Linux 5.15.57
[platform/kernel/linux-rpi.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28
29 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42         struct xhci_segment *seg = ring->first_seg;
43
44         if (!td || !td->start_seg)
45                 return false;
46         do {
47                 if (seg == td->start_seg)
48                         return true;
49                 seg = seg->next;
50         } while (seg && seg != ring->first_seg);
51
52         return false;
53 }
54
55 /*
56  * xhci_handshake - spin reading hc until handshake completes or fails
57  * @ptr: address of hc register to be read
58  * @mask: bits to look at in result of read
59  * @done: value of those bits when handshake succeeds
60  * @usec: timeout in microseconds
61  *
62  * Returns negative errno, or zero on success
63  *
64  * Success happens when the "mask" bits have the specified value (hardware
65  * handshake done).  There are two failure modes:  "usec" have passed (major
66  * hardware flakeout), or the register reads as all-ones (hardware removed).
67  */
68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
69 {
70         u32     result;
71         int     ret;
72
73         ret = readl_poll_timeout_atomic(ptr, result,
74                                         (result & mask) == done ||
75                                         result == U32_MAX,
76                                         1, timeout_us);
77         if (result == U32_MAX)          /* card removed */
78                 return -ENODEV;
79
80         return ret;
81 }
82
83 /*
84  * Disable interrupts and begin the xHCI halting process.
85  */
86 void xhci_quiesce(struct xhci_hcd *xhci)
87 {
88         u32 halted;
89         u32 cmd;
90         u32 mask;
91
92         mask = ~(XHCI_IRQS);
93         halted = readl(&xhci->op_regs->status) & STS_HALT;
94         if (!halted)
95                 mask &= ~CMD_RUN;
96
97         cmd = readl(&xhci->op_regs->command);
98         cmd &= mask;
99         writel(cmd, &xhci->op_regs->command);
100 }
101
102 /*
103  * Force HC into halt state.
104  *
105  * Disable any IRQs and clear the run/stop bit.
106  * HC will complete any current and actively pipelined transactions, and
107  * should halt within 16 ms of the run/stop bit being cleared.
108  * Read HC Halted bit in the status register to see when the HC is finished.
109  */
110 int xhci_halt(struct xhci_hcd *xhci)
111 {
112         int ret;
113         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
114         xhci_quiesce(xhci);
115
116         ret = xhci_handshake(&xhci->op_regs->status,
117                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
118         if (ret) {
119                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
120                 return ret;
121         }
122         xhci->xhc_state |= XHCI_STATE_HALTED;
123         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
124         return ret;
125 }
126
127 /*
128  * Set the run bit and wait for the host to be running.
129  */
130 int xhci_start(struct xhci_hcd *xhci)
131 {
132         u32 temp;
133         int ret;
134
135         temp = readl(&xhci->op_regs->command);
136         temp |= (CMD_RUN);
137         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
138                         temp);
139         writel(temp, &xhci->op_regs->command);
140
141         /*
142          * Wait for the HCHalted Status bit to be 0 to indicate the host is
143          * running.
144          */
145         ret = xhci_handshake(&xhci->op_regs->status,
146                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
147         if (ret == -ETIMEDOUT)
148                 xhci_err(xhci, "Host took too long to start, "
149                                 "waited %u microseconds.\n",
150                                 XHCI_MAX_HALT_USEC);
151         if (!ret)
152                 /* clear state flags. Including dying, halted or removing */
153                 xhci->xhc_state = 0;
154
155         return ret;
156 }
157
158 /*
159  * Reset a halted HC.
160  *
161  * This resets pipelines, timers, counters, state machines, etc.
162  * Transactions will be terminated immediately, and operational registers
163  * will be set to their defaults.
164  */
165 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
166 {
167         u32 command;
168         u32 state;
169         int ret;
170
171         state = readl(&xhci->op_regs->status);
172
173         if (state == ~(u32)0) {
174                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
175                 return -ENODEV;
176         }
177
178         if ((state & STS_HALT) == 0) {
179                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
180                 return 0;
181         }
182
183         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
184         command = readl(&xhci->op_regs->command);
185         command |= CMD_RESET;
186         writel(command, &xhci->op_regs->command);
187
188         /* Existing Intel xHCI controllers require a delay of 1 mS,
189          * after setting the CMD_RESET bit, and before accessing any
190          * HC registers. This allows the HC to complete the
191          * reset operation and be ready for HC register access.
192          * Without this delay, the subsequent HC register access,
193          * may result in a system hang very rarely.
194          */
195         if (xhci->quirks & XHCI_INTEL_HOST)
196                 udelay(1000);
197
198         ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
199         if (ret)
200                 return ret;
201
202         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
203                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
204
205         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
206                          "Wait for controller to be ready for doorbell rings");
207         /*
208          * xHCI cannot write to any doorbells or operational registers other
209          * than status until the "Controller Not Ready" flag is cleared.
210          */
211         ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
212
213         xhci->usb2_rhub.bus_state.port_c_suspend = 0;
214         xhci->usb2_rhub.bus_state.suspended_ports = 0;
215         xhci->usb2_rhub.bus_state.resuming_ports = 0;
216         xhci->usb3_rhub.bus_state.port_c_suspend = 0;
217         xhci->usb3_rhub.bus_state.suspended_ports = 0;
218         xhci->usb3_rhub.bus_state.resuming_ports = 0;
219
220         return ret;
221 }
222
223 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
224 {
225         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
226         int err, i;
227         u64 val;
228         u32 intrs;
229
230         /*
231          * Some Renesas controllers get into a weird state if they are
232          * reset while programmed with 64bit addresses (they will preserve
233          * the top half of the address in internal, non visible
234          * registers). You end up with half the address coming from the
235          * kernel, and the other half coming from the firmware. Also,
236          * changing the programming leads to extra accesses even if the
237          * controller is supposed to be halted. The controller ends up with
238          * a fatal fault, and is then ripe for being properly reset.
239          *
240          * Special care is taken to only apply this if the device is behind
241          * an iommu. Doing anything when there is no iommu is definitely
242          * unsafe...
243          */
244         if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
245                 return;
246
247         xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
248
249         /* Clear HSEIE so that faults do not get signaled */
250         val = readl(&xhci->op_regs->command);
251         val &= ~CMD_HSEIE;
252         writel(val, &xhci->op_regs->command);
253
254         /* Clear HSE (aka FATAL) */
255         val = readl(&xhci->op_regs->status);
256         val |= STS_FATAL;
257         writel(val, &xhci->op_regs->status);
258
259         /* Now zero the registers, and brace for impact */
260         val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
261         if (upper_32_bits(val))
262                 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
263         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
264         if (upper_32_bits(val))
265                 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
266
267         intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
268                       ARRAY_SIZE(xhci->run_regs->ir_set));
269
270         for (i = 0; i < intrs; i++) {
271                 struct xhci_intr_reg __iomem *ir;
272
273                 ir = &xhci->run_regs->ir_set[i];
274                 val = xhci_read_64(xhci, &ir->erst_base);
275                 if (upper_32_bits(val))
276                         xhci_write_64(xhci, 0, &ir->erst_base);
277                 val= xhci_read_64(xhci, &ir->erst_dequeue);
278                 if (upper_32_bits(val))
279                         xhci_write_64(xhci, 0, &ir->erst_dequeue);
280         }
281
282         /* Wait for the fault to appear. It will be cleared on reset */
283         err = xhci_handshake(&xhci->op_regs->status,
284                              STS_FATAL, STS_FATAL,
285                              XHCI_MAX_HALT_USEC);
286         if (!err)
287                 xhci_info(xhci, "Fault detected\n");
288 }
289
290 #ifdef CONFIG_USB_PCI
291 /*
292  * Set up MSI
293  */
294 static int xhci_setup_msi(struct xhci_hcd *xhci)
295 {
296         int ret;
297         /*
298          * TODO:Check with MSI Soc for sysdev
299          */
300         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
301
302         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
303         if (ret < 0) {
304                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
305                                 "failed to allocate MSI entry");
306                 return ret;
307         }
308
309         ret = request_irq(pdev->irq, xhci_msi_irq,
310                                 0, "xhci_hcd", xhci_to_hcd(xhci));
311         if (ret) {
312                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
313                                 "disable MSI interrupt");
314                 pci_free_irq_vectors(pdev);
315         }
316
317         return ret;
318 }
319
320 /*
321  * Set up MSI-X
322  */
323 static int xhci_setup_msix(struct xhci_hcd *xhci)
324 {
325         int i, ret = 0;
326         struct usb_hcd *hcd = xhci_to_hcd(xhci);
327         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
328
329         /*
330          * calculate number of msi-x vectors supported.
331          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
332          *   with max number of interrupters based on the xhci HCSPARAMS1.
333          * - num_online_cpus: maximum msi-x vectors per CPUs core.
334          *   Add additional 1 vector to ensure always available interrupt.
335          */
336         xhci->msix_count = min(num_online_cpus() + 1,
337                                 HCS_MAX_INTRS(xhci->hcs_params1));
338
339         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
340                         PCI_IRQ_MSIX);
341         if (ret < 0) {
342                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
343                                 "Failed to enable MSI-X");
344                 return ret;
345         }
346
347         for (i = 0; i < xhci->msix_count; i++) {
348                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
349                                 "xhci_hcd", xhci_to_hcd(xhci));
350                 if (ret)
351                         goto disable_msix;
352         }
353
354         hcd->msix_enabled = 1;
355         return ret;
356
357 disable_msix:
358         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
359         while (--i >= 0)
360                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
361         pci_free_irq_vectors(pdev);
362         return ret;
363 }
364
365 /* Free any IRQs and disable MSI-X */
366 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
367 {
368         struct usb_hcd *hcd = xhci_to_hcd(xhci);
369         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
370
371         if (xhci->quirks & XHCI_PLAT)
372                 return;
373
374         /* return if using legacy interrupt */
375         if (hcd->irq > 0)
376                 return;
377
378         if (hcd->msix_enabled) {
379                 int i;
380
381                 for (i = 0; i < xhci->msix_count; i++)
382                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
383         } else {
384                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
385         }
386
387         pci_free_irq_vectors(pdev);
388         hcd->msix_enabled = 0;
389 }
390
391 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
392 {
393         struct usb_hcd *hcd = xhci_to_hcd(xhci);
394
395         if (hcd->msix_enabled) {
396                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
397                 int i;
398
399                 for (i = 0; i < xhci->msix_count; i++)
400                         synchronize_irq(pci_irq_vector(pdev, i));
401         }
402 }
403
404 static int xhci_try_enable_msi(struct usb_hcd *hcd)
405 {
406         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
407         struct pci_dev  *pdev;
408         int ret;
409
410         /* The xhci platform device has set up IRQs through usb_add_hcd. */
411         if (xhci->quirks & XHCI_PLAT)
412                 return 0;
413
414         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
415         /*
416          * Some Fresco Logic host controllers advertise MSI, but fail to
417          * generate interrupts.  Don't even try to enable MSI.
418          */
419         if (xhci->quirks & XHCI_BROKEN_MSI)
420                 goto legacy_irq;
421
422         /* unregister the legacy interrupt */
423         if (hcd->irq)
424                 free_irq(hcd->irq, hcd);
425         hcd->irq = 0;
426
427         ret = xhci_setup_msix(xhci);
428         if (ret)
429                 /* fall back to msi*/
430                 ret = xhci_setup_msi(xhci);
431
432         if (!ret) {
433                 hcd->msi_enabled = 1;
434                 return 0;
435         }
436
437         if (!pdev->irq) {
438                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
439                 return -EINVAL;
440         }
441
442  legacy_irq:
443         if (!strlen(hcd->irq_descr))
444                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
445                          hcd->driver->description, hcd->self.busnum);
446
447         /* fall back to legacy interrupt*/
448         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
449                         hcd->irq_descr, hcd);
450         if (ret) {
451                 xhci_err(xhci, "request interrupt %d failed\n",
452                                 pdev->irq);
453                 return ret;
454         }
455         hcd->irq = pdev->irq;
456         return 0;
457 }
458
459 #else
460
461 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
462 {
463         return 0;
464 }
465
466 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
467 {
468 }
469
470 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
471 {
472 }
473
474 #endif
475
476 static void compliance_mode_recovery(struct timer_list *t)
477 {
478         struct xhci_hcd *xhci;
479         struct usb_hcd *hcd;
480         struct xhci_hub *rhub;
481         u32 temp;
482         int i;
483
484         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
485         rhub = &xhci->usb3_rhub;
486
487         for (i = 0; i < rhub->num_ports; i++) {
488                 temp = readl(rhub->ports[i]->addr);
489                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
490                         /*
491                          * Compliance Mode Detected. Letting USB Core
492                          * handle the Warm Reset
493                          */
494                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
495                                         "Compliance mode detected->port %d",
496                                         i + 1);
497                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
498                                         "Attempting compliance mode recovery");
499                         hcd = xhci->shared_hcd;
500
501                         if (hcd->state == HC_STATE_SUSPENDED)
502                                 usb_hcd_resume_root_hub(hcd);
503
504                         usb_hcd_poll_rh_status(hcd);
505                 }
506         }
507
508         if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
509                 mod_timer(&xhci->comp_mode_recovery_timer,
510                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
511 }
512
513 /*
514  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
515  * that causes ports behind that hardware to enter compliance mode sometimes.
516  * The quirk creates a timer that polls every 2 seconds the link state of
517  * each host controller's port and recovers it by issuing a Warm reset
518  * if Compliance mode is detected, otherwise the port will become "dead" (no
519  * device connections or disconnections will be detected anymore). Becasue no
520  * status event is generated when entering compliance mode (per xhci spec),
521  * this quirk is needed on systems that have the failing hardware installed.
522  */
523 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
524 {
525         xhci->port_status_u0 = 0;
526         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
527                     0);
528         xhci->comp_mode_recovery_timer.expires = jiffies +
529                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
530
531         add_timer(&xhci->comp_mode_recovery_timer);
532         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
533                         "Compliance mode recovery timer initialized");
534 }
535
536 /*
537  * This function identifies the systems that have installed the SN65LVPE502CP
538  * USB3.0 re-driver and that need the Compliance Mode Quirk.
539  * Systems:
540  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
541  */
542 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
543 {
544         const char *dmi_product_name, *dmi_sys_vendor;
545
546         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
547         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
548         if (!dmi_product_name || !dmi_sys_vendor)
549                 return false;
550
551         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
552                 return false;
553
554         if (strstr(dmi_product_name, "Z420") ||
555                         strstr(dmi_product_name, "Z620") ||
556                         strstr(dmi_product_name, "Z820") ||
557                         strstr(dmi_product_name, "Z1 Workstation"))
558                 return true;
559
560         return false;
561 }
562
563 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
564 {
565         return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
566 }
567
568
569 /*
570  * Initialize memory for HCD and xHC (one-time init).
571  *
572  * Program the PAGESIZE register, initialize the device context array, create
573  * device contexts (?), set up a command ring segment (or two?), create event
574  * ring (one for now).
575  */
576 static int xhci_init(struct usb_hcd *hcd)
577 {
578         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
579         int retval = 0;
580
581         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
582         spin_lock_init(&xhci->lock);
583         if (xhci->hci_version == 0x95 && link_quirk) {
584                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
585                                 "QUIRK: Not clearing Link TRB chain bits.");
586                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
587         } else {
588                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
589                                 "xHCI doesn't need link TRB QUIRK");
590         }
591         retval = xhci_mem_init(xhci, GFP_KERNEL);
592         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
593
594         /* Initializing Compliance Mode Recovery Data If Needed */
595         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
596                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
597                 compliance_mode_recovery_timer_init(xhci);
598         }
599
600         return retval;
601 }
602
603 /*-------------------------------------------------------------------------*/
604
605
606 static int xhci_run_finished(struct xhci_hcd *xhci)
607 {
608         if (xhci_start(xhci)) {
609                 xhci_halt(xhci);
610                 return -ENODEV;
611         }
612         xhci->shared_hcd->state = HC_STATE_RUNNING;
613         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
614
615         if (xhci->quirks & XHCI_NEC_HOST)
616                 xhci_ring_cmd_db(xhci);
617
618         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
619                         "Finished xhci_run for USB3 roothub");
620         return 0;
621 }
622
623 /*
624  * Start the HC after it was halted.
625  *
626  * This function is called by the USB core when the HC driver is added.
627  * Its opposite is xhci_stop().
628  *
629  * xhci_init() must be called once before this function can be called.
630  * Reset the HC, enable device slot contexts, program DCBAAP, and
631  * set command ring pointer and event ring pointer.
632  *
633  * Setup MSI-X vectors and enable interrupts.
634  */
635 int xhci_run(struct usb_hcd *hcd)
636 {
637         u32 temp;
638         u64 temp_64;
639         int ret;
640         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
641
642         /* Start the xHCI host controller running only after the USB 2.0 roothub
643          * is setup.
644          */
645
646         hcd->uses_new_polling = 1;
647         if (!usb_hcd_is_primary_hcd(hcd))
648                 return xhci_run_finished(xhci);
649
650         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
651
652         ret = xhci_try_enable_msi(hcd);
653         if (ret)
654                 return ret;
655
656         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
657         temp_64 &= ~ERST_PTR_MASK;
658         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
659                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
660
661         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
662                         "// Set the interrupt modulation register");
663         temp = readl(&xhci->ir_set->irq_control);
664         temp &= ~ER_IRQ_INTERVAL_MASK;
665         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
666         writel(temp, &xhci->ir_set->irq_control);
667
668         /* Set the HCD state before we enable the irqs */
669         temp = readl(&xhci->op_regs->command);
670         temp |= (CMD_EIE);
671         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
672                         "// Enable interrupts, cmd = 0x%x.", temp);
673         writel(temp, &xhci->op_regs->command);
674
675         temp = readl(&xhci->ir_set->irq_pending);
676         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
677                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
678                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
679         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
680
681         if (xhci->quirks & XHCI_NEC_HOST) {
682                 struct xhci_command *command;
683
684                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
685                 if (!command)
686                         return -ENOMEM;
687
688                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
689                                 TRB_TYPE(TRB_NEC_GET_FW));
690                 if (ret)
691                         xhci_free_command(xhci, command);
692         }
693         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
694                         "Finished xhci_run for USB2 roothub");
695
696         xhci_dbc_init(xhci);
697
698         xhci_debugfs_init(xhci);
699
700         return 0;
701 }
702 EXPORT_SYMBOL_GPL(xhci_run);
703
704 /*
705  * Stop xHCI driver.
706  *
707  * This function is called by the USB core when the HC driver is removed.
708  * Its opposite is xhci_run().
709  *
710  * Disable device contexts, disable IRQs, and quiesce the HC.
711  * Reset the HC, finish any completed transactions, and cleanup memory.
712  */
713 static void xhci_stop(struct usb_hcd *hcd)
714 {
715         u32 temp;
716         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
717
718         mutex_lock(&xhci->mutex);
719
720         /* Only halt host and free memory after both hcds are removed */
721         if (!usb_hcd_is_primary_hcd(hcd)) {
722                 mutex_unlock(&xhci->mutex);
723                 return;
724         }
725
726         xhci_dbc_exit(xhci);
727
728         spin_lock_irq(&xhci->lock);
729         xhci->xhc_state |= XHCI_STATE_HALTED;
730         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
731         xhci_halt(xhci);
732         xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
733         spin_unlock_irq(&xhci->lock);
734
735         xhci_cleanup_msix(xhci);
736
737         /* Deleting Compliance Mode Recovery Timer */
738         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
739                         (!(xhci_all_ports_seen_u0(xhci)))) {
740                 del_timer_sync(&xhci->comp_mode_recovery_timer);
741                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
742                                 "%s: compliance mode recovery timer deleted",
743                                 __func__);
744         }
745
746         if (xhci->quirks & XHCI_AMD_PLL_FIX)
747                 usb_amd_dev_put();
748
749         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
750                         "// Disabling event ring interrupts");
751         temp = readl(&xhci->op_regs->status);
752         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
753         temp = readl(&xhci->ir_set->irq_pending);
754         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
755
756         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
757         xhci_mem_cleanup(xhci);
758         xhci_debugfs_exit(xhci);
759         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
760                         "xhci_stop completed - status = %x",
761                         readl(&xhci->op_regs->status));
762         mutex_unlock(&xhci->mutex);
763 }
764
765 /*
766  * Shutdown HC (not bus-specific)
767  *
768  * This is called when the machine is rebooting or halting.  We assume that the
769  * machine will be powered off, and the HC's internal state will be reset.
770  * Don't bother to free memory.
771  *
772  * This will only ever be called with the main usb_hcd (the USB3 roothub).
