2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
33 #define DRIVER_AUTHOR "Sarah Sharp"
34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
36 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
37 static int link_quirk;
38 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
39 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
41 /* TODO: copied from ehci-hcd.c - can this be refactored? */
43 * handshake - spin reading hc until handshake completes or fails
44 * @ptr: address of hc register to be read
45 * @mask: bits to look at in result of read
46 * @done: value of those bits when handshake succeeds
47 * @usec: timeout in microseconds
49 * Returns negative errno, or zero on success
51 * Success happens when the "mask" bits have the specified value (hardware
52 * handshake done). There are two failure modes: "usec" have passed (major
53 * hardware flakeout), or the register reads as all-ones (hardware removed).
55 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
56 u32 mask, u32 done, int usec)
61 result = xhci_readl(xhci, ptr);
62 if (result == ~(u32)0) /* card removed */
74 * Disable interrupts and begin the xHCI halting process.
76 void xhci_quiesce(struct xhci_hcd *xhci)
83 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
87 cmd = xhci_readl(xhci, &xhci->op_regs->command);
89 xhci_writel(xhci, cmd, &xhci->op_regs->command);
93 * Force HC into halt state.
95 * Disable any IRQs and clear the run/stop bit.
96 * HC will complete any current and actively pipelined transactions, and
97 * should halt within 16 ms of the run/stop bit being cleared.
98 * Read HC Halted bit in the status register to see when the HC is finished.
100 int xhci_halt(struct xhci_hcd *xhci)
103 xhci_dbg(xhci, "// Halt the HC\n");
106 ret = handshake(xhci, &xhci->op_regs->status,
107 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
109 xhci->xhc_state |= XHCI_STATE_HALTED;
111 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
117 * Set the run bit and wait for the host to be running.
119 static int xhci_start(struct xhci_hcd *xhci)
124 temp = xhci_readl(xhci, &xhci->op_regs->command);
126 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
128 xhci_writel(xhci, temp, &xhci->op_regs->command);
131 * Wait for the HCHalted Status bit to be 0 to indicate the host is
134 ret = handshake(xhci, &xhci->op_regs->status,
135 STS_HALT, 0, XHCI_MAX_HALT_USEC);
136 if (ret == -ETIMEDOUT)
137 xhci_err(xhci, "Host took too long to start, "
138 "waited %u microseconds.\n",
141 xhci->xhc_state &= ~XHCI_STATE_HALTED;
148 * This resets pipelines, timers, counters, state machines, etc.
149 * Transactions will be terminated immediately, and operational registers
150 * will be set to their defaults.
152 int xhci_reset(struct xhci_hcd *xhci)
158 state = xhci_readl(xhci, &xhci->op_regs->status);
159 if ((state & STS_HALT) == 0) {
160 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
164 xhci_dbg(xhci, "// Reset the HC\n");
165 command = xhci_readl(xhci, &xhci->op_regs->command);
166 command |= CMD_RESET;
167 xhci_writel(xhci, command, &xhci->op_regs->command);
169 ret = handshake(xhci, &xhci->op_regs->command,
170 CMD_RESET, 0, 10 * 1000 * 1000);
174 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
176 * xHCI cannot write to any doorbells or operational registers other
177 * than status until the "Controller Not Ready" flag is cleared.
179 ret = handshake(xhci, &xhci->op_regs->status,
180 STS_CNR, 0, 10 * 1000 * 1000);
182 for (i = 0; i < 2; ++i) {
183 xhci->bus_state[i].port_c_suspend = 0;
184 xhci->bus_state[i].suspended_ports = 0;
185 xhci->bus_state[i].resuming_ports = 0;
192 static int xhci_free_msi(struct xhci_hcd *xhci)
196 if (!xhci->msix_entries)
199 for (i = 0; i < xhci->msix_count; i++)
200 if (xhci->msix_entries[i].vector)
201 free_irq(xhci->msix_entries[i].vector,
209 static int xhci_setup_msi(struct xhci_hcd *xhci)
212 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
214 ret = pci_enable_msi(pdev);
216 xhci_dbg(xhci, "failed to allocate MSI entry\n");
220 ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
221 0, "xhci_hcd", xhci_to_hcd(xhci));
223 xhci_dbg(xhci, "disable MSI interrupt\n");
224 pci_disable_msi(pdev);
232 * free all IRQs request
234 static void xhci_free_irq(struct xhci_hcd *xhci)
236 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
239 /* return if using legacy interrupt */
240 if (xhci_to_hcd(xhci)->irq > 0)
243 ret = xhci_free_msi(xhci);
247 free_irq(pdev->irq, xhci_to_hcd(xhci));
255 static int xhci_setup_msix(struct xhci_hcd *xhci)
258 struct usb_hcd *hcd = xhci_to_hcd(xhci);
259 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
262 * calculate number of msi-x vectors supported.
263 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
264 * with max number of interrupters based on the xhci HCSPARAMS1.
265 * - num_online_cpus: maximum msi-x vectors per CPUs core.
266 * Add additional 1 vector to ensure always available interrupt.
268 xhci->msix_count = min(num_online_cpus() + 1,
269 HCS_MAX_INTRS(xhci->hcs_params1));
272 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
274 if (!xhci->msix_entries) {
275 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
279 for (i = 0; i < xhci->msix_count; i++) {
280 xhci->msix_entries[i].entry = i;
281 xhci->msix_entries[i].vector = 0;
284 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
286 xhci_dbg(xhci, "Failed to enable MSI-X\n");
290 for (i = 0; i < xhci->msix_count; i++) {
291 ret = request_irq(xhci->msix_entries[i].vector,
292 (irq_handler_t)xhci_msi_irq,
293 0, "xhci_hcd", xhci_to_hcd(xhci));
298 hcd->msix_enabled = 1;
302 xhci_dbg(xhci, "disable MSI-X interrupt\n");
304 pci_disable_msix(pdev);
306 kfree(xhci->msix_entries);
307 xhci->msix_entries = NULL;
311 /* Free any IRQs and disable MSI-X */
312 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
314 struct usb_hcd *hcd = xhci_to_hcd(xhci);
315 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
319 if (xhci->msix_entries) {
320 pci_disable_msix(pdev);
321 kfree(xhci->msix_entries);
322 xhci->msix_entries = NULL;
324 pci_disable_msi(pdev);
327 hcd->msix_enabled = 0;
331 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
335 if (xhci->msix_entries) {
336 for (i = 0; i < xhci->msix_count; i++)
337 synchronize_irq(xhci->msix_entries[i].vector);
341 static int xhci_try_enable_msi(struct usb_hcd *hcd)
343 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
344 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
348 * Some Fresco Logic host controllers advertise MSI, but fail to
349 * generate interrupts. Don't even try to enable MSI.
351 if (xhci->quirks & XHCI_BROKEN_MSI)
354 /* unregister the legacy interrupt */
356 free_irq(hcd->irq, hcd);
359 ret = xhci_setup_msix(xhci);
361 /* fall back to msi*/
362 ret = xhci_setup_msi(xhci);
365 /* hcd->irq is 0, we have MSI */
369 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
373 /* fall back to legacy interrupt*/
374 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
375 hcd->irq_descr, hcd);
377 xhci_err(xhci, "request interrupt %d failed\n",
381 hcd->irq = pdev->irq;
387 static int xhci_try_enable_msi(struct usb_hcd *hcd)
392 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
396 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
402 static void compliance_mode_recovery(unsigned long arg)
404 struct xhci_hcd *xhci;
409 xhci = (struct xhci_hcd *)arg;
411 for (i = 0; i < xhci->num_usb3_ports; i++) {
412 temp = xhci_readl(xhci, xhci->usb3_ports[i]);
413 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
415 * Compliance Mode Detected. Letting USB Core
416 * handle the Warm Reset
418 xhci_dbg(xhci, "Compliance Mode Detected->Port %d!\n",
420 xhci_dbg(xhci, "Attempting Recovery routine!\n");
421 hcd = xhci->shared_hcd;
423 if (hcd->state == HC_STATE_SUSPENDED)
424 usb_hcd_resume_root_hub(hcd);
426 usb_hcd_poll_rh_status(hcd);
430 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
431 mod_timer(&xhci->comp_mode_recovery_timer,
432 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
436 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
437 * that causes ports behind that hardware to enter compliance mode sometimes.
438 * The quirk creates a timer that polls every 2 seconds the link state of
439 * each host controller's port and recovers it by issuing a Warm reset
440 * if Compliance mode is detected, otherwise the port will become "dead" (no
441 * device connections or disconnections will be detected anymore). Becasue no
442 * status event is generated when entering compliance mode (per xhci spec),
443 * this quirk is needed on systems that have the failing hardware installed.
445 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
447 xhci->port_status_u0 = 0;
448 init_timer(&xhci->comp_mode_recovery_timer);
450 xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
451 xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
452 xhci->comp_mode_recovery_timer.expires = jiffies +
453 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
455 set_timer_slack(&xhci->comp_mode_recovery_timer,
456 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
457 add_timer(&xhci->comp_mode_recovery_timer);
458 xhci_dbg(xhci, "Compliance Mode Recovery Timer Initialized.\n");
462 * This function identifies the systems that have installed the SN65LVPE502CP
463 * USB3.0 re-driver and that need the Compliance Mode Quirk.
465 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
467 static bool compliance_mode_recovery_timer_quirk_check(void)
469 const char *dmi_product_name, *dmi_sys_vendor;
471 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
472 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
474 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
477 if (strstr(dmi_product_name, "Z420") ||
478 strstr(dmi_product_name, "Z620") ||
479 strstr(dmi_product_name, "Z820"))
485 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
487 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
492 * Initialize memory for HCD and xHC (one-time init).
494 * Program the PAGESIZE register, initialize the device context array, create
495 * device contexts (?), set up a command ring segment (or two?), create event
496 * ring (one for now).
