79d7931c048a8cd785101adb064c2f0ea8908f2a
[platform/kernel/linux-starfive.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28
29 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42         struct xhci_segment *seg = ring->first_seg;
43
44         if (!td || !td->start_seg)
45                 return false;
46         do {
47                 if (seg == td->start_seg)
48                         return true;
49                 seg = seg->next;
50         } while (seg && seg != ring->first_seg);
51
52         return false;
53 }
54
55 /*
56  * xhci_handshake - spin reading hc until handshake completes or fails
57  * @ptr: address of hc register to be read
58  * @mask: bits to look at in result of read
59  * @done: value of those bits when handshake succeeds
60  * @usec: timeout in microseconds
61  *
62  * Returns negative errno, or zero on success
63  *
64  * Success happens when the "mask" bits have the specified value (hardware
65  * handshake done).  There are two failure modes:  "usec" have passed (major
66  * hardware flakeout), or the register reads as all-ones (hardware removed).
67  */
68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
69 {
70         u32     result;
71         int     ret;
72
73         ret = readl_poll_timeout_atomic(ptr, result,
74                                         (result & mask) == done ||
75                                         result == U32_MAX,
76                                         1, timeout_us);
77         if (result == U32_MAX)          /* card removed */
78                 return -ENODEV;
79
80         return ret;
81 }
82
83 /*
84  * Disable interrupts and begin the xHCI halting process.
85  */
86 void xhci_quiesce(struct xhci_hcd *xhci)
87 {
88         u32 halted;
89         u32 cmd;
90         u32 mask;
91
92         mask = ~(XHCI_IRQS);
93         halted = readl(&xhci->op_regs->status) & STS_HALT;
94         if (!halted)
95                 mask &= ~CMD_RUN;
96
97         cmd = readl(&xhci->op_regs->command);
98         cmd &= mask;
99         writel(cmd, &xhci->op_regs->command);
100 }
101
102 /*
103  * Force HC into halt state.
104  *
105  * Disable any IRQs and clear the run/stop bit.
106  * HC will complete any current and actively pipelined transactions, and
107  * should halt within 16 ms of the run/stop bit being cleared.
108  * Read HC Halted bit in the status register to see when the HC is finished.
109  */
110 int xhci_halt(struct xhci_hcd *xhci)
111 {
112         int ret;
113
114         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115         xhci_quiesce(xhci);
116
117         ret = xhci_handshake(&xhci->op_regs->status,
118                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119         if (ret) {
120                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
121                 return ret;
122         }
123
124         xhci->xhc_state |= XHCI_STATE_HALTED;
125         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
126
127         return ret;
128 }
129
130 /*
131  * Set the run bit and wait for the host to be running.
132  */
133 int xhci_start(struct xhci_hcd *xhci)
134 {
135         u32 temp;
136         int ret;
137
138         temp = readl(&xhci->op_regs->command);
139         temp |= (CMD_RUN);
140         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
141                         temp);
142         writel(temp, &xhci->op_regs->command);
143
144         /*
145          * Wait for the HCHalted Status bit to be 0 to indicate the host is
146          * running.
147          */
148         ret = xhci_handshake(&xhci->op_regs->status,
149                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
150         if (ret == -ETIMEDOUT)
151                 xhci_err(xhci, "Host took too long to start, "
152                                 "waited %u microseconds.\n",
153                                 XHCI_MAX_HALT_USEC);
154         if (!ret) {
155                 /* clear state flags. Including dying, halted or removing */
156                 xhci->xhc_state = 0;
157                 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
158         }
159
160         return ret;
161 }
162
163 /*
164  * Reset a halted HC.
165  *
166  * This resets pipelines, timers, counters, state machines, etc.
167  * Transactions will be terminated immediately, and operational registers
168  * will be set to their defaults.
169  */
170 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
171 {
172         u32 command;
173         u32 state;
174         int ret;
175
176         state = readl(&xhci->op_regs->status);
177
178         if (state == ~(u32)0) {
179                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
180                 return -ENODEV;
181         }
182
183         if ((state & STS_HALT) == 0) {
184                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
185                 return 0;
186         }
187
188         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
189         command = readl(&xhci->op_regs->command);
190         command |= CMD_RESET;
191         writel(command, &xhci->op_regs->command);
192
193         /* Existing Intel xHCI controllers require a delay of 1 mS,
194          * after setting the CMD_RESET bit, and before accessing any
195          * HC registers. This allows the HC to complete the
196          * reset operation and be ready for HC register access.
197          * Without this delay, the subsequent HC register access,
198          * may result in a system hang very rarely.
199          */
200         if (xhci->quirks & XHCI_INTEL_HOST)
201                 udelay(1000);
202
203         ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
204         if (ret)
205                 return ret;
206
207         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
208                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
209
210         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
211                          "Wait for controller to be ready for doorbell rings");
212         /*
213          * xHCI cannot write to any doorbells or operational registers other
214          * than status until the "Controller Not Ready" flag is cleared.
215          */
216         ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
217
218         xhci->usb2_rhub.bus_state.port_c_suspend = 0;
219         xhci->usb2_rhub.bus_state.suspended_ports = 0;
220         xhci->usb2_rhub.bus_state.resuming_ports = 0;
221         xhci->usb3_rhub.bus_state.port_c_suspend = 0;
222         xhci->usb3_rhub.bus_state.suspended_ports = 0;
223         xhci->usb3_rhub.bus_state.resuming_ports = 0;
224
225         return ret;
226 }
227
228 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
229 {
230         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
231         int err, i;
232         u64 val;
233         u32 intrs;
234
235         /*
236          * Some Renesas controllers get into a weird state if they are
237          * reset while programmed with 64bit addresses (they will preserve
238          * the top half of the address in internal, non visible
239          * registers). You end up with half the address coming from the
240          * kernel, and the other half coming from the firmware. Also,
241          * changing the programming leads to extra accesses even if the
242          * controller is supposed to be halted. The controller ends up with
243          * a fatal fault, and is then ripe for being properly reset.
244          *
245          * Special care is taken to only apply this if the device is behind
246          * an iommu. Doing anything when there is no iommu is definitely
247          * unsafe...
248          */
249         if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
250                 return;
251
252         xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
253
254         /* Clear HSEIE so that faults do not get signaled */
255         val = readl(&xhci->op_regs->command);
256         val &= ~CMD_HSEIE;
257         writel(val, &xhci->op_regs->command);
258
259         /* Clear HSE (aka FATAL) */
260         val = readl(&xhci->op_regs->status);
261         val |= STS_FATAL;
262         writel(val, &xhci->op_regs->status);
263
264         /* Now zero the registers, and brace for impact */
265         val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
266         if (upper_32_bits(val))
267                 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
268         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
269         if (upper_32_bits(val))
270                 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
271
272         intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
273                       ARRAY_SIZE(xhci->run_regs->ir_set));
274
275         for (i = 0; i < intrs; i++) {
276                 struct xhci_intr_reg __iomem *ir;
277
278                 ir = &xhci->run_regs->ir_set[i];
279                 val = xhci_read_64(xhci, &ir->erst_base);
280                 if (upper_32_bits(val))
281                         xhci_write_64(xhci, 0, &ir->erst_base);
282                 val= xhci_read_64(xhci, &ir->erst_dequeue);
283                 if (upper_32_bits(val))
284                         xhci_write_64(xhci, 0, &ir->erst_dequeue);
285         }
286
287         /* Wait for the fault to appear. It will be cleared on reset */
288         err = xhci_handshake(&xhci->op_regs->status,
289                              STS_FATAL, STS_FATAL,
290                              XHCI_MAX_HALT_USEC);
291         if (!err)
292                 xhci_info(xhci, "Fault detected\n");
293 }
294
295 #ifdef CONFIG_USB_PCI
296 /*
297  * Set up MSI
298  */
299 static int xhci_setup_msi(struct xhci_hcd *xhci)
300 {
301         int ret;
302         /*
303          * TODO:Check with MSI Soc for sysdev
304          */
305         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
306
307         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
308         if (ret < 0) {
309                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
310                                 "failed to allocate MSI entry");
311                 return ret;
312         }
313
314         ret = request_irq(pdev->irq, xhci_msi_irq,
315                                 0, "xhci_hcd", xhci_to_hcd(xhci));
316         if (ret) {
317                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
318                                 "disable MSI interrupt");
319                 pci_free_irq_vectors(pdev);
320         }
321
322         return ret;
323 }
324
325 /*
326  * Set up MSI-X
327  */
328 static int xhci_setup_msix(struct xhci_hcd *xhci)
329 {
330         int i, ret;
331         struct usb_hcd *hcd = xhci_to_hcd(xhci);
332         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
333
334         /*
335          * calculate number of msi-x vectors supported.
336          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
337          *   with max number of interrupters based on the xhci HCSPARAMS1.
338          * - num_online_cpus: maximum msi-x vectors per CPUs core.
339          *   Add additional 1 vector to ensure always available interrupt.
340          */
341         xhci->msix_count = min(num_online_cpus() + 1,
342                                 HCS_MAX_INTRS(xhci->hcs_params1));
343
344         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
345                         PCI_IRQ_MSIX);
346         if (ret < 0) {
347                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
348                                 "Failed to enable MSI-X");
349                 return ret;
350         }
351
352         for (i = 0; i < xhci->msix_count; i++) {
353                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
354                                 "xhci_hcd", xhci_to_hcd(xhci));
355                 if (ret)
356                         goto disable_msix;
357         }
358
359         hcd->msix_enabled = 1;
360         return ret;
361
362 disable_msix:
363         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
364         while (--i >= 0)
365                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
366         pci_free_irq_vectors(pdev);
367         return ret;
368 }
369
370 /* Free any IRQs and disable MSI-X */
371 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
372 {
373         struct usb_hcd *hcd = xhci_to_hcd(xhci);
374         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
375
376         if (xhci->quirks & XHCI_PLAT)
377                 return;
378
379         /* return if using legacy interrupt */
380         if (hcd->irq > 0)
381                 return;
382
383         if (hcd->msix_enabled) {
384                 int i;
385
386                 for (i = 0; i < xhci->msix_count; i++)
387                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
388         } else {
389                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
390         }
391
392         pci_free_irq_vectors(pdev);
393         hcd->msix_enabled = 0;
394 }
395
396 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
397 {
398         struct usb_hcd *hcd = xhci_to_hcd(xhci);
399
400         if (hcd->msix_enabled) {
401                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
402                 int i;
403
404                 for (i = 0; i < xhci->msix_count; i++)
405                         synchronize_irq(pci_irq_vector(pdev, i));
406         }
407 }
408
409 static int xhci_try_enable_msi(struct usb_hcd *hcd)
410 {
411         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
412         struct pci_dev  *pdev;
413         int ret;
414
415         /* The xhci platform device has set up IRQs through usb_add_hcd. */
416         if (xhci->quirks & XHCI_PLAT)
417                 return 0;
418
419         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
420         /*
421          * Some Fresco Logic host controllers advertise MSI, but fail to
422          * generate interrupts.  Don't even try to enable MSI.
423          */
424         if (xhci->quirks & XHCI_BROKEN_MSI)
425                 goto legacy_irq;
426
427         /* unregister the legacy interrupt */
428         if (hcd->irq)
429                 free_irq(hcd->irq, hcd);
430         hcd->irq = 0;
431
432         ret = xhci_setup_msix(xhci);
433         if (ret)
434                 /* fall back to msi*/
435                 ret = xhci_setup_msi(xhci);
436
437         if (!ret) {
438                 hcd->msi_enabled = 1;
439                 return 0;
440         }
441
442         if (!pdev->irq) {
443                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
444                 return -EINVAL;
445         }
446
447  legacy_irq:
448         if (!strlen(hcd->irq_descr))
449                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
450                          hcd->driver->description, hcd->self.busnum);
451
452         /* fall back to legacy interrupt*/
453         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
454                         hcd->irq_descr, hcd);
455         if (ret) {
456                 xhci_err(xhci, "request interrupt %d failed\n",
457                                 pdev->irq);
458                 return ret;
459         }
460         hcd->irq = pdev->irq;
461         return 0;
462 }
463
464 #else
465
466 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
467 {
468         return 0;
469 }
470
471 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
472 {
473 }
474
475 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
476 {
477 }
478
479 #endif
480
481 static void compliance_mode_recovery(struct timer_list *t)
482 {
483         struct xhci_hcd *xhci;
484         struct usb_hcd *hcd;
485         struct xhci_hub *rhub;
486         u32 temp;
487         int i;
488
489         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
490         rhub = &xhci->usb3_rhub;
491         hcd = rhub->hcd;
492
493         if (!hcd)
494                 return;
495
496         for (i = 0; i < rhub->num_ports; i++) {
497                 temp = readl(rhub->ports[i]->addr);
498                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
499                         /*
500                          * Compliance Mode Detected. Letting USB Core
501                          * handle the Warm Reset
502                          */
503                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
504                                         "Compliance mode detected->port %d",
505                                         i + 1);
506                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
507                                         "Attempting compliance mode recovery");
508
509                         if (hcd->state == HC_STATE_SUSPENDED)
510                                 usb_hcd_resume_root_hub(hcd);
511
512                         usb_hcd_poll_rh_status(hcd);
513                 }
514         }
515
516         if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
517                 mod_timer(&xhci->comp_mode_recovery_timer,
518                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
519 }
520
521 /*
522  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
523  * that causes ports behind that hardware to enter compliance mode sometimes.
524  * The quirk creates a timer that polls every 2 seconds the link state of
525  * each host controller's port and recovers it by issuing a Warm reset
526  * if Compliance mode is detected, otherwise the port will become "dead" (no
527  * device connections or disconnections will be detected anymore). Becasue no
528  * status event is generated when entering compliance mode (per xhci spec),
529  * this quirk is needed on systems that have the failing hardware installed.
530  */
531 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
532 {
533         xhci->port_status_u0 = 0;
534         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
535                     0);
536         xhci->comp_mode_recovery_timer.expires = jiffies +
537                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
538
539         add_timer(&xhci->comp_mode_recovery_timer);
540         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
541                         "Compliance mode recovery timer initialized");
542 }
543
544 /*
545  * This function identifies the systems that have installed the SN65LVPE502CP
546  * USB3.0 re-driver and that need the Compliance Mode Quirk.
547  * Systems:
548  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
549  */
550 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
551 {
552         const char *dmi_product_name, *dmi_sys_vendor;
553
554         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
555         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
556         if (!dmi_product_name || !dmi_sys_vendor)
557                 return false;
558
559         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
560                 return false;
561
562         if (strstr(dmi_product_name, "Z420") ||
563                         strstr(dmi_product_name, "Z620") ||
564                         strstr(dmi_product_name, "Z820") ||
565                         strstr(dmi_product_name, "Z1 Workstation"))
566                 return true;
567
568         return false;
569 }
570
571 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
572 {
573         return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
574 }
575
576
577 /*
578  * Initialize memory for HCD and xHC (one-time init).
579  *
580  * Program the PAGESIZE register, initialize the device context array, create
581  * device contexts (?), set up a command ring segment (or two?), create event
582  * ring (one for now).
583  */
584 static int xhci_init(struct usb_hcd *hcd)
585 {
586         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
587         int retval;
588
589         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
590         spin_lock_init(&xhci->lock);
591         if (xhci->hci_version == 0x95 && link_quirk) {
592                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
593                                 "QUIRK: Not clearing Link TRB chain bits.");
594                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
595         } else {
596                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
597                                 "xHCI doesn't need link TRB QUIRK");
598         }
599         retval = xhci_mem_init(xhci, GFP_KERNEL);
600         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
601
602         /* Initializing Compliance Mode Recovery Data If Needed */
603         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
604                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
605                 compliance_mode_recovery_timer_init(xhci);
606         }
607
608         return retval;
609 }
610
611 /*-------------------------------------------------------------------------*/
612
613
614 static int xhci_run_finished(struct xhci_hcd *xhci)
615 {
616         unsigned long   flags;
617         u32             temp;
618
619         /*
620          * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
621          * Protect the short window before host is running with a lock
622          */
623         spin_lock_irqsave(&xhci->lock, flags);
624
625         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
626         temp = readl(&xhci->op_regs->command);
627         temp |= (CMD_EIE);
628         writel(temp, &xhci->op_regs->command);
629
630         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
631         temp = readl(&xhci->ir_set->irq_pending);
632         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
633
634         if (xhci_start(xhci)) {
635                 xhci_halt(xhci);
636                 spin_unlock_irqrestore(&xhci->lock, flags);
637                 return -ENODEV;
638         }
639
640         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
641
642         if (xhci->quirks & XHCI_NEC_HOST)
643                 xhci_ring_cmd_db(xhci);
644
645         spin_unlock_irqrestore(&xhci->lock, flags);
646
647         return 0;
648 }
649
650 /*
651  * Start the HC after it was halted.
652  *
653  * This function is called by the USB core when the HC driver is added.
654  * Its opposite is xhci_stop().
655  *
656  * xhci_init() must be called once before this function can be called.
657  * Reset the HC, enable device slot contexts, program DCBAAP, and
658  * set command ring pointer and event ring pointer.
659  *
660  * Setup MSI-X vectors and enable interrupts.
661  */
662 int xhci_run(struct usb_hcd *hcd)
663 {
664         u32 temp;
665         u64 temp_64;
666         int ret;
667         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
668
669         /* Start the xHCI host controller running only after the USB 2.0 roothub
670          * is setup.
671          */
672
673         hcd->uses_new_polling = 1;
674         if (!usb_hcd_is_primary_hcd(hcd))
675                 return xhci_run_finished(xhci);
676
677         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
678
679         ret = xhci_try_enable_msi(hcd);
680         if (ret)
681                 return ret;
682
683         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
684         temp_64 &= ~ERST_PTR_MASK;
685         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
686                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
687
688         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
689                         "// Set the interrupt modulation register");
690         temp = readl(&xhci->ir_set->irq_control);
691         temp &= ~ER_IRQ_INTERVAL_MASK;
692         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
693         writel(temp, &xhci->ir_set->irq_control);
694
695         if (xhci->quirks & XHCI_NEC_HOST) {
696                 struct xhci_command *command;
697
698                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
699                 if (!command)
700                         return -ENOMEM;
701
702                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
703                                 TRB_TYPE(TRB_NEC_GET_FW));
704                 if (ret)
705                         xhci_free_command(xhci, command);
706         }
707         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
708                         "Finished %s for main hcd", __func__);
709
710         xhci_create_dbc_dev(xhci);
711
712         xhci_debugfs_init(xhci);
713
714         if (xhci_has_one_roothub(xhci))
715                 return xhci_run_finished(xhci);
716
717         set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
718
719         return 0;
720 }
721 EXPORT_SYMBOL_GPL(xhci_run);
722
723 /*
724  * Stop xHCI driver.
725  *
726  * This function is called by the USB core when the HC driver is removed.
727  * Its opposite is xhci_run().
728  *
729  * Disable device contexts, disable IRQs, and quiesce the HC.
730  * Reset the HC, finish any completed transactions, and cleanup memory.
731  */
732 static void xhci_stop(struct usb_hcd *hcd)
733 {
734         u32 temp;
735         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
736
737         mutex_lock(&xhci->mutex);
738
739         /* Only halt host and free memory after both hcds are removed */
740         if (!usb_hcd_is_primary_hcd(hcd)) {
741                 mutex_unlock(&xhci->mutex);
742                 return;
743         }
744
745         xhci_remove_dbc_dev(xhci);
746
747         spin_lock_irq(&xhci->lock);
748         xhci->xhc_state |= XHCI_STATE_HALTED;
749         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
750         xhci_halt(xhci);
751         xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
752         spin_unlock_irq(&xhci->lock);
753
754         xhci_cleanup_msix(xhci);
755
756         /* Deleting Compliance Mode Recovery Timer */
757         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
758                         (!(xhci_all_ports_seen_u0(xhci)))) {
759                 del_timer_sync(&xhci->comp_mode_recovery_timer);
760                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
761                                 "%s: compliance mode recovery timer deleted",
762                                 __func__);
763         }
764
765         if (xhci->quirks & XHCI_AMD_PLL_FIX)
766                 usb_amd_dev_put();
767
768         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
769                         "// Disabling event ring interrupts");
770         temp = readl(&xhci->op_regs->status);
771         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
772         temp = readl(&xhci->ir_set->irq_pending);
773         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
774
775         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
776         xhci_mem_cleanup(xhci);
777         xhci_debugfs_exit(xhci);
778         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
779                         "xhci_stop completed - status = %x",
780                         readl(&xhci->op_regs->status));
781         mutex_unlock(&xhci->mutex);
782 }
783
784 /*
785  * Shutdown HC (not bus-specific)
786  *
787  * This is called when the machine is rebooting or halting.  We assume that the
788  * machine will be powered off, and the HC's internal state will be reset.
789  * Don't bother to free memory.
790  *
791  * This will only ever be called with the main usb_hcd (the USB3 roothub).
