Linux 3.14.25
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37
38 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
39 static int link_quirk;
40 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
41 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
42
43 static unsigned int quirks;
44 module_param(quirks, uint, S_IRUGO);
45 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
46
47 /* TODO: copied from ehci-hcd.c - can this be refactored? */
48 /*
49  * xhci_handshake - spin reading hc until handshake completes or fails
50  * @ptr: address of hc register to be read
51  * @mask: bits to look at in result of read
52  * @done: value of those bits when handshake succeeds
53  * @usec: timeout in microseconds
54  *
55  * Returns negative errno, or zero on success
56  *
57  * Success happens when the "mask" bits have the specified value (hardware
58  * handshake done).  There are two failure modes:  "usec" have passed (major
59  * hardware flakeout), or the register reads as all-ones (hardware removed).
60  */
61 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
62                       u32 mask, u32 done, int usec)
63 {
64         u32     result;
65
66         do {
67                 result = readl(ptr);
68                 if (result == ~(u32)0)          /* card removed */
69                         return -ENODEV;
70                 result &= mask;
71                 if (result == done)
72                         return 0;
73                 udelay(1);
74                 usec--;
75         } while (usec > 0);
76         return -ETIMEDOUT;
77 }
78
79 /*
80  * Disable interrupts and begin the xHCI halting process.
81  */
82 void xhci_quiesce(struct xhci_hcd *xhci)
83 {
84         u32 halted;
85         u32 cmd;
86         u32 mask;
87
88         mask = ~(XHCI_IRQS);
89         halted = readl(&xhci->op_regs->status) & STS_HALT;
90         if (!halted)
91                 mask &= ~CMD_RUN;
92
93         cmd = readl(&xhci->op_regs->command);
94         cmd &= mask;
95         writel(cmd, &xhci->op_regs->command);
96 }
97
98 /*
99  * Force HC into halt state.
100  *
101  * Disable any IRQs and clear the run/stop bit.
102  * HC will complete any current and actively pipelined transactions, and
103  * should halt within 16 ms of the run/stop bit being cleared.
104  * Read HC Halted bit in the status register to see when the HC is finished.
105  */
106 int xhci_halt(struct xhci_hcd *xhci)
107 {
108         int ret;
109         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
110         xhci_quiesce(xhci);
111
112         ret = xhci_handshake(xhci, &xhci->op_regs->status,
113                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
114         if (!ret) {
115                 xhci->xhc_state |= XHCI_STATE_HALTED;
116                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
117         } else
118                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
119                                 XHCI_MAX_HALT_USEC);
120         return ret;
121 }
122
123 /*
124  * Set the run bit and wait for the host to be running.
125  */
126 static int xhci_start(struct xhci_hcd *xhci)
127 {
128         u32 temp;
129         int ret;
130
131         temp = readl(&xhci->op_regs->command);
132         temp |= (CMD_RUN);
133         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
134                         temp);
135         writel(temp, &xhci->op_regs->command);
136
137         /*
138          * Wait for the HCHalted Status bit to be 0 to indicate the host is
139          * running.
140          */
141         ret = xhci_handshake(xhci, &xhci->op_regs->status,
142                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
143         if (ret == -ETIMEDOUT)
144                 xhci_err(xhci, "Host took too long to start, "
145                                 "waited %u microseconds.\n",
146                                 XHCI_MAX_HALT_USEC);
147         if (!ret)
148                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
149         return ret;
150 }
151
152 /*
153  * Reset a halted HC.
154  *
155  * This resets pipelines, timers, counters, state machines, etc.
156  * Transactions will be terminated immediately, and operational registers
157  * will be set to their defaults.
158  */
159 int xhci_reset(struct xhci_hcd *xhci)
160 {
161         u32 command;
162         u32 state;
163         int ret, i;
164
165         state = readl(&xhci->op_regs->status);
166         if ((state & STS_HALT) == 0) {
167                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
168                 return 0;
169         }
170
171         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
172         command = readl(&xhci->op_regs->command);
173         command |= CMD_RESET;
174         writel(command, &xhci->op_regs->command);
175
176         ret = xhci_handshake(xhci, &xhci->op_regs->command,
177                         CMD_RESET, 0, 10 * 1000 * 1000);
178         if (ret)
179                 return ret;
180
181         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
182                          "Wait for controller to be ready for doorbell rings");
183         /*
184          * xHCI cannot write to any doorbells or operational registers other
185          * than status until the "Controller Not Ready" flag is cleared.
186          */
187         ret = xhci_handshake(xhci, &xhci->op_regs->status,
188                         STS_CNR, 0, 10 * 1000 * 1000);
189
190         for (i = 0; i < 2; ++i) {
191                 xhci->bus_state[i].port_c_suspend = 0;
192                 xhci->bus_state[i].suspended_ports = 0;
193                 xhci->bus_state[i].resuming_ports = 0;
194         }
195
196         return ret;
197 }
198
199 #ifdef CONFIG_PCI
200 static int xhci_free_msi(struct xhci_hcd *xhci)
201 {
202         int i;
203
204         if (!xhci->msix_entries)
205                 return -EINVAL;
206
207         for (i = 0; i < xhci->msix_count; i++)
208                 if (xhci->msix_entries[i].vector)
209                         free_irq(xhci->msix_entries[i].vector,
210                                         xhci_to_hcd(xhci));
211         return 0;
212 }
213
214 /*
215  * Set up MSI
216  */
217 static int xhci_setup_msi(struct xhci_hcd *xhci)
218 {
219         int ret;
220         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
221
222         ret = pci_enable_msi(pdev);
223         if (ret) {
224                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
225                                 "failed to allocate MSI entry");
226                 return ret;
227         }
228
229         ret = request_irq(pdev->irq, xhci_msi_irq,
230                                 0, "xhci_hcd", xhci_to_hcd(xhci));
231         if (ret) {
232                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
233                                 "disable MSI interrupt");
234                 pci_disable_msi(pdev);
235         }
236
237         return ret;
238 }
239
240 /*
241  * Free IRQs
242  * free all IRQs request
243  */
244 static void xhci_free_irq(struct xhci_hcd *xhci)
245 {
246         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
247         int ret;
248
249         /* return if using legacy interrupt */
250         if (xhci_to_hcd(xhci)->irq > 0)
251                 return;
252
253         ret = xhci_free_msi(xhci);
254         if (!ret)
255                 return;
256         if (pdev->irq > 0)
257                 free_irq(pdev->irq, xhci_to_hcd(xhci));
258
259         return;
260 }
261
262 /*
263  * Set up MSI-X
264  */
265 static int xhci_setup_msix(struct xhci_hcd *xhci)
266 {
267         int i, ret = 0;
268         struct usb_hcd *hcd = xhci_to_hcd(xhci);
269         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
270
271         /*
272          * calculate number of msi-x vectors supported.
273          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
274          *   with max number of interrupters based on the xhci HCSPARAMS1.
275          * - num_online_cpus: maximum msi-x vectors per CPUs core.
276          *   Add additional 1 vector to ensure always available interrupt.
277          */
278         xhci->msix_count = min(num_online_cpus() + 1,
279                                 HCS_MAX_INTRS(xhci->hcs_params1));
280
281         xhci->msix_entries =
282                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
283                                 GFP_KERNEL);
284         if (!xhci->msix_entries) {
285                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
286                 return -ENOMEM;
287         }
288
289         for (i = 0; i < xhci->msix_count; i++) {
290                 xhci->msix_entries[i].entry = i;
291                 xhci->msix_entries[i].vector = 0;
292         }
293
294         ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
295         if (ret) {
296                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
297                                 "Failed to enable MSI-X");
298                 goto free_entries;
299         }
300
301         for (i = 0; i < xhci->msix_count; i++) {
302                 ret = request_irq(xhci->msix_entries[i].vector,
303                                 xhci_msi_irq,
304                                 0, "xhci_hcd", xhci_to_hcd(xhci));
305                 if (ret)
306                         goto disable_msix;
307         }
308
309         hcd->msix_enabled = 1;
310         return ret;
311
312 disable_msix:
313         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
314         xhci_free_irq(xhci);
315         pci_disable_msix(pdev);
316 free_entries:
317         kfree(xhci->msix_entries);
318         xhci->msix_entries = NULL;
319         return ret;
320 }
321
322 /* Free any IRQs and disable MSI-X */
323 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
324 {
325         struct usb_hcd *hcd = xhci_to_hcd(xhci);
326         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327
328         if (xhci->quirks & XHCI_PLAT)
329                 return;
330
331         xhci_free_irq(xhci);
332
333         if (xhci->msix_entries) {
334                 pci_disable_msix(pdev);
335                 kfree(xhci->msix_entries);
336                 xhci->msix_entries = NULL;
337         } else {
338                 pci_disable_msi(pdev);
339         }
340
341         hcd->msix_enabled = 0;
342         return;
343 }
344
345 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
346 {
347         int i;
348
349         if (xhci->msix_entries) {
350                 for (i = 0; i < xhci->msix_count; i++)
351                         synchronize_irq(xhci->msix_entries[i].vector);
352         }
353 }
354
355 static int xhci_try_enable_msi(struct usb_hcd *hcd)
356 {
357         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
358         struct pci_dev  *pdev;
359         int ret;
360
361         /* The xhci platform device has set up IRQs through usb_add_hcd. */
362         if (xhci->quirks & XHCI_PLAT)
363                 return 0;
364
365         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
366         /*
367          * Some Fresco Logic host controllers advertise MSI, but fail to
368          * generate interrupts.  Don't even try to enable MSI.
369          */
370         if (xhci->quirks & XHCI_BROKEN_MSI)
371                 goto legacy_irq;
372
373         /* unregister the legacy interrupt */
374         if (hcd->irq)
375                 free_irq(hcd->irq, hcd);
376         hcd->irq = 0;
377
378         ret = xhci_setup_msix(xhci);
379         if (ret)
380                 /* fall back to msi*/
381                 ret = xhci_setup_msi(xhci);
382
383         if (!ret)
384                 /* hcd->irq is 0, we have MSI */
385                 return 0;
386
387         if (!pdev->irq) {
388                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
389                 return -EINVAL;
390         }
391
392  legacy_irq:
393         /* fall back to legacy interrupt*/
394         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
395                         hcd->irq_descr, hcd);
396         if (ret) {
397                 xhci_err(xhci, "request interrupt %d failed\n",
398                                 pdev->irq);
399                 return ret;
400         }
401         hcd->irq = pdev->irq;
402         return 0;
403 }
404
405 #else
406
407 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
408 {
409         return 0;
410 }
411
412 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
413 {
414 }
415
416 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
417 {
418 }
419
420 #endif
421
422 static void compliance_mode_recovery(unsigned long arg)
423 {
424         struct xhci_hcd *xhci;
425         struct usb_hcd *hcd;
426         u32 temp;
427         int i;
428
429         xhci = (struct xhci_hcd *)arg;
430
431         for (i = 0; i < xhci->num_usb3_ports; i++) {
432                 temp = readl(xhci->usb3_ports[i]);
433                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
434                         /*
435                          * Compliance Mode Detected. Letting USB Core
436                          * handle the Warm Reset
437                          */
438                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
439                                         "Compliance mode detected->port %d",
440                                         i + 1);
441                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
442                                         "Attempting compliance mode recovery");
443                         hcd = xhci->shared_hcd;
444
445                         if (hcd->state == HC_STATE_SUSPENDED)
446                                 usb_hcd_resume_root_hub(hcd);
447
448                         usb_hcd_poll_rh_status(hcd);
449                 }
450         }
451
452         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
453                 mod_timer(&xhci->comp_mode_recovery_timer,
454                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
455 }
456
457 /*
458  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
459  * that causes ports behind that hardware to enter compliance mode sometimes.
460  * The quirk creates a timer that polls every 2 seconds the link state of
461  * each host controller's port and recovers it by issuing a Warm reset
462  * if Compliance mode is detected, otherwise the port will become "dead" (no
463  * device connections or disconnections will be detected anymore). Becasue no
464  * status event is generated when entering compliance mode (per xhci spec),
465  * this quirk is needed on systems that have the failing hardware installed.
466  */
467 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
468 {
469         xhci->port_status_u0 = 0;
470         init_timer(&xhci->comp_mode_recovery_timer);
471
472         xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
473         xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
474         xhci->comp_mode_recovery_timer.expires = jiffies +
475                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
476
477         set_timer_slack(&xhci->comp_mode_recovery_timer,
478                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
479         add_timer(&xhci->comp_mode_recovery_timer);
480         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
481                         "Compliance mode recovery timer initialized");
482 }
483
484 /*
485  * This function identifies the systems that have installed the SN65LVPE502CP
486  * USB3.0 re-driver and that need the Compliance Mode Quirk.
487  * Systems:
488  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
489  */
490 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
491 {
492         const char *dmi_product_name, *dmi_sys_vendor;
493
494         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
495         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
496         if (!dmi_product_name || !dmi_sys_vendor)
497                 return false;
498
499         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
500                 return false;
501
502         if (strstr(dmi_product_name, "Z420") ||
503                         strstr(dmi_product_name, "Z620") ||
504                         strstr(dmi_product_name, "Z820") ||
505                         strstr(dmi_product_name, "Z1 Workstation"))
506                 return true;
507
508         return false;
509 }
510
511 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
512 {
513         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
514 }
515
516
517 /*
518  * Initialize memory for HCD and xHC (one-time init).
519  *
520  * Program the PAGESIZE register, initialize the device context array, create
521  * device contexts (?), set up a command ring segment (or two?), create event
522  * ring (one for now).
523  */
524 int xhci_init(struct usb_hcd *hcd)
525 {
526         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
527         int retval = 0;
528
529         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
530         spin_lock_init(&xhci->lock);
531         if (xhci->hci_version == 0x95 && link_quirk) {
532                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
533                                 "QUIRK: Not clearing Link TRB chain bits.");
534                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
535         } else {
536                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
537                                 "xHCI doesn't need link TRB QUIRK");
538         }
539         retval = xhci_mem_init(xhci, GFP_KERNEL);
540         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
541
542         /* Initializing Compliance Mode Recovery Data If Needed */
543         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
544                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
545                 compliance_mode_recovery_timer_init(xhci);
546         }
547
548         return retval;
549 }
550
551 /*-------------------------------------------------------------------------*/
552
553
554 static int xhci_run_finished(struct xhci_hcd *xhci)
555 {
556         if (xhci_start(xhci)) {
557                 xhci_halt(xhci);
558                 return -ENODEV;
559         }
560         xhci->shared_hcd->state = HC_STATE_RUNNING;
561         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
562
563         if (xhci->quirks & XHCI_NEC_HOST)
564                 xhci_ring_cmd_db(xhci);
565
566         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
567                         "Finished xhci_run for USB3 roothub");
568         return 0;
569 }
570
571 /*
572  * Start the HC after it was halted.
573  *
574  * This function is called by the USB core when the HC driver is added.
575  * Its opposite is xhci_stop().
576  *
577  * xhci_init() must be called once before this function can be called.
578  * Reset the HC, enable device slot contexts, program DCBAAP, and
579  * set command ring pointer and event ring pointer.
580  *
581  * Setup MSI-X vectors and enable interrupts.
582  */
583 int xhci_run(struct usb_hcd *hcd)
584 {
585         u32 temp;
586         u64 temp_64;
587         int ret;
588         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
589
590         /* Start the xHCI host controller running only after the USB 2.0 roothub
591          * is setup.
592          */
593
594         hcd->uses_new_polling = 1;
595         if (!usb_hcd_is_primary_hcd(hcd))
596                 return xhci_run_finished(xhci);
597
598         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
599
600         ret = xhci_try_enable_msi(hcd);
601         if (ret)
602                 return ret;
603
604         xhci_dbg(xhci, "Command ring memory map follows:\n");
605         xhci_debug_ring(xhci, xhci->cmd_ring);
606         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
607         xhci_dbg_cmd_ptrs(xhci);
608
609         xhci_dbg(xhci, "ERST memory map follows:\n");
610         xhci_dbg_erst(xhci, &xhci->erst);
611         xhci_dbg(xhci, "Event ring:\n");
612         xhci_debug_ring(xhci, xhci->event_ring);
613         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
614         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
615         temp_64 &= ~ERST_PTR_MASK;
616         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
617                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
618
619         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
620                         "// Set the interrupt modulation register");
621         temp = readl(&xhci->ir_set->irq_control);
622         temp &= ~ER_IRQ_INTERVAL_MASK;
623         temp |= (u32) 160;
624         writel(temp, &xhci->ir_set->irq_control);
625
626         /* Set the HCD state before we enable the irqs */
627         temp = readl(&xhci->op_regs->command);
628         temp |= (CMD_EIE);
629         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
630                         "// Enable interrupts, cmd = 0x%x.", temp);
631         writel(temp, &xhci->op_regs->command);
632
633         temp = readl(&xhci->ir_set->irq_pending);
634         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
635                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
636                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
637         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
638         xhci_print_ir_set(xhci, 0);
639
640         if (xhci->quirks & XHCI_NEC_HOST)
641                 xhci_queue_vendor_command(xhci, 0, 0, 0,
642                                 TRB_TYPE(TRB_NEC_GET_FW));
643
644         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
645                         "Finished xhci_run for USB2 roothub");
646         return 0;
647 }
648
649 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
650 {
651         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
652
653         spin_lock_irq(&xhci->lock);
654         xhci_halt(xhci);
655
656         /* The shared_hcd is going to be deallocated shortly (the USB core only
657          * calls this function when allocation fails in usb_add_hcd(), or
658          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
659          */
660         xhci->shared_hcd = NULL;
661         spin_unlock_irq(&xhci->lock);
662 }
663
664 /*
665  * Stop xHCI driver.
666  *
667  * This function is called by the USB core when the HC driver is removed.
668  * Its opposite is xhci_run().
669  *
670  * Disable device contexts, disable IRQs, and quiesce the HC.
671  * Reset the HC, finish any completed transactions, and cleanup memory.
672  */
673 void xhci_stop(struct usb_hcd *hcd)
674 {
675         u32 temp;
676         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
677
678         if (!usb_hcd_is_primary_hcd(hcd)) {
679                 xhci_only_stop_hcd(xhci->shared_hcd);
680                 return;
681         }
682
683         spin_lock_irq(&xhci->lock);
684         /* Make sure the xHC is halted for a USB3 roothub
685          * (xhci_stop() could be called as part of failed init).
