Merge tag 'linux-kselftest-fixes-5.15-rc5' of git://git.kernel.org/pub/scm/linux...
[platform/kernel/linux-rpi.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28
29 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42         struct xhci_segment *seg = ring->first_seg;
43
44         if (!td || !td->start_seg)
45                 return false;
46         do {
47                 if (seg == td->start_seg)
48                         return true;
49                 seg = seg->next;
50         } while (seg && seg != ring->first_seg);
51
52         return false;
53 }
54
55 /*
56  * xhci_handshake - spin reading hc until handshake completes or fails
57  * @ptr: address of hc register to be read
58  * @mask: bits to look at in result of read
59  * @done: value of those bits when handshake succeeds
60  * @usec: timeout in microseconds
61  *
62  * Returns negative errno, or zero on success
63  *
64  * Success happens when the "mask" bits have the specified value (hardware
65  * handshake done).  There are two failure modes:  "usec" have passed (major
66  * hardware flakeout), or the register reads as all-ones (hardware removed).
67  */
68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
69 {
70         u32     result;
71         int     ret;
72
73         ret = readl_poll_timeout_atomic(ptr, result,
74                                         (result & mask) == done ||
75                                         result == U32_MAX,
76                                         1, usec);
77         if (result == U32_MAX)          /* card removed */
78                 return -ENODEV;
79
80         return ret;
81 }
82
83 /*
84  * Disable interrupts and begin the xHCI halting process.
85  */
86 void xhci_quiesce(struct xhci_hcd *xhci)
87 {
88         u32 halted;
89         u32 cmd;
90         u32 mask;
91
92         mask = ~(XHCI_IRQS);
93         halted = readl(&xhci->op_regs->status) & STS_HALT;
94         if (!halted)
95                 mask &= ~CMD_RUN;
96
97         cmd = readl(&xhci->op_regs->command);
98         cmd &= mask;
99         writel(cmd, &xhci->op_regs->command);
100 }
101
102 /*
103  * Force HC into halt state.
104  *
105  * Disable any IRQs and clear the run/stop bit.
106  * HC will complete any current and actively pipelined transactions, and
107  * should halt within 16 ms of the run/stop bit being cleared.
108  * Read HC Halted bit in the status register to see when the HC is finished.
109  */
110 int xhci_halt(struct xhci_hcd *xhci)
111 {
112         int ret;
113         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
114         xhci_quiesce(xhci);
115
116         ret = xhci_handshake(&xhci->op_regs->status,
117                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
118         if (ret) {
119                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
120                 return ret;
121         }
122         xhci->xhc_state |= XHCI_STATE_HALTED;
123         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
124         return ret;
125 }
126
127 /*
128  * Set the run bit and wait for the host to be running.
129  */
130 int xhci_start(struct xhci_hcd *xhci)
131 {
132         u32 temp;
133         int ret;
134
135         temp = readl(&xhci->op_regs->command);
136         temp |= (CMD_RUN);
137         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
138                         temp);
139         writel(temp, &xhci->op_regs->command);
140
141         /*
142          * Wait for the HCHalted Status bit to be 0 to indicate the host is
143          * running.
144          */
145         ret = xhci_handshake(&xhci->op_regs->status,
146                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
147         if (ret == -ETIMEDOUT)
148                 xhci_err(xhci, "Host took too long to start, "
149                                 "waited %u microseconds.\n",
150                                 XHCI_MAX_HALT_USEC);
151         if (!ret)
152                 /* clear state flags. Including dying, halted or removing */
153                 xhci->xhc_state = 0;
154
155         return ret;
156 }
157
158 /*
159  * Reset a halted HC.
160  *
161  * This resets pipelines, timers, counters, state machines, etc.
162  * Transactions will be terminated immediately, and operational registers
163  * will be set to their defaults.
164  */
165 int xhci_reset(struct xhci_hcd *xhci)
166 {
167         u32 command;
168         u32 state;
169         int ret;
170
171         state = readl(&xhci->op_regs->status);
172
173         if (state == ~(u32)0) {
174                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
175                 return -ENODEV;
176         }
177
178         if ((state & STS_HALT) == 0) {
179                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
180                 return 0;
181         }
182
183         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
184         command = readl(&xhci->op_regs->command);
185         command |= CMD_RESET;
186         writel(command, &xhci->op_regs->command);
187
188         /* Existing Intel xHCI controllers require a delay of 1 mS,
189          * after setting the CMD_RESET bit, and before accessing any
190          * HC registers. This allows the HC to complete the
191          * reset operation and be ready for HC register access.
192          * Without this delay, the subsequent HC register access,
193          * may result in a system hang very rarely.
194          */
195         if (xhci->quirks & XHCI_INTEL_HOST)
196                 udelay(1000);
197
198         ret = xhci_handshake(&xhci->op_regs->command,
199                         CMD_RESET, 0, 10 * 1000 * 1000);
200         if (ret)
201                 return ret;
202
203         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
204                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
205
206         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
207                          "Wait for controller to be ready for doorbell rings");
208         /*
209          * xHCI cannot write to any doorbells or operational registers other
210          * than status until the "Controller Not Ready" flag is cleared.
211          */
212         ret = xhci_handshake(&xhci->op_regs->status,
213                         STS_CNR, 0, 10 * 1000 * 1000);
214
215         xhci->usb2_rhub.bus_state.port_c_suspend = 0;
216         xhci->usb2_rhub.bus_state.suspended_ports = 0;
217         xhci->usb2_rhub.bus_state.resuming_ports = 0;
218         xhci->usb3_rhub.bus_state.port_c_suspend = 0;
219         xhci->usb3_rhub.bus_state.suspended_ports = 0;
220         xhci->usb3_rhub.bus_state.resuming_ports = 0;
221
222         return ret;
223 }
224
225 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
226 {
227         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
228         int err, i;
229         u64 val;
230         u32 intrs;
231
232         /*
233          * Some Renesas controllers get into a weird state if they are
234          * reset while programmed with 64bit addresses (they will preserve
235          * the top half of the address in internal, non visible
236          * registers). You end up with half the address coming from the
237          * kernel, and the other half coming from the firmware. Also,
238          * changing the programming leads to extra accesses even if the
239          * controller is supposed to be halted. The controller ends up with
240          * a fatal fault, and is then ripe for being properly reset.
241          *
242          * Special care is taken to only apply this if the device is behind
243          * an iommu. Doing anything when there is no iommu is definitely
244          * unsafe...
245          */
246         if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
247                 return;
248
249         xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
250
251         /* Clear HSEIE so that faults do not get signaled */
252         val = readl(&xhci->op_regs->command);
253         val &= ~CMD_HSEIE;
254         writel(val, &xhci->op_regs->command);
255
256         /* Clear HSE (aka FATAL) */
257         val = readl(&xhci->op_regs->status);
258         val |= STS_FATAL;
259         writel(val, &xhci->op_regs->status);
260
261         /* Now zero the registers, and brace for impact */
262         val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263         if (upper_32_bits(val))
264                 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266         if (upper_32_bits(val))
267                 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
268
269         intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
270                       ARRAY_SIZE(xhci->run_regs->ir_set));
271
272         for (i = 0; i < intrs; i++) {
273                 struct xhci_intr_reg __iomem *ir;
274
275                 ir = &xhci->run_regs->ir_set[i];
276                 val = xhci_read_64(xhci, &ir->erst_base);
277                 if (upper_32_bits(val))
278                         xhci_write_64(xhci, 0, &ir->erst_base);
279                 val= xhci_read_64(xhci, &ir->erst_dequeue);
280                 if (upper_32_bits(val))
281                         xhci_write_64(xhci, 0, &ir->erst_dequeue);
282         }
283
284         /* Wait for the fault to appear. It will be cleared on reset */
285         err = xhci_handshake(&xhci->op_regs->status,
286                              STS_FATAL, STS_FATAL,
287                              XHCI_MAX_HALT_USEC);
288         if (!err)
289                 xhci_info(xhci, "Fault detected\n");
290 }
291
292 #ifdef CONFIG_USB_PCI
293 /*
294  * Set up MSI
295  */
296 static int xhci_setup_msi(struct xhci_hcd *xhci)
297 {
298         int ret;
299         /*
300          * TODO:Check with MSI Soc for sysdev
301          */
302         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
303
304         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
305         if (ret < 0) {
306                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
307                                 "failed to allocate MSI entry");
308                 return ret;
309         }
310
311         ret = request_irq(pdev->irq, xhci_msi_irq,
312                                 0, "xhci_hcd", xhci_to_hcd(xhci));
313         if (ret) {
314                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
315                                 "disable MSI interrupt");
316                 pci_free_irq_vectors(pdev);
317         }
318
319         return ret;
320 }
321
322 /*
323  * Set up MSI-X
324  */
325 static int xhci_setup_msix(struct xhci_hcd *xhci)
326 {
327         int i, ret = 0;
328         struct usb_hcd *hcd = xhci_to_hcd(xhci);
329         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
330
331         /*
332          * calculate number of msi-x vectors supported.
333          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
334          *   with max number of interrupters based on the xhci HCSPARAMS1.
335          * - num_online_cpus: maximum msi-x vectors per CPUs core.
336          *   Add additional 1 vector to ensure always available interrupt.
337          */
338         xhci->msix_count = min(num_online_cpus() + 1,
339                                 HCS_MAX_INTRS(xhci->hcs_params1));
340
341         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
342                         PCI_IRQ_MSIX);
343         if (ret < 0) {
344                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
345                                 "Failed to enable MSI-X");
346                 return ret;
347         }
348
349         for (i = 0; i < xhci->msix_count; i++) {
350                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
351                                 "xhci_hcd", xhci_to_hcd(xhci));
352                 if (ret)
353                         goto disable_msix;
354         }
355
356         hcd->msix_enabled = 1;
357         return ret;
358
359 disable_msix:
360         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
361         while (--i >= 0)
362                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
363         pci_free_irq_vectors(pdev);
364         return ret;
365 }
366
367 /* Free any IRQs and disable MSI-X */
368 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
369 {
370         struct usb_hcd *hcd = xhci_to_hcd(xhci);
371         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
372
373         if (xhci->quirks & XHCI_PLAT)
374                 return;
375
376         /* return if using legacy interrupt */
377         if (hcd->irq > 0)
378                 return;
379
380         if (hcd->msix_enabled) {
381                 int i;
382
383                 for (i = 0; i < xhci->msix_count; i++)
384                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
385         } else {
386                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
387         }
388
389         pci_free_irq_vectors(pdev);
390         hcd->msix_enabled = 0;
391 }
392
393 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
394 {
395         struct usb_hcd *hcd = xhci_to_hcd(xhci);
396
397         if (hcd->msix_enabled) {
398                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
399                 int i;
400
401                 for (i = 0; i < xhci->msix_count; i++)
402                         synchronize_irq(pci_irq_vector(pdev, i));
403         }
404 }
405
406 static int xhci_try_enable_msi(struct usb_hcd *hcd)
407 {
408         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
409         struct pci_dev  *pdev;
410         int ret;
411
412         /* The xhci platform device has set up IRQs through usb_add_hcd. */
413         if (xhci->quirks & XHCI_PLAT)
414                 return 0;
415
416         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
417         /*
418          * Some Fresco Logic host controllers advertise MSI, but fail to
419          * generate interrupts.  Don't even try to enable MSI.
420          */
421         if (xhci->quirks & XHCI_BROKEN_MSI)
422                 goto legacy_irq;
423
424         /* unregister the legacy interrupt */
425         if (hcd->irq)
426                 free_irq(hcd->irq, hcd);
427         hcd->irq = 0;
428
429         ret = xhci_setup_msix(xhci);
430         if (ret)
431                 /* fall back to msi*/
432                 ret = xhci_setup_msi(xhci);
433
434         if (!ret) {
435                 hcd->msi_enabled = 1;
436                 return 0;
437         }
438
439         if (!pdev->irq) {
440                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
441                 return -EINVAL;
442         }
443
444  legacy_irq:
445         if (!strlen(hcd->irq_descr))
446                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
447                          hcd->driver->description, hcd->self.busnum);
448
449         /* fall back to legacy interrupt*/
450         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
451                         hcd->irq_descr, hcd);
452         if (ret) {
453                 xhci_err(xhci, "request interrupt %d failed\n",
454                                 pdev->irq);
455                 return ret;
456         }
457         hcd->irq = pdev->irq;
458         return 0;
459 }
460
461 #else
462
463 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
464 {
465         return 0;
466 }
467
468 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
469 {
470 }
471
472 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
473 {
474 }
475
476 #endif
477
478 static void compliance_mode_recovery(struct timer_list *t)
479 {
480         struct xhci_hcd *xhci;
481         struct usb_hcd *hcd;
482         struct xhci_hub *rhub;
483         u32 temp;
484         int i;
485
486         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
487         rhub = &xhci->usb3_rhub;
488
489         for (i = 0; i < rhub->num_ports; i++) {
490                 temp = readl(rhub->ports[i]->addr);
491                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
492                         /*
493                          * Compliance Mode Detected. Letting USB Core
494                          * handle the Warm Reset
495                          */
496                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497                                         "Compliance mode detected->port %d",
498                                         i + 1);
499                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
500                                         "Attempting compliance mode recovery");
501                         hcd = xhci->shared_hcd;
502
503                         if (hcd->state == HC_STATE_SUSPENDED)
504                                 usb_hcd_resume_root_hub(hcd);
505
506                         usb_hcd_poll_rh_status(hcd);
507                 }
508         }
509
510         if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
511                 mod_timer(&xhci->comp_mode_recovery_timer,
512                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
513 }
514
515 /*
516  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
517  * that causes ports behind that hardware to enter compliance mode sometimes.
518  * The quirk creates a timer that polls every 2 seconds the link state of
519  * each host controller's port and recovers it by issuing a Warm reset
520  * if Compliance mode is detected, otherwise the port will become "dead" (no
521  * device connections or disconnections will be detected anymore). Becasue no
522  * status event is generated when entering compliance mode (per xhci spec),
523  * this quirk is needed on systems that have the failing hardware installed.
524  */
525 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
526 {
527         xhci->port_status_u0 = 0;
528         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
529                     0);
530         xhci->comp_mode_recovery_timer.expires = jiffies +
531                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
532
533         add_timer(&xhci->comp_mode_recovery_timer);
534         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
535                         "Compliance mode recovery timer initialized");
536 }
537
538 /*
539  * This function identifies the systems that have installed the SN65LVPE502CP
540  * USB3.0 re-driver and that need the Compliance Mode Quirk.
541  * Systems:
542  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
543  */
544 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
545 {
546         const char *dmi_product_name, *dmi_sys_vendor;
547
548         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
549         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
550         if (!dmi_product_name || !dmi_sys_vendor)
551                 return false;
552
553         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
554                 return false;
555
556         if (strstr(dmi_product_name, "Z420") ||
557                         strstr(dmi_product_name, "Z620") ||
558                         strstr(dmi_product_name, "Z820") ||
559                         strstr(dmi_product_name, "Z1 Workstation"))
560                 return true;
561
562         return false;
563 }
564
565 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
566 {
567         return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
568 }
569
570
571 /*
572  * Initialize memory for HCD and xHC (one-time init).
573  *
574  * Program the PAGESIZE register, initialize the device context array, create
575  * device contexts (?), set up a command ring segment (or two?), create event
576  * ring (one for now).
577  */
578 static int xhci_init(struct usb_hcd *hcd)
579 {
580         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
581         int retval = 0;
582
583         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
584         spin_lock_init(&xhci->lock);
585         if (xhci->hci_version == 0x95 && link_quirk) {
586                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
587                                 "QUIRK: Not clearing Link TRB chain bits.");
588                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
589         } else {
590                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
591                                 "xHCI doesn't need link TRB QUIRK");
592         }
593         retval = xhci_mem_init(xhci, GFP_KERNEL);
594         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
595
596         /* Initializing Compliance Mode Recovery Data If Needed */
597         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
598                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
599                 compliance_mode_recovery_timer_init(xhci);
600         }
601
602         return retval;
603 }
604
605 /*-------------------------------------------------------------------------*/
606
607
608 static int xhci_run_finished(struct xhci_hcd *xhci)
609 {
610         if (xhci_start(xhci)) {
611                 xhci_halt(xhci);
612                 return -ENODEV;
613         }
614         xhci->shared_hcd->state = HC_STATE_RUNNING;
615         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
616
617         if (xhci->quirks & XHCI_NEC_HOST)
618                 xhci_ring_cmd_db(xhci);
619
620         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
621                         "Finished xhci_run for USB3 roothub");
622         return 0;
623 }
624
625 /*
626  * Start the HC after it was halted.
627  *
628  * This function is called by the USB core when the HC driver is added.
629  * Its opposite is xhci_stop().
630  *
631  * xhci_init() must be called once before this function can be called.
632  * Reset the HC, enable device slot contexts, program DCBAAP, and
633  * set command ring pointer and event ring pointer.
634  *
635  * Setup MSI-X vectors and enable interrupts.
636  */
637 int xhci_run(struct usb_hcd *hcd)
638 {
639         u32 temp;
640         u64 temp_64;
641         int ret;
642         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
643
644         /* Start the xHCI host controller running only after the USB 2.0 roothub
645          * is setup.
646          */
647
648         hcd->uses_new_polling = 1;
649         if (!usb_hcd_is_primary_hcd(hcd))
650                 return xhci_run_finished(xhci);
651
652         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
653
654         ret = xhci_try_enable_msi(hcd);
655         if (ret)
656                 return ret;
657
658         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
659         temp_64 &= ~ERST_PTR_MASK;
660         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
662
663         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
664                         "// Set the interrupt modulation register");
665         temp = readl(&xhci->ir_set->irq_control);
666         temp &= ~ER_IRQ_INTERVAL_MASK;
667         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
668         writel(temp, &xhci->ir_set->irq_control);
669
670         /* Set the HCD state before we enable the irqs */
671         temp = readl(&xhci->op_regs->command);
672         temp |= (CMD_EIE);
673         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
674                         "// Enable interrupts, cmd = 0x%x.", temp);
675         writel(temp, &xhci->op_regs->command);
676
677         temp = readl(&xhci->ir_set->irq_pending);
678         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
679                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
680                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
681         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
682
683         if (xhci->quirks & XHCI_NEC_HOST) {
684                 struct xhci_command *command;
685
686                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
687                 if (!command)
688                         return -ENOMEM;
689
690                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
691                                 TRB_TYPE(TRB_NEC_GET_FW));
692                 if (ret)
693                         xhci_free_command(xhci, command);
694         }
695         set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
696         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
697                         "Finished xhci_run for USB2 roothub");
698
699         xhci_dbc_init(xhci);
700
701         xhci_debugfs_init(xhci);
702
703         return 0;
704 }
705 EXPORT_SYMBOL_GPL(xhci_run);
706
707 /*
708  * Stop xHCI driver.
709  *
710  * This function is called by the USB core when the HC driver is removed.
711  * Its opposite is xhci_run().
712  *
713  * Disable device contexts, disable IRQs, and quiesce the HC.
714  * Reset the HC, finish any completed transactions, and cleanup memory.
715  */
716 static void xhci_stop(struct usb_hcd *hcd)
717 {
718         u32 temp;
719         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
720
721         mutex_lock(&xhci->mutex);
722
723         /* Only halt host and free memory after both hcds are removed */
724         if (!usb_hcd_is_primary_hcd(hcd)) {
725                 mutex_unlock(&xhci->mutex);
726                 return;
727         }
728
729         xhci_dbc_exit(xhci);
730
731         spin_lock_irq(&xhci->lock);
732         xhci->xhc_state |= XHCI_STATE_HALTED;
733         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
734         xhci_halt(xhci);
735         xhci_reset(xhci);
736         spin_unlock_irq(&xhci->lock);
737
738         xhci_cleanup_msix(xhci);
739
740         /* Deleting Compliance Mode Recovery Timer */
741         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
742                         (!(xhci_all_ports_seen_u0(xhci)))) {
743                 del_timer_sync(&xhci->comp_mode_recovery_timer);
744                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
745                                 "%s: compliance mode recovery timer deleted",
746                                 __func__);
747         }
748
749         if (xhci->quirks & XHCI_AMD_PLL_FIX)
750                 usb_amd_dev_put();
751
752         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
753                         "// Disabling event ring interrupts");
754         temp = readl(&xhci->op_regs->status);
755         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
756         temp = readl(&xhci->ir_set->irq_pending);
757         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
758
759         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
760         xhci_mem_cleanup(xhci);
761         xhci_debugfs_exit(xhci);
762         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
763                         "xhci_stop completed - status = %x",
764                         readl(&xhci->op_regs->status));
765         mutex_unlock(&xhci->mutex);
766 }
767
768 /*
769  * Shutdown HC (not bus-specific)
770  *
771  * This is called when the machine is rebooting or halting.  We assume that the
772  * machine will be powered off, and the HC's internal state will be reset.
773  * Don't bother to free memory.
774  *
775  * This will only ever be called with the main usb_hcd (the USB3 roothub).
