stream_info);
3545                         ep->stream_info = NULL;
3546                         ep->ep_state &= ~EP_HAS_STREAMS;
3547                 }
3548
3549                 if (ep->ring) {
3550                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3551                         last_freed_endpoint = i;
3552                 }
3553                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3554                         xhci_drop_ep_from_interval_table(xhci,
3555                                         &virt_dev->eps[i].bw_info,
3556                                         virt_dev->bw_table,
3557                                         udev,
3558                                         &virt_dev->eps[i],
3559                                         virt_dev->tt_info);
3560                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3561         }
3562         /* If necessary, update the number of active TTs on this root port */
3563         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3564
3565         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3566         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3567         ret = 0;
3568
3569 command_cleanup:
3570         xhci_free_command(xhci, reset_device_cmd);
3571         return ret;
3572 }
3573
3574 /*
3575  * At this point, the struct usb_device is about to go away, the device has
3576  * disconnected, and all traffic has been stopped and the endpoints have been
3577  * disabled.  Free any HC data structures associated with that device.
3578  */
3579 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3580 {
3581         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3582         struct xhci_virt_device *virt_dev;
3583         unsigned long flags;
3584         u32 state;
3585         int i, ret;
3586
3587         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3588         /* If the host is halted due to driver unload, we still need to free the
3589          * device.
3590          */
3591         if (ret <= 0 && ret != -ENODEV)
3592                 return;
3593
3594         virt_dev = xhci->devs[udev->slot_id];
3595
3596         /* Stop any wayward timer functions (which may grab the lock) */
3597         for (i = 0; i < 31; ++i) {
3598                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3599                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3600         }
3601
3602         if (udev->usb2_hw_lpm_enabled) {
3603                 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3604                 udev->usb2_hw_lpm_enabled = 0;
3605         }
3606
3607         spin_lock_irqsave(&xhci->lock, flags);
3608         /* Don't disable the slot if the host controller is dead. */
3609         state = xhci_readl(xhci, &xhci->op_regs->status);
3610         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3611                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3612                 xhci_free_virt_device(xhci, udev->slot_id);
3613                 spin_unlock_irqrestore(&xhci->lock, flags);
3614                 return;
3615         }
3616
3617         if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3618                 spin_unlock_irqrestore(&xhci->lock, flags);
3619                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3620                 return;
3621         }
3622         xhci_ring_cmd_db(xhci);
3623         spin_unlock_irqrestore(&xhci->lock, flags);
3624         /*
3625          * Event command completion handler will free any data structures
3626          * associated with the slot.  XXX Can free sleep?
3627          */
3628 }
3629
3630 /*
3631  * Checks if we have enough host controller resources for the default control
3632  * endpoint.
3633  *
3634  * Must be called with xhci->lock held.
3635  */
3636 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3637 {
3638         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3639                 xhci_dbg(xhci, "Not enough ep ctxs: "
3640                                 "%u active, need to add 1, limit is %u.\n",
3641                                 xhci->num_active_eps, xhci->limit_active_eps);
3642                 return -ENOMEM;
3643         }
3644         xhci->num_active_eps += 1;
3645         xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3646                         xhci->num_active_eps);
3647         return 0;
3648 }
3649
3650
3651 /*
3652  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3653  * timed out, or allocating memory failed.  Returns 1 on success.
3654  */
3655 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3656 {
3657         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3658         unsigned long flags;
3659         int timeleft;
3660         int ret;
3661         union xhci_trb *cmd_trb;
3662
3663         spin_lock_irqsave(&xhci->lock, flags);
3664         cmd_trb = xhci->cmd_ring->dequeue;
3665         ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3666         if (ret) {
3667                 spin_unlock_irqrestore(&xhci->lock, flags);
3668                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3669                 return 0;
3670         }
3671         xhci_ring_cmd_db(xhci);
3672         spin_unlock_irqrestore(&xhci->lock, flags);
3673
3674         /* XXX: how much time for xHC slot assignment? */
3675         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3676                         XHCI_CMD_DEFAULT_TIMEOUT);
3677         if (timeleft <= 0) {
3678                 xhci_warn(xhci, "%s while waiting for a slot\n",
3679                                 timeleft == 0 ? "Timeout" : "Signal");
3680                 /* cancel the enable slot request */
3681                 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3682         }
3683
3684         if (!xhci->slot_id) {
3685                 xhci_err(xhci, "Error while assigning device slot ID\n");
3686                 return 0;
3687         }
3688
3689         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3690                 spin_lock_irqsave(&xhci->lock, flags);
3691                 ret = xhci_reserve_host_control_ep_resources(xhci);
3692                 if (ret) {
3693                         spin_unlock_irqrestore(&xhci->lock, flags);
3694                         xhci_warn(xhci, "Not enough host resources, "
3695                                         "active endpoint contexts = %u\n",
3696                                         xhci->num_active_eps);
3697                         goto disable_slot;
3698                 }
3699                 spin_unlock_irqrestore(&xhci->lock, flags);
3700         }
3701         /* Use GFP_NOIO, since this function can be called from
3702          * xhci_discover_or_reset_device(), which may be called as part of
3703          * mass storage driver error handling.
3704          */
3705         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3706                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3707                 goto disable_slot;
3708         }
3709         udev->slot_id = xhci->slot_id;
3710         /* Is this a LS or FS device under a HS hub? */
3711         /* Hub or peripherial? */
3712         return 1;
3713
3714 disable_slot:
3715         /* Disable slot, if we can do it without mem alloc */
3716         spin_lock_irqsave(&xhci->lock, flags);
3717         if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3718                 xhci_ring_cmd_db(xhci);
3719         spin_unlock_irqrestore(&xhci->lock, flags);
3720         return 0;
3721 }
3722
3723 /*
3724  * Issue an Address Device command (which will issue a SetAddress request to
3725  * the device).