792  */
793 void xhci_shutdown(struct usb_hcd *hcd)
794 {
795         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
796
797         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
798                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
799
800         /* Don't poll the roothubs after shutdown. */
801         xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
802                         __func__, hcd->self.busnum);
803         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
804         del_timer_sync(&hcd->rh_timer);
805
806         if (xhci->shared_hcd) {
807                 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
808                 del_timer_sync(&xhci->shared_hcd->rh_timer);
809         }
810
811         spin_lock_irq(&xhci->lock);
812         xhci_halt(xhci);
813
814         /*
815          * Workaround for spurious wakeps at shutdown with HSW, and for boot
816          * firmware delay in ADL-P PCH if port are left in U3 at shutdown
817          */
818         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
819             xhci->quirks & XHCI_RESET_TO_DEFAULT)
820                 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
821
822         spin_unlock_irq(&xhci->lock);
823
824         xhci_cleanup_msix(xhci);
825
826         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
827                         "xhci_shutdown completed - status = %x",
828                         readl(&xhci->op_regs->status));
829 }
830 EXPORT_SYMBOL_GPL(xhci_shutdown);
831
832 #ifdef CONFIG_PM
833 static void xhci_save_registers(struct xhci_hcd *xhci)
834 {
835         xhci->s3.command = readl(&xhci->op_regs->command);
836         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
837         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
838         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
839         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
840         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
841         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
842         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
843         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
844 }
845
846 static void xhci_restore_registers(struct xhci_hcd *xhci)
847 {
848         writel(xhci->s3.command, &xhci->op_regs->command);
849         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
850         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
851         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
852         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
853         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
854         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
855         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
856         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
857 }
858
859 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
860 {
861         u64     val_64;
862
863         /* step 2: initialize command ring buffer */
864         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
865         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
866                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
867                                       xhci->cmd_ring->dequeue) &
868                  (u64) ~CMD_RING_RSVD_BITS) |
869                 xhci->cmd_ring->cycle_state;
870         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
871                         "// Setting command ring address to 0x%llx",
872                         (long unsigned long) val_64);
873         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
874 }
875
876 /*
877  * The whole command ring must be cleared to zero when we suspend the host.
878  *
879  * The host doesn't save the command ring pointer in the suspend well, so we
880  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
881  * aligned, because of the reserved bits in the command ring dequeue pointer
882  * register.  Therefore, we can't just set the dequeue pointer back in the
883  * middle of the ring (TRBs are 16-byte aligned).
884  */
885 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
886 {
887         struct xhci_ring *ring;
888         struct xhci_segment *seg;
889
890         ring = xhci->cmd_ring;
891         seg = ring->deq_seg;
892         do {
893                 memset(seg->trbs, 0,
894                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
895                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
896                         cpu_to_le32(~TRB_CYCLE);
897                 seg = seg->next;
898         } while (seg != ring->deq_seg);
899
900         /* Reset the software enqueue and dequeue pointers */
901         ring->deq_seg = ring->first_seg;
902         ring->dequeue = ring->first_seg->trbs;
903         ring->enq_seg = ring->deq_seg;
904         ring->enqueue = ring->dequeue;
905
906         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
907         /*
908          * Ring is now zeroed, so the HW should look for change of ownership
909          * when the cycle bit is set to 1.
910          */
911         ring->cycle_state = 1;
912
913         /*
914          * Reset the hardware dequeue pointer.
915          * Yes, this will need to be re-written after resume, but we're paranoid
916          * and want to make sure the hardware doesn't access bogus memory
917          * because, say, the BIOS or an SMI started the host without changing
918          * the command ring pointers.
919          */
920         xhci_set_cmd_ring_deq(xhci);
921 }
922
923 /*
924  * Disable port wake bits if do_wakeup is not set.
925  *
926  * Also clear a possible internal port wake state left hanging for ports that
927  * detected termination but never successfully enumerated (trained to 0U).
928  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
929  * at enumeration clears this wake, force one here as well for unconnected ports
930  */
931
932 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
933                                        struct xhci_hub *rhub,
934                                        bool do_wakeup)
935 {
936         unsigned long flags;
937         u32 t1, t2, portsc;
938         int i;
939
940         spin_lock_irqsave(&xhci->lock, flags);
941
942         for (i = 0; i < rhub->num_ports; i++) {
943                 portsc = readl(rhub->ports[i]->addr);
944                 t1 = xhci_port_state_to_neutral(portsc);
945                 t2 = t1;
946
947                 /* clear wake bits if do_wake is not set */
948                 if (!do_wakeup)
949                         t2 &= ~PORT_WAKE_BITS;
950
951                 /* Don't touch csc bit if connected or connect change is set */
952                 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
953                         t2 |= PORT_CSC;
954
955                 if (t1 != t2) {
956                         writel(t2, rhub->ports[i]->addr);
957                         xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
958                                  rhub->hcd->self.busnum, i + 1, portsc, t2);
959                 }
960         }
961         spin_unlock_irqrestore(&xhci->lock, flags);
962 }
963
964 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
965 {
966         struct xhci_port        **ports;
967         int                     port_index;
968         u32                     status;
969         u32                     portsc;
970
971         status = readl(&xhci->op_regs->status);
972         if (status & STS_EINT)
973                 return true;
974         /*
975          * Checking STS_EINT is not enough as there is a lag between a change
976          * bit being set and the Port Status Change Event that it generated
977          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
978          */
979
980         port_index = xhci->usb2_rhub.num_ports;
981         ports = xhci->usb2_rhub.ports;
982         while (port_index--) {
983                 portsc = readl(ports[port_index]->addr);
984                 if (portsc & PORT_CHANGE_MASK ||
985                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
986                         return true;
987         }
988         port_index = xhci->usb3_rhub.num_ports;
989         ports = xhci->usb3_rhub.ports;
990         while (port_index--) {
991                 portsc = readl(ports[port_index]->addr);
992                 if (portsc & PORT_CHANGE_MASK ||
993                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
994                         return true;
995         }
996         return false;
997 }
998
999 /*
1000  * Stop HC (not bus-specific)
1001  *
1002  * This is called when the machine transition into S3/S4 mode.
1003  *
1004  */
1005 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
1006 {
1007         int                     rc = 0;
1008         unsigned int            delay = XHCI_MAX_HALT_USEC * 2;
1009         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1010         u32                     command;
1011         u32                     res;
1012
1013         if (!hcd->state)
1014                 return 0;
1015
1016         if (hcd->state != HC_STATE_SUSPENDED ||
1017             (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
1018                 return -EINVAL;
1019
1020         /* Clear root port wake on bits if wakeup not allowed. */
1021         xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
1022         xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
1023
1024         if (!HCD_HW_ACCESSIBLE(hcd))
1025                 return 0;
1026
1027         xhci_dbc_suspend(xhci);
1028
1029         /* Don't poll the roothubs on bus suspend. */
1030         xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
1031                  __func__, hcd->self.busnum);
1032         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1033         del_timer_sync(&hcd->rh_timer);
1034         if (xhci->shared_hcd) {
1035                 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1036                 del_timer_sync(&xhci->shared_hcd->rh_timer);
1037         }
1038
1039         if (xhci->quirks & XHCI_SUSPEND_DELAY)
1040                 usleep_range(1000, 1500);
1041
1042         spin_lock_irq(&xhci->lock);
1043         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1044         if (xhci->shared_hcd)
1045                 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1046         /* step 1: stop endpoint */
1047         /* skipped assuming that port suspend has done */
1048
1049         /* step 2: clear Run/Stop bit */
1050         command = readl(&xhci->op_regs->command);
1051         command &= ~CMD_RUN;
1052         writel(command, &xhci->op_regs->command);
1053
1054         /* Some chips from Fresco Logic need an extraordinary delay */
1055         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1056
1057         if (xhci_handshake(&xhci->op_regs->status,
1058                       STS_HALT, STS_HALT, delay)) {
1059                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1060                 spin_unlock_irq(&xhci->lock);
1061                 return -ETIMEDOUT;
1062         }
1063         xhci_clear_command_ring(xhci);
1064
1065         /* step 3: save registers */
1066         xhci_save_registers(xhci);
1067
1068         /* step 4: set CSS flag */
1069         command = readl(&xhci->op_regs->command);
1070         command |= CMD_CSS;
1071         writel(command, &xhci->op_regs->command);
1072         xhci->broken_suspend = 0;
1073         if (xhci_handshake(&xhci->op_regs->status,
1074                                 STS_SAVE, 0, 20 * 1000)) {
1075         /*
1076          * AMD SNPS xHC 3.0 occasionally does not clear the
1077          * SSS bit of USBSTS and when driver tries to poll
1078          * to see if the xHC clears BIT(8) which never happens
1079          * and driver assumes that controller is not responding
1080          * and times out. To workaround this, its good to check
1081          * if SRE and HCE bits are not set (as per xhci
1082          * Section 5.4.2) and bypass the timeout.
1083          */
1084                 res = readl(&xhci->op_regs->status);
1085                 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1086                     (((res & STS_SRE) == 0) &&
1087                                 ((res & STS_HCE) == 0))) {
1088                         xhci->broken_suspend = 1;
1089                 } else {
1090                         xhci_warn(xhci, "WARN: xHC save state timeout\n");
1091                         spin_unlock_irq(&xhci->lock);
1092                         return -ETIMEDOUT;
1093                 }
1094         }
1095         spin_unlock_irq(&xhci->lock);
1096
1097         /*
1098          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1099          * is about to be suspended.
1100          */
1101         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1102                         (!(xhci_all_ports_seen_u0(xhci)))) {
1103                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1104                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1105                                 "%s: compliance mode recovery timer deleted",
1106                                 __func__);
1107         }
1108
1109         /* step 5: remove core well power */
1110         /* synchronize irq when using MSI-X */
1111         xhci_msix_sync_irqs(xhci);
1112
1113         return rc;
1114 }
1115 EXPORT_SYMBOL_GPL(xhci_suspend);
1116
1117 /*
1118  * start xHC (not bus-specific)
1119  *
1120  * This is called when the machine transition from S3/S4 mode.
1121  *
1122  */
1123 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1124 {
1125         u32                     command, temp = 0;
1126         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1127         int                     retval = 0;
1128         bool                    comp_timer_running = false;
1129         bool                    pending_portevent = false;
1130         bool                    reinit_xhc = false;
1131
1132         if (!hcd->state)
1133                 return 0;
1134
1135         /* Wait a bit if either of the roothubs need to settle from the
1136          * transition into bus suspend.
1137          */
1138
1139         if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1140             time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1141                 msleep(100);
1142
1143         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1144         if (xhci->shared_hcd)
1145                 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1146
1147         spin_lock_irq(&xhci->lock);
1148
1149         if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1150                 reinit_xhc = true;
1151
1152         if (!reinit_xhc) {
1153                 /*
1154                  * Some controllers might lose power during suspend, so wait
1155                  * for controller not ready bit to clear, just as in xHC init.
1156                  */
1157                 retval = xhci_handshake(&xhci->op_regs->status,
1158                                         STS_CNR, 0, 10 * 1000 * 1000);
1159                 if (retval) {
1160                         xhci_warn(xhci, "Controller not ready at resume %d\n",
1161                                   retval);
1162                         spin_unlock_irq(&xhci->lock);
1163                         return retval;
1164                 }
1165                 /* step 1: restore register */
1166                 xhci_restore_registers(xhci);
1167                 /* step 2: initialize command ring buffer */
1168                 xhci_set_cmd_ring_deq(xhci);
1169                 /* step 3: restore state and start state*/
1170                 /* step 3: set CRS flag */
1171                 command = readl(&xhci->op_regs->command);
1172                 command |= CMD_CRS;
1173                 writel(command, &xhci->op_regs->command);
1174                 /*
1175                  * Some controllers take up to 55+ ms to complete the controller
1176                  * restore so setting the timeout to 100ms. Xhci specification
1177                  * doesn't mention any timeout value.
1178                  */
1179                 if (xhci_handshake(&xhci->op_regs->status,
1180                               STS_RESTORE, 0, 100 * 1000)) {
1181                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1182                         spin_unlock_irq(&xhci->lock);
1183                         return -ETIMEDOUT;
1184                 }
1185         }
1186
1187         temp = readl(&xhci->op_regs->status);
1188
1189         /* re-initialize the HC on Restore Error, or Host Controller Error */
1190         if (temp & (STS_SRE | STS_HCE)) {
1191                 reinit_xhc = true;
1192                 if (!xhci->broken_suspend)
1193                         xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1194         }
1195
1196         if (reinit_xhc) {
1197                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1198                                 !(xhci_all_ports_seen_u0(xhci))) {
1199                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1200                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1201                                 "Compliance Mode Recovery Timer deleted!");
1202                 }
1203
1204                 /* Let the USB core know _both_ roothubs lost power. */
1205                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1206                 if (xhci->shared_hcd)
1207                         usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1208
1209                 xhci_dbg(xhci, "Stop HCD\n");
1210                 xhci_halt(xhci);
1211                 xhci_zero_64b_regs(xhci);
1212                 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1213                 spin_unlock_irq(&xhci->lock);
1214                 if (retval)
1215                         return retval;
1216                 xhci_cleanup_msix(xhci);
1217
1218                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1219                 temp = readl(&xhci->op_regs->status);
1220                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1221                 temp = readl(&xhci->ir_set->irq_pending);
1222                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1223
1224                 xhci_dbg(xhci, "cleaning up memory\n");
1225                 xhci_mem_cleanup(xhci);
1226                 xhci_debugfs_exit(xhci);
1227                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1228                             readl(&xhci->op_regs->status));
1229
1230                 /* USB core calls the PCI reinit and start functions twice:
1231                  * first with the primary HCD, and then with the secondary HCD.
1232                  * If we don't do the same, the host will never be started.
1233                  */
1234                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1235                 retval = xhci_init(hcd);
1236                 if (retval)
1237                         return retval;
1238                 comp_timer_running = true;
1239
1240                 xhci_dbg(xhci, "Start the primary HCD\n");
1241                 retval = xhci_run(hcd);
1242                 if (!retval && xhci->shared_hcd) {
1243                         xhci_dbg(xhci, "Start the secondary HCD\n");
1244                         retval = xhci_run(xhci->shared_hcd);
1245                 }
1246
1247                 hcd->state = HC_STATE_SUSPENDED;
1248                 if (xhci->shared_hcd)
1249                         xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1250                 goto done;
1251         }
1252
1253         /* step 4: set Run/Stop bit */
1254         command = readl(&xhci->op_regs->command);
1255         command |= CMD_RUN;
1256         writel(command, &xhci->op_regs->command);
1257         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1258                   0, 250 * 1000);
1259
1260         /* step 5: walk topology and initialize portsc,
1261          * portpmsc and portli
1262          */
1263         /* this is done in bus_resume */
1264
1265         /* step 6: restart each of the previously
1266          * Running endpoints by ringing their doorbells
1267          */
1268
1269         spin_unlock_irq(&xhci->lock);
1270
1271         xhci_dbc_resume(xhci);
1272
1273  done:
1274         if (retval == 0) {
1275                 /*
1276                  * Resume roothubs only if there are pending events.
1277                  * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1278                  * the first wake signalling failed, give it that chance.
1279                  */
1280                 pending_portevent = xhci_pending_portevent(xhci);
1281                 if (!pending_portevent) {
1282                         msleep(120);
1283                         pending_portevent = xhci_pending_portevent(xhci);
1284                 }
1285
1286                 if (pending_portevent) {
1287                         if (xhci->shared_hcd)
1288                                 usb_hcd_resume_root_hub(xhci->shared_hcd);
1289                         usb_hcd_resume_root_hub(hcd);
1290                 }
1291         }
1292         /*
1293          * If system is subject to the Quirk, Compliance Mode Timer needs to
1294          * be re-initialized Always after a system resume. Ports are subject
1295          * to suffer the Compliance Mode issue again. It doesn't matter if
1296          * ports have entered previously to U0 before system's suspension.
1297          */
1298         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1299                 compliance_mode_recovery_timer_init(xhci);
1300
1301         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1302                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1303
1304         /* Re-enable port polling. */
1305         xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1306                  __func__, hcd->self.busnum);
1307         if (xhci->shared_hcd) {
1308                 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1309                 usb_hcd_poll_rh_status(xhci->shared_hcd);
1310         }
1311         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1312         usb_hcd_poll_rh_status(hcd);
1313
1314         return retval;
1315 }
1316 EXPORT_SYMBOL_GPL(xhci_resume);
1317 #endif  /* CONFIG_PM */
1318
1319 /*-------------------------------------------------------------------------*/
1320
1321 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1322 {
1323         void *temp;
1324         int ret = 0;
1325         unsigned int buf_len;
1326         enum dma_data_direction dir;
1327
1328         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1329         buf_len = urb->transfer_buffer_length;
1330
1331         temp = kzalloc_node(buf_len, GFP_ATOMIC,
1332                             dev_to_node(hcd->self.sysdev));
1333
1334         if (usb_urb_dir_out(urb))
1335                 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1336                                    temp, buf_len, 0);
1337
1338         urb->transfer_buffer = temp;
1339         urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1340                                            urb->transfer_buffer,
1341                                            urb->transfer_buffer_length,
1342                                            dir);
1343
1344         if (dma_mapping_error(hcd->self.sysdev,
1345                               urb->transfer_dma)) {
1346                 ret = -EAGAIN;
1347                 kfree(temp);
1348         } else {
1349                 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1350         }
1351
1352         return ret;
1353 }
1354
1355 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1356                                           struct urb *urb)
1357 {
1358         bool ret = false;
1359         unsigned int i;
1360         unsigned int len = 0;
1361         unsigned int trb_size;
1362         unsigned int max_pkt;
1363         struct scatterlist *sg;
1364         struct scatterlist *tail_sg;
1365
1366         tail_sg = urb->sg;
1367         max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1368
1369         if (!urb->num_sgs)
1370                 return ret;
1371
1372         if (urb->dev->speed >= USB_SPEED_SUPER)
1373                 trb_size = TRB_CACHE_SIZE_SS;
1374         else
1375                 trb_size = TRB_CACHE_SIZE_HS;
1376
1377         if (urb->transfer_buffer_length != 0 &&
1378             !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1379                 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1380                         len = len + sg->length;
1381                         if (i > trb_size - 2) {
1382                                 len = len - tail_sg->length;
1383                                 if (len < max_pkt) {
1384                                         ret = true;
1385                                         break;
1386                                 }
1387
1388                                 tail_sg = sg_next(tail_sg);
1389                         }
1390                 }
1391         }
1392         return ret;
1393 }
1394
1395 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1396 {
1397         unsigned int len;
1398         unsigned int buf_len;
1399         enum dma_data_direction dir;
1400
1401         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1402
1403         buf_len = urb->transfer_buffer_length;
1404
1405         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1406             (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1407                 dma_unmap_single(hcd->self.sysdev,
1408                                  urb->transfer_dma,
1409                                  urb->transfer_buffer_length,
1410                                  dir);
1411
1412         if (usb_urb_dir_in(urb)) {
1413                 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1414                                            urb->transfer_buffer,
1415                                            buf_len,
1416                                            0);
1417                 if (len != buf_len) {
1418                         xhci_dbg(hcd_to_xhci(hcd),
1419                                  "Copy from tmp buf to urb sg list failed\n");
1420                         urb->actual_length = len;
1421                 }
1422         }
1423         urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1424         kfree(urb->transfer_buffer);
1425         urb->transfer_buffer = NULL;
1426 }
1427
1428 /*
1429  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1430  * we'll copy the actual data into the TRB address register. This is limited to
1431  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1432  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1433  */
1434 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1435                                 gfp_t mem_flags)
1436 {
1437         struct xhci_hcd *xhci;
1438
1439         xhci = hcd_to_xhci(hcd);
1440
1441         if (xhci_urb_suitable_for_idt(urb))
1442                 return 0;
1443
1444         if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1445                 if (xhci_urb_temp_buffer_required(hcd, urb))
1446                         return xhci_map_temp_buffer(hcd, urb);
1447         }
1448         return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1449 }
1450
1451 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1452 {
1453         struct xhci_hcd *xhci;
1454         bool unmap_temp_buf = false;
1455
1456         xhci = hcd_to_xhci(hcd);
1457
1458         if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1459                 unmap_temp_buf = true;
1460
1461         if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1462                 xhci_unmap_temp_buf(hcd, urb);
1463         else
1464                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1465 }
1466
1467 /**
1468  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1469  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1470  * value to right shift 1 for the bitmask.
1471  *
1472  * Index  = (epnum * 2) + direction - 1,
1473  * where direction = 0 for OUT, 1 for IN.
1474  * For control endpoints, the IN index is used (OUT index is unused), so
1475  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1476  */
1477 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1478 {
1479         unsigned int index;
1480         if (usb_endpoint_xfer_control(desc))
1481                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1482         else
1483                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1484                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1485         return index;
1486 }
1487 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1488
1489 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1490  * address from the XHCI endpoint index.
1491  */
1492 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1493 {
1494         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1495         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1496         return direction | number;
1497 }
1498
1499 /* Find the flag for this endpoint (for use in the control context).  Use the
1500  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1501  * bit 1, etc.
1502  */
1503 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1504 {
1505         return 1 << (xhci_get_endpoint_index(desc) + 1);
1506 }
1507
1508 /* Compute the last valid endpoint context index.  Basically, this is the
1509  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1510  * we find the most significant bit set in the added contexts flags.