776  */
777 void xhci_shutdown(struct usb_hcd *hcd)
778 {
779         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
780
781         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
782                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
783
784         spin_lock_irq(&xhci->lock);
785         xhci_halt(xhci);
786         /* Workaround for spurious wakeups at shutdown with HSW */
787         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
788                 xhci_reset(xhci);
789         spin_unlock_irq(&xhci->lock);
790
791         xhci_cleanup_msix(xhci);
792
793         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
794                         "xhci_shutdown completed - status = %x",
795                         readl(&xhci->op_regs->status));
796 }
797 EXPORT_SYMBOL_GPL(xhci_shutdown);
798
799 #ifdef CONFIG_PM
800 static void xhci_save_registers(struct xhci_hcd *xhci)
801 {
802         xhci->s3.command = readl(&xhci->op_regs->command);
803         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
804         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
805         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
806         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
807         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
808         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
809         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
810         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
811 }
812
813 static void xhci_restore_registers(struct xhci_hcd *xhci)
814 {
815         writel(xhci->s3.command, &xhci->op_regs->command);
816         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
817         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
818         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
819         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
820         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
821         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
822         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
823         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
824 }
825
826 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
827 {
828         u64     val_64;
829
830         /* step 2: initialize command ring buffer */
831         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
832         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
833                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
834                                       xhci->cmd_ring->dequeue) &
835                  (u64) ~CMD_RING_RSVD_BITS) |
836                 xhci->cmd_ring->cycle_state;
837         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
838                         "// Setting command ring address to 0x%llx",
839                         (long unsigned long) val_64);
840         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
841 }
842
843 /*
844  * The whole command ring must be cleared to zero when we suspend the host.
845  *
846  * The host doesn't save the command ring pointer in the suspend well, so we
847  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
848  * aligned, because of the reserved bits in the command ring dequeue pointer
849  * register.  Therefore, we can't just set the dequeue pointer back in the
850  * middle of the ring (TRBs are 16-byte aligned).
851  */
852 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
853 {
854         struct xhci_ring *ring;
855         struct xhci_segment *seg;
856
857         ring = xhci->cmd_ring;
858         seg = ring->deq_seg;
859         do {
860                 memset(seg->trbs, 0,
861                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
862                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
863                         cpu_to_le32(~TRB_CYCLE);
864                 seg = seg->next;
865         } while (seg != ring->deq_seg);
866
867         /* Reset the software enqueue and dequeue pointers */
868         ring->deq_seg = ring->first_seg;
869         ring->dequeue = ring->first_seg->trbs;
870         ring->enq_seg = ring->deq_seg;
871         ring->enqueue = ring->dequeue;
872
873         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
874         /*
875          * Ring is now zeroed, so the HW should look for change of ownership
876          * when the cycle bit is set to 1.
877          */
878         ring->cycle_state = 1;
879
880         /*
881          * Reset the hardware dequeue pointer.
882          * Yes, this will need to be re-written after resume, but we're paranoid
883          * and want to make sure the hardware doesn't access bogus memory
884          * because, say, the BIOS or an SMI started the host without changing
885          * the command ring pointers.
886          */
887         xhci_set_cmd_ring_deq(xhci);
888 }
889
890 /*
891  * Disable port wake bits if do_wakeup is not set.
892  *
893  * Also clear a possible internal port wake state left hanging for ports that
894  * detected termination but never successfully enumerated (trained to 0U).
895  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
896  * at enumeration clears this wake, force one here as well for unconnected ports
897  */
898
899 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
900                                        struct xhci_hub *rhub,
901                                        bool do_wakeup)
902 {
903         unsigned long flags;
904         u32 t1, t2, portsc;
905         int i;
906
907         spin_lock_irqsave(&xhci->lock, flags);
908
909         for (i = 0; i < rhub->num_ports; i++) {
910                 portsc = readl(rhub->ports[i]->addr);
911                 t1 = xhci_port_state_to_neutral(portsc);
912                 t2 = t1;
913
914                 /* clear wake bits if do_wake is not set */
915                 if (!do_wakeup)
916                         t2 &= ~PORT_WAKE_BITS;
917
918                 /* Don't touch csc bit if connected or connect change is set */
919                 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
920                         t2 |= PORT_CSC;
921
922                 if (t1 != t2) {
923                         writel(t2, rhub->ports[i]->addr);
924                         xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
925                                  rhub->hcd->self.busnum, i + 1, portsc, t2);
926                 }
927         }
928         spin_unlock_irqrestore(&xhci->lock, flags);
929 }
930
931 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
932 {
933         struct xhci_port        **ports;
934         int                     port_index;
935         u32                     status;
936         u32                     portsc;
937
938         status = readl(&xhci->op_regs->status);
939         if (status & STS_EINT)
940                 return true;
941         /*
942          * Checking STS_EINT is not enough as there is a lag between a change
943          * bit being set and the Port Status Change Event that it generated
944          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
945          */
946
947         port_index = xhci->usb2_rhub.num_ports;
948         ports = xhci->usb2_rhub.ports;
949         while (port_index--) {
950                 portsc = readl(ports[port_index]->addr);
951                 if (portsc & PORT_CHANGE_MASK ||
952                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
953                         return true;
954         }
955         port_index = xhci->usb3_rhub.num_ports;
956         ports = xhci->usb3_rhub.ports;
957         while (port_index--) {
958                 portsc = readl(ports[port_index]->addr);
959                 if (portsc & PORT_CHANGE_MASK ||
960                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
961                         return true;
962         }
963         return false;
964 }
965
966 /*
967  * Stop HC (not bus-specific)
968  *
969  * This is called when the machine transition into S3/S4 mode.
970  *
971  */
972 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
973 {
974         int                     rc = 0;
975         unsigned int            delay = XHCI_MAX_HALT_USEC * 2;
976         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
977         u32                     command;
978         u32                     res;
979
980         if (!hcd->state)
981                 return 0;
982
983         if (hcd->state != HC_STATE_SUSPENDED ||
984                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
985                 return -EINVAL;
986
987         /* Clear root port wake on bits if wakeup not allowed. */
988         xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
989         xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
990
991         if (!HCD_HW_ACCESSIBLE(hcd))
992                 return 0;
993
994         xhci_dbc_suspend(xhci);
995
996         /* Don't poll the roothubs on bus suspend. */
997         xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
998                  __func__, hcd->self.busnum);
999         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1000         del_timer_sync(&hcd->rh_timer);
1001         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1002         del_timer_sync(&xhci->shared_hcd->rh_timer);
1003
1004         if (xhci->quirks & XHCI_SUSPEND_DELAY)
1005                 usleep_range(1000, 1500);
1006
1007         spin_lock_irq(&xhci->lock);
1008         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1009         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1010         /* step 1: stop endpoint */
1011         /* skipped assuming that port suspend has done */
1012
1013         /* step 2: clear Run/Stop bit */
1014         command = readl(&xhci->op_regs->command);
1015         command &= ~CMD_RUN;
1016         writel(command, &xhci->op_regs->command);
1017
1018         /* Some chips from Fresco Logic need an extraordinary delay */
1019         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1020
1021         if (xhci_handshake(&xhci->op_regs->status,
1022                       STS_HALT, STS_HALT, delay)) {
1023                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1024                 spin_unlock_irq(&xhci->lock);
1025                 return -ETIMEDOUT;
1026         }
1027         xhci_clear_command_ring(xhci);
1028
1029         /* step 3: save registers */
1030         xhci_save_registers(xhci);
1031
1032         /* step 4: set CSS flag */
1033         command = readl(&xhci->op_regs->command);
1034         command |= CMD_CSS;
1035         writel(command, &xhci->op_regs->command);
1036         xhci->broken_suspend = 0;
1037         if (xhci_handshake(&xhci->op_regs->status,
1038                                 STS_SAVE, 0, 20 * 1000)) {
1039         /*
1040          * AMD SNPS xHC 3.0 occasionally does not clear the
1041          * SSS bit of USBSTS and when driver tries to poll
1042          * to see if the xHC clears BIT(8) which never happens
1043          * and driver assumes that controller is not responding
1044          * and times out. To workaround this, its good to check
1045          * if SRE and HCE bits are not set (as per xhci
1046          * Section 5.4.2) and bypass the timeout.
1047          */
1048                 res = readl(&xhci->op_regs->status);
1049                 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1050                     (((res & STS_SRE) == 0) &&
1051                                 ((res & STS_HCE) == 0))) {
1052                         xhci->broken_suspend = 1;
1053                 } else {
1054                         xhci_warn(xhci, "WARN: xHC save state timeout\n");
1055                         spin_unlock_irq(&xhci->lock);
1056                         return -ETIMEDOUT;
1057                 }
1058         }
1059         spin_unlock_irq(&xhci->lock);
1060
1061         /*
1062          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1063          * is about to be suspended.
1064          */
1065         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1066                         (!(xhci_all_ports_seen_u0(xhci)))) {
1067                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1068                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1069                                 "%s: compliance mode recovery timer deleted",
1070                                 __func__);
1071         }
1072
1073         /* step 5: remove core well power */
1074         /* synchronize irq when using MSI-X */
1075         xhci_msix_sync_irqs(xhci);
1076
1077         return rc;
1078 }
1079 EXPORT_SYMBOL_GPL(xhci_suspend);
1080
1081 /*
1082  * start xHC (not bus-specific)
1083  *
1084  * This is called when the machine transition from S3/S4 mode.
1085  *
1086  */
1087 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1088 {
1089         u32                     command, temp = 0;
1090         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1091         struct usb_hcd          *secondary_hcd;
1092         int                     retval = 0;
1093         bool                    comp_timer_running = false;
1094         bool                    pending_portevent = false;
1095
1096         if (!hcd->state)
1097                 return 0;
1098
1099         /* Wait a bit if either of the roothubs need to settle from the
1100          * transition into bus suspend.
1101          */
1102
1103         if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1104             time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1105                 msleep(100);
1106
1107         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1108         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1109
1110         spin_lock_irq(&xhci->lock);
1111         if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1112                 hibernated = true;
1113
1114         if (!hibernated) {
1115                 /*
1116                  * Some controllers might lose power during suspend, so wait
1117                  * for controller not ready bit to clear, just as in xHC init.
1118                  */
1119                 retval = xhci_handshake(&xhci->op_regs->status,
1120                                         STS_CNR, 0, 10 * 1000 * 1000);
1121                 if (retval) {
1122                         xhci_warn(xhci, "Controller not ready at resume %d\n",
1123                                   retval);
1124                         spin_unlock_irq(&xhci->lock);
1125                         return retval;
1126                 }
1127                 /* step 1: restore register */
1128                 xhci_restore_registers(xhci);
1129                 /* step 2: initialize command ring buffer */
1130                 xhci_set_cmd_ring_deq(xhci);
1131                 /* step 3: restore state and start state*/
1132                 /* step 3: set CRS flag */
1133                 command = readl(&xhci->op_regs->command);
1134                 command |= CMD_CRS;
1135                 writel(command, &xhci->op_regs->command);
1136                 /*
1137                  * Some controllers take up to 55+ ms to complete the controller
1138                  * restore so setting the timeout to 100ms. Xhci specification
1139                  * doesn't mention any timeout value.
1140                  */
1141                 if (xhci_handshake(&xhci->op_regs->status,
1142                               STS_RESTORE, 0, 100 * 1000)) {
1143                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1144                         spin_unlock_irq(&xhci->lock);
1145                         return -ETIMEDOUT;
1146                 }
1147                 temp = readl(&xhci->op_regs->status);
1148         }
1149
1150         /* If restore operation fails, re-initialize the HC during resume */
1151         if ((temp & STS_SRE) || hibernated) {
1152
1153                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1154                                 !(xhci_all_ports_seen_u0(xhci))) {
1155                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1156                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1157                                 "Compliance Mode Recovery Timer deleted!");
1158                 }
1159
1160                 /* Let the USB core know _both_ roothubs lost power. */
1161                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1162                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1163
1164                 xhci_dbg(xhci, "Stop HCD\n");
1165                 xhci_halt(xhci);
1166                 xhci_zero_64b_regs(xhci);
1167                 retval = xhci_reset(xhci);
1168                 spin_unlock_irq(&xhci->lock);
1169                 if (retval)
1170                         return retval;
1171                 xhci_cleanup_msix(xhci);
1172
1173                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1174                 temp = readl(&xhci->op_regs->status);
1175                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1176                 temp = readl(&xhci->ir_set->irq_pending);
1177                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1178
1179                 xhci_dbg(xhci, "cleaning up memory\n");
1180                 xhci_mem_cleanup(xhci);
1181                 xhci_debugfs_exit(xhci);
1182                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1183                             readl(&xhci->op_regs->status));
1184
1185                 /* USB core calls the PCI reinit and start functions twice:
1186                  * first with the primary HCD, and then with the secondary HCD.
1187                  * If we don't do the same, the host will never be started.
1188                  */
1189                 if (!usb_hcd_is_primary_hcd(hcd))
1190                         secondary_hcd = hcd;
1191                 else
1192                         secondary_hcd = xhci->shared_hcd;
1193
1194                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1195                 retval = xhci_init(hcd->primary_hcd);
1196                 if (retval)
1197                         return retval;
1198                 comp_timer_running = true;
1199
1200                 xhci_dbg(xhci, "Start the primary HCD\n");
1201                 retval = xhci_run(hcd->primary_hcd);
1202                 if (!retval) {
1203                         xhci_dbg(xhci, "Start the secondary HCD\n");
1204                         retval = xhci_run(secondary_hcd);
1205                 }
1206                 hcd->state = HC_STATE_SUSPENDED;
1207                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1208                 goto done;
1209         }
1210
1211         /* step 4: set Run/Stop bit */
1212         command = readl(&xhci->op_regs->command);
1213         command |= CMD_RUN;
1214         writel(command, &xhci->op_regs->command);
1215         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1216                   0, 250 * 1000);
1217
1218         /* step 5: walk topology and initialize portsc,
1219          * portpmsc and portli
1220          */
1221         /* this is done in bus_resume */
1222
1223         /* step 6: restart each of the previously
1224          * Running endpoints by ringing their doorbells
1225          */
1226
1227         spin_unlock_irq(&xhci->lock);
1228
1229         xhci_dbc_resume(xhci);
1230
1231  done:
1232         if (retval == 0) {
1233                 /*
1234                  * Resume roothubs only if there are pending events.
1235                  * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1236                  * the first wake signalling failed, give it that chance.
1237                  */
1238                 pending_portevent = xhci_pending_portevent(xhci);
1239                 if (!pending_portevent) {
1240                         msleep(120);
1241                         pending_portevent = xhci_pending_portevent(xhci);
1242                 }
1243
1244                 if (pending_portevent) {
1245                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1246                         usb_hcd_resume_root_hub(hcd);
1247                 }
1248         }
1249         /*
1250          * If system is subject to the Quirk, Compliance Mode Timer needs to
1251          * be re-initialized Always after a system resume. Ports are subject
1252          * to suffer the Compliance Mode issue again. It doesn't matter if
1253          * ports have entered previously to U0 before system's suspension.
1254          */
1255         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1256                 compliance_mode_recovery_timer_init(xhci);
1257
1258         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1259                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1260
1261         /* Re-enable port polling. */
1262         xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1263                  __func__, hcd->self.busnum);
1264         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1265         usb_hcd_poll_rh_status(xhci->shared_hcd);
1266         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1267         usb_hcd_poll_rh_status(hcd);
1268
1269         return retval;
1270 }
1271 EXPORT_SYMBOL_GPL(xhci_resume);
1272 #endif  /* CONFIG_PM */
1273
1274 /*-------------------------------------------------------------------------*/
1275
1276 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1277 {
1278         void *temp;
1279         int ret = 0;
1280         unsigned int buf_len;
1281         enum dma_data_direction dir;
1282
1283         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1284         buf_len = urb->transfer_buffer_length;
1285
1286         temp = kzalloc_node(buf_len, GFP_ATOMIC,
1287                             dev_to_node(hcd->self.sysdev));
1288
1289         if (usb_urb_dir_out(urb))
1290                 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1291                                    temp, buf_len, 0);
1292
1293         urb->transfer_buffer = temp;
1294         urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1295                                            urb->transfer_buffer,
1296                                            urb->transfer_buffer_length,
1297                                            dir);
1298
1299         if (dma_mapping_error(hcd->self.sysdev,
1300                               urb->transfer_dma)) {
1301                 ret = -EAGAIN;
1302                 kfree(temp);
1303         } else {
1304                 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1305         }
1306
1307         return ret;
1308 }
1309
1310 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1311                                           struct urb *urb)
1312 {
1313         bool ret = false;
1314         unsigned int i;
1315         unsigned int len = 0;
1316         unsigned int trb_size;
1317         unsigned int max_pkt;
1318         struct scatterlist *sg;
1319         struct scatterlist *tail_sg;
1320
1321         tail_sg = urb->sg;
1322         max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1323
1324         if (!urb->num_sgs)
1325                 return ret;
1326
1327         if (urb->dev->speed >= USB_SPEED_SUPER)
1328                 trb_size = TRB_CACHE_SIZE_SS;
1329         else
1330                 trb_size = TRB_CACHE_SIZE_HS;
1331
1332         if (urb->transfer_buffer_length != 0 &&
1333             !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1334                 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1335                         len = len + sg->length;
1336                         if (i > trb_size - 2) {
1337                                 len = len - tail_sg->length;
1338                                 if (len < max_pkt) {
1339                                         ret = true;
1340                                         break;
1341                                 }
1342
1343                                 tail_sg = sg_next(tail_sg);
1344                         }
1345                 }
1346         }
1347         return ret;
1348 }
1349
1350 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1351 {
1352         unsigned int len;
1353         unsigned int buf_len;
1354         enum dma_data_direction dir;
1355
1356         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1357
1358         buf_len = urb->transfer_buffer_length;
1359
1360         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1361             (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1362                 dma_unmap_single(hcd->self.sysdev,
1363                                  urb->transfer_dma,
1364                                  urb->transfer_buffer_length,
1365                                  dir);
1366
1367         if (usb_urb_dir_in(urb)) {
1368                 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1369                                            urb->transfer_buffer,
1370                                            buf_len,
1371                                            0);
1372                 if (len != buf_len) {
1373                         xhci_dbg(hcd_to_xhci(hcd),
1374                                  "Copy from tmp buf to urb sg list failed\n");
1375                         urb->actual_length = len;
1376                 }
1377         }
1378         urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1379         kfree(urb->transfer_buffer);
1380         urb->transfer_buffer = NULL;
1381 }
1382
1383 /*
1384  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1385  * we'll copy the actual data into the TRB address register. This is limited to
1386  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1387  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1388  */
1389 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1390                                 gfp_t mem_flags)
1391 {
1392         struct xhci_hcd *xhci;
1393
1394         xhci = hcd_to_xhci(hcd);
1395
1396         if (xhci_urb_suitable_for_idt(urb))
1397                 return 0;
1398
1399         if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1400                 if (xhci_urb_temp_buffer_required(hcd, urb))
1401                         return xhci_map_temp_buffer(hcd, urb);
1402         }
1403         return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1404 }
1405
1406 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1407 {
1408         struct xhci_hcd *xhci;
1409         bool unmap_temp_buf = false;
1410
1411         xhci = hcd_to_xhci(hcd);
1412
1413         if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1414                 unmap_temp_buf = true;
1415
1416         if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1417                 xhci_unmap_temp_buf(hcd, urb);
1418         else
1419                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1420 }
1421
1422 /**
1423  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1424  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1425  * value to right shift 1 for the bitmask.
1426  *
1427  * Index  = (epnum * 2) + direction - 1,
1428  * where direction = 0 for OUT, 1 for IN.
1429  * For control endpoints, the IN index is used (OUT index is unused), so
1430  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1431  */
1432 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1433 {
1434         unsigned int index;
1435         if (usb_endpoint_xfer_control(desc))
1436                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1437         else
1438                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1439                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1440         return index;
1441 }
1442 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1443
1444 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1445  * address from the XHCI endpoint index.
1446  */
1447 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1448 {
1449         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1450         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1451         return direction | number;
1452 }
1453
1454 /* Find the flag for this endpoint (for use in the control context).  Use the
1455  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1456  * bit 1, etc.
1457  */
1458 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1459 {
1460         return 1 << (xhci_get_endpoint_index(desc) + 1);
1461 }
1462
1463 /* Compute the last valid endpoint context index.  Basically, this is the
1464  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1465  * we find the most significant bit set in the added contexts flags.