3726  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3727  * we should only issue and wait on one address command at the same time.
3728  *
3729  * We add one to the device address issued by the hardware because the USB core
3730  * uses address 1 for the root hubs (even though they're not really devices).
3731  */
3732 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3733 {
3734         unsigned long flags;
3735         int timeleft;
3736         struct xhci_virt_device *virt_dev;
3737         int ret = 0;
3738         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3739         struct xhci_slot_ctx *slot_ctx;
3740         struct xhci_input_control_ctx *ctrl_ctx;
3741         u64 temp_64;
3742         union xhci_trb *cmd_trb;
3743
3744         if (!udev->slot_id) {
3745                 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3746                 return -EINVAL;
3747         }
3748
3749         virt_dev = xhci->devs[udev->slot_id];
3750
3751         if (WARN_ON(!virt_dev)) {
3752                 /*
3753                  * In plug/unplug torture test with an NEC controller,
3754                  * a zero-dereference was observed once due to virt_dev = 0.
3755                  * Print useful debug rather than crash if it is observed again!
3756                  */
3757                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3758                         udev->slot_id);
3759                 return -EINVAL;
3760         }
3761
3762         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3763         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3764         if (!ctrl_ctx) {
3765                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3766                                 __func__);
3767                 return -EINVAL;
3768         }
3769         /*
3770          * If this is the first Set Address since device plug-in or
3771          * virt_device realloaction after a resume with an xHCI power loss,
3772          * then set up the slot context.
3773          */
3774         if (!slot_ctx->dev_info)
3775                 xhci_setup_addressable_virt_dev(xhci, udev);
3776         /* Otherwise, update the control endpoint ring enqueue pointer. */
3777         else
3778                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3779         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3780         ctrl_ctx->drop_flags = 0;
3781
3782         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3783         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3784
3785         spin_lock_irqsave(&xhci->lock, flags);
3786         cmd_trb = xhci->cmd_ring->dequeue;
3787         ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3788                                         udev->slot_id);
3789         if (ret) {
3790                 spin_unlock_irqrestore(&xhci->lock, flags);
3791                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3792                 return ret;
3793         }
3794         xhci_ring_cmd_db(xhci);
3795         spin_unlock_irqrestore(&xhci->lock, flags);
3796
3797         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3798         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3799                         XHCI_CMD_DEFAULT_TIMEOUT);
3800         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3801          * the SetAddress() "recovery interval" required by USB and aborting the
3802          * command on a timeout.
3803          */
3804         if (timeleft <= 0) {
3805                 xhci_warn(xhci, "%s while waiting for address device command\n",
3806                                 timeleft == 0 ? "Timeout" : "Signal");
3807                 /* cancel the address device command */
3808                 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3809                 if (ret < 0)
3810                         return ret;
3811                 return -ETIME;
3812         }
3813
3814         switch (virt_dev->cmd_status) {
3815         case COMP_CTX_STATE:
3816         case COMP_EBADSLT:
3817                 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3818                                 udev->slot_id);
3819                 ret = -EINVAL;
3820                 break;
3821         case COMP_TX_ERR:
3822                 dev_warn(&udev->dev, "Device not responding to set address.\n");
3823                 ret = -EPROTO;
3824                 break;
3825         case COMP_DEV_ERR:
3826                 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3827                                 "device command.\n");
3828                 ret = -ENODEV;
3829                 break;
3830         case COMP_SUCCESS:
3831                 xhci_dbg(xhci, "Successful Address Device command\n");
3832                 break;
3833         default:
3834                 xhci_err(xhci, "ERROR: unexpected command completion "
3835                                 "code 0x%x.\n", virt_dev->cmd_status);
3836                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3837                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3838                 ret = -EINVAL;
3839                 break;
3840         }
3841         if (ret) {
3842                 return ret;
3843         }
3844         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3845         xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3846         xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3847                  udev->slot_id,
3848                  &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3849                  (unsigned long long)
3850                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3851         xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3852                         (unsigned long long)virt_dev->out_ctx->dma);
3853         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3854         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3855         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3856         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3857         /*
3858          * USB core uses address 1 for the roothubs, so we add one to the
3859          * address given back to us by the HC.
3860          */
3861         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3862         /* Use kernel assigned address for devices; store xHC assigned
3863          * address locally. */
3864         virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3865                 + 1;
3866         /* Zero the input context control for later use */
3867         ctrl_ctx->add_flags = 0;
3868         ctrl_ctx->drop_flags = 0;
3869
3870         xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3871
3872         return 0;
3873 }
3874
3875 /*
3876  * Transfer the port index into real index in the HW port status
3877  * registers. Caculate offset between the port's PORTSC register
3878  * and port status base. Divide the number of per port register
3879  * to get the real index. The raw port number bases 1.