498 int xhci_init(struct usb_hcd *hcd)
500 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
503 xhci_dbg(xhci, "xhci_init\n");
504 spin_lock_init(&xhci->lock);
505 if (xhci->hci_version == 0x95 && link_quirk) {
506 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
507 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
509 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
511 retval = xhci_mem_init(xhci, GFP_KERNEL);
512 xhci_dbg(xhci, "Finished xhci_init\n");
514 /* Initializing Compliance Mode Recovery Data If Needed */
515 if (compliance_mode_recovery_timer_quirk_check()) {
516 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
517 compliance_mode_recovery_timer_init(xhci);
523 /*-------------------------------------------------------------------------*/
526 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
527 static void xhci_event_ring_work(unsigned long arg)
532 struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
535 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
537 spin_lock_irqsave(&xhci->lock, flags);
538 temp = xhci_readl(xhci, &xhci->op_regs->status);
539 xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
540 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
541 (xhci->xhc_state & XHCI_STATE_HALTED)) {
542 xhci_dbg(xhci, "HW died, polling stopped.\n");
543 spin_unlock_irqrestore(&xhci->lock, flags);
547 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
548 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
549 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
550 xhci->error_bitmask = 0;
551 xhci_dbg(xhci, "Event ring:\n");
552 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
553 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
554 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
555 temp_64 &= ~ERST_PTR_MASK;
556 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
557 xhci_dbg(xhci, "Command ring:\n");
558 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
559 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
560 xhci_dbg_cmd_ptrs(xhci);
561 for (i = 0; i < MAX_HC_SLOTS; ++i) {
564 for (j = 0; j < 31; ++j) {
565 xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
568 spin_unlock_irqrestore(&xhci->lock, flags);
571 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
573 xhci_dbg(xhci, "Quit polling the event ring.\n");
577 static int xhci_run_finished(struct xhci_hcd *xhci)
579 if (xhci_start(xhci)) {
583 xhci->shared_hcd->state = HC_STATE_RUNNING;
585 if (xhci->quirks & XHCI_NEC_HOST)
586 xhci_ring_cmd_db(xhci);
588 xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
593 * Start the HC after it was halted.
595 * This function is called by the USB core when the HC driver is added.
596 * Its opposite is xhci_stop().
598 * xhci_init() must be called once before this function can be called.
599 * Reset the HC, enable device slot contexts, program DCBAAP, and
600 * set command ring pointer and event ring pointer.
602 * Setup MSI-X vectors and enable interrupts.
604 int xhci_run(struct usb_hcd *hcd)
609 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
611 /* Start the xHCI host controller running only after the USB 2.0 roothub
615 hcd->uses_new_polling = 1;
616 if (!usb_hcd_is_primary_hcd(hcd))
617 return xhci_run_finished(xhci);
619 xhci_dbg(xhci, "xhci_run\n");
621 ret = xhci_try_enable_msi(hcd);
625 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
626 init_timer(&xhci->event_ring_timer);
627 xhci->event_ring_timer.data = (unsigned long) xhci;
628 xhci->event_ring_timer.function = xhci_event_ring_work;
629 /* Poll the event ring */
630 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
632 xhci_dbg(xhci, "Setting event ring polling timer\n");
633 add_timer(&xhci->event_ring_timer);
636 xhci_dbg(xhci, "Command ring memory map follows:\n");
637 xhci_debug_ring(xhci, xhci->cmd_ring);
638 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
639 xhci_dbg_cmd_ptrs(xhci);
641 xhci_dbg(xhci, "ERST memory map follows:\n");
642 xhci_dbg_erst(xhci, &xhci->erst);
643 xhci_dbg(xhci, "Event ring:\n");
644 xhci_debug_ring(xhci, xhci->event_ring);
645 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
646 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
647 temp_64 &= ~ERST_PTR_MASK;
648 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
650 xhci_dbg(xhci, "// Set the interrupt modulation register\n");
651 temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
652 temp &= ~ER_IRQ_INTERVAL_MASK;
654 xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
656 /* Set the HCD state before we enable the irqs */
657 temp = xhci_readl(xhci, &xhci->op_regs->command);
659 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
661 xhci_writel(xhci, temp, &xhci->op_regs->command);
663 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
664 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
665 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
666 xhci_writel(xhci, ER_IRQ_ENABLE(temp),
667 &xhci->ir_set->irq_pending);
668 xhci_print_ir_set(xhci, 0);
670 if (xhci->quirks & XHCI_NEC_HOST)
671 xhci_queue_vendor_command(xhci, 0, 0, 0,
672 TRB_TYPE(TRB_NEC_GET_FW));
674 xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
678 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
680 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
682 spin_lock_irq(&xhci->lock);
685 /* The shared_hcd is going to be deallocated shortly (the USB core only
686 * calls this function when allocation fails in usb_add_hcd(), or
687 * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
689 xhci->shared_hcd = NULL;
690 spin_unlock_irq(&xhci->lock);
696 * This function is called by the USB core when the HC driver is removed.
697 * Its opposite is xhci_run().
699 * Disable device contexts, disable IRQs, and quiesce the HC.
700 * Reset the HC, finish any completed transactions, and cleanup memory.
702 void xhci_stop(struct usb_hcd *hcd)
705 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
707 if (!usb_hcd_is_primary_hcd(hcd)) {
708 xhci_only_stop_hcd(xhci->shared_hcd);
712 spin_lock_irq(&xhci->lock);
713 /* Make sure the xHC is halted for a USB3 roothub
714 * (xhci_stop() could be called as part of failed init).
718 spin_unlock_irq(&xhci->lock);
720 xhci_cleanup_msix(xhci);
722 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
723 /* Tell the event ring poll function not to reschedule */
725 del_timer_sync(&xhci->event_ring_timer);
728 /* Deleting Compliance Mode Recovery Timer */
729 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
730 (!(xhci_all_ports_seen_u0(xhci))))
731 del_timer_sync(&xhci->comp_mode_recovery_timer);
733 if (xhci->quirks & XHCI_AMD_PLL_FIX)
736 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
737 temp = xhci_readl(xhci, &xhci->op_regs->status);
738 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
739 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
740 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
741 &xhci->ir_set->irq_pending);
742 xhci_print_ir_set(xhci, 0);
744 xhci_dbg(xhci, "cleaning up memory\n");
745 xhci_mem_cleanup(xhci);
746 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
747 xhci_readl(xhci, &xhci->op_regs->status));
751 * Shutdown HC (not bus-specific)
753 * This is called when the machine is rebooting or halting. We assume that the
754 * machine will be powered off, and the HC's internal state will be reset.
755 * Don't bother to free memory.
757 * This will only ever be called with the main usb_hcd (the USB3 roothub).
759 void xhci_shutdown(struct usb_hcd *hcd)
761 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
763 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
764 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
766 spin_lock_irq(&xhci->lock);
768 spin_unlock_irq(&xhci->lock);
770 xhci_cleanup_msix(xhci);
772 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
773 xhci_readl(xhci, &xhci->op_regs->status));
777 static void xhci_save_registers(struct xhci_hcd *xhci)
779 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
780 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
781 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
782 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
783 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
784 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
785 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
786 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
787 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
790 static void xhci_restore_registers(struct xhci_hcd *xhci)
792 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
793 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
794 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
795 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
796 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
797 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
798 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
799 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
800 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
803 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
807 /* step 2: initialize command ring buffer */
808 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
809 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
810 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
811 xhci->cmd_ring->dequeue) &
812 (u64) ~CMD_RING_RSVD_BITS) |
813 xhci->cmd_ring->cycle_state;
814 xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
815 (long unsigned long) val_64);
816 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
820 * The whole command ring must be cleared to zero when we suspend the host.
822 * The host doesn't save the command ring pointer in the suspend well, so we
823 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
824 * aligned, because of the reserved bits in the command ring dequeue pointer
825 * register. Therefore, we can't just set the dequeue pointer back in the
826 * middle of the ring (TRBs are 16-byte aligned).
828 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
830 struct xhci_ring *ring;
831 struct xhci_segment *seg;
833 ring = xhci->cmd_ring;
837 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
838 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
839 cpu_to_le32(~TRB_CYCLE);
841 } while (seg != ring->deq_seg);
843 /* Reset the software enqueue and dequeue pointers */
844 ring->deq_seg = ring->first_seg;
845 ring->dequeue = ring->first_seg->trbs;
846 ring->enq_seg = ring->deq_seg;
847 ring->enqueue = ring->dequeue;
849 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
851 * Ring is now zeroed, so the HW should look for change of ownership
852 * when the cycle bit is set to 1.
854 ring->cycle_state = 1;
857 * Reset the hardware dequeue pointer.
858 * Yes, this will need to be re-written after resume, but we're paranoid
859 * and want to make sure the hardware doesn't access bogus memory
860 * because, say, the BIOS or an SMI started the host without changing
861 * the command ring pointers.
863 xhci_set_cmd_ring_deq(xhci);
867 * Stop HC (not bus-specific)
869 * This is called when the machine transition into S3/S4 mode.
872 int xhci_suspend(struct xhci_hcd *xhci)
875 struct usb_hcd *hcd = xhci_to_hcd(xhci);
878 spin_lock_irq(&xhci->lock);
879 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
880 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
881 /* step 1: stop endpoint */
882 /* skipped assuming that port suspend has done */
884 /* step 2: clear Run/Stop bit */
885 command = xhci_readl(xhci, &xhci->op_regs->command);
887 xhci_writel(xhci, command, &xhci->op_regs->command);
888 if (handshake(xhci, &xhci->op_regs->status,
889 STS_HALT, STS_HALT, 100*100)) {
890 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
891 spin_unlock_irq(&xhci->lock);
894 xhci_clear_command_ring(xhci);
896 /* step 3: save registers */
897 xhci_save_registers(xhci);
899 /* step 4: set CSS flag */
900 command = xhci_readl(xhci, &xhci->op_regs->command);
902 xhci_writel(xhci, command, &xhci->op_regs->command);
903 if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10 * 1000)) {
904 xhci_warn(xhci, "WARN: xHC save state timeout\n");
905 spin_unlock_irq(&xhci->lock);
908 spin_unlock_irq(&xhci->lock);
911 * Deleting Compliance Mode Recovery Timer because the xHCI Host
912 * is about to be suspended.
914 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
915 (!(xhci_all_ports_seen_u0(xhci)))) {
916 del_timer_sync(&xhci->comp_mode_recovery_timer);
917 xhci_dbg(xhci, "Compliance Mode Recovery Timer Deleted!\n");
920 /* step 5: remove core well power */
921 /* synchronize irq when using MSI-X */
922 xhci_msix_sync_irqs(xhci);
928 * start xHC (not bus-specific)
930 * This is called when the machine transition from S3/S4 mode.
933 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
935 u32 command, temp = 0;
936 struct usb_hcd *hcd = xhci_to_hcd(xhci);
937 struct usb_hcd *secondary_hcd;
940 /* Wait a bit if either of the roothubs need to settle from the
941 * transition into bus suspend.