1511  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1512  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1513  */
1514 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1515 {
1516         return fls(added_ctxs) - 1;
1517 }
1518
1519 /* Returns 1 if the arguments are OK;
1520  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1521  */
1522 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1523                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1524                 const char *func) {
1525         struct xhci_hcd *xhci;
1526         struct xhci_virt_device *virt_dev;
1527
1528         if (!hcd || (check_ep && !ep) || !udev) {
1529                 pr_debug("xHCI %s called with invalid args\n", func);
1530                 return -EINVAL;
1531         }
1532         if (!udev->parent) {
1533                 pr_debug("xHCI %s called for root hub\n", func);
1534                 return 0;
1535         }
1536
1537         xhci = hcd_to_xhci(hcd);
1538         if (check_virt_dev) {
1539                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1540                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1541                                         func);
1542                         return -EINVAL;
1543                 }
1544
1545                 virt_dev = xhci->devs[udev->slot_id];
1546                 if (virt_dev->udev != udev) {
1547                         xhci_dbg(xhci, "xHCI %s called with udev and "
1548                                           "virt_dev does not match\n", func);
1549                         return -EINVAL;
1550                 }
1551         }
1552
1553         if (xhci->xhc_state & XHCI_STATE_HALTED)
1554                 return -ENODEV;
1555
1556         return 1;
1557 }
1558
1559 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1560                 struct usb_device *udev, struct xhci_command *command,
1561                 bool ctx_change, bool must_succeed);
1562
1563 /*
1564  * Full speed devices may have a max packet size greater than 8 bytes, but the
1565  * USB core doesn't know that until it reads the first 8 bytes of the
1566  * descriptor.  If the usb_device's max packet size changes after that point,
1567  * we need to issue an evaluate context command and wait on it.
1568  */
1569 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1570                 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1571 {
1572         struct xhci_container_ctx *out_ctx;
1573         struct xhci_input_control_ctx *ctrl_ctx;
1574         struct xhci_ep_ctx *ep_ctx;
1575         struct xhci_command *command;
1576         int max_packet_size;
1577         int hw_max_packet_size;
1578         int ret = 0;
1579
1580         out_ctx = xhci->devs[slot_id]->out_ctx;
1581         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1582         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1583         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1584         if (hw_max_packet_size != max_packet_size) {
1585                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1586                                 "Max Packet Size for ep 0 changed.");
1587                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1588                                 "Max packet size in usb_device = %d",
1589                                 max_packet_size);
1590                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1591                                 "Max packet size in xHCI HW = %d",
1592                                 hw_max_packet_size);
1593                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1594                                 "Issuing evaluate context command.");
1595
1596                 /* Set up the input context flags for the command */
1597                 /* FIXME: This won't work if a non-default control endpoint
1598                  * changes max packet sizes.
1599                  */
1600
1601                 command = xhci_alloc_command(xhci, true, mem_flags);
1602                 if (!command)
1603                         return -ENOMEM;
1604
1605                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1606                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1607                 if (!ctrl_ctx) {
1608                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1609                                         __func__);
1610                         ret = -ENOMEM;
1611                         goto command_cleanup;
1612                 }
1613                 /* Set up the modified control endpoint 0 */
1614                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1615                                 xhci->devs[slot_id]->out_ctx, ep_index);
1616
1617                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1618                 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1619                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1620                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1621
1622                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1623                 ctrl_ctx->drop_flags = 0;
1624
1625                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1626                                 true, false);
1627
1628                 /* Clean up the input context for later use by bandwidth
1629                  * functions.
1630                  */
1631                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1632 command_cleanup:
1633                 kfree(command->completion);
1634                 kfree(command);
1635         }
1636         return ret;
1637 }
1638
1639 /*
1640  * non-error returns are a promise to giveback() the urb later
1641  * we drop ownership so next owner (or urb unlink) can get it
1642  */
1643 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1644 {
1645         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1646         unsigned long flags;
1647         int ret = 0;
1648         unsigned int slot_id, ep_index;
1649         unsigned int *ep_state;
1650         struct urb_priv *urb_priv;
1651         int num_tds;
1652
1653         if (!urb)
1654                 return -EINVAL;
1655         ret = xhci_check_args(hcd, urb->dev, urb->ep,
1656                                         true, true, __func__);
1657         if (ret <= 0)
1658                 return ret ? ret : -EINVAL;
1659
1660         slot_id = urb->dev->slot_id;
1661         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1662         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1663
1664         if (!HCD_HW_ACCESSIBLE(hcd))
1665                 return -ESHUTDOWN;
1666
1667         if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1668                 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1669                 return -ENODEV;
1670         }
1671
1672         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1673                 num_tds = urb->number_of_packets;
1674         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1675             urb->transfer_buffer_length > 0 &&
1676             urb->transfer_flags & URB_ZERO_PACKET &&
1677             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1678                 num_tds = 2;
1679         else
1680                 num_tds = 1;
1681
1682         urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1683         if (!urb_priv)
1684                 return -ENOMEM;
1685
1686         urb_priv->num_tds = num_tds;
1687         urb_priv->num_tds_done = 0;
1688         urb->hcpriv = urb_priv;
1689
1690         trace_xhci_urb_enqueue(urb);
1691
1692         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1693                 /* Check to see if the max packet size for the default control
1694                  * endpoint changed during FS device enumeration
1695                  */
1696                 if (urb->dev->speed == USB_SPEED_FULL) {
1697                         ret = xhci_check_maxpacket(xhci, slot_id,
1698                                         ep_index, urb, mem_flags);
1699                         if (ret < 0) {
1700                                 xhci_urb_free_priv(urb_priv);
1701                                 urb->hcpriv = NULL;
1702                                 return ret;
1703                         }
1704                 }
1705         }
1706
1707         spin_lock_irqsave(&xhci->lock, flags);
1708
1709         if (xhci->xhc_state & XHCI_STATE_DYING) {
1710                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1711                          urb->ep->desc.bEndpointAddress, urb);
1712                 ret = -ESHUTDOWN;
1713                 goto free_priv;
1714         }
1715         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1716                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1717                           *ep_state);
1718                 ret = -EINVAL;
1719                 goto free_priv;
1720         }
1721         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1722                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1723                 ret = -EINVAL;
1724                 goto free_priv;
1725         }
1726
1727         switch (usb_endpoint_type(&urb->ep->desc)) {
1728
1729         case USB_ENDPOINT_XFER_CONTROL:
1730                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1731                                          slot_id, ep_index);
1732                 break;
1733         case USB_ENDPOINT_XFER_BULK:
1734                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1735                                          slot_id, ep_index);
1736                 break;
1737         case USB_ENDPOINT_XFER_INT:
1738                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1739                                 slot_id, ep_index);
1740                 break;
1741         case USB_ENDPOINT_XFER_ISOC:
1742                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1743                                 slot_id, ep_index);
1744         }
1745
1746         if (ret) {
1747 free_priv:
1748                 xhci_urb_free_priv(urb_priv);
1749                 urb->hcpriv = NULL;
1750         }
1751         spin_unlock_irqrestore(&xhci->lock, flags);
1752         return ret;
1753 }
1754
1755 /*
1756  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1757  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1758  * should pick up where it left off in the TD, unless a Set Transfer Ring
1759  * Dequeue Pointer is issued.
1760  *
1761  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1762  * the ring.  Since the ring is a contiguous structure, they can't be physically
1763  * removed.  Instead, there are two options:
1764  *
1765  *  1) If the HC is in the middle of processing the URB to be canceled, we
1766  *     simply move the ring's dequeue pointer past those TRBs using the Set
1767  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1768  *     when drivers timeout on the last submitted URB and attempt to cancel.
1769  *
1770  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1771  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1772  *     HC will need to invalidate the any TRBs it has cached after the stop
1773  *     endpoint command, as noted in the xHCI 0.95 errata.
1774  *
1775  *  3) The TD may have completed by the time the Stop Endpoint Command
1776  *     completes, so software needs to handle that case too.
1777  *
1778  * This function should protect against the TD enqueueing code ringing the
1779  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1780  * It also needs to account for multiple cancellations on happening at the same
1781  * time for the same endpoint.
1782  *
1783  * Note that this function can be called in any context, or so says
1784  * usb_hcd_unlink_urb()
1785  */
1786 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1787 {
1788         unsigned long flags;
1789         int ret, i;
1790         u32 temp;
1791         struct xhci_hcd *xhci;
1792         struct urb_priv *urb_priv;
1793         struct xhci_td *td;
1794         unsigned int ep_index;
1795         struct xhci_ring *ep_ring;
1796         struct xhci_virt_ep *ep;
1797         struct xhci_command *command;
1798         struct xhci_virt_device *vdev;
1799
1800         xhci = hcd_to_xhci(hcd);
1801         spin_lock_irqsave(&xhci->lock, flags);
1802
1803         trace_xhci_urb_dequeue(urb);
1804
1805         /* Make sure the URB hasn't completed or been unlinked already */
1806         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1807         if (ret)
1808                 goto done;
1809
1810         /* give back URB now if we can't queue it for cancel */
1811         vdev = xhci->devs[urb->dev->slot_id];
1812         urb_priv = urb->hcpriv;
1813         if (!vdev || !urb_priv)
1814                 goto err_giveback;
1815
1816         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1817         ep = &vdev->eps[ep_index];
1818         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1819         if (!ep || !ep_ring)
1820                 goto err_giveback;
1821
1822         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1823         temp = readl(&xhci->op_regs->status);
1824         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1825                 xhci_hc_died(xhci);
1826                 goto done;
1827         }
1828
1829         /*
1830          * check ring is not re-allocated since URB was enqueued. If it is, then
1831          * make sure none of the ring related pointers in this URB private data
1832          * are touched, such as td_list, otherwise we overwrite freed data
1833          */
1834         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1835                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1836                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1837                         td = &urb_priv->td[i];
1838                         if (!list_empty(&td->cancelled_td_list))
1839                                 list_del_init(&td->cancelled_td_list);
1840                 }
1841                 goto err_giveback;
1842         }
1843
1844         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1845                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1846                                 "HC halted, freeing TD manually.");
1847                 for (i = urb_priv->num_tds_done;
1848                      i < urb_priv->num_tds;
1849                      i++) {
1850                         td = &urb_priv->td[i];
1851                         if (!list_empty(&td->td_list))
1852                                 list_del_init(&td->td_list);
1853                         if (!list_empty(&td->cancelled_td_list))
1854                                 list_del_init(&td->cancelled_td_list);
1855                 }
1856                 goto err_giveback;
1857         }
1858
1859         i = urb_priv->num_tds_done;
1860         if (i < urb_priv->num_tds)
1861                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1862                                 "Cancel URB %p, dev %s, ep 0x%x, "
1863                                 "starting at offset 0x%llx",
1864                                 urb, urb->dev->devpath,
1865                                 urb->ep->desc.bEndpointAddress,
1866                                 (unsigned long long) xhci_trb_virt_to_dma(
1867                                         urb_priv->td[i].start_seg,
1868                                         urb_priv->td[i].first_trb));
1869
1870         for (; i < urb_priv->num_tds; i++) {
1871                 td = &urb_priv->td[i];
1872                 /* TD can already be on cancelled list if ep halted on it */
1873                 if (list_empty(&td->cancelled_td_list)) {
1874                         td->cancel_status = TD_DIRTY;
1875                         list_add_tail(&td->cancelled_td_list,
1876                                       &ep->cancelled_td_list);
1877                 }
1878         }
1879
1880         /* Queue a stop endpoint command, but only if this is
1881          * the first cancellation to be handled.
1882          */
1883         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1884                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1885                 if (!command) {
1886                         ret = -ENOMEM;
1887                         goto done;
1888                 }
1889                 ep->ep_state |= EP_STOP_CMD_PENDING;
1890                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1891                                          ep_index, 0);
1892                 xhci_ring_cmd_db(xhci);
1893         }
1894 done:
1895         spin_unlock_irqrestore(&xhci->lock, flags);
1896         return ret;
1897
1898 err_giveback:
1899         if (urb_priv)
1900                 xhci_urb_free_priv(urb_priv);
1901         usb_hcd_unlink_urb_from_ep(hcd, urb);
1902         spin_unlock_irqrestore(&xhci->lock, flags);
1903         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1904         return ret;
1905 }
1906
1907 /* Drop an endpoint from a new bandwidth configuration for this device.
1908  * Only one call to this function is allowed per endpoint before
1909  * check_bandwidth() or reset_bandwidth() must be called.
1910  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1911  * add the endpoint to the schedule with possibly new parameters denoted by a
1912  * different endpoint descriptor in usb_host_endpoint.
1913  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1914  * not allowed.
1915  *
1916  * The USB core will not allow URBs to be queued to an endpoint that is being
1917  * disabled, so there's no need for mutual exclusion to protect
1918  * the xhci->devs[slot_id] structure.
1919  */
1920 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1921                        struct usb_host_endpoint *ep)
1922 {
1923         struct xhci_hcd *xhci;
1924         struct xhci_container_ctx *in_ctx, *out_ctx;
1925         struct xhci_input_control_ctx *ctrl_ctx;
1926         unsigned int ep_index;
1927         struct xhci_ep_ctx *ep_ctx;
1928         u32 drop_flag;
1929         u32 new_add_flags, new_drop_flags;
1930         int ret;
1931
1932         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1933         if (ret <= 0)
1934                 return ret;
1935         xhci = hcd_to_xhci(hcd);
1936         if (xhci->xhc_state & XHCI_STATE_DYING)
1937                 return -ENODEV;
1938
1939         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1940         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1941         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1942                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1943                                 __func__, drop_flag);
1944                 return 0;
1945         }
1946
1947         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1948         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1949         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1950         if (!ctrl_ctx) {
1951                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1952                                 __func__);
1953                 return 0;
1954         }
1955
1956         ep_index = xhci_get_endpoint_index(&ep->desc);
1957         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1958         /* If the HC already knows the endpoint is disabled,
1959          * or the HCD has noted it is disabled, ignore this request
1960          */
1961         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1962             le32_to_cpu(ctrl_ctx->drop_flags) &
1963             xhci_get_endpoint_flag(&ep->desc)) {
1964                 /* Do not warn when called after a usb_device_reset */
1965                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1966                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1967                                   __func__, ep);
1968                 return 0;
1969         }
1970
1971         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1972         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1973
1974         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1975         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1976
1977         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1978
1979         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1980
1981         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1982                         (unsigned int) ep->desc.bEndpointAddress,
1983                         udev->slot_id,
1984                         (unsigned int) new_drop_flags,
1985                         (unsigned int) new_add_flags);
1986         return 0;
1987 }
1988 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1989
1990 /* Add an endpoint to a new possible bandwidth configuration for this device.
1991  * Only one call to this function is allowed per endpoint before
1992  * check_bandwidth() or reset_bandwidth() must be called.
1993  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1994  * add the endpoint to the schedule with possibly new parameters denoted by a
1995  * different endpoint descriptor in usb_host_endpoint.
1996  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1997  * not allowed.
1998  *
1999  * The USB core will not allow URBs to be queued to an endpoint until the
2000  * configuration or alt setting is installed in the device, so there's no need
2001  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
2002  */
2003 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
2004                       struct usb_host_endpoint *ep)
2005 {
2006         struct xhci_hcd *xhci;
2007         struct xhci_container_ctx *in_ctx;
2008         unsigned int ep_index;
2009         struct xhci_input_control_ctx *ctrl_ctx;
2010         struct xhci_ep_ctx *ep_ctx;
2011         u32 added_ctxs;
2012         u32 new_add_flags, new_drop_flags;
2013         struct xhci_virt_device *virt_dev;
2014         int ret = 0;
2015
2016         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
2017         if (ret <= 0) {
2018                 /* So we won't queue a reset ep command for a root hub */
2019                 ep->hcpriv = NULL;
2020                 return ret;
2021         }
2022         xhci = hcd_to_xhci(hcd);
2023         if (xhci->xhc_state & XHCI_STATE_DYING)
2024                 return -ENODEV;
2025
2026         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
2027         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
2028                 /* FIXME when we have to issue an evaluate endpoint command to
2029                  * deal with ep0 max packet size changing once we get the
2030                  * descriptors
2031                  */
2032                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
2033                                 __func__, added_ctxs);
2034                 return 0;
2035         }
2036
2037         virt_dev = xhci->devs[udev->slot_id];
2038         in_ctx = virt_dev->in_ctx;
2039         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2040         if (!ctrl_ctx) {
2041                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2042                                 __func__);
2043                 return 0;
2044         }
2045
2046         ep_index = xhci_get_endpoint_index(&ep->desc);
2047         /* If this endpoint is already in use, and the upper layers are trying
2048          * to add it again without dropping it, reject the addition.
2049          */
2050         if (virt_dev->eps[ep_index].ring &&
2051                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2052                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
2053                                 "without dropping it.\n",
2054                                 (unsigned int) ep->desc.bEndpointAddress);
2055                 return -EINVAL;
2056         }
2057
2058         /* If the HCD has already noted the endpoint is enabled,
2059          * ignore this request.
2060          */
2061         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2062                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2063                                 __func__, ep);
2064                 return 0;
2065         }
2066
2067         /*
2068          * Configuration and alternate setting changes must be done in
2069          * process context, not interrupt context (or so documenation
2070          * for usb_set_interface() and usb_set_configuration() claim).
2071          */
2072         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2073                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2074                                 __func__, ep->desc.bEndpointAddress);
2075                 return -ENOMEM;
2076         }
2077
2078         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2079         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2080
2081         /* If xhci_endpoint_disable() was called for this endpoint, but the
2082          * xHC hasn't been notified yet through the check_bandwidth() call,
2083          * this re-adds a new state for the endpoint from the new endpoint
2084          * descriptors.  We must drop and re-add this endpoint, so we leave the
2085          * drop flags alone.
2086          */
2087         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2088
2089         /* Store the usb_device pointer for later use */
2090         ep->hcpriv = udev;
2091
2092         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2093         trace_xhci_add_endpoint(ep_ctx);
2094
2095         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2096                         (unsigned int) ep->desc.bEndpointAddress,
2097                         udev->slot_id,
2098                         (unsigned int) new_drop_flags,
2099                         (unsigned int) new_add_flags);
2100         return 0;
2101 }
2102 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2103
2104 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2105 {
2106         struct xhci_input_control_ctx *ctrl_ctx;
2107         struct xhci_ep_ctx *ep_ctx;
2108         struct xhci_slot_ctx *slot_ctx;
2109         int i;
2110
2111         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2112         if (!ctrl_ctx) {
2113                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2114                                 __func__);
2115                 return;
2116         }
2117
2118         /* When a device's add flag and drop flag are zero, any subsequent
2119          * configure endpoint command will leave that endpoint's state
2120          * untouched.  Make sure we don't leave any old state in the input
2121          * endpoint contexts.
2122          */
2123         ctrl_ctx->drop_flags = 0;
2124         ctrl_ctx->add_flags = 0;
2125         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2126         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2127         /* Endpoint 0 is always valid */
2128         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2129         for (i = 1; i < 31; i++) {
2130                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2131                 ep_ctx->ep_info = 0;
2132                 ep_ctx->ep_info2 = 0;
2133                 ep_ctx->deq = 0;
2134                 ep_ctx->tx_info = 0;
2135         }
2136 }
2137
2138 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2139                 struct usb_device *udev, u32 *cmd_status)
2140 {
2141         int ret;
2142
2143         switch (*cmd_status) {
2144         case COMP_COMMAND_ABORTED:
2145         case COMP_COMMAND_RING_STOPPED:
2146                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2147                 ret = -ETIME;
2148                 break;
2149         case COMP_RESOURCE_ERROR:
2150                 dev_warn(&udev->dev,
2151                          "Not enough host controller resources for new device state.\n");
2152                 ret = -ENOMEM;
2153                 /* FIXME: can we allocate more resources for the HC? */
2154                 break;
2155         case COMP_BANDWIDTH_ERROR:
2156         case COMP_SECONDARY_BANDWIDTH_ERROR:
2157                 dev_warn(&udev->dev,
2158                          "Not enough bandwidth for new device state.\n");
2159                 ret = -ENOSPC;
2160                 /* FIXME: can we go back to the old state? */
2161                 break;
2162         case COMP_TRB_ERROR:
2163                 /* the HCD set up something wrong */
2164                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2165                                 "add flag = 1, "
2166                                 "and endpoint is not disabled.\n");
2167                 ret = -EINVAL;
2168                 break;
2169         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2170                 dev_warn(&udev->dev,
2171                          "ERROR: Incompatible device for endpoint configure command.\n");
2172                 ret = -ENODEV;
2173                 break;
2174         case COMP_SUCCESS:
2175                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2176                                 "Successful Endpoint Configure command");
2177                 ret = 0;
2178                 break;
2179         default:
2180                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2181                                 *cmd_status);
2182                 ret = -EINVAL;
2183                 break;
2184         }
2185         return ret;
2186 }
2187
2188 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2189                 struct usb_device *udev, u32 *cmd_status)
2190 {
2191         int ret;
2192
2193         switch (*cmd_status) {
2194         case COMP_COMMAND_ABORTED:
2195         case COMP_COMMAND_RING_STOPPED:
2196                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2197                 ret = -ETIME;
2198                 break;
2199         case COMP_PARAMETER_ERROR:
2200                 dev_warn(&udev->dev,
2201                          "WARN: xHCI driver setup invalid evaluate context command.\n");
2202                 ret = -EINVAL;
2203                 break;
2204         case COMP_SLOT_NOT_ENABLED_ERROR:
2205                 dev_warn(&udev->dev,
2206                         "WARN: slot not enabled for evaluate context command.\n");
2207                 ret = -EINVAL;
2208                 break;
2209         case COMP_CONTEXT_STATE_ERROR:
2210                 dev_warn(&udev->dev,
2211                         "WARN: invalid context state for evaluate context command.\n");
2212                 ret = -EINVAL;
2213                 break;
2214         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2215                 dev_warn(&udev->dev,
2216                         "ERROR: Incompatible device for evaluate context command.\n");
2217                 ret = -ENODEV;
2218                 break;
2219         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2220                 /* Max Exit Latency too large error */
2221                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2222                 ret = -EINVAL;
2223                 break;
2224         case COMP_SUCCESS:
2225                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2226                                 "Successful evaluate context command");
2227                 ret = 0;
2228                 break;
2229         default:
2230                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2231                         *cmd_status);
2232                 ret = -EINVAL;
2233                 break;
2234         }
2235         return ret;
2236 }
2237
2238 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2239                 struct xhci_input_control_ctx *ctrl_ctx)
2240 {
2241         u32 valid_add_flags;
2242         u32 valid_drop_flags;
2243
2244         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2245          * (bit 1).  The default control endpoint is added during the Address
2246          * Device command and is never removed until the slot is disabled.