3880  */
3881 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3882 {
3883         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3884         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3885         __le32 __iomem *addr;
3886         int raw_port;
3887
3888         if (hcd->speed != HCD_USB3)
3889                 addr = xhci->usb2_ports[port1 - 1];
3890         else
3891                 addr = xhci->usb3_ports[port1 - 1];
3892
3893         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3894         return raw_port;
3895 }
3896
3897 /*
3898  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3899  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3900  */
3901 static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3902                         struct usb_device *udev, u16 max_exit_latency)
3903 {
3904         struct xhci_virt_device *virt_dev;
3905         struct xhci_command *command;
3906         struct xhci_input_control_ctx *ctrl_ctx;
3907         struct xhci_slot_ctx *slot_ctx;
3908         unsigned long flags;
3909         int ret;
3910
3911         spin_lock_irqsave(&xhci->lock, flags);
3912         if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
3913                 spin_unlock_irqrestore(&xhci->lock, flags);
3914                 return 0;
3915         }
3916
3917         /* Attempt to issue an Evaluate Context command to change the MEL. */
3918         virt_dev = xhci->devs[udev->slot_id];
3919         command = xhci->lpm_command;
3920         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3921         if (!ctrl_ctx) {
3922                 spin_unlock_irqrestore(&xhci->lock, flags);
3923                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3924                                 __func__);
3925                 return -ENOMEM;
3926         }
3927
3928         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3929         spin_unlock_irqrestore(&xhci->lock, flags);
3930
3931         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3932         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3933         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3934         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3935
3936         xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
3937         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
3938         xhci_dbg_ctx(xhci, command->in_ctx, 0);
3939
3940         /* Issue and wait for the evaluate context command. */
3941         ret = xhci_configure_endpoint(xhci, udev, command,
3942                         true, true);
3943         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
3944         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
3945
3946         if (!ret) {
3947                 spin_lock_irqsave(&xhci->lock, flags);
3948                 virt_dev->current_mel = max_exit_latency;
3949                 spin_unlock_irqrestore(&xhci->lock, flags);
3950         }
3951         return ret;
3952 }
3953
3954 #ifdef CONFIG_PM_RUNTIME
3955
3956 /* BESL to HIRD Encoding array for USB2 LPM */
3957 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3958         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3959
3960 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3961 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3962                                         struct usb_device *udev)
3963 {
3964         int u2del, besl, besl_host;
3965         int besl_device = 0;
3966         u32 field;
3967
3968         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3969         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3970
3971         if (field & USB_BESL_SUPPORT) {
3972                 for (besl_host = 0; besl_host < 16; besl_host++) {
3973                         if (xhci_besl_encoding[besl_host] >= u2del)
3974                                 break;
3975                 }
3976                 /* Use baseline BESL value as default */
3977                 if (field & USB_BESL_BASELINE_VALID)
3978                         besl_device = USB_GET_BESL_BASELINE(field);
3979                 else if (field & USB_BESL_DEEP_VALID)
3980                         besl_device = USB_GET_BESL_DEEP(field);
3981         } else {
3982                 if (u2del <= 50)
3983                         besl_host = 0;
3984                 else
3985                         besl_host = (u2del - 51) / 75 + 1;
3986         }
3987
3988         besl = besl_host + besl_device;
3989         if (besl > 15)
3990                 besl = 15;
3991
3992         return besl;
3993 }
3994
3995 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
3996 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
3997 {
3998         u32 field;
3999         int l1;
4000         int besld = 0;
4001         int hirdm = 0;
4002
4003         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4004
4005         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4006         l1 = udev->l1_params.timeout / 256;
4007
4008         /* device has preferred BESLD */
4009         if (field & USB_BESL_DEEP_VALID) {
4010                 besld = USB_GET_BESL_DEEP(field);
4011                 hirdm = 1;
4012         }
4013
4014         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4015 }
4016
4017 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
4018                                         struct usb_device *udev)
4019 {
4020         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4021         struct dev_info *dev_info;
4022         __le32 __iomem  **port_array;
4023         __le32 __iomem  *addr, *pm_addr;
4024         u32             temp, dev_id;
4025         unsigned int    port_num;
4026         unsigned long   flags;
4027         int             hird;
4028         int             ret;
4029
4030         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4031                         !udev->lpm_capable)
4032                 return -EINVAL;
4033
4034         /* we only support lpm for non-hub device connected to root hub yet */
4035         if (!udev->parent || udev->parent->parent ||
4036                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4037                 return -EINVAL;
4038
4039         spin_lock_irqsave(&xhci->lock, flags);
4040
4041         /* Look for devices in lpm_failed_devs list */
4042         dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
4043                         le16_to_cpu(udev->descriptor.idProduct);
4044         list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
4045                 if (dev_info->dev_id == dev_id) {
4046                         ret = -EINVAL;
4047                         goto finish;
4048                 }
4049         }
4050
4051         port_array = xhci->usb2_ports;
4052         port_num = udev->portnum - 1;
4053
4054         if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
4055                 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
4056                 ret = -EINVAL;
4057                 goto finish;
4058         }
4059
4060         /*
4061          * Test USB 2.0 software LPM.
4062          * FIXME: some xHCI 1.0 hosts may implement a new register to set up
4063          * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
4064          * in the June 2011 errata release.
4065          */
4066         xhci_dbg(xhci, "test port %d software LPM\n", port_num);
4067         /*
4068          * Set L1 Device Slot and HIRD/BESL.
4069          * Check device's USB 2.0 extension descriptor to determine whether
4070          * HIRD or BESL shoule be used. See USB2.0 LPM errata.