943 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
945 xhci->bus_state[1].next_statechange))
948 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
949 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
951 spin_lock_irq(&xhci->lock);
952 if (xhci->quirks & XHCI_RESET_ON_RESUME)
956 /* step 1: restore register */
957 xhci_restore_registers(xhci);
958 /* step 2: initialize command ring buffer */
959 xhci_set_cmd_ring_deq(xhci);
960 /* step 3: restore state and start state*/
961 /* step 3: set CRS flag */
962 command = xhci_readl(xhci, &xhci->op_regs->command);
964 xhci_writel(xhci, command, &xhci->op_regs->command);
965 if (handshake(xhci, &xhci->op_regs->status,
966 STS_RESTORE, 0, 10 * 1000)) {
967 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
968 spin_unlock_irq(&xhci->lock);
971 temp = xhci_readl(xhci, &xhci->op_regs->status);
974 /* If restore operation fails, re-initialize the HC during resume */
975 if ((temp & STS_SRE) || hibernated) {
976 /* Let the USB core know _both_ roothubs lost power. */
977 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
978 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
980 xhci_dbg(xhci, "Stop HCD\n");
983 spin_unlock_irq(&xhci->lock);
984 xhci_cleanup_msix(xhci);
986 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
987 /* Tell the event ring poll function not to reschedule */
989 del_timer_sync(&xhci->event_ring_timer);
992 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
993 temp = xhci_readl(xhci, &xhci->op_regs->status);
994 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
995 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
996 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
997 &xhci->ir_set->irq_pending);
998 xhci_print_ir_set(xhci, 0);
1000 xhci_dbg(xhci, "cleaning up memory\n");
1001 xhci_mem_cleanup(xhci);
1002 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1003 xhci_readl(xhci, &xhci->op_regs->status));
1005 /* USB core calls the PCI reinit and start functions twice:
1006 * first with the primary HCD, and then with the secondary HCD.
1007 * If we don't do the same, the host will never be started.
1009 if (!usb_hcd_is_primary_hcd(hcd))
1010 secondary_hcd = hcd;
1012 secondary_hcd = xhci->shared_hcd;
1014 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1015 retval = xhci_init(hcd->primary_hcd);
1018 xhci_dbg(xhci, "Start the primary HCD\n");
1019 retval = xhci_run(hcd->primary_hcd);
1021 xhci_dbg(xhci, "Start the secondary HCD\n");
1022 retval = xhci_run(secondary_hcd);
1024 hcd->state = HC_STATE_SUSPENDED;
1025 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1029 /* step 4: set Run/Stop bit */
1030 command = xhci_readl(xhci, &xhci->op_regs->command);
1032 xhci_writel(xhci, command, &xhci->op_regs->command);
1033 handshake(xhci, &xhci->op_regs->status, STS_HALT,
1036 /* step 5: walk topology and initialize portsc,
1037 * portpmsc and portli
1039 /* this is done in bus_resume */
1041 /* step 6: restart each of the previously
1042 * Running endpoints by ringing their doorbells
1045 spin_unlock_irq(&xhci->lock);
1049 usb_hcd_resume_root_hub(hcd);
1050 usb_hcd_resume_root_hub(xhci->shared_hcd);
1054 * If system is subject to the Quirk, Compliance Mode Timer needs to
1055 * be re-initialized Always after a system resume. Ports are subject
1056 * to suffer the Compliance Mode issue again. It doesn't matter if
1057 * ports have entered previously to U0 before system's suspension.
1059 if (xhci->quirks & XHCI_COMP_MODE_QUIRK)
1060 compliance_mode_recovery_timer_init(xhci);
1064 #endif /* CONFIG_PM */
1066 /*-------------------------------------------------------------------------*/
1069 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1070 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1071 * value to right shift 1 for the bitmask.
1073 * Index = (epnum * 2) + direction - 1,
1074 * where direction = 0 for OUT, 1 for IN.
1075 * For control endpoints, the IN index is used (OUT index is unused), so
1076 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1078 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1081 if (usb_endpoint_xfer_control(desc))
1082 index = (unsigned int) (usb_endpoint_num(desc)*2);
1084 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1085 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1089 /* Find the flag for this endpoint (for use in the control context). Use the
1090 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1093 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1095 return 1 << (xhci_get_endpoint_index(desc) + 1);
1098 /* Find the flag for this endpoint (for use in the control context). Use the
1099 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1102 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1104 return 1 << (ep_index + 1);
1107 /* Compute the last valid endpoint context index. Basically, this is the
1108 * endpoint index plus one. For slot contexts with more than valid endpoint,
1109 * we find the most significant bit set in the added contexts flags.
1110 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1111 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1113 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1115 return fls(added_ctxs) - 1;
1118 /* Returns 1 if the arguments are OK;
1119 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1121 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1122 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1124 struct xhci_hcd *xhci;
1125 struct xhci_virt_device *virt_dev;
1127 if (!hcd || (check_ep && !ep) || !udev) {
1128 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1132 if (!udev->parent) {
1133 printk(KERN_DEBUG "xHCI %s called for root hub\n",
1138 xhci = hcd_to_xhci(hcd);
1139 if (xhci->xhc_state & XHCI_STATE_HALTED)
1142 if (check_virt_dev) {
1143 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1144 printk(KERN_DEBUG "xHCI %s called with unaddressed "
1149 virt_dev = xhci->devs[udev->slot_id];
1150 if (virt_dev->udev != udev) {
1151 printk(KERN_DEBUG "xHCI %s called with udev and "
1152 "virt_dev does not match\n", func);
1160 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1161 struct usb_device *udev, struct xhci_command *command,
1162 bool ctx_change, bool must_succeed);
1165 * Full speed devices may have a max packet size greater than 8 bytes, but the
1166 * USB core doesn't know that until it reads the first 8 bytes of the
1167 * descriptor. If the usb_device's max packet size changes after that point,
1168 * we need to issue an evaluate context command and wait on it.
1170 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1171 unsigned int ep_index, struct urb *urb)
1173 struct xhci_container_ctx *in_ctx;
1174 struct xhci_container_ctx *out_ctx;
1175 struct xhci_input_control_ctx *ctrl_ctx;
1176 struct xhci_ep_ctx *ep_ctx;
1177 int max_packet_size;
1178 int hw_max_packet_size;
1181 out_ctx = xhci->devs[slot_id]->out_ctx;
1182 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1183 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1184 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1185 if (hw_max_packet_size != max_packet_size) {
1186 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1187 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1189 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1190 hw_max_packet_size);
1191 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1193 /* Set up the modified control endpoint 0 */
1194 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1195 xhci->devs[slot_id]->out_ctx, ep_index);
1196 in_ctx = xhci->devs[slot_id]->in_ctx;
1197 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1198 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1199 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1201 /* Set up the input context flags for the command */
1202 /* FIXME: This won't work if a non-default control endpoint
1203 * changes max packet sizes.
1205 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1206 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1207 ctrl_ctx->drop_flags = 0;
1209 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1210 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1211 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1212 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1214 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1217 /* Clean up the input context for later use by bandwidth
1220 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1226 * non-error returns are a promise to giveback() the urb later
1227 * we drop ownership so next owner (or urb unlink) can get it
1229 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1231 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1232 struct xhci_td *buffer;
1233 unsigned long flags;
1235 unsigned int slot_id, ep_index;
1236 struct urb_priv *urb_priv;
1239 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1240 true, true, __func__) <= 0)
1243 slot_id = urb->dev->slot_id;
1244 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1246 if (!HCD_HW_ACCESSIBLE(hcd)) {
1247 if (!in_interrupt())
1248 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1253 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1254 size = urb->number_of_packets;
1258 urb_priv = kzalloc(sizeof(struct urb_priv) +
1259 size * sizeof(struct xhci_td *), mem_flags);
1263 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1269 for (i = 0; i < size; i++) {
1270 urb_priv->td[i] = buffer;
1274 urb_priv->length = size;
1275 urb_priv->td_cnt = 0;
1276 urb->hcpriv = urb_priv;
1278 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1279 /* Check to see if the max packet size for the default control
1280 * endpoint changed during FS device enumeration
1282 if (urb->dev->speed == USB_SPEED_FULL) {
1283 ret = xhci_check_maxpacket(xhci, slot_id,
1286 xhci_urb_free_priv(xhci, urb_priv);
1292 /* We have a spinlock and interrupts disabled, so we must pass
1293 * atomic context to this function, which may allocate memory.
1295 spin_lock_irqsave(&xhci->lock, flags);
1296 if (xhci->xhc_state & XHCI_STATE_DYING)
1298 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1302 spin_unlock_irqrestore(&xhci->lock, flags);
1303 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1304 spin_lock_irqsave(&xhci->lock, flags);
1305 if (xhci->xhc_state & XHCI_STATE_DYING)
1307 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1308 EP_GETTING_STREAMS) {
1309 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1310 "is transitioning to using streams.\n");
1312 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1313 EP_GETTING_NO_STREAMS) {
1314 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1315 "is transitioning to "
1316 "not having streams.\n");
1319 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1324 spin_unlock_irqrestore(&xhci->lock, flags);
1325 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1326 spin_lock_irqsave(&xhci->lock, flags);
1327 if (xhci->xhc_state & XHCI_STATE_DYING)
1329 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1333 spin_unlock_irqrestore(&xhci->lock, flags);
1335 spin_lock_irqsave(&xhci->lock, flags);
1336 if (xhci->xhc_state & XHCI_STATE_DYING)
1338 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1342 spin_unlock_irqrestore(&xhci->lock, flags);
1347 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1348 "non-responsive xHCI host.\n",
1349 urb->ep->desc.bEndpointAddress, urb);
1352 xhci_urb_free_priv(xhci, urb_priv);
1354 spin_unlock_irqrestore(&xhci->lock, flags);
1358 /* Get the right ring for the given URB.
1359 * If the endpoint supports streams, boundary check the URB's stream ID.
1360 * If the endpoint doesn't support streams, return the singular endpoint ring.
1362 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1365 unsigned int slot_id;
1366 unsigned int ep_index;
1367 unsigned int stream_id;
1368 struct xhci_virt_ep *ep;
1370 slot_id = urb->dev->slot_id;
1371 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1372 stream_id = urb->stream_id;
1373 ep = &xhci->devs[slot_id]->eps[ep_index];
1374 /* Common case: no streams */
1375 if (!(ep->ep_state & EP_HAS_STREAMS))
1378 if (stream_id == 0) {
1380 "WARN: Slot ID %u, ep index %u has streams, "
1381 "but URB has no stream ID.\n",
1386 if (stream_id < ep->stream_info->num_streams)
1387 return ep->stream_info->stream_rings[stream_id];
1390 "WARN: Slot ID %u, ep index %u has "
1391 "stream IDs 1 to %u allocated, "
1392 "but stream ID %u is requested.\n",
1394 ep->stream_info->num_streams - 1,
1400 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1401 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1402 * should pick up where it left off in the TD, unless a Set Transfer Ring
1403 * Dequeue Pointer is issued.