1466  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1467  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1468  */
1469 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1470 {
1471         return fls(added_ctxs) - 1;
1472 }
1473
1474 /* Returns 1 if the arguments are OK;
1475  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1476  */
1477 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1478                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1479                 const char *func) {
1480         struct xhci_hcd *xhci;
1481         struct xhci_virt_device *virt_dev;
1482
1483         if (!hcd || (check_ep && !ep) || !udev) {
1484                 pr_debug("xHCI %s called with invalid args\n", func);
1485                 return -EINVAL;
1486         }
1487         if (!udev->parent) {
1488                 pr_debug("xHCI %s called for root hub\n", func);
1489                 return 0;
1490         }
1491
1492         xhci = hcd_to_xhci(hcd);
1493         if (check_virt_dev) {
1494                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1495                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1496                                         func);
1497                         return -EINVAL;
1498                 }
1499
1500                 virt_dev = xhci->devs[udev->slot_id];
1501                 if (virt_dev->udev != udev) {
1502                         xhci_dbg(xhci, "xHCI %s called with udev and "
1503                                           "virt_dev does not match\n", func);
1504                         return -EINVAL;
1505                 }
1506         }
1507
1508         if (xhci->xhc_state & XHCI_STATE_HALTED)
1509                 return -ENODEV;
1510
1511         return 1;
1512 }
1513
1514 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1515                 struct usb_device *udev, struct xhci_command *command,
1516                 bool ctx_change, bool must_succeed);
1517
1518 /*
1519  * Full speed devices may have a max packet size greater than 8 bytes, but the
1520  * USB core doesn't know that until it reads the first 8 bytes of the
1521  * descriptor.  If the usb_device's max packet size changes after that point,
1522  * we need to issue an evaluate context command and wait on it.
1523  */
1524 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1525                 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1526 {
1527         struct xhci_container_ctx *out_ctx;
1528         struct xhci_input_control_ctx *ctrl_ctx;
1529         struct xhci_ep_ctx *ep_ctx;
1530         struct xhci_command *command;
1531         int max_packet_size;
1532         int hw_max_packet_size;
1533         int ret = 0;
1534
1535         out_ctx = xhci->devs[slot_id]->out_ctx;
1536         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1537         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1538         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1539         if (hw_max_packet_size != max_packet_size) {
1540                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1541                                 "Max Packet Size for ep 0 changed.");
1542                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1543                                 "Max packet size in usb_device = %d",
1544                                 max_packet_size);
1545                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1546                                 "Max packet size in xHCI HW = %d",
1547                                 hw_max_packet_size);
1548                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1549                                 "Issuing evaluate context command.");
1550
1551                 /* Set up the input context flags for the command */
1552                 /* FIXME: This won't work if a non-default control endpoint
1553                  * changes max packet sizes.
1554                  */
1555
1556                 command = xhci_alloc_command(xhci, true, mem_flags);
1557                 if (!command)
1558                         return -ENOMEM;
1559
1560                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1561                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1562                 if (!ctrl_ctx) {
1563                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1564                                         __func__);
1565                         ret = -ENOMEM;
1566                         goto command_cleanup;
1567                 }
1568                 /* Set up the modified control endpoint 0 */
1569                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1570                                 xhci->devs[slot_id]->out_ctx, ep_index);
1571
1572                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1573                 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1574                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1575                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1576
1577                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1578                 ctrl_ctx->drop_flags = 0;
1579
1580                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1581                                 true, false);
1582
1583                 /* Clean up the input context for later use by bandwidth
1584                  * functions.
1585                  */
1586                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1587 command_cleanup:
1588                 kfree(command->completion);
1589                 kfree(command);
1590         }
1591         return ret;
1592 }
1593
1594 /*
1595  * non-error returns are a promise to giveback() the urb later
1596  * we drop ownership so next owner (or urb unlink) can get it
1597  */
1598 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1599 {
1600         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1601         unsigned long flags;
1602         int ret = 0;
1603         unsigned int slot_id, ep_index;
1604         unsigned int *ep_state;
1605         struct urb_priv *urb_priv;
1606         int num_tds;
1607
1608         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1609                                         true, true, __func__) <= 0)
1610                 return -EINVAL;
1611
1612         slot_id = urb->dev->slot_id;
1613         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1614         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1615
1616         if (!HCD_HW_ACCESSIBLE(hcd))
1617                 return -ESHUTDOWN;
1618
1619         if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1620                 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1621                 return -ENODEV;
1622         }
1623
1624         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1625                 num_tds = urb->number_of_packets;
1626         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1627             urb->transfer_buffer_length > 0 &&
1628             urb->transfer_flags & URB_ZERO_PACKET &&
1629             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1630                 num_tds = 2;
1631         else
1632                 num_tds = 1;
1633
1634         urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1635         if (!urb_priv)
1636                 return -ENOMEM;
1637
1638         urb_priv->num_tds = num_tds;
1639         urb_priv->num_tds_done = 0;
1640         urb->hcpriv = urb_priv;
1641
1642         trace_xhci_urb_enqueue(urb);
1643
1644         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1645                 /* Check to see if the max packet size for the default control
1646                  * endpoint changed during FS device enumeration
1647                  */
1648                 if (urb->dev->speed == USB_SPEED_FULL) {
1649                         ret = xhci_check_maxpacket(xhci, slot_id,
1650                                         ep_index, urb, mem_flags);
1651                         if (ret < 0) {
1652                                 xhci_urb_free_priv(urb_priv);
1653                                 urb->hcpriv = NULL;
1654                                 return ret;
1655                         }
1656                 }
1657         }
1658
1659         spin_lock_irqsave(&xhci->lock, flags);
1660
1661         if (xhci->xhc_state & XHCI_STATE_DYING) {
1662                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1663                          urb->ep->desc.bEndpointAddress, urb);
1664                 ret = -ESHUTDOWN;
1665                 goto free_priv;
1666         }
1667         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1668                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1669                           *ep_state);
1670                 ret = -EINVAL;
1671                 goto free_priv;
1672         }
1673         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1674                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1675                 ret = -EINVAL;
1676                 goto free_priv;
1677         }
1678
1679         switch (usb_endpoint_type(&urb->ep->desc)) {
1680
1681         case USB_ENDPOINT_XFER_CONTROL:
1682                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1683                                          slot_id, ep_index);
1684                 break;
1685         case USB_ENDPOINT_XFER_BULK:
1686                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1687                                          slot_id, ep_index);
1688                 break;
1689         case USB_ENDPOINT_XFER_INT:
1690                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1691                                 slot_id, ep_index);
1692                 break;
1693         case USB_ENDPOINT_XFER_ISOC:
1694                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1695                                 slot_id, ep_index);
1696         }
1697
1698         if (ret) {
1699 free_priv:
1700                 xhci_urb_free_priv(urb_priv);
1701                 urb->hcpriv = NULL;
1702         }
1703         spin_unlock_irqrestore(&xhci->lock, flags);
1704         return ret;
1705 }
1706
1707 /*
1708  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1709  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1710  * should pick up where it left off in the TD, unless a Set Transfer Ring
1711  * Dequeue Pointer is issued.
1712  *
1713  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1714  * the ring.  Since the ring is a contiguous structure, they can't be physically
1715  * removed.  Instead, there are two options:
1716  *
1717  *  1) If the HC is in the middle of processing the URB to be canceled, we
1718  *     simply move the ring's dequeue pointer past those TRBs using the Set
1719  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1720  *     when drivers timeout on the last submitted URB and attempt to cancel.
1721  *
1722  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1723  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1724  *     HC will need to invalidate the any TRBs it has cached after the stop
1725  *     endpoint command, as noted in the xHCI 0.95 errata.
1726  *
1727  *  3) The TD may have completed by the time the Stop Endpoint Command
1728  *     completes, so software needs to handle that case too.
1729  *
1730  * This function should protect against the TD enqueueing code ringing the
1731  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1732  * It also needs to account for multiple cancellations on happening at the same
1733  * time for the same endpoint.
1734  *
1735  * Note that this function can be called in any context, or so says
1736  * usb_hcd_unlink_urb()
1737  */
1738 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1739 {
1740         unsigned long flags;
1741         int ret, i;
1742         u32 temp;
1743         struct xhci_hcd *xhci;
1744         struct urb_priv *urb_priv;
1745         struct xhci_td *td;
1746         unsigned int ep_index;
1747         struct xhci_ring *ep_ring;
1748         struct xhci_virt_ep *ep;
1749         struct xhci_command *command;
1750         struct xhci_virt_device *vdev;
1751
1752         xhci = hcd_to_xhci(hcd);
1753         spin_lock_irqsave(&xhci->lock, flags);
1754
1755         trace_xhci_urb_dequeue(urb);
1756
1757         /* Make sure the URB hasn't completed or been unlinked already */
1758         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1759         if (ret)
1760                 goto done;
1761
1762         /* give back URB now if we can't queue it for cancel */
1763         vdev = xhci->devs[urb->dev->slot_id];
1764         urb_priv = urb->hcpriv;
1765         if (!vdev || !urb_priv)
1766                 goto err_giveback;
1767
1768         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1769         ep = &vdev->eps[ep_index];
1770         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1771         if (!ep || !ep_ring)
1772                 goto err_giveback;
1773
1774         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1775         temp = readl(&xhci->op_regs->status);
1776         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1777                 xhci_hc_died(xhci);
1778                 goto done;
1779         }
1780
1781         /*
1782          * check ring is not re-allocated since URB was enqueued. If it is, then
1783          * make sure none of the ring related pointers in this URB private data
1784          * are touched, such as td_list, otherwise we overwrite freed data
1785          */
1786         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1787                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1788                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1789                         td = &urb_priv->td[i];
1790                         if (!list_empty(&td->cancelled_td_list))
1791                                 list_del_init(&td->cancelled_td_list);
1792                 }
1793                 goto err_giveback;
1794         }
1795
1796         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1797                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1798                                 "HC halted, freeing TD manually.");
1799                 for (i = urb_priv->num_tds_done;
1800                      i < urb_priv->num_tds;
1801                      i++) {
1802                         td = &urb_priv->td[i];
1803                         if (!list_empty(&td->td_list))
1804                                 list_del_init(&td->td_list);
1805                         if (!list_empty(&td->cancelled_td_list))
1806                                 list_del_init(&td->cancelled_td_list);
1807                 }
1808                 goto err_giveback;
1809         }
1810
1811         i = urb_priv->num_tds_done;
1812         if (i < urb_priv->num_tds)
1813                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1814                                 "Cancel URB %p, dev %s, ep 0x%x, "
1815                                 "starting at offset 0x%llx",
1816                                 urb, urb->dev->devpath,
1817                                 urb->ep->desc.bEndpointAddress,
1818                                 (unsigned long long) xhci_trb_virt_to_dma(
1819                                         urb_priv->td[i].start_seg,
1820                                         urb_priv->td[i].first_trb));
1821
1822         for (; i < urb_priv->num_tds; i++) {
1823                 td = &urb_priv->td[i];
1824                 /* TD can already be on cancelled list if ep halted on it */
1825                 if (list_empty(&td->cancelled_td_list)) {
1826                         td->cancel_status = TD_DIRTY;
1827                         list_add_tail(&td->cancelled_td_list,
1828                                       &ep->cancelled_td_list);
1829                 }
1830         }
1831
1832         /* Queue a stop endpoint command, but only if this is
1833          * the first cancellation to be handled.
1834          */
1835         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1836                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1837                 if (!command) {
1838                         ret = -ENOMEM;
1839                         goto done;
1840                 }
1841                 ep->ep_state |= EP_STOP_CMD_PENDING;
1842                 ep->stop_cmd_timer.expires = jiffies +
1843                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1844                 add_timer(&ep->stop_cmd_timer);
1845                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1846                                          ep_index, 0);
1847                 xhci_ring_cmd_db(xhci);
1848         }
1849 done:
1850         spin_unlock_irqrestore(&xhci->lock, flags);
1851         return ret;
1852
1853 err_giveback:
1854         if (urb_priv)
1855                 xhci_urb_free_priv(urb_priv);
1856         usb_hcd_unlink_urb_from_ep(hcd, urb);
1857         spin_unlock_irqrestore(&xhci->lock, flags);
1858         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1859         return ret;
1860 }
1861
1862 /* Drop an endpoint from a new bandwidth configuration for this device.
1863  * Only one call to this function is allowed per endpoint before
1864  * check_bandwidth() or reset_bandwidth() must be called.
1865  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1866  * add the endpoint to the schedule with possibly new parameters denoted by a
1867  * different endpoint descriptor in usb_host_endpoint.
1868  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1869  * not allowed.
1870  *
1871  * The USB core will not allow URBs to be queued to an endpoint that is being
1872  * disabled, so there's no need for mutual exclusion to protect
1873  * the xhci->devs[slot_id] structure.
1874  */
1875 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1876                        struct usb_host_endpoint *ep)
1877 {
1878         struct xhci_hcd *xhci;
1879         struct xhci_container_ctx *in_ctx, *out_ctx;
1880         struct xhci_input_control_ctx *ctrl_ctx;
1881         unsigned int ep_index;
1882         struct xhci_ep_ctx *ep_ctx;
1883         u32 drop_flag;
1884         u32 new_add_flags, new_drop_flags;
1885         int ret;
1886
1887         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1888         if (ret <= 0)
1889                 return ret;
1890         xhci = hcd_to_xhci(hcd);
1891         if (xhci->xhc_state & XHCI_STATE_DYING)
1892                 return -ENODEV;
1893
1894         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1895         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1896         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1897                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1898                                 __func__, drop_flag);
1899                 return 0;
1900         }
1901
1902         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1903         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1904         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1905         if (!ctrl_ctx) {
1906                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1907                                 __func__);
1908                 return 0;
1909         }
1910
1911         ep_index = xhci_get_endpoint_index(&ep->desc);
1912         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1913         /* If the HC already knows the endpoint is disabled,
1914          * or the HCD has noted it is disabled, ignore this request
1915          */
1916         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1917             le32_to_cpu(ctrl_ctx->drop_flags) &
1918             xhci_get_endpoint_flag(&ep->desc)) {
1919                 /* Do not warn when called after a usb_device_reset */
1920                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1921                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1922                                   __func__, ep);
1923                 return 0;
1924         }
1925
1926         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1927         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1928
1929         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1930         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1931
1932         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1933
1934         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1935
1936         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1937                         (unsigned int) ep->desc.bEndpointAddress,
1938                         udev->slot_id,
1939                         (unsigned int) new_drop_flags,
1940                         (unsigned int) new_add_flags);
1941         return 0;
1942 }
1943 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1944
1945 /* Add an endpoint to a new possible bandwidth configuration for this device.
1946  * Only one call to this function is allowed per endpoint before
1947  * check_bandwidth() or reset_bandwidth() must be called.
1948  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1949  * add the endpoint to the schedule with possibly new parameters denoted by a
1950  * different endpoint descriptor in usb_host_endpoint.
1951  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1952  * not allowed.
1953  *
1954  * The USB core will not allow URBs to be queued to an endpoint until the
1955  * configuration or alt setting is installed in the device, so there's no need
1956  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1957  */
1958 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1959                       struct usb_host_endpoint *ep)
1960 {
1961         struct xhci_hcd *xhci;
1962         struct xhci_container_ctx *in_ctx;
1963         unsigned int ep_index;
1964         struct xhci_input_control_ctx *ctrl_ctx;
1965         struct xhci_ep_ctx *ep_ctx;
1966         u32 added_ctxs;
1967         u32 new_add_flags, new_drop_flags;
1968         struct xhci_virt_device *virt_dev;
1969         int ret = 0;
1970
1971         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1972         if (ret <= 0) {
1973                 /* So we won't queue a reset ep command for a root hub */
1974                 ep->hcpriv = NULL;
1975                 return ret;
1976         }
1977         xhci = hcd_to_xhci(hcd);
1978         if (xhci->xhc_state & XHCI_STATE_DYING)
1979                 return -ENODEV;
1980
1981         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1982         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1983                 /* FIXME when we have to issue an evaluate endpoint command to
1984                  * deal with ep0 max packet size changing once we get the
1985                  * descriptors
1986                  */
1987                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1988                                 __func__, added_ctxs);
1989                 return 0;
1990         }
1991
1992         virt_dev = xhci->devs[udev->slot_id];
1993         in_ctx = virt_dev->in_ctx;
1994         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1995         if (!ctrl_ctx) {
1996                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1997                                 __func__);
1998                 return 0;
1999         }
2000
2001         ep_index = xhci_get_endpoint_index(&ep->desc);
2002         /* If this endpoint is already in use, and the upper layers are trying
2003          * to add it again without dropping it, reject the addition.
2004          */
2005         if (virt_dev->eps[ep_index].ring &&
2006                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2007                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
2008                                 "without dropping it.\n",
2009                                 (unsigned int) ep->desc.bEndpointAddress);
2010                 return -EINVAL;
2011         }
2012
2013         /* If the HCD has already noted the endpoint is enabled,
2014          * ignore this request.
2015          */
2016         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2017                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2018                                 __func__, ep);
2019                 return 0;
2020         }
2021
2022         /*
2023          * Configuration and alternate setting changes must be done in
2024          * process context, not interrupt context (or so documenation
2025          * for usb_set_interface() and usb_set_configuration() claim).
2026          */
2027         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2028                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2029                                 __func__, ep->desc.bEndpointAddress);
2030                 return -ENOMEM;
2031         }
2032
2033         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2034         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2035
2036         /* If xhci_endpoint_disable() was called for this endpoint, but the
2037          * xHC hasn't been notified yet through the check_bandwidth() call,
2038          * this re-adds a new state for the endpoint from the new endpoint
2039          * descriptors.  We must drop and re-add this endpoint, so we leave the
2040          * drop flags alone.
2041          */
2042         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2043
2044         /* Store the usb_device pointer for later use */
2045         ep->hcpriv = udev;
2046
2047         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2048         trace_xhci_add_endpoint(ep_ctx);
2049
2050         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2051                         (unsigned int) ep->desc.bEndpointAddress,
2052                         udev->slot_id,
2053                         (unsigned int) new_drop_flags,
2054                         (unsigned int) new_add_flags);
2055         return 0;
2056 }
2057 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2058
2059 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2060 {
2061         struct xhci_input_control_ctx *ctrl_ctx;
2062         struct xhci_ep_ctx *ep_ctx;
2063         struct xhci_slot_ctx *slot_ctx;
2064         int i;
2065
2066         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2067         if (!ctrl_ctx) {
2068                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2069                                 __func__);
2070                 return;
2071         }
2072
2073         /* When a device's add flag and drop flag are zero, any subsequent
2074          * configure endpoint command will leave that endpoint's state
2075          * untouched.  Make sure we don't leave any old state in the input
2076          * endpoint contexts.
2077          */
2078         ctrl_ctx->drop_flags = 0;
2079         ctrl_ctx->add_flags = 0;
2080         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2081         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2082         /* Endpoint 0 is always valid */
2083         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2084         for (i = 1; i < 31; i++) {
2085                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2086                 ep_ctx->ep_info = 0;
2087                 ep_ctx->ep_info2 = 0;
2088                 ep_ctx->deq = 0;
2089                 ep_ctx->tx_info = 0;
2090         }
2091 }
2092
2093 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2094                 struct usb_device *udev, u32 *cmd_status)
2095 {
2096         int ret;
2097
2098         switch (*cmd_status) {
2099         case COMP_COMMAND_ABORTED:
2100         case COMP_COMMAND_RING_STOPPED:
2101                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2102                 ret = -ETIME;
2103                 break;
2104         case COMP_RESOURCE_ERROR:
2105                 dev_warn(&udev->dev,
2106                          "Not enough host controller resources for new device state.\n");
2107                 ret = -ENOMEM;
2108                 /* FIXME: can we allocate more resources for the HC? */
2109                 break;
2110         case COMP_BANDWIDTH_ERROR:
2111         case COMP_SECONDARY_BANDWIDTH_ERROR:
2112                 dev_warn(&udev->dev,
2113                          "Not enough bandwidth for new device state.\n");
2114                 ret = -ENOSPC;
2115                 /* FIXME: can we go back to the old state? */
2116                 break;
2117         case COMP_TRB_ERROR:
2118                 /* the HCD set up something wrong */
2119                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2120                                 "add flag = 1, "
2121                                 "and endpoint is not disabled.\n");
2122                 ret = -EINVAL;
2123                 break;
2124         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2125                 dev_warn(&udev->dev,
2126                          "ERROR: Incompatible device for endpoint configure command.\n");
2127                 ret = -ENODEV;
2128                 break;
2129         case COMP_SUCCESS:
2130                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2131                                 "Successful Endpoint Configure command");
2132                 ret = 0;
2133                 break;
2134         default:
2135                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2136                                 *cmd_status);
2137                 ret = -EINVAL;
2138                 break;
2139         }
2140         return ret;
2141 }
2142
2143 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2144                 struct usb_device *udev, u32 *cmd_status)
2145 {
2146         int ret;
2147
2148         switch (*cmd_status) {
2149         case COMP_COMMAND_ABORTED:
2150         case COMP_COMMAND_RING_STOPPED:
2151                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2152                 ret = -ETIME;
2153                 break;
2154         case COMP_PARAMETER_ERROR:
2155                 dev_warn(&udev->dev,
2156                          "WARN: xHCI driver setup invalid evaluate context command.\n");
2157                 ret = -EINVAL;
2158                 break;
2159         case COMP_SLOT_NOT_ENABLED_ERROR:
2160                 dev_warn(&udev->dev,
2161                         "WARN: slot not enabled for evaluate context command.\n");
2162                 ret = -EINVAL;
2163                 break;
2164         case COMP_CONTEXT_STATE_ERROR:
2165                 dev_warn(&udev->dev,
2166                         "WARN: invalid context state for evaluate context command.\n");
2167                 ret = -EINVAL;
2168                 break;
2169         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2170                 dev_warn(&udev->dev,
2171                         "ERROR: Incompatible device for evaluate context command.\n");
2172                 ret = -ENODEV;
2173                 break;
2174         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2175                 /* Max Exit Latency too large error */
2176                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2177                 ret = -EINVAL;
2178                 break;
2179         case COMP_SUCCESS:
2180                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2181                                 "Successful evaluate context command");
2182                 ret = 0;
2183                 break;
2184         default:
2185                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2186                         *cmd_status);
2187                 ret = -EINVAL;
2188                 break;
2189         }
2190         return ret;
2191 }
2192
2193 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2194                 struct xhci_input_control_ctx *ctrl_ctx)
2195 {
2196         u32 valid_add_flags;
2197         u32 valid_drop_flags;
2198
2199         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2200          * (bit 1).  The default control endpoint is added during the Address
2201          * Device command and is never removed until the slot is disabled.