4071          */
4072         pm_addr = port_array[port_num] + PORTPMSC;
4073         hird = xhci_calculate_hird_besl(xhci, udev);
4074         temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
4075         xhci_writel(xhci, temp, pm_addr);
4076
4077         /* Set port link state to U2(L1) */
4078         addr = port_array[port_num];
4079         xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
4080
4081         /* wait for ACK */
4082         spin_unlock_irqrestore(&xhci->lock, flags);
4083         msleep(10);
4084         spin_lock_irqsave(&xhci->lock, flags);
4085
4086         /* Check L1 Status */
4087         ret = xhci_handshake(xhci, pm_addr,
4088                         PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
4089         if (ret != -ETIMEDOUT) {
4090                 /* enter L1 successfully */
4091                 temp = xhci_readl(xhci, addr);
4092                 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
4093                                 port_num, temp);
4094                 ret = 0;
4095         } else {
4096                 temp = xhci_readl(xhci, pm_addr);
4097                 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
4098                                 port_num, temp & PORT_L1S_MASK);
4099                 ret = -EINVAL;
4100         }
4101
4102         /* Resume the port */
4103         xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
4104
4105         spin_unlock_irqrestore(&xhci->lock, flags);
4106         msleep(10);
4107         spin_lock_irqsave(&xhci->lock, flags);
4108
4109         /* Clear PLC */
4110         xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
4111
4112         /* Check PORTSC to make sure the device is in the right state */
4113         if (!ret) {
4114                 temp = xhci_readl(xhci, addr);
4115                 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
4116                 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
4117                                 (temp & PORT_PLS_MASK) != XDEV_U0) {
4118                         xhci_dbg(xhci, "port L1 resume fail\n");
4119                         ret = -EINVAL;
4120                 }
4121         }
4122
4123         if (ret) {
4124                 /* Insert dev to lpm_failed_devs list */
4125                 xhci_warn(xhci, "device LPM test failed, may disconnect and "
4126                                 "re-enumerate\n");
4127                 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
4128                 if (!dev_info) {
4129                         ret = -ENOMEM;
4130                         goto finish;
4131                 }
4132                 dev_info->dev_id = dev_id;
4133                 INIT_LIST_HEAD(&dev_info->list);
4134                 list_add(&dev_info->list, &xhci->lpm_failed_devs);
4135         } else {
4136                 xhci_ring_device(xhci, udev->slot_id);
4137         }
4138
4139 finish:
4140         spin_unlock_irqrestore(&xhci->lock, flags);
4141         return ret;
4142 }
4143
4144 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4145                         struct usb_device *udev, int enable)
4146 {
4147         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4148         __le32 __iomem  **port_array;
4149         __le32 __iomem  *pm_addr, *hlpm_addr;
4150         u32             pm_val, hlpm_val, field;
4151         unsigned int    port_num;
4152         unsigned long   flags;
4153         int             hird, exit_latency;
4154         int             ret;
4155
4156         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4157                         !udev->lpm_capable)
4158                 return -EPERM;
4159
4160         if (!udev->parent || udev->parent->parent ||
4161                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4162                 return -EPERM;
4163
4164         if (udev->usb2_hw_lpm_capable != 1)
4165                 return -EPERM;
4166
4167         spin_lock_irqsave(&xhci->lock, flags);
4168
4169         port_array = xhci->usb2_ports;
4170         port_num = udev->portnum - 1;
4171         pm_addr = port_array[port_num] + PORTPMSC;
4172         pm_val = xhci_readl(xhci, pm_addr);
4173         hlpm_addr = port_array[port_num] + PORTHLPMC;
4174         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4175
4176         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4177                         enable ? "enable" : "disable", port_num);
4178
4179         if (enable) {
4180                 /* Host supports BESL timeout instead of HIRD */
4181                 if (udev->usb2_hw_lpm_besl_capable) {
4182                         /* if device doesn't have a preferred BESL value use a
4183                          * default one which works with mixed HIRD and BESL
4184                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4185                          */
4186                         if ((field & USB_BESL_SUPPORT) &&
4187                             (field & USB_BESL_BASELINE_VALID))
4188                                 hird = USB_GET_BESL_BASELINE(field);
4189                         else
4190                                 hird = udev->l1_params.besl;
4191
4192                         exit_latency = xhci_besl_encoding[hird];
4193                         spin_unlock_irqrestore(&xhci->lock, flags);
4194
4195                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4196                          * input context for link powermanagement evaluate
4197                          * context commands. It is protected by hcd->bandwidth
4198                          * mutex and is shared by all devices. We need to set
4199                          * the max ext latency in USB 2 BESL LPM as well, so
4200                          * use the same mutex and xhci_change_max_exit_latency()
4201                          */
4202                         mutex_lock(hcd->bandwidth_mutex);
4203                         ret = xhci_change_max_exit_latency(xhci, udev,
4204                                                            exit_latency);
4205                         mutex_unlock(hcd->bandwidth_mutex);
4206
4207                         if (ret < 0)
4208                                 return ret;
4209                         spin_lock_irqsave(&xhci->lock, flags);
4210
4211                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4212                         xhci_writel(xhci, hlpm_val, hlpm_addr);
4213                         /* flush write */
4214                         xhci_readl(xhci, hlpm_addr);
4215                 } else {
4216                         hird = xhci_calculate_hird_besl(xhci, udev);
4217                 }
4218
4219                 pm_val &= ~PORT_HIRD_MASK;
4220                 pm_val |= PORT_HIRD(hird) | PORT_RWE;
4221                 xhci_writel(xhci, pm_val, pm_addr);
4222                 pm_val = xhci_readl(xhci, pm_addr);
4223                 pm_val |= PORT_HLE;
4224                 xhci_writel(xhci, pm_val, pm_addr);
4225                 /* flush write */
4226                 xhci_readl(xhci, pm_addr);
4227         } else {
4228                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
4229                 xhci_writel(xhci, pm_val, pm_addr);
4230                 /* flush write */
4231                 xhci_readl(xhci, pm_addr);
4232                 if (udev->usb2_hw_lpm_besl_capable) {
4233                         spin_unlock_irqrestore(&xhci->lock, flags);
4234                         mutex_lock(hcd->bandwidth_mutex);
4235                         xhci_change_max_exit_latency(xhci, udev, 0);
4236                         mutex_unlock(hcd->bandwidth_mutex);
4237                         return 0;
4238                 }
4239         }
4240
4241         spin_unlock_irqrestore(&xhci->lock, flags);
4242         return 0;
4243 }
4244
4245 /* check if a usb2 port supports a given extened capability protocol
4246  * only USB2 ports extended protocol capability values are cached.