1405 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1406 * the ring. Since the ring is a contiguous structure, they can't be physically
1407 * removed. Instead, there are two options:
1409 * 1) If the HC is in the middle of processing the URB to be canceled, we
1410 * simply move the ring's dequeue pointer past those TRBs using the Set
1411 * Transfer Ring Dequeue Pointer command. This will be the common case,
1412 * when drivers timeout on the last submitted URB and attempt to cancel.
1414 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1415 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1416 * HC will need to invalidate the any TRBs it has cached after the stop
1417 * endpoint command, as noted in the xHCI 0.95 errata.
1419 * 3) The TD may have completed by the time the Stop Endpoint Command
1420 * completes, so software needs to handle that case too.
1422 * This function should protect against the TD enqueueing code ringing the
1423 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1424 * It also needs to account for multiple cancellations on happening at the same
1425 * time for the same endpoint.
1427 * Note that this function can be called in any context, or so says
1428 * usb_hcd_unlink_urb()
1430 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1432 unsigned long flags;
1435 struct xhci_hcd *xhci;
1436 struct urb_priv *urb_priv;
1438 unsigned int ep_index;
1439 struct xhci_ring *ep_ring;
1440 struct xhci_virt_ep *ep;
1442 xhci = hcd_to_xhci(hcd);
1443 spin_lock_irqsave(&xhci->lock, flags);
1444 /* Make sure the URB hasn't completed or been unlinked already */
1445 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1446 if (ret || !urb->hcpriv)
1448 temp = xhci_readl(xhci, &xhci->op_regs->status);
1449 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1450 xhci_dbg(xhci, "HW died, freeing TD.\n");
1451 urb_priv = urb->hcpriv;
1452 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1453 td = urb_priv->td[i];
1454 if (!list_empty(&td->td_list))
1455 list_del_init(&td->td_list);
1456 if (!list_empty(&td->cancelled_td_list))
1457 list_del_init(&td->cancelled_td_list);
1460 usb_hcd_unlink_urb_from_ep(hcd, urb);
1461 spin_unlock_irqrestore(&xhci->lock, flags);
1462 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1463 xhci_urb_free_priv(xhci, urb_priv);
1466 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1467 (xhci->xhc_state & XHCI_STATE_HALTED)) {
1468 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1469 "non-responsive xHCI host.\n",
1470 urb->ep->desc.bEndpointAddress, urb);
1471 /* Let the stop endpoint command watchdog timer (which set this
1472 * state) finish cleaning up the endpoint TD lists. We must
1473 * have caught it in the middle of dropping a lock and giving
1479 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1480 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1481 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1487 urb_priv = urb->hcpriv;
1488 i = urb_priv->td_cnt;
1489 if (i < urb_priv->length)
1490 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1491 "starting at offset 0x%llx\n",
1492 urb, urb->dev->devpath,
1493 urb->ep->desc.bEndpointAddress,
1494 (unsigned long long) xhci_trb_virt_to_dma(
1495 urb_priv->td[i]->start_seg,
1496 urb_priv->td[i]->first_trb));
1498 for (; i < urb_priv->length; i++) {
1499 td = urb_priv->td[i];
1500 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1503 /* Queue a stop endpoint command, but only if this is
1504 * the first cancellation to be handled.
1506 if (!(ep->ep_state & EP_HALT_PENDING)) {
1507 ep->ep_state |= EP_HALT_PENDING;
1508 ep->stop_cmds_pending++;
1509 ep->stop_cmd_timer.expires = jiffies +
1510 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1511 add_timer(&ep->stop_cmd_timer);
1512 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1513 xhci_ring_cmd_db(xhci);
1516 spin_unlock_irqrestore(&xhci->lock, flags);
1520 /* Drop an endpoint from a new bandwidth configuration for this device.
1521 * Only one call to this function is allowed per endpoint before
1522 * check_bandwidth() or reset_bandwidth() must be called.
1523 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1524 * add the endpoint to the schedule with possibly new parameters denoted by a
1525 * different endpoint descriptor in usb_host_endpoint.
1526 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1529 * The USB core will not allow URBs to be queued to an endpoint that is being
1530 * disabled, so there's no need for mutual exclusion to protect
1531 * the xhci->devs[slot_id] structure.
1533 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1534 struct usb_host_endpoint *ep)
1536 struct xhci_hcd *xhci;
1537 struct xhci_container_ctx *in_ctx, *out_ctx;
1538 struct xhci_input_control_ctx *ctrl_ctx;
1539 struct xhci_slot_ctx *slot_ctx;
1540 unsigned int last_ctx;
1541 unsigned int ep_index;
1542 struct xhci_ep_ctx *ep_ctx;
1544 u32 new_add_flags, new_drop_flags, new_slot_info;
1547 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1550 xhci = hcd_to_xhci(hcd);
1551 if (xhci->xhc_state & XHCI_STATE_DYING)
1554 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1555 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1556 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1557 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1558 __func__, drop_flag);
1562 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1563 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1564 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1565 ep_index = xhci_get_endpoint_index(&ep->desc);
1566 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1567 /* If the HC already knows the endpoint is disabled,
1568 * or the HCD has noted it is disabled, ignore this request
1570 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1571 cpu_to_le32(EP_STATE_DISABLED)) ||
1572 le32_to_cpu(ctrl_ctx->drop_flags) &
1573 xhci_get_endpoint_flag(&ep->desc)) {
1574 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1579 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1580 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1582 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1583 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1585 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1586 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1587 /* Update the last valid endpoint context, if we deleted the last one */
1588 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1589 LAST_CTX(last_ctx)) {
1590 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1591 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1593 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1595 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1597 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1598 (unsigned int) ep->desc.bEndpointAddress,
1600 (unsigned int) new_drop_flags,
1601 (unsigned int) new_add_flags,
1602 (unsigned int) new_slot_info);
1606 /* Add an endpoint to a new possible bandwidth configuration for this device.
1607 * Only one call to this function is allowed per endpoint before
1608 * check_bandwidth() or reset_bandwidth() must be called.
1609 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1610 * add the endpoint to the schedule with possibly new parameters denoted by a
1611 * different endpoint descriptor in usb_host_endpoint.
1612 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1615 * The USB core will not allow URBs to be queued to an endpoint until the
1616 * configuration or alt setting is installed in the device, so there's no need
1617 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1619 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1620 struct usb_host_endpoint *ep)
1622 struct xhci_hcd *xhci;
1623 struct xhci_container_ctx *in_ctx, *out_ctx;
1624 unsigned int ep_index;
1625 struct xhci_ep_ctx *ep_ctx;
1626 struct xhci_slot_ctx *slot_ctx;
1627 struct xhci_input_control_ctx *ctrl_ctx;
1629 unsigned int last_ctx;
1630 u32 new_add_flags, new_drop_flags, new_slot_info;
1631 struct xhci_virt_device *virt_dev;
1634 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1636 /* So we won't queue a reset ep command for a root hub */
1640 xhci = hcd_to_xhci(hcd);
1641 if (xhci->xhc_state & XHCI_STATE_DYING)
1644 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1645 last_ctx = xhci_last_valid_endpoint(added_ctxs);
1646 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1647 /* FIXME when we have to issue an evaluate endpoint command to
1648 * deal with ep0 max packet size changing once we get the
1651 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1652 __func__, added_ctxs);
1656 virt_dev = xhci->devs[udev->slot_id];
1657 in_ctx = virt_dev->in_ctx;
1658 out_ctx = virt_dev->out_ctx;
1659 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1660 ep_index = xhci_get_endpoint_index(&ep->desc);
1661 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1663 /* If this endpoint is already in use, and the upper layers are trying
1664 * to add it again without dropping it, reject the addition.
1666 if (virt_dev->eps[ep_index].ring &&
1667 !(le32_to_cpu(ctrl_ctx->drop_flags) &
1668 xhci_get_endpoint_flag(&ep->desc))) {
1669 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1670 "without dropping it.\n",
1671 (unsigned int) ep->desc.bEndpointAddress);
1675 /* If the HCD has already noted the endpoint is enabled,
1676 * ignore this request.
1678 if (le32_to_cpu(ctrl_ctx->add_flags) &
1679 xhci_get_endpoint_flag(&ep->desc)) {
1680 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1686 * Configuration and alternate setting changes must be done in
1687 * process context, not interrupt context (or so documenation
1688 * for usb_set_interface() and usb_set_configuration() claim).
1690 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1691 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1692 __func__, ep->desc.bEndpointAddress);
1696 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1697 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1699 /* If xhci_endpoint_disable() was called for this endpoint, but the
1700 * xHC hasn't been notified yet through the check_bandwidth() call,
1701 * this re-adds a new state for the endpoint from the new endpoint
1702 * descriptors. We must drop and re-add this endpoint, so we leave the
1705 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1707 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1708 /* Update the last valid endpoint context, if we just added one past */
1709 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1710 LAST_CTX(last_ctx)) {
1711 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1712 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1714 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1716 /* Store the usb_device pointer for later use */
1719 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1720 (unsigned int) ep->desc.bEndpointAddress,
1722 (unsigned int) new_drop_flags,
1723 (unsigned int) new_add_flags,
1724 (unsigned int) new_slot_info);
1728 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1730 struct xhci_input_control_ctx *ctrl_ctx;
1731 struct xhci_ep_ctx *ep_ctx;
1732 struct xhci_slot_ctx *slot_ctx;
1735 /* When a device's add flag and drop flag are zero, any subsequent
1736 * configure endpoint command will leave that endpoint's state
1737 * untouched. Make sure we don't leave any old state in the input
1738 * endpoint contexts.