773  */
774 void xhci_shutdown(struct usb_hcd *hcd)
775 {
776         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
777         unsigned long flags;
778         int i;
779
780         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
781                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
782
783         /* Don't poll the roothubs after shutdown. */
784         xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
785                         __func__, hcd->self.busnum);
786         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
787         del_timer_sync(&hcd->rh_timer);
788
789         if (xhci->shared_hcd) {
790                 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
791                 del_timer_sync(&xhci->shared_hcd->rh_timer);
792         }
793
794         spin_lock_irqsave(&xhci->lock, flags);
795         xhci_halt(xhci);
796
797         /* Power off USB2 ports*/
798         for (i = 0; i < xhci->usb2_rhub.num_ports; i++)
799                 xhci_set_port_power(xhci, xhci->main_hcd, i, false, &flags);
800
801         /* Power off USB3 ports*/
802         for (i = 0; i < xhci->usb3_rhub.num_ports; i++)
803                 xhci_set_port_power(xhci, xhci->shared_hcd, i, false, &flags);
804
805         /* Workaround for spurious wakeups at shutdown with HSW */
806         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
807                 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
808         spin_unlock_irqrestore(&xhci->lock, flags);
809
810         xhci_cleanup_msix(xhci);
811
812         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
813                         "xhci_shutdown completed - status = %x",
814                         readl(&xhci->op_regs->status));
815 }
816 EXPORT_SYMBOL_GPL(xhci_shutdown);
817
818 #ifdef CONFIG_PM
819 static void xhci_save_registers(struct xhci_hcd *xhci)
820 {
821         xhci->s3.command = readl(&xhci->op_regs->command);
822         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
823         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
824         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
825         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
826         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
827         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
828         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
829         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
830 }
831
832 static void xhci_restore_registers(struct xhci_hcd *xhci)
833 {
834         writel(xhci->s3.command, &xhci->op_regs->command);
835         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
836         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
837         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
838         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
839         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
840         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
841         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
842         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
843 }
844
845 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
846 {
847         u64     val_64;
848
849         /* step 2: initialize command ring buffer */
850         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
851         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
852                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
853                                       xhci->cmd_ring->dequeue) &
854                  (u64) ~CMD_RING_RSVD_BITS) |
855                 xhci->cmd_ring->cycle_state;
856         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
857                         "// Setting command ring address to 0x%llx",
858                         (long unsigned long) val_64);
859         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
860 }
861
862 /*
863  * The whole command ring must be cleared to zero when we suspend the host.
864  *
865  * The host doesn't save the command ring pointer in the suspend well, so we
866  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
867  * aligned, because of the reserved bits in the command ring dequeue pointer
868  * register.  Therefore, we can't just set the dequeue pointer back in the
869  * middle of the ring (TRBs are 16-byte aligned).
870  */
871 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
872 {
873         struct xhci_ring *ring;
874         struct xhci_segment *seg;
875
876         ring = xhci->cmd_ring;
877         seg = ring->deq_seg;
878         do {
879                 memset(seg->trbs, 0,
880                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
881                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
882                         cpu_to_le32(~TRB_CYCLE);
883                 seg = seg->next;
884         } while (seg != ring->deq_seg);
885
886         /* Reset the software enqueue and dequeue pointers */
887         ring->deq_seg = ring->first_seg;
888         ring->dequeue = ring->first_seg->trbs;
889         ring->enq_seg = ring->deq_seg;
890         ring->enqueue = ring->dequeue;
891
892         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
893         /*
894          * Ring is now zeroed, so the HW should look for change of ownership
895          * when the cycle bit is set to 1.
896          */
897         ring->cycle_state = 1;
898
899         /*
900          * Reset the hardware dequeue pointer.
901          * Yes, this will need to be re-written after resume, but we're paranoid
902          * and want to make sure the hardware doesn't access bogus memory
903          * because, say, the BIOS or an SMI started the host without changing
904          * the command ring pointers.
905          */
906         xhci_set_cmd_ring_deq(xhci);
907 }
908
909 /*
910  * Disable port wake bits if do_wakeup is not set.
911  *
912  * Also clear a possible internal port wake state left hanging for ports that
913  * detected termination but never successfully enumerated (trained to 0U).
914  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
915  * at enumeration clears this wake, force one here as well for unconnected ports
916  */
917
918 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
919                                        struct xhci_hub *rhub,
920                                        bool do_wakeup)
921 {
922         unsigned long flags;
923         u32 t1, t2, portsc;
924         int i;
925
926         spin_lock_irqsave(&xhci->lock, flags);
927
928         for (i = 0; i < rhub->num_ports; i++) {
929                 portsc = readl(rhub->ports[i]->addr);
930                 t1 = xhci_port_state_to_neutral(portsc);
931                 t2 = t1;
932
933                 /* clear wake bits if do_wake is not set */
934                 if (!do_wakeup)
935                         t2 &= ~PORT_WAKE_BITS;
936
937                 /* Don't touch csc bit if connected or connect change is set */
938                 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
939                         t2 |= PORT_CSC;
940
941                 if (t1 != t2) {
942                         writel(t2, rhub->ports[i]->addr);
943                         xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
944                                  rhub->hcd->self.busnum, i + 1, portsc, t2);
945                 }
946         }
947         spin_unlock_irqrestore(&xhci->lock, flags);
948 }
949
950 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
951 {
952         struct xhci_port        **ports;
953         int                     port_index;
954         u32                     status;
955         u32                     portsc;
956
957         status = readl(&xhci->op_regs->status);
958         if (status & STS_EINT)
959                 return true;
960         /*
961          * Checking STS_EINT is not enough as there is a lag between a change
962          * bit being set and the Port Status Change Event that it generated
963          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
964          */
965
966         port_index = xhci->usb2_rhub.num_ports;
967         ports = xhci->usb2_rhub.ports;
968         while (port_index--) {
969                 portsc = readl(ports[port_index]->addr);
970                 if (portsc & PORT_CHANGE_MASK ||
971                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
972                         return true;
973         }
974         port_index = xhci->usb3_rhub.num_ports;
975         ports = xhci->usb3_rhub.ports;
976         while (port_index--) {
977                 portsc = readl(ports[port_index]->addr);
978                 if (portsc & PORT_CHANGE_MASK ||
979                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
980                         return true;
981         }
982         return false;
983 }
984
985 /*
986  * Stop HC (not bus-specific)
987  *
988  * This is called when the machine transition into S3/S4 mode.
989  *
990  */
991 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
992 {
993         int                     rc = 0;
994         unsigned int            delay = XHCI_MAX_HALT_USEC * 2;
995         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
996         u32                     command;
997         u32                     res;
998
999         if (!hcd->state)
1000                 return 0;
1001
1002         if (hcd->state != HC_STATE_SUSPENDED ||
1003                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
1004                 return -EINVAL;
1005
1006         /* Clear root port wake on bits if wakeup not allowed. */
1007         xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
1008         xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
1009
1010         if (!HCD_HW_ACCESSIBLE(hcd))
1011                 return 0;
1012
1013         xhci_dbc_suspend(xhci);
1014
1015         /* Don't poll the roothubs on bus suspend. */
1016         xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
1017                  __func__, hcd->self.busnum);
1018         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1019         del_timer_sync(&hcd->rh_timer);
1020         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1021         del_timer_sync(&xhci->shared_hcd->rh_timer);
1022
1023         if (xhci->quirks & XHCI_SUSPEND_DELAY)
1024                 usleep_range(1000, 1500);
1025
1026         spin_lock_irq(&xhci->lock);
1027         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1028         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1029         /* step 1: stop endpoint */
1030         /* skipped assuming that port suspend has done */
1031
1032         /* step 2: clear Run/Stop bit */
1033         command = readl(&xhci->op_regs->command);
1034         command &= ~CMD_RUN;
1035         writel(command, &xhci->op_regs->command);
1036
1037         /* Some chips from Fresco Logic need an extraordinary delay */
1038         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1039
1040         if (xhci_handshake(&xhci->op_regs->status,
1041                       STS_HALT, STS_HALT, delay)) {
1042                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1043                 spin_unlock_irq(&xhci->lock);
1044                 return -ETIMEDOUT;
1045         }
1046         xhci_clear_command_ring(xhci);
1047
1048         /* step 3: save registers */
1049         xhci_save_registers(xhci);
1050
1051         /* step 4: set CSS flag */
1052         command = readl(&xhci->op_regs->command);
1053         command |= CMD_CSS;
1054         writel(command, &xhci->op_regs->command);
1055         xhci->broken_suspend = 0;
1056         if (xhci_handshake(&xhci->op_regs->status,
1057                                 STS_SAVE, 0, 20 * 1000)) {
1058         /*
1059          * AMD SNPS xHC 3.0 occasionally does not clear the
1060          * SSS bit of USBSTS and when driver tries to poll
1061          * to see if the xHC clears BIT(8) which never happens
1062          * and driver assumes that controller is not responding
1063          * and times out. To workaround this, its good to check
1064          * if SRE and HCE bits are not set (as per xhci
1065          * Section 5.4.2) and bypass the timeout.
1066          */
1067                 res = readl(&xhci->op_regs->status);
1068                 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1069                     (((res & STS_SRE) == 0) &&
1070                                 ((res & STS_HCE) == 0))) {
1071                         xhci->broken_suspend = 1;
1072                 } else {
1073                         xhci_warn(xhci, "WARN: xHC save state timeout\n");
1074                         spin_unlock_irq(&xhci->lock);
1075                         return -ETIMEDOUT;
1076                 }
1077         }
1078         spin_unlock_irq(&xhci->lock);
1079
1080         /*
1081          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1082          * is about to be suspended.
1083          */
1084         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1085                         (!(xhci_all_ports_seen_u0(xhci)))) {
1086                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1087                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1088                                 "%s: compliance mode recovery timer deleted",
1089                                 __func__);
1090         }
1091
1092         /* step 5: remove core well power */
1093         /* synchronize irq when using MSI-X */
1094         xhci_msix_sync_irqs(xhci);
1095
1096         return rc;
1097 }
1098 EXPORT_SYMBOL_GPL(xhci_suspend);
1099
1100 /*
1101  * start xHC (not bus-specific)
1102  *
1103  * This is called when the machine transition from S3/S4 mode.
1104  *
1105  */
1106 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1107 {
1108         u32                     command, temp = 0;
1109         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1110         struct usb_hcd          *secondary_hcd;
1111         int                     retval = 0;
1112         bool                    comp_timer_running = false;
1113         bool                    pending_portevent = false;
1114         bool                    reinit_xhc = false;
1115
1116         if (!hcd->state)
1117                 return 0;
1118
1119         /* Wait a bit if either of the roothubs need to settle from the
1120          * transition into bus suspend.
1121          */
1122
1123         if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1124             time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1125                 msleep(100);
1126
1127         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1128         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1129
1130         spin_lock_irq(&xhci->lock);
1131
1132         if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1133                 reinit_xhc = true;
1134
1135         if (!reinit_xhc) {
1136                 /*
1137                  * Some controllers might lose power during suspend, so wait
1138                  * for controller not ready bit to clear, just as in xHC init.
1139                  */
1140                 retval = xhci_handshake(&xhci->op_regs->status,
1141                                         STS_CNR, 0, 10 * 1000 * 1000);
1142                 if (retval) {
1143                         xhci_warn(xhci, "Controller not ready at resume %d\n",
1144                                   retval);
1145                         spin_unlock_irq(&xhci->lock);
1146                         return retval;
1147                 }
1148                 /* step 1: restore register */
1149                 xhci_restore_registers(xhci);
1150                 /* step 2: initialize command ring buffer */
1151                 xhci_set_cmd_ring_deq(xhci);
1152                 /* step 3: restore state and start state*/
1153                 /* step 3: set CRS flag */
1154                 command = readl(&xhci->op_regs->command);
1155                 command |= CMD_CRS;
1156                 writel(command, &xhci->op_regs->command);
1157                 /*
1158                  * Some controllers take up to 55+ ms to complete the controller
1159                  * restore so setting the timeout to 100ms. Xhci specification
1160                  * doesn't mention any timeout value.
1161                  */
1162                 if (xhci_handshake(&xhci->op_regs->status,
1163                               STS_RESTORE, 0, 100 * 1000)) {
1164                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1165                         spin_unlock_irq(&xhci->lock);
1166                         return -ETIMEDOUT;
1167                 }
1168         }
1169
1170         temp = readl(&xhci->op_regs->status);
1171
1172         /* re-initialize the HC on Restore Error, or Host Controller Error */
1173         if (temp & (STS_SRE | STS_HCE)) {
1174                 reinit_xhc = true;
1175                 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1176         }
1177
1178         if (reinit_xhc) {
1179                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1180                                 !(xhci_all_ports_seen_u0(xhci))) {
1181                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1182                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1183                                 "Compliance Mode Recovery Timer deleted!");
1184                 }
1185
1186                 /* Let the USB core know _both_ roothubs lost power. */
1187                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1188                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1189
1190                 xhci_dbg(xhci, "Stop HCD\n");
1191                 xhci_halt(xhci);
1192                 xhci_zero_64b_regs(xhci);
1193                 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1194                 spin_unlock_irq(&xhci->lock);
1195                 if (retval)
1196                         return retval;
1197                 xhci_cleanup_msix(xhci);
1198
1199                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1200                 temp = readl(&xhci->op_regs->status);
1201                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1202                 temp = readl(&xhci->ir_set->irq_pending);
1203                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1204
1205                 xhci_dbg(xhci, "cleaning up memory\n");
1206                 xhci_mem_cleanup(xhci);
1207                 xhci_debugfs_exit(xhci);
1208                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1209                             readl(&xhci->op_regs->status));
1210
1211                 /* USB core calls the PCI reinit and start functions twice:
1212                  * first with the primary HCD, and then with the secondary HCD.
1213                  * If we don't do the same, the host will never be started.
1214                  */
1215                 if (!usb_hcd_is_primary_hcd(hcd))
1216                         secondary_hcd = hcd;
1217                 else
1218                         secondary_hcd = xhci->shared_hcd;
1219
1220                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1221                 retval = xhci_init(hcd->primary_hcd);
1222                 if (retval)
1223                         return retval;
1224                 comp_timer_running = true;
1225
1226                 xhci_dbg(xhci, "Start the primary HCD\n");
1227                 retval = xhci_run(hcd->primary_hcd);
1228                 if (!retval) {
1229                         xhci_dbg(xhci, "Start the secondary HCD\n");
1230                         retval = xhci_run(secondary_hcd);
1231                 }
1232                 hcd->state = HC_STATE_SUSPENDED;
1233                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1234                 goto done;
1235         }
1236
1237         /* step 4: set Run/Stop bit */
1238         command = readl(&xhci->op_regs->command);
1239         command |= CMD_RUN;
1240         writel(command, &xhci->op_regs->command);
1241         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1242                   0, 250 * 1000);
1243
1244         /* step 5: walk topology and initialize portsc,
1245          * portpmsc and portli
1246          */
1247         /* this is done in bus_resume */
1248
1249         /* step 6: restart each of the previously
1250          * Running endpoints by ringing their doorbells
1251          */
1252
1253         spin_unlock_irq(&xhci->lock);
1254
1255         xhci_dbc_resume(xhci);
1256
1257  done:
1258         if (retval == 0) {
1259                 /*
1260                  * Resume roothubs only if there are pending events.
1261                  * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1262                  * the first wake signalling failed, give it that chance.
1263                  */
1264                 pending_portevent = xhci_pending_portevent(xhci);
1265                 if (!pending_portevent) {
1266                         msleep(120);
1267                         pending_portevent = xhci_pending_portevent(xhci);
1268                 }
1269
1270                 if (pending_portevent) {
1271                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1272                         usb_hcd_resume_root_hub(hcd);
1273                 }
1274         }
1275         /*
1276          * If system is subject to the Quirk, Compliance Mode Timer needs to
1277          * be re-initialized Always after a system resume. Ports are subject
1278          * to suffer the Compliance Mode issue again. It doesn't matter if
1279          * ports have entered previously to U0 before system's suspension.
1280          */
1281         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1282                 compliance_mode_recovery_timer_init(xhci);
1283
1284         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1285                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1286
1287         /* Re-enable port polling. */
1288         xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1289                  __func__, hcd->self.busnum);
1290         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1291         usb_hcd_poll_rh_status(xhci->shared_hcd);
1292         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1293         usb_hcd_poll_rh_status(hcd);
1294
1295         return retval;
1296 }
1297 EXPORT_SYMBOL_GPL(xhci_resume);
1298 #endif  /* CONFIG_PM */
1299
1300 /*-------------------------------------------------------------------------*/
1301
1302 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1303 {
1304         void *temp;
1305         int ret = 0;
1306         unsigned int buf_len;
1307         enum dma_data_direction dir;
1308
1309         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1310         buf_len = urb->transfer_buffer_length;
1311
1312         temp = kzalloc_node(buf_len, GFP_ATOMIC,
1313                             dev_to_node(hcd->self.sysdev));
1314
1315         if (usb_urb_dir_out(urb))
1316                 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1317                                    temp, buf_len, 0);
1318
1319         urb->transfer_buffer = temp;
1320         urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1321                                            urb->transfer_buffer,
1322                                            urb->transfer_buffer_length,
1323                                            dir);
1324
1325         if (dma_mapping_error(hcd->self.sysdev,
1326                               urb->transfer_dma)) {
1327                 ret = -EAGAIN;
1328                 kfree(temp);
1329         } else {
1330                 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1331         }
1332
1333         return ret;
1334 }
1335
1336 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1337                                           struct urb *urb)
1338 {
1339         bool ret = false;
1340         unsigned int i;
1341         unsigned int len = 0;
1342         unsigned int trb_size;
1343         unsigned int max_pkt;
1344         struct scatterlist *sg;
1345         struct scatterlist *tail_sg;
1346
1347         tail_sg = urb->sg;
1348         max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1349
1350         if (!urb->num_sgs)
1351                 return ret;
1352
1353         if (urb->dev->speed >= USB_SPEED_SUPER)
1354                 trb_size = TRB_CACHE_SIZE_SS;
1355         else
1356                 trb_size = TRB_CACHE_SIZE_HS;
1357
1358         if (urb->transfer_buffer_length != 0 &&
1359             !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1360                 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1361                         len = len + sg->length;
1362                         if (i > trb_size - 2) {
1363                                 len = len - tail_sg->length;
1364                                 if (len < max_pkt) {
1365                                         ret = true;
1366                                         break;
1367                                 }
1368
1369                                 tail_sg = sg_next(tail_sg);
1370                         }
1371                 }
1372         }
1373         return ret;
1374 }
1375
1376 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1377 {
1378         unsigned int len;
1379         unsigned int buf_len;
1380         enum dma_data_direction dir;
1381
1382         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1383
1384         buf_len = urb->transfer_buffer_length;
1385
1386         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1387             (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1388                 dma_unmap_single(hcd->self.sysdev,
1389                                  urb->transfer_dma,
1390                                  urb->transfer_buffer_length,
1391                                  dir);
1392
1393         if (usb_urb_dir_in(urb)) {
1394                 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1395                                            urb->transfer_buffer,
1396                                            buf_len,
1397                                            0);
1398                 if (len != buf_len) {
1399                         xhci_dbg(hcd_to_xhci(hcd),
1400                                  "Copy from tmp buf to urb sg list failed\n");
1401                         urb->actual_length = len;
1402                 }
1403         }
1404         urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1405         kfree(urb->transfer_buffer);
1406         urb->transfer_buffer = NULL;
1407 }
1408
1409 /*
1410  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1411  * we'll copy the actual data into the TRB address register. This is limited to
1412  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1413  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1414  */
1415 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1416                                 gfp_t mem_flags)
1417 {
1418         struct xhci_hcd *xhci;
1419
1420         xhci = hcd_to_xhci(hcd);
1421
1422         if (xhci_urb_suitable_for_idt(urb))
1423                 return 0;
1424
1425         if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1426                 if (xhci_urb_temp_buffer_required(hcd, urb))
1427                         return xhci_map_temp_buffer(hcd, urb);
1428         }
1429         return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1430 }
1431
1432 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1433 {
1434         struct xhci_hcd *xhci;
1435         bool unmap_temp_buf = false;
1436
1437         xhci = hcd_to_xhci(hcd);
1438
1439         if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1440                 unmap_temp_buf = true;
1441
1442         if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1443                 xhci_unmap_temp_buf(hcd, urb);
1444         else
1445                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1446 }
1447
1448 /**
1449  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1450  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1451  * value to right shift 1 for the bitmask.
1452  *
1453  * Index  = (epnum * 2) + direction - 1,
1454  * where direction = 0 for OUT, 1 for IN.
1455  * For control endpoints, the IN index is used (OUT index is unused), so
1456  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1457  */
1458 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1459 {
1460         unsigned int index;
1461         if (usb_endpoint_xfer_control(desc))
1462                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1463         else
1464                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1465                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1466         return index;
1467 }
1468 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1469
1470 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1471  * address from the XHCI endpoint index.
1472  */
1473 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1474 {
1475         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1476         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1477         return direction | number;
1478 }
1479
1480 /* Find the flag for this endpoint (for use in the control context).  Use the
1481  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1482  * bit 1, etc.
1483  */
1484 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1485 {
1486         return 1 << (xhci_get_endpoint_index(desc) + 1);
1487 }
1488
1489 /* Compute the last valid endpoint context index.  Basically, this is the
1490  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1491  * we find the most significant bit set in the added contexts flags.