686          */
687         xhci_halt(xhci);
688         xhci_reset(xhci);
689         spin_unlock_irq(&xhci->lock);
690
691         xhci_cleanup_msix(xhci);
692
693         /* Deleting Compliance Mode Recovery Timer */
694         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
695                         (!(xhci_all_ports_seen_u0(xhci)))) {
696                 del_timer_sync(&xhci->comp_mode_recovery_timer);
697                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
698                                 "%s: compliance mode recovery timer deleted",
699                                 __func__);
700         }
701
702         if (xhci->quirks & XHCI_AMD_PLL_FIX)
703                 usb_amd_dev_put();
704
705         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
706                         "// Disabling event ring interrupts");
707         temp = readl(&xhci->op_regs->status);
708         writel(temp & ~STS_EINT, &xhci->op_regs->status);
709         temp = readl(&xhci->ir_set->irq_pending);
710         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
711         xhci_print_ir_set(xhci, 0);
712
713         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
714         xhci_mem_cleanup(xhci);
715         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
716                         "xhci_stop completed - status = %x",
717                         readl(&xhci->op_regs->status));
718 }
719
720 /*
721  * Shutdown HC (not bus-specific)
722  *
723  * This is called when the machine is rebooting or halting.  We assume that the
724  * machine will be powered off, and the HC's internal state will be reset.
725  * Don't bother to free memory.
726  *
727  * This will only ever be called with the main usb_hcd (the USB3 roothub).
728  */
729 void xhci_shutdown(struct usb_hcd *hcd)
730 {
731         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
732
733         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
734                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
735
736         spin_lock_irq(&xhci->lock);
737         xhci_halt(xhci);
738         /* Workaround for spurious wakeups at shutdown with HSW */
739         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
740                 xhci_reset(xhci);
741         spin_unlock_irq(&xhci->lock);
742
743         xhci_cleanup_msix(xhci);
744
745         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
746                         "xhci_shutdown completed - status = %x",
747                         readl(&xhci->op_regs->status));
748
749         /* Yet another workaround for spurious wakeups at shutdown with HSW */
750         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
751                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
752 }
753
754 #ifdef CONFIG_PM
755 static void xhci_save_registers(struct xhci_hcd *xhci)
756 {
757         xhci->s3.command = readl(&xhci->op_regs->command);
758         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
759         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
760         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
761         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
762         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
763         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
764         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
765         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
766 }
767
768 static void xhci_restore_registers(struct xhci_hcd *xhci)
769 {
770         writel(xhci->s3.command, &xhci->op_regs->command);
771         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
772         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
773         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
774         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
775         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
776         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
777         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
778         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
779 }
780
781 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
782 {
783         u64     val_64;
784
785         /* step 2: initialize command ring buffer */
786         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
787         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
788                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
789                                       xhci->cmd_ring->dequeue) &
790                  (u64) ~CMD_RING_RSVD_BITS) |
791                 xhci->cmd_ring->cycle_state;
792         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
793                         "// Setting command ring address to 0x%llx",
794                         (long unsigned long) val_64);
795         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
796 }
797
798 /*
799  * The whole command ring must be cleared to zero when we suspend the host.
800  *
801  * The host doesn't save the command ring pointer in the suspend well, so we
802  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
803  * aligned, because of the reserved bits in the command ring dequeue pointer
804  * register.  Therefore, we can't just set the dequeue pointer back in the
805  * middle of the ring (TRBs are 16-byte aligned).
806  */
807 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
808 {
809         struct xhci_ring *ring;
810         struct xhci_segment *seg;
811
812         ring = xhci->cmd_ring;
813         seg = ring->deq_seg;
814         do {
815                 memset(seg->trbs, 0,
816                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
817                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
818                         cpu_to_le32(~TRB_CYCLE);
819                 seg = seg->next;
820         } while (seg != ring->deq_seg);
821
822         /* Reset the software enqueue and dequeue pointers */
823         ring->deq_seg = ring->first_seg;
824         ring->dequeue = ring->first_seg->trbs;
825         ring->enq_seg = ring->deq_seg;
826         ring->enqueue = ring->dequeue;
827
828         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
829         /*
830          * Ring is now zeroed, so the HW should look for change of ownership
831          * when the cycle bit is set to 1.
832          */
833         ring->cycle_state = 1;
834
835         /*
836          * Reset the hardware dequeue pointer.
837          * Yes, this will need to be re-written after resume, but we're paranoid
838          * and want to make sure the hardware doesn't access bogus memory
839          * because, say, the BIOS or an SMI started the host without changing
840          * the command ring pointers.
841          */
842         xhci_set_cmd_ring_deq(xhci);
843 }
844
845 /*
846  * Stop HC (not bus-specific)
847  *
848  * This is called when the machine transition into S3/S4 mode.
849  *
850  */
851 int xhci_suspend(struct xhci_hcd *xhci)
852 {
853         int                     rc = 0;
854         unsigned int            delay = XHCI_MAX_HALT_USEC;
855         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
856         u32                     command;
857
858         if (hcd->state != HC_STATE_SUSPENDED ||
859                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
860                 return -EINVAL;
861
862         /* Don't poll the roothubs on bus suspend. */
863         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
864         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
865         del_timer_sync(&hcd->rh_timer);
866
867         spin_lock_irq(&xhci->lock);
868         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
869         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
870         /* step 1: stop endpoint */
871         /* skipped assuming that port suspend has done */
872
873         /* step 2: clear Run/Stop bit */
874         command = readl(&xhci->op_regs->command);
875         command &= ~CMD_RUN;
876         writel(command, &xhci->op_regs->command);
877
878         /* Some chips from Fresco Logic need an extraordinary delay */
879         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
880
881         if (xhci_handshake(xhci, &xhci->op_regs->status,
882                       STS_HALT, STS_HALT, delay)) {
883                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
884                 spin_unlock_irq(&xhci->lock);
885                 return -ETIMEDOUT;
886         }
887         xhci_clear_command_ring(xhci);
888
889         /* step 3: save registers */
890         xhci_save_registers(xhci);
891
892         /* step 4: set CSS flag */
893         command = readl(&xhci->op_regs->command);
894         command |= CMD_CSS;
895         writel(command, &xhci->op_regs->command);
896         if (xhci_handshake(xhci, &xhci->op_regs->status,
897                                 STS_SAVE, 0, 10 * 1000)) {
898                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
899                 spin_unlock_irq(&xhci->lock);
900                 return -ETIMEDOUT;
901         }
902         spin_unlock_irq(&xhci->lock);
903
904         /*
905          * Deleting Compliance Mode Recovery Timer because the xHCI Host
906          * is about to be suspended.
907          */
908         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
909                         (!(xhci_all_ports_seen_u0(xhci)))) {
910                 del_timer_sync(&xhci->comp_mode_recovery_timer);
911                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
912                                 "%s: compliance mode recovery timer deleted",
913                                 __func__);
914         }
915
916         /* step 5: remove core well power */
917         /* synchronize irq when using MSI-X */
918         xhci_msix_sync_irqs(xhci);
919
920         return rc;
921 }
922
923 /*
924  * start xHC (not bus-specific)
925  *
926  * This is called when the machine transition from S3/S4 mode.
927  *
928  */
929 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
930 {
931         u32                     command, temp = 0, status;
932         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
933         struct usb_hcd          *secondary_hcd;
934         int                     retval = 0;
935         bool                    comp_timer_running = false;
936
937         /* Wait a bit if either of the roothubs need to settle from the
938          * transition into bus suspend.
939          */
940         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
941                         time_before(jiffies,
942                                 xhci->bus_state[1].next_statechange))
943                 msleep(100);
944
945         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
946         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
947
948         spin_lock_irq(&xhci->lock);
949         if (xhci->quirks & XHCI_RESET_ON_RESUME)
950                 hibernated = true;
951
952         if (!hibernated) {
953                 /* step 1: restore register */
954                 xhci_restore_registers(xhci);
955                 /* step 2: initialize command ring buffer */
956                 xhci_set_cmd_ring_deq(xhci);
957                 /* step 3: restore state and start state*/
958                 /* step 3: set CRS flag */
959                 command = readl(&xhci->op_regs->command);
960                 command |= CMD_CRS;
961                 writel(command, &xhci->op_regs->command);
962                 if (xhci_handshake(xhci, &xhci->op_regs->status,
963                               STS_RESTORE, 0, 10 * 1000)) {
964                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
965                         spin_unlock_irq(&xhci->lock);
966                         return -ETIMEDOUT;
967                 }
968                 temp = readl(&xhci->op_regs->status);
969         }
970
971         /* If restore operation fails, re-initialize the HC during resume */
972         if ((temp & STS_SRE) || hibernated) {
973
974                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
975                                 !(xhci_all_ports_seen_u0(xhci))) {
976                         del_timer_sync(&xhci->comp_mode_recovery_timer);
977                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
978                                 "Compliance Mode Recovery Timer deleted!");
979                 }
980
981                 /* Let the USB core know _both_ roothubs lost power. */
982                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
983                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
984
985                 xhci_dbg(xhci, "Stop HCD\n");
986                 xhci_halt(xhci);
987                 xhci_reset(xhci);
988                 spin_unlock_irq(&xhci->lock);
989                 xhci_cleanup_msix(xhci);
990
991                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
992                 temp = readl(&xhci->op_regs->status);
993                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
994                 temp = readl(&xhci->ir_set->irq_pending);
995                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
996                 xhci_print_ir_set(xhci, 0);
997
998                 xhci_dbg(xhci, "cleaning up memory\n");
999                 xhci_mem_cleanup(xhci);
1000                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1001                             readl(&xhci->op_regs->status));
1002
1003                 /* USB core calls the PCI reinit and start functions twice:
1004                  * first with the primary HCD, and then with the secondary HCD.
1005                  * If we don't do the same, the host will never be started.
1006                  */
1007                 if (!usb_hcd_is_primary_hcd(hcd))
1008                         secondary_hcd = hcd;
1009                 else
1010                         secondary_hcd = xhci->shared_hcd;
1011
1012                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1013                 retval = xhci_init(hcd->primary_hcd);
1014                 if (retval)
1015                         return retval;
1016                 comp_timer_running = true;
1017
1018                 xhci_dbg(xhci, "Start the primary HCD\n");
1019                 retval = xhci_run(hcd->primary_hcd);
1020                 if (!retval) {
1021                         xhci_dbg(xhci, "Start the secondary HCD\n");
1022                         retval = xhci_run(secondary_hcd);
1023                 }
1024                 hcd->state = HC_STATE_SUSPENDED;
1025                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1026                 goto done;
1027         }
1028
1029         /* step 4: set Run/Stop bit */
1030         command = readl(&xhci->op_regs->command);
1031         command |= CMD_RUN;
1032         writel(command, &xhci->op_regs->command);
1033         xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1034                   0, 250 * 1000);
1035
1036         /* step 5: walk topology and initialize portsc,
1037          * portpmsc and portli
1038          */
1039         /* this is done in bus_resume */
1040
1041         /* step 6: restart each of the previously
1042          * Running endpoints by ringing their doorbells
1043          */
1044
1045         spin_unlock_irq(&xhci->lock);
1046
1047  done:
1048         if (retval == 0) {
1049                 /* Resume root hubs only when have pending events. */
1050                 status = readl(&xhci->op_regs->status);
1051                 if (status & STS_EINT) {
1052                         usb_hcd_resume_root_hub(hcd);
1053                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1054                 }
1055         }
1056
1057         /*
1058          * If system is subject to the Quirk, Compliance Mode Timer needs to
1059          * be re-initialized Always after a system resume. Ports are subject
1060          * to suffer the Compliance Mode issue again. It doesn't matter if
1061          * ports have entered previously to U0 before system's suspension.
1062          */
1063         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1064                 compliance_mode_recovery_timer_init(xhci);
1065
1066         /* Re-enable port polling. */
1067         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1068         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1069         usb_hcd_poll_rh_status(hcd);
1070
1071         return retval;
1072 }
1073 #endif  /* CONFIG_PM */
1074
1075 /*-------------------------------------------------------------------------*/
1076
1077 /**
1078  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1079  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1080  * value to right shift 1 for the bitmask.
1081  *
1082  * Index  = (epnum * 2) + direction - 1,
1083  * where direction = 0 for OUT, 1 for IN.
1084  * For control endpoints, the IN index is used (OUT index is unused), so
1085  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1086  */
1087 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1088 {
1089         unsigned int index;
1090         if (usb_endpoint_xfer_control(desc))
1091                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1092         else
1093                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1094                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1095         return index;
1096 }
1097
1098 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1099  * address from the XHCI endpoint index.
1100  */
1101 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1102 {
1103         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1104         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1105         return direction | number;
1106 }
1107
1108 /* Find the flag for this endpoint (for use in the control context).  Use the
1109  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1110  * bit 1, etc.
1111  */
1112 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1113 {
1114         return 1 << (xhci_get_endpoint_index(desc) + 1);
1115 }
1116
1117 /* Find the flag for this endpoint (for use in the control context).  Use the
1118  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1119  * bit 1, etc.
1120  */
1121 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1122 {
1123         return 1 << (ep_index + 1);
1124 }
1125
1126 /* Compute the last valid endpoint context index.  Basically, this is the
1127  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1128  * we find the most significant bit set in the added contexts flags.
1129  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1130  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1131  */
1132 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1133 {
1134         return fls(added_ctxs) - 1;
1135 }
1136
1137 /* Returns 1 if the arguments are OK;
1138  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1139  */
1140 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1141                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1142                 const char *func) {
1143         struct xhci_hcd *xhci;
1144         struct xhci_virt_device *virt_dev;
1145
1146         if (!hcd || (check_ep && !ep) || !udev) {
1147                 pr_debug("xHCI %s called with invalid args\n", func);
1148                 return -EINVAL;
1149         }
1150         if (!udev->parent) {
1151                 pr_debug("xHCI %s called for root hub\n", func);
1152                 return 0;
1153         }
1154
1155         xhci = hcd_to_xhci(hcd);
1156         if (check_virt_dev) {
1157                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1158                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1159                                         func);
1160                         return -EINVAL;
1161                 }
1162
1163                 virt_dev = xhci->devs[udev->slot_id];
1164                 if (virt_dev->udev != udev) {
1165                         xhci_dbg(xhci, "xHCI %s called with udev and "
1166                                           "virt_dev does not match\n", func);
1167                         return -EINVAL;
1168                 }
1169         }
1170
1171         if (xhci->xhc_state & XHCI_STATE_HALTED)
1172                 return -ENODEV;
1173
1174         return 1;
1175 }
1176
1177 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1178                 struct usb_device *udev, struct xhci_command *command,
1179                 bool ctx_change, bool must_succeed);
1180
1181 /*
1182  * Full speed devices may have a max packet size greater than 8 bytes, but the
1183  * USB core doesn't know that until it reads the first 8 bytes of the
1184  * descriptor.  If the usb_device's max packet size changes after that point,
1185  * we need to issue an evaluate context command and wait on it.
1186  */
1187 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1188                 unsigned int ep_index, struct urb *urb)
1189 {
1190         struct xhci_container_ctx *in_ctx;
1191         struct xhci_container_ctx *out_ctx;
1192         struct xhci_input_control_ctx *ctrl_ctx;
1193         struct xhci_ep_ctx *ep_ctx;
1194         int max_packet_size;
1195         int hw_max_packet_size;
1196         int ret = 0;
1197
1198         out_ctx = xhci->devs[slot_id]->out_ctx;
1199         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1200         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1201         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1202         if (hw_max_packet_size != max_packet_size) {
1203                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1204                                 "Max Packet Size for ep 0 changed.");
1205                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1206                                 "Max packet size in usb_device = %d",
1207                                 max_packet_size);
1208                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1209                                 "Max packet size in xHCI HW = %d",
1210                                 hw_max_packet_size);
1211                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1212                                 "Issuing evaluate context command.");
1213
1214                 /* Set up the input context flags for the command */
1215                 /* FIXME: This won't work if a non-default control endpoint
1216                  * changes max packet sizes.
1217                  */
1218                 in_ctx = xhci->devs[slot_id]->in_ctx;
1219                 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1220                 if (!ctrl_ctx) {
1221                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1222                                         __func__);
1223                         return -ENOMEM;
1224                 }
1225                 /* Set up the modified control endpoint 0 */
1226                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1227                                 xhci->devs[slot_id]->out_ctx, ep_index);
1228
1229                 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1230                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1231                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1232
1233                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1234                 ctrl_ctx->drop_flags = 0;
1235
1236                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1237                 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1238                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1239                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1240
1241                 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1242                                 true, false);
1243
1244                 /* Clean up the input context for later use by bandwidth
1245                  * functions.
1246                  */
1247                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1248         }
1249         return ret;
1250 }
1251
1252 /*
1253  * non-error returns are a promise to giveback() the urb later
1254  * we drop ownership so next owner (or urb unlink) can get it
1255  */
1256 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1257 {
1258         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1259         struct xhci_td *buffer;
1260         unsigned long flags;
1261         int ret = 0;
1262         unsigned int slot_id, ep_index;
1263         struct urb_priv *urb_priv;
1264         int size, i;
1265
1266         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1267                                         true, true, __func__) <= 0)
1268                 return -EINVAL;
1269
1270         slot_id = urb->dev->slot_id;
1271         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1272
1273         if (!HCD_HW_ACCESSIBLE(hcd)) {
1274                 if (!in_interrupt())
1275                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1276                 ret = -ESHUTDOWN;
1277                 goto exit;
1278         }
1279
1280         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1281                 size = urb->number_of_packets;
1282         else
1283                 size = 1;
1284
1285         urb_priv = kzalloc(sizeof(struct urb_priv) +
1286                                   size * sizeof(struct xhci_td *), mem_flags);
1287         if (!urb_priv)
1288                 return -ENOMEM;
1289
1290         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1291         if (!buffer) {
1292                 kfree(urb_priv);
1293                 return -ENOMEM;
1294         }
1295
1296         for (i = 0; i < size; i++) {
1297                 urb_priv->td[i] = buffer;
1298                 buffer++;
1299         }
1300
1301         urb_priv->length = size;
1302         urb_priv->td_cnt = 0;
1303         urb->hcpriv = urb_priv;
1304
1305         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1306                 /* Check to see if the max packet size for the default control
1307                  * endpoint changed during FS device enumeration
1308                  */
1309                 if (urb->dev->speed == USB_SPEED_FULL) {
1310                         ret = xhci_check_maxpacket(xhci, slot_id,
1311                                         ep_index, urb);
1312                         if (ret < 0) {
1313                                 xhci_urb_free_priv(xhci, urb_priv);
1314                                 urb->hcpriv = NULL;
1315                                 return ret;
1316                         }
1317                 }
1318
1319                 /* We have a spinlock and interrupts disabled, so we must pass
1320                  * atomic context to this function, which may allocate memory.