1740 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1741 ctrl_ctx->drop_flags = 0;
1742 ctrl_ctx->add_flags = 0;
1743 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1744 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1745 /* Endpoint 0 is always valid */
1746 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1747 for (i = 1; i < 31; ++i) {
1748 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1749 ep_ctx->ep_info = 0;
1750 ep_ctx->ep_info2 = 0;
1752 ep_ctx->tx_info = 0;
1756 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1757 struct usb_device *udev, u32 *cmd_status)
1761 switch (*cmd_status) {
1763 dev_warn(&udev->dev, "Not enough host controller resources "
1764 "for new device state.\n");
1766 /* FIXME: can we allocate more resources for the HC? */
1769 case COMP_2ND_BW_ERR:
1770 dev_warn(&udev->dev, "Not enough bandwidth "
1771 "for new device state.\n");
1773 /* FIXME: can we go back to the old state? */
1776 /* the HCD set up something wrong */
1777 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1779 "and endpoint is not disabled.\n");
1783 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1784 "configure command.\n");
1788 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1792 xhci_err(xhci, "ERROR: unexpected command completion "
1793 "code 0x%x.\n", *cmd_status);
1800 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1801 struct usb_device *udev, u32 *cmd_status)
1804 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1806 switch (*cmd_status) {
1808 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1809 "context command.\n");
1813 dev_warn(&udev->dev, "WARN: slot not enabled for"
1814 "evaluate context command.\n");
1815 case COMP_CTX_STATE:
1816 dev_warn(&udev->dev, "WARN: invalid context state for "
1817 "evaluate context command.\n");
1818 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1822 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1823 "context command.\n");
1827 /* Max Exit Latency too large error */
1828 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1832 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1836 xhci_err(xhci, "ERROR: unexpected command completion "
1837 "code 0x%x.\n", *cmd_status);
1844 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1845 struct xhci_container_ctx *in_ctx)
1847 struct xhci_input_control_ctx *ctrl_ctx;
1848 u32 valid_add_flags;
1849 u32 valid_drop_flags;
1851 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1852 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1853 * (bit 1). The default control endpoint is added during the Address
1854 * Device command and is never removed until the slot is disabled.
1856 valid_add_flags = ctrl_ctx->add_flags >> 2;
1857 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1859 /* Use hweight32 to count the number of ones in the add flags, or
1860 * number of endpoints added. Don't count endpoints that are changed
1861 * (both added and dropped).
1863 return hweight32(valid_add_flags) -
1864 hweight32(valid_add_flags & valid_drop_flags);
1867 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1868 struct xhci_container_ctx *in_ctx)
1870 struct xhci_input_control_ctx *ctrl_ctx;
1871 u32 valid_add_flags;
1872 u32 valid_drop_flags;
1874 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1875 valid_add_flags = ctrl_ctx->add_flags >> 2;
1876 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1878 return hweight32(valid_drop_flags) -
1879 hweight32(valid_add_flags & valid_drop_flags);
1883 * We need to reserve the new number of endpoints before the configure endpoint
1884 * command completes. We can't subtract the dropped endpoints from the number
1885 * of active endpoints until the command completes because we can oversubscribe
1886 * the host in this case:
1888 * - the first configure endpoint command drops more endpoints than it adds
1889 * - a second configure endpoint command that adds more endpoints is queued
1890 * - the first configure endpoint command fails, so the config is unchanged
1891 * - the second command may succeed, even though there isn't enough resources
1893 * Must be called with xhci->lock held.
1895 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1896 struct xhci_container_ctx *in_ctx)
1900 added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1901 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1902 xhci_dbg(xhci, "Not enough ep ctxs: "
1903 "%u active, need to add %u, limit is %u.\n",
1904 xhci->num_active_eps, added_eps,
1905 xhci->limit_active_eps);
1908 xhci->num_active_eps += added_eps;
1909 xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1910 xhci->num_active_eps);
1915 * The configure endpoint was failed by the xHC for some other reason, so we
1916 * need to revert the resources that failed configuration would have used.
1918 * Must be called with xhci->lock held.
1920 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1921 struct xhci_container_ctx *in_ctx)
1925 num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1926 xhci->num_active_eps -= num_failed_eps;
1927 xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1929 xhci->num_active_eps);
1933 * Now that the command has completed, clean up the active endpoint count by
1934 * subtracting out the endpoints that were dropped (but not changed).
1936 * Must be called with xhci->lock held.
1938 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1939 struct xhci_container_ctx *in_ctx)
1941 u32 num_dropped_eps;
1943 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1944 xhci->num_active_eps -= num_dropped_eps;
1945 if (num_dropped_eps)
1946 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1948 xhci->num_active_eps);
1951 unsigned int xhci_get_block_size(struct usb_device *udev)
1953 switch (udev->speed) {
1955 case USB_SPEED_FULL:
1957 case USB_SPEED_HIGH:
1959 case USB_SPEED_SUPER:
1961 case USB_SPEED_UNKNOWN:
1962 case USB_SPEED_WIRELESS:
1964 /* Should never happen */
1969 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1971 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1973 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1978 /* If we are changing a LS/FS device under a HS hub,
1979 * make sure (if we are activating a new TT) that the HS bus has enough
1980 * bandwidth for this new TT.
1982 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1983 struct xhci_virt_device *virt_dev,
1986 struct xhci_interval_bw_table *bw_table;
1987 struct xhci_tt_bw_info *tt_info;
1989 /* Find the bandwidth table for the root port this TT is attached to. */
1990 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1991 tt_info = virt_dev->tt_info;
1992 /* If this TT already had active endpoints, the bandwidth for this TT
1993 * has already been added. Removing all periodic endpoints (and thus
1994 * making the TT enactive) will only decrease the bandwidth used.
1998 if (old_active_eps == 0 && tt_info->active_eps != 0) {
1999 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2003 /* Not sure why we would have no new active endpoints...
2005 * Maybe because of an Evaluate Context change for a hub update or a
2006 * control endpoint 0 max packet size change?
2007 * FIXME: skip the bandwidth calculation in that case.
2012 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2013 struct xhci_virt_device *virt_dev)
2015 unsigned int bw_reserved;
2017 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2018 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2021 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2022 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2029 * This algorithm is a very conservative estimate of the worst-case scheduling
2030 * scenario for any one interval. The hardware dynamically schedules the
2031 * packets, so we can't tell which microframe could be the limiting factor in
2032 * the bandwidth scheduling. This only takes into account periodic endpoints.
2034 * Obviously, we can't solve an NP complete problem to find the minimum worst
2035 * case scenario. Instead, we come up with an estimate that is no less than
2036 * the worst case bandwidth used for any one microframe, but may be an
2039 * We walk the requirements for each endpoint by interval, starting with the
2040 * smallest interval, and place packets in the schedule where there is only one
2041 * possible way to schedule packets for that interval. In order to simplify
2042 * this algorithm, we record the largest max packet size for each interval, and
2043 * assume all packets will be that size.
2045 * For interval 0, we obviously must schedule all packets for each interval.
2046 * The bandwidth for interval 0 is just the amount of data to be transmitted
2047 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2048 * the number of packets).
2050 * For interval 1, we have two possible microframes to schedule those packets
2051 * in. For this algorithm, if we can schedule the same number of packets for
2052 * each possible scheduling opportunity (each microframe), we will do so. The
2053 * remaining number of packets will be saved to be transmitted in the gaps in
2054 * the next interval's scheduling sequence.
2056 * As we move those remaining packets to be scheduled with interval 2 packets,
2057 * we have to double the number of remaining packets to transmit. This is
2058 * because the intervals are actually powers of 2, and we would be transmitting
2059 * the previous interval's packets twice in this interval. We also have to be
2060 * sure that when we look at the largest max packet size for this interval, we
2061 * also look at the largest max packet size for the remaining packets and take
2062 * the greater of the two.
2064 * The algorithm continues to evenly distribute packets in each scheduling
2065 * opportunity, and push the remaining packets out, until we get to the last
2066 * interval. Then those packets and their associated overhead are just added
2067 * to the bandwidth used.
2069 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2070 struct xhci_virt_device *virt_dev,
2073 unsigned int bw_reserved;
2074 unsigned int max_bandwidth;
2075 unsigned int bw_used;
2076 unsigned int block_size;
2077 struct xhci_interval_bw_table *bw_table;
2078 unsigned int packet_size = 0;
2079 unsigned int overhead = 0;
2080 unsigned int packets_transmitted = 0;
2081 unsigned int packets_remaining = 0;
2084 if (virt_dev->udev->speed == USB_SPEED_SUPER)
2085 return xhci_check_ss_bw(xhci, virt_dev);
2087 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2088 max_bandwidth = HS_BW_LIMIT;
2089 /* Convert percent of bus BW reserved to blocks reserved */
2090 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2092 max_bandwidth = FS_BW_LIMIT;
2093 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2096 bw_table = virt_dev->bw_table;
2097 /* We need to translate the max packet size and max ESIT payloads into
2098 * the units the hardware uses.
2100 block_size = xhci_get_block_size(virt_dev->udev);
2102 /* If we are manipulating a LS/FS device under a HS hub, double check
2103 * that the HS bus has enough bandwidth if we are activing a new TT.
2105 if (virt_dev->tt_info) {
2106 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2107 virt_dev->real_port);
2108 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2109 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2110 "newly activated TT.\n");
2113 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2114 virt_dev->tt_info->slot_id,
2115 virt_dev->tt_info->ttport);
2117 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2118 virt_dev->real_port);
2121 /* Add in how much bandwidth will be used for interval zero, or the
2122 * rounded max ESIT payload + number of packets * largest overhead.
2124 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2125 bw_table->interval_bw[0].num_packets *
2126 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2128 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2129 unsigned int bw_added;
2130 unsigned int largest_mps;
2131 unsigned int interval_overhead;
2134 * How many packets could we transmit in this interval?
2135 * If packets didn't fit in the previous interval, we will need
2136 * to transmit that many packets twice within this interval.
2138 packets_remaining = 2 * packets_remaining +
2139 bw_table->interval_bw[i].num_packets;
2141 /* Find the largest max packet size of this or the previous
2144 if (list_empty(&bw_table->interval_bw[i].endpoints))
2147 struct xhci_virt_ep *virt_ep;
2148 struct list_head *ep_entry;
2150 ep_entry = bw_table->interval_bw[i].endpoints.next;
2151 virt_ep = list_entry(ep_entry,
2152 struct xhci_virt_ep, bw_endpoint_list);
2153 /* Convert to blocks, rounding up */
2154 largest_mps = DIV_ROUND_UP(
2155 virt_ep->bw_info.max_packet_size,
2158 if (largest_mps > packet_size)
2159 packet_size = largest_mps;
2161 /* Use the larger overhead of this or the previous interval. */
2162 interval_overhead = xhci_get_largest_overhead(
2163 &bw_table->interval_bw[i]);
2164 if (interval_overhead > overhead)
2165 overhead = interval_overhead;
2167 /* How many packets can we evenly distribute across
2168 * (1 << (i + 1)) possible scheduling opportunities?