1492  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1493  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1494  */
1495 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1496 {
1497         return fls(added_ctxs) - 1;
1498 }
1499
1500 /* Returns 1 if the arguments are OK;
1501  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1502  */
1503 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1504                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1505                 const char *func) {
1506         struct xhci_hcd *xhci;
1507         struct xhci_virt_device *virt_dev;
1508
1509         if (!hcd || (check_ep && !ep) || !udev) {
1510                 pr_debug("xHCI %s called with invalid args\n", func);
1511                 return -EINVAL;
1512         }
1513         if (!udev->parent) {
1514                 pr_debug("xHCI %s called for root hub\n", func);
1515                 return 0;
1516         }
1517
1518         xhci = hcd_to_xhci(hcd);
1519         if (check_virt_dev) {
1520                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1521                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1522                                         func);
1523                         return -EINVAL;
1524                 }
1525
1526                 virt_dev = xhci->devs[udev->slot_id];
1527                 if (virt_dev->udev != udev) {
1528                         xhci_dbg(xhci, "xHCI %s called with udev and "
1529                                           "virt_dev does not match\n", func);
1530                         return -EINVAL;
1531                 }
1532         }
1533
1534         if (xhci->xhc_state & XHCI_STATE_HALTED)
1535                 return -ENODEV;
1536
1537         return 1;
1538 }
1539
1540 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1541                 struct usb_device *udev, struct xhci_command *command,
1542                 bool ctx_change, bool must_succeed);
1543
1544 /*
1545  * Full speed devices may have a max packet size greater than 8 bytes, but the
1546  * USB core doesn't know that until it reads the first 8 bytes of the
1547  * descriptor.  If the usb_device's max packet size changes after that point,
1548  * we need to issue an evaluate context command and wait on it.
1549  */
1550 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1551                 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1552 {
1553         struct xhci_container_ctx *out_ctx;
1554         struct xhci_input_control_ctx *ctrl_ctx;
1555         struct xhci_ep_ctx *ep_ctx;
1556         struct xhci_command *command;
1557         int max_packet_size;
1558         int hw_max_packet_size;
1559         int ret = 0;
1560
1561         out_ctx = xhci->devs[slot_id]->out_ctx;
1562         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1563         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1564         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1565         if (hw_max_packet_size != max_packet_size) {
1566                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1567                                 "Max Packet Size for ep 0 changed.");
1568                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1569                                 "Max packet size in usb_device = %d",
1570                                 max_packet_size);
1571                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1572                                 "Max packet size in xHCI HW = %d",
1573                                 hw_max_packet_size);
1574                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1575                                 "Issuing evaluate context command.");
1576
1577                 /* Set up the input context flags for the command */
1578                 /* FIXME: This won't work if a non-default control endpoint
1579                  * changes max packet sizes.
1580                  */
1581
1582                 command = xhci_alloc_command(xhci, true, mem_flags);
1583                 if (!command)
1584                         return -ENOMEM;
1585
1586                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1587                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1588                 if (!ctrl_ctx) {
1589                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1590                                         __func__);
1591                         ret = -ENOMEM;
1592                         goto command_cleanup;
1593                 }
1594                 /* Set up the modified control endpoint 0 */
1595                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1596                                 xhci->devs[slot_id]->out_ctx, ep_index);
1597
1598                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1599                 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1600                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1601                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1602
1603                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1604                 ctrl_ctx->drop_flags = 0;
1605
1606                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1607                                 true, false);
1608
1609                 /* Clean up the input context for later use by bandwidth
1610                  * functions.
1611                  */
1612                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1613 command_cleanup:
1614                 kfree(command->completion);
1615                 kfree(command);
1616         }
1617         return ret;
1618 }
1619
1620 /*
1621  * non-error returns are a promise to giveback() the urb later
1622  * we drop ownership so next owner (or urb unlink) can get it
1623  */
1624 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1625 {
1626         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1627         unsigned long flags;
1628         int ret = 0;
1629         unsigned int slot_id, ep_index;
1630         unsigned int *ep_state;
1631         struct urb_priv *urb_priv;
1632         int num_tds;
1633
1634         if (!urb)
1635                 return -EINVAL;
1636         ret = xhci_check_args(hcd, urb->dev, urb->ep,
1637                                         true, true, __func__);
1638         if (ret <= 0)
1639                 return ret ? ret : -EINVAL;
1640
1641         slot_id = urb->dev->slot_id;
1642         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1643         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1644
1645         if (!HCD_HW_ACCESSIBLE(hcd))
1646                 return -ESHUTDOWN;
1647
1648         if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1649                 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1650                 return -ENODEV;
1651         }
1652
1653         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1654                 num_tds = urb->number_of_packets;
1655         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1656             urb->transfer_buffer_length > 0 &&
1657             urb->transfer_flags & URB_ZERO_PACKET &&
1658             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1659                 num_tds = 2;
1660         else
1661                 num_tds = 1;
1662
1663         urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1664         if (!urb_priv)
1665                 return -ENOMEM;
1666
1667         urb_priv->num_tds = num_tds;
1668         urb_priv->num_tds_done = 0;
1669         urb->hcpriv = urb_priv;
1670
1671         trace_xhci_urb_enqueue(urb);
1672
1673         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1674                 /* Check to see if the max packet size for the default control
1675                  * endpoint changed during FS device enumeration
1676                  */
1677                 if (urb->dev->speed == USB_SPEED_FULL) {
1678                         ret = xhci_check_maxpacket(xhci, slot_id,
1679                                         ep_index, urb, mem_flags);
1680                         if (ret < 0) {
1681                                 xhci_urb_free_priv(urb_priv);
1682                                 urb->hcpriv = NULL;
1683                                 return ret;
1684                         }
1685                 }
1686         }
1687
1688         spin_lock_irqsave(&xhci->lock, flags);
1689
1690         if (xhci->xhc_state & XHCI_STATE_DYING) {
1691                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1692                          urb->ep->desc.bEndpointAddress, urb);
1693                 ret = -ESHUTDOWN;
1694                 goto free_priv;
1695         }
1696         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1697                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1698                           *ep_state);
1699                 ret = -EINVAL;
1700                 goto free_priv;
1701         }
1702         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1703                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1704                 ret = -EINVAL;
1705                 goto free_priv;
1706         }
1707
1708         switch (usb_endpoint_type(&urb->ep->desc)) {
1709
1710         case USB_ENDPOINT_XFER_CONTROL:
1711                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1712                                          slot_id, ep_index);
1713                 break;
1714         case USB_ENDPOINT_XFER_BULK:
1715                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1716                                          slot_id, ep_index);
1717                 break;
1718         case USB_ENDPOINT_XFER_INT:
1719                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1720                                 slot_id, ep_index);
1721                 break;
1722         case USB_ENDPOINT_XFER_ISOC:
1723                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1724                                 slot_id, ep_index);
1725         }
1726
1727         if (ret) {
1728 free_priv:
1729                 xhci_urb_free_priv(urb_priv);
1730                 urb->hcpriv = NULL;
1731         }
1732         spin_unlock_irqrestore(&xhci->lock, flags);
1733         return ret;
1734 }
1735
1736 /*
1737  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1738  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1739  * should pick up where it left off in the TD, unless a Set Transfer Ring
1740  * Dequeue Pointer is issued.
1741  *
1742  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1743  * the ring.  Since the ring is a contiguous structure, they can't be physically
1744  * removed.  Instead, there are two options:
1745  *
1746  *  1) If the HC is in the middle of processing the URB to be canceled, we
1747  *     simply move the ring's dequeue pointer past those TRBs using the Set
1748  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1749  *     when drivers timeout on the last submitted URB and attempt to cancel.
1750  *
1751  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1752  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1753  *     HC will need to invalidate the any TRBs it has cached after the stop
1754  *     endpoint command, as noted in the xHCI 0.95 errata.
1755  *
1756  *  3) The TD may have completed by the time the Stop Endpoint Command
1757  *     completes, so software needs to handle that case too.
1758  *
1759  * This function should protect against the TD enqueueing code ringing the
1760  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1761  * It also needs to account for multiple cancellations on happening at the same
1762  * time for the same endpoint.
1763  *
1764  * Note that this function can be called in any context, or so says
1765  * usb_hcd_unlink_urb()
1766  */
1767 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1768 {
1769         unsigned long flags;
1770         int ret, i;
1771         u32 temp;
1772         struct xhci_hcd *xhci;
1773         struct urb_priv *urb_priv;
1774         struct xhci_td *td;
1775         unsigned int ep_index;
1776         struct xhci_ring *ep_ring;
1777         struct xhci_virt_ep *ep;
1778         struct xhci_command *command;
1779         struct xhci_virt_device *vdev;
1780
1781         xhci = hcd_to_xhci(hcd);
1782         spin_lock_irqsave(&xhci->lock, flags);
1783
1784         trace_xhci_urb_dequeue(urb);
1785
1786         /* Make sure the URB hasn't completed or been unlinked already */
1787         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1788         if (ret)
1789                 goto done;
1790
1791         /* give back URB now if we can't queue it for cancel */
1792         vdev = xhci->devs[urb->dev->slot_id];
1793         urb_priv = urb->hcpriv;
1794         if (!vdev || !urb_priv)
1795                 goto err_giveback;
1796
1797         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1798         ep = &vdev->eps[ep_index];
1799         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1800         if (!ep || !ep_ring)
1801                 goto err_giveback;
1802
1803         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1804         temp = readl(&xhci->op_regs->status);
1805         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1806                 xhci_hc_died(xhci);
1807                 goto done;
1808         }
1809
1810         /*
1811          * check ring is not re-allocated since URB was enqueued. If it is, then
1812          * make sure none of the ring related pointers in this URB private data
1813          * are touched, such as td_list, otherwise we overwrite freed data
1814          */
1815         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1816                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1817                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1818                         td = &urb_priv->td[i];
1819                         if (!list_empty(&td->cancelled_td_list))
1820                                 list_del_init(&td->cancelled_td_list);
1821                 }
1822                 goto err_giveback;
1823         }
1824
1825         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1826                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1827                                 "HC halted, freeing TD manually.");
1828                 for (i = urb_priv->num_tds_done;
1829                      i < urb_priv->num_tds;
1830                      i++) {
1831                         td = &urb_priv->td[i];
1832                         if (!list_empty(&td->td_list))
1833                                 list_del_init(&td->td_list);
1834                         if (!list_empty(&td->cancelled_td_list))
1835                                 list_del_init(&td->cancelled_td_list);
1836                 }
1837                 goto err_giveback;
1838         }
1839
1840         i = urb_priv->num_tds_done;
1841         if (i < urb_priv->num_tds)
1842                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1843                                 "Cancel URB %p, dev %s, ep 0x%x, "
1844                                 "starting at offset 0x%llx",
1845                                 urb, urb->dev->devpath,
1846                                 urb->ep->desc.bEndpointAddress,
1847                                 (unsigned long long) xhci_trb_virt_to_dma(
1848                                         urb_priv->td[i].start_seg,
1849                                         urb_priv->td[i].first_trb));
1850
1851         for (; i < urb_priv->num_tds; i++) {
1852                 td = &urb_priv->td[i];
1853                 /* TD can already be on cancelled list if ep halted on it */
1854                 if (list_empty(&td->cancelled_td_list)) {
1855                         td->cancel_status = TD_DIRTY;
1856                         list_add_tail(&td->cancelled_td_list,
1857                                       &ep->cancelled_td_list);
1858                 }
1859         }
1860
1861         /* Queue a stop endpoint command, but only if this is
1862          * the first cancellation to be handled.
1863          */
1864         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1865                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1866                 if (!command) {
1867                         ret = -ENOMEM;
1868                         goto done;
1869                 }
1870                 ep->ep_state |= EP_STOP_CMD_PENDING;
1871                 ep->stop_cmd_timer.expires = jiffies +
1872                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1873                 add_timer(&ep->stop_cmd_timer);
1874                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1875                                          ep_index, 0);
1876                 xhci_ring_cmd_db(xhci);
1877         }
1878 done:
1879         spin_unlock_irqrestore(&xhci->lock, flags);
1880         return ret;
1881
1882 err_giveback:
1883         if (urb_priv)
1884                 xhci_urb_free_priv(urb_priv);
1885         usb_hcd_unlink_urb_from_ep(hcd, urb);
1886         spin_unlock_irqrestore(&xhci->lock, flags);
1887         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1888         return ret;
1889 }
1890
1891 /* Drop an endpoint from a new bandwidth configuration for this device.
1892  * Only one call to this function is allowed per endpoint before
1893  * check_bandwidth() or reset_bandwidth() must be called.
1894  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1895  * add the endpoint to the schedule with possibly new parameters denoted by a
1896  * different endpoint descriptor in usb_host_endpoint.
1897  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1898  * not allowed.
1899  *
1900  * The USB core will not allow URBs to be queued to an endpoint that is being
1901  * disabled, so there's no need for mutual exclusion to protect
1902  * the xhci->devs[slot_id] structure.
1903  */
1904 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1905                        struct usb_host_endpoint *ep)
1906 {
1907         struct xhci_hcd *xhci;
1908         struct xhci_container_ctx *in_ctx, *out_ctx;
1909         struct xhci_input_control_ctx *ctrl_ctx;
1910         unsigned int ep_index;
1911         struct xhci_ep_ctx *ep_ctx;
1912         u32 drop_flag;
1913         u32 new_add_flags, new_drop_flags;
1914         int ret;
1915
1916         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1917         if (ret <= 0)
1918                 return ret;
1919         xhci = hcd_to_xhci(hcd);
1920         if (xhci->xhc_state & XHCI_STATE_DYING)
1921                 return -ENODEV;
1922
1923         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1924         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1925         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1926                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1927                                 __func__, drop_flag);
1928                 return 0;
1929         }
1930
1931         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1932         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1933         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1934         if (!ctrl_ctx) {
1935                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1936                                 __func__);
1937                 return 0;
1938         }
1939
1940         ep_index = xhci_get_endpoint_index(&ep->desc);
1941         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1942         /* If the HC already knows the endpoint is disabled,
1943          * or the HCD has noted it is disabled, ignore this request
1944          */
1945         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1946             le32_to_cpu(ctrl_ctx->drop_flags) &
1947             xhci_get_endpoint_flag(&ep->desc)) {
1948                 /* Do not warn when called after a usb_device_reset */
1949                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1950                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1951                                   __func__, ep);
1952                 return 0;
1953         }
1954
1955         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1956         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1957
1958         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1959         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1960
1961         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1962
1963         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1964
1965         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1966                         (unsigned int) ep->desc.bEndpointAddress,
1967                         udev->slot_id,
1968                         (unsigned int) new_drop_flags,
1969                         (unsigned int) new_add_flags);
1970         return 0;
1971 }
1972 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1973
1974 /* Add an endpoint to a new possible bandwidth configuration for this device.
1975  * Only one call to this function is allowed per endpoint before
1976  * check_bandwidth() or reset_bandwidth() must be called.
1977  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1978  * add the endpoint to the schedule with possibly new parameters denoted by a
1979  * different endpoint descriptor in usb_host_endpoint.
1980  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1981  * not allowed.
1982  *
1983  * The USB core will not allow URBs to be queued to an endpoint until the
1984  * configuration or alt setting is installed in the device, so there's no need
1985  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1986  */
1987 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1988                       struct usb_host_endpoint *ep)
1989 {
1990         struct xhci_hcd *xhci;
1991         struct xhci_container_ctx *in_ctx;
1992         unsigned int ep_index;
1993         struct xhci_input_control_ctx *ctrl_ctx;
1994         struct xhci_ep_ctx *ep_ctx;
1995         u32 added_ctxs;
1996         u32 new_add_flags, new_drop_flags;
1997         struct xhci_virt_device *virt_dev;
1998         int ret = 0;
1999
2000         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
2001         if (ret <= 0) {
2002                 /* So we won't queue a reset ep command for a root hub */
2003                 ep->hcpriv = NULL;
2004                 return ret;
2005         }
2006         xhci = hcd_to_xhci(hcd);
2007         if (xhci->xhc_state & XHCI_STATE_DYING)
2008                 return -ENODEV;
2009
2010         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
2011         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
2012                 /* FIXME when we have to issue an evaluate endpoint command to
2013                  * deal with ep0 max packet size changing once we get the
2014                  * descriptors
2015                  */
2016                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
2017                                 __func__, added_ctxs);
2018                 return 0;
2019         }
2020
2021         virt_dev = xhci->devs[udev->slot_id];
2022         in_ctx = virt_dev->in_ctx;
2023         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2024         if (!ctrl_ctx) {
2025                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2026                                 __func__);
2027                 return 0;
2028         }
2029
2030         ep_index = xhci_get_endpoint_index(&ep->desc);
2031         /* If this endpoint is already in use, and the upper layers are trying
2032          * to add it again without dropping it, reject the addition.
2033          */
2034         if (virt_dev->eps[ep_index].ring &&
2035                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2036                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
2037                                 "without dropping it.\n",
2038                                 (unsigned int) ep->desc.bEndpointAddress);
2039                 return -EINVAL;
2040         }
2041
2042         /* If the HCD has already noted the endpoint is enabled,
2043          * ignore this request.
2044          */
2045         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2046                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2047                                 __func__, ep);
2048                 return 0;
2049         }
2050
2051         /*
2052          * Configuration and alternate setting changes must be done in
2053          * process context, not interrupt context (or so documenation
2054          * for usb_set_interface() and usb_set_configuration() claim).
2055          */
2056         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2057                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2058                                 __func__, ep->desc.bEndpointAddress);
2059                 return -ENOMEM;
2060         }
2061
2062         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2063         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2064
2065         /* If xhci_endpoint_disable() was called for this endpoint, but the
2066          * xHC hasn't been notified yet through the check_bandwidth() call,
2067          * this re-adds a new state for the endpoint from the new endpoint
2068          * descriptors.  We must drop and re-add this endpoint, so we leave the
2069          * drop flags alone.
2070          */
2071         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2072
2073         /* Store the usb_device pointer for later use */
2074         ep->hcpriv = udev;
2075
2076         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2077         trace_xhci_add_endpoint(ep_ctx);
2078
2079         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2080                         (unsigned int) ep->desc.bEndpointAddress,
2081                         udev->slot_id,
2082                         (unsigned int) new_drop_flags,
2083                         (unsigned int) new_add_flags);
2084         return 0;
2085 }
2086 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2087
2088 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2089 {
2090         struct xhci_input_control_ctx *ctrl_ctx;
2091         struct xhci_ep_ctx *ep_ctx;
2092         struct xhci_slot_ctx *slot_ctx;
2093         int i;
2094
2095         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2096         if (!ctrl_ctx) {
2097                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2098                                 __func__);
2099                 return;
2100         }
2101
2102         /* When a device's add flag and drop flag are zero, any subsequent
2103          * configure endpoint command will leave that endpoint's state
2104          * untouched.  Make sure we don't leave any old state in the input
2105          * endpoint contexts.
2106          */
2107         ctrl_ctx->drop_flags = 0;
2108         ctrl_ctx->add_flags = 0;
2109         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2110         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2111         /* Endpoint 0 is always valid */
2112         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2113         for (i = 1; i < 31; i++) {
2114                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2115                 ep_ctx->ep_info = 0;
2116                 ep_ctx->ep_info2 = 0;
2117                 ep_ctx->deq = 0;
2118                 ep_ctx->tx_info = 0;
2119         }
2120 }
2121
2122 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2123                 struct usb_device *udev, u32 *cmd_status)
2124 {
2125         int ret;
2126
2127         switch (*cmd_status) {
2128         case COMP_COMMAND_ABORTED:
2129         case COMP_COMMAND_RING_STOPPED:
2130                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2131                 ret = -ETIME;
2132                 break;
2133         case COMP_RESOURCE_ERROR:
2134                 dev_warn(&udev->dev,
2135                          "Not enough host controller resources for new device state.\n");
2136                 ret = -ENOMEM;
2137                 /* FIXME: can we allocate more resources for the HC? */
2138                 break;
2139         case COMP_BANDWIDTH_ERROR:
2140         case COMP_SECONDARY_BANDWIDTH_ERROR:
2141                 dev_warn(&udev->dev,
2142                          "Not enough bandwidth for new device state.\n");
2143                 ret = -ENOSPC;
2144                 /* FIXME: can we go back to the old state? */
2145                 break;
2146         case COMP_TRB_ERROR:
2147                 /* the HCD set up something wrong */
2148                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2149                                 "add flag = 1, "
2150                                 "and endpoint is not disabled.\n");
2151                 ret = -EINVAL;
2152                 break;
2153         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2154                 dev_warn(&udev->dev,
2155                          "ERROR: Incompatible device for endpoint configure command.\n");
2156                 ret = -ENODEV;
2157                 break;
2158         case COMP_SUCCESS:
2159                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2160                                 "Successful Endpoint Configure command");
2161                 ret = 0;
2162                 break;
2163         default:
2164                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2165                                 *cmd_status);
2166                 ret = -EINVAL;
2167                 break;
2168         }
2169         return ret;
2170 }
2171
2172 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2173                 struct usb_device *udev, u32 *cmd_status)
2174 {
2175         int ret;
2176
2177         switch (*cmd_status) {
2178         case COMP_COMMAND_ABORTED:
2179         case COMP_COMMAND_RING_STOPPED:
2180                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2181                 ret = -ETIME;
2182                 break;
2183         case COMP_PARAMETER_ERROR:
2184                 dev_warn(&udev->dev,
2185                          "WARN: xHCI driver setup invalid evaluate context command.\n");
2186                 ret = -EINVAL;
2187                 break;
2188         case COMP_SLOT_NOT_ENABLED_ERROR:
2189                 dev_warn(&udev->dev,
2190                         "WARN: slot not enabled for evaluate context command.\n");
2191                 ret = -EINVAL;
2192                 break;
2193         case COMP_CONTEXT_STATE_ERROR:
2194                 dev_warn(&udev->dev,
2195                         "WARN: invalid context state for evaluate context command.\n");
2196                 ret = -EINVAL;
2197                 break;
2198         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2199                 dev_warn(&udev->dev,
2200                         "ERROR: Incompatible device for evaluate context command.\n");
2201                 ret = -ENODEV;
2202                 break;
2203         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2204                 /* Max Exit Latency too large error */
2205                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2206                 ret = -EINVAL;
2207                 break;
2208         case COMP_SUCCESS:
2209                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2210                                 "Successful evaluate context command");
2211                 ret = 0;
2212                 break;
2213         default:
2214                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2215                         *cmd_status);
2216                 ret = -EINVAL;
2217                 break;
2218         }
2219         return ret;
2220 }
2221
2222 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2223                 struct xhci_input_control_ctx *ctrl_ctx)
2224 {
2225         u32 valid_add_flags;
2226         u32 valid_drop_flags;
2227
2228         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2229          * (bit 1).  The default control endpoint is added during the Address
2230          * Device command and is never removed until the slot is disabled.