4247  * Return 1 if capability is supported
4248  */
4249 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4250                                            unsigned capability)
4251 {
4252         u32 port_offset, port_count;
4253         int i;
4254
4255         for (i = 0; i < xhci->num_ext_caps; i++) {
4256                 if (xhci->ext_caps[i] & capability) {
4257                         /* port offsets starts at 1 */
4258                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4259                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4260                         if (port >= port_offset &&
4261                             port < port_offset + port_count)
4262                                 return 1;
4263                 }
4264         }
4265         return 0;
4266 }
4267
4268 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4269 {
4270         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4271         int             ret;
4272         int             portnum = udev->portnum - 1;
4273
4274         ret = xhci_usb2_software_lpm_test(hcd, udev);
4275         if (!ret) {
4276                 xhci_dbg(xhci, "software LPM test succeed\n");
4277                 if (xhci->hw_lpm_support == 1 &&
4278                     xhci_check_usb2_port_capability(xhci, portnum, XHCI_HLC)) {
4279                         udev->usb2_hw_lpm_capable = 1;
4280                         udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4281                         udev->l1_params.besl = XHCI_DEFAULT_BESL;
4282                         if (xhci_check_usb2_port_capability(xhci, portnum,
4283                                                             XHCI_BLC))
4284                                 udev->usb2_hw_lpm_besl_capable = 1;
4285                         ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
4286                         if (!ret)
4287                                 udev->usb2_hw_lpm_enabled = 1;
4288                 }
4289         }
4290
4291         return 0;
4292 }
4293
4294 #else
4295
4296 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4297                                 struct usb_device *udev, int enable)
4298 {
4299         return 0;
4300 }
4301
4302 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4303 {
4304         return 0;
4305 }
4306
4307 #endif /* CONFIG_PM_RUNTIME */
4308
4309 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4310
4311 #ifdef CONFIG_PM
4312 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4313 static unsigned long long xhci_service_interval_to_ns(
4314                 struct usb_endpoint_descriptor *desc)
4315 {
4316         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4317 }
4318
4319 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4320                 enum usb3_link_state state)
4321 {
4322         unsigned long long sel;
4323         unsigned long long pel;
4324         unsigned int max_sel_pel;
4325         char *state_name;
4326
4327         switch (state) {
4328         case USB3_LPM_U1:
4329                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4330                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4331                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4332                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4333                 state_name = "U1";
4334                 break;
4335         case USB3_LPM_U2:
4336                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4337                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4338                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4339                 state_name = "U2";
4340                 break;
4341         default:
4342                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4343                                 __func__);
4344                 return USB3_LPM_DISABLED;
4345         }
4346
4347         if (sel <= max_sel_pel && pel <= max_sel_pel)
4348                 return USB3_LPM_DEVICE_INITIATED;
4349
4350         if (sel > max_sel_pel)
4351                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4352                                 "due to long SEL %llu ms\n",
4353                                 state_name, sel);
4354         else
4355                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4356                                 "due to long PEL %llu\n ms",
4357                                 state_name, pel);
4358         return USB3_LPM_DISABLED;
4359 }
4360
4361 /* Returns the hub-encoded U1 timeout value.
4362  * The U1 timeout should be the maximum of the following values:
4363  *  - For control endpoints, U1 system exit latency (SEL) * 3
4364  *  - For bulk endpoints, U1 SEL * 5
4365  *  - For interrupt endpoints:
4366  *    - Notification EPs, U1 SEL * 3
4367  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4368  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4369  */
4370 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4371                 struct usb_endpoint_descriptor *desc)
4372 {
4373         unsigned long long timeout_ns;
4374         int ep_type;
4375         int intr_type;
4376
4377         ep_type = usb_endpoint_type(desc);
4378         switch (ep_type) {
4379         case USB_ENDPOINT_XFER_CONTROL:
4380                 timeout_ns = udev->u1_params.sel * 3;
4381                 break;
4382         case USB_ENDPOINT_XFER_BULK:
4383                 timeout_ns = udev->u1_params.sel * 5;
4384                 break;
4385         case USB_ENDPOINT_XFER_INT:
4386                 intr_type = usb_endpoint_interrupt_type(desc);
4387                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4388                         timeout_ns = udev->u1_params.sel * 3;
4389                         break;
4390                 }
4391                 /* Otherwise the calculation is the same as isoc eps */
4392         case USB_ENDPOINT_XFER_ISOC:
4393                 timeout_ns = xhci_service_interval_to_ns(desc);
4394                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4395                 if (timeout_ns < udev->u1_params.sel * 2)
4396                         timeout_ns = udev->u1_params.sel * 2;
4397                 break;
4398         default:
4399                 return 0;
4400         }
4401
4402         /* The U1 timeout is encoded in 1us intervals. */
4403         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4404         /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4405         if (timeout_ns == USB3_LPM_DISABLED)
4406                 timeout_ns++;
4407
4408         /* If the necessary timeout value is bigger than what we can set in the
4409          * USB 3.0 hub, we have to disable hub-initiated U1.