2247          */
2248         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2249         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2250
2251         /* Use hweight32 to count the number of ones in the add flags, or
2252          * number of endpoints added.  Don't count endpoints that are changed
2253          * (both added and dropped).
2254          */
2255         return hweight32(valid_add_flags) -
2256                 hweight32(valid_add_flags & valid_drop_flags);
2257 }
2258
2259 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2260                 struct xhci_input_control_ctx *ctrl_ctx)
2261 {
2262         u32 valid_add_flags;
2263         u32 valid_drop_flags;
2264
2265         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2266         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2267
2268         return hweight32(valid_drop_flags) -
2269                 hweight32(valid_add_flags & valid_drop_flags);
2270 }
2271
2272 /*
2273  * We need to reserve the new number of endpoints before the configure endpoint
2274  * command completes.  We can't subtract the dropped endpoints from the number
2275  * of active endpoints until the command completes because we can oversubscribe
2276  * the host in this case:
2277  *
2278  *  - the first configure endpoint command drops more endpoints than it adds
2279  *  - a second configure endpoint command that adds more endpoints is queued
2280  *  - the first configure endpoint command fails, so the config is unchanged
2281  *  - the second command may succeed, even though there isn't enough resources
2282  *
2283  * Must be called with xhci->lock held.
2284  */
2285 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2286                 struct xhci_input_control_ctx *ctrl_ctx)
2287 {
2288         u32 added_eps;
2289
2290         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2291         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2292                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2293                                 "Not enough ep ctxs: "
2294                                 "%u active, need to add %u, limit is %u.",
2295                                 xhci->num_active_eps, added_eps,
2296                                 xhci->limit_active_eps);
2297                 return -ENOMEM;
2298         }
2299         xhci->num_active_eps += added_eps;
2300         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2301                         "Adding %u ep ctxs, %u now active.", added_eps,
2302                         xhci->num_active_eps);
2303         return 0;
2304 }
2305
2306 /*
2307  * The configure endpoint was failed by the xHC for some other reason, so we
2308  * need to revert the resources that failed configuration would have used.
2309  *
2310  * Must be called with xhci->lock held.
2311  */
2312 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2313                 struct xhci_input_control_ctx *ctrl_ctx)
2314 {
2315         u32 num_failed_eps;
2316
2317         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2318         xhci->num_active_eps -= num_failed_eps;
2319         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2320                         "Removing %u failed ep ctxs, %u now active.",
2321                         num_failed_eps,
2322                         xhci->num_active_eps);
2323 }
2324
2325 /*
2326  * Now that the command has completed, clean up the active endpoint count by
2327  * subtracting out the endpoints that were dropped (but not changed).
2328  *
2329  * Must be called with xhci->lock held.
2330  */
2331 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2332                 struct xhci_input_control_ctx *ctrl_ctx)
2333 {
2334         u32 num_dropped_eps;
2335
2336         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2337         xhci->num_active_eps -= num_dropped_eps;
2338         if (num_dropped_eps)
2339                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2340                                 "Removing %u dropped ep ctxs, %u now active.",
2341                                 num_dropped_eps,
2342                                 xhci->num_active_eps);
2343 }
2344
2345 static unsigned int xhci_get_block_size(struct usb_device *udev)
2346 {
2347         switch (udev->speed) {
2348         case USB_SPEED_LOW:
2349         case USB_SPEED_FULL:
2350                 return FS_BLOCK;
2351         case USB_SPEED_HIGH:
2352                 return HS_BLOCK;
2353         case USB_SPEED_SUPER:
2354         case USB_SPEED_SUPER_PLUS:
2355                 return SS_BLOCK;
2356         case USB_SPEED_UNKNOWN:
2357         case USB_SPEED_WIRELESS:
2358         default:
2359                 /* Should never happen */
2360                 return 1;
2361         }
2362 }
2363
2364 static unsigned int
2365 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2366 {
2367         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2368                 return LS_OVERHEAD;
2369         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2370                 return FS_OVERHEAD;
2371         return HS_OVERHEAD;
2372 }
2373
2374 /* If we are changing a LS/FS device under a HS hub,
2375  * make sure (if we are activating a new TT) that the HS bus has enough
2376  * bandwidth for this new TT.
2377  */
2378 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2379                 struct xhci_virt_device *virt_dev,
2380                 int old_active_eps)
2381 {
2382         struct xhci_interval_bw_table *bw_table;
2383         struct xhci_tt_bw_info *tt_info;
2384
2385         /* Find the bandwidth table for the root port this TT is attached to. */
2386         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2387         tt_info = virt_dev->tt_info;
2388         /* If this TT already had active endpoints, the bandwidth for this TT
2389          * has already been added.  Removing all periodic endpoints (and thus
2390          * making the TT enactive) will only decrease the bandwidth used.
2391          */
2392         if (old_active_eps)
2393                 return 0;
2394         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2395                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2396                         return -ENOMEM;
2397                 return 0;
2398         }
2399         /* Not sure why we would have no new active endpoints...
2400          *
2401          * Maybe because of an Evaluate Context change for a hub update or a
2402          * control endpoint 0 max packet size change?
2403          * FIXME: skip the bandwidth calculation in that case.
2404          */
2405         return 0;
2406 }
2407
2408 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2409                 struct xhci_virt_device *virt_dev)
2410 {
2411         unsigned int bw_reserved;
2412
2413         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2414         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2415                 return -ENOMEM;
2416
2417         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2418         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2419                 return -ENOMEM;
2420
2421         return 0;
2422 }
2423
2424 /*
2425  * This algorithm is a very conservative estimate of the worst-case scheduling
2426  * scenario for any one interval.  The hardware dynamically schedules the
2427  * packets, so we can't tell which microframe could be the limiting factor in
2428  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2429  *
2430  * Obviously, we can't solve an NP complete problem to find the minimum worst
2431  * case scenario.  Instead, we come up with an estimate that is no less than
2432  * the worst case bandwidth used for any one microframe, but may be an
2433  * over-estimate.
2434  *
2435  * We walk the requirements for each endpoint by interval, starting with the
2436  * smallest interval, and place packets in the schedule where there is only one
2437  * possible way to schedule packets for that interval.  In order to simplify
2438  * this algorithm, we record the largest max packet size for each interval, and
2439  * assume all packets will be that size.
2440  *
2441  * For interval 0, we obviously must schedule all packets for each interval.
2442  * The bandwidth for interval 0 is just the amount of data to be transmitted
2443  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2444  * the number of packets).
2445  *
2446  * For interval 1, we have two possible microframes to schedule those packets
2447  * in.  For this algorithm, if we can schedule the same number of packets for
2448  * each possible scheduling opportunity (each microframe), we will do so.  The
2449  * remaining number of packets will be saved to be transmitted in the gaps in
2450  * the next interval's scheduling sequence.
2451  *
2452  * As we move those remaining packets to be scheduled with interval 2 packets,
2453  * we have to double the number of remaining packets to transmit.  This is
2454  * because the intervals are actually powers of 2, and we would be transmitting
2455  * the previous interval's packets twice in this interval.  We also have to be
2456  * sure that when we look at the largest max packet size for this interval, we
2457  * also look at the largest max packet size for the remaining packets and take
2458  * the greater of the two.
2459  *
2460  * The algorithm continues to evenly distribute packets in each scheduling
2461  * opportunity, and push the remaining packets out, until we get to the last
2462  * interval.  Then those packets and their associated overhead are just added
2463  * to the bandwidth used.
2464  */
2465 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2466                 struct xhci_virt_device *virt_dev,
2467                 int old_active_eps)
2468 {
2469         unsigned int bw_reserved;
2470         unsigned int max_bandwidth;
2471         unsigned int bw_used;
2472         unsigned int block_size;
2473         struct xhci_interval_bw_table *bw_table;
2474         unsigned int packet_size = 0;
2475         unsigned int overhead = 0;
2476         unsigned int packets_transmitted = 0;
2477         unsigned int packets_remaining = 0;
2478         unsigned int i;
2479
2480         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2481                 return xhci_check_ss_bw(xhci, virt_dev);
2482
2483         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2484                 max_bandwidth = HS_BW_LIMIT;
2485                 /* Convert percent of bus BW reserved to blocks reserved */
2486                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2487         } else {
2488                 max_bandwidth = FS_BW_LIMIT;
2489                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2490         }
2491
2492         bw_table = virt_dev->bw_table;
2493         /* We need to translate the max packet size and max ESIT payloads into
2494          * the units the hardware uses.
2495          */
2496         block_size = xhci_get_block_size(virt_dev->udev);
2497
2498         /* If we are manipulating a LS/FS device under a HS hub, double check
2499          * that the HS bus has enough bandwidth if we are activing a new TT.
2500          */
2501         if (virt_dev->tt_info) {
2502                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2503                                 "Recalculating BW for rootport %u",
2504                                 virt_dev->real_port);
2505                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2506                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2507                                         "newly activated TT.\n");
2508                         return -ENOMEM;
2509                 }
2510                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2511                                 "Recalculating BW for TT slot %u port %u",
2512                                 virt_dev->tt_info->slot_id,
2513                                 virt_dev->tt_info->ttport);
2514         } else {
2515                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2516                                 "Recalculating BW for rootport %u",
2517                                 virt_dev->real_port);
2518         }
2519
2520         /* Add in how much bandwidth will be used for interval zero, or the
2521          * rounded max ESIT payload + number of packets * largest overhead.
2522          */
2523         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2524                 bw_table->interval_bw[0].num_packets *
2525                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2526
2527         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2528                 unsigned int bw_added;
2529                 unsigned int largest_mps;
2530                 unsigned int interval_overhead;
2531
2532                 /*
2533                  * How many packets could we transmit in this interval?
2534                  * If packets didn't fit in the previous interval, we will need
2535                  * to transmit that many packets twice within this interval.
2536                  */
2537                 packets_remaining = 2 * packets_remaining +
2538                         bw_table->interval_bw[i].num_packets;
2539
2540                 /* Find the largest max packet size of this or the previous
2541                  * interval.
2542                  */
2543                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2544                         largest_mps = 0;
2545                 else {
2546                         struct xhci_virt_ep *virt_ep;
2547                         struct list_head *ep_entry;
2548
2549                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2550                         virt_ep = list_entry(ep_entry,
2551                                         struct xhci_virt_ep, bw_endpoint_list);
2552                         /* Convert to blocks, rounding up */
2553                         largest_mps = DIV_ROUND_UP(
2554                                         virt_ep->bw_info.max_packet_size,
2555                                         block_size);
2556                 }
2557                 if (largest_mps > packet_size)
2558                         packet_size = largest_mps;
2559
2560                 /* Use the larger overhead of this or the previous interval. */
2561                 interval_overhead = xhci_get_largest_overhead(
2562                                 &bw_table->interval_bw[i]);
2563                 if (interval_overhead > overhead)
2564                         overhead = interval_overhead;
2565
2566                 /* How many packets can we evenly distribute across
2567                  * (1 << (i + 1)) possible scheduling opportunities?
2568                  */
2569                 packets_transmitted = packets_remaining >> (i + 1);
2570
2571                 /* Add in the bandwidth used for those scheduled packets */
2572                 bw_added = packets_transmitted * (overhead + packet_size);
2573
2574                 /* How many packets do we have remaining to transmit? */
2575                 packets_remaining = packets_remaining % (1 << (i + 1));
2576
2577                 /* What largest max packet size should those packets have? */
2578                 /* If we've transmitted all packets, don't carry over the
2579                  * largest packet size.
2580                  */
2581                 if (packets_remaining == 0) {
2582                         packet_size = 0;
2583                         overhead = 0;
2584                 } else if (packets_transmitted > 0) {
2585                         /* Otherwise if we do have remaining packets, and we've
2586                          * scheduled some packets in this interval, take the
2587                          * largest max packet size from endpoints with this
2588                          * interval.
2589                          */
2590                         packet_size = largest_mps;
2591                         overhead = interval_overhead;
2592                 }
2593                 /* Otherwise carry over packet_size and overhead from the last
2594                  * time we had a remainder.
2595                  */
2596                 bw_used += bw_added;
2597                 if (bw_used > max_bandwidth) {
2598                         xhci_warn(xhci, "Not enough bandwidth. "
2599                                         "Proposed: %u, Max: %u\n",
2600                                 bw_used, max_bandwidth);
2601                         return -ENOMEM;
2602                 }
2603         }
2604         /*
2605          * Ok, we know we have some packets left over after even-handedly
2606          * scheduling interval 15.  We don't know which microframes they will
2607          * fit into, so we over-schedule and say they will be scheduled every
2608          * microframe.
2609          */
2610         if (packets_remaining > 0)
2611                 bw_used += overhead + packet_size;
2612
2613         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2614                 unsigned int port_index = virt_dev->real_port - 1;
2615
2616                 /* OK, we're manipulating a HS device attached to a
2617                  * root port bandwidth domain.  Include the number of active TTs
2618                  * in the bandwidth used.
2619                  */
2620                 bw_used += TT_HS_OVERHEAD *
2621                         xhci->rh_bw[port_index].num_active_tts;
2622         }
2623
2624         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2625                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2626                 "Available: %u " "percent",
2627                 bw_used, max_bandwidth, bw_reserved,
2628                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2629                 max_bandwidth);
2630
2631         bw_used += bw_reserved;
2632         if (bw_used > max_bandwidth) {
2633                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2634                                 bw_used, max_bandwidth);
2635                 return -ENOMEM;
2636         }
2637
2638         bw_table->bw_used = bw_used;
2639         return 0;
2640 }
2641
2642 static bool xhci_is_async_ep(unsigned int ep_type)
2643 {
2644         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2645                                         ep_type != ISOC_IN_EP &&
2646                                         ep_type != INT_IN_EP);
2647 }
2648
2649 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2650 {
2651         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2652 }
2653
2654 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2655 {
2656         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2657
2658         if (ep_bw->ep_interval == 0)
2659                 return SS_OVERHEAD_BURST +
2660                         (ep_bw->mult * ep_bw->num_packets *
2661                                         (SS_OVERHEAD + mps));
2662         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2663                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2664                                 1 << ep_bw->ep_interval);
2665
2666 }
2667
2668 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2669                 struct xhci_bw_info *ep_bw,
2670                 struct xhci_interval_bw_table *bw_table,
2671                 struct usb_device *udev,
2672                 struct xhci_virt_ep *virt_ep,
2673                 struct xhci_tt_bw_info *tt_info)
2674 {
2675         struct xhci_interval_bw *interval_bw;
2676         int normalized_interval;
2677
2678         if (xhci_is_async_ep(ep_bw->type))
2679                 return;
2680
2681         if (udev->speed >= USB_SPEED_SUPER) {
2682                 if (xhci_is_sync_in_ep(ep_bw->type))
2683                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2684                                 xhci_get_ss_bw_consumed(ep_bw);
2685                 else
2686                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2687                                 xhci_get_ss_bw_consumed(ep_bw);
2688                 return;
2689         }
2690
2691         /* SuperSpeed endpoints never get added to intervals in the table, so
2692          * this check is only valid for HS/FS/LS devices.
2693          */
2694         if (list_empty(&virt_ep->bw_endpoint_list))
2695                 return;
2696         /* For LS/FS devices, we need to translate the interval expressed in
2697          * microframes to frames.
2698          */
2699         if (udev->speed == USB_SPEED_HIGH)
2700                 normalized_interval = ep_bw->ep_interval;
2701         else
2702                 normalized_interval = ep_bw->ep_interval - 3;
2703
2704         if (normalized_interval == 0)
2705                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2706         interval_bw = &bw_table->interval_bw[normalized_interval];
2707         interval_bw->num_packets -= ep_bw->num_packets;
2708         switch (udev->speed) {
2709         case USB_SPEED_LOW:
2710                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2711                 break;
2712         case USB_SPEED_FULL:
2713                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2714                 break;
2715         case USB_SPEED_HIGH:
2716                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2717                 break;
2718         case USB_SPEED_SUPER:
2719         case USB_SPEED_SUPER_PLUS:
2720         case USB_SPEED_UNKNOWN:
2721         case USB_SPEED_WIRELESS:
2722                 /* Should never happen because only LS/FS/HS endpoints will get
2723                  * added to the endpoint list.
2724                  */
2725                 return;
2726         }
2727         if (tt_info)
2728                 tt_info->active_eps -= 1;
2729         list_del_init(&virt_ep->bw_endpoint_list);
2730 }
2731
2732 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2733                 struct xhci_bw_info *ep_bw,
2734                 struct xhci_interval_bw_table *bw_table,
2735                 struct usb_device *udev,
2736                 struct xhci_virt_ep *virt_ep,
2737                 struct xhci_tt_bw_info *tt_info)
2738 {
2739         struct xhci_interval_bw *interval_bw;
2740         struct xhci_virt_ep *smaller_ep;
2741         int normalized_interval;
2742
2743         if (xhci_is_async_ep(ep_bw->type))
2744                 return;
2745
2746         if (udev->speed == USB_SPEED_SUPER) {
2747                 if (xhci_is_sync_in_ep(ep_bw->type))
2748                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2749                                 xhci_get_ss_bw_consumed(ep_bw);
2750                 else
2751                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2752                                 xhci_get_ss_bw_consumed(ep_bw);
2753                 return;
2754         }
2755
2756         /* For LS/FS devices, we need to translate the interval expressed in
2757          * microframes to frames.
2758          */
2759         if (udev->speed == USB_SPEED_HIGH)
2760                 normalized_interval = ep_bw->ep_interval;
2761         else
2762                 normalized_interval = ep_bw->ep_interval - 3;
2763
2764         if (normalized_interval == 0)
2765                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2766         interval_bw = &bw_table->interval_bw[normalized_interval];
2767         interval_bw->num_packets += ep_bw->num_packets;
2768         switch (udev->speed) {
2769         case USB_SPEED_LOW:
2770                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2771                 break;
2772         case USB_SPEED_FULL:
2773                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2774                 break;
2775         case USB_SPEED_HIGH:
2776                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2777                 break;
2778         case USB_SPEED_SUPER:
2779         case USB_SPEED_SUPER_PLUS:
2780         case USB_SPEED_UNKNOWN:
2781         case USB_SPEED_WIRELESS:
2782                 /* Should never happen because only LS/FS/HS endpoints will get
2783                  * added to the endpoint list.
2784                  */
2785                 return;
2786         }
2787
2788         if (tt_info)
2789                 tt_info->active_eps += 1;
2790         /* Insert the endpoint into the list, largest max packet size first. */
2791         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2792                         bw_endpoint_list) {
2793                 if (ep_bw->max_packet_size >=
2794                                 smaller_ep->bw_info.max_packet_size) {
2795                         /* Add the new ep before the smaller endpoint */
2796                         list_add_tail(&virt_ep->bw_endpoint_list,
2797                                         &smaller_ep->bw_endpoint_list);
2798                         return;
2799                 }
2800         }
2801         /* Add the new endpoint at the end of the list. */
2802         list_add_tail(&virt_ep->bw_endpoint_list,
2803                         &interval_bw->endpoints);
2804 }
2805
2806 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2807                 struct xhci_virt_device *virt_dev,
2808                 int old_active_eps)
2809 {
2810         struct xhci_root_port_bw_info *rh_bw_info;
2811         if (!virt_dev->tt_info)
2812                 return;
2813
2814         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2815         if (old_active_eps == 0 &&
2816                                 virt_dev->tt_info->active_eps != 0) {
2817                 rh_bw_info->num_active_tts += 1;
2818                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2819         } else if (old_active_eps != 0 &&
2820                                 virt_dev->tt_info->active_eps == 0) {
2821                 rh_bw_info->num_active_tts -= 1;
2822                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2823         }
2824 }
2825
2826 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2827                 struct xhci_virt_device *virt_dev,
2828                 struct xhci_container_ctx *in_ctx)
2829 {
2830         struct xhci_bw_info ep_bw_info[31];
2831         int i;
2832         struct xhci_input_control_ctx *ctrl_ctx;
2833         int old_active_eps = 0;
2834
2835         if (virt_dev->tt_info)
2836                 old_active_eps = virt_dev->tt_info->active_eps;
2837
2838         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2839         if (!ctrl_ctx) {
2840                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2841                                 __func__);
2842                 return -ENOMEM;
2843         }
2844
2845         for (i = 0; i < 31; i++) {
2846                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2847                         continue;
2848
2849                 /* Make a copy of the BW info in case we need to revert this */
2850                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2851                                 sizeof(ep_bw_info[i]));
2852                 /* Drop the endpoint from the interval table if the endpoint is
2853                  * being dropped or changed.