2231          */
2232         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2233         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2234
2235         /* Use hweight32 to count the number of ones in the add flags, or
2236          * number of endpoints added.  Don't count endpoints that are changed
2237          * (both added and dropped).
2238          */
2239         return hweight32(valid_add_flags) -
2240                 hweight32(valid_add_flags & valid_drop_flags);
2241 }
2242
2243 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2244                 struct xhci_input_control_ctx *ctrl_ctx)
2245 {
2246         u32 valid_add_flags;
2247         u32 valid_drop_flags;
2248
2249         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2250         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2251
2252         return hweight32(valid_drop_flags) -
2253                 hweight32(valid_add_flags & valid_drop_flags);
2254 }
2255
2256 /*
2257  * We need to reserve the new number of endpoints before the configure endpoint
2258  * command completes.  We can't subtract the dropped endpoints from the number
2259  * of active endpoints until the command completes because we can oversubscribe
2260  * the host in this case:
2261  *
2262  *  - the first configure endpoint command drops more endpoints than it adds
2263  *  - a second configure endpoint command that adds more endpoints is queued
2264  *  - the first configure endpoint command fails, so the config is unchanged
2265  *  - the second command may succeed, even though there isn't enough resources
2266  *
2267  * Must be called with xhci->lock held.
2268  */
2269 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2270                 struct xhci_input_control_ctx *ctrl_ctx)
2271 {
2272         u32 added_eps;
2273
2274         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2275         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2276                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2277                                 "Not enough ep ctxs: "
2278                                 "%u active, need to add %u, limit is %u.",
2279                                 xhci->num_active_eps, added_eps,
2280                                 xhci->limit_active_eps);
2281                 return -ENOMEM;
2282         }
2283         xhci->num_active_eps += added_eps;
2284         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2285                         "Adding %u ep ctxs, %u now active.", added_eps,
2286                         xhci->num_active_eps);
2287         return 0;
2288 }
2289
2290 /*
2291  * The configure endpoint was failed by the xHC for some other reason, so we
2292  * need to revert the resources that failed configuration would have used.
2293  *
2294  * Must be called with xhci->lock held.
2295  */
2296 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2297                 struct xhci_input_control_ctx *ctrl_ctx)
2298 {
2299         u32 num_failed_eps;
2300
2301         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2302         xhci->num_active_eps -= num_failed_eps;
2303         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2304                         "Removing %u failed ep ctxs, %u now active.",
2305                         num_failed_eps,
2306                         xhci->num_active_eps);
2307 }
2308
2309 /*
2310  * Now that the command has completed, clean up the active endpoint count by
2311  * subtracting out the endpoints that were dropped (but not changed).
2312  *
2313  * Must be called with xhci->lock held.
2314  */
2315 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2316                 struct xhci_input_control_ctx *ctrl_ctx)
2317 {
2318         u32 num_dropped_eps;
2319
2320         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2321         xhci->num_active_eps -= num_dropped_eps;
2322         if (num_dropped_eps)
2323                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2324                                 "Removing %u dropped ep ctxs, %u now active.",
2325                                 num_dropped_eps,
2326                                 xhci->num_active_eps);
2327 }
2328
2329 static unsigned int xhci_get_block_size(struct usb_device *udev)
2330 {
2331         switch (udev->speed) {
2332         case USB_SPEED_LOW:
2333         case USB_SPEED_FULL:
2334                 return FS_BLOCK;
2335         case USB_SPEED_HIGH:
2336                 return HS_BLOCK;
2337         case USB_SPEED_SUPER:
2338         case USB_SPEED_SUPER_PLUS:
2339                 return SS_BLOCK;
2340         case USB_SPEED_UNKNOWN:
2341         case USB_SPEED_WIRELESS:
2342         default:
2343                 /* Should never happen */
2344                 return 1;
2345         }
2346 }
2347
2348 static unsigned int
2349 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2350 {
2351         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2352                 return LS_OVERHEAD;
2353         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2354                 return FS_OVERHEAD;
2355         return HS_OVERHEAD;
2356 }
2357
2358 /* If we are changing a LS/FS device under a HS hub,
2359  * make sure (if we are activating a new TT) that the HS bus has enough
2360  * bandwidth for this new TT.
2361  */
2362 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2363                 struct xhci_virt_device *virt_dev,
2364                 int old_active_eps)
2365 {
2366         struct xhci_interval_bw_table *bw_table;
2367         struct xhci_tt_bw_info *tt_info;
2368
2369         /* Find the bandwidth table for the root port this TT is attached to. */
2370         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2371         tt_info = virt_dev->tt_info;
2372         /* If this TT already had active endpoints, the bandwidth for this TT
2373          * has already been added.  Removing all periodic endpoints (and thus
2374          * making the TT enactive) will only decrease the bandwidth used.
2375          */
2376         if (old_active_eps)
2377                 return 0;
2378         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2379                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2380                         return -ENOMEM;
2381                 return 0;
2382         }
2383         /* Not sure why we would have no new active endpoints...
2384          *
2385          * Maybe because of an Evaluate Context change for a hub update or a
2386          * control endpoint 0 max packet size change?
2387          * FIXME: skip the bandwidth calculation in that case.
2388          */
2389         return 0;
2390 }
2391
2392 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2393                 struct xhci_virt_device *virt_dev)
2394 {
2395         unsigned int bw_reserved;
2396
2397         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2398         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2399                 return -ENOMEM;
2400
2401         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2402         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2403                 return -ENOMEM;
2404
2405         return 0;
2406 }
2407
2408 /*
2409  * This algorithm is a very conservative estimate of the worst-case scheduling
2410  * scenario for any one interval.  The hardware dynamically schedules the
2411  * packets, so we can't tell which microframe could be the limiting factor in
2412  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2413  *
2414  * Obviously, we can't solve an NP complete problem to find the minimum worst
2415  * case scenario.  Instead, we come up with an estimate that is no less than
2416  * the worst case bandwidth used for any one microframe, but may be an
2417  * over-estimate.
2418  *
2419  * We walk the requirements for each endpoint by interval, starting with the
2420  * smallest interval, and place packets in the schedule where there is only one
2421  * possible way to schedule packets for that interval.  In order to simplify
2422  * this algorithm, we record the largest max packet size for each interval, and
2423  * assume all packets will be that size.
2424  *
2425  * For interval 0, we obviously must schedule all packets for each interval.
2426  * The bandwidth for interval 0 is just the amount of data to be transmitted
2427  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2428  * the number of packets).
2429  *
2430  * For interval 1, we have two possible microframes to schedule those packets
2431  * in.  For this algorithm, if we can schedule the same number of packets for
2432  * each possible scheduling opportunity (each microframe), we will do so.  The
2433  * remaining number of packets will be saved to be transmitted in the gaps in
2434  * the next interval's scheduling sequence.
2435  *
2436  * As we move those remaining packets to be scheduled with interval 2 packets,
2437  * we have to double the number of remaining packets to transmit.  This is
2438  * because the intervals are actually powers of 2, and we would be transmitting
2439  * the previous interval's packets twice in this interval.  We also have to be
2440  * sure that when we look at the largest max packet size for this interval, we
2441  * also look at the largest max packet size for the remaining packets and take
2442  * the greater of the two.
2443  *
2444  * The algorithm continues to evenly distribute packets in each scheduling
2445  * opportunity, and push the remaining packets out, until we get to the last
2446  * interval.  Then those packets and their associated overhead are just added
2447  * to the bandwidth used.
2448  */
2449 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2450                 struct xhci_virt_device *virt_dev,
2451                 int old_active_eps)
2452 {
2453         unsigned int bw_reserved;
2454         unsigned int max_bandwidth;
2455         unsigned int bw_used;
2456         unsigned int block_size;
2457         struct xhci_interval_bw_table *bw_table;
2458         unsigned int packet_size = 0;
2459         unsigned int overhead = 0;
2460         unsigned int packets_transmitted = 0;
2461         unsigned int packets_remaining = 0;
2462         unsigned int i;
2463
2464         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2465                 return xhci_check_ss_bw(xhci, virt_dev);
2466
2467         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2468                 max_bandwidth = HS_BW_LIMIT;
2469                 /* Convert percent of bus BW reserved to blocks reserved */
2470                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2471         } else {
2472                 max_bandwidth = FS_BW_LIMIT;
2473                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2474         }
2475
2476         bw_table = virt_dev->bw_table;
2477         /* We need to translate the max packet size and max ESIT payloads into
2478          * the units the hardware uses.
2479          */
2480         block_size = xhci_get_block_size(virt_dev->udev);
2481
2482         /* If we are manipulating a LS/FS device under a HS hub, double check
2483          * that the HS bus has enough bandwidth if we are activing a new TT.
2484          */
2485         if (virt_dev->tt_info) {
2486                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2487                                 "Recalculating BW for rootport %u",
2488                                 virt_dev->real_port);
2489                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2490                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2491                                         "newly activated TT.\n");
2492                         return -ENOMEM;
2493                 }
2494                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2495                                 "Recalculating BW for TT slot %u port %u",
2496                                 virt_dev->tt_info->slot_id,
2497                                 virt_dev->tt_info->ttport);
2498         } else {
2499                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2500                                 "Recalculating BW for rootport %u",
2501                                 virt_dev->real_port);
2502         }
2503
2504         /* Add in how much bandwidth will be used for interval zero, or the
2505          * rounded max ESIT payload + number of packets * largest overhead.
2506          */
2507         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2508                 bw_table->interval_bw[0].num_packets *
2509                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2510
2511         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2512                 unsigned int bw_added;
2513                 unsigned int largest_mps;
2514                 unsigned int interval_overhead;
2515
2516                 /*
2517                  * How many packets could we transmit in this interval?
2518                  * If packets didn't fit in the previous interval, we will need
2519                  * to transmit that many packets twice within this interval.
2520                  */
2521                 packets_remaining = 2 * packets_remaining +
2522                         bw_table->interval_bw[i].num_packets;
2523
2524                 /* Find the largest max packet size of this or the previous
2525                  * interval.
2526                  */
2527                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2528                         largest_mps = 0;
2529                 else {
2530                         struct xhci_virt_ep *virt_ep;
2531                         struct list_head *ep_entry;
2532
2533                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2534                         virt_ep = list_entry(ep_entry,
2535                                         struct xhci_virt_ep, bw_endpoint_list);
2536                         /* Convert to blocks, rounding up */
2537                         largest_mps = DIV_ROUND_UP(
2538                                         virt_ep->bw_info.max_packet_size,
2539                                         block_size);
2540                 }
2541                 if (largest_mps > packet_size)
2542                         packet_size = largest_mps;
2543
2544                 /* Use the larger overhead of this or the previous interval. */
2545                 interval_overhead = xhci_get_largest_overhead(
2546                                 &bw_table->interval_bw[i]);
2547                 if (interval_overhead > overhead)
2548                         overhead = interval_overhead;
2549
2550                 /* How many packets can we evenly distribute across
2551                  * (1 << (i + 1)) possible scheduling opportunities?
2552                  */
2553                 packets_transmitted = packets_remaining >> (i + 1);
2554
2555                 /* Add in the bandwidth used for those scheduled packets */
2556                 bw_added = packets_transmitted * (overhead + packet_size);
2557
2558                 /* How many packets do we have remaining to transmit? */
2559                 packets_remaining = packets_remaining % (1 << (i + 1));
2560
2561                 /* What largest max packet size should those packets have? */
2562                 /* If we've transmitted all packets, don't carry over the
2563                  * largest packet size.
2564                  */
2565                 if (packets_remaining == 0) {
2566                         packet_size = 0;
2567                         overhead = 0;
2568                 } else if (packets_transmitted > 0) {
2569                         /* Otherwise if we do have remaining packets, and we've
2570                          * scheduled some packets in this interval, take the
2571                          * largest max packet size from endpoints with this
2572                          * interval.
2573                          */
2574                         packet_size = largest_mps;
2575                         overhead = interval_overhead;
2576                 }
2577                 /* Otherwise carry over packet_size and overhead from the last
2578                  * time we had a remainder.
2579                  */
2580                 bw_used += bw_added;
2581                 if (bw_used > max_bandwidth) {
2582                         xhci_warn(xhci, "Not enough bandwidth. "
2583                                         "Proposed: %u, Max: %u\n",
2584                                 bw_used, max_bandwidth);
2585                         return -ENOMEM;
2586                 }
2587         }
2588         /*
2589          * Ok, we know we have some packets left over after even-handedly
2590          * scheduling interval 15.  We don't know which microframes they will
2591          * fit into, so we over-schedule and say they will be scheduled every
2592          * microframe.
2593          */
2594         if (packets_remaining > 0)
2595                 bw_used += overhead + packet_size;
2596
2597         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2598                 unsigned int port_index = virt_dev->real_port - 1;
2599
2600                 /* OK, we're manipulating a HS device attached to a
2601                  * root port bandwidth domain.  Include the number of active TTs
2602                  * in the bandwidth used.
2603                  */
2604                 bw_used += TT_HS_OVERHEAD *
2605                         xhci->rh_bw[port_index].num_active_tts;
2606         }
2607
2608         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2609                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2610                 "Available: %u " "percent",
2611                 bw_used, max_bandwidth, bw_reserved,
2612                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2613                 max_bandwidth);
2614
2615         bw_used += bw_reserved;
2616         if (bw_used > max_bandwidth) {
2617                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2618                                 bw_used, max_bandwidth);
2619                 return -ENOMEM;
2620         }
2621
2622         bw_table->bw_used = bw_used;
2623         return 0;
2624 }
2625
2626 static bool xhci_is_async_ep(unsigned int ep_type)
2627 {
2628         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2629                                         ep_type != ISOC_IN_EP &&
2630                                         ep_type != INT_IN_EP);
2631 }
2632
2633 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2634 {
2635         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2636 }
2637
2638 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2639 {
2640         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2641
2642         if (ep_bw->ep_interval == 0)
2643                 return SS_OVERHEAD_BURST +
2644                         (ep_bw->mult * ep_bw->num_packets *
2645                                         (SS_OVERHEAD + mps));
2646         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2647                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2648                                 1 << ep_bw->ep_interval);
2649
2650 }
2651
2652 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2653                 struct xhci_bw_info *ep_bw,
2654                 struct xhci_interval_bw_table *bw_table,
2655                 struct usb_device *udev,
2656                 struct xhci_virt_ep *virt_ep,
2657                 struct xhci_tt_bw_info *tt_info)
2658 {
2659         struct xhci_interval_bw *interval_bw;
2660         int normalized_interval;
2661
2662         if (xhci_is_async_ep(ep_bw->type))
2663                 return;
2664
2665         if (udev->speed >= USB_SPEED_SUPER) {
2666                 if (xhci_is_sync_in_ep(ep_bw->type))
2667                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2668                                 xhci_get_ss_bw_consumed(ep_bw);
2669                 else
2670                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2671                                 xhci_get_ss_bw_consumed(ep_bw);
2672                 return;
2673         }
2674
2675         /* SuperSpeed endpoints never get added to intervals in the table, so
2676          * this check is only valid for HS/FS/LS devices.
2677          */
2678         if (list_empty(&virt_ep->bw_endpoint_list))
2679                 return;
2680         /* For LS/FS devices, we need to translate the interval expressed in
2681          * microframes to frames.
2682          */
2683         if (udev->speed == USB_SPEED_HIGH)
2684                 normalized_interval = ep_bw->ep_interval;
2685         else
2686                 normalized_interval = ep_bw->ep_interval - 3;
2687
2688         if (normalized_interval == 0)
2689                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2690         interval_bw = &bw_table->interval_bw[normalized_interval];
2691         interval_bw->num_packets -= ep_bw->num_packets;
2692         switch (udev->speed) {
2693         case USB_SPEED_LOW:
2694                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2695                 break;
2696         case USB_SPEED_FULL:
2697                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2698                 break;
2699         case USB_SPEED_HIGH:
2700                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2701                 break;
2702         case USB_SPEED_SUPER:
2703         case USB_SPEED_SUPER_PLUS:
2704         case USB_SPEED_UNKNOWN:
2705         case USB_SPEED_WIRELESS:
2706                 /* Should never happen because only LS/FS/HS endpoints will get
2707                  * added to the endpoint list.
2708                  */
2709                 return;
2710         }
2711         if (tt_info)
2712                 tt_info->active_eps -= 1;
2713         list_del_init(&virt_ep->bw_endpoint_list);
2714 }
2715
2716 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2717                 struct xhci_bw_info *ep_bw,
2718                 struct xhci_interval_bw_table *bw_table,
2719                 struct usb_device *udev,
2720                 struct xhci_virt_ep *virt_ep,
2721                 struct xhci_tt_bw_info *tt_info)
2722 {
2723         struct xhci_interval_bw *interval_bw;
2724         struct xhci_virt_ep *smaller_ep;
2725         int normalized_interval;
2726
2727         if (xhci_is_async_ep(ep_bw->type))
2728                 return;
2729
2730         if (udev->speed == USB_SPEED_SUPER) {
2731                 if (xhci_is_sync_in_ep(ep_bw->type))
2732                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2733                                 xhci_get_ss_bw_consumed(ep_bw);
2734                 else
2735                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2736                                 xhci_get_ss_bw_consumed(ep_bw);
2737                 return;
2738         }
2739
2740         /* For LS/FS devices, we need to translate the interval expressed in
2741          * microframes to frames.
2742          */
2743         if (udev->speed == USB_SPEED_HIGH)
2744                 normalized_interval = ep_bw->ep_interval;
2745         else
2746                 normalized_interval = ep_bw->ep_interval - 3;
2747
2748         if (normalized_interval == 0)
2749                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2750         interval_bw = &bw_table->interval_bw[normalized_interval];
2751         interval_bw->num_packets += ep_bw->num_packets;
2752         switch (udev->speed) {
2753         case USB_SPEED_LOW:
2754                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2755                 break;
2756         case USB_SPEED_FULL:
2757                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2758                 break;
2759         case USB_SPEED_HIGH:
2760                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2761                 break;
2762         case USB_SPEED_SUPER:
2763         case USB_SPEED_SUPER_PLUS:
2764         case USB_SPEED_UNKNOWN:
2765         case USB_SPEED_WIRELESS:
2766                 /* Should never happen because only LS/FS/HS endpoints will get
2767                  * added to the endpoint list.
2768                  */
2769                 return;
2770         }
2771
2772         if (tt_info)
2773                 tt_info->active_eps += 1;
2774         /* Insert the endpoint into the list, largest max packet size first. */
2775         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2776                         bw_endpoint_list) {
2777                 if (ep_bw->max_packet_size >=
2778                                 smaller_ep->bw_info.max_packet_size) {
2779                         /* Add the new ep before the smaller endpoint */
2780                         list_add_tail(&virt_ep->bw_endpoint_list,
2781                                         &smaller_ep->bw_endpoint_list);
2782                         return;
2783                 }
2784         }
2785         /* Add the new endpoint at the end of the list. */
2786         list_add_tail(&virt_ep->bw_endpoint_list,
2787                         &interval_bw->endpoints);
2788 }
2789
2790 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2791                 struct xhci_virt_device *virt_dev,
2792                 int old_active_eps)
2793 {
2794         struct xhci_root_port_bw_info *rh_bw_info;
2795         if (!virt_dev->tt_info)
2796                 return;
2797
2798         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2799         if (old_active_eps == 0 &&
2800                                 virt_dev->tt_info->active_eps != 0) {
2801                 rh_bw_info->num_active_tts += 1;
2802                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2803         } else if (old_active_eps != 0 &&
2804                                 virt_dev->tt_info->active_eps == 0) {
2805                 rh_bw_info->num_active_tts -= 1;
2806                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2807         }
2808 }
2809
2810 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2811                 struct xhci_virt_device *virt_dev,
2812                 struct xhci_container_ctx *in_ctx)
2813 {
2814         struct xhci_bw_info ep_bw_info[31];
2815         int i;
2816         struct xhci_input_control_ctx *ctrl_ctx;
2817         int old_active_eps = 0;
2818
2819         if (virt_dev->tt_info)
2820                 old_active_eps = virt_dev->tt_info->active_eps;
2821
2822         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2823         if (!ctrl_ctx) {
2824                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2825                                 __func__);
2826                 return -ENOMEM;
2827         }
2828
2829         for (i = 0; i < 31; i++) {
2830                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2831                         continue;
2832
2833                 /* Make a copy of the BW info in case we need to revert this */
2834                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2835                                 sizeof(ep_bw_info[i]));
2836                 /* Drop the endpoint from the interval table if the endpoint is
2837                  * being dropped or changed.