2170 packets_transmitted = packets_remaining >> (i + 1);
2172 /* Add in the bandwidth used for those scheduled packets */
2173 bw_added = packets_transmitted * (overhead + packet_size);
2175 /* How many packets do we have remaining to transmit? */
2176 packets_remaining = packets_remaining % (1 << (i + 1));
2178 /* What largest max packet size should those packets have? */
2179 /* If we've transmitted all packets, don't carry over the
2180 * largest packet size.
2182 if (packets_remaining == 0) {
2185 } else if (packets_transmitted > 0) {
2186 /* Otherwise if we do have remaining packets, and we've
2187 * scheduled some packets in this interval, take the
2188 * largest max packet size from endpoints with this
2191 packet_size = largest_mps;
2192 overhead = interval_overhead;
2194 /* Otherwise carry over packet_size and overhead from the last
2195 * time we had a remainder.
2197 bw_used += bw_added;
2198 if (bw_used > max_bandwidth) {
2199 xhci_warn(xhci, "Not enough bandwidth. "
2200 "Proposed: %u, Max: %u\n",
2201 bw_used, max_bandwidth);
2206 * Ok, we know we have some packets left over after even-handedly
2207 * scheduling interval 15. We don't know which microframes they will
2208 * fit into, so we over-schedule and say they will be scheduled every
2211 if (packets_remaining > 0)
2212 bw_used += overhead + packet_size;
2214 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2215 unsigned int port_index = virt_dev->real_port - 1;
2217 /* OK, we're manipulating a HS device attached to a
2218 * root port bandwidth domain. Include the number of active TTs
2219 * in the bandwidth used.
2221 bw_used += TT_HS_OVERHEAD *
2222 xhci->rh_bw[port_index].num_active_tts;
2225 xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2226 "Available: %u " "percent\n",
2227 bw_used, max_bandwidth, bw_reserved,
2228 (max_bandwidth - bw_used - bw_reserved) * 100 /
2231 bw_used += bw_reserved;
2232 if (bw_used > max_bandwidth) {
2233 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2234 bw_used, max_bandwidth);
2238 bw_table->bw_used = bw_used;
2242 static bool xhci_is_async_ep(unsigned int ep_type)
2244 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2245 ep_type != ISOC_IN_EP &&
2246 ep_type != INT_IN_EP);
2249 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2251 return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
2254 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2256 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2258 if (ep_bw->ep_interval == 0)
2259 return SS_OVERHEAD_BURST +
2260 (ep_bw->mult * ep_bw->num_packets *
2261 (SS_OVERHEAD + mps));
2262 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2263 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2264 1 << ep_bw->ep_interval);
2268 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2269 struct xhci_bw_info *ep_bw,
2270 struct xhci_interval_bw_table *bw_table,
2271 struct usb_device *udev,
2272 struct xhci_virt_ep *virt_ep,
2273 struct xhci_tt_bw_info *tt_info)
2275 struct xhci_interval_bw *interval_bw;
2276 int normalized_interval;
2278 if (xhci_is_async_ep(ep_bw->type))
2281 if (udev->speed == USB_SPEED_SUPER) {
2282 if (xhci_is_sync_in_ep(ep_bw->type))
2283 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2284 xhci_get_ss_bw_consumed(ep_bw);
2286 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2287 xhci_get_ss_bw_consumed(ep_bw);
2291 /* SuperSpeed endpoints never get added to intervals in the table, so
2292 * this check is only valid for HS/FS/LS devices.
2294 if (list_empty(&virt_ep->bw_endpoint_list))
2296 /* For LS/FS devices, we need to translate the interval expressed in
2297 * microframes to frames.
2299 if (udev->speed == USB_SPEED_HIGH)
2300 normalized_interval = ep_bw->ep_interval;
2302 normalized_interval = ep_bw->ep_interval - 3;
2304 if (normalized_interval == 0)
2305 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2306 interval_bw = &bw_table->interval_bw[normalized_interval];
2307 interval_bw->num_packets -= ep_bw->num_packets;
2308 switch (udev->speed) {
2310 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2312 case USB_SPEED_FULL:
2313 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2315 case USB_SPEED_HIGH:
2316 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2318 case USB_SPEED_SUPER:
2319 case USB_SPEED_UNKNOWN:
2320 case USB_SPEED_WIRELESS:
2321 /* Should never happen because only LS/FS/HS endpoints will get
2322 * added to the endpoint list.
2327 tt_info->active_eps -= 1;
2328 list_del_init(&virt_ep->bw_endpoint_list);
2331 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2332 struct xhci_bw_info *ep_bw,
2333 struct xhci_interval_bw_table *bw_table,
2334 struct usb_device *udev,
2335 struct xhci_virt_ep *virt_ep,
2336 struct xhci_tt_bw_info *tt_info)
2338 struct xhci_interval_bw *interval_bw;
2339 struct xhci_virt_ep *smaller_ep;
2340 int normalized_interval;
2342 if (xhci_is_async_ep(ep_bw->type))
2345 if (udev->speed == USB_SPEED_SUPER) {
2346 if (xhci_is_sync_in_ep(ep_bw->type))
2347 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2348 xhci_get_ss_bw_consumed(ep_bw);
2350 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2351 xhci_get_ss_bw_consumed(ep_bw);
2355 /* For LS/FS devices, we need to translate the interval expressed in
2356 * microframes to frames.
2358 if (udev->speed == USB_SPEED_HIGH)
2359 normalized_interval = ep_bw->ep_interval;
2361 normalized_interval = ep_bw->ep_interval - 3;
2363 if (normalized_interval == 0)
2364 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2365 interval_bw = &bw_table->interval_bw[normalized_interval];
2366 interval_bw->num_packets += ep_bw->num_packets;
2367 switch (udev->speed) {
2369 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2371 case USB_SPEED_FULL:
2372 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2374 case USB_SPEED_HIGH:
2375 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2377 case USB_SPEED_SUPER:
2378 case USB_SPEED_UNKNOWN:
2379 case USB_SPEED_WIRELESS:
2380 /* Should never happen because only LS/FS/HS endpoints will get
2381 * added to the endpoint list.
2387 tt_info->active_eps += 1;
2388 /* Insert the endpoint into the list, largest max packet size first. */
2389 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2391 if (ep_bw->max_packet_size >=
2392 smaller_ep->bw_info.max_packet_size) {
2393 /* Add the new ep before the smaller endpoint */
2394 list_add_tail(&virt_ep->bw_endpoint_list,
2395 &smaller_ep->bw_endpoint_list);
2399 /* Add the new endpoint at the end of the list. */
2400 list_add_tail(&virt_ep->bw_endpoint_list,
2401 &interval_bw->endpoints);
2404 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2405 struct xhci_virt_device *virt_dev,
2408 struct xhci_root_port_bw_info *rh_bw_info;
2409 if (!virt_dev->tt_info)
2412 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2413 if (old_active_eps == 0 &&
2414 virt_dev->tt_info->active_eps != 0) {
2415 rh_bw_info->num_active_tts += 1;
2416 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2417 } else if (old_active_eps != 0 &&
2418 virt_dev->tt_info->active_eps == 0) {
2419 rh_bw_info->num_active_tts -= 1;
2420 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2424 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2425 struct xhci_virt_device *virt_dev,
2426 struct xhci_container_ctx *in_ctx)
2428 struct xhci_bw_info ep_bw_info[31];
2430 struct xhci_input_control_ctx *ctrl_ctx;
2431 int old_active_eps = 0;
2433 if (virt_dev->tt_info)
2434 old_active_eps = virt_dev->tt_info->active_eps;
2436 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2438 for (i = 0; i < 31; i++) {
2439 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2442 /* Make a copy of the BW info in case we need to revert this */
2443 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2444 sizeof(ep_bw_info[i]));
2445 /* Drop the endpoint from the interval table if the endpoint is
2446 * being dropped or changed.
2448 if (EP_IS_DROPPED(ctrl_ctx, i))
2449 xhci_drop_ep_from_interval_table(xhci,
2450 &virt_dev->eps[i].bw_info,
2456 /* Overwrite the information stored in the endpoints' bw_info */
2457 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2458 for (i = 0; i < 31; i++) {
2459 /* Add any changed or added endpoints to the interval table */
2460 if (EP_IS_ADDED(ctrl_ctx, i))
2461 xhci_add_ep_to_interval_table(xhci,
2462 &virt_dev->eps[i].bw_info,
2469 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2470 /* Ok, this fits in the bandwidth we have.
2471 * Update the number of active TTs.
2473 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2477 /* We don't have enough bandwidth for this, revert the stored info. */
2478 for (i = 0; i < 31; i++) {
2479 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2482 /* Drop the new copies of any added or changed endpoints from
2483 * the interval table.
2485 if (EP_IS_ADDED(ctrl_ctx, i)) {
2486 xhci_drop_ep_from_interval_table(xhci,
2487 &virt_dev->eps[i].bw_info,
2493 /* Revert the endpoint back to its old information */
2494 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2495 sizeof(ep_bw_info[i]));
2496 /* Add any changed or dropped endpoints back into the table */
2497 if (EP_IS_DROPPED(ctrl_ctx, i))
2498 xhci_add_ep_to_interval_table(xhci,
2499 &virt_dev->eps[i].bw_info,
2509 /* Issue a configure endpoint command or evaluate context command
2510 * and wait for it to finish.
2512 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2513 struct usb_device *udev,
2514 struct xhci_command *command,
2515 bool ctx_change, bool must_succeed)
2519 unsigned long flags;
2520 struct xhci_container_ctx *in_ctx;
2521 struct completion *cmd_completion;
2523 struct xhci_virt_device *virt_dev;
2525 spin_lock_irqsave(&xhci->lock, flags);
2526 virt_dev = xhci->devs[udev->slot_id];
2529 in_ctx = command->in_ctx;
2531 in_ctx = virt_dev->in_ctx;
2533 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2534 xhci_reserve_host_resources(xhci, in_ctx)) {
2535 spin_unlock_irqrestore(&xhci->lock, flags);
2536 xhci_warn(xhci, "Not enough host resources, "
2537 "active endpoint contexts = %u\n",
2538 xhci->num_active_eps);
2541 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2542 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2543 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2544 xhci_free_host_resources(xhci, in_ctx);
2545 spin_unlock_irqrestore(&xhci->lock, flags);
2546 xhci_warn(xhci, "Not enough bandwidth\n");
2551 cmd_completion = command->completion;
2552 cmd_status = &command->status;
2553 command->command_trb = xhci->cmd_ring->enqueue;
2555 /* Enqueue pointer can be left pointing to the link TRB,
2556 * we must handle that
2558 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2559 command->command_trb =
2560 xhci->cmd_ring->enq_seg->next->trbs;
2562 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2564 cmd_completion = &virt_dev->cmd_completion;
2565 cmd_status = &virt_dev->cmd_status;
2567 init_completion(cmd_completion);
2570 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2571 udev->slot_id, must_succeed);
2573 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2574 udev->slot_id, must_succeed);
2577 list_del(&command->cmd_list);
2578 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2579 xhci_free_host_resources(xhci, in_ctx);
2580 spin_unlock_irqrestore(&xhci->lock, flags);
2581 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2584 xhci_ring_cmd_db(xhci);
2585 spin_unlock_irqrestore(&xhci->lock, flags);
2587 /* Wait for the configure endpoint command to complete */
2588 timeleft = wait_for_completion_interruptible_timeout(
2590 USB_CTRL_SET_TIMEOUT);
2591 if (timeleft <= 0) {
2592 xhci_warn(xhci, "%s while waiting for %s command\n",
2593 timeleft == 0 ? "Timeout" : "Signal",
2595 "configure endpoint" :
2596 "evaluate context");
2597 /* FIXME cancel the configure endpoint command */
2602 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2604 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2606 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2607 spin_lock_irqsave(&xhci->lock, flags);
2608 /* If the command failed, remove the reserved resources.