2202          */
2203         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2204         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2205
2206         /* Use hweight32 to count the number of ones in the add flags, or
2207          * number of endpoints added.  Don't count endpoints that are changed
2208          * (both added and dropped).
2209          */
2210         return hweight32(valid_add_flags) -
2211                 hweight32(valid_add_flags & valid_drop_flags);
2212 }
2213
2214 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2215                 struct xhci_input_control_ctx *ctrl_ctx)
2216 {
2217         u32 valid_add_flags;
2218         u32 valid_drop_flags;
2219
2220         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2221         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2222
2223         return hweight32(valid_drop_flags) -
2224                 hweight32(valid_add_flags & valid_drop_flags);
2225 }
2226
2227 /*
2228  * We need to reserve the new number of endpoints before the configure endpoint
2229  * command completes.  We can't subtract the dropped endpoints from the number
2230  * of active endpoints until the command completes because we can oversubscribe
2231  * the host in this case:
2232  *
2233  *  - the first configure endpoint command drops more endpoints than it adds
2234  *  - a second configure endpoint command that adds more endpoints is queued
2235  *  - the first configure endpoint command fails, so the config is unchanged
2236  *  - the second command may succeed, even though there isn't enough resources
2237  *
2238  * Must be called with xhci->lock held.
2239  */
2240 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2241                 struct xhci_input_control_ctx *ctrl_ctx)
2242 {
2243         u32 added_eps;
2244
2245         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2246         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2247                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2248                                 "Not enough ep ctxs: "
2249                                 "%u active, need to add %u, limit is %u.",
2250                                 xhci->num_active_eps, added_eps,
2251                                 xhci->limit_active_eps);
2252                 return -ENOMEM;
2253         }
2254         xhci->num_active_eps += added_eps;
2255         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2256                         "Adding %u ep ctxs, %u now active.", added_eps,
2257                         xhci->num_active_eps);
2258         return 0;
2259 }
2260
2261 /*
2262  * The configure endpoint was failed by the xHC for some other reason, so we
2263  * need to revert the resources that failed configuration would have used.
2264  *
2265  * Must be called with xhci->lock held.
2266  */
2267 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2268                 struct xhci_input_control_ctx *ctrl_ctx)
2269 {
2270         u32 num_failed_eps;
2271
2272         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2273         xhci->num_active_eps -= num_failed_eps;
2274         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2275                         "Removing %u failed ep ctxs, %u now active.",
2276                         num_failed_eps,
2277                         xhci->num_active_eps);
2278 }
2279
2280 /*
2281  * Now that the command has completed, clean up the active endpoint count by
2282  * subtracting out the endpoints that were dropped (but not changed).
2283  *
2284  * Must be called with xhci->lock held.
2285  */
2286 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2287                 struct xhci_input_control_ctx *ctrl_ctx)
2288 {
2289         u32 num_dropped_eps;
2290
2291         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2292         xhci->num_active_eps -= num_dropped_eps;
2293         if (num_dropped_eps)
2294                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2295                                 "Removing %u dropped ep ctxs, %u now active.",
2296                                 num_dropped_eps,
2297                                 xhci->num_active_eps);
2298 }
2299
2300 static unsigned int xhci_get_block_size(struct usb_device *udev)
2301 {
2302         switch (udev->speed) {
2303         case USB_SPEED_LOW:
2304         case USB_SPEED_FULL:
2305                 return FS_BLOCK;
2306         case USB_SPEED_HIGH:
2307                 return HS_BLOCK;
2308         case USB_SPEED_SUPER:
2309         case USB_SPEED_SUPER_PLUS:
2310                 return SS_BLOCK;
2311         case USB_SPEED_UNKNOWN:
2312         case USB_SPEED_WIRELESS:
2313         default:
2314                 /* Should never happen */
2315                 return 1;
2316         }
2317 }
2318
2319 static unsigned int
2320 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2321 {
2322         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2323                 return LS_OVERHEAD;
2324         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2325                 return FS_OVERHEAD;
2326         return HS_OVERHEAD;
2327 }
2328
2329 /* If we are changing a LS/FS device under a HS hub,
2330  * make sure (if we are activating a new TT) that the HS bus has enough
2331  * bandwidth for this new TT.
2332  */
2333 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2334                 struct xhci_virt_device *virt_dev,
2335                 int old_active_eps)
2336 {
2337         struct xhci_interval_bw_table *bw_table;
2338         struct xhci_tt_bw_info *tt_info;
2339
2340         /* Find the bandwidth table for the root port this TT is attached to. */
2341         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2342         tt_info = virt_dev->tt_info;
2343         /* If this TT already had active endpoints, the bandwidth for this TT
2344          * has already been added.  Removing all periodic endpoints (and thus
2345          * making the TT enactive) will only decrease the bandwidth used.
2346          */
2347         if (old_active_eps)
2348                 return 0;
2349         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2350                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2351                         return -ENOMEM;
2352                 return 0;
2353         }
2354         /* Not sure why we would have no new active endpoints...
2355          *
2356          * Maybe because of an Evaluate Context change for a hub update or a
2357          * control endpoint 0 max packet size change?
2358          * FIXME: skip the bandwidth calculation in that case.
2359          */
2360         return 0;
2361 }
2362
2363 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2364                 struct xhci_virt_device *virt_dev)
2365 {
2366         unsigned int bw_reserved;
2367
2368         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2369         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2370                 return -ENOMEM;
2371
2372         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2373         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2374                 return -ENOMEM;
2375
2376         return 0;
2377 }
2378
2379 /*
2380  * This algorithm is a very conservative estimate of the worst-case scheduling
2381  * scenario for any one interval.  The hardware dynamically schedules the
2382  * packets, so we can't tell which microframe could be the limiting factor in
2383  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2384  *
2385  * Obviously, we can't solve an NP complete problem to find the minimum worst
2386  * case scenario.  Instead, we come up with an estimate that is no less than
2387  * the worst case bandwidth used for any one microframe, but may be an
2388  * over-estimate.
2389  *
2390  * We walk the requirements for each endpoint by interval, starting with the
2391  * smallest interval, and place packets in the schedule where there is only one
2392  * possible way to schedule packets for that interval.  In order to simplify
2393  * this algorithm, we record the largest max packet size for each interval, and
2394  * assume all packets will be that size.
2395  *
2396  * For interval 0, we obviously must schedule all packets for each interval.
2397  * The bandwidth for interval 0 is just the amount of data to be transmitted
2398  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2399  * the number of packets).
2400  *
2401  * For interval 1, we have two possible microframes to schedule those packets
2402  * in.  For this algorithm, if we can schedule the same number of packets for
2403  * each possible scheduling opportunity (each microframe), we will do so.  The
2404  * remaining number of packets will be saved to be transmitted in the gaps in
2405  * the next interval's scheduling sequence.
2406  *
2407  * As we move those remaining packets to be scheduled with interval 2 packets,
2408  * we have to double the number of remaining packets to transmit.  This is
2409  * because the intervals are actually powers of 2, and we would be transmitting
2410  * the previous interval's packets twice in this interval.  We also have to be
2411  * sure that when we look at the largest max packet size for this interval, we
2412  * also look at the largest max packet size for the remaining packets and take
2413  * the greater of the two.
2414  *
2415  * The algorithm continues to evenly distribute packets in each scheduling
2416  * opportunity, and push the remaining packets out, until we get to the last
2417  * interval.  Then those packets and their associated overhead are just added
2418  * to the bandwidth used.
2419  */
2420 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2421                 struct xhci_virt_device *virt_dev,
2422                 int old_active_eps)
2423 {
2424         unsigned int bw_reserved;
2425         unsigned int max_bandwidth;
2426         unsigned int bw_used;
2427         unsigned int block_size;
2428         struct xhci_interval_bw_table *bw_table;
2429         unsigned int packet_size = 0;
2430         unsigned int overhead = 0;
2431         unsigned int packets_transmitted = 0;
2432         unsigned int packets_remaining = 0;
2433         unsigned int i;
2434
2435         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2436                 return xhci_check_ss_bw(xhci, virt_dev);
2437
2438         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2439                 max_bandwidth = HS_BW_LIMIT;
2440                 /* Convert percent of bus BW reserved to blocks reserved */
2441                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2442         } else {
2443                 max_bandwidth = FS_BW_LIMIT;
2444                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2445         }
2446
2447         bw_table = virt_dev->bw_table;
2448         /* We need to translate the max packet size and max ESIT payloads into
2449          * the units the hardware uses.
2450          */
2451         block_size = xhci_get_block_size(virt_dev->udev);
2452
2453         /* If we are manipulating a LS/FS device under a HS hub, double check
2454          * that the HS bus has enough bandwidth if we are activing a new TT.
2455          */
2456         if (virt_dev->tt_info) {
2457                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2458                                 "Recalculating BW for rootport %u",
2459                                 virt_dev->real_port);
2460                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2461                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2462                                         "newly activated TT.\n");
2463                         return -ENOMEM;
2464                 }
2465                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2466                                 "Recalculating BW for TT slot %u port %u",
2467                                 virt_dev->tt_info->slot_id,
2468                                 virt_dev->tt_info->ttport);
2469         } else {
2470                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2471                                 "Recalculating BW for rootport %u",
2472                                 virt_dev->real_port);
2473         }
2474
2475         /* Add in how much bandwidth will be used for interval zero, or the
2476          * rounded max ESIT payload + number of packets * largest overhead.
2477          */
2478         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2479                 bw_table->interval_bw[0].num_packets *
2480                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2481
2482         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2483                 unsigned int bw_added;
2484                 unsigned int largest_mps;
2485                 unsigned int interval_overhead;
2486
2487                 /*
2488                  * How many packets could we transmit in this interval?
2489                  * If packets didn't fit in the previous interval, we will need
2490                  * to transmit that many packets twice within this interval.
2491                  */
2492                 packets_remaining = 2 * packets_remaining +
2493                         bw_table->interval_bw[i].num_packets;
2494
2495                 /* Find the largest max packet size of this or the previous
2496                  * interval.
2497                  */
2498                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2499                         largest_mps = 0;
2500                 else {
2501                         struct xhci_virt_ep *virt_ep;
2502                         struct list_head *ep_entry;
2503
2504                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2505                         virt_ep = list_entry(ep_entry,
2506                                         struct xhci_virt_ep, bw_endpoint_list);
2507                         /* Convert to blocks, rounding up */
2508                         largest_mps = DIV_ROUND_UP(
2509                                         virt_ep->bw_info.max_packet_size,
2510                                         block_size);
2511                 }
2512                 if (largest_mps > packet_size)
2513                         packet_size = largest_mps;
2514
2515                 /* Use the larger overhead of this or the previous interval. */
2516                 interval_overhead = xhci_get_largest_overhead(
2517                                 &bw_table->interval_bw[i]);
2518                 if (interval_overhead > overhead)
2519                         overhead = interval_overhead;
2520
2521                 /* How many packets can we evenly distribute across
2522                  * (1 << (i + 1)) possible scheduling opportunities?
2523                  */
2524                 packets_transmitted = packets_remaining >> (i + 1);
2525
2526                 /* Add in the bandwidth used for those scheduled packets */
2527                 bw_added = packets_transmitted * (overhead + packet_size);
2528
2529                 /* How many packets do we have remaining to transmit? */
2530                 packets_remaining = packets_remaining % (1 << (i + 1));
2531
2532                 /* What largest max packet size should those packets have? */
2533                 /* If we've transmitted all packets, don't carry over the
2534                  * largest packet size.
2535                  */
2536                 if (packets_remaining == 0) {
2537                         packet_size = 0;
2538                         overhead = 0;
2539                 } else if (packets_transmitted > 0) {
2540                         /* Otherwise if we do have remaining packets, and we've
2541                          * scheduled some packets in this interval, take the
2542                          * largest max packet size from endpoints with this
2543                          * interval.
2544                          */
2545                         packet_size = largest_mps;
2546                         overhead = interval_overhead;
2547                 }
2548                 /* Otherwise carry over packet_size and overhead from the last
2549                  * time we had a remainder.
2550                  */
2551                 bw_used += bw_added;
2552                 if (bw_used > max_bandwidth) {
2553                         xhci_warn(xhci, "Not enough bandwidth. "
2554                                         "Proposed: %u, Max: %u\n",
2555                                 bw_used, max_bandwidth);
2556                         return -ENOMEM;
2557                 }
2558         }
2559         /*
2560          * Ok, we know we have some packets left over after even-handedly
2561          * scheduling interval 15.  We don't know which microframes they will
2562          * fit into, so we over-schedule and say they will be scheduled every
2563          * microframe.
2564          */
2565         if (packets_remaining > 0)
2566                 bw_used += overhead + packet_size;
2567
2568         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2569                 unsigned int port_index = virt_dev->real_port - 1;
2570
2571                 /* OK, we're manipulating a HS device attached to a
2572                  * root port bandwidth domain.  Include the number of active TTs
2573                  * in the bandwidth used.
2574                  */
2575                 bw_used += TT_HS_OVERHEAD *
2576                         xhci->rh_bw[port_index].num_active_tts;
2577         }
2578
2579         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2580                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2581                 "Available: %u " "percent",
2582                 bw_used, max_bandwidth, bw_reserved,
2583                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2584                 max_bandwidth);
2585
2586         bw_used += bw_reserved;
2587         if (bw_used > max_bandwidth) {
2588                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2589                                 bw_used, max_bandwidth);
2590                 return -ENOMEM;
2591         }
2592
2593         bw_table->bw_used = bw_used;
2594         return 0;
2595 }
2596
2597 static bool xhci_is_async_ep(unsigned int ep_type)
2598 {
2599         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2600                                         ep_type != ISOC_IN_EP &&
2601                                         ep_type != INT_IN_EP);
2602 }
2603
2604 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2605 {
2606         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2607 }
2608
2609 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2610 {
2611         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2612
2613         if (ep_bw->ep_interval == 0)
2614                 return SS_OVERHEAD_BURST +
2615                         (ep_bw->mult * ep_bw->num_packets *
2616                                         (SS_OVERHEAD + mps));
2617         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2618                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2619                                 1 << ep_bw->ep_interval);
2620
2621 }
2622
2623 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2624                 struct xhci_bw_info *ep_bw,
2625                 struct xhci_interval_bw_table *bw_table,
2626                 struct usb_device *udev,
2627                 struct xhci_virt_ep *virt_ep,
2628                 struct xhci_tt_bw_info *tt_info)
2629 {
2630         struct xhci_interval_bw *interval_bw;
2631         int normalized_interval;
2632
2633         if (xhci_is_async_ep(ep_bw->type))
2634                 return;
2635
2636         if (udev->speed >= USB_SPEED_SUPER) {
2637                 if (xhci_is_sync_in_ep(ep_bw->type))
2638                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2639                                 xhci_get_ss_bw_consumed(ep_bw);
2640                 else
2641                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2642                                 xhci_get_ss_bw_consumed(ep_bw);
2643                 return;
2644         }
2645
2646         /* SuperSpeed endpoints never get added to intervals in the table, so
2647          * this check is only valid for HS/FS/LS devices.
2648          */
2649         if (list_empty(&virt_ep->bw_endpoint_list))
2650                 return;
2651         /* For LS/FS devices, we need to translate the interval expressed in
2652          * microframes to frames.
2653          */
2654         if (udev->speed == USB_SPEED_HIGH)
2655                 normalized_interval = ep_bw->ep_interval;
2656         else
2657                 normalized_interval = ep_bw->ep_interval - 3;
2658
2659         if (normalized_interval == 0)
2660                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2661         interval_bw = &bw_table->interval_bw[normalized_interval];
2662         interval_bw->num_packets -= ep_bw->num_packets;
2663         switch (udev->speed) {
2664         case USB_SPEED_LOW:
2665                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2666                 break;
2667         case USB_SPEED_FULL:
2668                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2669                 break;
2670         case USB_SPEED_HIGH:
2671                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2672                 break;
2673         case USB_SPEED_SUPER:
2674         case USB_SPEED_SUPER_PLUS:
2675         case USB_SPEED_UNKNOWN:
2676         case USB_SPEED_WIRELESS:
2677                 /* Should never happen because only LS/FS/HS endpoints will get
2678                  * added to the endpoint list.
2679                  */
2680                 return;
2681         }
2682         if (tt_info)
2683                 tt_info->active_eps -= 1;
2684         list_del_init(&virt_ep->bw_endpoint_list);
2685 }
2686
2687 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2688                 struct xhci_bw_info *ep_bw,
2689                 struct xhci_interval_bw_table *bw_table,
2690                 struct usb_device *udev,
2691                 struct xhci_virt_ep *virt_ep,
2692                 struct xhci_tt_bw_info *tt_info)
2693 {
2694         struct xhci_interval_bw *interval_bw;
2695         struct xhci_virt_ep *smaller_ep;
2696         int normalized_interval;
2697
2698         if (xhci_is_async_ep(ep_bw->type))
2699                 return;
2700
2701         if (udev->speed == USB_SPEED_SUPER) {
2702                 if (xhci_is_sync_in_ep(ep_bw->type))
2703                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2704                                 xhci_get_ss_bw_consumed(ep_bw);
2705                 else
2706                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2707                                 xhci_get_ss_bw_consumed(ep_bw);
2708                 return;
2709         }
2710
2711         /* For LS/FS devices, we need to translate the interval expressed in
2712          * microframes to frames.
2713          */
2714         if (udev->speed == USB_SPEED_HIGH)
2715                 normalized_interval = ep_bw->ep_interval;
2716         else
2717                 normalized_interval = ep_bw->ep_interval - 3;
2718
2719         if (normalized_interval == 0)
2720                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2721         interval_bw = &bw_table->interval_bw[normalized_interval];
2722         interval_bw->num_packets += ep_bw->num_packets;
2723         switch (udev->speed) {
2724         case USB_SPEED_LOW:
2725                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2726                 break;
2727         case USB_SPEED_FULL:
2728                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2729                 break;
2730         case USB_SPEED_HIGH:
2731                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2732                 break;
2733         case USB_SPEED_SUPER:
2734         case USB_SPEED_SUPER_PLUS:
2735         case USB_SPEED_UNKNOWN:
2736         case USB_SPEED_WIRELESS:
2737                 /* Should never happen because only LS/FS/HS endpoints will get
2738                  * added to the endpoint list.
2739                  */
2740                 return;
2741         }
2742
2743         if (tt_info)
2744                 tt_info->active_eps += 1;
2745         /* Insert the endpoint into the list, largest max packet size first. */
2746         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2747                         bw_endpoint_list) {
2748                 if (ep_bw->max_packet_size >=
2749                                 smaller_ep->bw_info.max_packet_size) {
2750                         /* Add the new ep before the smaller endpoint */
2751                         list_add_tail(&virt_ep->bw_endpoint_list,
2752                                         &smaller_ep->bw_endpoint_list);
2753                         return;
2754                 }
2755         }
2756         /* Add the new endpoint at the end of the list. */
2757         list_add_tail(&virt_ep->bw_endpoint_list,
2758                         &interval_bw->endpoints);
2759 }
2760
2761 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2762                 struct xhci_virt_device *virt_dev,
2763                 int old_active_eps)
2764 {
2765         struct xhci_root_port_bw_info *rh_bw_info;
2766         if (!virt_dev->tt_info)
2767                 return;
2768
2769         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2770         if (old_active_eps == 0 &&
2771                                 virt_dev->tt_info->active_eps != 0) {
2772                 rh_bw_info->num_active_tts += 1;
2773                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2774         } else if (old_active_eps != 0 &&
2775                                 virt_dev->tt_info->active_eps == 0) {
2776                 rh_bw_info->num_active_tts -= 1;
2777                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2778         }
2779 }
2780
2781 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2782                 struct xhci_virt_device *virt_dev,
2783                 struct xhci_container_ctx *in_ctx)
2784 {
2785         struct xhci_bw_info ep_bw_info[31];
2786         int i;
2787         struct xhci_input_control_ctx *ctrl_ctx;
2788         int old_active_eps = 0;
2789
2790         if (virt_dev->tt_info)
2791                 old_active_eps = virt_dev->tt_info->active_eps;
2792
2793         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2794         if (!ctrl_ctx) {
2795                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2796                                 __func__);
2797                 return -ENOMEM;
2798         }
2799
2800         for (i = 0; i < 31; i++) {
2801                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2802                         continue;
2803
2804                 /* Make a copy of the BW info in case we need to revert this */
2805                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2806                                 sizeof(ep_bw_info[i]));
2807                 /* Drop the endpoint from the interval table if the endpoint is
2808                  * being dropped or changed.