4410          */
4411         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4412                 return timeout_ns;
4413         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4414                         "due to long timeout %llu ms\n", timeout_ns);
4415         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4416 }
4417
4418 /* Returns the hub-encoded U2 timeout value.
4419  * The U2 timeout should be the maximum of:
4420  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4421  *  - largest bInterval of any active periodic endpoint (to avoid going
4422  *    into lower power link states between intervals).
4423  *  - the U2 Exit Latency of the device
4424  */
4425 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4426                 struct usb_endpoint_descriptor *desc)
4427 {
4428         unsigned long long timeout_ns;
4429         unsigned long long u2_del_ns;
4430
4431         timeout_ns = 10 * 1000 * 1000;
4432
4433         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4434                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4435                 timeout_ns = xhci_service_interval_to_ns(desc);
4436
4437         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4438         if (u2_del_ns > timeout_ns)
4439                 timeout_ns = u2_del_ns;
4440
4441         /* The U2 timeout is encoded in 256us intervals */
4442         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4443         /* If the necessary timeout value is bigger than what we can set in the
4444          * USB 3.0 hub, we have to disable hub-initiated U2.
4445          */
4446         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4447                 return timeout_ns;
4448         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4449                         "due to long timeout %llu ms\n", timeout_ns);
4450         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4451 }
4452
4453 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4454                 struct usb_device *udev,
4455                 struct usb_endpoint_descriptor *desc,
4456                 enum usb3_link_state state,
4457                 u16 *timeout)
4458 {
4459         if (state == USB3_LPM_U1) {
4460                 if (xhci->quirks & XHCI_INTEL_HOST)
4461                         return xhci_calculate_intel_u1_timeout(udev, desc);
4462         } else {
4463                 if (xhci->quirks & XHCI_INTEL_HOST)
4464                         return xhci_calculate_intel_u2_timeout(udev, desc);
4465         }
4466
4467         return USB3_LPM_DISABLED;
4468 }
4469
4470 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4471                 struct usb_device *udev,
4472                 struct usb_endpoint_descriptor *desc,
4473                 enum usb3_link_state state,
4474                 u16 *timeout)
4475 {
4476         u16 alt_timeout;
4477
4478         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4479                 desc, state, timeout);
4480
4481         /* If we found we can't enable hub-initiated LPM, or
4482          * the U1 or U2 exit latency was too high to allow
4483          * device-initiated LPM as well, just stop searching.
4484          */
4485         if (alt_timeout == USB3_LPM_DISABLED ||
4486                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4487                 *timeout = alt_timeout;
4488                 return -E2BIG;
4489         }
4490         if (alt_timeout > *timeout)
4491                 *timeout = alt_timeout;
4492         return 0;
4493 }
4494
4495 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4496                 struct usb_device *udev,
4497                 struct usb_host_interface *alt,
4498                 enum usb3_link_state state,
4499                 u16 *timeout)
4500 {
4501         int j;
4502
4503         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4504                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4505                                         &alt->endpoint[j].desc, state, timeout))
4506                         return -E2BIG;
4507                 continue;
4508         }
4509         return 0;
4510 }
4511
4512 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4513                 enum usb3_link_state state)
4514 {
4515         struct usb_device *parent;
4516         unsigned int num_hubs;
4517
4518         if (state == USB3_LPM_U2)
4519                 return 0;
4520
4521         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4522         for (parent = udev->parent, num_hubs = 0; parent->parent;
4523                         parent = parent->parent)
4524                 num_hubs++;
4525
4526         if (num_hubs < 2)
4527                 return 0;
4528
4529         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4530                         " below second-tier hub.\n");
4531         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4532                         "to decrease power consumption.\n");
4533         return -E2BIG;
4534 }
4535
4536 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4537                 struct usb_device *udev,
4538                 enum usb3_link_state state)
4539 {
4540         if (xhci->quirks & XHCI_INTEL_HOST)
4541                 return xhci_check_intel_tier_policy(udev, state);
4542         return -EINVAL;
4543 }
4544
4545 /* Returns the U1 or U2 timeout that should be enabled.
4546  * If the tier check or timeout setting functions return with a non-zero exit
4547  * code, that means the timeout value has been finalized and we shouldn't look
4548  * at any more endpoints.
4549  */
4550 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4551                         struct usb_device *udev, enum usb3_link_state state)
4552 {
4553         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4554         struct usb_host_config *config;
4555         char *state_name;
4556         int i;
4557         u16 timeout = USB3_LPM_DISABLED;
4558
4559         if (state == USB3_LPM_U1)
4560                 state_name = "U1";
4561         else if (state == USB3_LPM_U2)
4562                 state_name = "U2";
4563         else {
4564                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4565                                 state);
4566                 return timeout;
4567         }
4568
4569         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4570                 return timeout;
4571
4572         /* Gather some information about the currently installed configuration
4573          * and alternate interface settings.
4574          */
4575         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4576                         state, &timeout))
4577                 return timeout;
4578
4579         config = udev->actconfig;
4580         if (!config)
4581                 return timeout;
4582
4583         for (i = 0; i < USB_MAXINTERFACES; i++) {
4584                 struct usb_driver *driver;
4585                 struct usb_interface *intf = config->interface[i];
4586
4587                 if (!intf)
4588                         continue;
4589
4590                 /* Check if any currently bound drivers want hub-initiated LPM
4591                  * disabled.