1321                  */
1322                 spin_lock_irqsave(&xhci->lock, flags);
1323                 if (xhci->xhc_state & XHCI_STATE_DYING)
1324                         goto dying;
1325                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1326                                 slot_id, ep_index);
1327                 if (ret)
1328                         goto free_priv;
1329                 spin_unlock_irqrestore(&xhci->lock, flags);
1330         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1331                 spin_lock_irqsave(&xhci->lock, flags);
1332                 if (xhci->xhc_state & XHCI_STATE_DYING)
1333                         goto dying;
1334                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1335                                 EP_GETTING_STREAMS) {
1336                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1337                                         "is transitioning to using streams.\n");
1338                         ret = -EINVAL;
1339                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1340                                 EP_GETTING_NO_STREAMS) {
1341                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1342                                         "is transitioning to "
1343                                         "not having streams.\n");
1344                         ret = -EINVAL;
1345                 } else {
1346                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1347                                         slot_id, ep_index);
1348                 }
1349                 if (ret)
1350                         goto free_priv;
1351                 spin_unlock_irqrestore(&xhci->lock, flags);
1352         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1353                 spin_lock_irqsave(&xhci->lock, flags);
1354                 if (xhci->xhc_state & XHCI_STATE_DYING)
1355                         goto dying;
1356                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1357                                 slot_id, ep_index);
1358                 if (ret)
1359                         goto free_priv;
1360                 spin_unlock_irqrestore(&xhci->lock, flags);
1361         } else {
1362                 spin_lock_irqsave(&xhci->lock, flags);
1363                 if (xhci->xhc_state & XHCI_STATE_DYING)
1364                         goto dying;
1365                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1366                                 slot_id, ep_index);
1367                 if (ret)
1368                         goto free_priv;
1369                 spin_unlock_irqrestore(&xhci->lock, flags);
1370         }
1371 exit:
1372         return ret;
1373 dying:
1374         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1375                         "non-responsive xHCI host.\n",
1376                         urb->ep->desc.bEndpointAddress, urb);
1377         ret = -ESHUTDOWN;
1378 free_priv:
1379         xhci_urb_free_priv(xhci, urb_priv);
1380         urb->hcpriv = NULL;
1381         spin_unlock_irqrestore(&xhci->lock, flags);
1382         return ret;
1383 }
1384
1385 /* Get the right ring for the given URB.
1386  * If the endpoint supports streams, boundary check the URB's stream ID.
1387  * If the endpoint doesn't support streams, return the singular endpoint ring.
1388  */
1389 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1390                 struct urb *urb)
1391 {
1392         unsigned int slot_id;
1393         unsigned int ep_index;
1394         unsigned int stream_id;
1395         struct xhci_virt_ep *ep;
1396
1397         slot_id = urb->dev->slot_id;
1398         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1399         stream_id = urb->stream_id;
1400         ep = &xhci->devs[slot_id]->eps[ep_index];
1401         /* Common case: no streams */
1402         if (!(ep->ep_state & EP_HAS_STREAMS))
1403                 return ep->ring;
1404
1405         if (stream_id == 0) {
1406                 xhci_warn(xhci,
1407                                 "WARN: Slot ID %u, ep index %u has streams, "
1408                                 "but URB has no stream ID.\n",
1409                                 slot_id, ep_index);
1410                 return NULL;
1411         }
1412
1413         if (stream_id < ep->stream_info->num_streams)
1414                 return ep->stream_info->stream_rings[stream_id];
1415
1416         xhci_warn(xhci,
1417                         "WARN: Slot ID %u, ep index %u has "
1418                         "stream IDs 1 to %u allocated, "
1419                         "but stream ID %u is requested.\n",
1420                         slot_id, ep_index,
1421                         ep->stream_info->num_streams - 1,
1422                         stream_id);
1423         return NULL;
1424 }
1425
1426 /*
1427  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1428  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1429  * should pick up where it left off in the TD, unless a Set Transfer Ring
1430  * Dequeue Pointer is issued.
1431  *
1432  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1433  * the ring.  Since the ring is a contiguous structure, they can't be physically
1434  * removed.  Instead, there are two options:
1435  *
1436  *  1) If the HC is in the middle of processing the URB to be canceled, we
1437  *     simply move the ring's dequeue pointer past those TRBs using the Set
1438  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1439  *     when drivers timeout on the last submitted URB and attempt to cancel.
1440  *
1441  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1442  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1443  *     HC will need to invalidate the any TRBs it has cached after the stop
1444  *     endpoint command, as noted in the xHCI 0.95 errata.
1445  *
1446  *  3) The TD may have completed by the time the Stop Endpoint Command
1447  *     completes, so software needs to handle that case too.
1448  *
1449  * This function should protect against the TD enqueueing code ringing the
1450  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1451  * It also needs to account for multiple cancellations on happening at the same
1452  * time for the same endpoint.
1453  *
1454  * Note that this function can be called in any context, or so says
1455  * usb_hcd_unlink_urb()
1456  */
1457 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1458 {
1459         unsigned long flags;
1460         int ret, i;
1461         u32 temp;
1462         struct xhci_hcd *xhci;
1463         struct urb_priv *urb_priv;
1464         struct xhci_td *td;
1465         unsigned int ep_index;
1466         struct xhci_ring *ep_ring;
1467         struct xhci_virt_ep *ep;
1468
1469         xhci = hcd_to_xhci(hcd);
1470         spin_lock_irqsave(&xhci->lock, flags);
1471         /* Make sure the URB hasn't completed or been unlinked already */
1472         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1473         if (ret || !urb->hcpriv)
1474                 goto done;
1475         temp = readl(&xhci->op_regs->status);
1476         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1477                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1478                                 "HW died, freeing TD.");
1479                 urb_priv = urb->hcpriv;
1480                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1481                         td = urb_priv->td[i];
1482                         if (!list_empty(&td->td_list))
1483                                 list_del_init(&td->td_list);
1484                         if (!list_empty(&td->cancelled_td_list))
1485                                 list_del_init(&td->cancelled_td_list);
1486                 }
1487
1488                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1489                 spin_unlock_irqrestore(&xhci->lock, flags);
1490                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1491                 xhci_urb_free_priv(xhci, urb_priv);
1492                 return ret;
1493         }
1494         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1495                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1496                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1497                                 "Ep 0x%x: URB %p to be canceled on "
1498                                 "non-responsive xHCI host.",
1499                                 urb->ep->desc.bEndpointAddress, urb);
1500                 /* Let the stop endpoint command watchdog timer (which set this
1501                  * state) finish cleaning up the endpoint TD lists.  We must
1502                  * have caught it in the middle of dropping a lock and giving
1503                  * back an URB.
1504                  */
1505                 goto done;
1506         }
1507
1508         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1509         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1510         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1511         if (!ep_ring) {
1512                 ret = -EINVAL;
1513                 goto done;
1514         }
1515
1516         urb_priv = urb->hcpriv;
1517         i = urb_priv->td_cnt;
1518         if (i < urb_priv->length)
1519                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1520                                 "Cancel URB %p, dev %s, ep 0x%x, "
1521                                 "starting at offset 0x%llx",
1522                                 urb, urb->dev->devpath,
1523                                 urb->ep->desc.bEndpointAddress,
1524                                 (unsigned long long) xhci_trb_virt_to_dma(
1525                                         urb_priv->td[i]->start_seg,
1526                                         urb_priv->td[i]->first_trb));
1527
1528         for (; i < urb_priv->length; i++) {
1529                 td = urb_priv->td[i];
1530                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1531         }
1532
1533         /* Queue a stop endpoint command, but only if this is
1534          * the first cancellation to be handled.
1535          */
1536         if (!(ep->ep_state & EP_HALT_PENDING)) {
1537                 ep->ep_state |= EP_HALT_PENDING;
1538                 ep->stop_cmds_pending++;
1539                 ep->stop_cmd_timer.expires = jiffies +
1540                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1541                 add_timer(&ep->stop_cmd_timer);
1542                 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1543                 xhci_ring_cmd_db(xhci);
1544         }
1545 done:
1546         spin_unlock_irqrestore(&xhci->lock, flags);
1547         return ret;
1548 }
1549
1550 /* Drop an endpoint from a new bandwidth configuration for this device.
1551  * Only one call to this function is allowed per endpoint before
1552  * check_bandwidth() or reset_bandwidth() must be called.
1553  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1554  * add the endpoint to the schedule with possibly new parameters denoted by a
1555  * different endpoint descriptor in usb_host_endpoint.
1556  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1557  * not allowed.
1558  *
1559  * The USB core will not allow URBs to be queued to an endpoint that is being
1560  * disabled, so there's no need for mutual exclusion to protect
1561  * the xhci->devs[slot_id] structure.
1562  */
1563 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1564                 struct usb_host_endpoint *ep)
1565 {
1566         struct xhci_hcd *xhci;
1567         struct xhci_container_ctx *in_ctx, *out_ctx;
1568         struct xhci_input_control_ctx *ctrl_ctx;
1569         struct xhci_slot_ctx *slot_ctx;
1570         unsigned int last_ctx;
1571         unsigned int ep_index;
1572         struct xhci_ep_ctx *ep_ctx;
1573         u32 drop_flag;
1574         u32 new_add_flags, new_drop_flags, new_slot_info;
1575         int ret;
1576
1577         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1578         if (ret <= 0)
1579                 return ret;
1580         xhci = hcd_to_xhci(hcd);
1581         if (xhci->xhc_state & XHCI_STATE_DYING)
1582                 return -ENODEV;
1583
1584         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1585         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1586         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1587                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1588                                 __func__, drop_flag);
1589                 return 0;
1590         }
1591
1592         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1593         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1594         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1595         if (!ctrl_ctx) {
1596                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1597                                 __func__);
1598                 return 0;
1599         }
1600
1601         ep_index = xhci_get_endpoint_index(&ep->desc);
1602         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1603         /* If the HC already knows the endpoint is disabled,
1604          * or the HCD has noted it is disabled, ignore this request
1605          */
1606         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1607              cpu_to_le32(EP_STATE_DISABLED)) ||
1608             le32_to_cpu(ctrl_ctx->drop_flags) &
1609             xhci_get_endpoint_flag(&ep->desc)) {
1610                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1611                                 __func__, ep);
1612                 return 0;
1613         }
1614
1615         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1616         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1617
1618         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1619         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1620
1621         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1622         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1623         /* Update the last valid endpoint context, if we deleted the last one */
1624         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1625             LAST_CTX(last_ctx)) {
1626                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1627                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1628         }
1629         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1630
1631         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1632
1633         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1634                         (unsigned int) ep->desc.bEndpointAddress,
1635                         udev->slot_id,
1636                         (unsigned int) new_drop_flags,
1637                         (unsigned int) new_add_flags,
1638                         (unsigned int) new_slot_info);
1639         return 0;
1640 }
1641
1642 /* Add an endpoint to a new possible bandwidth configuration for this device.
1643  * Only one call to this function is allowed per endpoint before
1644  * check_bandwidth() or reset_bandwidth() must be called.
1645  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1646  * add the endpoint to the schedule with possibly new parameters denoted by a
1647  * different endpoint descriptor in usb_host_endpoint.
1648  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1649  * not allowed.
1650  *
1651  * The USB core will not allow URBs to be queued to an endpoint until the
1652  * configuration or alt setting is installed in the device, so there's no need
1653  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1654  */
1655 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1656                 struct usb_host_endpoint *ep)
1657 {
1658         struct xhci_hcd *xhci;
1659         struct xhci_container_ctx *in_ctx, *out_ctx;
1660         unsigned int ep_index;
1661         struct xhci_slot_ctx *slot_ctx;
1662         struct xhci_input_control_ctx *ctrl_ctx;
1663         u32 added_ctxs;
1664         unsigned int last_ctx;
1665         u32 new_add_flags, new_drop_flags, new_slot_info;
1666         struct xhci_virt_device *virt_dev;
1667         int ret = 0;
1668
1669         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1670         if (ret <= 0) {
1671                 /* So we won't queue a reset ep command for a root hub */
1672                 ep->hcpriv = NULL;
1673                 return ret;
1674         }
1675         xhci = hcd_to_xhci(hcd);
1676         if (xhci->xhc_state & XHCI_STATE_DYING)
1677                 return -ENODEV;
1678
1679         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1680         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1681         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1682                 /* FIXME when we have to issue an evaluate endpoint command to
1683                  * deal with ep0 max packet size changing once we get the
1684                  * descriptors
1685                  */
1686                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1687                                 __func__, added_ctxs);
1688                 return 0;
1689         }
1690
1691         virt_dev = xhci->devs[udev->slot_id];
1692         in_ctx = virt_dev->in_ctx;
1693         out_ctx = virt_dev->out_ctx;
1694         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1695         if (!ctrl_ctx) {
1696                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1697                                 __func__);
1698                 return 0;
1699         }
1700
1701         ep_index = xhci_get_endpoint_index(&ep->desc);
1702         /* If this endpoint is already in use, and the upper layers are trying
1703          * to add it again without dropping it, reject the addition.
1704          */
1705         if (virt_dev->eps[ep_index].ring &&
1706                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1707                                 xhci_get_endpoint_flag(&ep->desc))) {
1708                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1709                                 "without dropping it.\n",
1710                                 (unsigned int) ep->desc.bEndpointAddress);
1711                 return -EINVAL;
1712         }
1713
1714         /* If the HCD has already noted the endpoint is enabled,
1715          * ignore this request.
1716          */
1717         if (le32_to_cpu(ctrl_ctx->add_flags) &
1718             xhci_get_endpoint_flag(&ep->desc)) {
1719                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1720                                 __func__, ep);
1721                 return 0;
1722         }
1723
1724         /*
1725          * Configuration and alternate setting changes must be done in
1726          * process context, not interrupt context (or so documenation
1727          * for usb_set_interface() and usb_set_configuration() claim).
1728          */
1729         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1730                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1731                                 __func__, ep->desc.bEndpointAddress);
1732                 return -ENOMEM;
1733         }
1734
1735         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1736         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1737
1738         /* If xhci_endpoint_disable() was called for this endpoint, but the
1739          * xHC hasn't been notified yet through the check_bandwidth() call,
1740          * this re-adds a new state for the endpoint from the new endpoint
1741          * descriptors.  We must drop and re-add this endpoint, so we leave the
1742          * drop flags alone.
1743          */
1744         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1745
1746         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1747         /* Update the last valid endpoint context, if we just added one past */
1748         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1749             LAST_CTX(last_ctx)) {
1750                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1751                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1752         }
1753         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1754
1755         /* Store the usb_device pointer for later use */
1756         ep->hcpriv = udev;
1757
1758         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1759                         (unsigned int) ep->desc.bEndpointAddress,
1760                         udev->slot_id,
1761                         (unsigned int) new_drop_flags,
1762                         (unsigned int) new_add_flags,
1763                         (unsigned int) new_slot_info);
1764         return 0;
1765 }
1766
1767 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1768 {
1769         struct xhci_input_control_ctx *ctrl_ctx;
1770         struct xhci_ep_ctx *ep_ctx;
1771         struct xhci_slot_ctx *slot_ctx;
1772         int i;
1773
1774         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1775         if (!ctrl_ctx) {
1776                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1777                                 __func__);
1778                 return;
1779         }
1780
1781         /* When a device's add flag and drop flag are zero, any subsequent
1782          * configure endpoint command will leave that endpoint's state
1783          * untouched.  Make sure we don't leave any old state in the input
1784          * endpoint contexts.
1785          */
1786         ctrl_ctx->drop_flags = 0;
1787         ctrl_ctx->add_flags = 0;
1788         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1789         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1790         /* Endpoint 0 is always valid */
1791         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1792         for (i = 1; i < 31; ++i) {
1793                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1794                 ep_ctx->ep_info = 0;
1795                 ep_ctx->ep_info2 = 0;
1796                 ep_ctx->deq = 0;
1797                 ep_ctx->tx_info = 0;
1798         }
1799 }
1800
1801 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1802                 struct usb_device *udev, u32 *cmd_status)
1803 {
1804         int ret;
1805
1806         switch (*cmd_status) {
1807         case COMP_ENOMEM:
1808                 dev_warn(&udev->dev, "Not enough host controller resources "
1809                                 "for new device state.\n");
1810                 ret = -ENOMEM;
1811                 /* FIXME: can we allocate more resources for the HC? */
1812                 break;
1813         case COMP_BW_ERR:
1814         case COMP_2ND_BW_ERR:
1815                 dev_warn(&udev->dev, "Not enough bandwidth "
1816                                 "for new device state.\n");
1817                 ret = -ENOSPC;
1818                 /* FIXME: can we go back to the old state? */
1819                 break;
1820         case COMP_TRB_ERR:
1821                 /* the HCD set up something wrong */
1822                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1823                                 "add flag = 1, "
1824                                 "and endpoint is not disabled.\n");
1825                 ret = -EINVAL;
1826                 break;
1827         case COMP_DEV_ERR:
1828                 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1829                                 "configure command.\n");
1830                 ret = -ENODEV;
1831                 break;
1832         case COMP_SUCCESS:
1833                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1834                                 "Successful Endpoint Configure command");
1835                 ret = 0;
1836                 break;
1837         default:
1838                 xhci_err(xhci, "ERROR: unexpected command completion "
1839                                 "code 0x%x.\n", *cmd_status);
1840                 ret = -EINVAL;
1841                 break;
1842         }
1843         return ret;
1844 }
1845
1846 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1847                 struct usb_device *udev, u32 *cmd_status)
1848 {
1849         int ret;
1850         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1851
1852         switch (*cmd_status) {
1853         case COMP_EINVAL:
1854                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1855                                 "context command.\n");
1856                 ret = -EINVAL;
1857                 break;
1858         case COMP_EBADSLT:
1859                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1860                                 "evaluate context command.\n");
1861                 ret = -EINVAL;
1862                 break;
1863         case COMP_CTX_STATE:
1864                 dev_warn(&udev->dev, "WARN: invalid context state for "
1865                                 "evaluate context command.\n");
1866                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1867                 ret = -EINVAL;
1868                 break;
1869         case COMP_DEV_ERR:
1870                 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1871                                 "context command.\n");
1872                 ret = -ENODEV;
1873                 break;
1874         case COMP_MEL_ERR:
1875                 /* Max Exit Latency too large error */
1876                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1877                 ret = -EINVAL;
1878                 break;
1879         case COMP_SUCCESS:
1880                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1881                                 "Successful evaluate context command");
1882                 ret = 0;
1883                 break;
1884         default:
1885                 xhci_err(xhci, "ERROR: unexpected command completion "
1886                                 "code 0x%x.\n", *cmd_status);
1887                 ret = -EINVAL;
1888                 break;
1889         }
1890         return ret;
1891 }
1892
1893 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1894                 struct xhci_input_control_ctx *ctrl_ctx)
1895 {
1896         u32 valid_add_flags;
1897         u32 valid_drop_flags;
1898
1899         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1900          * (bit 1).  The default control endpoint is added during the Address
1901          * Device command and is never removed until the slot is disabled.
1902          */
1903         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1904         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1905
1906         /* Use hweight32 to count the number of ones in the add flags, or
1907          * number of endpoints added.  Don't count endpoints that are changed
1908          * (both added and dropped).