2838                  */
2839                 if (EP_IS_DROPPED(ctrl_ctx, i))
2840                         xhci_drop_ep_from_interval_table(xhci,
2841                                         &virt_dev->eps[i].bw_info,
2842                                         virt_dev->bw_table,
2843                                         virt_dev->udev,
2844                                         &virt_dev->eps[i],
2845                                         virt_dev->tt_info);
2846         }
2847         /* Overwrite the information stored in the endpoints' bw_info */
2848         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2849         for (i = 0; i < 31; i++) {
2850                 /* Add any changed or added endpoints to the interval table */
2851                 if (EP_IS_ADDED(ctrl_ctx, i))
2852                         xhci_add_ep_to_interval_table(xhci,
2853                                         &virt_dev->eps[i].bw_info,
2854                                         virt_dev->bw_table,
2855                                         virt_dev->udev,
2856                                         &virt_dev->eps[i],
2857                                         virt_dev->tt_info);
2858         }
2859
2860         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2861                 /* Ok, this fits in the bandwidth we have.
2862                  * Update the number of active TTs.
2863                  */
2864                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2865                 return 0;
2866         }
2867
2868         /* We don't have enough bandwidth for this, revert the stored info. */
2869         for (i = 0; i < 31; i++) {
2870                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2871                         continue;
2872
2873                 /* Drop the new copies of any added or changed endpoints from
2874                  * the interval table.
2875                  */
2876                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2877                         xhci_drop_ep_from_interval_table(xhci,
2878                                         &virt_dev->eps[i].bw_info,
2879                                         virt_dev->bw_table,
2880                                         virt_dev->udev,
2881                                         &virt_dev->eps[i],
2882                                         virt_dev->tt_info);
2883                 }
2884                 /* Revert the endpoint back to its old information */
2885                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2886                                 sizeof(ep_bw_info[i]));
2887                 /* Add any changed or dropped endpoints back into the table */
2888                 if (EP_IS_DROPPED(ctrl_ctx, i))
2889                         xhci_add_ep_to_interval_table(xhci,
2890                                         &virt_dev->eps[i].bw_info,
2891                                         virt_dev->bw_table,
2892                                         virt_dev->udev,
2893                                         &virt_dev->eps[i],
2894                                         virt_dev->tt_info);
2895         }
2896         return -ENOMEM;
2897 }
2898
2899
2900 /* Issue a configure endpoint command or evaluate context command
2901  * and wait for it to finish.
2902  */
2903 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2904                 struct usb_device *udev,
2905                 struct xhci_command *command,
2906                 bool ctx_change, bool must_succeed)
2907 {
2908         int ret;
2909         unsigned long flags;
2910         struct xhci_input_control_ctx *ctrl_ctx;
2911         struct xhci_virt_device *virt_dev;
2912         struct xhci_slot_ctx *slot_ctx;
2913
2914         if (!command)
2915                 return -EINVAL;
2916
2917         spin_lock_irqsave(&xhci->lock, flags);
2918
2919         if (xhci->xhc_state & XHCI_STATE_DYING) {
2920                 spin_unlock_irqrestore(&xhci->lock, flags);
2921                 return -ESHUTDOWN;
2922         }
2923
2924         virt_dev = xhci->devs[udev->slot_id];
2925
2926         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2927         if (!ctrl_ctx) {
2928                 spin_unlock_irqrestore(&xhci->lock, flags);
2929                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2930                                 __func__);
2931                 return -ENOMEM;
2932         }
2933
2934         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2935                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2936                 spin_unlock_irqrestore(&xhci->lock, flags);
2937                 xhci_warn(xhci, "Not enough host resources, "
2938                                 "active endpoint contexts = %u\n",
2939                                 xhci->num_active_eps);
2940                 return -ENOMEM;
2941         }
2942         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2943             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2944                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2945                         xhci_free_host_resources(xhci, ctrl_ctx);
2946                 spin_unlock_irqrestore(&xhci->lock, flags);
2947                 xhci_warn(xhci, "Not enough bandwidth\n");
2948                 return -ENOMEM;
2949         }
2950
2951         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2952
2953         trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2954         trace_xhci_configure_endpoint(slot_ctx);
2955
2956         if (!ctx_change)
2957                 ret = xhci_queue_configure_endpoint(xhci, command,
2958                                 command->in_ctx->dma,
2959                                 udev->slot_id, must_succeed);
2960         else
2961                 ret = xhci_queue_evaluate_context(xhci, command,
2962                                 command->in_ctx->dma,
2963                                 udev->slot_id, must_succeed);
2964         if (ret < 0) {
2965                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2966                         xhci_free_host_resources(xhci, ctrl_ctx);
2967                 spin_unlock_irqrestore(&xhci->lock, flags);
2968                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2969                                 "FIXME allocate a new ring segment");
2970                 return -ENOMEM;
2971         }
2972         xhci_ring_cmd_db(xhci);
2973         spin_unlock_irqrestore(&xhci->lock, flags);
2974
2975         /* Wait for the configure endpoint command to complete */
2976         wait_for_completion(command->completion);
2977
2978         if (!ctx_change)
2979                 ret = xhci_configure_endpoint_result(xhci, udev,
2980                                                      &command->status);
2981         else
2982                 ret = xhci_evaluate_context_result(xhci, udev,
2983                                                    &command->status);
2984
2985         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2986                 spin_lock_irqsave(&xhci->lock, flags);
2987                 /* If the command failed, remove the reserved resources.
2988                  * Otherwise, clean up the estimate to include dropped eps.
2989                  */
2990                 if (ret)
2991                         xhci_free_host_resources(xhci, ctrl_ctx);
2992                 else
2993                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2994                 spin_unlock_irqrestore(&xhci->lock, flags);
2995         }
2996         return ret;
2997 }
2998
2999 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
3000         struct xhci_virt_device *vdev, int i)
3001 {
3002         struct xhci_virt_ep *ep = &vdev->eps[i];
3003
3004         if (ep->ep_state & EP_HAS_STREAMS) {
3005                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
3006                                 xhci_get_endpoint_address(i));
3007                 xhci_free_stream_info(xhci, ep->stream_info);
3008                 ep->stream_info = NULL;
3009                 ep->ep_state &= ~EP_HAS_STREAMS;
3010         }
3011 }
3012
3013 /* Called after one or more calls to xhci_add_endpoint() or
3014  * xhci_drop_endpoint().  If this call fails, the USB core is expected
3015  * to call xhci_reset_bandwidth().
3016  *
3017  * Since we are in the middle of changing either configuration or
3018  * installing a new alt setting, the USB core won't allow URBs to be
3019  * enqueued for any endpoint on the old config or interface.  Nothing
3020  * else should be touching the xhci->devs[slot_id] structure, so we
3021  * don't need to take the xhci->lock for manipulating that.
3022  */
3023 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3024 {
3025         int i;
3026         int ret = 0;
3027         struct xhci_hcd *xhci;
3028         struct xhci_virt_device *virt_dev;
3029         struct xhci_input_control_ctx *ctrl_ctx;
3030         struct xhci_slot_ctx *slot_ctx;
3031         struct xhci_command *command;
3032
3033         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3034         if (ret <= 0)
3035                 return ret;
3036         xhci = hcd_to_xhci(hcd);
3037         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3038                 (xhci->xhc_state & XHCI_STATE_REMOVING))
3039                 return -ENODEV;
3040
3041         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3042         virt_dev = xhci->devs[udev->slot_id];
3043
3044         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3045         if (!command)
3046                 return -ENOMEM;
3047
3048         command->in_ctx = virt_dev->in_ctx;
3049
3050         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3051         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3052         if (!ctrl_ctx) {
3053                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3054                                 __func__);
3055                 ret = -ENOMEM;
3056                 goto command_cleanup;
3057         }
3058         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3059         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3060         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3061
3062         /* Don't issue the command if there's no endpoints to update. */
3063         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3064             ctrl_ctx->drop_flags == 0) {
3065                 ret = 0;
3066                 goto command_cleanup;
3067         }
3068         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3069         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3070         for (i = 31; i >= 1; i--) {
3071                 __le32 le32 = cpu_to_le32(BIT(i));
3072
3073                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3074                     || (ctrl_ctx->add_flags & le32) || i == 1) {
3075                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3076                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3077                         break;
3078                 }
3079         }
3080
3081         ret = xhci_configure_endpoint(xhci, udev, command,
3082                         false, false);
3083         if (ret)
3084                 /* Callee should call reset_bandwidth() */
3085                 goto command_cleanup;
3086
3087         /* Free any rings that were dropped, but not changed. */
3088         for (i = 1; i < 31; i++) {
3089                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3090                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3091                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3092                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3093                 }
3094         }
3095         xhci_zero_in_ctx(xhci, virt_dev);
3096         /*
3097          * Install any rings for completely new endpoints or changed endpoints,
3098          * and free any old rings from changed endpoints.
3099          */
3100         for (i = 1; i < 31; i++) {
3101                 if (!virt_dev->eps[i].new_ring)
3102                         continue;
3103                 /* Only free the old ring if it exists.
3104                  * It may not if this is the first add of an endpoint.
3105                  */
3106                 if (virt_dev->eps[i].ring) {
3107                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3108                 }
3109                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3110                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3111                 virt_dev->eps[i].new_ring = NULL;
3112                 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3113         }
3114 command_cleanup:
3115         kfree(command->completion);
3116         kfree(command);
3117
3118         return ret;
3119 }
3120 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3121
3122 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3123 {
3124         struct xhci_hcd *xhci;
3125         struct xhci_virt_device *virt_dev;
3126         int i, ret;
3127
3128         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3129         if (ret <= 0)
3130                 return;
3131         xhci = hcd_to_xhci(hcd);
3132
3133         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3134         virt_dev = xhci->devs[udev->slot_id];
3135         /* Free any rings allocated for added endpoints */
3136         for (i = 0; i < 31; i++) {
3137                 if (virt_dev->eps[i].new_ring) {
3138                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3139                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3140                         virt_dev->eps[i].new_ring = NULL;
3141                 }
3142         }
3143         xhci_zero_in_ctx(xhci, virt_dev);
3144 }
3145 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3146
3147 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3148                 struct xhci_container_ctx *in_ctx,
3149                 struct xhci_container_ctx *out_ctx,
3150                 struct xhci_input_control_ctx *ctrl_ctx,
3151                 u32 add_flags, u32 drop_flags)
3152 {
3153         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3154         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3155         xhci_slot_copy(xhci, in_ctx, out_ctx);
3156         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3157 }
3158
3159 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3160                                   struct usb_host_endpoint *host_ep)
3161 {
3162         struct xhci_hcd         *xhci;
3163         struct xhci_virt_device *vdev;
3164         struct xhci_virt_ep     *ep;
3165         struct usb_device       *udev;
3166         unsigned long           flags;
3167         unsigned int            ep_index;
3168
3169         xhci = hcd_to_xhci(hcd);
3170 rescan:
3171         spin_lock_irqsave(&xhci->lock, flags);
3172
3173         udev = (struct usb_device *)host_ep->hcpriv;
3174         if (!udev || !udev->slot_id)
3175                 goto done;
3176
3177         vdev = xhci->devs[udev->slot_id];
3178         if (!vdev)
3179                 goto done;
3180
3181         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3182         ep = &vdev->eps[ep_index];
3183         if (!ep)
3184                 goto done;
3185
3186         /* wait for hub_tt_work to finish clearing hub TT */
3187         if (ep->ep_state & EP_CLEARING_TT) {
3188                 spin_unlock_irqrestore(&xhci->lock, flags);
3189                 schedule_timeout_uninterruptible(1);
3190                 goto rescan;
3191         }
3192
3193         if (ep->ep_state)
3194                 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3195                          ep->ep_state);
3196 done:
3197         host_ep->hcpriv = NULL;
3198         spin_unlock_irqrestore(&xhci->lock, flags);
3199 }
3200
3201 /*
3202  * Called after usb core issues a clear halt control message.
3203  * The host side of the halt should already be cleared by a reset endpoint
3204  * command issued when the STALL event was received.
3205  *
3206  * The reset endpoint command may only be issued to endpoints in the halted
3207  * state. For software that wishes to reset the data toggle or sequence number
3208  * of an endpoint that isn't in the halted state this function will issue a
3209  * configure endpoint command with the Drop and Add bits set for the target
3210  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3211  */
3212
3213 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3214                 struct usb_host_endpoint *host_ep)
3215 {
3216         struct xhci_hcd *xhci;
3217         struct usb_device *udev;
3218         struct xhci_virt_device *vdev;
3219         struct xhci_virt_ep *ep;
3220         struct xhci_input_control_ctx *ctrl_ctx;
3221         struct xhci_command *stop_cmd, *cfg_cmd;
3222         unsigned int ep_index;
3223         unsigned long flags;
3224         u32 ep_flag;
3225         int err;
3226
3227         xhci = hcd_to_xhci(hcd);
3228         if (!host_ep->hcpriv)
3229                 return;
3230         udev = (struct usb_device *) host_ep->hcpriv;
3231         vdev = xhci->devs[udev->slot_id];
3232
3233         /*
3234          * vdev may be lost due to xHC restore error and re-initialization
3235          * during S3/S4 resume. A new vdev will be allocated later by
3236          * xhci_discover_or_reset_device()
3237          */
3238         if (!udev->slot_id || !vdev)
3239                 return;
3240         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3241         ep = &vdev->eps[ep_index];
3242         if (!ep)
3243                 return;
3244
3245         /* Bail out if toggle is already being cleared by a endpoint reset */
3246         spin_lock_irqsave(&xhci->lock, flags);
3247         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3248                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3249                 spin_unlock_irqrestore(&xhci->lock, flags);
3250                 return;
3251         }
3252         spin_unlock_irqrestore(&xhci->lock, flags);
3253         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3254         if (usb_endpoint_xfer_control(&host_ep->desc) ||
3255             usb_endpoint_xfer_isoc(&host_ep->desc))
3256                 return;
3257
3258         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3259
3260         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3261                 return;
3262
3263         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3264         if (!stop_cmd)
3265                 return;
3266
3267         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3268         if (!cfg_cmd)
3269                 goto cleanup;
3270
3271         spin_lock_irqsave(&xhci->lock, flags);
3272
3273         /* block queuing new trbs and ringing ep doorbell */
3274         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3275
3276         /*
3277          * Make sure endpoint ring is empty before resetting the toggle/seq.
3278          * Driver is required to synchronously cancel all transfer request.
3279          * Stop the endpoint to force xHC to update the output context
3280          */
3281
3282         if (!list_empty(&ep->ring->td_list)) {
3283                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3284                 spin_unlock_irqrestore(&xhci->lock, flags);
3285                 xhci_free_command(xhci, cfg_cmd);
3286                 goto cleanup;
3287         }
3288
3289         err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3290                                         ep_index, 0);
3291         if (err < 0) {
3292                 spin_unlock_irqrestore(&xhci->lock, flags);
3293                 xhci_free_command(xhci, cfg_cmd);
3294                 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3295                                 __func__, err);
3296                 goto cleanup;
3297         }
3298
3299         xhci_ring_cmd_db(xhci);
3300         spin_unlock_irqrestore(&xhci->lock, flags);
3301
3302         wait_for_completion(stop_cmd->completion);
3303
3304         spin_lock_irqsave(&xhci->lock, flags);
3305
3306         /* config ep command clears toggle if add and drop ep flags are set */
3307         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3308         if (!ctrl_ctx) {
3309                 spin_unlock_irqrestore(&xhci->lock, flags);
3310                 xhci_free_command(xhci, cfg_cmd);
3311                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3312                                 __func__);
3313                 goto cleanup;
3314         }
3315
3316         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3317                                            ctrl_ctx, ep_flag, ep_flag);
3318         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3319
3320         err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3321                                       udev->slot_id, false);
3322         if (err < 0) {
3323                 spin_unlock_irqrestore(&xhci->lock, flags);
3324                 xhci_free_command(xhci, cfg_cmd);
3325                 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3326                                 __func__, err);
3327                 goto cleanup;
3328         }
3329
3330         xhci_ring_cmd_db(xhci);
3331         spin_unlock_irqrestore(&xhci->lock, flags);
3332
3333         wait_for_completion(cfg_cmd->completion);
3334
3335         xhci_free_command(xhci, cfg_cmd);
3336 cleanup:
3337         xhci_free_command(xhci, stop_cmd);
3338         spin_lock_irqsave(&xhci->lock, flags);
3339         if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3340                 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3341         spin_unlock_irqrestore(&xhci->lock, flags);
3342 }
3343
3344 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3345                 struct usb_device *udev, struct usb_host_endpoint *ep,
3346                 unsigned int slot_id)
3347 {
3348         int ret;
3349         unsigned int ep_index;
3350         unsigned int ep_state;
3351
3352         if (!ep)
3353                 return -EINVAL;
3354         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3355         if (ret <= 0)
3356                 return ret ? ret : -EINVAL;
3357         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3358                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3359                                 " descriptor for ep 0x%x does not support streams\n",
3360                                 ep->desc.bEndpointAddress);
3361                 return -EINVAL;
3362         }
3363
3364         ep_index = xhci_get_endpoint_index(&ep->desc);
3365         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3366         if (ep_state & EP_HAS_STREAMS ||
3367                         ep_state & EP_GETTING_STREAMS) {
3368                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3369                                 "already has streams set up.\n",
3370                                 ep->desc.bEndpointAddress);
3371                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3372                                 "dynamic stream context array reallocation.\n");
3373                 return -EINVAL;
3374         }
3375         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3376                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3377                                 "endpoint 0x%x; URBs are pending.\n",
3378                                 ep->desc.bEndpointAddress);
3379                 return -EINVAL;
3380         }
3381         return 0;
3382 }
3383
3384 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3385                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3386 {
3387         unsigned int max_streams;
3388
3389         /* The stream context array size must be a power of two */
3390         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3391         /*
3392          * Find out how many primary stream array entries the host controller
3393          * supports.  Later we may use secondary stream arrays (similar to 2nd
3394          * level page entries), but that's an optional feature for xHCI host
3395          * controllers. xHCs must support at least 4 stream IDs.
3396          */
3397         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3398         if (*num_stream_ctxs > max_streams) {
3399                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3400                                 max_streams);
3401                 *num_stream_ctxs = max_streams;
3402                 *num_streams = max_streams;
3403         }
3404 }
3405
3406 /* Returns an error code if one of the endpoint already has streams.
3407  * This does not change any data structures, it only checks and gathers
3408  * information.
3409  */
3410 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3411                 struct usb_device *udev,
3412                 struct usb_host_endpoint **eps, unsigned int num_eps,
3413                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3414 {
3415         unsigned int max_streams;
3416         unsigned int endpoint_flag;
3417         int i;
3418         int ret;
3419
3420         for (i = 0; i < num_eps; i++) {
3421                 ret = xhci_check_streams_endpoint(xhci, udev,
3422                                 eps[i], udev->slot_id);
3423                 if (ret < 0)
3424                         return ret;
3425
3426                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3427                 if (max_streams < (*num_streams - 1)) {
3428                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3429                                         eps[i]->desc.bEndpointAddress,
3430                                         max_streams);
3431                         *num_streams = max_streams+1;
3432                 }
3433
3434                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3435                 if (*changed_ep_bitmask & endpoint_flag)
3436                         return -EINVAL;
3437                 *changed_ep_bitmask |= endpoint_flag;
3438         }
3439         return 0;
3440 }
3441
3442 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3443                 struct usb_device *udev,
3444                 struct usb_host_endpoint **eps, unsigned int num_eps)
3445 {
3446         u32 changed_ep_bitmask = 0;
3447         unsigned int slot_id;
3448         unsigned int ep_index;
3449         unsigned int ep_state;
3450         int i;
3451
3452         slot_id = udev->slot_id;
3453         if (!xhci->devs[slot_id])
3454                 return 0;
3455
3456         for (i = 0; i < num_eps; i++) {
3457                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3458                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3459                 /* Are streams already being freed for the endpoint? */
3460                 if (ep_state & EP_GETTING_NO_STREAMS) {
3461                         xhci_warn(xhci, "WARN Can't disable streams for "
3462                                         "endpoint 0x%x, "
3463                                         "streams are being disabled already\n",
3464                                         eps[i]->desc.bEndpointAddress);
3465                         return 0;
3466                 }
3467                 /* Are there actually any streams to free? */
3468                 if (!(ep_state & EP_HAS_STREAMS) &&
3469                                 !(ep_state & EP_GETTING_STREAMS)) {
3470                         xhci_warn(xhci, "WARN Can't disable streams for "
3471                                         "endpoint 0x%x, "
3472                                         "streams are already disabled!\n",
3473                                         eps[i]->desc.bEndpointAddress);
3474                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3475                                         "with non-streams endpoint\n");
3476                         return 0;
3477                 }
3478                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3479         }
3480         return changed_ep_bitmask;
3481 }
3482
3483 /*
3484  * The USB device drivers use this function (through the HCD interface in USB
3485  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3486  * coordinate mass storage command queueing across multiple endpoints (basically
3487  * a stream ID == a task ID).