2609 * Otherwise, clean up the estimate to include dropped eps.
2612 xhci_free_host_resources(xhci, in_ctx);
2614 xhci_finish_resource_reservation(xhci, in_ctx);
2615 spin_unlock_irqrestore(&xhci->lock, flags);
2620 /* Called after one or more calls to xhci_add_endpoint() or
2621 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2622 * to call xhci_reset_bandwidth().
2624 * Since we are in the middle of changing either configuration or
2625 * installing a new alt setting, the USB core won't allow URBs to be
2626 * enqueued for any endpoint on the old config or interface. Nothing
2627 * else should be touching the xhci->devs[slot_id] structure, so we
2628 * don't need to take the xhci->lock for manipulating that.
2630 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2634 struct xhci_hcd *xhci;
2635 struct xhci_virt_device *virt_dev;
2636 struct xhci_input_control_ctx *ctrl_ctx;
2637 struct xhci_slot_ctx *slot_ctx;
2639 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2642 xhci = hcd_to_xhci(hcd);
2643 if (xhci->xhc_state & XHCI_STATE_DYING)
2646 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2647 virt_dev = xhci->devs[udev->slot_id];
2649 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2650 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2651 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2652 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2653 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2655 /* Don't issue the command if there's no endpoints to update. */
2656 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2657 ctrl_ctx->drop_flags == 0)
2660 xhci_dbg(xhci, "New Input Control Context:\n");
2661 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2662 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2663 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2665 ret = xhci_configure_endpoint(xhci, udev, NULL,
2668 /* Callee should call reset_bandwidth() */
2672 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2673 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2674 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2676 /* Free any rings that were dropped, but not changed. */
2677 for (i = 1; i < 31; ++i) {
2678 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2679 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2680 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2682 xhci_zero_in_ctx(xhci, virt_dev);
2684 * Install any rings for completely new endpoints or changed endpoints,
2685 * and free or cache any old rings from changed endpoints.
2687 for (i = 1; i < 31; ++i) {
2688 if (!virt_dev->eps[i].new_ring)
2690 /* Only cache or free the old ring if it exists.
2691 * It may not if this is the first add of an endpoint.
2693 if (virt_dev->eps[i].ring) {
2694 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2696 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2697 virt_dev->eps[i].new_ring = NULL;
2703 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2705 struct xhci_hcd *xhci;
2706 struct xhci_virt_device *virt_dev;
2709 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2712 xhci = hcd_to_xhci(hcd);
2714 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2715 virt_dev = xhci->devs[udev->slot_id];
2716 /* Free any rings allocated for added endpoints */
2717 for (i = 0; i < 31; ++i) {
2718 if (virt_dev->eps[i].new_ring) {
2719 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2720 virt_dev->eps[i].new_ring = NULL;
2723 xhci_zero_in_ctx(xhci, virt_dev);
2726 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2727 struct xhci_container_ctx *in_ctx,
2728 struct xhci_container_ctx *out_ctx,
2729 u32 add_flags, u32 drop_flags)
2731 struct xhci_input_control_ctx *ctrl_ctx;
2732 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2733 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2734 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2735 xhci_slot_copy(xhci, in_ctx, out_ctx);
2736 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2738 xhci_dbg(xhci, "Input Context:\n");
2739 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2742 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2743 unsigned int slot_id, unsigned int ep_index,
2744 struct xhci_dequeue_state *deq_state)
2746 struct xhci_container_ctx *in_ctx;
2747 struct xhci_ep_ctx *ep_ctx;
2751 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2752 xhci->devs[slot_id]->out_ctx, ep_index);
2753 in_ctx = xhci->devs[slot_id]->in_ctx;
2754 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2755 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2756 deq_state->new_deq_ptr);
2758 xhci_warn(xhci, "WARN Cannot submit config ep after "
2759 "reset ep command\n");
2760 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2761 deq_state->new_deq_seg,
2762 deq_state->new_deq_ptr);
2765 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2767 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2768 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2769 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2772 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2773 struct usb_device *udev, unsigned int ep_index)
2775 struct xhci_dequeue_state deq_state;
2776 struct xhci_virt_ep *ep;
2778 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2779 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2780 /* We need to move the HW's dequeue pointer past this TD,
2781 * or it will attempt to resend it on the next doorbell ring.
2783 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2784 ep_index, ep->stopped_stream, ep->stopped_td,
2787 /* HW with the reset endpoint quirk will use the saved dequeue state to
2788 * issue a configure endpoint command later.
2790 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2791 xhci_dbg(xhci, "Queueing new dequeue state\n");
2792 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2793 ep_index, ep->stopped_stream, &deq_state);
2795 /* Better hope no one uses the input context between now and the
2796 * reset endpoint completion!
2797 * XXX: No idea how this hardware will react when stream rings
2800 xhci_dbg(xhci, "Setting up input context for "
2801 "configure endpoint command\n");
2802 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2803 ep_index, &deq_state);
2807 /* Deal with stalled endpoints. The core should have sent the control message
2808 * to clear the halt condition. However, we need to make the xHCI hardware
2809 * reset its sequence number, since a device will expect a sequence number of
2810 * zero after the halt condition is cleared.
2811 * Context: in_interrupt
2813 void xhci_endpoint_reset(struct usb_hcd *hcd,
2814 struct usb_host_endpoint *ep)
2816 struct xhci_hcd *xhci;
2817 struct usb_device *udev;
2818 unsigned int ep_index;
2819 unsigned long flags;
2821 struct xhci_virt_ep *virt_ep;
2823 xhci = hcd_to_xhci(hcd);
2824 udev = (struct usb_device *) ep->hcpriv;
2825 /* Called with a root hub endpoint (or an endpoint that wasn't added
2826 * with xhci_add_endpoint()
2830 ep_index = xhci_get_endpoint_index(&ep->desc);
2831 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2832 if (!virt_ep->stopped_td) {
2833 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2834 ep->desc.bEndpointAddress);
2837 if (usb_endpoint_xfer_control(&ep->desc)) {
2838 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2842 xhci_dbg(xhci, "Queueing reset endpoint command\n");
2843 spin_lock_irqsave(&xhci->lock, flags);
2844 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2846 * Can't change the ring dequeue pointer until it's transitioned to the
2847 * stopped state, which is only upon a successful reset endpoint
2848 * command. Better hope that last command worked!
2851 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2852 kfree(virt_ep->stopped_td);
2853 xhci_ring_cmd_db(xhci);
2855 virt_ep->stopped_td = NULL;
2856 virt_ep->stopped_trb = NULL;
2857 virt_ep->stopped_stream = 0;
2858 spin_unlock_irqrestore(&xhci->lock, flags);
2861 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2864 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2865 struct usb_device *udev, struct usb_host_endpoint *ep,
2866 unsigned int slot_id)
2869 unsigned int ep_index;
2870 unsigned int ep_state;
2874 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2877 if (ep->ss_ep_comp.bmAttributes == 0) {
2878 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2879 " descriptor for ep 0x%x does not support streams\n",
2880 ep->desc.bEndpointAddress);
2884 ep_index = xhci_get_endpoint_index(&ep->desc);
2885 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2886 if (ep_state & EP_HAS_STREAMS ||
2887 ep_state & EP_GETTING_STREAMS) {
2888 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2889 "already has streams set up.\n",
2890 ep->desc.bEndpointAddress);
2891 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2892 "dynamic stream context array reallocation.\n");
2895 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2896 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2897 "endpoint 0x%x; URBs are pending.\n",
2898 ep->desc.bEndpointAddress);
2904 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2905 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2907 unsigned int max_streams;
2909 /* The stream context array size must be a power of two */
2910 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2912 * Find out how many primary stream array entries the host controller
2913 * supports. Later we may use secondary stream arrays (similar to 2nd
2914 * level page entries), but that's an optional feature for xHCI host
2915 * controllers. xHCs must support at least 4 stream IDs.
2917 max_streams = HCC_MAX_PSA(xhci->hcc_params);
2918 if (*num_stream_ctxs > max_streams) {
2919 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2921 *num_stream_ctxs = max_streams;
2922 *num_streams = max_streams;
2926 /* Returns an error code if one of the endpoint already has streams.
2927 * This does not change any data structures, it only checks and gathers
2930 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2931 struct usb_device *udev,
2932 struct usb_host_endpoint **eps, unsigned int num_eps,
2933 unsigned int *num_streams, u32 *changed_ep_bitmask)
2935 unsigned int max_streams;
2936 unsigned int endpoint_flag;
2940 for (i = 0; i < num_eps; i++) {
2941 ret = xhci_check_streams_endpoint(xhci, udev,
2942 eps[i], udev->slot_id);
2946 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2947 if (max_streams < (*num_streams - 1)) {
2948 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2949 eps[i]->desc.bEndpointAddress,
2951 *num_streams = max_streams+1;
2954 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2955 if (*changed_ep_bitmask & endpoint_flag)
2957 *changed_ep_bitmask |= endpoint_flag;
2962 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2963 struct usb_device *udev,
2964 struct usb_host_endpoint **eps, unsigned int num_eps)
2966 u32 changed_ep_bitmask = 0;
2967 unsigned int slot_id;
2968 unsigned int ep_index;
2969 unsigned int ep_state;
2972 slot_id = udev->slot_id;
2973 if (!xhci->devs[slot_id])
2976 for (i = 0; i < num_eps; i++) {
2977 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2978 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2979 /* Are streams already being freed for the endpoint? */
2980 if (ep_state & EP_GETTING_NO_STREAMS) {
2981 xhci_warn(xhci, "WARN Can't disable streams for "
2983 "streams are being disabled already.",
2984 eps[i]->desc.bEndpointAddress);
2987 /* Are there actually any streams to free? */
2988 if (!(ep_state & EP_HAS_STREAMS) &&
2989 !(ep_state & EP_GETTING_STREAMS)) {
2990 xhci_warn(xhci, "WARN Can't disable streams for "
2992 "streams are already disabled!",
2993 eps[i]->desc.bEndpointAddress);
2994 xhci_warn(xhci, "WARN xhci_free_streams() called "
2995 "with non-streams endpoint\n");
2998 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3000 return changed_ep_bitmask;
3004 * The USB device drivers use this function (though the HCD interface in USB
3005 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3006 * coordinate mass storage command queueing across multiple endpoints (basically
3007 * a stream ID == a task ID).