1909          */
1910         return hweight32(valid_add_flags) -
1911                 hweight32(valid_add_flags & valid_drop_flags);
1912 }
1913
1914 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1915                 struct xhci_input_control_ctx *ctrl_ctx)
1916 {
1917         u32 valid_add_flags;
1918         u32 valid_drop_flags;
1919
1920         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1921         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1922
1923         return hweight32(valid_drop_flags) -
1924                 hweight32(valid_add_flags & valid_drop_flags);
1925 }
1926
1927 /*
1928  * We need to reserve the new number of endpoints before the configure endpoint
1929  * command completes.  We can't subtract the dropped endpoints from the number
1930  * of active endpoints until the command completes because we can oversubscribe
1931  * the host in this case:
1932  *
1933  *  - the first configure endpoint command drops more endpoints than it adds
1934  *  - a second configure endpoint command that adds more endpoints is queued
1935  *  - the first configure endpoint command fails, so the config is unchanged
1936  *  - the second command may succeed, even though there isn't enough resources
1937  *
1938  * Must be called with xhci->lock held.
1939  */
1940 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1941                 struct xhci_input_control_ctx *ctrl_ctx)
1942 {
1943         u32 added_eps;
1944
1945         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1946         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1947                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1948                                 "Not enough ep ctxs: "
1949                                 "%u active, need to add %u, limit is %u.",
1950                                 xhci->num_active_eps, added_eps,
1951                                 xhci->limit_active_eps);
1952                 return -ENOMEM;
1953         }
1954         xhci->num_active_eps += added_eps;
1955         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1956                         "Adding %u ep ctxs, %u now active.", added_eps,
1957                         xhci->num_active_eps);
1958         return 0;
1959 }
1960
1961 /*
1962  * The configure endpoint was failed by the xHC for some other reason, so we
1963  * need to revert the resources that failed configuration would have used.
1964  *
1965  * Must be called with xhci->lock held.
1966  */
1967 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1968                 struct xhci_input_control_ctx *ctrl_ctx)
1969 {
1970         u32 num_failed_eps;
1971
1972         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1973         xhci->num_active_eps -= num_failed_eps;
1974         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1975                         "Removing %u failed ep ctxs, %u now active.",
1976                         num_failed_eps,
1977                         xhci->num_active_eps);
1978 }
1979
1980 /*
1981  * Now that the command has completed, clean up the active endpoint count by
1982  * subtracting out the endpoints that were dropped (but not changed).
1983  *
1984  * Must be called with xhci->lock held.
1985  */
1986 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1987                 struct xhci_input_control_ctx *ctrl_ctx)
1988 {
1989         u32 num_dropped_eps;
1990
1991         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1992         xhci->num_active_eps -= num_dropped_eps;
1993         if (num_dropped_eps)
1994                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1995                                 "Removing %u dropped ep ctxs, %u now active.",
1996                                 num_dropped_eps,
1997                                 xhci->num_active_eps);
1998 }
1999
2000 static unsigned int xhci_get_block_size(struct usb_device *udev)
2001 {
2002         switch (udev->speed) {
2003         case USB_SPEED_LOW:
2004         case USB_SPEED_FULL:
2005                 return FS_BLOCK;
2006         case USB_SPEED_HIGH:
2007                 return HS_BLOCK;
2008         case USB_SPEED_SUPER:
2009                 return SS_BLOCK;
2010         case USB_SPEED_UNKNOWN:
2011         case USB_SPEED_WIRELESS:
2012         default:
2013                 /* Should never happen */
2014                 return 1;
2015         }
2016 }
2017
2018 static unsigned int
2019 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2020 {
2021         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2022                 return LS_OVERHEAD;
2023         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2024                 return FS_OVERHEAD;
2025         return HS_OVERHEAD;
2026 }
2027
2028 /* If we are changing a LS/FS device under a HS hub,
2029  * make sure (if we are activating a new TT) that the HS bus has enough
2030  * bandwidth for this new TT.
2031  */
2032 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2033                 struct xhci_virt_device *virt_dev,
2034                 int old_active_eps)
2035 {
2036         struct xhci_interval_bw_table *bw_table;
2037         struct xhci_tt_bw_info *tt_info;
2038
2039         /* Find the bandwidth table for the root port this TT is attached to. */
2040         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2041         tt_info = virt_dev->tt_info;
2042         /* If this TT already had active endpoints, the bandwidth for this TT
2043          * has already been added.  Removing all periodic endpoints (and thus
2044          * making the TT enactive) will only decrease the bandwidth used.
2045          */
2046         if (old_active_eps)
2047                 return 0;
2048         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2049                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2050                         return -ENOMEM;
2051                 return 0;
2052         }
2053         /* Not sure why we would have no new active endpoints...
2054          *
2055          * Maybe because of an Evaluate Context change for a hub update or a
2056          * control endpoint 0 max packet size change?
2057          * FIXME: skip the bandwidth calculation in that case.
2058          */
2059         return 0;
2060 }
2061
2062 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2063                 struct xhci_virt_device *virt_dev)
2064 {
2065         unsigned int bw_reserved;
2066
2067         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2068         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2069                 return -ENOMEM;
2070
2071         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2072         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2073                 return -ENOMEM;
2074
2075         return 0;
2076 }
2077
2078 /*
2079  * This algorithm is a very conservative estimate of the worst-case scheduling
2080  * scenario for any one interval.  The hardware dynamically schedules the
2081  * packets, so we can't tell which microframe could be the limiting factor in
2082  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2083  *
2084  * Obviously, we can't solve an NP complete problem to find the minimum worst
2085  * case scenario.  Instead, we come up with an estimate that is no less than
2086  * the worst case bandwidth used for any one microframe, but may be an
2087  * over-estimate.
2088  *
2089  * We walk the requirements for each endpoint by interval, starting with the
2090  * smallest interval, and place packets in the schedule where there is only one
2091  * possible way to schedule packets for that interval.  In order to simplify
2092  * this algorithm, we record the largest max packet size for each interval, and
2093  * assume all packets will be that size.
2094  *
2095  * For interval 0, we obviously must schedule all packets for each interval.
2096  * The bandwidth for interval 0 is just the amount of data to be transmitted
2097  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2098  * the number of packets).
2099  *
2100  * For interval 1, we have two possible microframes to schedule those packets
2101  * in.  For this algorithm, if we can schedule the same number of packets for
2102  * each possible scheduling opportunity (each microframe), we will do so.  The
2103  * remaining number of packets will be saved to be transmitted in the gaps in
2104  * the next interval's scheduling sequence.
2105  *
2106  * As we move those remaining packets to be scheduled with interval 2 packets,
2107  * we have to double the number of remaining packets to transmit.  This is
2108  * because the intervals are actually powers of 2, and we would be transmitting
2109  * the previous interval's packets twice in this interval.  We also have to be
2110  * sure that when we look at the largest max packet size for this interval, we
2111  * also look at the largest max packet size for the remaining packets and take
2112  * the greater of the two.
2113  *
2114  * The algorithm continues to evenly distribute packets in each scheduling
2115  * opportunity, and push the remaining packets out, until we get to the last
2116  * interval.  Then those packets and their associated overhead are just added
2117  * to the bandwidth used.
2118  */
2119 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2120                 struct xhci_virt_device *virt_dev,
2121                 int old_active_eps)
2122 {
2123         unsigned int bw_reserved;
2124         unsigned int max_bandwidth;
2125         unsigned int bw_used;
2126         unsigned int block_size;
2127         struct xhci_interval_bw_table *bw_table;
2128         unsigned int packet_size = 0;
2129         unsigned int overhead = 0;
2130         unsigned int packets_transmitted = 0;
2131         unsigned int packets_remaining = 0;
2132         unsigned int i;
2133
2134         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2135                 return xhci_check_ss_bw(xhci, virt_dev);
2136
2137         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2138                 max_bandwidth = HS_BW_LIMIT;
2139                 /* Convert percent of bus BW reserved to blocks reserved */
2140                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2141         } else {
2142                 max_bandwidth = FS_BW_LIMIT;
2143                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2144         }
2145
2146         bw_table = virt_dev->bw_table;
2147         /* We need to translate the max packet size and max ESIT payloads into
2148          * the units the hardware uses.
2149          */
2150         block_size = xhci_get_block_size(virt_dev->udev);
2151
2152         /* If we are manipulating a LS/FS device under a HS hub, double check
2153          * that the HS bus has enough bandwidth if we are activing a new TT.
2154          */
2155         if (virt_dev->tt_info) {
2156                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2157                                 "Recalculating BW for rootport %u",
2158                                 virt_dev->real_port);
2159                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2160                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2161                                         "newly activated TT.\n");
2162                         return -ENOMEM;
2163                 }
2164                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2165                                 "Recalculating BW for TT slot %u port %u",
2166                                 virt_dev->tt_info->slot_id,
2167                                 virt_dev->tt_info->ttport);
2168         } else {
2169                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2170                                 "Recalculating BW for rootport %u",
2171                                 virt_dev->real_port);
2172         }
2173
2174         /* Add in how much bandwidth will be used for interval zero, or the
2175          * rounded max ESIT payload + number of packets * largest overhead.
2176          */
2177         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2178                 bw_table->interval_bw[0].num_packets *
2179                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2180
2181         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2182                 unsigned int bw_added;
2183                 unsigned int largest_mps;
2184                 unsigned int interval_overhead;
2185
2186                 /*
2187                  * How many packets could we transmit in this interval?
2188                  * If packets didn't fit in the previous interval, we will need
2189                  * to transmit that many packets twice within this interval.
2190                  */
2191                 packets_remaining = 2 * packets_remaining +
2192                         bw_table->interval_bw[i].num_packets;
2193
2194                 /* Find the largest max packet size of this or the previous
2195                  * interval.
2196                  */
2197                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2198                         largest_mps = 0;
2199                 else {
2200                         struct xhci_virt_ep *virt_ep;
2201                         struct list_head *ep_entry;
2202
2203                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2204                         virt_ep = list_entry(ep_entry,
2205                                         struct xhci_virt_ep, bw_endpoint_list);
2206                         /* Convert to blocks, rounding up */
2207                         largest_mps = DIV_ROUND_UP(
2208                                         virt_ep->bw_info.max_packet_size,
2209                                         block_size);
2210                 }
2211                 if (largest_mps > packet_size)
2212                         packet_size = largest_mps;
2213
2214                 /* Use the larger overhead of this or the previous interval. */
2215                 interval_overhead = xhci_get_largest_overhead(
2216                                 &bw_table->interval_bw[i]);
2217                 if (interval_overhead > overhead)
2218                         overhead = interval_overhead;
2219
2220                 /* How many packets can we evenly distribute across
2221                  * (1 << (i + 1)) possible scheduling opportunities?
2222                  */
2223                 packets_transmitted = packets_remaining >> (i + 1);
2224
2225                 /* Add in the bandwidth used for those scheduled packets */
2226                 bw_added = packets_transmitted * (overhead + packet_size);
2227
2228                 /* How many packets do we have remaining to transmit? */
2229                 packets_remaining = packets_remaining % (1 << (i + 1));
2230
2231                 /* What largest max packet size should those packets have? */
2232                 /* If we've transmitted all packets, don't carry over the
2233                  * largest packet size.
2234                  */
2235                 if (packets_remaining == 0) {
2236                         packet_size = 0;
2237                         overhead = 0;
2238                 } else if (packets_transmitted > 0) {
2239                         /* Otherwise if we do have remaining packets, and we've
2240                          * scheduled some packets in this interval, take the
2241                          * largest max packet size from endpoints with this
2242                          * interval.
2243                          */
2244                         packet_size = largest_mps;
2245                         overhead = interval_overhead;
2246                 }
2247                 /* Otherwise carry over packet_size and overhead from the last
2248                  * time we had a remainder.
2249                  */
2250                 bw_used += bw_added;
2251                 if (bw_used > max_bandwidth) {
2252                         xhci_warn(xhci, "Not enough bandwidth. "
2253                                         "Proposed: %u, Max: %u\n",
2254                                 bw_used, max_bandwidth);
2255                         return -ENOMEM;
2256                 }
2257         }
2258         /*
2259          * Ok, we know we have some packets left over after even-handedly
2260          * scheduling interval 15.  We don't know which microframes they will
2261          * fit into, so we over-schedule and say they will be scheduled every
2262          * microframe.
2263          */
2264         if (packets_remaining > 0)
2265                 bw_used += overhead + packet_size;
2266
2267         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2268                 unsigned int port_index = virt_dev->real_port - 1;
2269
2270                 /* OK, we're manipulating a HS device attached to a
2271                  * root port bandwidth domain.  Include the number of active TTs
2272                  * in the bandwidth used.
2273                  */
2274                 bw_used += TT_HS_OVERHEAD *
2275                         xhci->rh_bw[port_index].num_active_tts;
2276         }
2277
2278         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2279                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2280                 "Available: %u " "percent",
2281                 bw_used, max_bandwidth, bw_reserved,
2282                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2283                 max_bandwidth);
2284
2285         bw_used += bw_reserved;
2286         if (bw_used > max_bandwidth) {
2287                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2288                                 bw_used, max_bandwidth);
2289                 return -ENOMEM;
2290         }
2291
2292         bw_table->bw_used = bw_used;
2293         return 0;
2294 }
2295
2296 static bool xhci_is_async_ep(unsigned int ep_type)
2297 {
2298         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2299                                         ep_type != ISOC_IN_EP &&
2300                                         ep_type != INT_IN_EP);
2301 }
2302
2303 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2304 {
2305         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2306 }
2307
2308 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2309 {
2310         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2311
2312         if (ep_bw->ep_interval == 0)
2313                 return SS_OVERHEAD_BURST +
2314                         (ep_bw->mult * ep_bw->num_packets *
2315                                         (SS_OVERHEAD + mps));
2316         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2317                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2318                                 1 << ep_bw->ep_interval);
2319
2320 }
2321
2322 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2323                 struct xhci_bw_info *ep_bw,
2324                 struct xhci_interval_bw_table *bw_table,
2325                 struct usb_device *udev,
2326                 struct xhci_virt_ep *virt_ep,
2327                 struct xhci_tt_bw_info *tt_info)
2328 {
2329         struct xhci_interval_bw *interval_bw;
2330         int normalized_interval;
2331
2332         if (xhci_is_async_ep(ep_bw->type))
2333                 return;
2334
2335         if (udev->speed == USB_SPEED_SUPER) {
2336                 if (xhci_is_sync_in_ep(ep_bw->type))
2337                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2338                                 xhci_get_ss_bw_consumed(ep_bw);
2339                 else
2340                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2341                                 xhci_get_ss_bw_consumed(ep_bw);
2342                 return;
2343         }
2344
2345         /* SuperSpeed endpoints never get added to intervals in the table, so
2346          * this check is only valid for HS/FS/LS devices.
2347          */
2348         if (list_empty(&virt_ep->bw_endpoint_list))
2349                 return;
2350         /* For LS/FS devices, we need to translate the interval expressed in
2351          * microframes to frames.
2352          */
2353         if (udev->speed == USB_SPEED_HIGH)
2354                 normalized_interval = ep_bw->ep_interval;
2355         else
2356                 normalized_interval = ep_bw->ep_interval - 3;
2357
2358         if (normalized_interval == 0)
2359                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2360         interval_bw = &bw_table->interval_bw[normalized_interval];
2361         interval_bw->num_packets -= ep_bw->num_packets;
2362         switch (udev->speed) {
2363         case USB_SPEED_LOW:
2364                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2365                 break;
2366         case USB_SPEED_FULL:
2367                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2368                 break;
2369         case USB_SPEED_HIGH:
2370                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2371                 break;
2372         case USB_SPEED_SUPER:
2373         case USB_SPEED_UNKNOWN:
2374         case USB_SPEED_WIRELESS:
2375                 /* Should never happen because only LS/FS/HS endpoints will get
2376                  * added to the endpoint list.
2377                  */
2378                 return;
2379         }
2380         if (tt_info)
2381                 tt_info->active_eps -= 1;
2382         list_del_init(&virt_ep->bw_endpoint_list);
2383 }
2384
2385 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2386                 struct xhci_bw_info *ep_bw,
2387                 struct xhci_interval_bw_table *bw_table,
2388                 struct usb_device *udev,
2389                 struct xhci_virt_ep *virt_ep,
2390                 struct xhci_tt_bw_info *tt_info)
2391 {
2392         struct xhci_interval_bw *interval_bw;
2393         struct xhci_virt_ep *smaller_ep;
2394         int normalized_interval;
2395
2396         if (xhci_is_async_ep(ep_bw->type))
2397                 return;
2398
2399         if (udev->speed == USB_SPEED_SUPER) {
2400                 if (xhci_is_sync_in_ep(ep_bw->type))
2401                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2402                                 xhci_get_ss_bw_consumed(ep_bw);
2403                 else
2404                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2405                                 xhci_get_ss_bw_consumed(ep_bw);
2406                 return;
2407         }
2408
2409         /* For LS/FS devices, we need to translate the interval expressed in
2410          * microframes to frames.
2411          */
2412         if (udev->speed == USB_SPEED_HIGH)
2413                 normalized_interval = ep_bw->ep_interval;
2414         else
2415                 normalized_interval = ep_bw->ep_interval - 3;
2416
2417         if (normalized_interval == 0)
2418                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2419         interval_bw = &bw_table->interval_bw[normalized_interval];
2420         interval_bw->num_packets += ep_bw->num_packets;
2421         switch (udev->speed) {
2422         case USB_SPEED_LOW:
2423                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2424                 break;
2425         case USB_SPEED_FULL:
2426                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2427                 break;
2428         case USB_SPEED_HIGH:
2429                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2430                 break;
2431         case USB_SPEED_SUPER:
2432         case USB_SPEED_UNKNOWN:
2433         case USB_SPEED_WIRELESS:
2434                 /* Should never happen because only LS/FS/HS endpoints will get
2435                  * added to the endpoint list.