2809                  */
2810                 if (EP_IS_DROPPED(ctrl_ctx, i))
2811                         xhci_drop_ep_from_interval_table(xhci,
2812                                         &virt_dev->eps[i].bw_info,
2813                                         virt_dev->bw_table,
2814                                         virt_dev->udev,
2815                                         &virt_dev->eps[i],
2816                                         virt_dev->tt_info);
2817         }
2818         /* Overwrite the information stored in the endpoints' bw_info */
2819         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2820         for (i = 0; i < 31; i++) {
2821                 /* Add any changed or added endpoints to the interval table */
2822                 if (EP_IS_ADDED(ctrl_ctx, i))
2823                         xhci_add_ep_to_interval_table(xhci,
2824                                         &virt_dev->eps[i].bw_info,
2825                                         virt_dev->bw_table,
2826                                         virt_dev->udev,
2827                                         &virt_dev->eps[i],
2828                                         virt_dev->tt_info);
2829         }
2830
2831         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2832                 /* Ok, this fits in the bandwidth we have.
2833                  * Update the number of active TTs.
2834                  */
2835                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2836                 return 0;
2837         }
2838
2839         /* We don't have enough bandwidth for this, revert the stored info. */
2840         for (i = 0; i < 31; i++) {
2841                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2842                         continue;
2843
2844                 /* Drop the new copies of any added or changed endpoints from
2845                  * the interval table.
2846                  */
2847                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2848                         xhci_drop_ep_from_interval_table(xhci,
2849                                         &virt_dev->eps[i].bw_info,
2850                                         virt_dev->bw_table,
2851                                         virt_dev->udev,
2852                                         &virt_dev->eps[i],
2853                                         virt_dev->tt_info);
2854                 }
2855                 /* Revert the endpoint back to its old information */
2856                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2857                                 sizeof(ep_bw_info[i]));
2858                 /* Add any changed or dropped endpoints back into the table */
2859                 if (EP_IS_DROPPED(ctrl_ctx, i))
2860                         xhci_add_ep_to_interval_table(xhci,
2861                                         &virt_dev->eps[i].bw_info,
2862                                         virt_dev->bw_table,
2863                                         virt_dev->udev,
2864                                         &virt_dev->eps[i],
2865                                         virt_dev->tt_info);
2866         }
2867         return -ENOMEM;
2868 }
2869
2870
2871 /* Issue a configure endpoint command or evaluate context command
2872  * and wait for it to finish.
2873  */
2874 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2875                 struct usb_device *udev,
2876                 struct xhci_command *command,
2877                 bool ctx_change, bool must_succeed)
2878 {
2879         int ret;
2880         unsigned long flags;
2881         struct xhci_input_control_ctx *ctrl_ctx;
2882         struct xhci_virt_device *virt_dev;
2883         struct xhci_slot_ctx *slot_ctx;
2884
2885         if (!command)
2886                 return -EINVAL;
2887
2888         spin_lock_irqsave(&xhci->lock, flags);
2889
2890         if (xhci->xhc_state & XHCI_STATE_DYING) {
2891                 spin_unlock_irqrestore(&xhci->lock, flags);
2892                 return -ESHUTDOWN;
2893         }
2894
2895         virt_dev = xhci->devs[udev->slot_id];
2896
2897         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2898         if (!ctrl_ctx) {
2899                 spin_unlock_irqrestore(&xhci->lock, flags);
2900                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2901                                 __func__);
2902                 return -ENOMEM;
2903         }
2904
2905         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2906                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2907                 spin_unlock_irqrestore(&xhci->lock, flags);
2908                 xhci_warn(xhci, "Not enough host resources, "
2909                                 "active endpoint contexts = %u\n",
2910                                 xhci->num_active_eps);
2911                 return -ENOMEM;
2912         }
2913         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2914             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2915                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2916                         xhci_free_host_resources(xhci, ctrl_ctx);
2917                 spin_unlock_irqrestore(&xhci->lock, flags);
2918                 xhci_warn(xhci, "Not enough bandwidth\n");
2919                 return -ENOMEM;
2920         }
2921
2922         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2923
2924         trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2925         trace_xhci_configure_endpoint(slot_ctx);
2926
2927         if (!ctx_change)
2928                 ret = xhci_queue_configure_endpoint(xhci, command,
2929                                 command->in_ctx->dma,
2930                                 udev->slot_id, must_succeed);
2931         else
2932                 ret = xhci_queue_evaluate_context(xhci, command,
2933                                 command->in_ctx->dma,
2934                                 udev->slot_id, must_succeed);
2935         if (ret < 0) {
2936                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2937                         xhci_free_host_resources(xhci, ctrl_ctx);
2938                 spin_unlock_irqrestore(&xhci->lock, flags);
2939                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2940                                 "FIXME allocate a new ring segment");
2941                 return -ENOMEM;
2942         }
2943         xhci_ring_cmd_db(xhci);
2944         spin_unlock_irqrestore(&xhci->lock, flags);
2945
2946         /* Wait for the configure endpoint command to complete */
2947         wait_for_completion(command->completion);
2948
2949         if (!ctx_change)
2950                 ret = xhci_configure_endpoint_result(xhci, udev,
2951                                                      &command->status);
2952         else
2953                 ret = xhci_evaluate_context_result(xhci, udev,
2954                                                    &command->status);
2955
2956         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2957                 spin_lock_irqsave(&xhci->lock, flags);
2958                 /* If the command failed, remove the reserved resources.
2959                  * Otherwise, clean up the estimate to include dropped eps.
2960                  */
2961                 if (ret)
2962                         xhci_free_host_resources(xhci, ctrl_ctx);
2963                 else
2964                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2965                 spin_unlock_irqrestore(&xhci->lock, flags);
2966         }
2967         return ret;
2968 }
2969
2970 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2971         struct xhci_virt_device *vdev, int i)
2972 {
2973         struct xhci_virt_ep *ep = &vdev->eps[i];
2974
2975         if (ep->ep_state & EP_HAS_STREAMS) {
2976                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2977                                 xhci_get_endpoint_address(i));
2978                 xhci_free_stream_info(xhci, ep->stream_info);
2979                 ep->stream_info = NULL;
2980                 ep->ep_state &= ~EP_HAS_STREAMS;
2981         }
2982 }
2983
2984 /* Called after one or more calls to xhci_add_endpoint() or
2985  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2986  * to call xhci_reset_bandwidth().
2987  *
2988  * Since we are in the middle of changing either configuration or
2989  * installing a new alt setting, the USB core won't allow URBs to be
2990  * enqueued for any endpoint on the old config or interface.  Nothing
2991  * else should be touching the xhci->devs[slot_id] structure, so we
2992  * don't need to take the xhci->lock for manipulating that.
2993  */
2994 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2995 {
2996         int i;
2997         int ret = 0;
2998         struct xhci_hcd *xhci;
2999         struct xhci_virt_device *virt_dev;
3000         struct xhci_input_control_ctx *ctrl_ctx;
3001         struct xhci_slot_ctx *slot_ctx;
3002         struct xhci_command *command;
3003
3004         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3005         if (ret <= 0)
3006                 return ret;
3007         xhci = hcd_to_xhci(hcd);
3008         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3009                 (xhci->xhc_state & XHCI_STATE_REMOVING))
3010                 return -ENODEV;
3011
3012         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3013         virt_dev = xhci->devs[udev->slot_id];
3014
3015         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3016         if (!command)
3017                 return -ENOMEM;
3018
3019         command->in_ctx = virt_dev->in_ctx;
3020
3021         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3022         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3023         if (!ctrl_ctx) {
3024                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3025                                 __func__);
3026                 ret = -ENOMEM;
3027                 goto command_cleanup;
3028         }
3029         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3030         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3031         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3032
3033         /* Don't issue the command if there's no endpoints to update. */
3034         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3035             ctrl_ctx->drop_flags == 0) {
3036                 ret = 0;
3037                 goto command_cleanup;
3038         }
3039         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3040         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3041         for (i = 31; i >= 1; i--) {
3042                 __le32 le32 = cpu_to_le32(BIT(i));
3043
3044                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3045                     || (ctrl_ctx->add_flags & le32) || i == 1) {
3046                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3047                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3048                         break;
3049                 }
3050         }
3051
3052         ret = xhci_configure_endpoint(xhci, udev, command,
3053                         false, false);
3054         if (ret)
3055                 /* Callee should call reset_bandwidth() */
3056                 goto command_cleanup;
3057
3058         /* Free any rings that were dropped, but not changed. */
3059         for (i = 1; i < 31; i++) {
3060                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3061                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3062                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3063                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3064                 }
3065         }
3066         xhci_zero_in_ctx(xhci, virt_dev);
3067         /*
3068          * Install any rings for completely new endpoints or changed endpoints,
3069          * and free any old rings from changed endpoints.
3070          */
3071         for (i = 1; i < 31; i++) {
3072                 if (!virt_dev->eps[i].new_ring)
3073                         continue;
3074                 /* Only free the old ring if it exists.
3075                  * It may not if this is the first add of an endpoint.
3076                  */
3077                 if (virt_dev->eps[i].ring) {
3078                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3079                 }
3080                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3081                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3082                 virt_dev->eps[i].new_ring = NULL;
3083                 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3084         }
3085 command_cleanup:
3086         kfree(command->completion);
3087         kfree(command);
3088
3089         return ret;
3090 }
3091 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3092
3093 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3094 {
3095         struct xhci_hcd *xhci;
3096         struct xhci_virt_device *virt_dev;
3097         int i, ret;
3098
3099         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3100         if (ret <= 0)
3101                 return;
3102         xhci = hcd_to_xhci(hcd);
3103
3104         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3105         virt_dev = xhci->devs[udev->slot_id];
3106         /* Free any rings allocated for added endpoints */
3107         for (i = 0; i < 31; i++) {
3108                 if (virt_dev->eps[i].new_ring) {
3109                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3110                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3111                         virt_dev->eps[i].new_ring = NULL;
3112                 }
3113         }
3114         xhci_zero_in_ctx(xhci, virt_dev);
3115 }
3116 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3117
3118 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3119                 struct xhci_container_ctx *in_ctx,
3120                 struct xhci_container_ctx *out_ctx,
3121                 struct xhci_input_control_ctx *ctrl_ctx,
3122                 u32 add_flags, u32 drop_flags)
3123 {
3124         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3125         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3126         xhci_slot_copy(xhci, in_ctx, out_ctx);
3127         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3128 }
3129
3130 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3131                                   struct usb_host_endpoint *host_ep)
3132 {
3133         struct xhci_hcd         *xhci;
3134         struct xhci_virt_device *vdev;
3135         struct xhci_virt_ep     *ep;
3136         struct usb_device       *udev;
3137         unsigned long           flags;
3138         unsigned int            ep_index;
3139
3140         xhci = hcd_to_xhci(hcd);
3141 rescan:
3142         spin_lock_irqsave(&xhci->lock, flags);
3143
3144         udev = (struct usb_device *)host_ep->hcpriv;
3145         if (!udev || !udev->slot_id)
3146                 goto done;
3147
3148         vdev = xhci->devs[udev->slot_id];
3149         if (!vdev)
3150                 goto done;
3151
3152         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3153         ep = &vdev->eps[ep_index];
3154         if (!ep)
3155                 goto done;
3156
3157         /* wait for hub_tt_work to finish clearing hub TT */
3158         if (ep->ep_state & EP_CLEARING_TT) {
3159                 spin_unlock_irqrestore(&xhci->lock, flags);
3160                 schedule_timeout_uninterruptible(1);
3161                 goto rescan;
3162         }
3163
3164         if (ep->ep_state)
3165                 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3166                          ep->ep_state);
3167 done:
3168         host_ep->hcpriv = NULL;
3169         spin_unlock_irqrestore(&xhci->lock, flags);
3170 }
3171
3172 /*
3173  * Called after usb core issues a clear halt control message.
3174  * The host side of the halt should already be cleared by a reset endpoint
3175  * command issued when the STALL event was received.
3176  *
3177  * The reset endpoint command may only be issued to endpoints in the halted
3178  * state. For software that wishes to reset the data toggle or sequence number
3179  * of an endpoint that isn't in the halted state this function will issue a
3180  * configure endpoint command with the Drop and Add bits set for the target
3181  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3182  */
3183
3184 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3185                 struct usb_host_endpoint *host_ep)
3186 {
3187         struct xhci_hcd *xhci;
3188         struct usb_device *udev;
3189         struct xhci_virt_device *vdev;
3190         struct xhci_virt_ep *ep;
3191         struct xhci_input_control_ctx *ctrl_ctx;
3192         struct xhci_command *stop_cmd, *cfg_cmd;
3193         unsigned int ep_index;
3194         unsigned long flags;
3195         u32 ep_flag;
3196         int err;
3197
3198         xhci = hcd_to_xhci(hcd);
3199         if (!host_ep->hcpriv)
3200                 return;
3201         udev = (struct usb_device *) host_ep->hcpriv;
3202         vdev = xhci->devs[udev->slot_id];
3203
3204         /*
3205          * vdev may be lost due to xHC restore error and re-initialization
3206          * during S3/S4 resume. A new vdev will be allocated later by
3207          * xhci_discover_or_reset_device()
3208          */
3209         if (!udev->slot_id || !vdev)
3210                 return;
3211         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3212         ep = &vdev->eps[ep_index];
3213         if (!ep)
3214                 return;
3215
3216         /* Bail out if toggle is already being cleared by a endpoint reset */
3217         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3218                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3219                 return;
3220         }
3221         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3222         if (usb_endpoint_xfer_control(&host_ep->desc) ||
3223             usb_endpoint_xfer_isoc(&host_ep->desc))
3224                 return;
3225
3226         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3227
3228         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3229                 return;
3230
3231         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3232         if (!stop_cmd)
3233                 return;
3234
3235         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3236         if (!cfg_cmd)
3237                 goto cleanup;
3238
3239         spin_lock_irqsave(&xhci->lock, flags);
3240
3241         /* block queuing new trbs and ringing ep doorbell */
3242         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3243
3244         /*
3245          * Make sure endpoint ring is empty before resetting the toggle/seq.
3246          * Driver is required to synchronously cancel all transfer request.
3247          * Stop the endpoint to force xHC to update the output context
3248          */
3249
3250         if (!list_empty(&ep->ring->td_list)) {
3251                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3252                 spin_unlock_irqrestore(&xhci->lock, flags);
3253                 xhci_free_command(xhci, cfg_cmd);
3254                 goto cleanup;
3255         }
3256
3257         err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3258                                         ep_index, 0);
3259         if (err < 0) {
3260                 spin_unlock_irqrestore(&xhci->lock, flags);
3261                 xhci_free_command(xhci, cfg_cmd);
3262                 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3263                                 __func__, err);
3264                 goto cleanup;
3265         }
3266
3267         xhci_ring_cmd_db(xhci);
3268         spin_unlock_irqrestore(&xhci->lock, flags);
3269
3270         wait_for_completion(stop_cmd->completion);
3271
3272         spin_lock_irqsave(&xhci->lock, flags);
3273
3274         /* config ep command clears toggle if add and drop ep flags are set */
3275         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3276         if (!ctrl_ctx) {
3277                 spin_unlock_irqrestore(&xhci->lock, flags);
3278                 xhci_free_command(xhci, cfg_cmd);
3279                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3280                                 __func__);
3281                 goto cleanup;
3282         }
3283
3284         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3285                                            ctrl_ctx, ep_flag, ep_flag);
3286         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3287
3288         err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3289                                       udev->slot_id, false);
3290         if (err < 0) {
3291                 spin_unlock_irqrestore(&xhci->lock, flags);
3292                 xhci_free_command(xhci, cfg_cmd);
3293                 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3294                                 __func__, err);
3295                 goto cleanup;
3296         }
3297
3298         xhci_ring_cmd_db(xhci);
3299         spin_unlock_irqrestore(&xhci->lock, flags);
3300
3301         wait_for_completion(cfg_cmd->completion);
3302
3303         xhci_free_command(xhci, cfg_cmd);
3304 cleanup:
3305         xhci_free_command(xhci, stop_cmd);
3306         if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3307                 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3308 }
3309
3310 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3311                 struct usb_device *udev, struct usb_host_endpoint *ep,
3312                 unsigned int slot_id)
3313 {
3314         int ret;
3315         unsigned int ep_index;
3316         unsigned int ep_state;
3317
3318         if (!ep)
3319                 return -EINVAL;
3320         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3321         if (ret <= 0)
3322                 return -EINVAL;
3323         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3324                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3325                                 " descriptor for ep 0x%x does not support streams\n",
3326                                 ep->desc.bEndpointAddress);
3327                 return -EINVAL;
3328         }
3329
3330         ep_index = xhci_get_endpoint_index(&ep->desc);
3331         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3332         if (ep_state & EP_HAS_STREAMS ||
3333                         ep_state & EP_GETTING_STREAMS) {
3334                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3335                                 "already has streams set up.\n",
3336                                 ep->desc.bEndpointAddress);
3337                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3338                                 "dynamic stream context array reallocation.\n");
3339                 return -EINVAL;
3340         }
3341         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3342                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3343                                 "endpoint 0x%x; URBs are pending.\n",
3344                                 ep->desc.bEndpointAddress);
3345                 return -EINVAL;
3346         }
3347         return 0;
3348 }
3349
3350 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3351                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3352 {
3353         unsigned int max_streams;
3354
3355         /* The stream context array size must be a power of two */
3356         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3357         /*
3358          * Find out how many primary stream array entries the host controller
3359          * supports.  Later we may use secondary stream arrays (similar to 2nd
3360          * level page entries), but that's an optional feature for xHCI host
3361          * controllers. xHCs must support at least 4 stream IDs.
3362          */
3363         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3364         if (*num_stream_ctxs > max_streams) {
3365                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3366                                 max_streams);
3367                 *num_stream_ctxs = max_streams;
3368                 *num_streams = max_streams;
3369         }
3370 }
3371
3372 /* Returns an error code if one of the endpoint already has streams.
3373  * This does not change any data structures, it only checks and gathers
3374  * information.
3375  */
3376 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3377                 struct usb_device *udev,
3378                 struct usb_host_endpoint **eps, unsigned int num_eps,
3379                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3380 {
3381         unsigned int max_streams;
3382         unsigned int endpoint_flag;
3383         int i;
3384         int ret;
3385
3386         for (i = 0; i < num_eps; i++) {
3387                 ret = xhci_check_streams_endpoint(xhci, udev,
3388                                 eps[i], udev->slot_id);
3389                 if (ret < 0)
3390                         return ret;
3391
3392                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3393                 if (max_streams < (*num_streams - 1)) {
3394                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3395                                         eps[i]->desc.bEndpointAddress,
3396                                         max_streams);
3397                         *num_streams = max_streams+1;
3398                 }
3399
3400                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3401                 if (*changed_ep_bitmask & endpoint_flag)
3402                         return -EINVAL;
3403                 *changed_ep_bitmask |= endpoint_flag;
3404         }
3405         return 0;
3406 }
3407
3408 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3409                 struct usb_device *udev,
3410                 struct usb_host_endpoint **eps, unsigned int num_eps)
3411 {
3412         u32 changed_ep_bitmask = 0;
3413         unsigned int slot_id;
3414         unsigned int ep_index;
3415         unsigned int ep_state;
3416         int i;
3417
3418         slot_id = udev->slot_id;
3419         if (!xhci->devs[slot_id])
3420                 return 0;
3421
3422         for (i = 0; i < num_eps; i++) {
3423                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3424                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3425                 /* Are streams already being freed for the endpoint? */
3426                 if (ep_state & EP_GETTING_NO_STREAMS) {
3427                         xhci_warn(xhci, "WARN Can't disable streams for "
3428                                         "endpoint 0x%x, "
3429                                         "streams are being disabled already\n",
3430                                         eps[i]->desc.bEndpointAddress);
3431                         return 0;
3432                 }
3433                 /* Are there actually any streams to free? */
3434                 if (!(ep_state & EP_HAS_STREAMS) &&
3435                                 !(ep_state & EP_GETTING_STREAMS)) {
3436                         xhci_warn(xhci, "WARN Can't disable streams for "
3437                                         "endpoint 0x%x, "
3438                                         "streams are already disabled!\n",
3439                                         eps[i]->desc.bEndpointAddress);
3440                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3441                                         "with non-streams endpoint\n");
3442                         return 0;
3443                 }
3444                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3445         }
3446         return changed_ep_bitmask;
3447 }
3448
3449 /*
3450  * The USB device drivers use this function (through the HCD interface in USB
3451  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3452  * coordinate mass storage command queueing across multiple endpoints (basically
3453  * a stream ID == a task ID).
3454  *
3455  * Setting up streams involves allocating the same size stream context array
3456  * for each endpoint and issuing a configure endpoint command for all endpoints.