2854                  */
2855                 if (EP_IS_DROPPED(ctrl_ctx, i))
2856                         xhci_drop_ep_from_interval_table(xhci,
2857                                         &virt_dev->eps[i].bw_info,
2858                                         virt_dev->bw_table,
2859                                         virt_dev->udev,
2860                                         &virt_dev->eps[i],
2861                                         virt_dev->tt_info);
2862         }
2863         /* Overwrite the information stored in the endpoints' bw_info */
2864         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2865         for (i = 0; i < 31; i++) {
2866                 /* Add any changed or added endpoints to the interval table */
2867                 if (EP_IS_ADDED(ctrl_ctx, i))
2868                         xhci_add_ep_to_interval_table(xhci,
2869                                         &virt_dev->eps[i].bw_info,
2870                                         virt_dev->bw_table,
2871                                         virt_dev->udev,
2872                                         &virt_dev->eps[i],
2873                                         virt_dev->tt_info);
2874         }
2875
2876         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2877                 /* Ok, this fits in the bandwidth we have.
2878                  * Update the number of active TTs.
2879                  */
2880                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2881                 return 0;
2882         }
2883
2884         /* We don't have enough bandwidth for this, revert the stored info. */
2885         for (i = 0; i < 31; i++) {
2886                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2887                         continue;
2888
2889                 /* Drop the new copies of any added or changed endpoints from
2890                  * the interval table.
2891                  */
2892                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2893                         xhci_drop_ep_from_interval_table(xhci,
2894                                         &virt_dev->eps[i].bw_info,
2895                                         virt_dev->bw_table,
2896                                         virt_dev->udev,
2897                                         &virt_dev->eps[i],
2898                                         virt_dev->tt_info);
2899                 }
2900                 /* Revert the endpoint back to its old information */
2901                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2902                                 sizeof(ep_bw_info[i]));
2903                 /* Add any changed or dropped endpoints back into the table */
2904                 if (EP_IS_DROPPED(ctrl_ctx, i))
2905                         xhci_add_ep_to_interval_table(xhci,
2906                                         &virt_dev->eps[i].bw_info,
2907                                         virt_dev->bw_table,
2908                                         virt_dev->udev,
2909                                         &virt_dev->eps[i],
2910                                         virt_dev->tt_info);
2911         }
2912         return -ENOMEM;
2913 }
2914
2915
2916 /* Issue a configure endpoint command or evaluate context command
2917  * and wait for it to finish.
2918  */
2919 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2920                 struct usb_device *udev,
2921                 struct xhci_command *command,
2922                 bool ctx_change, bool must_succeed)
2923 {
2924         int ret;
2925         unsigned long flags;
2926         struct xhci_input_control_ctx *ctrl_ctx;
2927         struct xhci_virt_device *virt_dev;
2928         struct xhci_slot_ctx *slot_ctx;
2929
2930         if (!command)
2931                 return -EINVAL;
2932
2933         spin_lock_irqsave(&xhci->lock, flags);
2934
2935         if (xhci->xhc_state & XHCI_STATE_DYING) {
2936                 spin_unlock_irqrestore(&xhci->lock, flags);
2937                 return -ESHUTDOWN;
2938         }
2939
2940         virt_dev = xhci->devs[udev->slot_id];
2941
2942         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2943         if (!ctrl_ctx) {
2944                 spin_unlock_irqrestore(&xhci->lock, flags);
2945                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2946                                 __func__);
2947                 return -ENOMEM;
2948         }
2949
2950         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2951                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2952                 spin_unlock_irqrestore(&xhci->lock, flags);
2953                 xhci_warn(xhci, "Not enough host resources, "
2954                                 "active endpoint contexts = %u\n",
2955                                 xhci->num_active_eps);
2956                 return -ENOMEM;
2957         }
2958         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2959             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2960                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2961                         xhci_free_host_resources(xhci, ctrl_ctx);
2962                 spin_unlock_irqrestore(&xhci->lock, flags);
2963                 xhci_warn(xhci, "Not enough bandwidth\n");
2964                 return -ENOMEM;
2965         }
2966
2967         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2968
2969         trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2970         trace_xhci_configure_endpoint(slot_ctx);
2971
2972         if (!ctx_change)
2973                 ret = xhci_queue_configure_endpoint(xhci, command,
2974                                 command->in_ctx->dma,
2975                                 udev->slot_id, must_succeed);
2976         else
2977                 ret = xhci_queue_evaluate_context(xhci, command,
2978                                 command->in_ctx->dma,
2979                                 udev->slot_id, must_succeed);
2980         if (ret < 0) {
2981                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2982                         xhci_free_host_resources(xhci, ctrl_ctx);
2983                 spin_unlock_irqrestore(&xhci->lock, flags);
2984                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2985                                 "FIXME allocate a new ring segment");
2986                 return -ENOMEM;
2987         }
2988         xhci_ring_cmd_db(xhci);
2989         spin_unlock_irqrestore(&xhci->lock, flags);
2990
2991         /* Wait for the configure endpoint command to complete */
2992         wait_for_completion(command->completion);
2993
2994         if (!ctx_change)
2995                 ret = xhci_configure_endpoint_result(xhci, udev,
2996                                                      &command->status);
2997         else
2998                 ret = xhci_evaluate_context_result(xhci, udev,
2999                                                    &command->status);
3000
3001         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3002                 spin_lock_irqsave(&xhci->lock, flags);
3003                 /* If the command failed, remove the reserved resources.
3004                  * Otherwise, clean up the estimate to include dropped eps.
3005                  */
3006                 if (ret)
3007                         xhci_free_host_resources(xhci, ctrl_ctx);
3008                 else
3009                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
3010                 spin_unlock_irqrestore(&xhci->lock, flags);
3011         }
3012         return ret;
3013 }
3014
3015 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
3016         struct xhci_virt_device *vdev, int i)
3017 {
3018         struct xhci_virt_ep *ep = &vdev->eps[i];
3019
3020         if (ep->ep_state & EP_HAS_STREAMS) {
3021                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
3022                                 xhci_get_endpoint_address(i));
3023                 xhci_free_stream_info(xhci, ep->stream_info);
3024                 ep->stream_info = NULL;
3025                 ep->ep_state &= ~EP_HAS_STREAMS;
3026         }
3027 }
3028
3029 /* Called after one or more calls to xhci_add_endpoint() or
3030  * xhci_drop_endpoint().  If this call fails, the USB core is expected
3031  * to call xhci_reset_bandwidth().
3032  *
3033  * Since we are in the middle of changing either configuration or
3034  * installing a new alt setting, the USB core won't allow URBs to be
3035  * enqueued for any endpoint on the old config or interface.  Nothing
3036  * else should be touching the xhci->devs[slot_id] structure, so we
3037  * don't need to take the xhci->lock for manipulating that.
3038  */
3039 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3040 {
3041         int i;
3042         int ret = 0;
3043         struct xhci_hcd *xhci;
3044         struct xhci_virt_device *virt_dev;
3045         struct xhci_input_control_ctx *ctrl_ctx;
3046         struct xhci_slot_ctx *slot_ctx;
3047         struct xhci_command *command;
3048
3049         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3050         if (ret <= 0)
3051                 return ret;
3052         xhci = hcd_to_xhci(hcd);
3053         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3054                 (xhci->xhc_state & XHCI_STATE_REMOVING))
3055                 return -ENODEV;
3056
3057         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3058         virt_dev = xhci->devs[udev->slot_id];
3059
3060         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3061         if (!command)
3062                 return -ENOMEM;
3063
3064         command->in_ctx = virt_dev->in_ctx;
3065
3066         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3067         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3068         if (!ctrl_ctx) {
3069                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3070                                 __func__);
3071                 ret = -ENOMEM;
3072                 goto command_cleanup;
3073         }
3074         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3075         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3076         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3077
3078         /* Don't issue the command if there's no endpoints to update. */
3079         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3080             ctrl_ctx->drop_flags == 0) {
3081                 ret = 0;
3082                 goto command_cleanup;
3083         }
3084         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3085         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3086         for (i = 31; i >= 1; i--) {
3087                 __le32 le32 = cpu_to_le32(BIT(i));
3088
3089                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3090                     || (ctrl_ctx->add_flags & le32) || i == 1) {
3091                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3092                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3093                         break;
3094                 }
3095         }
3096
3097         ret = xhci_configure_endpoint(xhci, udev, command,
3098                         false, false);
3099         if (ret)
3100                 /* Callee should call reset_bandwidth() */
3101                 goto command_cleanup;
3102
3103         /* Free any rings that were dropped, but not changed. */
3104         for (i = 1; i < 31; i++) {
3105                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3106                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3107                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3108                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3109                 }
3110         }
3111         xhci_zero_in_ctx(xhci, virt_dev);
3112         /*
3113          * Install any rings for completely new endpoints or changed endpoints,
3114          * and free any old rings from changed endpoints.
3115          */
3116         for (i = 1; i < 31; i++) {
3117                 if (!virt_dev->eps[i].new_ring)
3118                         continue;
3119                 /* Only free the old ring if it exists.
3120                  * It may not if this is the first add of an endpoint.
3121                  */
3122                 if (virt_dev->eps[i].ring) {
3123                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3124                 }
3125                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3126                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3127                 virt_dev->eps[i].new_ring = NULL;
3128                 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3129         }
3130 command_cleanup:
3131         kfree(command->completion);
3132         kfree(command);
3133
3134         return ret;
3135 }
3136 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3137
3138 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3139 {
3140         struct xhci_hcd *xhci;
3141         struct xhci_virt_device *virt_dev;
3142         int i, ret;
3143
3144         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3145         if (ret <= 0)
3146                 return;
3147         xhci = hcd_to_xhci(hcd);
3148
3149         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3150         virt_dev = xhci->devs[udev->slot_id];
3151         /* Free any rings allocated for added endpoints */
3152         for (i = 0; i < 31; i++) {
3153                 if (virt_dev->eps[i].new_ring) {
3154                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3155                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3156                         virt_dev->eps[i].new_ring = NULL;
3157                 }
3158         }
3159         xhci_zero_in_ctx(xhci, virt_dev);
3160 }
3161 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3162
3163 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3164                 struct xhci_container_ctx *in_ctx,
3165                 struct xhci_container_ctx *out_ctx,
3166                 struct xhci_input_control_ctx *ctrl_ctx,
3167                 u32 add_flags, u32 drop_flags)
3168 {
3169         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3170         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3171         xhci_slot_copy(xhci, in_ctx, out_ctx);
3172         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3173 }
3174
3175 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3176                                   struct usb_host_endpoint *host_ep)
3177 {
3178         struct xhci_hcd         *xhci;
3179         struct xhci_virt_device *vdev;
3180         struct xhci_virt_ep     *ep;
3181         struct usb_device       *udev;
3182         unsigned long           flags;
3183         unsigned int            ep_index;
3184
3185         xhci = hcd_to_xhci(hcd);
3186 rescan:
3187         spin_lock_irqsave(&xhci->lock, flags);
3188
3189         udev = (struct usb_device *)host_ep->hcpriv;
3190         if (!udev || !udev->slot_id)
3191                 goto done;
3192
3193         vdev = xhci->devs[udev->slot_id];
3194         if (!vdev)
3195                 goto done;
3196
3197         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3198         ep = &vdev->eps[ep_index];
3199
3200         /* wait for hub_tt_work to finish clearing hub TT */
3201         if (ep->ep_state & EP_CLEARING_TT) {
3202                 spin_unlock_irqrestore(&xhci->lock, flags);
3203                 schedule_timeout_uninterruptible(1);
3204                 goto rescan;
3205         }
3206
3207         if (ep->ep_state)
3208                 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3209                          ep->ep_state);
3210 done:
3211         host_ep->hcpriv = NULL;
3212         spin_unlock_irqrestore(&xhci->lock, flags);
3213 }
3214
3215 /*
3216  * Called after usb core issues a clear halt control message.
3217  * The host side of the halt should already be cleared by a reset endpoint
3218  * command issued when the STALL event was received.
3219  *
3220  * The reset endpoint command may only be issued to endpoints in the halted
3221  * state. For software that wishes to reset the data toggle or sequence number
3222  * of an endpoint that isn't in the halted state this function will issue a
3223  * configure endpoint command with the Drop and Add bits set for the target
3224  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3225  */
3226
3227 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3228                 struct usb_host_endpoint *host_ep)
3229 {
3230         struct xhci_hcd *xhci;
3231         struct usb_device *udev;
3232         struct xhci_virt_device *vdev;
3233         struct xhci_virt_ep *ep;
3234         struct xhci_input_control_ctx *ctrl_ctx;
3235         struct xhci_command *stop_cmd, *cfg_cmd;
3236         unsigned int ep_index;
3237         unsigned long flags;
3238         u32 ep_flag;
3239         int err;
3240
3241         xhci = hcd_to_xhci(hcd);
3242         if (!host_ep->hcpriv)
3243                 return;
3244         udev = (struct usb_device *) host_ep->hcpriv;
3245         vdev = xhci->devs[udev->slot_id];
3246
3247         /*
3248          * vdev may be lost due to xHC restore error and re-initialization
3249          * during S3/S4 resume. A new vdev will be allocated later by
3250          * xhci_discover_or_reset_device()
3251          */
3252         if (!udev->slot_id || !vdev)
3253                 return;
3254         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3255         ep = &vdev->eps[ep_index];
3256
3257         /* Bail out if toggle is already being cleared by a endpoint reset */
3258         spin_lock_irqsave(&xhci->lock, flags);
3259         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3260                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3261                 spin_unlock_irqrestore(&xhci->lock, flags);
3262                 return;
3263         }
3264         spin_unlock_irqrestore(&xhci->lock, flags);
3265         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3266         if (usb_endpoint_xfer_control(&host_ep->desc) ||
3267             usb_endpoint_xfer_isoc(&host_ep->desc))
3268                 return;
3269
3270         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3271
3272         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3273                 return;
3274
3275         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3276         if (!stop_cmd)
3277                 return;
3278
3279         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3280         if (!cfg_cmd)
3281                 goto cleanup;
3282
3283         spin_lock_irqsave(&xhci->lock, flags);
3284
3285         /* block queuing new trbs and ringing ep doorbell */
3286         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3287
3288         /*
3289          * Make sure endpoint ring is empty before resetting the toggle/seq.
3290          * Driver is required to synchronously cancel all transfer request.
3291          * Stop the endpoint to force xHC to update the output context
3292          */
3293
3294         if (!list_empty(&ep->ring->td_list)) {
3295                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3296                 spin_unlock_irqrestore(&xhci->lock, flags);
3297                 xhci_free_command(xhci, cfg_cmd);
3298                 goto cleanup;
3299         }
3300
3301         err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3302                                         ep_index, 0);
3303         if (err < 0) {
3304                 spin_unlock_irqrestore(&xhci->lock, flags);
3305                 xhci_free_command(xhci, cfg_cmd);
3306                 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3307                                 __func__, err);
3308                 goto cleanup;
3309         }
3310
3311         xhci_ring_cmd_db(xhci);
3312         spin_unlock_irqrestore(&xhci->lock, flags);
3313
3314         wait_for_completion(stop_cmd->completion);
3315
3316         spin_lock_irqsave(&xhci->lock, flags);
3317
3318         /* config ep command clears toggle if add and drop ep flags are set */
3319         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3320         if (!ctrl_ctx) {
3321                 spin_unlock_irqrestore(&xhci->lock, flags);
3322                 xhci_free_command(xhci, cfg_cmd);
3323                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3324                                 __func__);
3325                 goto cleanup;
3326         }
3327
3328         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3329                                            ctrl_ctx, ep_flag, ep_flag);
3330         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3331
3332         err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3333                                       udev->slot_id, false);
3334         if (err < 0) {
3335                 spin_unlock_irqrestore(&xhci->lock, flags);
3336                 xhci_free_command(xhci, cfg_cmd);
3337                 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3338                                 __func__, err);
3339                 goto cleanup;
3340         }
3341
3342         xhci_ring_cmd_db(xhci);
3343         spin_unlock_irqrestore(&xhci->lock, flags);
3344
3345         wait_for_completion(cfg_cmd->completion);
3346
3347         xhci_free_command(xhci, cfg_cmd);
3348 cleanup:
3349         xhci_free_command(xhci, stop_cmd);
3350         spin_lock_irqsave(&xhci->lock, flags);
3351         if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3352                 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3353         spin_unlock_irqrestore(&xhci->lock, flags);
3354 }
3355
3356 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3357                 struct usb_device *udev, struct usb_host_endpoint *ep,
3358                 unsigned int slot_id)
3359 {
3360         int ret;
3361         unsigned int ep_index;
3362         unsigned int ep_state;
3363
3364         if (!ep)
3365                 return -EINVAL;
3366         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3367         if (ret <= 0)
3368                 return ret ? ret : -EINVAL;
3369         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3370                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3371                                 " descriptor for ep 0x%x does not support streams\n",
3372                                 ep->desc.bEndpointAddress);
3373                 return -EINVAL;
3374         }
3375
3376         ep_index = xhci_get_endpoint_index(&ep->desc);
3377         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3378         if (ep_state & EP_HAS_STREAMS ||
3379                         ep_state & EP_GETTING_STREAMS) {
3380                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3381                                 "already has streams set up.\n",
3382                                 ep->desc.bEndpointAddress);
3383                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3384                                 "dynamic stream context array reallocation.\n");
3385                 return -EINVAL;
3386         }
3387         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3388                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3389                                 "endpoint 0x%x; URBs are pending.\n",
3390                                 ep->desc.bEndpointAddress);
3391                 return -EINVAL;
3392         }
3393         return 0;
3394 }
3395
3396 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3397                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3398 {
3399         unsigned int max_streams;
3400
3401         /* The stream context array size must be a power of two */
3402         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3403         /*
3404          * Find out how many primary stream array entries the host controller
3405          * supports.  Later we may use secondary stream arrays (similar to 2nd
3406          * level page entries), but that's an optional feature for xHCI host
3407          * controllers. xHCs must support at least 4 stream IDs.
3408          */
3409         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3410         if (*num_stream_ctxs > max_streams) {
3411                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3412                                 max_streams);
3413                 *num_stream_ctxs = max_streams;
3414                 *num_streams = max_streams;
3415         }
3416 }
3417
3418 /* Returns an error code if one of the endpoint already has streams.
3419  * This does not change any data structures, it only checks and gathers
3420  * information.
3421  */
3422 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3423                 struct usb_device *udev,
3424                 struct usb_host_endpoint **eps, unsigned int num_eps,
3425                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3426 {
3427         unsigned int max_streams;
3428         unsigned int endpoint_flag;
3429         int i;
3430         int ret;
3431
3432         for (i = 0; i < num_eps; i++) {
3433                 ret = xhci_check_streams_endpoint(xhci, udev,
3434                                 eps[i], udev->slot_id);
3435                 if (ret < 0)
3436                         return ret;
3437
3438                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3439                 if (max_streams < (*num_streams - 1)) {
3440                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3441                                         eps[i]->desc.bEndpointAddress,
3442                                         max_streams);
3443                         *num_streams = max_streams+1;
3444                 }
3445
3446                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3447                 if (*changed_ep_bitmask & endpoint_flag)
3448                         return -EINVAL;
3449                 *changed_ep_bitmask |= endpoint_flag;
3450         }
3451         return 0;
3452 }
3453
3454 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3455                 struct usb_device *udev,
3456                 struct usb_host_endpoint **eps, unsigned int num_eps)
3457 {
3458         u32 changed_ep_bitmask = 0;
3459         unsigned int slot_id;
3460         unsigned int ep_index;
3461         unsigned int ep_state;
3462         int i;
3463
3464         slot_id = udev->slot_id;
3465         if (!xhci->devs[slot_id])
3466                 return 0;
3467
3468         for (i = 0; i < num_eps; i++) {
3469                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3470                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3471                 /* Are streams already being freed for the endpoint? */
3472                 if (ep_state & EP_GETTING_NO_STREAMS) {
3473                         xhci_warn(xhci, "WARN Can't disable streams for "
3474                                         "endpoint 0x%x, "
3475                                         "streams are being disabled already\n",
3476                                         eps[i]->desc.bEndpointAddress);
3477                         return 0;
3478                 }
3479                 /* Are there actually any streams to free? */
3480                 if (!(ep_state & EP_HAS_STREAMS) &&
3481                                 !(ep_state & EP_GETTING_STREAMS)) {
3482                         xhci_warn(xhci, "WARN Can't disable streams for "
3483                                         "endpoint 0x%x, "
3484                                         "streams are already disabled!\n",
3485                                         eps[i]->desc.bEndpointAddress);
3486                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3487                                         "with non-streams endpoint\n");
3488                         return 0;
3489                 }
3490                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3491         }
3492         return changed_ep_bitmask;
3493 }
3494
3495 /*
3496  * The USB device drivers use this function (through the HCD interface in USB
3497  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3498  * coordinate mass storage command queueing across multiple endpoints (basically
3499  * a stream ID == a task ID).