3488  *
3489  * Setting up streams involves allocating the same size stream context array
3490  * for each endpoint and issuing a configure endpoint command for all endpoints.
3491  *
3492  * Don't allow the call to succeed if one endpoint only supports one stream
3493  * (which means it doesn't support streams at all).
3494  *
3495  * Drivers may get less stream IDs than they asked for, if the host controller
3496  * hardware or endpoints claim they can't support the number of requested
3497  * stream IDs.
3498  */
3499 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3500                 struct usb_host_endpoint **eps, unsigned int num_eps,
3501                 unsigned int num_streams, gfp_t mem_flags)
3502 {
3503         int i, ret;
3504         struct xhci_hcd *xhci;
3505         struct xhci_virt_device *vdev;
3506         struct xhci_command *config_cmd;
3507         struct xhci_input_control_ctx *ctrl_ctx;
3508         unsigned int ep_index;
3509         unsigned int num_stream_ctxs;
3510         unsigned int max_packet;
3511         unsigned long flags;
3512         u32 changed_ep_bitmask = 0;
3513
3514         if (!eps)
3515                 return -EINVAL;
3516
3517         /* Add one to the number of streams requested to account for
3518          * stream 0 that is reserved for xHCI usage.
3519          */
3520         num_streams += 1;
3521         xhci = hcd_to_xhci(hcd);
3522         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3523                         num_streams);
3524
3525         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3526         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3527                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3528                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3529                 return -ENOSYS;
3530         }
3531
3532         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3533         if (!config_cmd)
3534                 return -ENOMEM;
3535
3536         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3537         if (!ctrl_ctx) {
3538                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3539                                 __func__);
3540                 xhci_free_command(xhci, config_cmd);
3541                 return -ENOMEM;
3542         }
3543
3544         /* Check to make sure all endpoints are not already configured for
3545          * streams.  While we're at it, find the maximum number of streams that
3546          * all the endpoints will support and check for duplicate endpoints.
3547          */
3548         spin_lock_irqsave(&xhci->lock, flags);
3549         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3550                         num_eps, &num_streams, &changed_ep_bitmask);
3551         if (ret < 0) {
3552                 xhci_free_command(xhci, config_cmd);
3553                 spin_unlock_irqrestore(&xhci->lock, flags);
3554                 return ret;
3555         }
3556         if (num_streams <= 1) {
3557                 xhci_warn(xhci, "WARN: endpoints can't handle "
3558                                 "more than one stream.\n");
3559                 xhci_free_command(xhci, config_cmd);
3560                 spin_unlock_irqrestore(&xhci->lock, flags);
3561                 return -EINVAL;
3562         }
3563         vdev = xhci->devs[udev->slot_id];
3564         /* Mark each endpoint as being in transition, so
3565          * xhci_urb_enqueue() will reject all URBs.
3566          */
3567         for (i = 0; i < num_eps; i++) {
3568                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3569                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3570         }
3571         spin_unlock_irqrestore(&xhci->lock, flags);
3572
3573         /* Setup internal data structures and allocate HW data structures for
3574          * streams (but don't install the HW structures in the input context
3575          * until we're sure all memory allocation succeeded).
3576          */
3577         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3578         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3579                         num_stream_ctxs, num_streams);
3580
3581         for (i = 0; i < num_eps; i++) {
3582                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3583                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3584                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3585                                 num_stream_ctxs,
3586                                 num_streams,
3587                                 max_packet, mem_flags);
3588                 if (!vdev->eps[ep_index].stream_info)
3589                         goto cleanup;
3590                 /* Set maxPstreams in endpoint context and update deq ptr to
3591                  * point to stream context array. FIXME
3592                  */
3593         }
3594
3595         /* Set up the input context for a configure endpoint command. */
3596         for (i = 0; i < num_eps; i++) {
3597                 struct xhci_ep_ctx *ep_ctx;
3598
3599                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3600                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3601
3602                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3603                                 vdev->out_ctx, ep_index);
3604                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3605                                 vdev->eps[ep_index].stream_info);
3606         }
3607         /* Tell the HW to drop its old copy of the endpoint context info
3608          * and add the updated copy from the input context.
3609          */
3610         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3611                         vdev->out_ctx, ctrl_ctx,
3612                         changed_ep_bitmask, changed_ep_bitmask);
3613
3614         /* Issue and wait for the configure endpoint command */
3615         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3616                         false, false);
3617
3618         /* xHC rejected the configure endpoint command for some reason, so we
3619          * leave the old ring intact and free our internal streams data
3620          * structure.
3621          */
3622         if (ret < 0)
3623                 goto cleanup;
3624
3625         spin_lock_irqsave(&xhci->lock, flags);
3626         for (i = 0; i < num_eps; i++) {
3627                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3628                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3629                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3630                          udev->slot_id, ep_index);
3631                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3632         }
3633         xhci_free_command(xhci, config_cmd);
3634         spin_unlock_irqrestore(&xhci->lock, flags);
3635
3636         for (i = 0; i < num_eps; i++) {
3637                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3638                 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3639         }
3640         /* Subtract 1 for stream 0, which drivers can't use */
3641         return num_streams - 1;
3642
3643 cleanup:
3644         /* If it didn't work, free the streams! */
3645         for (i = 0; i < num_eps; i++) {
3646                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3647                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3648                 vdev->eps[ep_index].stream_info = NULL;
3649                 /* FIXME Unset maxPstreams in endpoint context and
3650                  * update deq ptr to point to normal string ring.
3651                  */
3652                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3653                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3654                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3655         }
3656         xhci_free_command(xhci, config_cmd);
3657         return -ENOMEM;
3658 }
3659
3660 /* Transition the endpoint from using streams to being a "normal" endpoint
3661  * without streams.
3662  *
3663  * Modify the endpoint context state, submit a configure endpoint command,
3664  * and free all endpoint rings for streams if that completes successfully.
3665  */
3666 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3667                 struct usb_host_endpoint **eps, unsigned int num_eps,
3668                 gfp_t mem_flags)
3669 {
3670         int i, ret;
3671         struct xhci_hcd *xhci;
3672         struct xhci_virt_device *vdev;
3673         struct xhci_command *command;
3674         struct xhci_input_control_ctx *ctrl_ctx;
3675         unsigned int ep_index;
3676         unsigned long flags;
3677         u32 changed_ep_bitmask;
3678
3679         xhci = hcd_to_xhci(hcd);
3680         vdev = xhci->devs[udev->slot_id];
3681
3682         /* Set up a configure endpoint command to remove the streams rings */
3683         spin_lock_irqsave(&xhci->lock, flags);
3684         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3685                         udev, eps, num_eps);
3686         if (changed_ep_bitmask == 0) {
3687                 spin_unlock_irqrestore(&xhci->lock, flags);
3688                 return -EINVAL;
3689         }
3690
3691         /* Use the xhci_command structure from the first endpoint.  We may have
3692          * allocated too many, but the driver may call xhci_free_streams() for
3693          * each endpoint it grouped into one call to xhci_alloc_streams().
3694          */
3695         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3696         command = vdev->eps[ep_index].stream_info->free_streams_command;
3697         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3698         if (!ctrl_ctx) {
3699                 spin_unlock_irqrestore(&xhci->lock, flags);
3700                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3701                                 __func__);
3702                 return -EINVAL;
3703         }
3704
3705         for (i = 0; i < num_eps; i++) {
3706                 struct xhci_ep_ctx *ep_ctx;
3707
3708                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3709                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3710                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3711                         EP_GETTING_NO_STREAMS;
3712
3713                 xhci_endpoint_copy(xhci, command->in_ctx,
3714                                 vdev->out_ctx, ep_index);
3715                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3716                                 &vdev->eps[ep_index]);
3717         }
3718         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3719                         vdev->out_ctx, ctrl_ctx,
3720                         changed_ep_bitmask, changed_ep_bitmask);
3721         spin_unlock_irqrestore(&xhci->lock, flags);
3722
3723         /* Issue and wait for the configure endpoint command,
3724          * which must succeed.
3725          */
3726         ret = xhci_configure_endpoint(xhci, udev, command,
3727                         false, true);
3728
3729         /* xHC rejected the configure endpoint command for some reason, so we
3730          * leave the streams rings intact.
3731          */
3732         if (ret < 0)
3733                 return ret;
3734
3735         spin_lock_irqsave(&xhci->lock, flags);
3736         for (i = 0; i < num_eps; i++) {
3737                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3738                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3739                 vdev->eps[ep_index].stream_info = NULL;
3740                 /* FIXME Unset maxPstreams in endpoint context and
3741                  * update deq ptr to point to normal string ring.
3742                  */
3743                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3744                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3745         }
3746         spin_unlock_irqrestore(&xhci->lock, flags);
3747
3748         return 0;
3749 }
3750
3751 /*
3752  * Deletes endpoint resources for endpoints that were active before a Reset
3753  * Device command, or a Disable Slot command.  The Reset Device command leaves
3754  * the control endpoint intact, whereas the Disable Slot command deletes it.
3755  *
3756  * Must be called with xhci->lock held.
3757  */
3758 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3759         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3760 {
3761         int i;
3762         unsigned int num_dropped_eps = 0;
3763         unsigned int drop_flags = 0;
3764
3765         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3766                 if (virt_dev->eps[i].ring) {
3767                         drop_flags |= 1 << i;
3768                         num_dropped_eps++;
3769                 }
3770         }
3771         xhci->num_active_eps -= num_dropped_eps;
3772         if (num_dropped_eps)
3773                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3774                                 "Dropped %u ep ctxs, flags = 0x%x, "
3775                                 "%u now active.",
3776                                 num_dropped_eps, drop_flags,
3777                                 xhci->num_active_eps);
3778 }
3779
3780 /*
3781  * This submits a Reset Device Command, which will set the device state to 0,
3782  * set the device address to 0, and disable all the endpoints except the default
3783  * control endpoint.  The USB core should come back and call
3784  * xhci_address_device(), and then re-set up the configuration.  If this is
3785  * called because of a usb_reset_and_verify_device(), then the old alternate
3786  * settings will be re-installed through the normal bandwidth allocation
3787  * functions.
3788  *
3789  * Wait for the Reset Device command to finish.  Remove all structures
3790  * associated with the endpoints that were disabled.  Clear the input device
3791  * structure? Reset the control endpoint 0 max packet size?
3792  *
3793  * If the virt_dev to be reset does not exist or does not match the udev,
3794  * it means the device is lost, possibly due to the xHC restore error and
3795  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3796  * re-allocate the device.
3797  */
3798 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3799                 struct usb_device *udev)
3800 {
3801         int ret, i;
3802         unsigned long flags;
3803         struct xhci_hcd *xhci;
3804         unsigned int slot_id;
3805         struct xhci_virt_device *virt_dev;
3806         struct xhci_command *reset_device_cmd;
3807         struct xhci_slot_ctx *slot_ctx;
3808         int old_active_eps = 0;
3809
3810         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3811         if (ret <= 0)
3812                 return ret;
3813         xhci = hcd_to_xhci(hcd);
3814         slot_id = udev->slot_id;
3815         virt_dev = xhci->devs[slot_id];
3816         if (!virt_dev) {
3817                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3818                                 "not exist. Re-allocate the device\n", slot_id);
3819                 ret = xhci_alloc_dev(hcd, udev);
3820                 if (ret == 1)
3821                         return 0;
3822                 else
3823                         return -EINVAL;
3824         }
3825
3826         if (virt_dev->tt_info)
3827                 old_active_eps = virt_dev->tt_info->active_eps;
3828
3829         if (virt_dev->udev != udev) {
3830                 /* If the virt_dev and the udev does not match, this virt_dev
3831                  * may belong to another udev.
3832                  * Re-allocate the device.
3833                  */
3834                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3835                                 "not match the udev. Re-allocate the device\n",
3836                                 slot_id);
3837                 ret = xhci_alloc_dev(hcd, udev);
3838                 if (ret == 1)
3839                         return 0;
3840                 else
3841                         return -EINVAL;
3842         }
3843
3844         /* If device is not setup, there is no point in resetting it */
3845         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3846         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3847                                                 SLOT_STATE_DISABLED)
3848                 return 0;
3849
3850         trace_xhci_discover_or_reset_device(slot_ctx);
3851
3852         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3853         /* Allocate the command structure that holds the struct completion.
3854          * Assume we're in process context, since the normal device reset
3855          * process has to wait for the device anyway.  Storage devices are
3856          * reset as part of error handling, so use GFP_NOIO instead of
3857          * GFP_KERNEL.
3858          */
3859         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3860         if (!reset_device_cmd) {
3861                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3862                 return -ENOMEM;
3863         }
3864
3865         /* Attempt to submit the Reset Device command to the command ring */
3866         spin_lock_irqsave(&xhci->lock, flags);
3867
3868         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3869         if (ret) {
3870                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3871                 spin_unlock_irqrestore(&xhci->lock, flags);
3872                 goto command_cleanup;
3873         }
3874         xhci_ring_cmd_db(xhci);
3875         spin_unlock_irqrestore(&xhci->lock, flags);
3876
3877         /* Wait for the Reset Device command to finish */
3878         wait_for_completion(reset_device_cmd->completion);
3879
3880         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3881          * unless we tried to reset a slot ID that wasn't enabled,
3882          * or the device wasn't in the addressed or configured state.
3883          */
3884         ret = reset_device_cmd->status;
3885         switch (ret) {
3886         case COMP_COMMAND_ABORTED:
3887         case COMP_COMMAND_RING_STOPPED:
3888                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3889                 ret = -ETIME;
3890                 goto command_cleanup;
3891         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3892         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3893                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3894                                 slot_id,
3895                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3896                 xhci_dbg(xhci, "Not freeing device rings.\n");
3897                 /* Don't treat this as an error.  May change my mind later. */
3898                 ret = 0;
3899                 goto command_cleanup;
3900         case COMP_SUCCESS:
3901                 xhci_dbg(xhci, "Successful reset device command.\n");
3902                 break;
3903         default:
3904                 if (xhci_is_vendor_info_code(xhci, ret))
3905                         break;
3906                 xhci_warn(xhci, "Unknown completion code %u for "
3907                                 "reset device command.\n", ret);
3908                 ret = -EINVAL;
3909                 goto command_cleanup;
3910         }
3911
3912         /* Free up host controller endpoint resources */
3913         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3914                 spin_lock_irqsave(&xhci->lock, flags);
3915                 /* Don't delete the default control endpoint resources */
3916                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3917                 spin_unlock_irqrestore(&xhci->lock, flags);
3918         }
3919
3920         /* Everything but endpoint 0 is disabled, so free the rings. */
3921         for (i = 1; i < 31; i++) {
3922                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3923
3924                 if (ep->ep_state & EP_HAS_STREAMS) {
3925                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3926                                         xhci_get_endpoint_address(i));
3927                         xhci_free_stream_info(xhci, ep->stream_info);
3928                         ep->stream_info = NULL;
3929                         ep->ep_state &= ~EP_HAS_STREAMS;
3930                 }
3931
3932                 if (ep->ring) {
3933                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3934                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3935                 }
3936                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3937                         xhci_drop_ep_from_interval_table(xhci,
3938                                         &virt_dev->eps[i].bw_info,
3939                                         virt_dev->bw_table,
3940                                         udev,
3941                                         &virt_dev->eps[i],
3942                                         virt_dev->tt_info);
3943                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3944         }
3945         /* If necessary, update the number of active TTs on this root port */
3946         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3947         virt_dev->flags = 0;
3948         ret = 0;
3949
3950 command_cleanup:
3951         xhci_free_command(xhci, reset_device_cmd);
3952         return ret;
3953 }
3954
3955 /*
3956  * At this point, the struct usb_device is about to go away, the device has
3957  * disconnected, and all traffic has been stopped and the endpoints have been
3958  * disabled.  Free any HC data structures associated with that device.
3959  */
3960 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3961 {
3962         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3963         struct xhci_virt_device *virt_dev;
3964         struct xhci_slot_ctx *slot_ctx;
3965         int i, ret;
3966
3967         /*
3968          * We called pm_runtime_get_noresume when the device was attached.
3969          * Decrement the counter here to allow controller to runtime suspend
3970          * if no devices remain.
3971          */
3972         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3973                 pm_runtime_put_noidle(hcd->self.controller);
3974
3975         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3976         /* If the host is halted due to driver unload, we still need to free the
3977          * device.
3978          */
3979         if (ret <= 0 && ret != -ENODEV)
3980                 return;
3981
3982         virt_dev = xhci->devs[udev->slot_id];
3983         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3984         trace_xhci_free_dev(slot_ctx);
3985
3986         /* Stop any wayward timer functions (which may grab the lock) */
3987         for (i = 0; i < 31; i++) {
3988                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3989                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3990         }
3991         virt_dev->udev = NULL;
3992         xhci_disable_slot(xhci, udev->slot_id);
3993         xhci_free_virt_device(xhci, udev->slot_id);
3994 }
3995
3996 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3997 {
3998         struct xhci_command *command;
3999         unsigned long flags;
4000         u32 state;
4001         int ret = 0;
4002
4003         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4004         if (!command)
4005                 return -ENOMEM;
4006
4007         xhci_debugfs_remove_slot(xhci, slot_id);
4008
4009         spin_lock_irqsave(&xhci->lock, flags);
4010         /* Don't disable the slot if the host controller is dead. */
4011         state = readl(&xhci->op_regs->status);
4012         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4013                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
4014                 spin_unlock_irqrestore(&xhci->lock, flags);
4015                 kfree(command);
4016                 return -ENODEV;
4017         }
4018
4019         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4020                                 slot_id);
4021         if (ret) {
4022                 spin_unlock_irqrestore(&xhci->lock, flags);
4023                 kfree(command);
4024                 return ret;
4025         }
4026         xhci_ring_cmd_db(xhci);
4027         spin_unlock_irqrestore(&xhci->lock, flags);
4028
4029         wait_for_completion(command->completion);
4030
4031         if (command->status != COMP_SUCCESS)
4032                 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4033                           slot_id, command->status);
4034
4035         xhci_free_command(xhci, command);
4036
4037         return ret;
4038 }
4039
4040 /*
4041  * Checks if we have enough host controller resources for the default control
4042  * endpoint.
4043  *
4044  * Must be called with xhci->lock held.
4045  */
4046 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4047 {
4048         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4049                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4050                                 "Not enough ep ctxs: "
4051                                 "%u active, need to add 1, limit is %u.",
4052                                 xhci->num_active_eps, xhci->limit_active_eps);
4053                 return -ENOMEM;
4054         }
4055         xhci->num_active_eps += 1;
4056         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4057                         "Adding 1 ep ctx, %u now active.",
4058                         xhci->num_active_eps);
4059         return 0;
4060 }
4061
4062
4063 /*
4064  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4065  * timed out, or allocating memory failed.  Returns 1 on success.
4066  */
4067 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4068 {
4069         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4070         struct xhci_virt_device *vdev;
4071         struct xhci_slot_ctx *slot_ctx;
4072         unsigned long flags;
4073         int ret, slot_id;
4074         struct xhci_command *command;
4075
4076         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4077         if (!command)
4078                 return 0;
4079
4080         spin_lock_irqsave(&xhci->lock, flags);
4081         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4082         if (ret) {
4083                 spin_unlock_irqrestore(&xhci->lock, flags);
4084                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4085                 xhci_free_command(xhci, command);
4086                 return 0;
4087         }
4088         xhci_ring_cmd_db(xhci);
4089         spin_unlock_irqrestore(&xhci->lock, flags);
4090
4091         wait_for_completion(command->completion);
4092         slot_id = command->slot_id;
4093
4094         if (!slot_id || command->status != COMP_SUCCESS) {
4095                 xhci_err(xhci, "Error while assigning device slot ID\n");
4096                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4097                                 HCS_MAX_SLOTS(
4098                                         readl(&xhci->cap_regs->hcs_params1)));
4099                 xhci_free_command(xhci, command);
4100                 return 0;
4101         }
4102
4103         xhci_free_command(xhci, command);
4104
4105         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4106                 spin_lock_irqsave(&xhci->lock, flags);
4107                 ret = xhci_reserve_host_control_ep_resources(xhci);
4108                 if (ret) {
4109                         spin_unlock_irqrestore(&xhci->lock, flags);
4110                         xhci_warn(xhci, "Not enough host resources, "
4111                                         "active endpoint contexts = %u\n",
4112                                         xhci->num_active_eps);
4113                         goto disable_slot;
4114                 }
4115                 spin_unlock_irqrestore(&xhci->lock, flags);
4116         }
4117         /* Use GFP_NOIO, since this function can be called from
4118          * xhci_discover_or_reset_device(), which may be called as part of
4119          * mass storage driver error handling.
4120          */
4121         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4122                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4123                 goto disable_slot;
4124         }
4125         vdev = xhci->devs[slot_id];
4126         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4127         trace_xhci_alloc_dev(slot_ctx);
4128
4129         udev->slot_id = slot_id;
4130
4131         xhci_debugfs_create_slot(xhci, slot_id);
4132
4133         /*
4134          * If resetting upon resume, we can't put the controller into runtime
4135          * suspend if there is a device attached.