2436                  */
2437                 return;
2438         }
2439
2440         if (tt_info)
2441                 tt_info->active_eps += 1;
2442         /* Insert the endpoint into the list, largest max packet size first. */
2443         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2444                         bw_endpoint_list) {
2445                 if (ep_bw->max_packet_size >=
2446                                 smaller_ep->bw_info.max_packet_size) {
2447                         /* Add the new ep before the smaller endpoint */
2448                         list_add_tail(&virt_ep->bw_endpoint_list,
2449                                         &smaller_ep->bw_endpoint_list);
2450                         return;
2451                 }
2452         }
2453         /* Add the new endpoint at the end of the list. */
2454         list_add_tail(&virt_ep->bw_endpoint_list,
2455                         &interval_bw->endpoints);
2456 }
2457
2458 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2459                 struct xhci_virt_device *virt_dev,
2460                 int old_active_eps)
2461 {
2462         struct xhci_root_port_bw_info *rh_bw_info;
2463         if (!virt_dev->tt_info)
2464                 return;
2465
2466         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2467         if (old_active_eps == 0 &&
2468                                 virt_dev->tt_info->active_eps != 0) {
2469                 rh_bw_info->num_active_tts += 1;
2470                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2471         } else if (old_active_eps != 0 &&
2472                                 virt_dev->tt_info->active_eps == 0) {
2473                 rh_bw_info->num_active_tts -= 1;
2474                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2475         }
2476 }
2477
2478 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2479                 struct xhci_virt_device *virt_dev,
2480                 struct xhci_container_ctx *in_ctx)
2481 {
2482         struct xhci_bw_info ep_bw_info[31];
2483         int i;
2484         struct xhci_input_control_ctx *ctrl_ctx;
2485         int old_active_eps = 0;
2486
2487         if (virt_dev->tt_info)
2488                 old_active_eps = virt_dev->tt_info->active_eps;
2489
2490         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2491         if (!ctrl_ctx) {
2492                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2493                                 __func__);
2494                 return -ENOMEM;
2495         }
2496
2497         for (i = 0; i < 31; i++) {
2498                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2499                         continue;
2500
2501                 /* Make a copy of the BW info in case we need to revert this */
2502                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2503                                 sizeof(ep_bw_info[i]));
2504                 /* Drop the endpoint from the interval table if the endpoint is
2505                  * being dropped or changed.
2506                  */
2507                 if (EP_IS_DROPPED(ctrl_ctx, i))
2508                         xhci_drop_ep_from_interval_table(xhci,
2509                                         &virt_dev->eps[i].bw_info,
2510                                         virt_dev->bw_table,
2511                                         virt_dev->udev,
2512                                         &virt_dev->eps[i],
2513                                         virt_dev->tt_info);
2514         }
2515         /* Overwrite the information stored in the endpoints' bw_info */
2516         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2517         for (i = 0; i < 31; i++) {
2518                 /* Add any changed or added endpoints to the interval table */
2519                 if (EP_IS_ADDED(ctrl_ctx, i))
2520                         xhci_add_ep_to_interval_table(xhci,
2521                                         &virt_dev->eps[i].bw_info,
2522                                         virt_dev->bw_table,
2523                                         virt_dev->udev,
2524                                         &virt_dev->eps[i],
2525                                         virt_dev->tt_info);
2526         }
2527
2528         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2529                 /* Ok, this fits in the bandwidth we have.
2530                  * Update the number of active TTs.
2531                  */
2532                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2533                 return 0;
2534         }
2535
2536         /* We don't have enough bandwidth for this, revert the stored info. */
2537         for (i = 0; i < 31; i++) {
2538                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2539                         continue;
2540
2541                 /* Drop the new copies of any added or changed endpoints from
2542                  * the interval table.
2543                  */
2544                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2545                         xhci_drop_ep_from_interval_table(xhci,
2546                                         &virt_dev->eps[i].bw_info,
2547                                         virt_dev->bw_table,
2548                                         virt_dev->udev,
2549                                         &virt_dev->eps[i],
2550                                         virt_dev->tt_info);
2551                 }
2552                 /* Revert the endpoint back to its old information */
2553                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2554                                 sizeof(ep_bw_info[i]));
2555                 /* Add any changed or dropped endpoints back into the table */
2556                 if (EP_IS_DROPPED(ctrl_ctx, i))
2557                         xhci_add_ep_to_interval_table(xhci,
2558                                         &virt_dev->eps[i].bw_info,
2559                                         virt_dev->bw_table,
2560                                         virt_dev->udev,
2561                                         &virt_dev->eps[i],
2562                                         virt_dev->tt_info);
2563         }
2564         return -ENOMEM;
2565 }
2566
2567
2568 /* Issue a configure endpoint command or evaluate context command
2569  * and wait for it to finish.
2570  */
2571 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2572                 struct usb_device *udev,
2573                 struct xhci_command *command,
2574                 bool ctx_change, bool must_succeed)
2575 {
2576         int ret;
2577         int timeleft;
2578         unsigned long flags;
2579         struct xhci_container_ctx *in_ctx;
2580         struct xhci_input_control_ctx *ctrl_ctx;
2581         struct completion *cmd_completion;
2582         u32 *cmd_status;
2583         struct xhci_virt_device *virt_dev;
2584         union xhci_trb *cmd_trb;
2585
2586         spin_lock_irqsave(&xhci->lock, flags);
2587         virt_dev = xhci->devs[udev->slot_id];
2588
2589         if (command)
2590                 in_ctx = command->in_ctx;
2591         else
2592                 in_ctx = virt_dev->in_ctx;
2593         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2594         if (!ctrl_ctx) {
2595                 spin_unlock_irqrestore(&xhci->lock, flags);
2596                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2597                                 __func__);
2598                 return -ENOMEM;
2599         }
2600
2601         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2602                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2603                 spin_unlock_irqrestore(&xhci->lock, flags);
2604                 xhci_warn(xhci, "Not enough host resources, "
2605                                 "active endpoint contexts = %u\n",
2606                                 xhci->num_active_eps);
2607                 return -ENOMEM;
2608         }
2609         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2610                         xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2611                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2612                         xhci_free_host_resources(xhci, ctrl_ctx);
2613                 spin_unlock_irqrestore(&xhci->lock, flags);
2614                 xhci_warn(xhci, "Not enough bandwidth\n");
2615                 return -ENOMEM;
2616         }
2617
2618         if (command) {
2619                 cmd_completion = command->completion;
2620                 cmd_status = &command->status;
2621                 command->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
2622                 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2623         } else {
2624                 cmd_completion = &virt_dev->cmd_completion;
2625                 cmd_status = &virt_dev->cmd_status;
2626         }
2627         init_completion(cmd_completion);
2628
2629         cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
2630         if (!ctx_change)
2631                 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2632                                 udev->slot_id, must_succeed);
2633         else
2634                 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2635                                 udev->slot_id, must_succeed);
2636         if (ret < 0) {
2637                 if (command)
2638                         list_del(&command->cmd_list);
2639                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2640                         xhci_free_host_resources(xhci, ctrl_ctx);
2641                 spin_unlock_irqrestore(&xhci->lock, flags);
2642                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2643                                 "FIXME allocate a new ring segment");
2644                 return -ENOMEM;
2645         }
2646         xhci_ring_cmd_db(xhci);
2647         spin_unlock_irqrestore(&xhci->lock, flags);
2648
2649         /* Wait for the configure endpoint command to complete */
2650         timeleft = wait_for_completion_interruptible_timeout(
2651                         cmd_completion,
2652                         XHCI_CMD_DEFAULT_TIMEOUT);
2653         if (timeleft <= 0) {
2654                 xhci_warn(xhci, "%s while waiting for %s command\n",
2655                                 timeleft == 0 ? "Timeout" : "Signal",
2656                                 ctx_change == 0 ?
2657                                         "configure endpoint" :
2658                                         "evaluate context");
2659                 /* cancel the configure endpoint command */
2660                 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2661                 if (ret < 0)
2662                         return ret;
2663                 return -ETIME;
2664         }
2665
2666         if (!ctx_change)
2667                 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2668         else
2669                 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2670
2671         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2672                 spin_lock_irqsave(&xhci->lock, flags);
2673                 /* If the command failed, remove the reserved resources.
2674                  * Otherwise, clean up the estimate to include dropped eps.
2675                  */
2676                 if (ret)
2677                         xhci_free_host_resources(xhci, ctrl_ctx);
2678                 else
2679                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2680                 spin_unlock_irqrestore(&xhci->lock, flags);
2681         }
2682         return ret;
2683 }
2684
2685 /* Called after one or more calls to xhci_add_endpoint() or
2686  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2687  * to call xhci_reset_bandwidth().
2688  *
2689  * Since we are in the middle of changing either configuration or
2690  * installing a new alt setting, the USB core won't allow URBs to be
2691  * enqueued for any endpoint on the old config or interface.  Nothing
2692  * else should be touching the xhci->devs[slot_id] structure, so we
2693  * don't need to take the xhci->lock for manipulating that.
2694  */
2695 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2696 {
2697         int i;
2698         int ret = 0;
2699         struct xhci_hcd *xhci;
2700         struct xhci_virt_device *virt_dev;
2701         struct xhci_input_control_ctx *ctrl_ctx;
2702         struct xhci_slot_ctx *slot_ctx;
2703
2704         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2705         if (ret <= 0)
2706                 return ret;
2707         xhci = hcd_to_xhci(hcd);
2708         if (xhci->xhc_state & XHCI_STATE_DYING)
2709                 return -ENODEV;
2710
2711         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2712         virt_dev = xhci->devs[udev->slot_id];
2713
2714         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2715         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2716         if (!ctrl_ctx) {
2717                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2718                                 __func__);
2719                 return -ENOMEM;
2720         }
2721         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2722         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2723         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2724
2725         /* Don't issue the command if there's no endpoints to update. */
2726         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2727                         ctrl_ctx->drop_flags == 0)
2728                 return 0;
2729
2730         xhci_dbg(xhci, "New Input Control Context:\n");
2731         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2732         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2733                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2734
2735         ret = xhci_configure_endpoint(xhci, udev, NULL,
2736                         false, false);
2737         if (ret) {
2738                 /* Callee should call reset_bandwidth() */
2739                 return ret;
2740         }
2741
2742         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2743         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2744                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2745
2746         /* Free any rings that were dropped, but not changed. */
2747         for (i = 1; i < 31; ++i) {
2748                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2749                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2750                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2751         }
2752         xhci_zero_in_ctx(xhci, virt_dev);
2753         /*
2754          * Install any rings for completely new endpoints or changed endpoints,
2755          * and free or cache any old rings from changed endpoints.
2756          */
2757         for (i = 1; i < 31; ++i) {
2758                 if (!virt_dev->eps[i].new_ring)
2759                         continue;
2760                 /* Only cache or free the old ring if it exists.
2761                  * It may not if this is the first add of an endpoint.
2762                  */
2763                 if (virt_dev->eps[i].ring) {
2764                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2765                 }
2766                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2767                 virt_dev->eps[i].new_ring = NULL;
2768         }
2769
2770         return ret;
2771 }
2772
2773 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2774 {
2775         struct xhci_hcd *xhci;
2776         struct xhci_virt_device *virt_dev;
2777         int i, ret;
2778
2779         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2780         if (ret <= 0)
2781                 return;
2782         xhci = hcd_to_xhci(hcd);
2783
2784         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2785         virt_dev = xhci->devs[udev->slot_id];
2786         /* Free any rings allocated for added endpoints */
2787         for (i = 0; i < 31; ++i) {
2788                 if (virt_dev->eps[i].new_ring) {
2789                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2790                         virt_dev->eps[i].new_ring = NULL;
2791                 }
2792         }
2793         xhci_zero_in_ctx(xhci, virt_dev);
2794 }
2795
2796 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2797                 struct xhci_container_ctx *in_ctx,
2798                 struct xhci_container_ctx *out_ctx,
2799                 struct xhci_input_control_ctx *ctrl_ctx,
2800                 u32 add_flags, u32 drop_flags)
2801 {
2802         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2803         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2804         xhci_slot_copy(xhci, in_ctx, out_ctx);
2805         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2806
2807         xhci_dbg(xhci, "Input Context:\n");
2808         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2809 }
2810
2811 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2812                 unsigned int slot_id, unsigned int ep_index,
2813                 struct xhci_dequeue_state *deq_state)
2814 {
2815         struct xhci_input_control_ctx *ctrl_ctx;
2816         struct xhci_container_ctx *in_ctx;
2817         struct xhci_ep_ctx *ep_ctx;
2818         u32 added_ctxs;
2819         dma_addr_t addr;
2820
2821         in_ctx = xhci->devs[slot_id]->in_ctx;
2822         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2823         if (!ctrl_ctx) {
2824                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2825                                 __func__);
2826                 return;
2827         }
2828
2829         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2830                         xhci->devs[slot_id]->out_ctx, ep_index);
2831         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2832         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2833                         deq_state->new_deq_ptr);
2834         if (addr == 0) {
2835                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2836                                 "reset ep command\n");
2837                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2838                                 deq_state->new_deq_seg,
2839                                 deq_state->new_deq_ptr);
2840                 return;
2841         }
2842         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2843
2844         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2845         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2846                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2847                         added_ctxs, added_ctxs);
2848 }
2849
2850 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2851                 struct usb_device *udev, unsigned int ep_index)
2852 {
2853         struct xhci_dequeue_state deq_state;
2854         struct xhci_virt_ep *ep;
2855
2856         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2857                         "Cleaning up stalled endpoint ring");
2858         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2859         /* We need to move the HW's dequeue pointer past this TD,
2860          * or it will attempt to resend it on the next doorbell ring.
2861          */
2862         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2863                         ep_index, ep->stopped_stream, ep->stopped_td,
2864                         &deq_state);
2865
2866         /* HW with the reset endpoint quirk will use the saved dequeue state to
2867          * issue a configure endpoint command later.
2868          */
2869         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2870                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2871                                 "Queueing new dequeue state");
2872                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2873                                 ep_index, ep->stopped_stream, &deq_state);
2874         } else {
2875                 /* Better hope no one uses the input context between now and the
2876                  * reset endpoint completion!
2877                  * XXX: No idea how this hardware will react when stream rings
2878                  * are enabled.
2879                  */
2880                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2881                                 "Setting up input context for "
2882                                 "configure endpoint command");
2883                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2884                                 ep_index, &deq_state);
2885         }
2886 }
2887
2888 /* Deal with stalled endpoints.  The core should have sent the control message
2889  * to clear the halt condition.  However, we need to make the xHCI hardware
2890  * reset its sequence number, since a device will expect a sequence number of
2891  * zero after the halt condition is cleared.
2892  * Context: in_interrupt
2893  */
2894 void xhci_endpoint_reset(struct usb_hcd *hcd,
2895                 struct usb_host_endpoint *ep)
2896 {
2897         struct xhci_hcd *xhci;
2898         struct usb_device *udev;
2899         unsigned int ep_index;
2900         unsigned long flags;
2901         int ret;
2902         struct xhci_virt_ep *virt_ep;
2903
2904         xhci = hcd_to_xhci(hcd);
2905         udev = (struct usb_device *) ep->hcpriv;
2906         /* Called with a root hub endpoint (or an endpoint that wasn't added
2907          * with xhci_add_endpoint()
2908          */
2909         if (!ep->hcpriv)
2910                 return;
2911         ep_index = xhci_get_endpoint_index(&ep->desc);
2912         virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2913         if (!virt_ep->stopped_td) {
2914                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2915                         "Endpoint 0x%x not halted, refusing to reset.",
2916                         ep->desc.bEndpointAddress);
2917                 return;
2918         }
2919         if (usb_endpoint_xfer_control(&ep->desc)) {
2920                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2921                                 "Control endpoint stall already handled.");
2922                 return;
2923         }
2924
2925         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2926                         "Queueing reset endpoint command");
2927         spin_lock_irqsave(&xhci->lock, flags);
2928         ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2929         /*
2930          * Can't change the ring dequeue pointer until it's transitioned to the
2931          * stopped state, which is only upon a successful reset endpoint
2932          * command.  Better hope that last command worked!
2933          */
2934         if (!ret) {
2935                 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2936                 kfree(virt_ep->stopped_td);
2937                 xhci_ring_cmd_db(xhci);
2938         }
2939         virt_ep->stopped_td = NULL;
2940         virt_ep->stopped_stream = 0;
2941         spin_unlock_irqrestore(&xhci->lock, flags);
2942
2943         if (ret)
2944                 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2945 }
2946
2947 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2948                 struct usb_device *udev, struct usb_host_endpoint *ep,
2949                 unsigned int slot_id)
2950 {
2951         int ret;
2952         unsigned int ep_index;
2953         unsigned int ep_state;
2954
2955         if (!ep)
2956                 return -EINVAL;
2957         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2958         if (ret <= 0)
2959                 return -EINVAL;
2960         if (ep->ss_ep_comp.bmAttributes == 0) {
2961                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2962                                 " descriptor for ep 0x%x does not support streams\n",
2963                                 ep->desc.bEndpointAddress);
2964                 return -EINVAL;
2965         }
2966
2967         ep_index = xhci_get_endpoint_index(&ep->desc);
2968         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2969         if (ep_state & EP_HAS_STREAMS ||
2970                         ep_state & EP_GETTING_STREAMS) {
2971                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2972                                 "already has streams set up.\n",
2973                                 ep->desc.bEndpointAddress);
2974                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2975                                 "dynamic stream context array reallocation.\n");
2976                 return -EINVAL;
2977         }
2978         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2979                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2980                                 "endpoint 0x%x; URBs are pending.\n",
2981                                 ep->desc.bEndpointAddress);
2982                 return -EINVAL;
2983         }
2984         return 0;
2985 }
2986
2987 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2988                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2989 {
2990         unsigned int max_streams;
2991
2992         /* The stream context array size must be a power of two */
2993         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2994         /*
2995          * Find out how many primary stream array entries the host controller
2996          * supports.  Later we may use secondary stream arrays (similar to 2nd
2997          * level page entries), but that's an optional feature for xHCI host
2998          * controllers. xHCs must support at least 4 stream IDs.
2999          */
3000         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3001         if (*num_stream_ctxs > max_streams) {
3002                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3003                                 max_streams);
3004                 *num_stream_ctxs = max_streams;
3005                 *num_streams = max_streams;
3006         }
3007 }
3008
3009 /* Returns an error code if one of the endpoint already has streams.
3010  * This does not change any data structures, it only checks and gathers
3011  * information.