4592                  */
4593                 if (intf->dev.driver) {
4594                         driver = to_usb_driver(intf->dev.driver);
4595                         if (driver && driver->disable_hub_initiated_lpm) {
4596                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4597                                                 "at request of driver %s\n",
4598                                                 state_name, driver->name);
4599                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4600                         }
4601                 }
4602
4603                 /* Not sure how this could happen... */
4604                 if (!intf->cur_altsetting)
4605                         continue;
4606
4607                 if (xhci_update_timeout_for_interface(xhci, udev,
4608                                         intf->cur_altsetting,
4609                                         state, &timeout))
4610                         return timeout;
4611         }
4612         return timeout;
4613 }
4614
4615 static int calculate_max_exit_latency(struct usb_device *udev,
4616                 enum usb3_link_state state_changed,
4617                 u16 hub_encoded_timeout)
4618 {
4619         unsigned long long u1_mel_us = 0;
4620         unsigned long long u2_mel_us = 0;
4621         unsigned long long mel_us = 0;
4622         bool disabling_u1;
4623         bool disabling_u2;
4624         bool enabling_u1;
4625         bool enabling_u2;
4626
4627         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4628                         hub_encoded_timeout == USB3_LPM_DISABLED);
4629         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4630                         hub_encoded_timeout == USB3_LPM_DISABLED);
4631
4632         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4633                         hub_encoded_timeout != USB3_LPM_DISABLED);
4634         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4635                         hub_encoded_timeout != USB3_LPM_DISABLED);
4636
4637         /* If U1 was already enabled and we're not disabling it,
4638          * or we're going to enable U1, account for the U1 max exit latency.
4639          */
4640         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4641                         enabling_u1)
4642                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4643         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4644                         enabling_u2)
4645                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4646
4647         if (u1_mel_us > u2_mel_us)
4648                 mel_us = u1_mel_us;
4649         else
4650                 mel_us = u2_mel_us;
4651         /* xHCI host controller max exit latency field is only 16 bits wide. */
4652         if (mel_us > MAX_EXIT) {
4653                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4654                                 "is too big.\n", mel_us);
4655                 return -E2BIG;
4656         }
4657         return mel_us;
4658 }
4659
4660 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4661 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4662                         struct usb_device *udev, enum usb3_link_state state)
4663 {
4664         struct xhci_hcd *xhci;
4665         u16 hub_encoded_timeout;
4666         int mel;
4667         int ret;
4668
4669         xhci = hcd_to_xhci(hcd);
4670         /* The LPM timeout values are pretty host-controller specific, so don't
4671          * enable hub-initiated timeouts unless the vendor has provided
4672          * information about their timeout algorithm.
4673          */
4674         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4675                         !xhci->devs[udev->slot_id])
4676                 return USB3_LPM_DISABLED;
4677
4678         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4679         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4680         if (mel < 0) {
4681                 /* Max Exit Latency is too big, disable LPM. */
4682                 hub_encoded_timeout = USB3_LPM_DISABLED;
4683                 mel = 0;
4684         }
4685
4686         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4687         if (ret)
4688                 return ret;
4689         return hub_encoded_timeout;
4690 }
4691
4692 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4693                         struct usb_device *udev, enum usb3_link_state state)
4694 {
4695         struct xhci_hcd *xhci;
4696         u16 mel;
4697         int ret;
4698
4699         xhci = hcd_to_xhci(hcd);
4700         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4701                         !xhci->devs[udev->slot_id])
4702                 return 0;
4703
4704         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4705         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4706         if (ret)
4707                 return ret;
4708         return 0;
4709 }
4710 #else /* CONFIG_PM */
4711
4712 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4713                         struct usb_device *udev, enum usb3_link_state state)
4714 {
4715         return USB3_LPM_DISABLED;
4716 }
4717
4718 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4719                         struct usb_device *udev, enum usb3_link_state state)
4720 {
4721         return 0;
4722 }
4723 #endif  /* CONFIG_PM */
4724
4725 /*-------------------------------------------------------------------------*/
4726
4727 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4728  * internal data structures for the device.
4729  */
4730 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4731                         struct usb_tt *tt, gfp_t mem_flags)
4732 {
4733         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4734         struct xhci_virt_device *vdev;
4735         struct xhci_command *config_cmd;
4736         struct xhci_input_control_ctx *ctrl_ctx;
4737         struct xhci_slot_ctx *slot_ctx;
4738         unsigned long flags;
4739         unsigned think_time;
4740         int ret;
4741
4742         /* Ignore root hubs */
4743         if (!hdev->parent)
4744                 return 0;
4745
4746         vdev = xhci->devs[hdev->slot_id];
4747         if (!vdev) {
4748                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4749                 return -EINVAL;
4750         }
4751         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4752         if (!config_cmd) {
4753                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4754                 return -ENOMEM;
4755         }
4756         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4757         if (!ctrl_ctx) {
4758                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4759                                 __func__);
4760                 xhci_free_command(xhci, config_cmd);
4761                 return -ENOMEM;
4762         }
4763
4764         spin_lock_irqsave(&xhci->lock, flags);
4765         if (hdev->speed == USB_SPEED_HIGH &&
4766                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4767                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4768                 xhci_free_command(xhci, config_cmd);
4769                 spin_unlock_irqrestore(&xhci->lock, flags);
4770                 return -ENOMEM;
4771         }
4772
4773         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4774         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4775         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4776         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4777         if (tt->multi)
4778                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4779         if (xhci->hci_version > 0x95) {
4780                 xhci_dbg(xhci, "xHCI version %x needs hub "
4781                                 "TT think time and number of ports\n",
4782                                 (unsigned int) xhci->hci_version);
4783                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4784                 /* Set TT think time - convert from ns to FS bit times.