4136          */
4137         if (xhci->quirks & XHCI_RESET_ON_RESUME)
4138                 pm_runtime_get_noresume(hcd->self.controller);
4139
4140         /* Is this a LS or FS device under a HS hub? */
4141         /* Hub or peripherial? */
4142         return 1;
4143
4144 disable_slot:
4145         xhci_disable_slot(xhci, udev->slot_id);
4146         xhci_free_virt_device(xhci, udev->slot_id);
4147
4148         return 0;
4149 }
4150
4151 /*
4152  * Issue an Address Device command and optionally send a corresponding
4153  * SetAddress request to the device.
4154  */
4155 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4156                              enum xhci_setup_dev setup)
4157 {
4158         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4159         unsigned long flags;
4160         struct xhci_virt_device *virt_dev;
4161         int ret = 0;
4162         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4163         struct xhci_slot_ctx *slot_ctx;
4164         struct xhci_input_control_ctx *ctrl_ctx;
4165         u64 temp_64;
4166         struct xhci_command *command = NULL;
4167
4168         mutex_lock(&xhci->mutex);
4169
4170         if (xhci->xhc_state) {  /* dying, removing or halted */
4171                 ret = -ESHUTDOWN;
4172                 goto out;
4173         }
4174
4175         if (!udev->slot_id) {
4176                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4177                                 "Bad Slot ID %d", udev->slot_id);
4178                 ret = -EINVAL;
4179                 goto out;
4180         }
4181
4182         virt_dev = xhci->devs[udev->slot_id];
4183
4184         if (WARN_ON(!virt_dev)) {
4185                 /*
4186                  * In plug/unplug torture test with an NEC controller,
4187                  * a zero-dereference was observed once due to virt_dev = 0.
4188                  * Print useful debug rather than crash if it is observed again!
4189                  */
4190                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4191                         udev->slot_id);
4192                 ret = -EINVAL;
4193                 goto out;
4194         }
4195         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4196         trace_xhci_setup_device_slot(slot_ctx);
4197
4198         if (setup == SETUP_CONTEXT_ONLY) {
4199                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4200                     SLOT_STATE_DEFAULT) {
4201                         xhci_dbg(xhci, "Slot already in default state\n");
4202                         goto out;
4203                 }
4204         }
4205
4206         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4207         if (!command) {
4208                 ret = -ENOMEM;
4209                 goto out;
4210         }
4211
4212         command->in_ctx = virt_dev->in_ctx;
4213
4214         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4215         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4216         if (!ctrl_ctx) {
4217                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4218                                 __func__);
4219                 ret = -EINVAL;
4220                 goto out;
4221         }
4222         /*
4223          * If this is the first Set Address since device plug-in or
4224          * virt_device realloaction after a resume with an xHCI power loss,
4225          * then set up the slot context.
4226          */
4227         if (!slot_ctx->dev_info)
4228                 xhci_setup_addressable_virt_dev(xhci, udev);
4229         /* Otherwise, update the control endpoint ring enqueue pointer. */
4230         else
4231                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4232         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4233         ctrl_ctx->drop_flags = 0;
4234
4235         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4236                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4237
4238         trace_xhci_address_ctrl_ctx(ctrl_ctx);
4239         spin_lock_irqsave(&xhci->lock, flags);
4240         trace_xhci_setup_device(virt_dev);
4241         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4242                                         udev->slot_id, setup);
4243         if (ret) {
4244                 spin_unlock_irqrestore(&xhci->lock, flags);
4245                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4246                                 "FIXME: allocate a command ring segment");
4247                 goto out;
4248         }
4249         xhci_ring_cmd_db(xhci);
4250         spin_unlock_irqrestore(&xhci->lock, flags);
4251
4252         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4253         wait_for_completion(command->completion);
4254
4255         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4256          * the SetAddress() "recovery interval" required by USB and aborting the
4257          * command on a timeout.
4258          */
4259         switch (command->status) {
4260         case COMP_COMMAND_ABORTED:
4261         case COMP_COMMAND_RING_STOPPED:
4262                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4263                 ret = -ETIME;
4264                 break;
4265         case COMP_CONTEXT_STATE_ERROR:
4266         case COMP_SLOT_NOT_ENABLED_ERROR:
4267                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4268                          act, udev->slot_id);
4269                 ret = -EINVAL;
4270                 break;
4271         case COMP_USB_TRANSACTION_ERROR:
4272                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4273
4274                 mutex_unlock(&xhci->mutex);
4275                 ret = xhci_disable_slot(xhci, udev->slot_id);
4276                 xhci_free_virt_device(xhci, udev->slot_id);
4277                 if (!ret)
4278                         xhci_alloc_dev(hcd, udev);
4279                 kfree(command->completion);
4280                 kfree(command);
4281                 return -EPROTO;
4282         case COMP_INCOMPATIBLE_DEVICE_ERROR:
4283                 dev_warn(&udev->dev,
4284                          "ERROR: Incompatible device for setup %s command\n", act);
4285                 ret = -ENODEV;
4286                 break;
4287         case COMP_SUCCESS:
4288                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4289                                "Successful setup %s command", act);
4290                 break;
4291         default:
4292                 xhci_err(xhci,
4293                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
4294                          act, command->status);
4295                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4296                 ret = -EINVAL;
4297                 break;
4298         }
4299         if (ret)
4300                 goto out;
4301         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4302         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4303                         "Op regs DCBAA ptr = %#016llx", temp_64);
4304         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4305                 "Slot ID %d dcbaa entry @%p = %#016llx",
4306                 udev->slot_id,
4307                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4308                 (unsigned long long)
4309                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4310         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4311                         "Output Context DMA address = %#08llx",
4312                         (unsigned long long)virt_dev->out_ctx->dma);
4313         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4314                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4315         /*
4316          * USB core uses address 1 for the roothubs, so we add one to the
4317          * address given back to us by the HC.
4318          */
4319         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4320                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4321         /* Zero the input context control for later use */
4322         ctrl_ctx->add_flags = 0;
4323         ctrl_ctx->drop_flags = 0;
4324         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4325         udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4326
4327         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4328                        "Internal device address = %d",
4329                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4330 out:
4331         mutex_unlock(&xhci->mutex);
4332         if (command) {
4333                 kfree(command->completion);
4334                 kfree(command);
4335         }
4336         return ret;
4337 }
4338
4339 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4340 {
4341         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4342 }
4343
4344 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4345 {
4346         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4347 }
4348
4349 /*
4350  * Transfer the port index into real index in the HW port status
4351  * registers. Caculate offset between the port's PORTSC register
4352  * and port status base. Divide the number of per port register
4353  * to get the real index. The raw port number bases 1.
4354  */
4355 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4356 {
4357         struct xhci_hub *rhub;
4358
4359         rhub = xhci_get_rhub(hcd);
4360         return rhub->ports[port1 - 1]->hw_portnum + 1;
4361 }
4362
4363 /*
4364  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4365  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4366  */
4367 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4368                         struct usb_device *udev, u16 max_exit_latency)
4369 {
4370         struct xhci_virt_device *virt_dev;
4371         struct xhci_command *command;
4372         struct xhci_input_control_ctx *ctrl_ctx;
4373         struct xhci_slot_ctx *slot_ctx;
4374         unsigned long flags;
4375         int ret;
4376
4377         spin_lock_irqsave(&xhci->lock, flags);
4378
4379         virt_dev = xhci->devs[udev->slot_id];
4380
4381         /*
4382          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4383          * xHC was re-initialized. Exit latency will be set later after
4384          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4385          */
4386
4387         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4388                 spin_unlock_irqrestore(&xhci->lock, flags);
4389                 return 0;
4390         }
4391
4392         /* Attempt to issue an Evaluate Context command to change the MEL. */
4393         command = xhci->lpm_command;
4394         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4395         if (!ctrl_ctx) {
4396                 spin_unlock_irqrestore(&xhci->lock, flags);
4397                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4398                                 __func__);
4399                 return -ENOMEM;
4400         }
4401
4402         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4403         spin_unlock_irqrestore(&xhci->lock, flags);
4404
4405         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4406         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4407         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4408         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4409         slot_ctx->dev_state = 0;
4410
4411         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4412                         "Set up evaluate context for LPM MEL change.");
4413
4414         /* Issue and wait for the evaluate context command. */
4415         ret = xhci_configure_endpoint(xhci, udev, command,
4416                         true, true);
4417
4418         if (!ret) {
4419                 spin_lock_irqsave(&xhci->lock, flags);
4420                 virt_dev->current_mel = max_exit_latency;
4421                 spin_unlock_irqrestore(&xhci->lock, flags);
4422         }
4423         return ret;
4424 }
4425
4426 #ifdef CONFIG_PM
4427
4428 /* BESL to HIRD Encoding array for USB2 LPM */
4429 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4430         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4431
4432 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4433 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4434                                         struct usb_device *udev)
4435 {
4436         int u2del, besl, besl_host;
4437         int besl_device = 0;
4438         u32 field;
4439
4440         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4441         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4442
4443         if (field & USB_BESL_SUPPORT) {
4444                 for (besl_host = 0; besl_host < 16; besl_host++) {
4445                         if (xhci_besl_encoding[besl_host] >= u2del)
4446                                 break;
4447                 }
4448                 /* Use baseline BESL value as default */
4449                 if (field & USB_BESL_BASELINE_VALID)
4450                         besl_device = USB_GET_BESL_BASELINE(field);
4451                 else if (field & USB_BESL_DEEP_VALID)
4452                         besl_device = USB_GET_BESL_DEEP(field);
4453         } else {
4454                 if (u2del <= 50)
4455                         besl_host = 0;
4456                 else
4457                         besl_host = (u2del - 51) / 75 + 1;
4458         }
4459
4460         besl = besl_host + besl_device;
4461         if (besl > 15)
4462                 besl = 15;
4463
4464         return besl;
4465 }
4466
4467 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4468 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4469 {
4470         u32 field;
4471         int l1;
4472         int besld = 0;
4473         int hirdm = 0;
4474
4475         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4476
4477         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4478         l1 = udev->l1_params.timeout / 256;
4479
4480         /* device has preferred BESLD */
4481         if (field & USB_BESL_DEEP_VALID) {
4482                 besld = USB_GET_BESL_DEEP(field);
4483                 hirdm = 1;
4484         }
4485
4486         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4487 }
4488
4489 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4490                         struct usb_device *udev, int enable)
4491 {
4492         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4493         struct xhci_port **ports;
4494         __le32 __iomem  *pm_addr, *hlpm_addr;
4495         u32             pm_val, hlpm_val, field;
4496         unsigned int    port_num;
4497         unsigned long   flags;
4498         int             hird, exit_latency;
4499         int             ret;
4500
4501         if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4502                 return -EPERM;
4503
4504         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4505                         !udev->lpm_capable)
4506                 return -EPERM;
4507
4508         if (!udev->parent || udev->parent->parent ||
4509                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4510                 return -EPERM;
4511
4512         if (udev->usb2_hw_lpm_capable != 1)
4513                 return -EPERM;
4514
4515         spin_lock_irqsave(&xhci->lock, flags);
4516
4517         ports = xhci->usb2_rhub.ports;
4518         port_num = udev->portnum - 1;
4519         pm_addr = ports[port_num]->addr + PORTPMSC;
4520         pm_val = readl(pm_addr);
4521         hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4522
4523         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4524                         enable ? "enable" : "disable", port_num + 1);
4525
4526         if (enable) {
4527                 /* Host supports BESL timeout instead of HIRD */
4528                 if (udev->usb2_hw_lpm_besl_capable) {
4529                         /* if device doesn't have a preferred BESL value use a
4530                          * default one which works with mixed HIRD and BESL
4531                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4532                          */
4533                         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4534                         if ((field & USB_BESL_SUPPORT) &&
4535                             (field & USB_BESL_BASELINE_VALID))
4536                                 hird = USB_GET_BESL_BASELINE(field);
4537                         else
4538                                 hird = udev->l1_params.besl;
4539
4540                         exit_latency = xhci_besl_encoding[hird];
4541                         spin_unlock_irqrestore(&xhci->lock, flags);
4542
4543                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4544                          * input context for link powermanagement evaluate
4545                          * context commands. It is protected by hcd->bandwidth
4546                          * mutex and is shared by all devices. We need to set
4547                          * the max ext latency in USB 2 BESL LPM as well, so
4548                          * use the same mutex and xhci_change_max_exit_latency()
4549                          */
4550                         mutex_lock(hcd->bandwidth_mutex);
4551                         ret = xhci_change_max_exit_latency(xhci, udev,
4552                                                            exit_latency);
4553                         mutex_unlock(hcd->bandwidth_mutex);
4554
4555                         if (ret < 0)
4556                                 return ret;
4557                         spin_lock_irqsave(&xhci->lock, flags);
4558
4559                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4560                         writel(hlpm_val, hlpm_addr);
4561                         /* flush write */
4562                         readl(hlpm_addr);
4563                 } else {
4564                         hird = xhci_calculate_hird_besl(xhci, udev);
4565                 }
4566
4567                 pm_val &= ~PORT_HIRD_MASK;
4568                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4569                 writel(pm_val, pm_addr);
4570                 pm_val = readl(pm_addr);
4571                 pm_val |= PORT_HLE;
4572                 writel(pm_val, pm_addr);
4573                 /* flush write */
4574                 readl(pm_addr);
4575         } else {
4576                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4577                 writel(pm_val, pm_addr);
4578                 /* flush write */
4579                 readl(pm_addr);
4580                 if (udev->usb2_hw_lpm_besl_capable) {
4581                         spin_unlock_irqrestore(&xhci->lock, flags);
4582                         mutex_lock(hcd->bandwidth_mutex);
4583                         xhci_change_max_exit_latency(xhci, udev, 0);
4584                         mutex_unlock(hcd->bandwidth_mutex);
4585                         readl_poll_timeout(ports[port_num]->addr, pm_val,
4586                                            (pm_val & PORT_PLS_MASK) == XDEV_U0,
4587                                            100, 10000);
4588                         return 0;
4589                 }
4590         }
4591
4592         spin_unlock_irqrestore(&xhci->lock, flags);
4593         return 0;
4594 }
4595
4596 /* check if a usb2 port supports a given extened capability protocol
4597  * only USB2 ports extended protocol capability values are cached.
4598  * Return 1 if capability is supported
4599  */
4600 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4601                                            unsigned capability)
4602 {
4603         u32 port_offset, port_count;
4604         int i;
4605
4606         for (i = 0; i < xhci->num_ext_caps; i++) {
4607                 if (xhci->ext_caps[i] & capability) {
4608                         /* port offsets starts at 1 */
4609                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4610                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4611                         if (port >= port_offset &&
4612                             port < port_offset + port_count)
4613                                 return 1;
4614                 }
4615         }
4616         return 0;
4617 }
4618
4619 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4620 {
4621         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4622         int             portnum = udev->portnum - 1;
4623
4624         if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4625                 return 0;
4626
4627         /* we only support lpm for non-hub device connected to root hub yet */
4628         if (!udev->parent || udev->parent->parent ||
4629                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4630                 return 0;
4631
4632         if (xhci->hw_lpm_support == 1 &&
4633                         xhci_check_usb2_port_capability(
4634                                 xhci, portnum, XHCI_HLC)) {
4635                 udev->usb2_hw_lpm_capable = 1;
4636                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4637                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4638                 if (xhci_check_usb2_port_capability(xhci, portnum,
4639                                         XHCI_BLC))
4640                         udev->usb2_hw_lpm_besl_capable = 1;
4641         }
4642
4643         return 0;
4644 }
4645
4646 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4647
4648 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4649 static unsigned long long xhci_service_interval_to_ns(
4650                 struct usb_endpoint_descriptor *desc)
4651 {
4652         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4653 }
4654
4655 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4656                 enum usb3_link_state state)
4657 {
4658         unsigned long long sel;
4659         unsigned long long pel;
4660         unsigned int max_sel_pel;
4661         char *state_name;
4662
4663         switch (state) {
4664         case USB3_LPM_U1:
4665                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4666                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4667                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4668                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4669                 state_name = "U1";
4670                 break;
4671         case USB3_LPM_U2:
4672                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4673                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4674                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4675                 state_name = "U2";
4676                 break;
4677         default:
4678                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4679                                 __func__);
4680                 return USB3_LPM_DISABLED;
4681         }
4682
4683         if (sel <= max_sel_pel && pel <= max_sel_pel)
4684                 return USB3_LPM_DEVICE_INITIATED;
4685
4686         if (sel > max_sel_pel)
4687                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4688                                 "due to long SEL %llu ms\n",
4689                                 state_name, sel);
4690         else
4691                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4692                                 "due to long PEL %llu ms\n",
4693                                 state_name, pel);
4694         return USB3_LPM_DISABLED;
4695 }
4696
4697 /* The U1 timeout should be the maximum of the following values:
4698  *  - For control endpoints, U1 system exit latency (SEL) * 3
4699  *  - For bulk endpoints, U1 SEL * 5
4700  *  - For interrupt endpoints:
4701  *    - Notification EPs, U1 SEL * 3
4702  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4703  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4704  */
4705 static unsigned long long xhci_calculate_intel_u1_timeout(
4706                 struct usb_device *udev,
4707                 struct usb_endpoint_descriptor *desc)
4708 {
4709         unsigned long long timeout_ns;
4710         int ep_type;
4711         int intr_type;
4712
4713         ep_type = usb_endpoint_type(desc);
4714         switch (ep_type) {
4715         case USB_ENDPOINT_XFER_CONTROL:
4716                 timeout_ns = udev->u1_params.sel * 3;
4717                 break;
4718         case USB_ENDPOINT_XFER_BULK:
4719                 timeout_ns = udev->u1_params.sel * 5;
4720                 break;
4721         case USB_ENDPOINT_XFER_INT:
4722                 intr_type = usb_endpoint_interrupt_type(desc);
4723                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4724                         timeout_ns = udev->u1_params.sel * 3;
4725                         break;
4726                 }
4727                 /* Otherwise the calculation is the same as isoc eps */
4728                 fallthrough;
4729         case USB_ENDPOINT_XFER_ISOC:
4730                 timeout_ns = xhci_service_interval_to_ns(desc);
4731                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4732                 if (timeout_ns < udev->u1_params.sel * 2)
4733                         timeout_ns = udev->u1_params.sel * 2;
4734                 break;
4735         default:
4736                 return 0;
4737         }
4738
4739         return timeout_ns;
4740 }
4741
4742 /* Returns the hub-encoded U1 timeout value. */
4743 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4744                 struct usb_device *udev,
4745                 struct usb_endpoint_descriptor *desc)
4746 {
4747         unsigned long long timeout_ns;
4748
4749         /* Prevent U1 if service interval is shorter than U1 exit latency */
4750         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4751                 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4752                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4753                         return USB3_LPM_DISABLED;
4754                 }
4755         }
4756
4757         if (xhci->quirks & XHCI_INTEL_HOST)
4758                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4759         else
4760                 timeout_ns = udev->u1_params.sel;
4761
4762         /* The U1 timeout is encoded in 1us intervals.
4763          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4764          */
4765         if (timeout_ns == USB3_LPM_DISABLED)
4766                 timeout_ns = 1;
4767         else
4768                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4769
4770         /* If the necessary timeout value is bigger than what we can set in the
4771          * USB 3.0 hub, we have to disable hub-initiated U1.
4772          */
4773         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4774                 return timeout_ns;
4775         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4776                         "due to long timeout %llu ms\n", timeout_ns);
4777         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4778 }
4779
4780 /* The U2 timeout should be the maximum of:
4781  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4782  *  - largest bInterval of any active periodic endpoint (to avoid going
4783  *    into lower power link states between intervals).
4784  *  - the U2 Exit Latency of the device
4785  */
4786 static unsigned long long xhci_calculate_intel_u2_timeout(
4787                 struct usb_device *udev,
4788                 struct usb_endpoint_descriptor *desc)
4789 {
4790         unsigned long long timeout_ns;
4791         unsigned long long u2_del_ns;
4792
4793         timeout_ns = 10 * 1000 * 1000;
4794
4795         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4796                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4797                 timeout_ns = xhci_service_interval_to_ns(desc);
4798
4799         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4800         if (u2_del_ns > timeout_ns)
4801                 timeout_ns = u2_del_ns;
4802
4803         return timeout_ns;
4804 }
4805
4806 /* Returns the hub-encoded U2 timeout value. */
4807 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4808                 struct usb_device *udev,
4809                 struct usb_endpoint_descriptor *desc)
4810 {
4811         unsigned long long timeout_ns;
4812
4813         /* Prevent U2 if service interval is shorter than U2 exit latency */
4814         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4815                 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4816                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4817                         return USB3_LPM_DISABLED;
4818                 }
4819         }
4820
4821         if (xhci->quirks & XHCI_INTEL_HOST)
4822                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4823         else
4824                 timeout_ns = udev->u2_params.sel;
4825
4826         /* The U2 timeout is encoded in 256us intervals */
4827         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4828         /* If the necessary timeout value is bigger than what we can set in the
4829          * USB 3.0 hub, we have to disable hub-initiated U2.