3012  */
3013 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3014                 struct usb_device *udev,
3015                 struct usb_host_endpoint **eps, unsigned int num_eps,
3016                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3017 {
3018         unsigned int max_streams;
3019         unsigned int endpoint_flag;
3020         int i;
3021         int ret;
3022
3023         for (i = 0; i < num_eps; i++) {
3024                 ret = xhci_check_streams_endpoint(xhci, udev,
3025                                 eps[i], udev->slot_id);
3026                 if (ret < 0)
3027                         return ret;
3028
3029                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3030                 if (max_streams < (*num_streams - 1)) {
3031                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3032                                         eps[i]->desc.bEndpointAddress,
3033                                         max_streams);
3034                         *num_streams = max_streams+1;
3035                 }
3036
3037                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3038                 if (*changed_ep_bitmask & endpoint_flag)
3039                         return -EINVAL;
3040                 *changed_ep_bitmask |= endpoint_flag;
3041         }
3042         return 0;
3043 }
3044
3045 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3046                 struct usb_device *udev,
3047                 struct usb_host_endpoint **eps, unsigned int num_eps)
3048 {
3049         u32 changed_ep_bitmask = 0;
3050         unsigned int slot_id;
3051         unsigned int ep_index;
3052         unsigned int ep_state;
3053         int i;
3054
3055         slot_id = udev->slot_id;
3056         if (!xhci->devs[slot_id])
3057                 return 0;
3058
3059         for (i = 0; i < num_eps; i++) {
3060                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3061                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3062                 /* Are streams already being freed for the endpoint? */
3063                 if (ep_state & EP_GETTING_NO_STREAMS) {
3064                         xhci_warn(xhci, "WARN Can't disable streams for "
3065                                         "endpoint 0x%x, "
3066                                         "streams are being disabled already\n",
3067                                         eps[i]->desc.bEndpointAddress);
3068                         return 0;
3069                 }
3070                 /* Are there actually any streams to free? */
3071                 if (!(ep_state & EP_HAS_STREAMS) &&
3072                                 !(ep_state & EP_GETTING_STREAMS)) {
3073                         xhci_warn(xhci, "WARN Can't disable streams for "
3074                                         "endpoint 0x%x, "
3075                                         "streams are already disabled!\n",
3076                                         eps[i]->desc.bEndpointAddress);
3077                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3078                                         "with non-streams endpoint\n");
3079                         return 0;
3080                 }
3081                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3082         }
3083         return changed_ep_bitmask;
3084 }
3085
3086 /*
3087  * The USB device drivers use this function (though the HCD interface in USB
3088  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3089  * coordinate mass storage command queueing across multiple endpoints (basically
3090  * a stream ID == a task ID).
3091  *
3092  * Setting up streams involves allocating the same size stream context array
3093  * for each endpoint and issuing a configure endpoint command for all endpoints.
3094  *
3095  * Don't allow the call to succeed if one endpoint only supports one stream
3096  * (which means it doesn't support streams at all).
3097  *
3098  * Drivers may get less stream IDs than they asked for, if the host controller
3099  * hardware or endpoints claim they can't support the number of requested
3100  * stream IDs.
3101  */
3102 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3103                 struct usb_host_endpoint **eps, unsigned int num_eps,
3104                 unsigned int num_streams, gfp_t mem_flags)
3105 {
3106         int i, ret;
3107         struct xhci_hcd *xhci;
3108         struct xhci_virt_device *vdev;
3109         struct xhci_command *config_cmd;
3110         struct xhci_input_control_ctx *ctrl_ctx;
3111         unsigned int ep_index;
3112         unsigned int num_stream_ctxs;
3113         unsigned long flags;
3114         u32 changed_ep_bitmask = 0;
3115
3116         if (!eps)
3117                 return -EINVAL;
3118
3119         /* Add one to the number of streams requested to account for
3120          * stream 0 that is reserved for xHCI usage.
3121          */
3122         num_streams += 1;
3123         xhci = hcd_to_xhci(hcd);
3124         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3125                         num_streams);
3126
3127         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3128         if (!config_cmd) {
3129                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3130                 return -ENOMEM;
3131         }
3132         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3133         if (!ctrl_ctx) {
3134                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3135                                 __func__);
3136                 xhci_free_command(xhci, config_cmd);
3137                 return -ENOMEM;
3138         }
3139
3140         /* Check to make sure all endpoints are not already configured for
3141          * streams.  While we're at it, find the maximum number of streams that
3142          * all the endpoints will support and check for duplicate endpoints.
3143          */
3144         spin_lock_irqsave(&xhci->lock, flags);
3145         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3146                         num_eps, &num_streams, &changed_ep_bitmask);
3147         if (ret < 0) {
3148                 xhci_free_command(xhci, config_cmd);
3149                 spin_unlock_irqrestore(&xhci->lock, flags);
3150                 return ret;
3151         }
3152         if (num_streams <= 1) {
3153                 xhci_warn(xhci, "WARN: endpoints can't handle "
3154                                 "more than one stream.\n");
3155                 xhci_free_command(xhci, config_cmd);
3156                 spin_unlock_irqrestore(&xhci->lock, flags);
3157                 return -EINVAL;
3158         }
3159         vdev = xhci->devs[udev->slot_id];
3160         /* Mark each endpoint as being in transition, so
3161          * xhci_urb_enqueue() will reject all URBs.
3162          */
3163         for (i = 0; i < num_eps; i++) {
3164                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3165                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3166         }
3167         spin_unlock_irqrestore(&xhci->lock, flags);
3168
3169         /* Setup internal data structures and allocate HW data structures for
3170          * streams (but don't install the HW structures in the input context
3171          * until we're sure all memory allocation succeeded).
3172          */
3173         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3174         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3175                         num_stream_ctxs, num_streams);
3176
3177         for (i = 0; i < num_eps; i++) {
3178                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3179                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3180                                 num_stream_ctxs,
3181                                 num_streams, mem_flags);
3182                 if (!vdev->eps[ep_index].stream_info)
3183                         goto cleanup;
3184                 /* Set maxPstreams in endpoint context and update deq ptr to
3185                  * point to stream context array. FIXME
3186                  */
3187         }
3188
3189         /* Set up the input context for a configure endpoint command. */
3190         for (i = 0; i < num_eps; i++) {
3191                 struct xhci_ep_ctx *ep_ctx;
3192
3193                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3194                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3195
3196                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3197                                 vdev->out_ctx, ep_index);
3198                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3199                                 vdev->eps[ep_index].stream_info);
3200         }
3201         /* Tell the HW to drop its old copy of the endpoint context info
3202          * and add the updated copy from the input context.
3203          */
3204         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3205                         vdev->out_ctx, ctrl_ctx,
3206                         changed_ep_bitmask, changed_ep_bitmask);
3207
3208         /* Issue and wait for the configure endpoint command */
3209         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3210                         false, false);
3211
3212         /* xHC rejected the configure endpoint command for some reason, so we
3213          * leave the old ring intact and free our internal streams data
3214          * structure.
3215          */
3216         if (ret < 0)
3217                 goto cleanup;
3218
3219         spin_lock_irqsave(&xhci->lock, flags);
3220         for (i = 0; i < num_eps; i++) {
3221                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3222                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3223                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3224                          udev->slot_id, ep_index);
3225                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3226         }
3227         xhci_free_command(xhci, config_cmd);
3228         spin_unlock_irqrestore(&xhci->lock, flags);
3229
3230         /* Subtract 1 for stream 0, which drivers can't use */
3231         return num_streams - 1;
3232
3233 cleanup:
3234         /* If it didn't work, free the streams! */
3235         for (i = 0; i < num_eps; i++) {
3236                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3237                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3238                 vdev->eps[ep_index].stream_info = NULL;
3239                 /* FIXME Unset maxPstreams in endpoint context and
3240                  * update deq ptr to point to normal string ring.
3241                  */
3242                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3243                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3244                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3245         }
3246         xhci_free_command(xhci, config_cmd);
3247         return -ENOMEM;
3248 }
3249
3250 /* Transition the endpoint from using streams to being a "normal" endpoint
3251  * without streams.
3252  *
3253  * Modify the endpoint context state, submit a configure endpoint command,
3254  * and free all endpoint rings for streams if that completes successfully.
3255  */
3256 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3257                 struct usb_host_endpoint **eps, unsigned int num_eps,
3258                 gfp_t mem_flags)
3259 {
3260         int i, ret;
3261         struct xhci_hcd *xhci;
3262         struct xhci_virt_device *vdev;
3263         struct xhci_command *command;
3264         struct xhci_input_control_ctx *ctrl_ctx;
3265         unsigned int ep_index;
3266         unsigned long flags;
3267         u32 changed_ep_bitmask;
3268
3269         xhci = hcd_to_xhci(hcd);
3270         vdev = xhci->devs[udev->slot_id];
3271
3272         /* Set up a configure endpoint command to remove the streams rings */
3273         spin_lock_irqsave(&xhci->lock, flags);
3274         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3275                         udev, eps, num_eps);
3276         if (changed_ep_bitmask == 0) {
3277                 spin_unlock_irqrestore(&xhci->lock, flags);
3278                 return -EINVAL;
3279         }
3280
3281         /* Use the xhci_command structure from the first endpoint.  We may have
3282          * allocated too many, but the driver may call xhci_free_streams() for
3283          * each endpoint it grouped into one call to xhci_alloc_streams().
3284          */
3285         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3286         command = vdev->eps[ep_index].stream_info->free_streams_command;
3287         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3288         if (!ctrl_ctx) {
3289                 spin_unlock_irqrestore(&xhci->lock, flags);
3290                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3291                                 __func__);
3292                 return -EINVAL;
3293         }
3294
3295         for (i = 0; i < num_eps; i++) {
3296                 struct xhci_ep_ctx *ep_ctx;
3297
3298                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3299                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3300                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3301                         EP_GETTING_NO_STREAMS;
3302
3303                 xhci_endpoint_copy(xhci, command->in_ctx,
3304                                 vdev->out_ctx, ep_index);
3305                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3306                                 &vdev->eps[ep_index]);
3307         }
3308         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3309                         vdev->out_ctx, ctrl_ctx,
3310                         changed_ep_bitmask, changed_ep_bitmask);
3311         spin_unlock_irqrestore(&xhci->lock, flags);
3312
3313         /* Issue and wait for the configure endpoint command,
3314          * which must succeed.
3315          */
3316         ret = xhci_configure_endpoint(xhci, udev, command,
3317                         false, true);
3318
3319         /* xHC rejected the configure endpoint command for some reason, so we
3320          * leave the streams rings intact.
3321          */
3322         if (ret < 0)
3323                 return ret;
3324
3325         spin_lock_irqsave(&xhci->lock, flags);
3326         for (i = 0; i < num_eps; i++) {
3327                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3328                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3329                 vdev->eps[ep_index].stream_info = NULL;
3330                 /* FIXME Unset maxPstreams in endpoint context and
3331                  * update deq ptr to point to normal string ring.
3332                  */
3333                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3334                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3335         }
3336         spin_unlock_irqrestore(&xhci->lock, flags);
3337
3338         return 0;
3339 }
3340
3341 /*
3342  * Deletes endpoint resources for endpoints that were active before a Reset
3343  * Device command, or a Disable Slot command.  The Reset Device command leaves
3344  * the control endpoint intact, whereas the Disable Slot command deletes it.
3345  *
3346  * Must be called with xhci->lock held.
3347  */
3348 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3349         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3350 {
3351         int i;
3352         unsigned int num_dropped_eps = 0;
3353         unsigned int drop_flags = 0;
3354
3355         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3356                 if (virt_dev->eps[i].ring) {
3357                         drop_flags |= 1 << i;
3358                         num_dropped_eps++;
3359                 }
3360         }
3361         xhci->num_active_eps -= num_dropped_eps;
3362         if (num_dropped_eps)
3363                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3364                                 "Dropped %u ep ctxs, flags = 0x%x, "
3365                                 "%u now active.",
3366                                 num_dropped_eps, drop_flags,
3367                                 xhci->num_active_eps);
3368 }
3369
3370 /*
3371  * This submits a Reset Device Command, which will set the device state to 0,
3372  * set the device address to 0, and disable all the endpoints except the default
3373  * control endpoint.  The USB core should come back and call
3374  * xhci_address_device(), and then re-set up the configuration.  If this is
3375  * called because of a usb_reset_and_verify_device(), then the old alternate
3376  * settings will be re-installed through the normal bandwidth allocation
3377  * functions.
3378  *
3379  * Wait for the Reset Device command to finish.  Remove all structures
3380  * associated with the endpoints that were disabled.  Clear the input device
3381  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3382  *
3383  * If the virt_dev to be reset does not exist or does not match the udev,
3384  * it means the device is lost, possibly due to the xHC restore error and
3385  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3386  * re-allocate the device.
3387  */
3388 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3389 {
3390         int ret, i;
3391         unsigned long flags;
3392         struct xhci_hcd *xhci;
3393         unsigned int slot_id;
3394         struct xhci_virt_device *virt_dev;
3395         struct xhci_command *reset_device_cmd;
3396         int timeleft;
3397         int last_freed_endpoint;
3398         struct xhci_slot_ctx *slot_ctx;
3399         int old_active_eps = 0;
3400
3401         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3402         if (ret <= 0)
3403                 return ret;
3404         xhci = hcd_to_xhci(hcd);
3405         slot_id = udev->slot_id;
3406         virt_dev = xhci->devs[slot_id];
3407         if (!virt_dev) {
3408                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3409                                 "not exist. Re-allocate the device\n", slot_id);
3410                 ret = xhci_alloc_dev(hcd, udev);
3411                 if (ret == 1)
3412                         return 0;
3413                 else
3414                         return -EINVAL;
3415         }
3416
3417         if (virt_dev->udev != udev) {
3418                 /* If the virt_dev and the udev does not match, this virt_dev
3419                  * may belong to another udev.
3420                  * Re-allocate the device.
3421                  */
3422                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3423                                 "not match the udev. Re-allocate the device\n",
3424                                 slot_id);
3425                 ret = xhci_alloc_dev(hcd, udev);
3426                 if (ret == 1)
3427                         return 0;
3428                 else
3429                         return -EINVAL;
3430         }
3431
3432         /* If device is not setup, there is no point in resetting it */
3433         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3434         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3435                                                 SLOT_STATE_DISABLED)
3436                 return 0;
3437
3438         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3439         /* Allocate the command structure that holds the struct completion.
3440          * Assume we're in process context, since the normal device reset
3441          * process has to wait for the device anyway.  Storage devices are
3442          * reset as part of error handling, so use GFP_NOIO instead of
3443          * GFP_KERNEL.
3444          */
3445         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3446         if (!reset_device_cmd) {
3447                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3448                 return -ENOMEM;
3449         }
3450
3451         /* Attempt to submit the Reset Device command to the command ring */
3452         spin_lock_irqsave(&xhci->lock, flags);
3453         reset_device_cmd->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3454
3455         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3456         ret = xhci_queue_reset_device(xhci, slot_id);
3457         if (ret) {
3458                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3459                 list_del(&reset_device_cmd->cmd_list);
3460                 spin_unlock_irqrestore(&xhci->lock, flags);
3461                 goto command_cleanup;
3462         }
3463         xhci_ring_cmd_db(xhci);
3464         spin_unlock_irqrestore(&xhci->lock, flags);
3465
3466         /* Wait for the Reset Device command to finish */
3467         timeleft = wait_for_completion_interruptible_timeout(
3468                         reset_device_cmd->completion,
3469                         XHCI_CMD_DEFAULT_TIMEOUT);
3470         if (timeleft <= 0) {
3471                 xhci_warn(xhci, "%s while waiting for reset device command\n",
3472                                 timeleft == 0 ? "Timeout" : "Signal");
3473                 spin_lock_irqsave(&xhci->lock, flags);
3474                 /* The timeout might have raced with the event ring handler, so
3475                  * only delete from the list if the item isn't poisoned.
3476                  */
3477                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3478                         list_del(&reset_device_cmd->cmd_list);
3479                 spin_unlock_irqrestore(&xhci->lock, flags);
3480                 ret = -ETIME;
3481                 goto command_cleanup;
3482         }
3483
3484         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3485          * unless we tried to reset a slot ID that wasn't enabled,
3486          * or the device wasn't in the addressed or configured state.
3487          */
3488         ret = reset_device_cmd->status;
3489         switch (ret) {
3490         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3491         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3492                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3493                                 slot_id,
3494                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3495                 xhci_dbg(xhci, "Not freeing device rings.\n");
3496                 /* Don't treat this as an error.  May change my mind later. */
3497                 ret = 0;
3498                 goto command_cleanup;
3499         case COMP_SUCCESS:
3500                 xhci_dbg(xhci, "Successful reset device command.\n");
3501                 break;
3502         default:
3503                 if (xhci_is_vendor_info_code(xhci, ret))
3504                         break;
3505                 xhci_warn(xhci, "Unknown completion code %u for "
3506                                 "reset device command.\n", ret);
3507                 ret = -EINVAL;
3508                 goto command_cleanup;
3509         }
3510
3511         /* Free up host controller endpoint resources */
3512         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3513                 spin_lock_irqsave(&xhci->lock, flags);
3514                 /* Don't delete the default control endpoint resources */
3515                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3516                 spin_unlock_irqrestore(&xhci->lock, flags);
3517         }
3518
3519         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3520         last_freed_endpoint = 1;
3521         for (i = 1; i < 31; ++i) {
3522                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3523
3524                 if (ep->ep_state & EP_HAS_STREAMS) {
3525                         xhci_free_stream_info(xhci, ep->stream_info);
3526                         ep->stream_info = NULL;
3527                         ep->ep_state &= ~EP_HAS_STREAMS;
3528                 }
3529
3530                 if (ep->ring) {
3531                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3532                         last_freed_endpoint = i;
3533                 }
3534                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3535                         xhci_drop_ep_from_interval_table(xhci,
3536                                         &virt_dev->eps[i].bw_info,
3537                                         virt_dev->bw_table,
3538                                         udev,
3539                                         &virt_dev->eps[i],
3540                                         virt_dev->tt_info);
3541                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3542         }
3543         /* If necessary, update the number of active TTs on this root port */
3544         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3545
3546         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3547         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3548         ret = 0;
3549
3550 command_cleanup:
3551         xhci_free_command(xhci, reset_device_cmd);
3552         return ret;
3553 }
3554
3555 /*
3556  * At this point, the struct usb_device is about to go away, the device has
3557  * disconnected, and all traffic has been stopped and the endpoints have been
3558  * disabled.  Free any HC data structures associated with that device.
3559  */
3560 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3561 {
3562         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3563         struct xhci_virt_device *virt_dev;
3564         unsigned long flags;
3565         u32 state;
3566         int i, ret;
3567
3568 #ifndef CONFIG_USB_DEFAULT_PERSIST
3569         /*
3570          * We called pm_runtime_get_noresume when the device was attached.
3571          * Decrement the counter here to allow controller to runtime suspend
3572          * if no devices remain.
3573          */
3574         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3575                 pm_runtime_put_noidle(hcd->self.controller);
3576 #endif
3577
3578         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3579         /* If the host is halted due to driver unload, we still need to free the
3580          * device.
3581          */
3582         if (ret <= 0 && ret != -ENODEV)
3583                 return;
3584
3585         virt_dev = xhci->devs[udev->slot_id];
3586
3587         /* Stop any wayward timer functions (which may grab the lock) */
3588         for (i = 0; i < 31; ++i) {
3589                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3590                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3591         }
3592
3593         spin_lock_irqsave(&xhci->lock, flags);
3594         /* Don't disable the slot if the host controller is dead. */
3595         state = readl(&xhci->op_regs->status);
3596         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3597                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3598                 xhci_free_virt_device(xhci, udev->slot_id);
3599                 spin_unlock_irqrestore(&xhci->lock, flags);
3600                 return;
3601         }
3602
3603         if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3604                 spin_unlock_irqrestore(&xhci->lock, flags);
3605                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3606                 return;
3607         }
3608         xhci_ring_cmd_db(xhci);
3609         spin_unlock_irqrestore(&xhci->lock, flags);
3610         /*
3611          * Event command completion handler will free any data structures
3612          * associated with the slot.  XXX Can free sleep?