3500  *
3501  * Setting up streams involves allocating the same size stream context array
3502  * for each endpoint and issuing a configure endpoint command for all endpoints.
3503  *
3504  * Don't allow the call to succeed if one endpoint only supports one stream
3505  * (which means it doesn't support streams at all).
3506  *
3507  * Drivers may get less stream IDs than they asked for, if the host controller
3508  * hardware or endpoints claim they can't support the number of requested
3509  * stream IDs.
3510  */
3511 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3512                 struct usb_host_endpoint **eps, unsigned int num_eps,
3513                 unsigned int num_streams, gfp_t mem_flags)
3514 {
3515         int i, ret;
3516         struct xhci_hcd *xhci;
3517         struct xhci_virt_device *vdev;
3518         struct xhci_command *config_cmd;
3519         struct xhci_input_control_ctx *ctrl_ctx;
3520         unsigned int ep_index;
3521         unsigned int num_stream_ctxs;
3522         unsigned int max_packet;
3523         unsigned long flags;
3524         u32 changed_ep_bitmask = 0;
3525
3526         if (!eps)
3527                 return -EINVAL;
3528
3529         /* Add one to the number of streams requested to account for
3530          * stream 0 that is reserved for xHCI usage.
3531          */
3532         num_streams += 1;
3533         xhci = hcd_to_xhci(hcd);
3534         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3535                         num_streams);
3536
3537         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3538         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3539                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3540                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3541                 return -ENOSYS;
3542         }
3543
3544         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3545         if (!config_cmd)
3546                 return -ENOMEM;
3547
3548         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3549         if (!ctrl_ctx) {
3550                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3551                                 __func__);
3552                 xhci_free_command(xhci, config_cmd);
3553                 return -ENOMEM;
3554         }
3555
3556         /* Check to make sure all endpoints are not already configured for
3557          * streams.  While we're at it, find the maximum number of streams that
3558          * all the endpoints will support and check for duplicate endpoints.
3559          */
3560         spin_lock_irqsave(&xhci->lock, flags);
3561         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3562                         num_eps, &num_streams, &changed_ep_bitmask);
3563         if (ret < 0) {
3564                 xhci_free_command(xhci, config_cmd);
3565                 spin_unlock_irqrestore(&xhci->lock, flags);
3566                 return ret;
3567         }
3568         if (num_streams <= 1) {
3569                 xhci_warn(xhci, "WARN: endpoints can't handle "
3570                                 "more than one stream.\n");
3571                 xhci_free_command(xhci, config_cmd);
3572                 spin_unlock_irqrestore(&xhci->lock, flags);
3573                 return -EINVAL;
3574         }
3575         vdev = xhci->devs[udev->slot_id];
3576         /* Mark each endpoint as being in transition, so
3577          * xhci_urb_enqueue() will reject all URBs.
3578          */
3579         for (i = 0; i < num_eps; i++) {
3580                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3581                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3582         }
3583         spin_unlock_irqrestore(&xhci->lock, flags);
3584
3585         /* Setup internal data structures and allocate HW data structures for
3586          * streams (but don't install the HW structures in the input context
3587          * until we're sure all memory allocation succeeded).
3588          */
3589         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3590         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3591                         num_stream_ctxs, num_streams);
3592
3593         for (i = 0; i < num_eps; i++) {
3594                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3595                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3596                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3597                                 num_stream_ctxs,
3598                                 num_streams,
3599                                 max_packet, mem_flags);
3600                 if (!vdev->eps[ep_index].stream_info)
3601                         goto cleanup;
3602                 /* Set maxPstreams in endpoint context and update deq ptr to
3603                  * point to stream context array. FIXME
3604                  */
3605         }
3606
3607         /* Set up the input context for a configure endpoint command. */
3608         for (i = 0; i < num_eps; i++) {
3609                 struct xhci_ep_ctx *ep_ctx;
3610
3611                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3612                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3613
3614                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3615                                 vdev->out_ctx, ep_index);
3616                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3617                                 vdev->eps[ep_index].stream_info);
3618         }
3619         /* Tell the HW to drop its old copy of the endpoint context info
3620          * and add the updated copy from the input context.
3621          */
3622         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3623                         vdev->out_ctx, ctrl_ctx,
3624                         changed_ep_bitmask, changed_ep_bitmask);
3625
3626         /* Issue and wait for the configure endpoint command */
3627         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3628                         false, false);
3629
3630         /* xHC rejected the configure endpoint command for some reason, so we
3631          * leave the old ring intact and free our internal streams data
3632          * structure.
3633          */
3634         if (ret < 0)
3635                 goto cleanup;
3636
3637         spin_lock_irqsave(&xhci->lock, flags);
3638         for (i = 0; i < num_eps; i++) {
3639                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3640                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3641                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3642                          udev->slot_id, ep_index);
3643                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3644         }
3645         xhci_free_command(xhci, config_cmd);
3646         spin_unlock_irqrestore(&xhci->lock, flags);
3647
3648         for (i = 0; i < num_eps; i++) {
3649                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3650                 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3651         }
3652         /* Subtract 1 for stream 0, which drivers can't use */
3653         return num_streams - 1;
3654
3655 cleanup:
3656         /* If it didn't work, free the streams! */
3657         for (i = 0; i < num_eps; i++) {
3658                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3659                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3660                 vdev->eps[ep_index].stream_info = NULL;
3661                 /* FIXME Unset maxPstreams in endpoint context and
3662                  * update deq ptr to point to normal string ring.
3663                  */
3664                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3665                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3666                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3667         }
3668         xhci_free_command(xhci, config_cmd);
3669         return -ENOMEM;
3670 }
3671
3672 /* Transition the endpoint from using streams to being a "normal" endpoint
3673  * without streams.
3674  *
3675  * Modify the endpoint context state, submit a configure endpoint command,
3676  * and free all endpoint rings for streams if that completes successfully.
3677  */
3678 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3679                 struct usb_host_endpoint **eps, unsigned int num_eps,
3680                 gfp_t mem_flags)
3681 {
3682         int i, ret;
3683         struct xhci_hcd *xhci;
3684         struct xhci_virt_device *vdev;
3685         struct xhci_command *command;
3686         struct xhci_input_control_ctx *ctrl_ctx;
3687         unsigned int ep_index;
3688         unsigned long flags;
3689         u32 changed_ep_bitmask;
3690
3691         xhci = hcd_to_xhci(hcd);
3692         vdev = xhci->devs[udev->slot_id];
3693
3694         /* Set up a configure endpoint command to remove the streams rings */
3695         spin_lock_irqsave(&xhci->lock, flags);
3696         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3697                         udev, eps, num_eps);
3698         if (changed_ep_bitmask == 0) {
3699                 spin_unlock_irqrestore(&xhci->lock, flags);
3700                 return -EINVAL;
3701         }
3702
3703         /* Use the xhci_command structure from the first endpoint.  We may have
3704          * allocated too many, but the driver may call xhci_free_streams() for
3705          * each endpoint it grouped into one call to xhci_alloc_streams().
3706          */
3707         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3708         command = vdev->eps[ep_index].stream_info->free_streams_command;
3709         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3710         if (!ctrl_ctx) {
3711                 spin_unlock_irqrestore(&xhci->lock, flags);
3712                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3713                                 __func__);
3714                 return -EINVAL;
3715         }
3716
3717         for (i = 0; i < num_eps; i++) {
3718                 struct xhci_ep_ctx *ep_ctx;
3719
3720                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3721                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3722                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3723                         EP_GETTING_NO_STREAMS;
3724
3725                 xhci_endpoint_copy(xhci, command->in_ctx,
3726                                 vdev->out_ctx, ep_index);
3727                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3728                                 &vdev->eps[ep_index]);
3729         }
3730         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3731                         vdev->out_ctx, ctrl_ctx,
3732                         changed_ep_bitmask, changed_ep_bitmask);
3733         spin_unlock_irqrestore(&xhci->lock, flags);
3734
3735         /* Issue and wait for the configure endpoint command,
3736          * which must succeed.
3737          */
3738         ret = xhci_configure_endpoint(xhci, udev, command,
3739                         false, true);
3740
3741         /* xHC rejected the configure endpoint command for some reason, so we
3742          * leave the streams rings intact.
3743          */
3744         if (ret < 0)
3745                 return ret;
3746
3747         spin_lock_irqsave(&xhci->lock, flags);
3748         for (i = 0; i < num_eps; i++) {
3749                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3750                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3751                 vdev->eps[ep_index].stream_info = NULL;
3752                 /* FIXME Unset maxPstreams in endpoint context and
3753                  * update deq ptr to point to normal string ring.
3754                  */
3755                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3756                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3757         }
3758         spin_unlock_irqrestore(&xhci->lock, flags);
3759
3760         return 0;
3761 }
3762
3763 /*
3764  * Deletes endpoint resources for endpoints that were active before a Reset
3765  * Device command, or a Disable Slot command.  The Reset Device command leaves
3766  * the control endpoint intact, whereas the Disable Slot command deletes it.
3767  *
3768  * Must be called with xhci->lock held.
3769  */
3770 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3771         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3772 {
3773         int i;
3774         unsigned int num_dropped_eps = 0;
3775         unsigned int drop_flags = 0;
3776
3777         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3778                 if (virt_dev->eps[i].ring) {
3779                         drop_flags |= 1 << i;
3780                         num_dropped_eps++;
3781                 }
3782         }
3783         xhci->num_active_eps -= num_dropped_eps;
3784         if (num_dropped_eps)
3785                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3786                                 "Dropped %u ep ctxs, flags = 0x%x, "
3787                                 "%u now active.",
3788                                 num_dropped_eps, drop_flags,
3789                                 xhci->num_active_eps);
3790 }
3791
3792 /*
3793  * This submits a Reset Device Command, which will set the device state to 0,
3794  * set the device address to 0, and disable all the endpoints except the default
3795  * control endpoint.  The USB core should come back and call
3796  * xhci_address_device(), and then re-set up the configuration.  If this is
3797  * called because of a usb_reset_and_verify_device(), then the old alternate
3798  * settings will be re-installed through the normal bandwidth allocation
3799  * functions.
3800  *
3801  * Wait for the Reset Device command to finish.  Remove all structures
3802  * associated with the endpoints that were disabled.  Clear the input device
3803  * structure? Reset the control endpoint 0 max packet size?
3804  *
3805  * If the virt_dev to be reset does not exist or does not match the udev,
3806  * it means the device is lost, possibly due to the xHC restore error and
3807  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3808  * re-allocate the device.
3809  */
3810 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3811                 struct usb_device *udev)
3812 {
3813         int ret, i;
3814         unsigned long flags;
3815         struct xhci_hcd *xhci;
3816         unsigned int slot_id;
3817         struct xhci_virt_device *virt_dev;
3818         struct xhci_command *reset_device_cmd;
3819         struct xhci_slot_ctx *slot_ctx;
3820         int old_active_eps = 0;
3821
3822         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3823         if (ret <= 0)
3824                 return ret;
3825         xhci = hcd_to_xhci(hcd);
3826         slot_id = udev->slot_id;
3827         virt_dev = xhci->devs[slot_id];
3828         if (!virt_dev) {
3829                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3830                                 "not exist. Re-allocate the device\n", slot_id);
3831                 ret = xhci_alloc_dev(hcd, udev);
3832                 if (ret == 1)
3833                         return 0;
3834                 else
3835                         return -EINVAL;
3836         }
3837
3838         if (virt_dev->tt_info)
3839                 old_active_eps = virt_dev->tt_info->active_eps;
3840
3841         if (virt_dev->udev != udev) {
3842                 /* If the virt_dev and the udev does not match, this virt_dev
3843                  * may belong to another udev.
3844                  * Re-allocate the device.
3845                  */
3846                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3847                                 "not match the udev. Re-allocate the device\n",
3848                                 slot_id);
3849                 ret = xhci_alloc_dev(hcd, udev);
3850                 if (ret == 1)
3851                         return 0;
3852                 else
3853                         return -EINVAL;
3854         }
3855
3856         /* If device is not setup, there is no point in resetting it */
3857         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3858         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3859                                                 SLOT_STATE_DISABLED)
3860                 return 0;
3861
3862         trace_xhci_discover_or_reset_device(slot_ctx);
3863
3864         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3865         /* Allocate the command structure that holds the struct completion.
3866          * Assume we're in process context, since the normal device reset
3867          * process has to wait for the device anyway.  Storage devices are
3868          * reset as part of error handling, so use GFP_NOIO instead of
3869          * GFP_KERNEL.
3870          */
3871         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3872         if (!reset_device_cmd) {
3873                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3874                 return -ENOMEM;
3875         }
3876
3877         /* Attempt to submit the Reset Device command to the command ring */
3878         spin_lock_irqsave(&xhci->lock, flags);
3879
3880         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3881         if (ret) {
3882                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3883                 spin_unlock_irqrestore(&xhci->lock, flags);
3884                 goto command_cleanup;
3885         }
3886         xhci_ring_cmd_db(xhci);
3887         spin_unlock_irqrestore(&xhci->lock, flags);
3888
3889         /* Wait for the Reset Device command to finish */
3890         wait_for_completion(reset_device_cmd->completion);
3891
3892         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3893          * unless we tried to reset a slot ID that wasn't enabled,
3894          * or the device wasn't in the addressed or configured state.
3895          */
3896         ret = reset_device_cmd->status;
3897         switch (ret) {
3898         case COMP_COMMAND_ABORTED:
3899         case COMP_COMMAND_RING_STOPPED:
3900                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3901                 ret = -ETIME;
3902                 goto command_cleanup;
3903         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3904         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3905                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3906                                 slot_id,
3907                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3908                 xhci_dbg(xhci, "Not freeing device rings.\n");
3909                 /* Don't treat this as an error.  May change my mind later. */
3910                 ret = 0;
3911                 goto command_cleanup;
3912         case COMP_SUCCESS:
3913                 xhci_dbg(xhci, "Successful reset device command.\n");
3914                 break;
3915         default:
3916                 if (xhci_is_vendor_info_code(xhci, ret))
3917                         break;
3918                 xhci_warn(xhci, "Unknown completion code %u for "
3919                                 "reset device command.\n", ret);
3920                 ret = -EINVAL;
3921                 goto command_cleanup;
3922         }
3923
3924         /* Free up host controller endpoint resources */
3925         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3926                 spin_lock_irqsave(&xhci->lock, flags);
3927                 /* Don't delete the default control endpoint resources */
3928                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3929                 spin_unlock_irqrestore(&xhci->lock, flags);
3930         }
3931
3932         /* Everything but endpoint 0 is disabled, so free the rings. */
3933         for (i = 1; i < 31; i++) {
3934                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3935
3936                 if (ep->ep_state & EP_HAS_STREAMS) {
3937                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3938                                         xhci_get_endpoint_address(i));
3939                         xhci_free_stream_info(xhci, ep->stream_info);
3940                         ep->stream_info = NULL;
3941                         ep->ep_state &= ~EP_HAS_STREAMS;
3942                 }
3943
3944                 if (ep->ring) {
3945                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3946                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3947                 }
3948                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3949                         xhci_drop_ep_from_interval_table(xhci,
3950                                         &virt_dev->eps[i].bw_info,
3951                                         virt_dev->bw_table,
3952                                         udev,
3953                                         &virt_dev->eps[i],
3954                                         virt_dev->tt_info);
3955                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3956         }
3957         /* If necessary, update the number of active TTs on this root port */
3958         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3959         virt_dev->flags = 0;
3960         ret = 0;
3961
3962 command_cleanup:
3963         xhci_free_command(xhci, reset_device_cmd);
3964         return ret;
3965 }
3966
3967 /*
3968  * At this point, the struct usb_device is about to go away, the device has
3969  * disconnected, and all traffic has been stopped and the endpoints have been
3970  * disabled.  Free any HC data structures associated with that device.
3971  */
3972 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3973 {
3974         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3975         struct xhci_virt_device *virt_dev;
3976         struct xhci_slot_ctx *slot_ctx;
3977         int i, ret;
3978
3979         /*
3980          * We called pm_runtime_get_noresume when the device was attached.
3981          * Decrement the counter here to allow controller to runtime suspend
3982          * if no devices remain.
3983          */
3984         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3985                 pm_runtime_put_noidle(hcd->self.controller);
3986
3987         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3988         /* If the host is halted due to driver unload, we still need to free the
3989          * device.
3990          */
3991         if (ret <= 0 && ret != -ENODEV)
3992                 return;
3993
3994         virt_dev = xhci->devs[udev->slot_id];
3995         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3996         trace_xhci_free_dev(slot_ctx);
3997
3998         /* Stop any wayward timer functions (which may grab the lock) */
3999         for (i = 0; i < 31; i++)
4000                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
4001         virt_dev->udev = NULL;
4002         xhci_disable_slot(xhci, udev->slot_id);
4003         xhci_free_virt_device(xhci, udev->slot_id);
4004 }
4005
4006 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
4007 {
4008         struct xhci_command *command;
4009         unsigned long flags;
4010         u32 state;
4011         int ret;
4012
4013         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4014         if (!command)
4015                 return -ENOMEM;
4016
4017         xhci_debugfs_remove_slot(xhci, slot_id);
4018
4019         spin_lock_irqsave(&xhci->lock, flags);
4020         /* Don't disable the slot if the host controller is dead. */
4021         state = readl(&xhci->op_regs->status);
4022         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4023                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
4024                 spin_unlock_irqrestore(&xhci->lock, flags);
4025                 kfree(command);
4026                 return -ENODEV;
4027         }
4028
4029         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4030                                 slot_id);
4031         if (ret) {
4032                 spin_unlock_irqrestore(&xhci->lock, flags);
4033                 kfree(command);
4034                 return ret;
4035         }
4036         xhci_ring_cmd_db(xhci);
4037         spin_unlock_irqrestore(&xhci->lock, flags);
4038
4039         wait_for_completion(command->completion);
4040
4041         if (command->status != COMP_SUCCESS)
4042                 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4043                           slot_id, command->status);
4044
4045         xhci_free_command(xhci, command);
4046
4047         return 0;
4048 }
4049
4050 /*
4051  * Checks if we have enough host controller resources for the default control
4052  * endpoint.
4053  *
4054  * Must be called with xhci->lock held.
4055  */
4056 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4057 {
4058         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4059                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4060                                 "Not enough ep ctxs: "
4061                                 "%u active, need to add 1, limit is %u.",
4062                                 xhci->num_active_eps, xhci->limit_active_eps);
4063                 return -ENOMEM;
4064         }
4065         xhci->num_active_eps += 1;
4066         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4067                         "Adding 1 ep ctx, %u now active.",
4068                         xhci->num_active_eps);
4069         return 0;
4070 }
4071
4072
4073 /*
4074  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4075  * timed out, or allocating memory failed.  Returns 1 on success.
4076  */
4077 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4078 {
4079         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4080         struct xhci_virt_device *vdev;
4081         struct xhci_slot_ctx *slot_ctx;
4082         unsigned long flags;
4083         int ret, slot_id;
4084         struct xhci_command *command;
4085
4086         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4087         if (!command)
4088                 return 0;
4089
4090         spin_lock_irqsave(&xhci->lock, flags);
4091         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4092         if (ret) {
4093                 spin_unlock_irqrestore(&xhci->lock, flags);
4094                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4095                 xhci_free_command(xhci, command);
4096                 return 0;
4097         }
4098         xhci_ring_cmd_db(xhci);
4099         spin_unlock_irqrestore(&xhci->lock, flags);
4100
4101         wait_for_completion(command->completion);
4102         slot_id = command->slot_id;
4103
4104         if (!slot_id || command->status != COMP_SUCCESS) {
4105                 xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4106                          xhci_trb_comp_code_string(command->status));
4107                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4108                                 HCS_MAX_SLOTS(
4109                                         readl(&xhci->cap_regs->hcs_params1)));
4110                 xhci_free_command(xhci, command);
4111                 return 0;
4112         }
4113
4114         xhci_free_command(xhci, command);
4115
4116         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4117                 spin_lock_irqsave(&xhci->lock, flags);
4118                 ret = xhci_reserve_host_control_ep_resources(xhci);
4119                 if (ret) {
4120                         spin_unlock_irqrestore(&xhci->lock, flags);
4121                         xhci_warn(xhci, "Not enough host resources, "
4122                                         "active endpoint contexts = %u\n",
4123                                         xhci->num_active_eps);
4124                         goto disable_slot;
4125                 }
4126                 spin_unlock_irqrestore(&xhci->lock, flags);
4127         }
4128         /* Use GFP_NOIO, since this function can be called from
4129          * xhci_discover_or_reset_device(), which may be called as part of
4130          * mass storage driver error handling.
4131          */
4132         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4133                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4134                 goto disable_slot;
4135         }
4136         vdev = xhci->devs[slot_id];
4137         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4138         trace_xhci_alloc_dev(slot_ctx);
4139
4140         udev->slot_id = slot_id;
4141
4142         xhci_debugfs_create_slot(xhci, slot_id);
4143
4144         /*
4145          * If resetting upon resume, we can't put the controller into runtime
4146          * suspend if there is a device attached.