4830          */
4831         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4832                 return timeout_ns;
4833         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4834                         "due to long timeout %llu ms\n", timeout_ns);
4835         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4836 }
4837
4838 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4839                 struct usb_device *udev,
4840                 struct usb_endpoint_descriptor *desc,
4841                 enum usb3_link_state state,
4842                 u16 *timeout)
4843 {
4844         if (state == USB3_LPM_U1)
4845                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4846         else if (state == USB3_LPM_U2)
4847                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4848
4849         return USB3_LPM_DISABLED;
4850 }
4851
4852 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4853                 struct usb_device *udev,
4854                 struct usb_endpoint_descriptor *desc,
4855                 enum usb3_link_state state,
4856                 u16 *timeout)
4857 {
4858         u16 alt_timeout;
4859
4860         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4861                 desc, state, timeout);
4862
4863         /* If we found we can't enable hub-initiated LPM, and
4864          * the U1 or U2 exit latency was too high to allow
4865          * device-initiated LPM as well, then we will disable LPM
4866          * for this device, so stop searching any further.
4867          */
4868         if (alt_timeout == USB3_LPM_DISABLED) {
4869                 *timeout = alt_timeout;
4870                 return -E2BIG;
4871         }
4872         if (alt_timeout > *timeout)
4873                 *timeout = alt_timeout;
4874         return 0;
4875 }
4876
4877 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4878                 struct usb_device *udev,
4879                 struct usb_host_interface *alt,
4880                 enum usb3_link_state state,
4881                 u16 *timeout)
4882 {
4883         int j;
4884
4885         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4886                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4887                                         &alt->endpoint[j].desc, state, timeout))
4888                         return -E2BIG;
4889         }
4890         return 0;
4891 }
4892
4893 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4894                 enum usb3_link_state state)
4895 {
4896         struct usb_device *parent;
4897         unsigned int num_hubs;
4898
4899         if (state == USB3_LPM_U2)
4900                 return 0;
4901
4902         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4903         for (parent = udev->parent, num_hubs = 0; parent->parent;
4904                         parent = parent->parent)
4905                 num_hubs++;
4906
4907         if (num_hubs < 2)
4908                 return 0;
4909
4910         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4911                         " below second-tier hub.\n");
4912         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4913                         "to decrease power consumption.\n");
4914         return -E2BIG;
4915 }
4916
4917 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4918                 struct usb_device *udev,
4919                 enum usb3_link_state state)
4920 {
4921         if (xhci->quirks & XHCI_INTEL_HOST)
4922                 return xhci_check_intel_tier_policy(udev, state);
4923         else
4924                 return 0;
4925 }
4926
4927 /* Returns the U1 or U2 timeout that should be enabled.
4928  * If the tier check or timeout setting functions return with a non-zero exit
4929  * code, that means the timeout value has been finalized and we shouldn't look
4930  * at any more endpoints.
4931  */
4932 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4933                         struct usb_device *udev, enum usb3_link_state state)
4934 {
4935         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4936         struct usb_host_config *config;
4937         char *state_name;
4938         int i;
4939         u16 timeout = USB3_LPM_DISABLED;
4940
4941         if (state == USB3_LPM_U1)
4942                 state_name = "U1";
4943         else if (state == USB3_LPM_U2)
4944                 state_name = "U2";
4945         else {
4946                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4947                                 state);
4948                 return timeout;
4949         }
4950
4951         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4952                 return timeout;
4953
4954         /* Gather some information about the currently installed configuration
4955          * and alternate interface settings.
4956          */
4957         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4958                         state, &timeout))
4959                 return timeout;
4960
4961         config = udev->actconfig;
4962         if (!config)
4963                 return timeout;
4964
4965         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4966                 struct usb_driver *driver;
4967                 struct usb_interface *intf = config->interface[i];
4968
4969                 if (!intf)
4970                         continue;
4971
4972                 /* Check if any currently bound drivers want hub-initiated LPM
4973                  * disabled.
4974                  */
4975                 if (intf->dev.driver) {
4976                         driver = to_usb_driver(intf->dev.driver);
4977                         if (driver && driver->disable_hub_initiated_lpm) {
4978                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4979                                         state_name, driver->name);
4980                                 timeout = xhci_get_timeout_no_hub_lpm(udev,
4981                                                                       state);
4982                                 if (timeout == USB3_LPM_DISABLED)
4983                                         return timeout;
4984                         }
4985                 }
4986
4987                 /* Not sure how this could happen... */
4988                 if (!intf->cur_altsetting)
4989                         continue;
4990
4991                 if (xhci_update_timeout_for_interface(xhci, udev,
4992                                         intf->cur_altsetting,
4993                                         state, &timeout))
4994                         return timeout;
4995         }
4996         return timeout;
4997 }
4998
4999 static int calculate_max_exit_latency(struct usb_device *udev,
5000                 enum usb3_link_state state_changed,
5001                 u16 hub_encoded_timeout)
5002 {
5003         unsigned long long u1_mel_us = 0;
5004         unsigned long long u2_mel_us = 0;
5005         unsigned long long mel_us = 0;
5006         bool disabling_u1;
5007         bool disabling_u2;
5008         bool enabling_u1;
5009         bool enabling_u2;
5010
5011         disabling_u1 = (state_changed == USB3_LPM_U1 &&
5012                         hub_encoded_timeout == USB3_LPM_DISABLED);
5013         disabling_u2 = (state_changed == USB3_LPM_U2 &&
5014                         hub_encoded_timeout == USB3_LPM_DISABLED);
5015
5016         enabling_u1 = (state_changed == USB3_LPM_U1 &&
5017                         hub_encoded_timeout != USB3_LPM_DISABLED);
5018         enabling_u2 = (state_changed == USB3_LPM_U2 &&
5019                         hub_encoded_timeout != USB3_LPM_DISABLED);
5020
5021         /* If U1 was already enabled and we're not disabling it,
5022          * or we're going to enable U1, account for the U1 max exit latency.
5023          */
5024         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5025                         enabling_u1)
5026                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5027         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5028                         enabling_u2)
5029                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5030
5031         if (u1_mel_us > u2_mel_us)
5032                 mel_us = u1_mel_us;
5033         else
5034                 mel_us = u2_mel_us;
5035         /* xHCI host controller max exit latency field is only 16 bits wide. */
5036         if (mel_us > MAX_EXIT) {
5037                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5038                                 "is too big.\n", mel_us);
5039                 return -E2BIG;
5040         }
5041         return mel_us;
5042 }
5043
5044 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5045 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5046                         struct usb_device *udev, enum usb3_link_state state)
5047 {
5048         struct xhci_hcd *xhci;
5049         u16 hub_encoded_timeout;
5050         int mel;
5051         int ret;
5052
5053         xhci = hcd_to_xhci(hcd);
5054         /* The LPM timeout values are pretty host-controller specific, so don't
5055          * enable hub-initiated timeouts unless the vendor has provided
5056          * information about their timeout algorithm.
5057          */
5058         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5059                         !xhci->devs[udev->slot_id])
5060                 return USB3_LPM_DISABLED;
5061
5062         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5063         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5064         if (mel < 0) {
5065                 /* Max Exit Latency is too big, disable LPM. */
5066                 hub_encoded_timeout = USB3_LPM_DISABLED;
5067                 mel = 0;
5068         }
5069
5070         ret = xhci_change_max_exit_latency(xhci, udev, mel);
5071         if (ret)
5072                 return ret;
5073         return hub_encoded_timeout;
5074 }
5075
5076 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5077                         struct usb_device *udev, enum usb3_link_state state)
5078 {
5079         struct xhci_hcd *xhci;
5080         u16 mel;
5081
5082         xhci = hcd_to_xhci(hcd);
5083         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5084                         !xhci->devs[udev->slot_id])
5085                 return 0;
5086
5087         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5088         return xhci_change_max_exit_latency(xhci, udev, mel);
5089 }
5090 #else /* CONFIG_PM */
5091
5092 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5093                                 struct usb_device *udev, int enable)
5094 {
5095         return 0;
5096 }
5097
5098 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5099 {
5100         return 0;
5101 }
5102
5103 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5104                         struct usb_device *udev, enum usb3_link_state state)
5105 {
5106         return USB3_LPM_DISABLED;
5107 }
5108
5109 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5110                         struct usb_device *udev, enum usb3_link_state state)
5111 {
5112         return 0;
5113 }
5114 #endif  /* CONFIG_PM */
5115
5116 /*-------------------------------------------------------------------------*/
5117
5118 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5119  * internal data structures for the device.
5120  */
5121 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5122                         struct usb_tt *tt, gfp_t mem_flags)
5123 {
5124         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5125         struct xhci_virt_device *vdev;
5126         struct xhci_command *config_cmd;
5127         struct xhci_input_control_ctx *ctrl_ctx;
5128         struct xhci_slot_ctx *slot_ctx;
5129         unsigned long flags;
5130         unsigned think_time;
5131         int ret;
5132
5133         /* Ignore root hubs */
5134         if (!hdev->parent)
5135                 return 0;
5136
5137         vdev = xhci->devs[hdev->slot_id];
5138         if (!vdev) {
5139                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5140                 return -EINVAL;
5141         }
5142
5143         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5144         if (!config_cmd)
5145                 return -ENOMEM;
5146
5147         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5148         if (!ctrl_ctx) {
5149                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5150                                 __func__);
5151                 xhci_free_command(xhci, config_cmd);
5152                 return -ENOMEM;
5153         }
5154
5155         spin_lock_irqsave(&xhci->lock, flags);
5156         if (hdev->speed == USB_SPEED_HIGH &&
5157                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5158                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5159                 xhci_free_command(xhci, config_cmd);
5160                 spin_unlock_irqrestore(&xhci->lock, flags);
5161                 return -ENOMEM;
5162         }
5163
5164         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5165         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5166         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5167         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5168         /*
5169          * refer to section 6.2.2: MTT should be 0 for full speed hub,
5170          * but it may be already set to 1 when setup an xHCI virtual
5171          * device, so clear it anyway.
5172          */
5173         if (tt->multi)
5174                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5175         else if (hdev->speed == USB_SPEED_FULL)
5176                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5177
5178         if (xhci->hci_version > 0x95) {
5179                 xhci_dbg(xhci, "xHCI version %x needs hub "
5180                                 "TT think time and number of ports\n",
5181                                 (unsigned int) xhci->hci_version);
5182                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5183                 /* Set TT think time - convert from ns to FS bit times.
5184                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
5185                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
5186                  *
5187                  * xHCI 1.0: this field shall be 0 if the device is not a
5188                  * High-spped hub.
5189                  */
5190                 think_time = tt->think_time;
5191                 if (think_time != 0)
5192                         think_time = (think_time / 666) - 1;
5193                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5194                         slot_ctx->tt_info |=
5195                                 cpu_to_le32(TT_THINK_TIME(think_time));
5196         } else {
5197                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5198                                 "TT think time or number of ports\n",
5199                                 (unsigned int) xhci->hci_version);
5200         }
5201         slot_ctx->dev_state = 0;
5202         spin_unlock_irqrestore(&xhci->lock, flags);
5203
5204         xhci_dbg(xhci, "Set up %s for hub device.\n",
5205                         (xhci->hci_version > 0x95) ?
5206                         "configure endpoint" : "evaluate context");
5207
5208         /* Issue and wait for the configure endpoint or
5209          * evaluate context command.
5210          */
5211         if (xhci->hci_version > 0x95)
5212                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5213                                 false, false);
5214         else
5215                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5216                                 true, false);
5217
5218         xhci_free_command(xhci, config_cmd);
5219         return ret;
5220 }
5221
5222 static int xhci_get_frame(struct usb_hcd *hcd)
5223 {
5224         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5225         /* EHCI mods by the periodic size.  Why? */
5226         return readl(&xhci->run_regs->microframe_index) >> 3;
5227 }
5228
5229 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5230 {
5231         struct xhci_hcd         *xhci;
5232         /*
5233          * TODO: Check with DWC3 clients for sysdev according to
5234          * quirks
5235          */
5236         struct device           *dev = hcd->self.sysdev;
5237         unsigned int            minor_rev;
5238         int                     retval;
5239
5240         /* Accept arbitrarily long scatter-gather lists */
5241         hcd->self.sg_tablesize = ~0;
5242
5243         /* support to build packet from discontinuous buffers */
5244         hcd->self.no_sg_constraint = 1;
5245
5246         /* XHCI controllers don't stop the ep queue on short packets :| */
5247         hcd->self.no_stop_on_short = 1;
5248
5249         xhci = hcd_to_xhci(hcd);
5250
5251         if (usb_hcd_is_primary_hcd(hcd)) {
5252                 xhci->main_hcd = hcd;
5253                 xhci->usb2_rhub.hcd = hcd;
5254                 /* Mark the first roothub as being USB 2.0.
5255                  * The xHCI driver will register the USB 3.0 roothub.
5256                  */
5257                 hcd->speed = HCD_USB2;
5258                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5259                 /*
5260                  * USB 2.0 roothub under xHCI has an integrated TT,
5261                  * (rate matching hub) as opposed to having an OHCI/UHCI
5262                  * companion controller.
5263                  */
5264                 hcd->has_tt = 1;
5265         } else {
5266                 /*
5267                  * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5268                  * should return 0x31 for sbrn, or that the minor revision
5269                  * is a two digit BCD containig minor and sub-minor numbers.
5270                  * This was later clarified in xHCI 1.2.
5271                  *
5272                  * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5273                  * minor revision set to 0x1 instead of 0x10.
5274                  */
5275                 if (xhci->usb3_rhub.min_rev == 0x1)
5276                         minor_rev = 1;
5277                 else
5278                         minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5279
5280                 switch (minor_rev) {
5281                 case 2:
5282                         hcd->speed = HCD_USB32;
5283                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5284                         hcd->self.root_hub->rx_lanes = 2;
5285                         hcd->self.root_hub->tx_lanes = 2;
5286                         hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5287                         break;
5288                 case 1:
5289                         hcd->speed = HCD_USB31;
5290                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5291                         hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5292                         break;
5293                 }
5294                 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5295                           minor_rev,
5296                           minor_rev ? "Enhanced " : "");
5297
5298                 xhci->usb3_rhub.hcd = hcd;
5299                 /* xHCI private pointer was set in xhci_pci_probe for the second
5300                  * registered roothub.
5301                  */
5302                 return 0;
5303         }
5304
5305         mutex_init(&xhci->mutex);
5306         xhci->cap_regs = hcd->regs;
5307         xhci->op_regs = hcd->regs +
5308                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5309         xhci->run_regs = hcd->regs +
5310                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5311         /* Cache read-only capability registers */
5312         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5313         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5314         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5315         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5316         xhci->hci_version = HC_VERSION(xhci->hcc_params);
5317         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5318         if (xhci->hci_version > 0x100)
5319                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5320
5321         xhci->quirks |= quirks;
5322
5323         get_quirks(dev, xhci);
5324
5325         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5326          * success event after a short transfer. This quirk will ignore such
5327          * spurious event.
5328          */
5329         if (xhci->hci_version > 0x96)
5330                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5331
5332         /* Make sure the HC is halted. */
5333         retval = xhci_halt(xhci);
5334         if (retval)
5335                 return retval;
5336
5337         xhci_zero_64b_regs(xhci);
5338
5339         xhci_dbg(xhci, "Resetting HCD\n");
5340         /* Reset the internal HC memory state and registers. */
5341         retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5342         if (retval)
5343                 return retval;
5344         xhci_dbg(xhci, "Reset complete\n");
5345
5346         /*
5347          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5348          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5349          * address memory pointers actually. So, this driver clears the AC64
5350          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5351          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5352          */
5353         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5354                 xhci->hcc_params &= ~BIT(0);
5355
5356         /* Set dma_mask and coherent_dma_mask to 64-bits,
5357          * if xHC supports 64-bit addressing */
5358         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5359                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5360                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5361                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5362         } else {
5363                 /*
5364                  * This is to avoid error in cases where a 32-bit USB
5365                  * controller is used on a 64-bit capable system.
5366                  */
5367                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5368                 if (retval)
5369                         return retval;
5370                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5371                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5372         }
5373
5374         xhci_dbg(xhci, "Calling HCD init\n");
5375         /* Initialize HCD and host controller data structures. */
5376         retval = xhci_init(hcd);
5377         if (retval)
5378                 return retval;
5379         xhci_dbg(xhci, "Called HCD init\n");
5380
5381         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5382                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5383
5384         return 0;
5385 }
5386 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5387
5388 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5389                 struct usb_host_endpoint *ep)
5390 {
5391         struct xhci_hcd *xhci;
5392         struct usb_device *udev;
5393         unsigned int slot_id;
5394         unsigned int ep_index;
5395         unsigned long flags;
5396
5397         xhci = hcd_to_xhci(hcd);
5398
5399         spin_lock_irqsave(&xhci->lock, flags);
5400         udev = (struct usb_device *)ep->hcpriv;
5401         slot_id = udev->slot_id;
5402         ep_index = xhci_get_endpoint_index(&ep->desc);
5403
5404         xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5405         xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5406         spin_unlock_irqrestore(&xhci->lock, flags);
5407 }
5408
5409 static const struct hc_driver xhci_hc_driver = {
5410         .description =          "xhci-hcd",
5411         .product_desc =         "xHCI Host Controller",
5412         .hcd_priv_size =        sizeof(struct xhci_hcd),
5413
5414         /*
5415          * generic hardware linkage
5416          */
5417         .irq =                  xhci_irq,
5418         .flags =                HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5419                                 HCD_BH,
5420
5421         /*
5422          * basic lifecycle operations
5423          */
5424         .reset =                NULL, /* set in xhci_init_driver() */
5425         .start =                xhci_run,
5426         .stop =                 xhci_stop,
5427         .shutdown =             xhci_shutdown,
5428
5429         /*
5430          * managing i/o requests and associated device resources
5431          */
5432         .map_urb_for_dma =      xhci_map_urb_for_dma,
5433         .unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5434         .urb_enqueue =          xhci_urb_enqueue,
5435         .urb_dequeue =          xhci_urb_dequeue,
5436         .alloc_dev =            xhci_alloc_dev,
5437         .free_dev =             xhci_free_dev,
5438         .alloc_streams =        xhci_alloc_streams,
5439         .free_streams =         xhci_free_streams,
5440         .add_endpoint =         xhci_add_endpoint,
5441         .drop_endpoint =        xhci_drop_endpoint,
5442         .endpoint_disable =     xhci_endpoint_disable,
5443         .endpoint_reset =       xhci_endpoint_reset,
5444         .check_bandwidth =      xhci_check_bandwidth,
5445         .reset_bandwidth =      xhci_reset_bandwidth,
5446         .address_device =       xhci_address_device,
5447         .enable_device =        xhci_enable_device,
5448         .update_hub_device =    xhci_update_hub_device,
5449         .reset_device =         xhci_discover_or_reset_device,
5450
5451         /*
5452          * scheduling support
5453          */
5454         .get_frame_number =     xhci_get_frame,
5455
5456         /*
5457          * root hub support
5458          */
5459         .hub_control =          xhci_hub_control,
5460         .hub_status_data =      xhci_hub_status_data,
5461         .bus_suspend =          xhci_bus_suspend,
5462         .bus_resume =           xhci_bus_resume,
5463         .get_resuming_ports =   xhci_get_resuming_ports,
5464
5465         /*
5466          * call back when device connected and addressed
5467          */
5468         .update_device =        xhci_update_device,
5469         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5470         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5471         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5472         .find_raw_port_number = xhci_find_raw_port_number,
5473         .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5474 };
5475
5476 void xhci_init_driver(struct hc_driver *drv,
5477                       const struct xhci_driver_overrides *over)
5478 {
5479         BUG_ON(!over);
5480
5481         /* Copy the generic table to drv then apply the overrides */
5482         *drv = xhci_hc_driver;
5483
5484         if (over) {
5485                 drv->hcd_priv_size += over->extra_priv_size;
5486                 if (over->reset)
5487                         drv->reset = over->reset;
5488                 if (over->start)
5489                         drv->start = over->start;
5490                 if (over->add_endpoint)
5491                         drv->add_endpoint = over->add_endpoint;
5492                 if (over->drop_endpoint)
5493                         drv->drop_endpoint = over->drop_endpoint;
5494                 if (over->check_bandwidth)
5495                         drv->check_bandwidth = over->check_bandwidth;
5496                 if (over->reset_bandwidth)
5497                         drv->reset_bandwidth = over->reset_bandwidth;
5498         }
5499 }
5500 EXPORT_SYMBOL_GPL(xhci_init_driver);
5501
5502 MODULE_DESCRIPTION(DRIVER_DESC);
5503 MODULE_AUTHOR(DRIVER_AUTHOR);
5504 MODULE_LICENSE("GPL");
5505
5506 static int __init xhci_hcd_init(void)
5507 {
5508         /*
5509          * Check the compiler generated sizes of structures that must be laid
5510          * out in specific ways for hardware access.
5511          */
5512         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5513         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5514         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5515         /* xhci_device_control has eight fields, and also
5516          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5517          */
5518         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5519         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5520         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5521         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5522         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5523         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5524         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5525
5526         if (usb_disabled())
5527                 return -ENODEV;
5528
5529         xhci_debugfs_create_root();
5530
5531         return 0;
5532 }
5533
5534 /*
5535  * If an init function is provided, an exit function must also be provided
5536  * to allow module unload.
5537  */
5538 static void __exit xhci_hcd_fini(void)
5539 {
5540         xhci_debugfs_remove_root();
5541 }
5542
5543 module_init(xhci_hcd_init);
5544 module_exit(xhci_hcd_fini);