3613          */
3614 }
3615
3616 /*
3617  * Checks if we have enough host controller resources for the default control
3618  * endpoint.
3619  *
3620  * Must be called with xhci->lock held.
3621  */
3622 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3623 {
3624         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3625                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3626                                 "Not enough ep ctxs: "
3627                                 "%u active, need to add 1, limit is %u.",
3628                                 xhci->num_active_eps, xhci->limit_active_eps);
3629                 return -ENOMEM;
3630         }
3631         xhci->num_active_eps += 1;
3632         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3633                         "Adding 1 ep ctx, %u now active.",
3634                         xhci->num_active_eps);
3635         return 0;
3636 }
3637
3638
3639 /*
3640  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3641  * timed out, or allocating memory failed.  Returns 1 on success.
3642  */
3643 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3644 {
3645         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3646         unsigned long flags;
3647         int timeleft;
3648         int ret;
3649         union xhci_trb *cmd_trb;
3650
3651         spin_lock_irqsave(&xhci->lock, flags);
3652         cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3653         ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3654         if (ret) {
3655                 spin_unlock_irqrestore(&xhci->lock, flags);
3656                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3657                 return 0;
3658         }
3659         xhci_ring_cmd_db(xhci);
3660         spin_unlock_irqrestore(&xhci->lock, flags);
3661
3662         /* XXX: how much time for xHC slot assignment? */
3663         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3664                         XHCI_CMD_DEFAULT_TIMEOUT);
3665         if (timeleft <= 0) {
3666                 xhci_warn(xhci, "%s while waiting for a slot\n",
3667                                 timeleft == 0 ? "Timeout" : "Signal");
3668                 /* cancel the enable slot request */
3669                 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3670         }
3671
3672         if (!xhci->slot_id) {
3673                 xhci_err(xhci, "Error while assigning device slot ID\n");
3674                 return 0;
3675         }
3676
3677         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3678                 spin_lock_irqsave(&xhci->lock, flags);
3679                 ret = xhci_reserve_host_control_ep_resources(xhci);
3680                 if (ret) {
3681                         spin_unlock_irqrestore(&xhci->lock, flags);
3682                         xhci_warn(xhci, "Not enough host resources, "
3683                                         "active endpoint contexts = %u\n",
3684                                         xhci->num_active_eps);
3685                         goto disable_slot;
3686                 }
3687                 spin_unlock_irqrestore(&xhci->lock, flags);
3688         }
3689         /* Use GFP_NOIO, since this function can be called from
3690          * xhci_discover_or_reset_device(), which may be called as part of
3691          * mass storage driver error handling.
3692          */
3693         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3694                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3695                 goto disable_slot;
3696         }
3697         udev->slot_id = xhci->slot_id;
3698
3699 #ifndef CONFIG_USB_DEFAULT_PERSIST
3700         /*
3701          * If resetting upon resume, we can't put the controller into runtime
3702          * suspend if there is a device attached.
3703          */
3704         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3705                 pm_runtime_get_noresume(hcd->self.controller);
3706 #endif
3707
3708         /* Is this a LS or FS device under a HS hub? */
3709         /* Hub or peripherial? */
3710         return 1;
3711
3712 disable_slot:
3713         /* Disable slot, if we can do it without mem alloc */
3714         spin_lock_irqsave(&xhci->lock, flags);
3715         if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3716                 xhci_ring_cmd_db(xhci);
3717         spin_unlock_irqrestore(&xhci->lock, flags);
3718         return 0;
3719 }
3720
3721 /*
3722  * Issue an Address Device command and optionally send a corresponding
3723  * SetAddress request to the device.
3724  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3725  * we should only issue and wait on one address command at the same time.
3726  */
3727 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3728                              enum xhci_setup_dev setup)
3729 {
3730         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3731         unsigned long flags;
3732         int timeleft;
3733         struct xhci_virt_device *virt_dev;
3734         int ret = 0;
3735         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3736         struct xhci_slot_ctx *slot_ctx;
3737         struct xhci_input_control_ctx *ctrl_ctx;
3738         u64 temp_64;
3739         union xhci_trb *cmd_trb;
3740
3741         if (!udev->slot_id) {
3742                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3743                                 "Bad Slot ID %d", udev->slot_id);
3744                 return -EINVAL;
3745         }
3746
3747         virt_dev = xhci->devs[udev->slot_id];
3748
3749         if (WARN_ON(!virt_dev)) {
3750                 /*
3751                  * In plug/unplug torture test with an NEC controller,
3752                  * a zero-dereference was observed once due to virt_dev = 0.
3753                  * Print useful debug rather than crash if it is observed again!
3754                  */
3755                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3756                         udev->slot_id);
3757                 return -EINVAL;
3758         }
3759
3760         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3761         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3762         if (!ctrl_ctx) {
3763                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3764                                 __func__);
3765                 return -EINVAL;
3766         }
3767         /*
3768          * If this is the first Set Address since device plug-in or
3769          * virt_device realloaction after a resume with an xHCI power loss,
3770          * then set up the slot context.
3771          */
3772         if (!slot_ctx->dev_info)
3773                 xhci_setup_addressable_virt_dev(xhci, udev);
3774         /* Otherwise, update the control endpoint ring enqueue pointer. */
3775         else
3776                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3777         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3778         ctrl_ctx->drop_flags = 0;
3779
3780         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3781         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3782         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3783                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3784
3785         spin_lock_irqsave(&xhci->lock, flags);
3786         cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3787         ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3788                                         udev->slot_id, setup);
3789         if (ret) {
3790                 spin_unlock_irqrestore(&xhci->lock, flags);
3791                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3792                                 "FIXME: allocate a command ring segment");
3793                 return ret;
3794         }
3795         xhci_ring_cmd_db(xhci);
3796         spin_unlock_irqrestore(&xhci->lock, flags);
3797
3798         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3799         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3800                         XHCI_CMD_DEFAULT_TIMEOUT);
3801         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3802          * the SetAddress() "recovery interval" required by USB and aborting the
3803          * command on a timeout.
3804          */
3805         if (timeleft <= 0) {
3806                 xhci_warn(xhci, "%s while waiting for setup %s command\n",
3807                           timeleft == 0 ? "Timeout" : "Signal", act);
3808                 /* cancel the address device command */
3809                 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3810                 if (ret < 0)
3811                         return ret;
3812                 return -ETIME;
3813         }
3814
3815         switch (virt_dev->cmd_status) {
3816         case COMP_CTX_STATE:
3817         case COMP_EBADSLT:
3818                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3819                          act, udev->slot_id);
3820                 ret = -EINVAL;
3821                 break;
3822         case COMP_TX_ERR:
3823                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3824                 ret = -EPROTO;
3825                 break;
3826         case COMP_DEV_ERR:
3827                 dev_warn(&udev->dev,
3828                          "ERROR: Incompatible device for setup %s command\n", act);
3829                 ret = -ENODEV;
3830                 break;
3831         case COMP_SUCCESS:
3832                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3833                                "Successful setup %s command", act);
3834                 break;
3835         default:
3836                 xhci_err(xhci,
3837                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3838                          act, virt_dev->cmd_status);
3839                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3840                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3841                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3842                 ret = -EINVAL;
3843                 break;
3844         }
3845         if (ret) {
3846                 return ret;
3847         }
3848         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3849         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3850                         "Op regs DCBAA ptr = %#016llx", temp_64);
3851         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3852                 "Slot ID %d dcbaa entry @%p = %#016llx",
3853                 udev->slot_id,
3854                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3855                 (unsigned long long)
3856                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3857         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3858                         "Output Context DMA address = %#08llx",
3859                         (unsigned long long)virt_dev->out_ctx->dma);
3860         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3861         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3862         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3863                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3864         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3865         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3866         /*
3867          * USB core uses address 1 for the roothubs, so we add one to the
3868          * address given back to us by the HC.
3869          */
3870         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3871         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3872                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3873         /* Zero the input context control for later use */
3874         ctrl_ctx->add_flags = 0;
3875         ctrl_ctx->drop_flags = 0;
3876
3877         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3878                        "Internal device address = %d",
3879                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3880
3881         return 0;
3882 }
3883
3884 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3885 {
3886         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3887 }
3888
3889 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3890 {
3891         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3892 }
3893
3894 /*
3895  * Transfer the port index into real index in the HW port status
3896  * registers. Caculate offset between the port's PORTSC register
3897  * and port status base. Divide the number of per port register
3898  * to get the real index. The raw port number bases 1.
3899  */
3900 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3901 {
3902         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3903         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3904         __le32 __iomem *addr;
3905         int raw_port;
3906
3907         if (hcd->speed != HCD_USB3)
3908                 addr = xhci->usb2_ports[port1 - 1];
3909         else
3910                 addr = xhci->usb3_ports[port1 - 1];
3911
3912         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3913         return raw_port;
3914 }
3915
3916 /*
3917  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3918  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3919  */
3920 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3921                         struct usb_device *udev, u16 max_exit_latency)
3922 {
3923         struct xhci_virt_device *virt_dev;
3924         struct xhci_command *command;
3925         struct xhci_input_control_ctx *ctrl_ctx;
3926         struct xhci_slot_ctx *slot_ctx;
3927         unsigned long flags;
3928         int ret;
3929
3930         spin_lock_irqsave(&xhci->lock, flags);
3931
3932         virt_dev = xhci->devs[udev->slot_id];
3933
3934         /*
3935          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3936          * xHC was re-initialized. Exit latency will be set later after
3937          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3938          */
3939
3940         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
3941                 spin_unlock_irqrestore(&xhci->lock, flags);
3942                 return 0;
3943         }
3944
3945         /* Attempt to issue an Evaluate Context command to change the MEL. */
3946         command = xhci->lpm_command;
3947         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3948         if (!ctrl_ctx) {
3949                 spin_unlock_irqrestore(&xhci->lock, flags);
3950                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3951                                 __func__);
3952                 return -ENOMEM;
3953         }
3954
3955         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3956         spin_unlock_irqrestore(&xhci->lock, flags);
3957
3958         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3959         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3960         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3961         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3962
3963         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3964                         "Set up evaluate context for LPM MEL change.");
3965         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
3966         xhci_dbg_ctx(xhci, command->in_ctx, 0);
3967
3968         /* Issue and wait for the evaluate context command. */
3969         ret = xhci_configure_endpoint(xhci, udev, command,
3970                         true, true);
3971         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
3972         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
3973
3974         if (!ret) {
3975                 spin_lock_irqsave(&xhci->lock, flags);
3976                 virt_dev->current_mel = max_exit_latency;
3977                 spin_unlock_irqrestore(&xhci->lock, flags);
3978         }
3979         return ret;
3980 }
3981
3982 #ifdef CONFIG_PM_RUNTIME
3983
3984 /* BESL to HIRD Encoding array for USB2 LPM */
3985 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3986         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3987
3988 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3989 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3990                                         struct usb_device *udev)
3991 {
3992         int u2del, besl, besl_host;
3993         int besl_device = 0;
3994         u32 field;
3995
3996         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3997         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3998
3999         if (field & USB_BESL_SUPPORT) {
4000                 for (besl_host = 0; besl_host < 16; besl_host++) {
4001                         if (xhci_besl_encoding[besl_host] >= u2del)
4002                                 break;
4003                 }
4004                 /* Use baseline BESL value as default */
4005                 if (field & USB_BESL_BASELINE_VALID)
4006                         besl_device = USB_GET_BESL_BASELINE(field);
4007                 else if (field & USB_BESL_DEEP_VALID)
4008                         besl_device = USB_GET_BESL_DEEP(field);
4009         } else {
4010                 if (u2del <= 50)
4011                         besl_host = 0;
4012                 else
4013                         besl_host = (u2del - 51) / 75 + 1;
4014         }
4015
4016         besl = besl_host + besl_device;
4017         if (besl > 15)
4018                 besl = 15;
4019
4020         return besl;
4021 }
4022
4023 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4024 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4025 {
4026         u32 field;
4027         int l1;
4028         int besld = 0;
4029         int hirdm = 0;
4030
4031         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4032
4033         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4034         l1 = udev->l1_params.timeout / 256;
4035
4036         /* device has preferred BESLD */
4037         if (field & USB_BESL_DEEP_VALID) {
4038                 besld = USB_GET_BESL_DEEP(field);
4039                 hirdm = 1;
4040         }
4041
4042         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4043 }
4044
4045 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4046                         struct usb_device *udev, int enable)
4047 {
4048         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4049         __le32 __iomem  **port_array;
4050         __le32 __iomem  *pm_addr, *hlpm_addr;
4051         u32             pm_val, hlpm_val, field;
4052         unsigned int    port_num;
4053         unsigned long   flags;
4054         int             hird, exit_latency;
4055         int             ret;
4056
4057         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4058                         !udev->lpm_capable)
4059                 return -EPERM;
4060
4061         if (!udev->parent || udev->parent->parent ||
4062                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4063                 return -EPERM;
4064
4065         if (udev->usb2_hw_lpm_capable != 1)
4066                 return -EPERM;
4067
4068         spin_lock_irqsave(&xhci->lock, flags);
4069
4070         port_array = xhci->usb2_ports;
4071         port_num = udev->portnum - 1;
4072         pm_addr = port_array[port_num] + PORTPMSC;
4073         pm_val = readl(pm_addr);
4074         hlpm_addr = port_array[port_num] + PORTHLPMC;
4075         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4076
4077         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4078                         enable ? "enable" : "disable", port_num);
4079
4080         if (enable) {
4081                 /* Host supports BESL timeout instead of HIRD */
4082                 if (udev->usb2_hw_lpm_besl_capable) {
4083                         /* if device doesn't have a preferred BESL value use a
4084                          * default one which works with mixed HIRD and BESL
4085                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4086                          */
4087                         if ((field & USB_BESL_SUPPORT) &&
4088                             (field & USB_BESL_BASELINE_VALID))
4089                                 hird = USB_GET_BESL_BASELINE(field);
4090                         else
4091                                 hird = udev->l1_params.besl;
4092
4093                         exit_latency = xhci_besl_encoding[hird];
4094                         spin_unlock_irqrestore(&xhci->lock, flags);
4095
4096                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4097                          * input context for link powermanagement evaluate
4098                          * context commands. It is protected by hcd->bandwidth
4099                          * mutex and is shared by all devices. We need to set
4100                          * the max ext latency in USB 2 BESL LPM as well, so
4101                          * use the same mutex and xhci_change_max_exit_latency()
4102                          */
4103                         mutex_lock(hcd->bandwidth_mutex);
4104                         ret = xhci_change_max_exit_latency(xhci, udev,
4105                                                            exit_latency);
4106                         mutex_unlock(hcd->bandwidth_mutex);
4107
4108                         if (ret < 0)
4109                                 return ret;
4110                         spin_lock_irqsave(&xhci->lock, flags);
4111
4112                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4113                         writel(hlpm_val, hlpm_addr);
4114                         /* flush write */
4115                         readl(hlpm_addr);
4116                 } else {
4117                         hird = xhci_calculate_hird_besl(xhci, udev);
4118                 }
4119
4120                 pm_val &= ~PORT_HIRD_MASK;
4121                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4122                 writel(pm_val, pm_addr);
4123                 pm_val = readl(pm_addr);
4124                 pm_val |= PORT_HLE;
4125                 writel(pm_val, pm_addr);
4126                 /* flush write */
4127                 readl(pm_addr);
4128         } else {
4129                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4130                 writel(pm_val, pm_addr);
4131                 /* flush write */
4132                 readl(pm_addr);
4133                 if (udev->usb2_hw_lpm_besl_capable) {
4134                         spin_unlock_irqrestore(&xhci->lock, flags);
4135                         mutex_lock(hcd->bandwidth_mutex);
4136                         xhci_change_max_exit_latency(xhci, udev, 0);
4137                         mutex_unlock(hcd->bandwidth_mutex);
4138                         return 0;
4139                 }
4140         }
4141
4142         spin_unlock_irqrestore(&xhci->lock, flags);
4143         return 0;
4144 }
4145
4146 /* check if a usb2 port supports a given extened capability protocol
4147  * only USB2 ports extended protocol capability values are cached.
4148  * Return 1 if capability is supported
4149  */
4150 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4151                                            unsigned capability)
4152 {
4153         u32 port_offset, port_count;
4154         int i;
4155
4156         for (i = 0; i < xhci->num_ext_caps; i++) {
4157                 if (xhci->ext_caps[i] & capability) {
4158                         /* port offsets starts at 1 */
4159                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4160                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4161                         if (port >= port_offset &&
4162                             port < port_offset + port_count)
4163                                 return 1;
4164                 }
4165         }
4166         return 0;
4167 }
4168
4169 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4170 {
4171         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4172         int             portnum = udev->portnum - 1;
4173
4174         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4175                         !udev->lpm_capable)
4176                 return 0;
4177
4178         /* we only support lpm for non-hub device connected to root hub yet */
4179         if (!udev->parent || udev->parent->parent ||
4180                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4181                 return 0;
4182
4183         if (xhci->hw_lpm_support == 1 &&
4184                         xhci_check_usb2_port_capability(
4185                                 xhci, portnum, XHCI_HLC)) {
4186                 udev->usb2_hw_lpm_capable = 1;
4187                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4188                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4189                 if (xhci_check_usb2_port_capability(xhci, portnum,
4190                                         XHCI_BLC))
4191                         udev->usb2_hw_lpm_besl_capable = 1;
4192         }
4193
4194         return 0;
4195 }
4196
4197 #else
4198
4199 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4200                                 struct usb_device *udev, int enable)
4201 {
4202         return 0;
4203 }
4204
4205 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4206 {
4207         return 0;
4208 }
4209
4210 #endif /* CONFIG_PM_RUNTIME */
4211
4212 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4213
4214 #ifdef CONFIG_PM
4215 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4216 static unsigned long long xhci_service_interval_to_ns(
4217                 struct usb_endpoint_descriptor *desc)
4218 {
4219         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4220 }
4221
4222 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4223                 enum usb3_link_state state)
4224 {
4225         unsigned long long sel;
4226         unsigned long long pel;
4227         unsigned int max_sel_pel;
4228         char *state_name;
4229
4230         switch (state) {
4231         case USB3_LPM_U1:
4232                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4233                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4234                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4235                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4236                 state_name = "U1";
4237                 break;
4238         case USB3_LPM_U2:
4239                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4240                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4241                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4242                 state_name = "U2";
4243                 break;
4244         default:
4245                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4246                                 __func__);
4247                 return USB3_LPM_DISABLED;
4248         }
4249
4250         if (sel <= max_sel_pel && pel <= max_sel_pel)
4251                 return USB3_LPM_DEVICE_INITIATED;
4252
4253         if (sel > max_sel_pel)
4254                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4255                                 "due to long SEL %llu ms\n",
4256                                 state_name, sel);
4257         else
4258                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4259                                 "due to long PEL %llu ms\n",
4260                                 state_name, pel);
4261         return USB3_LPM_DISABLED;
4262 }
4263
4264 /* Returns the hub-encoded U1 timeout value.