4147          */
4148         if (xhci->quirks & XHCI_RESET_ON_RESUME)
4149                 pm_runtime_get_noresume(hcd->self.controller);
4150
4151         /* Is this a LS or FS device under a HS hub? */
4152         /* Hub or peripherial? */
4153         return 1;
4154
4155 disable_slot:
4156         xhci_disable_slot(xhci, udev->slot_id);
4157         xhci_free_virt_device(xhci, udev->slot_id);
4158
4159         return 0;
4160 }
4161
4162 /*
4163  * Issue an Address Device command and optionally send a corresponding
4164  * SetAddress request to the device.
4165  */
4166 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4167                              enum xhci_setup_dev setup)
4168 {
4169         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4170         unsigned long flags;
4171         struct xhci_virt_device *virt_dev;
4172         int ret = 0;
4173         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4174         struct xhci_slot_ctx *slot_ctx;
4175         struct xhci_input_control_ctx *ctrl_ctx;
4176         u64 temp_64;
4177         struct xhci_command *command = NULL;
4178
4179         mutex_lock(&xhci->mutex);
4180
4181         if (xhci->xhc_state) {  /* dying, removing or halted */
4182                 ret = -ESHUTDOWN;
4183                 goto out;
4184         }
4185
4186         if (!udev->slot_id) {
4187                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4188                                 "Bad Slot ID %d", udev->slot_id);
4189                 ret = -EINVAL;
4190                 goto out;
4191         }
4192
4193         virt_dev = xhci->devs[udev->slot_id];
4194
4195         if (WARN_ON(!virt_dev)) {
4196                 /*
4197                  * In plug/unplug torture test with an NEC controller,
4198                  * a zero-dereference was observed once due to virt_dev = 0.
4199                  * Print useful debug rather than crash if it is observed again!
4200                  */
4201                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4202                         udev->slot_id);
4203                 ret = -EINVAL;
4204                 goto out;
4205         }
4206         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4207         trace_xhci_setup_device_slot(slot_ctx);
4208
4209         if (setup == SETUP_CONTEXT_ONLY) {
4210                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4211                     SLOT_STATE_DEFAULT) {
4212                         xhci_dbg(xhci, "Slot already in default state\n");
4213                         goto out;
4214                 }
4215         }
4216
4217         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4218         if (!command) {
4219                 ret = -ENOMEM;
4220                 goto out;
4221         }
4222
4223         command->in_ctx = virt_dev->in_ctx;
4224
4225         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4226         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4227         if (!ctrl_ctx) {
4228                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4229                                 __func__);
4230                 ret = -EINVAL;
4231                 goto out;
4232         }
4233         /*
4234          * If this is the first Set Address since device plug-in or
4235          * virt_device realloaction after a resume with an xHCI power loss,
4236          * then set up the slot context.
4237          */
4238         if (!slot_ctx->dev_info)
4239                 xhci_setup_addressable_virt_dev(xhci, udev);
4240         /* Otherwise, update the control endpoint ring enqueue pointer. */
4241         else
4242                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4243         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4244         ctrl_ctx->drop_flags = 0;
4245
4246         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4247                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4248
4249         trace_xhci_address_ctrl_ctx(ctrl_ctx);
4250         spin_lock_irqsave(&xhci->lock, flags);
4251         trace_xhci_setup_device(virt_dev);
4252         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4253                                         udev->slot_id, setup);
4254         if (ret) {
4255                 spin_unlock_irqrestore(&xhci->lock, flags);
4256                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4257                                 "FIXME: allocate a command ring segment");
4258                 goto out;
4259         }
4260         xhci_ring_cmd_db(xhci);
4261         spin_unlock_irqrestore(&xhci->lock, flags);
4262
4263         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4264         wait_for_completion(command->completion);
4265
4266         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4267          * the SetAddress() "recovery interval" required by USB and aborting the
4268          * command on a timeout.
4269          */
4270         switch (command->status) {
4271         case COMP_COMMAND_ABORTED:
4272         case COMP_COMMAND_RING_STOPPED:
4273                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4274                 ret = -ETIME;
4275                 break;
4276         case COMP_CONTEXT_STATE_ERROR:
4277         case COMP_SLOT_NOT_ENABLED_ERROR:
4278                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4279                          act, udev->slot_id);
4280                 ret = -EINVAL;
4281                 break;
4282         case COMP_USB_TRANSACTION_ERROR:
4283                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4284
4285                 mutex_unlock(&xhci->mutex);
4286                 ret = xhci_disable_slot(xhci, udev->slot_id);
4287                 xhci_free_virt_device(xhci, udev->slot_id);
4288                 if (!ret)
4289                         xhci_alloc_dev(hcd, udev);
4290                 kfree(command->completion);
4291                 kfree(command);
4292                 return -EPROTO;
4293         case COMP_INCOMPATIBLE_DEVICE_ERROR:
4294                 dev_warn(&udev->dev,
4295                          "ERROR: Incompatible device for setup %s command\n", act);
4296                 ret = -ENODEV;
4297                 break;
4298         case COMP_SUCCESS:
4299                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4300                                "Successful setup %s command", act);
4301                 break;
4302         default:
4303                 xhci_err(xhci,
4304                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
4305                          act, command->status);
4306                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4307                 ret = -EINVAL;
4308                 break;
4309         }
4310         if (ret)
4311                 goto out;
4312         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4313         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4314                         "Op regs DCBAA ptr = %#016llx", temp_64);
4315         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4316                 "Slot ID %d dcbaa entry @%p = %#016llx",
4317                 udev->slot_id,
4318                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4319                 (unsigned long long)
4320                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4321         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4322                         "Output Context DMA address = %#08llx",
4323                         (unsigned long long)virt_dev->out_ctx->dma);
4324         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4325                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4326         /*
4327          * USB core uses address 1 for the roothubs, so we add one to the
4328          * address given back to us by the HC.
4329          */
4330         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4331                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4332         /* Zero the input context control for later use */
4333         ctrl_ctx->add_flags = 0;
4334         ctrl_ctx->drop_flags = 0;
4335         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4336         udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4337
4338         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4339                        "Internal device address = %d",
4340                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4341 out:
4342         mutex_unlock(&xhci->mutex);
4343         if (command) {
4344                 kfree(command->completion);
4345                 kfree(command);
4346         }
4347         return ret;
4348 }
4349
4350 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4351 {
4352         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4353 }
4354
4355 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4356 {
4357         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4358 }
4359
4360 /*
4361  * Transfer the port index into real index in the HW port status
4362  * registers. Caculate offset between the port's PORTSC register
4363  * and port status base. Divide the number of per port register
4364  * to get the real index. The raw port number bases 1.
4365  */
4366 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4367 {
4368         struct xhci_hub *rhub;
4369
4370         rhub = xhci_get_rhub(hcd);
4371         return rhub->ports[port1 - 1]->hw_portnum + 1;
4372 }
4373
4374 /*
4375  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4376  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4377  */
4378 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4379                         struct usb_device *udev, u16 max_exit_latency)
4380 {
4381         struct xhci_virt_device *virt_dev;
4382         struct xhci_command *command;
4383         struct xhci_input_control_ctx *ctrl_ctx;
4384         struct xhci_slot_ctx *slot_ctx;
4385         unsigned long flags;
4386         int ret;
4387
4388         command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4389         if (!command)
4390                 return -ENOMEM;
4391
4392         spin_lock_irqsave(&xhci->lock, flags);
4393
4394         virt_dev = xhci->devs[udev->slot_id];
4395
4396         /*
4397          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4398          * xHC was re-initialized. Exit latency will be set later after
4399          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4400          */
4401
4402         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4403                 spin_unlock_irqrestore(&xhci->lock, flags);
4404                 return 0;
4405         }
4406
4407         /* Attempt to issue an Evaluate Context command to change the MEL. */
4408         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4409         if (!ctrl_ctx) {
4410                 spin_unlock_irqrestore(&xhci->lock, flags);
4411                 xhci_free_command(xhci, command);
4412                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4413                                 __func__);
4414                 return -ENOMEM;
4415         }
4416
4417         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4418         spin_unlock_irqrestore(&xhci->lock, flags);
4419
4420         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4421         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4422         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4423         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4424         slot_ctx->dev_state = 0;
4425
4426         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4427                         "Set up evaluate context for LPM MEL change.");
4428
4429         /* Issue and wait for the evaluate context command. */
4430         ret = xhci_configure_endpoint(xhci, udev, command,
4431                         true, true);
4432
4433         if (!ret) {
4434                 spin_lock_irqsave(&xhci->lock, flags);
4435                 virt_dev->current_mel = max_exit_latency;
4436                 spin_unlock_irqrestore(&xhci->lock, flags);
4437         }
4438
4439         xhci_free_command(xhci, command);
4440
4441         return ret;
4442 }
4443
4444 #ifdef CONFIG_PM
4445
4446 /* BESL to HIRD Encoding array for USB2 LPM */
4447 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4448         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4449
4450 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4451 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4452                                         struct usb_device *udev)
4453 {
4454         int u2del, besl, besl_host;
4455         int besl_device = 0;
4456         u32 field;
4457
4458         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4459         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4460
4461         if (field & USB_BESL_SUPPORT) {
4462                 for (besl_host = 0; besl_host < 16; besl_host++) {
4463                         if (xhci_besl_encoding[besl_host] >= u2del)
4464                                 break;
4465                 }
4466                 /* Use baseline BESL value as default */
4467                 if (field & USB_BESL_BASELINE_VALID)
4468                         besl_device = USB_GET_BESL_BASELINE(field);
4469                 else if (field & USB_BESL_DEEP_VALID)
4470                         besl_device = USB_GET_BESL_DEEP(field);
4471         } else {
4472                 if (u2del <= 50)
4473                         besl_host = 0;
4474                 else
4475                         besl_host = (u2del - 51) / 75 + 1;
4476         }
4477
4478         besl = besl_host + besl_device;
4479         if (besl > 15)
4480                 besl = 15;
4481
4482         return besl;
4483 }
4484
4485 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4486 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4487 {
4488         u32 field;
4489         int l1;
4490         int besld = 0;
4491         int hirdm = 0;
4492
4493         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4494
4495         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4496         l1 = udev->l1_params.timeout / 256;
4497
4498         /* device has preferred BESLD */
4499         if (field & USB_BESL_DEEP_VALID) {
4500                 besld = USB_GET_BESL_DEEP(field);
4501                 hirdm = 1;
4502         }
4503
4504         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4505 }
4506
4507 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4508                         struct usb_device *udev, int enable)
4509 {
4510         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4511         struct xhci_port **ports;
4512         __le32 __iomem  *pm_addr, *hlpm_addr;
4513         u32             pm_val, hlpm_val, field;
4514         unsigned int    port_num;
4515         unsigned long   flags;
4516         int             hird, exit_latency;
4517         int             ret;
4518
4519         if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4520                 return -EPERM;
4521
4522         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4523                         !udev->lpm_capable)
4524                 return -EPERM;
4525
4526         if (!udev->parent || udev->parent->parent ||
4527                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4528                 return -EPERM;
4529
4530         if (udev->usb2_hw_lpm_capable != 1)
4531                 return -EPERM;
4532
4533         spin_lock_irqsave(&xhci->lock, flags);
4534
4535         ports = xhci->usb2_rhub.ports;
4536         port_num = udev->portnum - 1;
4537         pm_addr = ports[port_num]->addr + PORTPMSC;
4538         pm_val = readl(pm_addr);
4539         hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4540
4541         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4542                         enable ? "enable" : "disable", port_num + 1);
4543
4544         if (enable) {
4545                 /* Host supports BESL timeout instead of HIRD */
4546                 if (udev->usb2_hw_lpm_besl_capable) {
4547                         /* if device doesn't have a preferred BESL value use a
4548                          * default one which works with mixed HIRD and BESL
4549                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4550                          */
4551                         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4552                         if ((field & USB_BESL_SUPPORT) &&
4553                             (field & USB_BESL_BASELINE_VALID))
4554                                 hird = USB_GET_BESL_BASELINE(field);
4555                         else
4556                                 hird = udev->l1_params.besl;
4557
4558                         exit_latency = xhci_besl_encoding[hird];
4559                         spin_unlock_irqrestore(&xhci->lock, flags);
4560
4561                         ret = xhci_change_max_exit_latency(xhci, udev,
4562                                                            exit_latency);
4563                         if (ret < 0)
4564                                 return ret;
4565                         spin_lock_irqsave(&xhci->lock, flags);
4566
4567                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4568                         writel(hlpm_val, hlpm_addr);
4569                         /* flush write */
4570                         readl(hlpm_addr);
4571                 } else {
4572                         hird = xhci_calculate_hird_besl(xhci, udev);
4573                 }
4574
4575                 pm_val &= ~PORT_HIRD_MASK;
4576                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4577                 writel(pm_val, pm_addr);
4578                 pm_val = readl(pm_addr);
4579                 pm_val |= PORT_HLE;
4580                 writel(pm_val, pm_addr);
4581                 /* flush write */
4582                 readl(pm_addr);
4583         } else {
4584                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4585                 writel(pm_val, pm_addr);
4586                 /* flush write */
4587                 readl(pm_addr);
4588                 if (udev->usb2_hw_lpm_besl_capable) {
4589                         spin_unlock_irqrestore(&xhci->lock, flags);
4590                         xhci_change_max_exit_latency(xhci, udev, 0);
4591                         readl_poll_timeout(ports[port_num]->addr, pm_val,
4592                                            (pm_val & PORT_PLS_MASK) == XDEV_U0,
4593                                            100, 10000);
4594                         return 0;
4595                 }
4596         }
4597
4598         spin_unlock_irqrestore(&xhci->lock, flags);
4599         return 0;
4600 }
4601
4602 /* check if a usb2 port supports a given extened capability protocol
4603  * only USB2 ports extended protocol capability values are cached.
4604  * Return 1 if capability is supported
4605  */
4606 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4607                                            unsigned capability)
4608 {
4609         u32 port_offset, port_count;
4610         int i;
4611
4612         for (i = 0; i < xhci->num_ext_caps; i++) {
4613                 if (xhci->ext_caps[i] & capability) {
4614                         /* port offsets starts at 1 */
4615                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4616                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4617                         if (port >= port_offset &&
4618                             port < port_offset + port_count)
4619                                 return 1;
4620                 }
4621         }
4622         return 0;
4623 }
4624
4625 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4626 {
4627         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4628         int             portnum = udev->portnum - 1;
4629
4630         if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4631                 return 0;
4632
4633         /* we only support lpm for non-hub device connected to root hub yet */
4634         if (!udev->parent || udev->parent->parent ||
4635                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4636                 return 0;
4637
4638         if (xhci->hw_lpm_support == 1 &&
4639                         xhci_check_usb2_port_capability(
4640                                 xhci, portnum, XHCI_HLC)) {
4641                 udev->usb2_hw_lpm_capable = 1;
4642                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4643                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4644                 if (xhci_check_usb2_port_capability(xhci, portnum,
4645                                         XHCI_BLC))
4646                         udev->usb2_hw_lpm_besl_capable = 1;
4647         }
4648
4649         return 0;
4650 }
4651
4652 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4653
4654 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4655 static unsigned long long xhci_service_interval_to_ns(
4656                 struct usb_endpoint_descriptor *desc)
4657 {
4658         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4659 }
4660
4661 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4662                 enum usb3_link_state state)
4663 {
4664         unsigned long long sel;
4665         unsigned long long pel;
4666         unsigned int max_sel_pel;
4667         char *state_name;
4668
4669         switch (state) {
4670         case USB3_LPM_U1:
4671                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4672                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4673                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4674                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4675                 state_name = "U1";
4676                 break;
4677         case USB3_LPM_U2:
4678                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4679                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4680                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4681                 state_name = "U2";
4682                 break;
4683         default:
4684                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4685                                 __func__);
4686                 return USB3_LPM_DISABLED;
4687         }
4688
4689         if (sel <= max_sel_pel && pel <= max_sel_pel)
4690                 return USB3_LPM_DEVICE_INITIATED;
4691
4692         if (sel > max_sel_pel)
4693                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4694                                 "due to long SEL %llu ms\n",
4695                                 state_name, sel);
4696         else
4697                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4698                                 "due to long PEL %llu ms\n",
4699                                 state_name, pel);
4700         return USB3_LPM_DISABLED;
4701 }
4702
4703 /* The U1 timeout should be the maximum of the following values:
4704  *  - For control endpoints, U1 system exit latency (SEL) * 3
4705  *  - For bulk endpoints, U1 SEL * 5
4706  *  - For interrupt endpoints:
4707  *    - Notification EPs, U1 SEL * 3
4708  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4709  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4710  */
4711 static unsigned long long xhci_calculate_intel_u1_timeout(
4712                 struct usb_device *udev,
4713                 struct usb_endpoint_descriptor *desc)
4714 {
4715         unsigned long long timeout_ns;
4716         int ep_type;
4717         int intr_type;
4718
4719         ep_type = usb_endpoint_type(desc);
4720         switch (ep_type) {
4721         case USB_ENDPOINT_XFER_CONTROL:
4722                 timeout_ns = udev->u1_params.sel * 3;
4723                 break;
4724         case USB_ENDPOINT_XFER_BULK:
4725                 timeout_ns = udev->u1_params.sel * 5;
4726                 break;
4727         case USB_ENDPOINT_XFER_INT:
4728                 intr_type = usb_endpoint_interrupt_type(desc);
4729                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4730                         timeout_ns = udev->u1_params.sel * 3;
4731                         break;
4732                 }
4733                 /* Otherwise the calculation is the same as isoc eps */
4734                 fallthrough;
4735         case USB_ENDPOINT_XFER_ISOC:
4736                 timeout_ns = xhci_service_interval_to_ns(desc);
4737                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4738                 if (timeout_ns < udev->u1_params.sel * 2)
4739                         timeout_ns = udev->u1_params.sel * 2;
4740                 break;
4741         default:
4742                 return 0;
4743         }
4744
4745         return timeout_ns;
4746 }
4747
4748 /* Returns the hub-encoded U1 timeout value. */
4749 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4750                 struct usb_device *udev,
4751                 struct usb_endpoint_descriptor *desc)
4752 {
4753         unsigned long long timeout_ns;
4754
4755         /* Prevent U1 if service interval is shorter than U1 exit latency */
4756         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4757                 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4758                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4759                         return USB3_LPM_DISABLED;
4760                 }
4761         }
4762
4763         if (xhci->quirks & XHCI_INTEL_HOST)
4764                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4765         else
4766                 timeout_ns = udev->u1_params.sel;
4767
4768         /* The U1 timeout is encoded in 1us intervals.
4769          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4770          */
4771         if (timeout_ns == USB3_LPM_DISABLED)
4772                 timeout_ns = 1;
4773         else
4774                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4775
4776         /* If the necessary timeout value is bigger than what we can set in the
4777          * USB 3.0 hub, we have to disable hub-initiated U1.
4778          */
4779         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4780                 return timeout_ns;
4781         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4782                         "due to long timeout %llu ms\n", timeout_ns);
4783         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4784 }
4785
4786 /* The U2 timeout should be the maximum of:
4787  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4788  *  - largest bInterval of any active periodic endpoint (to avoid going
4789  *    into lower power link states between intervals).
4790  *  - the U2 Exit Latency of the device
4791  */
4792 static unsigned long long xhci_calculate_intel_u2_timeout(
4793                 struct usb_device *udev,
4794                 struct usb_endpoint_descriptor *desc)
4795 {
4796         unsigned long long timeout_ns;
4797         unsigned long long u2_del_ns;
4798
4799         timeout_ns = 10 * 1000 * 1000;
4800
4801         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4802                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4803                 timeout_ns = xhci_service_interval_to_ns(desc);
4804
4805         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4806         if (u2_del_ns > timeout_ns)
4807                 timeout_ns = u2_del_ns;
4808
4809         return timeout_ns;
4810 }
4811
4812 /* Returns the hub-encoded U2 timeout value. */
4813 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4814                 struct usb_device *udev,
4815                 struct usb_endpoint_descriptor *desc)
4816 {
4817         unsigned long long timeout_ns;
4818
4819         /* Prevent U2 if service interval is shorter than U2 exit latency */
4820         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4821                 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4822                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4823                         return USB3_LPM_DISABLED;
4824                 }
4825         }
4826
4827         if (xhci->quirks & XHCI_INTEL_HOST)
4828                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4829         else
4830                 timeout_ns = udev->u2_params.sel;
4831
4832         /* The U2 timeout is encoded in 256us intervals */
4833         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4834         /* If the necessary timeout value is bigger than what we can set in the
4835          * USB 3.0 hub, we have to disable hub-initiated U2.