3457  *
3458  * Don't allow the call to succeed if one endpoint only supports one stream
3459  * (which means it doesn't support streams at all).
3460  *
3461  * Drivers may get less stream IDs than they asked for, if the host controller
3462  * hardware or endpoints claim they can't support the number of requested
3463  * stream IDs.
3464  */
3465 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3466                 struct usb_host_endpoint **eps, unsigned int num_eps,
3467                 unsigned int num_streams, gfp_t mem_flags)
3468 {
3469         int i, ret;
3470         struct xhci_hcd *xhci;
3471         struct xhci_virt_device *vdev;
3472         struct xhci_command *config_cmd;
3473         struct xhci_input_control_ctx *ctrl_ctx;
3474         unsigned int ep_index;
3475         unsigned int num_stream_ctxs;
3476         unsigned int max_packet;
3477         unsigned long flags;
3478         u32 changed_ep_bitmask = 0;
3479
3480         if (!eps)
3481                 return -EINVAL;
3482
3483         /* Add one to the number of streams requested to account for
3484          * stream 0 that is reserved for xHCI usage.
3485          */
3486         num_streams += 1;
3487         xhci = hcd_to_xhci(hcd);
3488         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3489                         num_streams);
3490
3491         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3492         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3493                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3494                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3495                 return -ENOSYS;
3496         }
3497
3498         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3499         if (!config_cmd)
3500                 return -ENOMEM;
3501
3502         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3503         if (!ctrl_ctx) {
3504                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3505                                 __func__);
3506                 xhci_free_command(xhci, config_cmd);
3507                 return -ENOMEM;
3508         }
3509
3510         /* Check to make sure all endpoints are not already configured for
3511          * streams.  While we're at it, find the maximum number of streams that
3512          * all the endpoints will support and check for duplicate endpoints.
3513          */
3514         spin_lock_irqsave(&xhci->lock, flags);
3515         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3516                         num_eps, &num_streams, &changed_ep_bitmask);
3517         if (ret < 0) {
3518                 xhci_free_command(xhci, config_cmd);
3519                 spin_unlock_irqrestore(&xhci->lock, flags);
3520                 return ret;
3521         }
3522         if (num_streams <= 1) {
3523                 xhci_warn(xhci, "WARN: endpoints can't handle "
3524                                 "more than one stream.\n");
3525                 xhci_free_command(xhci, config_cmd);
3526                 spin_unlock_irqrestore(&xhci->lock, flags);
3527                 return -EINVAL;
3528         }
3529         vdev = xhci->devs[udev->slot_id];
3530         /* Mark each endpoint as being in transition, so
3531          * xhci_urb_enqueue() will reject all URBs.
3532          */
3533         for (i = 0; i < num_eps; i++) {
3534                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3535                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3536         }
3537         spin_unlock_irqrestore(&xhci->lock, flags);
3538
3539         /* Setup internal data structures and allocate HW data structures for
3540          * streams (but don't install the HW structures in the input context
3541          * until we're sure all memory allocation succeeded).
3542          */
3543         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3544         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3545                         num_stream_ctxs, num_streams);
3546
3547         for (i = 0; i < num_eps; i++) {
3548                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3549                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3550                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3551                                 num_stream_ctxs,
3552                                 num_streams,
3553                                 max_packet, mem_flags);
3554                 if (!vdev->eps[ep_index].stream_info)
3555                         goto cleanup;
3556                 /* Set maxPstreams in endpoint context and update deq ptr to
3557                  * point to stream context array. FIXME
3558                  */
3559         }
3560
3561         /* Set up the input context for a configure endpoint command. */
3562         for (i = 0; i < num_eps; i++) {
3563                 struct xhci_ep_ctx *ep_ctx;
3564
3565                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3566                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3567
3568                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3569                                 vdev->out_ctx, ep_index);
3570                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3571                                 vdev->eps[ep_index].stream_info);
3572         }
3573         /* Tell the HW to drop its old copy of the endpoint context info
3574          * and add the updated copy from the input context.
3575          */
3576         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3577                         vdev->out_ctx, ctrl_ctx,
3578                         changed_ep_bitmask, changed_ep_bitmask);
3579
3580         /* Issue and wait for the configure endpoint command */
3581         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3582                         false, false);
3583
3584         /* xHC rejected the configure endpoint command for some reason, so we
3585          * leave the old ring intact and free our internal streams data
3586          * structure.
3587          */
3588         if (ret < 0)
3589                 goto cleanup;
3590
3591         spin_lock_irqsave(&xhci->lock, flags);
3592         for (i = 0; i < num_eps; i++) {
3593                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3594                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3595                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3596                          udev->slot_id, ep_index);
3597                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3598         }
3599         xhci_free_command(xhci, config_cmd);
3600         spin_unlock_irqrestore(&xhci->lock, flags);
3601
3602         for (i = 0; i < num_eps; i++) {
3603                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3604                 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3605         }
3606         /* Subtract 1 for stream 0, which drivers can't use */
3607         return num_streams - 1;
3608
3609 cleanup:
3610         /* If it didn't work, free the streams! */
3611         for (i = 0; i < num_eps; i++) {
3612                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3613                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3614                 vdev->eps[ep_index].stream_info = NULL;
3615                 /* FIXME Unset maxPstreams in endpoint context and
3616                  * update deq ptr to point to normal string ring.
3617                  */
3618                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3619                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3620                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3621         }
3622         xhci_free_command(xhci, config_cmd);
3623         return -ENOMEM;
3624 }
3625
3626 /* Transition the endpoint from using streams to being a "normal" endpoint
3627  * without streams.
3628  *
3629  * Modify the endpoint context state, submit a configure endpoint command,
3630  * and free all endpoint rings for streams if that completes successfully.
3631  */
3632 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3633                 struct usb_host_endpoint **eps, unsigned int num_eps,
3634                 gfp_t mem_flags)
3635 {
3636         int i, ret;
3637         struct xhci_hcd *xhci;
3638         struct xhci_virt_device *vdev;
3639         struct xhci_command *command;
3640         struct xhci_input_control_ctx *ctrl_ctx;
3641         unsigned int ep_index;
3642         unsigned long flags;
3643         u32 changed_ep_bitmask;
3644
3645         xhci = hcd_to_xhci(hcd);
3646         vdev = xhci->devs[udev->slot_id];
3647
3648         /* Set up a configure endpoint command to remove the streams rings */
3649         spin_lock_irqsave(&xhci->lock, flags);
3650         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3651                         udev, eps, num_eps);
3652         if (changed_ep_bitmask == 0) {
3653                 spin_unlock_irqrestore(&xhci->lock, flags);
3654                 return -EINVAL;
3655         }
3656
3657         /* Use the xhci_command structure from the first endpoint.  We may have
3658          * allocated too many, but the driver may call xhci_free_streams() for
3659          * each endpoint it grouped into one call to xhci_alloc_streams().
3660          */
3661         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3662         command = vdev->eps[ep_index].stream_info->free_streams_command;
3663         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3664         if (!ctrl_ctx) {
3665                 spin_unlock_irqrestore(&xhci->lock, flags);
3666                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3667                                 __func__);
3668                 return -EINVAL;
3669         }
3670
3671         for (i = 0; i < num_eps; i++) {
3672                 struct xhci_ep_ctx *ep_ctx;
3673
3674                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3675                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3676                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3677                         EP_GETTING_NO_STREAMS;
3678
3679                 xhci_endpoint_copy(xhci, command->in_ctx,
3680                                 vdev->out_ctx, ep_index);
3681                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3682                                 &vdev->eps[ep_index]);
3683         }
3684         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3685                         vdev->out_ctx, ctrl_ctx,
3686                         changed_ep_bitmask, changed_ep_bitmask);
3687         spin_unlock_irqrestore(&xhci->lock, flags);
3688
3689         /* Issue and wait for the configure endpoint command,
3690          * which must succeed.
3691          */
3692         ret = xhci_configure_endpoint(xhci, udev, command,
3693                         false, true);
3694
3695         /* xHC rejected the configure endpoint command for some reason, so we
3696          * leave the streams rings intact.
3697          */
3698         if (ret < 0)
3699                 return ret;
3700
3701         spin_lock_irqsave(&xhci->lock, flags);
3702         for (i = 0; i < num_eps; i++) {
3703                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3704                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3705                 vdev->eps[ep_index].stream_info = NULL;
3706                 /* FIXME Unset maxPstreams in endpoint context and
3707                  * update deq ptr to point to normal string ring.
3708                  */
3709                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3710                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3711         }
3712         spin_unlock_irqrestore(&xhci->lock, flags);
3713
3714         return 0;
3715 }
3716
3717 /*
3718  * Deletes endpoint resources for endpoints that were active before a Reset
3719  * Device command, or a Disable Slot command.  The Reset Device command leaves
3720  * the control endpoint intact, whereas the Disable Slot command deletes it.
3721  *
3722  * Must be called with xhci->lock held.
3723  */
3724 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3725         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3726 {
3727         int i;
3728         unsigned int num_dropped_eps = 0;
3729         unsigned int drop_flags = 0;
3730
3731         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3732                 if (virt_dev->eps[i].ring) {
3733                         drop_flags |= 1 << i;
3734                         num_dropped_eps++;
3735                 }
3736         }
3737         xhci->num_active_eps -= num_dropped_eps;
3738         if (num_dropped_eps)
3739                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3740                                 "Dropped %u ep ctxs, flags = 0x%x, "
3741                                 "%u now active.",
3742                                 num_dropped_eps, drop_flags,
3743                                 xhci->num_active_eps);
3744 }
3745
3746 /*
3747  * This submits a Reset Device Command, which will set the device state to 0,
3748  * set the device address to 0, and disable all the endpoints except the default
3749  * control endpoint.  The USB core should come back and call
3750  * xhci_address_device(), and then re-set up the configuration.  If this is
3751  * called because of a usb_reset_and_verify_device(), then the old alternate
3752  * settings will be re-installed through the normal bandwidth allocation
3753  * functions.
3754  *
3755  * Wait for the Reset Device command to finish.  Remove all structures
3756  * associated with the endpoints that were disabled.  Clear the input device
3757  * structure? Reset the control endpoint 0 max packet size?
3758  *
3759  * If the virt_dev to be reset does not exist or does not match the udev,
3760  * it means the device is lost, possibly due to the xHC restore error and
3761  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3762  * re-allocate the device.
3763  */
3764 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3765                 struct usb_device *udev)
3766 {
3767         int ret, i;
3768         unsigned long flags;
3769         struct xhci_hcd *xhci;
3770         unsigned int slot_id;
3771         struct xhci_virt_device *virt_dev;
3772         struct xhci_command *reset_device_cmd;
3773         struct xhci_slot_ctx *slot_ctx;
3774         int old_active_eps = 0;
3775
3776         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3777         if (ret <= 0)
3778                 return ret;
3779         xhci = hcd_to_xhci(hcd);
3780         slot_id = udev->slot_id;
3781         virt_dev = xhci->devs[slot_id];
3782         if (!virt_dev) {
3783                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3784                                 "not exist. Re-allocate the device\n", slot_id);
3785                 ret = xhci_alloc_dev(hcd, udev);
3786                 if (ret == 1)
3787                         return 0;
3788                 else
3789                         return -EINVAL;
3790         }
3791
3792         if (virt_dev->tt_info)
3793                 old_active_eps = virt_dev->tt_info->active_eps;
3794
3795         if (virt_dev->udev != udev) {
3796                 /* If the virt_dev and the udev does not match, this virt_dev
3797                  * may belong to another udev.
3798                  * Re-allocate the device.
3799                  */
3800                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3801                                 "not match the udev. Re-allocate the device\n",
3802                                 slot_id);
3803                 ret = xhci_alloc_dev(hcd, udev);
3804                 if (ret == 1)
3805                         return 0;
3806                 else
3807                         return -EINVAL;
3808         }
3809
3810         /* If device is not setup, there is no point in resetting it */
3811         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3812         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3813                                                 SLOT_STATE_DISABLED)
3814                 return 0;
3815
3816         trace_xhci_discover_or_reset_device(slot_ctx);
3817
3818         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3819         /* Allocate the command structure that holds the struct completion.
3820          * Assume we're in process context, since the normal device reset
3821          * process has to wait for the device anyway.  Storage devices are
3822          * reset as part of error handling, so use GFP_NOIO instead of
3823          * GFP_KERNEL.
3824          */
3825         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3826         if (!reset_device_cmd) {
3827                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3828                 return -ENOMEM;
3829         }
3830
3831         /* Attempt to submit the Reset Device command to the command ring */
3832         spin_lock_irqsave(&xhci->lock, flags);
3833
3834         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3835         if (ret) {
3836                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3837                 spin_unlock_irqrestore(&xhci->lock, flags);
3838                 goto command_cleanup;
3839         }
3840         xhci_ring_cmd_db(xhci);
3841         spin_unlock_irqrestore(&xhci->lock, flags);
3842
3843         /* Wait for the Reset Device command to finish */
3844         wait_for_completion(reset_device_cmd->completion);
3845
3846         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3847          * unless we tried to reset a slot ID that wasn't enabled,
3848          * or the device wasn't in the addressed or configured state.
3849          */
3850         ret = reset_device_cmd->status;
3851         switch (ret) {
3852         case COMP_COMMAND_ABORTED:
3853         case COMP_COMMAND_RING_STOPPED:
3854                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3855                 ret = -ETIME;
3856                 goto command_cleanup;
3857         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3858         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3859                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3860                                 slot_id,
3861                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3862                 xhci_dbg(xhci, "Not freeing device rings.\n");
3863                 /* Don't treat this as an error.  May change my mind later. */
3864                 ret = 0;
3865                 goto command_cleanup;
3866         case COMP_SUCCESS:
3867                 xhci_dbg(xhci, "Successful reset device command.\n");
3868                 break;
3869         default:
3870                 if (xhci_is_vendor_info_code(xhci, ret))
3871                         break;
3872                 xhci_warn(xhci, "Unknown completion code %u for "
3873                                 "reset device command.\n", ret);
3874                 ret = -EINVAL;
3875                 goto command_cleanup;
3876         }
3877
3878         /* Free up host controller endpoint resources */
3879         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3880                 spin_lock_irqsave(&xhci->lock, flags);
3881                 /* Don't delete the default control endpoint resources */
3882                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3883                 spin_unlock_irqrestore(&xhci->lock, flags);
3884         }
3885
3886         /* Everything but endpoint 0 is disabled, so free the rings. */
3887         for (i = 1; i < 31; i++) {
3888                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3889
3890                 if (ep->ep_state & EP_HAS_STREAMS) {
3891                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3892                                         xhci_get_endpoint_address(i));
3893                         xhci_free_stream_info(xhci, ep->stream_info);
3894                         ep->stream_info = NULL;
3895                         ep->ep_state &= ~EP_HAS_STREAMS;
3896                 }
3897
3898                 if (ep->ring) {
3899                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3900                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3901                 }
3902                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3903                         xhci_drop_ep_from_interval_table(xhci,
3904                                         &virt_dev->eps[i].bw_info,
3905                                         virt_dev->bw_table,
3906                                         udev,
3907                                         &virt_dev->eps[i],
3908                                         virt_dev->tt_info);
3909                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3910         }
3911         /* If necessary, update the number of active TTs on this root port */
3912         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3913         virt_dev->flags = 0;
3914         ret = 0;
3915
3916 command_cleanup:
3917         xhci_free_command(xhci, reset_device_cmd);
3918         return ret;
3919 }
3920
3921 /*
3922  * At this point, the struct usb_device is about to go away, the device has
3923  * disconnected, and all traffic has been stopped and the endpoints have been
3924  * disabled.  Free any HC data structures associated with that device.
3925  */
3926 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3927 {
3928         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3929         struct xhci_virt_device *virt_dev;
3930         struct xhci_slot_ctx *slot_ctx;
3931         int i, ret;
3932
3933 #ifndef CONFIG_USB_DEFAULT_PERSIST
3934         /*
3935          * We called pm_runtime_get_noresume when the device was attached.
3936          * Decrement the counter here to allow controller to runtime suspend
3937          * if no devices remain.
3938          */
3939         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3940                 pm_runtime_put_noidle(hcd->self.controller);
3941 #endif
3942
3943         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3944         /* If the host is halted due to driver unload, we still need to free the
3945          * device.
3946          */
3947         if (ret <= 0 && ret != -ENODEV)
3948                 return;
3949
3950         virt_dev = xhci->devs[udev->slot_id];
3951         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3952         trace_xhci_free_dev(slot_ctx);
3953
3954         /* Stop any wayward timer functions (which may grab the lock) */
3955         for (i = 0; i < 31; i++) {
3956                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3957                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3958         }
3959         virt_dev->udev = NULL;
3960         ret = xhci_disable_slot(xhci, udev->slot_id);
3961         if (ret)
3962                 xhci_free_virt_device(xhci, udev->slot_id);
3963 }
3964
3965 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3966 {
3967         struct xhci_command *command;
3968         unsigned long flags;
3969         u32 state;
3970         int ret = 0;
3971
3972         command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3973         if (!command)
3974                 return -ENOMEM;
3975
3976         xhci_debugfs_remove_slot(xhci, slot_id);
3977
3978         spin_lock_irqsave(&xhci->lock, flags);
3979         /* Don't disable the slot if the host controller is dead. */
3980         state = readl(&xhci->op_regs->status);
3981         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3982                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3983                 spin_unlock_irqrestore(&xhci->lock, flags);
3984                 kfree(command);
3985                 return -ENODEV;
3986         }
3987
3988         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3989                                 slot_id);
3990         if (ret) {
3991                 spin_unlock_irqrestore(&xhci->lock, flags);
3992                 kfree(command);
3993                 return ret;
3994         }
3995         xhci_ring_cmd_db(xhci);
3996         spin_unlock_irqrestore(&xhci->lock, flags);
3997         return ret;
3998 }
3999
4000 /*
4001  * Checks if we have enough host controller resources for the default control
4002  * endpoint.
4003  *
4004  * Must be called with xhci->lock held.
4005  */
4006 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4007 {
4008         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4009                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4010                                 "Not enough ep ctxs: "
4011                                 "%u active, need to add 1, limit is %u.",
4012                                 xhci->num_active_eps, xhci->limit_active_eps);
4013                 return -ENOMEM;
4014         }
4015         xhci->num_active_eps += 1;
4016         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4017                         "Adding 1 ep ctx, %u now active.",
4018                         xhci->num_active_eps);
4019         return 0;
4020 }
4021
4022
4023 /*
4024  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4025  * timed out, or allocating memory failed.  Returns 1 on success.
4026  */
4027 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4028 {
4029         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4030         struct xhci_virt_device *vdev;
4031         struct xhci_slot_ctx *slot_ctx;
4032         unsigned long flags;
4033         int ret, slot_id;
4034         struct xhci_command *command;
4035
4036         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4037         if (!command)
4038                 return 0;
4039
4040         spin_lock_irqsave(&xhci->lock, flags);
4041         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4042         if (ret) {
4043                 spin_unlock_irqrestore(&xhci->lock, flags);
4044                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4045                 xhci_free_command(xhci, command);
4046                 return 0;
4047         }
4048         xhci_ring_cmd_db(xhci);
4049         spin_unlock_irqrestore(&xhci->lock, flags);
4050
4051         wait_for_completion(command->completion);
4052         slot_id = command->slot_id;
4053
4054         if (!slot_id || command->status != COMP_SUCCESS) {
4055                 xhci_err(xhci, "Error while assigning device slot ID\n");
4056                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4057                                 HCS_MAX_SLOTS(
4058                                         readl(&xhci->cap_regs->hcs_params1)));
4059                 xhci_free_command(xhci, command);
4060                 return 0;
4061         }
4062
4063         xhci_free_command(xhci, command);
4064
4065         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4066                 spin_lock_irqsave(&xhci->lock, flags);
4067                 ret = xhci_reserve_host_control_ep_resources(xhci);
4068                 if (ret) {
4069                         spin_unlock_irqrestore(&xhci->lock, flags);
4070                         xhci_warn(xhci, "Not enough host resources, "
4071                                         "active endpoint contexts = %u\n",
4072                                         xhci->num_active_eps);
4073                         goto disable_slot;
4074                 }
4075                 spin_unlock_irqrestore(&xhci->lock, flags);
4076         }
4077         /* Use GFP_NOIO, since this function can be called from
4078          * xhci_discover_or_reset_device(), which may be called as part of
4079          * mass storage driver error handling.
4080          */
4081         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4082                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4083                 goto disable_slot;
4084         }
4085         vdev = xhci->devs[slot_id];
4086         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4087         trace_xhci_alloc_dev(slot_ctx);
4088
4089         udev->slot_id = slot_id;
4090
4091         xhci_debugfs_create_slot(xhci, slot_id);
4092
4093 #ifndef CONFIG_USB_DEFAULT_PERSIST
4094         /*
4095          * If resetting upon resume, we can't put the controller into runtime
4096          * suspend if there is a device attached.