4265  * The U1 timeout should be the maximum of the following values:
4266  *  - For control endpoints, U1 system exit latency (SEL) * 3
4267  *  - For bulk endpoints, U1 SEL * 5
4268  *  - For interrupt endpoints:
4269  *    - Notification EPs, U1 SEL * 3
4270  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4271  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4272  */
4273 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4274                 struct usb_endpoint_descriptor *desc)
4275 {
4276         unsigned long long timeout_ns;
4277         int ep_type;
4278         int intr_type;
4279
4280         ep_type = usb_endpoint_type(desc);
4281         switch (ep_type) {
4282         case USB_ENDPOINT_XFER_CONTROL:
4283                 timeout_ns = udev->u1_params.sel * 3;
4284                 break;
4285         case USB_ENDPOINT_XFER_BULK:
4286                 timeout_ns = udev->u1_params.sel * 5;
4287                 break;
4288         case USB_ENDPOINT_XFER_INT:
4289                 intr_type = usb_endpoint_interrupt_type(desc);
4290                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4291                         timeout_ns = udev->u1_params.sel * 3;
4292                         break;
4293                 }
4294                 /* Otherwise the calculation is the same as isoc eps */
4295         case USB_ENDPOINT_XFER_ISOC:
4296                 timeout_ns = xhci_service_interval_to_ns(desc);
4297                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4298                 if (timeout_ns < udev->u1_params.sel * 2)
4299                         timeout_ns = udev->u1_params.sel * 2;
4300                 break;
4301         default:
4302                 return 0;
4303         }
4304
4305         /* The U1 timeout is encoded in 1us intervals. */
4306         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4307         /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4308         if (timeout_ns == USB3_LPM_DISABLED)
4309                 timeout_ns++;
4310
4311         /* If the necessary timeout value is bigger than what we can set in the
4312          * USB 3.0 hub, we have to disable hub-initiated U1.
4313          */
4314         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4315                 return timeout_ns;
4316         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4317                         "due to long timeout %llu ms\n", timeout_ns);
4318         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4319 }
4320
4321 /* Returns the hub-encoded U2 timeout value.
4322  * The U2 timeout should be the maximum of:
4323  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4324  *  - largest bInterval of any active periodic endpoint (to avoid going
4325  *    into lower power link states between intervals).
4326  *  - the U2 Exit Latency of the device
4327  */
4328 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4329                 struct usb_endpoint_descriptor *desc)
4330 {
4331         unsigned long long timeout_ns;
4332         unsigned long long u2_del_ns;
4333
4334         timeout_ns = 10 * 1000 * 1000;
4335
4336         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4337                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4338                 timeout_ns = xhci_service_interval_to_ns(desc);
4339
4340         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4341         if (u2_del_ns > timeout_ns)
4342                 timeout_ns = u2_del_ns;
4343
4344         /* The U2 timeout is encoded in 256us intervals */
4345         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4346         /* If the necessary timeout value is bigger than what we can set in the
4347          * USB 3.0 hub, we have to disable hub-initiated U2.
4348          */
4349         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4350                 return timeout_ns;
4351         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4352                         "due to long timeout %llu ms\n", timeout_ns);
4353         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4354 }
4355
4356 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4357                 struct usb_device *udev,
4358                 struct usb_endpoint_descriptor *desc,
4359                 enum usb3_link_state state,
4360                 u16 *timeout)
4361 {
4362         if (state == USB3_LPM_U1) {
4363                 if (xhci->quirks & XHCI_INTEL_HOST)
4364                         return xhci_calculate_intel_u1_timeout(udev, desc);
4365         } else {
4366                 if (xhci->quirks & XHCI_INTEL_HOST)
4367                         return xhci_calculate_intel_u2_timeout(udev, desc);
4368         }
4369
4370         return USB3_LPM_DISABLED;
4371 }
4372
4373 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4374                 struct usb_device *udev,
4375                 struct usb_endpoint_descriptor *desc,
4376                 enum usb3_link_state state,
4377                 u16 *timeout)
4378 {
4379         u16 alt_timeout;
4380
4381         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4382                 desc, state, timeout);
4383
4384         /* If we found we can't enable hub-initiated LPM, or
4385          * the U1 or U2 exit latency was too high to allow
4386          * device-initiated LPM as well, just stop searching.
4387          */
4388         if (alt_timeout == USB3_LPM_DISABLED ||
4389                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4390                 *timeout = alt_timeout;
4391                 return -E2BIG;
4392         }
4393         if (alt_timeout > *timeout)
4394                 *timeout = alt_timeout;
4395         return 0;
4396 }
4397
4398 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4399                 struct usb_device *udev,
4400                 struct usb_host_interface *alt,
4401                 enum usb3_link_state state,
4402                 u16 *timeout)
4403 {
4404         int j;
4405
4406         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4407                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4408                                         &alt->endpoint[j].desc, state, timeout))
4409                         return -E2BIG;
4410                 continue;
4411         }
4412         return 0;
4413 }
4414
4415 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4416                 enum usb3_link_state state)
4417 {
4418         struct usb_device *parent;
4419         unsigned int num_hubs;
4420
4421         if (state == USB3_LPM_U2)
4422                 return 0;
4423
4424         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4425         for (parent = udev->parent, num_hubs = 0; parent->parent;
4426                         parent = parent->parent)
4427                 num_hubs++;
4428
4429         if (num_hubs < 2)
4430                 return 0;
4431
4432         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4433                         " below second-tier hub.\n");
4434         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4435                         "to decrease power consumption.\n");
4436         return -E2BIG;
4437 }
4438
4439 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4440                 struct usb_device *udev,
4441                 enum usb3_link_state state)
4442 {
4443         if (xhci->quirks & XHCI_INTEL_HOST)
4444                 return xhci_check_intel_tier_policy(udev, state);
4445         return -EINVAL;
4446 }
4447
4448 /* Returns the U1 or U2 timeout that should be enabled.
4449  * If the tier check or timeout setting functions return with a non-zero exit
4450  * code, that means the timeout value has been finalized and we shouldn't look
4451  * at any more endpoints.
4452  */
4453 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4454                         struct usb_device *udev, enum usb3_link_state state)
4455 {
4456         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4457         struct usb_host_config *config;
4458         char *state_name;
4459         int i;
4460         u16 timeout = USB3_LPM_DISABLED;
4461
4462         if (state == USB3_LPM_U1)
4463                 state_name = "U1";
4464         else if (state == USB3_LPM_U2)
4465                 state_name = "U2";
4466         else {
4467                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4468                                 state);
4469                 return timeout;
4470         }
4471
4472         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4473                 return timeout;
4474
4475         /* Gather some information about the currently installed configuration
4476          * and alternate interface settings.
4477          */
4478         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4479                         state, &timeout))
4480                 return timeout;
4481
4482         config = udev->actconfig;
4483         if (!config)
4484                 return timeout;
4485
4486         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4487                 struct usb_driver *driver;
4488                 struct usb_interface *intf = config->interface[i];
4489
4490                 if (!intf)
4491                         continue;
4492
4493                 /* Check if any currently bound drivers want hub-initiated LPM
4494                  * disabled.
4495                  */
4496                 if (intf->dev.driver) {
4497                         driver = to_usb_driver(intf->dev.driver);
4498                         if (driver && driver->disable_hub_initiated_lpm) {
4499                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4500                                                 "at request of driver %s\n",
4501                                                 state_name, driver->name);
4502                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4503                         }
4504                 }
4505
4506                 /* Not sure how this could happen... */
4507                 if (!intf->cur_altsetting)
4508                         continue;
4509
4510                 if (xhci_update_timeout_for_interface(xhci, udev,
4511                                         intf->cur_altsetting,
4512                                         state, &timeout))
4513                         return timeout;
4514         }
4515         return timeout;
4516 }
4517
4518 static int calculate_max_exit_latency(struct usb_device *udev,
4519                 enum usb3_link_state state_changed,
4520                 u16 hub_encoded_timeout)
4521 {
4522         unsigned long long u1_mel_us = 0;
4523         unsigned long long u2_mel_us = 0;
4524         unsigned long long mel_us = 0;
4525         bool disabling_u1;
4526         bool disabling_u2;
4527         bool enabling_u1;
4528         bool enabling_u2;
4529
4530         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4531                         hub_encoded_timeout == USB3_LPM_DISABLED);
4532         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4533                         hub_encoded_timeout == USB3_LPM_DISABLED);
4534
4535         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4536                         hub_encoded_timeout != USB3_LPM_DISABLED);
4537         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4538                         hub_encoded_timeout != USB3_LPM_DISABLED);
4539
4540         /* If U1 was already enabled and we're not disabling it,
4541          * or we're going to enable U1, account for the U1 max exit latency.
4542          */
4543         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4544                         enabling_u1)
4545                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4546         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4547                         enabling_u2)
4548                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4549
4550         if (u1_mel_us > u2_mel_us)
4551                 mel_us = u1_mel_us;
4552         else
4553                 mel_us = u2_mel_us;
4554         /* xHCI host controller max exit latency field is only 16 bits wide. */
4555         if (mel_us > MAX_EXIT) {
4556                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4557                                 "is too big.\n", mel_us);
4558                 return -E2BIG;
4559         }
4560         return mel_us;
4561 }
4562
4563 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4564 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4565                         struct usb_device *udev, enum usb3_link_state state)
4566 {
4567         struct xhci_hcd *xhci;
4568         u16 hub_encoded_timeout;
4569         int mel;
4570         int ret;
4571
4572         xhci = hcd_to_xhci(hcd);
4573         /* The LPM timeout values are pretty host-controller specific, so don't
4574          * enable hub-initiated timeouts unless the vendor has provided
4575          * information about their timeout algorithm.
4576          */
4577         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4578                         !xhci->devs[udev->slot_id])
4579                 return USB3_LPM_DISABLED;
4580
4581         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4582         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4583         if (mel < 0) {
4584                 /* Max Exit Latency is too big, disable LPM. */
4585                 hub_encoded_timeout = USB3_LPM_DISABLED;
4586                 mel = 0;
4587         }
4588
4589         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4590         if (ret)
4591                 return ret;
4592         return hub_encoded_timeout;
4593 }
4594
4595 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4596                         struct usb_device *udev, enum usb3_link_state state)
4597 {
4598         struct xhci_hcd *xhci;
4599         u16 mel;
4600         int ret;
4601
4602         xhci = hcd_to_xhci(hcd);
4603         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4604                         !xhci->devs[udev->slot_id])
4605                 return 0;
4606
4607         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4608         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4609         if (ret)
4610                 return ret;
4611         return 0;
4612 }
4613 #else /* CONFIG_PM */
4614
4615 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4616                         struct usb_device *udev, enum usb3_link_state state)
4617 {
4618         return USB3_LPM_DISABLED;
4619 }
4620
4621 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4622                         struct usb_device *udev, enum usb3_link_state state)
4623 {
4624         return 0;
4625 }
4626 #endif  /* CONFIG_PM */
4627
4628 /*-------------------------------------------------------------------------*/
4629
4630 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4631  * internal data structures for the device.
4632  */
4633 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4634                         struct usb_tt *tt, gfp_t mem_flags)
4635 {
4636         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4637         struct xhci_virt_device *vdev;
4638         struct xhci_command *config_cmd;
4639         struct xhci_input_control_ctx *ctrl_ctx;
4640         struct xhci_slot_ctx *slot_ctx;
4641         unsigned long flags;
4642         unsigned think_time;
4643         int ret;
4644
4645         /* Ignore root hubs */
4646         if (!hdev->parent)
4647                 return 0;
4648
4649         vdev = xhci->devs[hdev->slot_id];
4650         if (!vdev) {
4651                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4652                 return -EINVAL;
4653         }
4654         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4655         if (!config_cmd) {
4656                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4657                 return -ENOMEM;
4658         }
4659         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4660         if (!ctrl_ctx) {
4661                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4662                                 __func__);
4663                 xhci_free_command(xhci, config_cmd);
4664                 return -ENOMEM;
4665         }
4666
4667         spin_lock_irqsave(&xhci->lock, flags);
4668         if (hdev->speed == USB_SPEED_HIGH &&
4669                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4670                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4671                 xhci_free_command(xhci, config_cmd);
4672                 spin_unlock_irqrestore(&xhci->lock, flags);
4673                 return -ENOMEM;
4674         }
4675
4676         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4677         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4678         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4679         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4680         if (tt->multi)
4681                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4682         if (xhci->hci_version > 0x95) {
4683                 xhci_dbg(xhci, "xHCI version %x needs hub "
4684                                 "TT think time and number of ports\n",
4685                                 (unsigned int) xhci->hci_version);
4686                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4687                 /* Set TT think time - convert from ns to FS bit times.
4688                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4689                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4690                  *
4691                  * xHCI 1.0: this field shall be 0 if the device is not a
4692                  * High-spped hub.
4693                  */
4694                 think_time = tt->think_time;
4695                 if (think_time != 0)
4696                         think_time = (think_time / 666) - 1;
4697                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4698                         slot_ctx->tt_info |=
4699                                 cpu_to_le32(TT_THINK_TIME(think_time));
4700         } else {
4701                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4702                                 "TT think time or number of ports\n",
4703                                 (unsigned int) xhci->hci_version);
4704         }
4705         slot_ctx->dev_state = 0;
4706         spin_unlock_irqrestore(&xhci->lock, flags);
4707
4708         xhci_dbg(xhci, "Set up %s for hub device.\n",
4709                         (xhci->hci_version > 0x95) ?
4710                         "configure endpoint" : "evaluate context");
4711         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4712         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4713
4714         /* Issue and wait for the configure endpoint or
4715          * evaluate context command.
4716          */
4717         if (xhci->hci_version > 0x95)
4718                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4719                                 false, false);
4720         else
4721                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4722                                 true, false);
4723
4724         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4725         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4726
4727         xhci_free_command(xhci, config_cmd);
4728         return ret;
4729 }
4730
4731 int xhci_get_frame(struct usb_hcd *hcd)
4732 {
4733         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4734         /* EHCI mods by the periodic size.  Why? */
4735         return readl(&xhci->run_regs->microframe_index) >> 3;
4736 }
4737
4738 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4739 {
4740         struct xhci_hcd         *xhci;
4741         struct device           *dev = hcd->self.controller;
4742         int                     retval;
4743
4744         /* Accept arbitrarily long scatter-gather lists */
4745         hcd->self.sg_tablesize = ~0;
4746
4747         /* support to build packet from discontinuous buffers */
4748         hcd->self.no_sg_constraint = 1;
4749
4750         /* XHCI controllers don't stop the ep queue on short packets :| */
4751         hcd->self.no_stop_on_short = 1;
4752
4753         if (usb_hcd_is_primary_hcd(hcd)) {
4754                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4755                 if (!xhci)
4756                         return -ENOMEM;
4757                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4758                 xhci->main_hcd = hcd;
4759                 /* Mark the first roothub as being USB 2.0.
4760                  * The xHCI driver will register the USB 3.0 roothub.
4761                  */
4762                 hcd->speed = HCD_USB2;
4763                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4764                 /*
4765                  * USB 2.0 roothub under xHCI has an integrated TT,
4766                  * (rate matching hub) as opposed to having an OHCI/UHCI
4767                  * companion controller.
4768                  */
4769                 hcd->has_tt = 1;
4770         } else {
4771                 /* xHCI private pointer was set in xhci_pci_probe for the second
4772                  * registered roothub.
4773                  */
4774                 return 0;
4775         }
4776
4777         xhci->cap_regs = hcd->regs;
4778         xhci->op_regs = hcd->regs +
4779                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4780         xhci->run_regs = hcd->regs +
4781                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4782         /* Cache read-only capability registers */
4783         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4784         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4785         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4786         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4787         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4788         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4789         xhci_print_registers(xhci);
4790
4791         xhci->quirks = quirks;
4792
4793         get_quirks(dev, xhci);
4794
4795         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4796          * success event after a short transfer. This quirk will ignore such
4797          * spurious event.
4798          */
4799         if (xhci->hci_version > 0x96)
4800                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4801
4802         /* Make sure the HC is halted. */
4803         retval = xhci_halt(xhci);
4804         if (retval)
4805                 goto error;
4806
4807         xhci_dbg(xhci, "Resetting HCD\n");
4808         /* Reset the internal HC memory state and registers. */
4809         retval = xhci_reset(xhci);
4810         if (retval)
4811                 goto error;
4812         xhci_dbg(xhci, "Reset complete\n");
4813
4814         /* Set dma_mask and coherent_dma_mask to 64-bits,
4815          * if xHC supports 64-bit addressing */
4816         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4817                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4818                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4819                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4820         }
4821
4822         xhci_dbg(xhci, "Calling HCD init\n");
4823         /* Initialize HCD and host controller data structures. */
4824         retval = xhci_init(hcd);
4825         if (retval)
4826                 goto error;
4827         xhci_dbg(xhci, "Called HCD init\n");
4828         return 0;
4829 error:
4830         kfree(xhci);
4831         return retval;
4832 }
4833
4834 MODULE_DESCRIPTION(DRIVER_DESC);
4835 MODULE_AUTHOR(DRIVER_AUTHOR);
4836 MODULE_LICENSE("GPL");
4837
4838 static int __init xhci_hcd_init(void)
4839 {
4840         int retval;
4841
4842         retval = xhci_register_pci();
4843         if (retval < 0) {
4844                 pr_debug("Problem registering PCI driver.\n");
4845                 return retval;
4846         }
4847         retval = xhci_register_plat();
4848         if (retval < 0) {
4849                 pr_debug("Problem registering platform driver.\n");
4850                 goto unreg_pci;
4851         }
4852         /*
4853          * Check the compiler generated sizes of structures that must be laid
4854          * out in specific ways for hardware access.
4855          */
4856         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4857         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4858         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4859         /* xhci_device_control has eight fields, and also
4860          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4861          */
4862         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4863         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4864         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4865         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4866         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4867         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4868         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4869         return 0;
4870 unreg_pci:
4871         xhci_unregister_pci();
4872         return retval;
4873 }
4874 module_init(xhci_hcd_init);
4875
4876 static void __exit xhci_hcd_cleanup(void)
4877 {
4878         xhci_unregister_pci();
4879         xhci_unregister_plat();
4880 }
4881 module_exit(xhci_hcd_cleanup);