4836          */
4837         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4838                 return timeout_ns;
4839         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4840                         "due to long timeout %llu ms\n", timeout_ns);
4841         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4842 }
4843
4844 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4845                 struct usb_device *udev,
4846                 struct usb_endpoint_descriptor *desc,
4847                 enum usb3_link_state state,
4848                 u16 *timeout)
4849 {
4850         if (state == USB3_LPM_U1)
4851                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4852         else if (state == USB3_LPM_U2)
4853                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4854
4855         return USB3_LPM_DISABLED;
4856 }
4857
4858 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4859                 struct usb_device *udev,
4860                 struct usb_endpoint_descriptor *desc,
4861                 enum usb3_link_state state,
4862                 u16 *timeout)
4863 {
4864         u16 alt_timeout;
4865
4866         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4867                 desc, state, timeout);
4868
4869         /* If we found we can't enable hub-initiated LPM, and
4870          * the U1 or U2 exit latency was too high to allow
4871          * device-initiated LPM as well, then we will disable LPM
4872          * for this device, so stop searching any further.
4873          */
4874         if (alt_timeout == USB3_LPM_DISABLED) {
4875                 *timeout = alt_timeout;
4876                 return -E2BIG;
4877         }
4878         if (alt_timeout > *timeout)
4879                 *timeout = alt_timeout;
4880         return 0;
4881 }
4882
4883 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4884                 struct usb_device *udev,
4885                 struct usb_host_interface *alt,
4886                 enum usb3_link_state state,
4887                 u16 *timeout)
4888 {
4889         int j;
4890
4891         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4892                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4893                                         &alt->endpoint[j].desc, state, timeout))
4894                         return -E2BIG;
4895         }
4896         return 0;
4897 }
4898
4899 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4900                 enum usb3_link_state state)
4901 {
4902         struct usb_device *parent;
4903         unsigned int num_hubs;
4904
4905         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4906         for (parent = udev->parent, num_hubs = 0; parent->parent;
4907                         parent = parent->parent)
4908                 num_hubs++;
4909
4910         if (num_hubs < 2)
4911                 return 0;
4912
4913         dev_dbg(&udev->dev, "Disabling U1/U2 link state for device"
4914                         " below second-tier hub.\n");
4915         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4916                         "to decrease power consumption.\n");
4917         return -E2BIG;
4918 }
4919
4920 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4921                 struct usb_device *udev,
4922                 enum usb3_link_state state)
4923 {
4924         if (xhci->quirks & XHCI_INTEL_HOST)
4925                 return xhci_check_intel_tier_policy(udev, state);
4926         else
4927                 return 0;
4928 }
4929
4930 /* Returns the U1 or U2 timeout that should be enabled.
4931  * If the tier check or timeout setting functions return with a non-zero exit
4932  * code, that means the timeout value has been finalized and we shouldn't look
4933  * at any more endpoints.
4934  */
4935 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4936                         struct usb_device *udev, enum usb3_link_state state)
4937 {
4938         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4939         struct usb_host_config *config;
4940         char *state_name;
4941         int i;
4942         u16 timeout = USB3_LPM_DISABLED;
4943
4944         if (state == USB3_LPM_U1)
4945                 state_name = "U1";
4946         else if (state == USB3_LPM_U2)
4947                 state_name = "U2";
4948         else {
4949                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4950                                 state);
4951                 return timeout;
4952         }
4953
4954         /* Gather some information about the currently installed configuration
4955          * and alternate interface settings.
4956          */
4957         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4958                         state, &timeout))
4959                 return timeout;
4960
4961         config = udev->actconfig;
4962         if (!config)
4963                 return timeout;
4964
4965         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4966                 struct usb_driver *driver;
4967                 struct usb_interface *intf = config->interface[i];
4968
4969                 if (!intf)
4970                         continue;
4971
4972                 /* Check if any currently bound drivers want hub-initiated LPM
4973                  * disabled.
4974                  */
4975                 if (intf->dev.driver) {
4976                         driver = to_usb_driver(intf->dev.driver);
4977                         if (driver && driver->disable_hub_initiated_lpm) {
4978                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4979                                         state_name, driver->name);
4980                                 timeout = xhci_get_timeout_no_hub_lpm(udev,
4981                                                                       state);
4982                                 if (timeout == USB3_LPM_DISABLED)
4983                                         return timeout;
4984                         }
4985                 }
4986
4987                 /* Not sure how this could happen... */
4988                 if (!intf->cur_altsetting)
4989                         continue;
4990
4991                 if (xhci_update_timeout_for_interface(xhci, udev,
4992                                         intf->cur_altsetting,
4993                                         state, &timeout))
4994                         return timeout;
4995         }
4996         return timeout;
4997 }
4998
4999 static int calculate_max_exit_latency(struct usb_device *udev,
5000                 enum usb3_link_state state_changed,
5001                 u16 hub_encoded_timeout)
5002 {
5003         unsigned long long u1_mel_us = 0;
5004         unsigned long long u2_mel_us = 0;
5005         unsigned long long mel_us = 0;
5006         bool disabling_u1;
5007         bool disabling_u2;
5008         bool enabling_u1;
5009         bool enabling_u2;
5010
5011         disabling_u1 = (state_changed == USB3_LPM_U1 &&
5012                         hub_encoded_timeout == USB3_LPM_DISABLED);
5013         disabling_u2 = (state_changed == USB3_LPM_U2 &&
5014                         hub_encoded_timeout == USB3_LPM_DISABLED);
5015
5016         enabling_u1 = (state_changed == USB3_LPM_U1 &&
5017                         hub_encoded_timeout != USB3_LPM_DISABLED);
5018         enabling_u2 = (state_changed == USB3_LPM_U2 &&
5019                         hub_encoded_timeout != USB3_LPM_DISABLED);
5020
5021         /* If U1 was already enabled and we're not disabling it,
5022          * or we're going to enable U1, account for the U1 max exit latency.
5023          */
5024         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5025                         enabling_u1)
5026                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5027         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5028                         enabling_u2)
5029                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5030
5031         mel_us = max(u1_mel_us, u2_mel_us);
5032
5033         /* xHCI host controller max exit latency field is only 16 bits wide. */
5034         if (mel_us > MAX_EXIT) {
5035                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5036                                 "is too big.\n", mel_us);
5037                 return -E2BIG;
5038         }
5039         return mel_us;
5040 }
5041
5042 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5043 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5044                         struct usb_device *udev, enum usb3_link_state state)
5045 {
5046         struct xhci_hcd *xhci;
5047         u16 hub_encoded_timeout;
5048         int mel;
5049         int ret;
5050
5051         xhci = hcd_to_xhci(hcd);
5052         /* The LPM timeout values are pretty host-controller specific, so don't
5053          * enable hub-initiated timeouts unless the vendor has provided
5054          * information about their timeout algorithm.
5055          */
5056         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5057                         !xhci->devs[udev->slot_id])
5058                 return USB3_LPM_DISABLED;
5059
5060         if (xhci_check_tier_policy(xhci, udev, state) < 0)
5061                 return USB3_LPM_DISABLED;
5062
5063         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5064         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5065         if (mel < 0) {
5066                 /* Max Exit Latency is too big, disable LPM. */
5067                 hub_encoded_timeout = USB3_LPM_DISABLED;
5068                 mel = 0;
5069         }
5070
5071         ret = xhci_change_max_exit_latency(xhci, udev, mel);
5072         if (ret)
5073                 return ret;
5074         return hub_encoded_timeout;
5075 }
5076
5077 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5078                         struct usb_device *udev, enum usb3_link_state state)
5079 {
5080         struct xhci_hcd *xhci;
5081         u16 mel;
5082
5083         xhci = hcd_to_xhci(hcd);
5084         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5085                         !xhci->devs[udev->slot_id])
5086                 return 0;
5087
5088         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5089         return xhci_change_max_exit_latency(xhci, udev, mel);
5090 }
5091 #else /* CONFIG_PM */
5092
5093 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5094                                 struct usb_device *udev, int enable)
5095 {
5096         return 0;
5097 }
5098
5099 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5100 {
5101         return 0;
5102 }
5103
5104 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5105                         struct usb_device *udev, enum usb3_link_state state)
5106 {
5107         return USB3_LPM_DISABLED;
5108 }
5109
5110 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5111                         struct usb_device *udev, enum usb3_link_state state)
5112 {
5113         return 0;
5114 }
5115 #endif  /* CONFIG_PM */
5116
5117 /*-------------------------------------------------------------------------*/
5118
5119 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5120  * internal data structures for the device.
5121  */
5122 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5123                         struct usb_tt *tt, gfp_t mem_flags)
5124 {
5125         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5126         struct xhci_virt_device *vdev;
5127         struct xhci_command *config_cmd;
5128         struct xhci_input_control_ctx *ctrl_ctx;
5129         struct xhci_slot_ctx *slot_ctx;
5130         unsigned long flags;
5131         unsigned think_time;
5132         int ret;
5133
5134         /* Ignore root hubs */
5135         if (!hdev->parent)
5136                 return 0;
5137
5138         vdev = xhci->devs[hdev->slot_id];
5139         if (!vdev) {
5140                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5141                 return -EINVAL;
5142         }
5143
5144         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5145         if (!config_cmd)
5146                 return -ENOMEM;
5147
5148         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5149         if (!ctrl_ctx) {
5150                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5151                                 __func__);
5152                 xhci_free_command(xhci, config_cmd);
5153                 return -ENOMEM;
5154         }
5155
5156         spin_lock_irqsave(&xhci->lock, flags);
5157         if (hdev->speed == USB_SPEED_HIGH &&
5158                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5159                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5160                 xhci_free_command(xhci, config_cmd);
5161                 spin_unlock_irqrestore(&xhci->lock, flags);
5162                 return -ENOMEM;
5163         }
5164
5165         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5166         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5167         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5168         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5169         /*
5170          * refer to section 6.2.2: MTT should be 0 for full speed hub,
5171          * but it may be already set to 1 when setup an xHCI virtual
5172          * device, so clear it anyway.
5173          */
5174         if (tt->multi)
5175                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5176         else if (hdev->speed == USB_SPEED_FULL)
5177                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5178
5179         if (xhci->hci_version > 0x95) {
5180                 xhci_dbg(xhci, "xHCI version %x needs hub "
5181                                 "TT think time and number of ports\n",
5182                                 (unsigned int) xhci->hci_version);
5183                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5184                 /* Set TT think time - convert from ns to FS bit times.
5185                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
5186                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
5187                  *
5188                  * xHCI 1.0: this field shall be 0 if the device is not a
5189                  * High-spped hub.
5190                  */
5191                 think_time = tt->think_time;
5192                 if (think_time != 0)
5193                         think_time = (think_time / 666) - 1;
5194                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5195                         slot_ctx->tt_info |=
5196                                 cpu_to_le32(TT_THINK_TIME(think_time));
5197         } else {
5198                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5199                                 "TT think time or number of ports\n",
5200                                 (unsigned int) xhci->hci_version);
5201         }
5202         slot_ctx->dev_state = 0;
5203         spin_unlock_irqrestore(&xhci->lock, flags);
5204
5205         xhci_dbg(xhci, "Set up %s for hub device.\n",
5206                         (xhci->hci_version > 0x95) ?
5207                         "configure endpoint" : "evaluate context");
5208
5209         /* Issue and wait for the configure endpoint or
5210          * evaluate context command.
5211          */
5212         if (xhci->hci_version > 0x95)
5213                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5214                                 false, false);
5215         else
5216                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5217                                 true, false);
5218
5219         xhci_free_command(xhci, config_cmd);
5220         return ret;
5221 }
5222
5223 static int xhci_get_frame(struct usb_hcd *hcd)
5224 {
5225         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5226         /* EHCI mods by the periodic size.  Why? */
5227         return readl(&xhci->run_regs->microframe_index) >> 3;
5228 }
5229
5230 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5231 {
5232         xhci->usb2_rhub.hcd = hcd;
5233         hcd->speed = HCD_USB2;
5234         hcd->self.root_hub->speed = USB_SPEED_HIGH;
5235         /*
5236          * USB 2.0 roothub under xHCI has an integrated TT,
5237          * (rate matching hub) as opposed to having an OHCI/UHCI
5238          * companion controller.
5239          */
5240         hcd->has_tt = 1;
5241 }
5242
5243 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5244 {
5245         unsigned int minor_rev;
5246
5247         /*
5248          * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5249          * should return 0x31 for sbrn, or that the minor revision
5250          * is a two digit BCD containig minor and sub-minor numbers.
5251          * This was later clarified in xHCI 1.2.
5252          *
5253          * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5254          * minor revision set to 0x1 instead of 0x10.
5255          */
5256         if (xhci->usb3_rhub.min_rev == 0x1)
5257                 minor_rev = 1;
5258         else
5259                 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5260
5261         switch (minor_rev) {
5262         case 2:
5263                 hcd->speed = HCD_USB32;
5264                 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5265                 hcd->self.root_hub->rx_lanes = 2;
5266                 hcd->self.root_hub->tx_lanes = 2;
5267                 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5268                 break;
5269         case 1:
5270                 hcd->speed = HCD_USB31;
5271                 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5272                 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5273                 break;
5274         }
5275         xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5276                   minor_rev, minor_rev ? "Enhanced " : "");
5277
5278         xhci->usb3_rhub.hcd = hcd;
5279 }
5280
5281 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5282 {
5283         struct xhci_hcd         *xhci;
5284         /*
5285          * TODO: Check with DWC3 clients for sysdev according to
5286          * quirks
5287          */
5288         struct device           *dev = hcd->self.sysdev;
5289         int                     retval;
5290
5291         /* Accept arbitrarily long scatter-gather lists */
5292         hcd->self.sg_tablesize = ~0;
5293
5294         /* support to build packet from discontinuous buffers */
5295         hcd->self.no_sg_constraint = 1;
5296
5297         /* XHCI controllers don't stop the ep queue on short packets :| */
5298         hcd->self.no_stop_on_short = 1;
5299
5300         xhci = hcd_to_xhci(hcd);
5301
5302         if (!usb_hcd_is_primary_hcd(hcd)) {
5303                 xhci_hcd_init_usb3_data(xhci, hcd);
5304                 return 0;
5305         }
5306
5307         mutex_init(&xhci->mutex);
5308         xhci->main_hcd = hcd;
5309         xhci->cap_regs = hcd->regs;
5310         xhci->op_regs = hcd->regs +
5311                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5312         xhci->run_regs = hcd->regs +
5313                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5314         /* Cache read-only capability registers */
5315         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5316         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5317         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5318         xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5319         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5320         if (xhci->hci_version > 0x100)
5321                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5322
5323         xhci->quirks |= quirks;
5324
5325         get_quirks(dev, xhci);
5326
5327         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5328          * success event after a short transfer. This quirk will ignore such
5329          * spurious event.
5330          */
5331         if (xhci->hci_version > 0x96)
5332                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5333
5334         /* Make sure the HC is halted. */
5335         retval = xhci_halt(xhci);
5336         if (retval)
5337                 return retval;
5338
5339         xhci_zero_64b_regs(xhci);
5340
5341         xhci_dbg(xhci, "Resetting HCD\n");
5342         /* Reset the internal HC memory state and registers. */
5343         retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5344         if (retval)
5345                 return retval;
5346         xhci_dbg(xhci, "Reset complete\n");
5347
5348         /*
5349          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5350          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5351          * address memory pointers actually. So, this driver clears the AC64
5352          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5353          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5354          */
5355         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5356                 xhci->hcc_params &= ~BIT(0);
5357
5358         /* Set dma_mask and coherent_dma_mask to 64-bits,
5359          * if xHC supports 64-bit addressing */
5360         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5361                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5362                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5363                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5364         } else {
5365                 /*
5366                  * This is to avoid error in cases where a 32-bit USB
5367                  * controller is used on a 64-bit capable system.
5368                  */
5369                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5370                 if (retval)
5371                         return retval;
5372                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5373                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5374         }
5375
5376         xhci_dbg(xhci, "Calling HCD init\n");
5377         /* Initialize HCD and host controller data structures. */
5378         retval = xhci_init(hcd);
5379         if (retval)
5380                 return retval;
5381         xhci_dbg(xhci, "Called HCD init\n");
5382
5383         if (xhci_hcd_is_usb3(hcd))
5384                 xhci_hcd_init_usb3_data(xhci, hcd);
5385         else
5386                 xhci_hcd_init_usb2_data(xhci, hcd);
5387
5388         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5389                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5390
5391         return 0;
5392 }
5393 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5394
5395 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5396                 struct usb_host_endpoint *ep)
5397 {
5398         struct xhci_hcd *xhci;
5399         struct usb_device *udev;
5400         unsigned int slot_id;
5401         unsigned int ep_index;
5402         unsigned long flags;
5403
5404         xhci = hcd_to_xhci(hcd);
5405
5406         spin_lock_irqsave(&xhci->lock, flags);
5407         udev = (struct usb_device *)ep->hcpriv;
5408         slot_id = udev->slot_id;
5409         ep_index = xhci_get_endpoint_index(&ep->desc);
5410
5411         xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5412         xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5413         spin_unlock_irqrestore(&xhci->lock, flags);
5414 }
5415
5416 static const struct hc_driver xhci_hc_driver = {
5417         .description =          "xhci-hcd",
5418         .product_desc =         "xHCI Host Controller",
5419         .hcd_priv_size =        sizeof(struct xhci_hcd),
5420
5421         /*
5422          * generic hardware linkage
5423          */
5424         .irq =                  xhci_irq,
5425         .flags =                HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5426                                 HCD_BH,
5427
5428         /*
5429          * basic lifecycle operations
5430          */
5431         .reset =                NULL, /* set in xhci_init_driver() */
5432         .start =                xhci_run,
5433         .stop =                 xhci_stop,
5434         .shutdown =             xhci_shutdown,
5435
5436         /*
5437          * managing i/o requests and associated device resources
5438          */
5439         .map_urb_for_dma =      xhci_map_urb_for_dma,
5440         .unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5441         .urb_enqueue =          xhci_urb_enqueue,
5442         .urb_dequeue =          xhci_urb_dequeue,
5443         .alloc_dev =            xhci_alloc_dev,
5444         .free_dev =             xhci_free_dev,
5445         .alloc_streams =        xhci_alloc_streams,
5446         .free_streams =         xhci_free_streams,
5447         .add_endpoint =         xhci_add_endpoint,
5448         .drop_endpoint =        xhci_drop_endpoint,
5449         .endpoint_disable =     xhci_endpoint_disable,
5450         .endpoint_reset =       xhci_endpoint_reset,
5451         .check_bandwidth =      xhci_check_bandwidth,
5452         .reset_bandwidth =      xhci_reset_bandwidth,
5453         .address_device =       xhci_address_device,
5454         .enable_device =        xhci_enable_device,
5455         .update_hub_device =    xhci_update_hub_device,
5456         .reset_device =         xhci_discover_or_reset_device,
5457
5458         /*
5459          * scheduling support
5460          */
5461         .get_frame_number =     xhci_get_frame,
5462
5463         /*
5464          * root hub support
5465          */
5466         .hub_control =          xhci_hub_control,
5467         .hub_status_data =      xhci_hub_status_data,
5468         .bus_suspend =          xhci_bus_suspend,
5469         .bus_resume =           xhci_bus_resume,
5470         .get_resuming_ports =   xhci_get_resuming_ports,
5471
5472         /*
5473          * call back when device connected and addressed
5474          */
5475         .update_device =        xhci_update_device,
5476         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5477         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5478         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5479         .find_raw_port_number = xhci_find_raw_port_number,
5480         .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5481 };
5482
5483 void xhci_init_driver(struct hc_driver *drv,
5484                       const struct xhci_driver_overrides *over)
5485 {
5486         BUG_ON(!over);
5487
5488         /* Copy the generic table to drv then apply the overrides */
5489         *drv = xhci_hc_driver;
5490
5491         if (over) {
5492                 drv->hcd_priv_size += over->extra_priv_size;
5493                 if (over->reset)
5494                         drv->reset = over->reset;
5495                 if (over->start)
5496                         drv->start = over->start;
5497                 if (over->add_endpoint)
5498                         drv->add_endpoint = over->add_endpoint;
5499                 if (over->drop_endpoint)
5500                         drv->drop_endpoint = over->drop_endpoint;
5501                 if (over->check_bandwidth)
5502                         drv->check_bandwidth = over->check_bandwidth;
5503                 if (over->reset_bandwidth)
5504                         drv->reset_bandwidth = over->reset_bandwidth;
5505         }
5506 }
5507 EXPORT_SYMBOL_GPL(xhci_init_driver);
5508
5509 MODULE_DESCRIPTION(DRIVER_DESC);
5510 MODULE_AUTHOR(DRIVER_AUTHOR);
5511 MODULE_LICENSE("GPL");
5512
5513 static int __init xhci_hcd_init(void)
5514 {
5515         /*
5516          * Check the compiler generated sizes of structures that must be laid
5517          * out in specific ways for hardware access.
5518          */
5519         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5520         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5521         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5522         /* xhci_device_control has eight fields, and also
5523          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5524          */
5525         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5526         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5527         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5528         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5529         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5530         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5531         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5532
5533         if (usb_disabled())
5534                 return -ENODEV;
5535
5536         xhci_debugfs_create_root();
5537         xhci_dbc_init();
5538
5539         return 0;
5540 }
5541
5542 /*
5543  * If an init function is provided, an exit function must also be provided
5544  * to allow module unload.
5545  */
5546 static void __exit xhci_hcd_fini(void)
5547 {
5548         xhci_debugfs_remove_root();
5549         xhci_dbc_exit();
5550 }
5551
5552 module_init(xhci_hcd_init);
5553 module_exit(xhci_hcd_fini);