4097          */
4098         if (xhci->quirks & XHCI_RESET_ON_RESUME)
4099                 pm_runtime_get_noresume(hcd->self.controller);
4100 #endif
4101
4102         /* Is this a LS or FS device under a HS hub? */
4103         /* Hub or peripherial? */
4104         return 1;
4105
4106 disable_slot:
4107         ret = xhci_disable_slot(xhci, udev->slot_id);
4108         if (ret)
4109                 xhci_free_virt_device(xhci, udev->slot_id);
4110
4111         return 0;
4112 }
4113
4114 /*
4115  * Issue an Address Device command and optionally send a corresponding
4116  * SetAddress request to the device.
4117  */
4118 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4119                              enum xhci_setup_dev setup)
4120 {
4121         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4122         unsigned long flags;
4123         struct xhci_virt_device *virt_dev;
4124         int ret = 0;
4125         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4126         struct xhci_slot_ctx *slot_ctx;
4127         struct xhci_input_control_ctx *ctrl_ctx;
4128         u64 temp_64;
4129         struct xhci_command *command = NULL;
4130
4131         mutex_lock(&xhci->mutex);
4132
4133         if (xhci->xhc_state) {  /* dying, removing or halted */
4134                 ret = -ESHUTDOWN;
4135                 goto out;
4136         }
4137
4138         if (!udev->slot_id) {
4139                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4140                                 "Bad Slot ID %d", udev->slot_id);
4141                 ret = -EINVAL;
4142                 goto out;
4143         }
4144
4145         virt_dev = xhci->devs[udev->slot_id];
4146
4147         if (WARN_ON(!virt_dev)) {
4148                 /*
4149                  * In plug/unplug torture test with an NEC controller,
4150                  * a zero-dereference was observed once due to virt_dev = 0.
4151                  * Print useful debug rather than crash if it is observed again!
4152                  */
4153                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4154                         udev->slot_id);
4155                 ret = -EINVAL;
4156                 goto out;
4157         }
4158         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4159         trace_xhci_setup_device_slot(slot_ctx);
4160
4161         if (setup == SETUP_CONTEXT_ONLY) {
4162                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4163                     SLOT_STATE_DEFAULT) {
4164                         xhci_dbg(xhci, "Slot already in default state\n");
4165                         goto out;
4166                 }
4167         }
4168
4169         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4170         if (!command) {
4171                 ret = -ENOMEM;
4172                 goto out;
4173         }
4174
4175         command->in_ctx = virt_dev->in_ctx;
4176
4177         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4178         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4179         if (!ctrl_ctx) {
4180                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4181                                 __func__);
4182                 ret = -EINVAL;
4183                 goto out;
4184         }
4185         /*
4186          * If this is the first Set Address since device plug-in or
4187          * virt_device realloaction after a resume with an xHCI power loss,
4188          * then set up the slot context.
4189          */
4190         if (!slot_ctx->dev_info)
4191                 xhci_setup_addressable_virt_dev(xhci, udev);
4192         /* Otherwise, update the control endpoint ring enqueue pointer. */
4193         else
4194                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4195         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4196         ctrl_ctx->drop_flags = 0;
4197
4198         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4199                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4200
4201         trace_xhci_address_ctrl_ctx(ctrl_ctx);
4202         spin_lock_irqsave(&xhci->lock, flags);
4203         trace_xhci_setup_device(virt_dev);
4204         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4205                                         udev->slot_id, setup);
4206         if (ret) {
4207                 spin_unlock_irqrestore(&xhci->lock, flags);
4208                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4209                                 "FIXME: allocate a command ring segment");
4210                 goto out;
4211         }
4212         xhci_ring_cmd_db(xhci);
4213         spin_unlock_irqrestore(&xhci->lock, flags);
4214
4215         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4216         wait_for_completion(command->completion);
4217
4218         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4219          * the SetAddress() "recovery interval" required by USB and aborting the
4220          * command on a timeout.
4221          */
4222         switch (command->status) {
4223         case COMP_COMMAND_ABORTED:
4224         case COMP_COMMAND_RING_STOPPED:
4225                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4226                 ret = -ETIME;
4227                 break;
4228         case COMP_CONTEXT_STATE_ERROR:
4229         case COMP_SLOT_NOT_ENABLED_ERROR:
4230                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4231                          act, udev->slot_id);
4232                 ret = -EINVAL;
4233                 break;
4234         case COMP_USB_TRANSACTION_ERROR:
4235                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4236
4237                 mutex_unlock(&xhci->mutex);
4238                 ret = xhci_disable_slot(xhci, udev->slot_id);
4239                 if (!ret)
4240                         xhci_alloc_dev(hcd, udev);
4241                 kfree(command->completion);
4242                 kfree(command);
4243                 return -EPROTO;
4244         case COMP_INCOMPATIBLE_DEVICE_ERROR:
4245                 dev_warn(&udev->dev,
4246                          "ERROR: Incompatible device for setup %s command\n", act);
4247                 ret = -ENODEV;
4248                 break;
4249         case COMP_SUCCESS:
4250                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4251                                "Successful setup %s command", act);
4252                 break;
4253         default:
4254                 xhci_err(xhci,
4255                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
4256                          act, command->status);
4257                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4258                 ret = -EINVAL;
4259                 break;
4260         }
4261         if (ret)
4262                 goto out;
4263         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4264         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4265                         "Op regs DCBAA ptr = %#016llx", temp_64);
4266         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4267                 "Slot ID %d dcbaa entry @%p = %#016llx",
4268                 udev->slot_id,
4269                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4270                 (unsigned long long)
4271                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4272         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4273                         "Output Context DMA address = %#08llx",
4274                         (unsigned long long)virt_dev->out_ctx->dma);
4275         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4276                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4277         /*
4278          * USB core uses address 1 for the roothubs, so we add one to the
4279          * address given back to us by the HC.
4280          */
4281         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4282                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4283         /* Zero the input context control for later use */
4284         ctrl_ctx->add_flags = 0;
4285         ctrl_ctx->drop_flags = 0;
4286         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4287         udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4288
4289         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4290                        "Internal device address = %d",
4291                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4292 out:
4293         mutex_unlock(&xhci->mutex);
4294         if (command) {
4295                 kfree(command->completion);
4296                 kfree(command);
4297         }
4298         return ret;
4299 }
4300
4301 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4302 {
4303         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4304 }
4305
4306 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4307 {
4308         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4309 }
4310
4311 /*
4312  * Transfer the port index into real index in the HW port status
4313  * registers. Caculate offset between the port's PORTSC register
4314  * and port status base. Divide the number of per port register
4315  * to get the real index. The raw port number bases 1.
4316  */
4317 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4318 {
4319         struct xhci_hub *rhub;
4320
4321         rhub = xhci_get_rhub(hcd);
4322         return rhub->ports[port1 - 1]->hw_portnum + 1;
4323 }
4324
4325 /*
4326  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4327  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4328  */
4329 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4330                         struct usb_device *udev, u16 max_exit_latency)
4331 {
4332         struct xhci_virt_device *virt_dev;
4333         struct xhci_command *command;
4334         struct xhci_input_control_ctx *ctrl_ctx;
4335         struct xhci_slot_ctx *slot_ctx;
4336         unsigned long flags;
4337         int ret;
4338
4339         spin_lock_irqsave(&xhci->lock, flags);
4340
4341         virt_dev = xhci->devs[udev->slot_id];
4342
4343         /*
4344          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4345          * xHC was re-initialized. Exit latency will be set later after
4346          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4347          */
4348
4349         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4350                 spin_unlock_irqrestore(&xhci->lock, flags);
4351                 return 0;
4352         }
4353
4354         /* Attempt to issue an Evaluate Context command to change the MEL. */
4355         command = xhci->lpm_command;
4356         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4357         if (!ctrl_ctx) {
4358                 spin_unlock_irqrestore(&xhci->lock, flags);
4359                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4360                                 __func__);
4361                 return -ENOMEM;
4362         }
4363
4364         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4365         spin_unlock_irqrestore(&xhci->lock, flags);
4366
4367         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4368         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4369         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4370         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4371         slot_ctx->dev_state = 0;
4372
4373         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4374                         "Set up evaluate context for LPM MEL change.");
4375
4376         /* Issue and wait for the evaluate context command. */
4377         ret = xhci_configure_endpoint(xhci, udev, command,
4378                         true, true);
4379
4380         if (!ret) {
4381                 spin_lock_irqsave(&xhci->lock, flags);
4382                 virt_dev->current_mel = max_exit_latency;
4383                 spin_unlock_irqrestore(&xhci->lock, flags);
4384         }
4385         return ret;
4386 }
4387
4388 #ifdef CONFIG_PM
4389
4390 /* BESL to HIRD Encoding array for USB2 LPM */
4391 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4392         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4393
4394 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4395 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4396                                         struct usb_device *udev)
4397 {
4398         int u2del, besl, besl_host;
4399         int besl_device = 0;
4400         u32 field;
4401
4402         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4403         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4404
4405         if (field & USB_BESL_SUPPORT) {
4406                 for (besl_host = 0; besl_host < 16; besl_host++) {
4407                         if (xhci_besl_encoding[besl_host] >= u2del)
4408                                 break;
4409                 }
4410                 /* Use baseline BESL value as default */
4411                 if (field & USB_BESL_BASELINE_VALID)
4412                         besl_device = USB_GET_BESL_BASELINE(field);
4413                 else if (field & USB_BESL_DEEP_VALID)
4414                         besl_device = USB_GET_BESL_DEEP(field);
4415         } else {
4416                 if (u2del <= 50)
4417                         besl_host = 0;
4418                 else
4419                         besl_host = (u2del - 51) / 75 + 1;
4420         }
4421
4422         besl = besl_host + besl_device;
4423         if (besl > 15)
4424                 besl = 15;
4425
4426         return besl;
4427 }
4428
4429 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4430 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4431 {
4432         u32 field;
4433         int l1;
4434         int besld = 0;
4435         int hirdm = 0;
4436
4437         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4438
4439         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4440         l1 = udev->l1_params.timeout / 256;
4441
4442         /* device has preferred BESLD */
4443         if (field & USB_BESL_DEEP_VALID) {
4444                 besld = USB_GET_BESL_DEEP(field);
4445                 hirdm = 1;
4446         }
4447
4448         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4449 }
4450
4451 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4452                         struct usb_device *udev, int enable)
4453 {
4454         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4455         struct xhci_port **ports;
4456         __le32 __iomem  *pm_addr, *hlpm_addr;
4457         u32             pm_val, hlpm_val, field;
4458         unsigned int    port_num;
4459         unsigned long   flags;
4460         int             hird, exit_latency;
4461         int             ret;
4462
4463         if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4464                 return -EPERM;
4465
4466         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4467                         !udev->lpm_capable)
4468                 return -EPERM;
4469
4470         if (!udev->parent || udev->parent->parent ||
4471                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4472                 return -EPERM;
4473
4474         if (udev->usb2_hw_lpm_capable != 1)
4475                 return -EPERM;
4476
4477         spin_lock_irqsave(&xhci->lock, flags);
4478
4479         ports = xhci->usb2_rhub.ports;
4480         port_num = udev->portnum - 1;
4481         pm_addr = ports[port_num]->addr + PORTPMSC;
4482         pm_val = readl(pm_addr);
4483         hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4484
4485         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4486                         enable ? "enable" : "disable", port_num + 1);
4487
4488         if (enable) {
4489                 /* Host supports BESL timeout instead of HIRD */
4490                 if (udev->usb2_hw_lpm_besl_capable) {
4491                         /* if device doesn't have a preferred BESL value use a
4492                          * default one which works with mixed HIRD and BESL
4493                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4494                          */
4495                         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4496                         if ((field & USB_BESL_SUPPORT) &&
4497                             (field & USB_BESL_BASELINE_VALID))
4498                                 hird = USB_GET_BESL_BASELINE(field);
4499                         else
4500                                 hird = udev->l1_params.besl;
4501
4502                         exit_latency = xhci_besl_encoding[hird];
4503                         spin_unlock_irqrestore(&xhci->lock, flags);
4504
4505                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4506                          * input context for link powermanagement evaluate
4507                          * context commands. It is protected by hcd->bandwidth
4508                          * mutex and is shared by all devices. We need to set
4509                          * the max ext latency in USB 2 BESL LPM as well, so
4510                          * use the same mutex and xhci_change_max_exit_latency()
4511                          */
4512                         mutex_lock(hcd->bandwidth_mutex);
4513                         ret = xhci_change_max_exit_latency(xhci, udev,
4514                                                            exit_latency);
4515                         mutex_unlock(hcd->bandwidth_mutex);
4516
4517                         if (ret < 0)
4518                                 return ret;
4519                         spin_lock_irqsave(&xhci->lock, flags);
4520
4521                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4522                         writel(hlpm_val, hlpm_addr);
4523                         /* flush write */
4524                         readl(hlpm_addr);
4525                 } else {
4526                         hird = xhci_calculate_hird_besl(xhci, udev);
4527                 }
4528
4529                 pm_val &= ~PORT_HIRD_MASK;
4530                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4531                 writel(pm_val, pm_addr);
4532                 pm_val = readl(pm_addr);
4533                 pm_val |= PORT_HLE;
4534                 writel(pm_val, pm_addr);
4535                 /* flush write */
4536                 readl(pm_addr);
4537         } else {
4538                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4539                 writel(pm_val, pm_addr);
4540                 /* flush write */
4541                 readl(pm_addr);
4542                 if (udev->usb2_hw_lpm_besl_capable) {
4543                         spin_unlock_irqrestore(&xhci->lock, flags);
4544                         mutex_lock(hcd->bandwidth_mutex);
4545                         xhci_change_max_exit_latency(xhci, udev, 0);
4546                         mutex_unlock(hcd->bandwidth_mutex);
4547                         readl_poll_timeout(ports[port_num]->addr, pm_val,
4548                                            (pm_val & PORT_PLS_MASK) == XDEV_U0,
4549                                            100, 10000);
4550                         return 0;
4551                 }
4552         }
4553
4554         spin_unlock_irqrestore(&xhci->lock, flags);
4555         return 0;
4556 }
4557
4558 /* check if a usb2 port supports a given extened capability protocol
4559  * only USB2 ports extended protocol capability values are cached.
4560  * Return 1 if capability is supported
4561  */
4562 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4563                                            unsigned capability)
4564 {
4565         u32 port_offset, port_count;
4566         int i;
4567
4568         for (i = 0; i < xhci->num_ext_caps; i++) {
4569                 if (xhci->ext_caps[i] & capability) {
4570                         /* port offsets starts at 1 */
4571                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4572                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4573                         if (port >= port_offset &&
4574                             port < port_offset + port_count)
4575                                 return 1;
4576                 }
4577         }
4578         return 0;
4579 }
4580
4581 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4582 {
4583         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4584         int             portnum = udev->portnum - 1;
4585
4586         if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4587                 return 0;
4588
4589         /* we only support lpm for non-hub device connected to root hub yet */
4590         if (!udev->parent || udev->parent->parent ||
4591                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4592                 return 0;
4593
4594         if (xhci->hw_lpm_support == 1 &&
4595                         xhci_check_usb2_port_capability(
4596                                 xhci, portnum, XHCI_HLC)) {
4597                 udev->usb2_hw_lpm_capable = 1;
4598                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4599                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4600                 if (xhci_check_usb2_port_capability(xhci, portnum,
4601                                         XHCI_BLC))
4602                         udev->usb2_hw_lpm_besl_capable = 1;
4603         }
4604
4605         return 0;
4606 }
4607
4608 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4609
4610 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4611 static unsigned long long xhci_service_interval_to_ns(
4612                 struct usb_endpoint_descriptor *desc)
4613 {
4614         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4615 }
4616
4617 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4618                 enum usb3_link_state state)
4619 {
4620         unsigned long long sel;
4621         unsigned long long pel;
4622         unsigned int max_sel_pel;
4623         char *state_name;
4624
4625         switch (state) {
4626         case USB3_LPM_U1:
4627                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4628                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4629                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4630                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4631                 state_name = "U1";
4632                 break;
4633         case USB3_LPM_U2:
4634                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4635                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4636                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4637                 state_name = "U2";
4638                 break;
4639         default:
4640                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4641                                 __func__);
4642                 return USB3_LPM_DISABLED;
4643         }
4644
4645         if (sel <= max_sel_pel && pel <= max_sel_pel)
4646                 return USB3_LPM_DEVICE_INITIATED;
4647
4648         if (sel > max_sel_pel)
4649                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4650                                 "due to long SEL %llu ms\n",
4651                                 state_name, sel);
4652         else
4653                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4654                                 "due to long PEL %llu ms\n",
4655                                 state_name, pel);
4656         return USB3_LPM_DISABLED;
4657 }
4658
4659 /* The U1 timeout should be the maximum of the following values:
4660  *  - For control endpoints, U1 system exit latency (SEL) * 3
4661  *  - For bulk endpoints, U1 SEL * 5
4662  *  - For interrupt endpoints:
4663  *    - Notification EPs, U1 SEL * 3
4664  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4665  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4666  */
4667 static unsigned long long xhci_calculate_intel_u1_timeout(
4668                 struct usb_device *udev,
4669                 struct usb_endpoint_descriptor *desc)
4670 {
4671         unsigned long long timeout_ns;
4672         int ep_type;
4673         int intr_type;
4674
4675         ep_type = usb_endpoint_type(desc);
4676         switch (ep_type) {
4677         case USB_ENDPOINT_XFER_CONTROL:
4678                 timeout_ns = udev->u1_params.sel * 3;
4679                 break;
4680         case USB_ENDPOINT_XFER_BULK:
4681                 timeout_ns = udev->u1_params.sel * 5;
4682                 break;
4683         case USB_ENDPOINT_XFER_INT:
4684                 intr_type = usb_endpoint_interrupt_type(desc);
4685                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4686                         timeout_ns = udev->u1_params.sel * 3;
4687                         break;
4688                 }
4689                 /* Otherwise the calculation is the same as isoc eps */
4690                 fallthrough;
4691         case USB_ENDPOINT_XFER_ISOC:
4692                 timeout_ns = xhci_service_interval_to_ns(desc);
4693                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4694                 if (timeout_ns < udev->u1_params.sel * 2)
4695                         timeout_ns = udev->u1_params.sel * 2;
4696                 break;
4697         default:
4698                 return 0;
4699         }
4700
4701         return timeout_ns;
4702 }
4703
4704 /* Returns the hub-encoded U1 timeout value. */
4705 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4706                 struct usb_device *udev,
4707                 struct usb_endpoint_descriptor *desc)
4708 {
4709         unsigned long long timeout_ns;
4710
4711         /* Prevent U1 if service interval is shorter than U1 exit latency */
4712         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4713                 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4714                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4715                         return USB3_LPM_DISABLED;
4716                 }
4717         }
4718
4719         if (xhci->quirks & XHCI_INTEL_HOST)
4720                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4721         else
4722                 timeout_ns = udev->u1_params.sel;
4723
4724         /* The U1 timeout is encoded in 1us intervals.
4725          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4726          */
4727         if (timeout_ns == USB3_LPM_DISABLED)
4728                 timeout_ns = 1;
4729         else
4730                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4731
4732         /* If the necessary timeout value is bigger than what we can set in the
4733          * USB 3.0 hub, we have to disable hub-initiated U1.
4734          */
4735         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4736                 return timeout_ns;
4737         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4738                         "due to long timeout %llu ms\n", timeout_ns);
4739         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4740 }
4741
4742 /* The U2 timeout should be the maximum of:
4743  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4744  *  - largest bInterval of any active periodic endpoint (to avoid going
4745  *    into lower power link states between intervals).
4746  *  - the U2 Exit Latency of the device
4747  */
4748 static unsigned long long xhci_calculate_intel_u2_timeout(
4749                 struct usb_device *udev,
4750                 struct usb_endpoint_descriptor *desc)
4751 {
4752         unsigned long long timeout_ns;
4753         unsigned long long u2_del_ns;
4754
4755         timeout_ns = 10 * 1000 * 1000;
4756
4757         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4758                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4759                 timeout_ns = xhci_service_interval_to_ns(desc);
4760
4761         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4762         if (u2_del_ns > timeout_ns)
4763                 timeout_ns = u2_del_ns;
4764
4765         return timeout_ns;
4766 }
4767
4768 /* Returns the hub-encoded U2 timeout value. */
4769 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4770                 struct usb_device *udev,
4771                 struct usb_endpoint_descriptor *desc)
4772 {
4773         unsigned long long timeout_ns;
4774
4775         /* Prevent U2 if service interval is shorter than U2 exit latency */
4776         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4777                 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4778                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4779                         return USB3_LPM_DISABLED;
4780                 }
4781         }
4782
4783         if (xhci->quirks & XHCI_INTEL_HOST)
4784                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4785         else
4786                 timeout_ns = udev->u2_params.sel;
4787
4788         /* The U2 timeout is encoded in 256us intervals */
4789         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4790         /* If the necessary timeout value is bigger than what we can set in the
4791          * USB 3.0 hub, we have to disable hub-initiated U2.