4785                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4786                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4787                  *
4788                  * xHCI 1.0: this field shall be 0 if the device is not a
4789                  * High-spped hub.
4790                  */
4791                 think_time = tt->think_time;
4792                 if (think_time != 0)
4793                         think_time = (think_time / 666) - 1;
4794                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4795                         slot_ctx->tt_info |=
4796                                 cpu_to_le32(TT_THINK_TIME(think_time));
4797         } else {
4798                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4799                                 "TT think time or number of ports\n",
4800                                 (unsigned int) xhci->hci_version);
4801         }
4802         slot_ctx->dev_state = 0;
4803         spin_unlock_irqrestore(&xhci->lock, flags);
4804
4805         xhci_dbg(xhci, "Set up %s for hub device.\n",
4806                         (xhci->hci_version > 0x95) ?
4807                         "configure endpoint" : "evaluate context");
4808         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4809         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4810
4811         /* Issue and wait for the configure endpoint or
4812          * evaluate context command.
4813          */
4814         if (xhci->hci_version > 0x95)
4815                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4816                                 false, false);
4817         else
4818                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4819                                 true, false);
4820
4821         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4822         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4823
4824         xhci_free_command(xhci, config_cmd);
4825         return ret;
4826 }
4827
4828 int xhci_get_frame(struct usb_hcd *hcd)
4829 {
4830         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4831         /* EHCI mods by the periodic size.  Why? */
4832         return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4833 }
4834
4835 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4836 {
4837         struct xhci_hcd         *xhci;
4838         struct device           *dev = hcd->self.controller;
4839         int                     retval;
4840         u32                     temp;
4841
4842         /* Accept arbitrarily long scatter-gather lists */
4843         hcd->self.sg_tablesize = ~0;
4844         /* XHCI controllers don't stop the ep queue on short packets :| */
4845         hcd->self.no_stop_on_short = 1;
4846
4847         if (usb_hcd_is_primary_hcd(hcd)) {
4848                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4849                 if (!xhci)
4850                         return -ENOMEM;
4851                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4852                 xhci->main_hcd = hcd;
4853                 /* Mark the first roothub as being USB 2.0.
4854                  * The xHCI driver will register the USB 3.0 roothub.
4855                  */
4856                 hcd->speed = HCD_USB2;
4857                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4858                 /*
4859                  * USB 2.0 roothub under xHCI has an integrated TT,
4860                  * (rate matching hub) as opposed to having an OHCI/UHCI
4861                  * companion controller.
4862                  */
4863                 hcd->has_tt = 1;
4864         } else {
4865                 /* xHCI private pointer was set in xhci_pci_probe for the second
4866                  * registered roothub.
4867                  */
4868                 xhci = hcd_to_xhci(hcd);
4869                 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4870                 if (HCC_64BIT_ADDR(temp)) {
4871                         xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4872                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4873                 } else {
4874                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4875                 }
4876                 return 0;
4877         }
4878
4879         xhci->cap_regs = hcd->regs;
4880         xhci->op_regs = hcd->regs +
4881                 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4882         xhci->run_regs = hcd->regs +
4883                 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4884         /* Cache read-only capability registers */
4885         xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4886         xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4887         xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4888         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4889         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4890         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4891         xhci_print_registers(xhci);
4892
4893         get_quirks(dev, xhci);
4894
4895         /* Make sure the HC is halted. */
4896         retval = xhci_halt(xhci);
4897         if (retval)
4898                 goto error;
4899
4900         xhci_dbg(xhci, "Resetting HCD\n");
4901         /* Reset the internal HC memory state and registers. */
4902         retval = xhci_reset(xhci);
4903         if (retval)
4904                 goto error;
4905         xhci_dbg(xhci, "Reset complete\n");
4906
4907         temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4908         if (HCC_64BIT_ADDR(temp)) {
4909                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4910                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4911         } else {
4912                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4913         }
4914
4915         xhci_dbg(xhci, "Calling HCD init\n");
4916         /* Initialize HCD and host controller data structures. */
4917         retval = xhci_init(hcd);
4918         if (retval)
4919                 goto error;
4920         xhci_dbg(xhci, "Called HCD init\n");
4921         return 0;
4922 error:
4923         kfree(xhci);
4924         return retval;
4925 }
4926
4927 MODULE_DESCRIPTION(DRIVER_DESC);
4928 MODULE_AUTHOR(DRIVER_AUTHOR);
4929 MODULE_LICENSE("GPL");
4930
4931 static int __init xhci_hcd_init(void)
4932 {
4933         int retval;
4934
4935         retval = xhci_register_pci();
4936         if (retval < 0) {
4937                 printk(KERN_DEBUG "Problem registering PCI driver.");
4938                 return retval;
4939         }
4940         retval = xhci_register_plat();
4941         if (retval < 0) {
4942                 printk(KERN_DEBUG "Problem registering platform driver.");
4943                 goto unreg_pci;
4944         }
4945         /*
4946          * Check the compiler generated sizes of structures that must be laid
4947          * out in specific ways for hardware access.
4948          */
4949         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4950         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4951         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4952         /* xhci_device_control has eight fields, and also
4953          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4954          */
4955         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4956         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4957         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4958         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4959         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4960         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4961         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4962         return 0;
4963 unreg_pci:
4964         xhci_unregister_pci();
4965         return retval;
4966 }
4967 module_init(xhci_hcd_init);
4968
4969 static void __exit xhci_hcd_cleanup(void)
4970 {
4971         xhci_unregister_pci();
4972         xhci_unregister_plat();
4973 }
4974 module_exit(xhci_hcd_cleanup);