4792          */
4793         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4794                 return timeout_ns;
4795         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4796                         "due to long timeout %llu ms\n", timeout_ns);
4797         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4798 }
4799
4800 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4801                 struct usb_device *udev,
4802                 struct usb_endpoint_descriptor *desc,
4803                 enum usb3_link_state state,
4804                 u16 *timeout)
4805 {
4806         if (state == USB3_LPM_U1)
4807                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4808         else if (state == USB3_LPM_U2)
4809                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4810
4811         return USB3_LPM_DISABLED;
4812 }
4813
4814 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4815                 struct usb_device *udev,
4816                 struct usb_endpoint_descriptor *desc,
4817                 enum usb3_link_state state,
4818                 u16 *timeout)
4819 {
4820         u16 alt_timeout;
4821
4822         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4823                 desc, state, timeout);
4824
4825         /* If we found we can't enable hub-initiated LPM, and
4826          * the U1 or U2 exit latency was too high to allow
4827          * device-initiated LPM as well, then we will disable LPM
4828          * for this device, so stop searching any further.
4829          */
4830         if (alt_timeout == USB3_LPM_DISABLED) {
4831                 *timeout = alt_timeout;
4832                 return -E2BIG;
4833         }
4834         if (alt_timeout > *timeout)
4835                 *timeout = alt_timeout;
4836         return 0;
4837 }
4838
4839 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4840                 struct usb_device *udev,
4841                 struct usb_host_interface *alt,
4842                 enum usb3_link_state state,
4843                 u16 *timeout)
4844 {
4845         int j;
4846
4847         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4848                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4849                                         &alt->endpoint[j].desc, state, timeout))
4850                         return -E2BIG;
4851         }
4852         return 0;
4853 }
4854
4855 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4856                 enum usb3_link_state state)
4857 {
4858         struct usb_device *parent;
4859         unsigned int num_hubs;
4860
4861         if (state == USB3_LPM_U2)
4862                 return 0;
4863
4864         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4865         for (parent = udev->parent, num_hubs = 0; parent->parent;
4866                         parent = parent->parent)
4867                 num_hubs++;
4868
4869         if (num_hubs < 2)
4870                 return 0;
4871
4872         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4873                         " below second-tier hub.\n");
4874         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4875                         "to decrease power consumption.\n");
4876         return -E2BIG;
4877 }
4878
4879 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4880                 struct usb_device *udev,
4881                 enum usb3_link_state state)
4882 {
4883         if (xhci->quirks & XHCI_INTEL_HOST)
4884                 return xhci_check_intel_tier_policy(udev, state);
4885         else
4886                 return 0;
4887 }
4888
4889 /* Returns the U1 or U2 timeout that should be enabled.
4890  * If the tier check or timeout setting functions return with a non-zero exit
4891  * code, that means the timeout value has been finalized and we shouldn't look
4892  * at any more endpoints.
4893  */
4894 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4895                         struct usb_device *udev, enum usb3_link_state state)
4896 {
4897         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4898         struct usb_host_config *config;
4899         char *state_name;
4900         int i;
4901         u16 timeout = USB3_LPM_DISABLED;
4902
4903         if (state == USB3_LPM_U1)
4904                 state_name = "U1";
4905         else if (state == USB3_LPM_U2)
4906                 state_name = "U2";
4907         else {
4908                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4909                                 state);
4910                 return timeout;
4911         }
4912
4913         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4914                 return timeout;
4915
4916         /* Gather some information about the currently installed configuration
4917          * and alternate interface settings.
4918          */
4919         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4920                         state, &timeout))
4921                 return timeout;
4922
4923         config = udev->actconfig;
4924         if (!config)
4925                 return timeout;
4926
4927         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4928                 struct usb_driver *driver;
4929                 struct usb_interface *intf = config->interface[i];
4930
4931                 if (!intf)
4932                         continue;
4933
4934                 /* Check if any currently bound drivers want hub-initiated LPM
4935                  * disabled.
4936                  */
4937                 if (intf->dev.driver) {
4938                         driver = to_usb_driver(intf->dev.driver);
4939                         if (driver && driver->disable_hub_initiated_lpm) {
4940                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4941                                         state_name, driver->name);
4942                                 timeout = xhci_get_timeout_no_hub_lpm(udev,
4943                                                                       state);
4944                                 if (timeout == USB3_LPM_DISABLED)
4945                                         return timeout;
4946                         }
4947                 }
4948
4949                 /* Not sure how this could happen... */
4950                 if (!intf->cur_altsetting)
4951                         continue;
4952
4953                 if (xhci_update_timeout_for_interface(xhci, udev,
4954                                         intf->cur_altsetting,
4955                                         state, &timeout))
4956                         return timeout;
4957         }
4958         return timeout;
4959 }
4960
4961 static int calculate_max_exit_latency(struct usb_device *udev,
4962                 enum usb3_link_state state_changed,
4963                 u16 hub_encoded_timeout)
4964 {
4965         unsigned long long u1_mel_us = 0;
4966         unsigned long long u2_mel_us = 0;
4967         unsigned long long mel_us = 0;
4968         bool disabling_u1;
4969         bool disabling_u2;
4970         bool enabling_u1;
4971         bool enabling_u2;
4972
4973         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4974                         hub_encoded_timeout == USB3_LPM_DISABLED);
4975         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4976                         hub_encoded_timeout == USB3_LPM_DISABLED);
4977
4978         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4979                         hub_encoded_timeout != USB3_LPM_DISABLED);
4980         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4981                         hub_encoded_timeout != USB3_LPM_DISABLED);
4982
4983         /* If U1 was already enabled and we're not disabling it,
4984          * or we're going to enable U1, account for the U1 max exit latency.
4985          */
4986         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4987                         enabling_u1)
4988                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4989         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4990                         enabling_u2)
4991                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4992
4993         if (u1_mel_us > u2_mel_us)
4994                 mel_us = u1_mel_us;
4995         else
4996                 mel_us = u2_mel_us;
4997         /* xHCI host controller max exit latency field is only 16 bits wide. */
4998         if (mel_us > MAX_EXIT) {
4999                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5000                                 "is too big.\n", mel_us);
5001                 return -E2BIG;
5002         }
5003         return mel_us;
5004 }
5005
5006 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5007 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5008                         struct usb_device *udev, enum usb3_link_state state)
5009 {
5010         struct xhci_hcd *xhci;
5011         u16 hub_encoded_timeout;
5012         int mel;
5013         int ret;
5014
5015         xhci = hcd_to_xhci(hcd);
5016         /* The LPM timeout values are pretty host-controller specific, so don't
5017          * enable hub-initiated timeouts unless the vendor has provided
5018          * information about their timeout algorithm.
5019          */
5020         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5021                         !xhci->devs[udev->slot_id])
5022                 return USB3_LPM_DISABLED;
5023
5024         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5025         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5026         if (mel < 0) {
5027                 /* Max Exit Latency is too big, disable LPM. */
5028                 hub_encoded_timeout = USB3_LPM_DISABLED;
5029                 mel = 0;
5030         }
5031
5032         ret = xhci_change_max_exit_latency(xhci, udev, mel);
5033         if (ret)
5034                 return ret;
5035         return hub_encoded_timeout;
5036 }
5037
5038 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5039                         struct usb_device *udev, enum usb3_link_state state)
5040 {
5041         struct xhci_hcd *xhci;
5042         u16 mel;
5043
5044         xhci = hcd_to_xhci(hcd);
5045         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5046                         !xhci->devs[udev->slot_id])
5047                 return 0;
5048
5049         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5050         return xhci_change_max_exit_latency(xhci, udev, mel);
5051 }
5052 #else /* CONFIG_PM */
5053
5054 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5055                                 struct usb_device *udev, int enable)
5056 {
5057         return 0;
5058 }
5059
5060 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5061 {
5062         return 0;
5063 }
5064
5065 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5066                         struct usb_device *udev, enum usb3_link_state state)
5067 {
5068         return USB3_LPM_DISABLED;
5069 }
5070
5071 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5072                         struct usb_device *udev, enum usb3_link_state state)
5073 {
5074         return 0;
5075 }
5076 #endif  /* CONFIG_PM */
5077
5078 /*-------------------------------------------------------------------------*/
5079
5080 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5081  * internal data structures for the device.
5082  */
5083 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5084                         struct usb_tt *tt, gfp_t mem_flags)
5085 {
5086         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5087         struct xhci_virt_device *vdev;
5088         struct xhci_command *config_cmd;
5089         struct xhci_input_control_ctx *ctrl_ctx;
5090         struct xhci_slot_ctx *slot_ctx;
5091         unsigned long flags;
5092         unsigned think_time;
5093         int ret;
5094
5095         /* Ignore root hubs */
5096         if (!hdev->parent)
5097                 return 0;
5098
5099         vdev = xhci->devs[hdev->slot_id];
5100         if (!vdev) {
5101                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5102                 return -EINVAL;
5103         }
5104
5105         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5106         if (!config_cmd)
5107                 return -ENOMEM;
5108
5109         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5110         if (!ctrl_ctx) {
5111                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5112                                 __func__);
5113                 xhci_free_command(xhci, config_cmd);
5114                 return -ENOMEM;
5115         }
5116
5117         spin_lock_irqsave(&xhci->lock, flags);
5118         if (hdev->speed == USB_SPEED_HIGH &&
5119                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5120                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5121                 xhci_free_command(xhci, config_cmd);
5122                 spin_unlock_irqrestore(&xhci->lock, flags);
5123                 return -ENOMEM;
5124         }
5125
5126         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5127         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5128         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5129         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5130         /*
5131          * refer to section 6.2.2: MTT should be 0 for full speed hub,
5132          * but it may be already set to 1 when setup an xHCI virtual
5133          * device, so clear it anyway.
5134          */
5135         if (tt->multi)
5136                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5137         else if (hdev->speed == USB_SPEED_FULL)
5138                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5139
5140         if (xhci->hci_version > 0x95) {
5141                 xhci_dbg(xhci, "xHCI version %x needs hub "
5142                                 "TT think time and number of ports\n",
5143                                 (unsigned int) xhci->hci_version);
5144                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5145                 /* Set TT think time - convert from ns to FS bit times.
5146                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
5147                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
5148                  *
5149                  * xHCI 1.0: this field shall be 0 if the device is not a
5150                  * High-spped hub.
5151                  */
5152                 think_time = tt->think_time;
5153                 if (think_time != 0)
5154                         think_time = (think_time / 666) - 1;
5155                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5156                         slot_ctx->tt_info |=
5157                                 cpu_to_le32(TT_THINK_TIME(think_time));
5158         } else {
5159                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5160                                 "TT think time or number of ports\n",
5161                                 (unsigned int) xhci->hci_version);
5162         }
5163         slot_ctx->dev_state = 0;
5164         spin_unlock_irqrestore(&xhci->lock, flags);
5165
5166         xhci_dbg(xhci, "Set up %s for hub device.\n",
5167                         (xhci->hci_version > 0x95) ?
5168                         "configure endpoint" : "evaluate context");
5169
5170         /* Issue and wait for the configure endpoint or
5171          * evaluate context command.
5172          */
5173         if (xhci->hci_version > 0x95)
5174                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5175                                 false, false);
5176         else
5177                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5178                                 true, false);
5179
5180         xhci_free_command(xhci, config_cmd);
5181         return ret;
5182 }
5183
5184 static int xhci_get_frame(struct usb_hcd *hcd)
5185 {
5186         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5187         /* EHCI mods by the periodic size.  Why? */
5188         return readl(&xhci->run_regs->microframe_index) >> 3;
5189 }
5190
5191 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5192 {
5193         struct xhci_hcd         *xhci;
5194         /*
5195          * TODO: Check with DWC3 clients for sysdev according to
5196          * quirks
5197          */
5198         struct device           *dev = hcd->self.sysdev;
5199         unsigned int            minor_rev;
5200         int                     retval;
5201
5202         /* Accept arbitrarily long scatter-gather lists */
5203         hcd->self.sg_tablesize = ~0;
5204
5205         /* support to build packet from discontinuous buffers */
5206         hcd->self.no_sg_constraint = 1;
5207
5208         /* XHCI controllers don't stop the ep queue on short packets :| */
5209         hcd->self.no_stop_on_short = 1;
5210
5211         xhci = hcd_to_xhci(hcd);
5212
5213         if (usb_hcd_is_primary_hcd(hcd)) {
5214                 xhci->main_hcd = hcd;
5215                 xhci->usb2_rhub.hcd = hcd;
5216                 /* Mark the first roothub as being USB 2.0.
5217                  * The xHCI driver will register the USB 3.0 roothub.
5218                  */
5219                 hcd->speed = HCD_USB2;
5220                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5221                 /*
5222                  * USB 2.0 roothub under xHCI has an integrated TT,
5223                  * (rate matching hub) as opposed to having an OHCI/UHCI
5224                  * companion controller.
5225                  */
5226                 hcd->has_tt = 1;
5227         } else {
5228                 /*
5229                  * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5230                  * should return 0x31 for sbrn, or that the minor revision
5231                  * is a two digit BCD containig minor and sub-minor numbers.
5232                  * This was later clarified in xHCI 1.2.
5233                  *
5234                  * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5235                  * minor revision set to 0x1 instead of 0x10.
5236                  */
5237                 if (xhci->usb3_rhub.min_rev == 0x1)
5238                         minor_rev = 1;
5239                 else
5240                         minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5241
5242                 switch (minor_rev) {
5243                 case 2:
5244                         hcd->speed = HCD_USB32;
5245                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5246                         hcd->self.root_hub->rx_lanes = 2;
5247                         hcd->self.root_hub->tx_lanes = 2;
5248                         hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5249                         break;
5250                 case 1:
5251                         hcd->speed = HCD_USB31;
5252                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5253                         hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5254                         break;
5255                 }
5256                 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5257                           minor_rev,
5258                           minor_rev ? "Enhanced " : "");
5259
5260                 xhci->usb3_rhub.hcd = hcd;
5261                 /* xHCI private pointer was set in xhci_pci_probe for the second
5262                  * registered roothub.
5263                  */
5264                 return 0;
5265         }
5266
5267         mutex_init(&xhci->mutex);
5268         xhci->cap_regs = hcd->regs;
5269         xhci->op_regs = hcd->regs +
5270                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5271         xhci->run_regs = hcd->regs +
5272                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5273         /* Cache read-only capability registers */
5274         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5275         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5276         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5277         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5278         xhci->hci_version = HC_VERSION(xhci->hcc_params);
5279         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5280         if (xhci->hci_version > 0x100)
5281                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5282
5283         xhci->quirks |= quirks;
5284
5285         get_quirks(dev, xhci);
5286
5287         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5288          * success event after a short transfer. This quirk will ignore such
5289          * spurious event.
5290          */
5291         if (xhci->hci_version > 0x96)
5292                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5293
5294         /* Make sure the HC is halted. */
5295         retval = xhci_halt(xhci);
5296         if (retval)
5297                 return retval;
5298
5299         xhci_zero_64b_regs(xhci);
5300
5301         xhci_dbg(xhci, "Resetting HCD\n");
5302         /* Reset the internal HC memory state and registers. */
5303         retval = xhci_reset(xhci);
5304         if (retval)
5305                 return retval;
5306         xhci_dbg(xhci, "Reset complete\n");
5307
5308         /*
5309          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5310          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5311          * address memory pointers actually. So, this driver clears the AC64
5312          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5313          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5314          */
5315         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5316                 xhci->hcc_params &= ~BIT(0);
5317
5318         /* Set dma_mask and coherent_dma_mask to 64-bits,
5319          * if xHC supports 64-bit addressing */
5320         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5321                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5322                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5323                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5324         } else {
5325                 /*
5326                  * This is to avoid error in cases where a 32-bit USB
5327                  * controller is used on a 64-bit capable system.
5328                  */
5329                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5330                 if (retval)
5331                         return retval;
5332                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5333                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5334         }
5335
5336         xhci_dbg(xhci, "Calling HCD init\n");
5337         /* Initialize HCD and host controller data structures. */
5338         retval = xhci_init(hcd);
5339         if (retval)
5340                 return retval;
5341         xhci_dbg(xhci, "Called HCD init\n");
5342
5343         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5344                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5345
5346         return 0;
5347 }
5348 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5349
5350 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5351                 struct usb_host_endpoint *ep)
5352 {
5353         struct xhci_hcd *xhci;
5354         struct usb_device *udev;
5355         unsigned int slot_id;
5356         unsigned int ep_index;
5357         unsigned long flags;
5358
5359         xhci = hcd_to_xhci(hcd);
5360
5361         spin_lock_irqsave(&xhci->lock, flags);
5362         udev = (struct usb_device *)ep->hcpriv;
5363         slot_id = udev->slot_id;
5364         ep_index = xhci_get_endpoint_index(&ep->desc);
5365
5366         xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5367         xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5368         spin_unlock_irqrestore(&xhci->lock, flags);
5369 }
5370
5371 static const struct hc_driver xhci_hc_driver = {
5372         .description =          "xhci-hcd",
5373         .product_desc =         "xHCI Host Controller",
5374         .hcd_priv_size =        sizeof(struct xhci_hcd),
5375
5376         /*
5377          * generic hardware linkage
5378          */
5379         .irq =                  xhci_irq,
5380         .flags =                HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5381                                 HCD_BH,
5382
5383         /*
5384          * basic lifecycle operations
5385          */
5386         .reset =                NULL, /* set in xhci_init_driver() */
5387         .start =                xhci_run,
5388         .stop =                 xhci_stop,
5389         .shutdown =             xhci_shutdown,
5390
5391         /*
5392          * managing i/o requests and associated device resources
5393          */
5394         .map_urb_for_dma =      xhci_map_urb_for_dma,
5395         .unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5396         .urb_enqueue =          xhci_urb_enqueue,
5397         .urb_dequeue =          xhci_urb_dequeue,
5398         .alloc_dev =            xhci_alloc_dev,
5399         .free_dev =             xhci_free_dev,
5400         .alloc_streams =        xhci_alloc_streams,
5401         .free_streams =         xhci_free_streams,
5402         .add_endpoint =         xhci_add_endpoint,
5403         .drop_endpoint =        xhci_drop_endpoint,
5404         .endpoint_disable =     xhci_endpoint_disable,
5405         .endpoint_reset =       xhci_endpoint_reset,
5406         .check_bandwidth =      xhci_check_bandwidth,
5407         .reset_bandwidth =      xhci_reset_bandwidth,
5408         .address_device =       xhci_address_device,
5409         .enable_device =        xhci_enable_device,
5410         .update_hub_device =    xhci_update_hub_device,
5411         .reset_device =         xhci_discover_or_reset_device,
5412
5413         /*
5414          * scheduling support
5415          */
5416         .get_frame_number =     xhci_get_frame,
5417
5418         /*
5419          * root hub support
5420          */
5421         .hub_control =          xhci_hub_control,
5422         .hub_status_data =      xhci_hub_status_data,
5423         .bus_suspend =          xhci_bus_suspend,
5424         .bus_resume =           xhci_bus_resume,
5425         .get_resuming_ports =   xhci_get_resuming_ports,
5426
5427         /*
5428          * call back when device connected and addressed
5429          */
5430         .update_device =        xhci_update_device,
5431         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5432         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5433         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5434         .find_raw_port_number = xhci_find_raw_port_number,
5435         .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5436 };
5437
5438 void xhci_init_driver(struct hc_driver *drv,
5439                       const struct xhci_driver_overrides *over)
5440 {
5441         BUG_ON(!over);
5442
5443         /* Copy the generic table to drv then apply the overrides */
5444         *drv = xhci_hc_driver;
5445
5446         if (over) {
5447                 drv->hcd_priv_size += over->extra_priv_size;
5448                 if (over->reset)
5449                         drv->reset = over->reset;
5450                 if (over->start)
5451                         drv->start = over->start;
5452                 if (over->add_endpoint)
5453                         drv->add_endpoint = over->add_endpoint;
5454                 if (over->drop_endpoint)
5455                         drv->drop_endpoint = over->drop_endpoint;
5456                 if (over->check_bandwidth)
5457                         drv->check_bandwidth = over->check_bandwidth;
5458                 if (over->reset_bandwidth)
5459                         drv->reset_bandwidth = over->reset_bandwidth;
5460         }
5461 }
5462 EXPORT_SYMBOL_GPL(xhci_init_driver);
5463
5464 MODULE_DESCRIPTION(DRIVER_DESC);
5465 MODULE_AUTHOR(DRIVER_AUTHOR);
5466 MODULE_LICENSE("GPL");
5467
5468 static int __init xhci_hcd_init(void)
5469 {
5470         /*
5471          * Check the compiler generated sizes of structures that must be laid
5472          * out in specific ways for hardware access.
5473          */
5474         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5475         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5476         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5477         /* xhci_device_control has eight fields, and also
5478          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5479          */
5480         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5481         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5482         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5483         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5484         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5485         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5486         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5487
5488         if (usb_disabled())
5489                 return -ENODEV;
5490
5491         xhci_debugfs_create_root();
5492
5493         return 0;
5494 }
5495
5496 /*
5497  * If an init function is provided, an exit function must also be provided
5498  * to allow module unload.
5499  */
5500 static void __exit xhci_hcd_fini(void)
5501 {
5502         xhci_debugfs_remove_root();
5503 }
5504
5505 module_init(xhci_hcd_init);
5506 module_exit(xhci_hcd_fini);