3009 * Setting up streams involves allocating the same size stream context array
3010 * for each endpoint and issuing a configure endpoint command for all endpoints.
3012 * Don't allow the call to succeed if one endpoint only supports one stream
3013 * (which means it doesn't support streams at all).
3015 * Drivers may get less stream IDs than they asked for, if the host controller
3016 * hardware or endpoints claim they can't support the number of requested
3019 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3020 struct usb_host_endpoint **eps, unsigned int num_eps,
3021 unsigned int num_streams, gfp_t mem_flags)
3024 struct xhci_hcd *xhci;
3025 struct xhci_virt_device *vdev;
3026 struct xhci_command *config_cmd;
3027 unsigned int ep_index;
3028 unsigned int num_stream_ctxs;
3029 unsigned long flags;
3030 u32 changed_ep_bitmask = 0;
3035 /* Add one to the number of streams requested to account for
3036 * stream 0 that is reserved for xHCI usage.
3039 xhci = hcd_to_xhci(hcd);
3040 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3043 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3045 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3049 /* Check to make sure all endpoints are not already configured for
3050 * streams. While we're at it, find the maximum number of streams that
3051 * all the endpoints will support and check for duplicate endpoints.
3053 spin_lock_irqsave(&xhci->lock, flags);
3054 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3055 num_eps, &num_streams, &changed_ep_bitmask);
3057 xhci_free_command(xhci, config_cmd);
3058 spin_unlock_irqrestore(&xhci->lock, flags);
3061 if (num_streams <= 1) {
3062 xhci_warn(xhci, "WARN: endpoints can't handle "
3063 "more than one stream.\n");
3064 xhci_free_command(xhci, config_cmd);
3065 spin_unlock_irqrestore(&xhci->lock, flags);
3068 vdev = xhci->devs[udev->slot_id];
3069 /* Mark each endpoint as being in transition, so
3070 * xhci_urb_enqueue() will reject all URBs.
3072 for (i = 0; i < num_eps; i++) {
3073 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3074 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3076 spin_unlock_irqrestore(&xhci->lock, flags);
3078 /* Setup internal data structures and allocate HW data structures for
3079 * streams (but don't install the HW structures in the input context
3080 * until we're sure all memory allocation succeeded).
3082 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3083 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3084 num_stream_ctxs, num_streams);
3086 for (i = 0; i < num_eps; i++) {
3087 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3088 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3090 num_streams, mem_flags);
3091 if (!vdev->eps[ep_index].stream_info)
3093 /* Set maxPstreams in endpoint context and update deq ptr to
3094 * point to stream context array. FIXME
3098 /* Set up the input context for a configure endpoint command. */
3099 for (i = 0; i < num_eps; i++) {
3100 struct xhci_ep_ctx *ep_ctx;
3102 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3103 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3105 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3106 vdev->out_ctx, ep_index);
3107 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3108 vdev->eps[ep_index].stream_info);
3110 /* Tell the HW to drop its old copy of the endpoint context info
3111 * and add the updated copy from the input context.
3113 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3114 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3116 /* Issue and wait for the configure endpoint command */
3117 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3120 /* xHC rejected the configure endpoint command for some reason, so we
3121 * leave the old ring intact and free our internal streams data
3127 spin_lock_irqsave(&xhci->lock, flags);
3128 for (i = 0; i < num_eps; i++) {
3129 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3130 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3131 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3132 udev->slot_id, ep_index);
3133 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3135 xhci_free_command(xhci, config_cmd);
3136 spin_unlock_irqrestore(&xhci->lock, flags);
3138 /* Subtract 1 for stream 0, which drivers can't use */
3139 return num_streams - 1;
3142 /* If it didn't work, free the streams! */
3143 for (i = 0; i < num_eps; i++) {
3144 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3145 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3146 vdev->eps[ep_index].stream_info = NULL;
3147 /* FIXME Unset maxPstreams in endpoint context and
3148 * update deq ptr to point to normal string ring.
3150 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3151 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3152 xhci_endpoint_zero(xhci, vdev, eps[i]);
3154 xhci_free_command(xhci, config_cmd);
3158 /* Transition the endpoint from using streams to being a "normal" endpoint
3161 * Modify the endpoint context state, submit a configure endpoint command,
3162 * and free all endpoint rings for streams if that completes successfully.
3164 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3165 struct usb_host_endpoint **eps, unsigned int num_eps,
3169 struct xhci_hcd *xhci;
3170 struct xhci_virt_device *vdev;
3171 struct xhci_command *command;
3172 unsigned int ep_index;
3173 unsigned long flags;
3174 u32 changed_ep_bitmask;
3176 xhci = hcd_to_xhci(hcd);
3177 vdev = xhci->devs[udev->slot_id];
3179 /* Set up a configure endpoint command to remove the streams rings */
3180 spin_lock_irqsave(&xhci->lock, flags);
3181 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3182 udev, eps, num_eps);
3183 if (changed_ep_bitmask == 0) {
3184 spin_unlock_irqrestore(&xhci->lock, flags);
3188 /* Use the xhci_command structure from the first endpoint. We may have
3189 * allocated too many, but the driver may call xhci_free_streams() for
3190 * each endpoint it grouped into one call to xhci_alloc_streams().
3192 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3193 command = vdev->eps[ep_index].stream_info->free_streams_command;
3194 for (i = 0; i < num_eps; i++) {
3195 struct xhci_ep_ctx *ep_ctx;
3197 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3198 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3199 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3200 EP_GETTING_NO_STREAMS;
3202 xhci_endpoint_copy(xhci, command->in_ctx,
3203 vdev->out_ctx, ep_index);
3204 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3205 &vdev->eps[ep_index]);
3207 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3208 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3209 spin_unlock_irqrestore(&xhci->lock, flags);
3211 /* Issue and wait for the configure endpoint command,
3212 * which must succeed.
3214 ret = xhci_configure_endpoint(xhci, udev, command,
3217 /* xHC rejected the configure endpoint command for some reason, so we
3218 * leave the streams rings intact.
3223 spin_lock_irqsave(&xhci->lock, flags);
3224 for (i = 0; i < num_eps; i++) {
3225 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3226 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3227 vdev->eps[ep_index].stream_info = NULL;
3228 /* FIXME Unset maxPstreams in endpoint context and
3229 * update deq ptr to point to normal string ring.
3231 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3232 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3234 spin_unlock_irqrestore(&xhci->lock, flags);
3240 * Deletes endpoint resources for endpoints that were active before a Reset
3241 * Device command, or a Disable Slot command. The Reset Device command leaves
3242 * the control endpoint intact, whereas the Disable Slot command deletes it.
3244 * Must be called with xhci->lock held.
3246 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3247 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3250 unsigned int num_dropped_eps = 0;
3251 unsigned int drop_flags = 0;
3253 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3254 if (virt_dev->eps[i].ring) {
3255 drop_flags |= 1 << i;
3259 xhci->num_active_eps -= num_dropped_eps;
3260 if (num_dropped_eps)
3261 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3263 num_dropped_eps, drop_flags,
3264 xhci->num_active_eps);
3268 * This submits a Reset Device Command, which will set the device state to 0,
3269 * set the device address to 0, and disable all the endpoints except the default
3270 * control endpoint. The USB core should come back and call
3271 * xhci_address_device(), and then re-set up the configuration. If this is
3272 * called because of a usb_reset_and_verify_device(), then the old alternate
3273 * settings will be re-installed through the normal bandwidth allocation
3276 * Wait for the Reset Device command to finish. Remove all structures
3277 * associated with the endpoints that were disabled. Clear the input device
3278 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3280 * If the virt_dev to be reset does not exist or does not match the udev,
3281 * it means the device is lost, possibly due to the xHC restore error and
3282 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3283 * re-allocate the device.
3285 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3288 unsigned long flags;
3289 struct xhci_hcd *xhci;
3290 unsigned int slot_id;
3291 struct xhci_virt_device *virt_dev;
3292 struct xhci_command *reset_device_cmd;
3294 int last_freed_endpoint;
3295 struct xhci_slot_ctx *slot_ctx;
3296 int old_active_eps = 0;
3298 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3301 xhci = hcd_to_xhci(hcd);
3302 slot_id = udev->slot_id;
3303 virt_dev = xhci->devs[slot_id];
3305 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3306 "not exist. Re-allocate the device\n", slot_id);
3307 ret = xhci_alloc_dev(hcd, udev);
3314 if (virt_dev->udev != udev) {
3315 /* If the virt_dev and the udev does not match, this virt_dev
3316 * may belong to another udev.
3317 * Re-allocate the device.
3319 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3320 "not match the udev. Re-allocate the device\n",
3322 ret = xhci_alloc_dev(hcd, udev);
3329 /* If device is not setup, there is no point in resetting it */
3330 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3331 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3332 SLOT_STATE_DISABLED)
3335 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3336 /* Allocate the command structure that holds the struct completion.
3337 * Assume we're in process context, since the normal device reset
3338 * process has to wait for the device anyway. Storage devices are
3339 * reset as part of error handling, so use GFP_NOIO instead of
3342 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3343 if (!reset_device_cmd) {
3344 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3348 /* Attempt to submit the Reset Device command to the command ring */
3349 spin_lock_irqsave(&xhci->lock, flags);
3350 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3352 /* Enqueue pointer can be left pointing to the link TRB,
3353 * we must handle that
3355 if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3356 reset_device_cmd->command_trb =
3357 xhci->cmd_ring->enq_seg->next->trbs;
3359 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3360 ret = xhci_queue_reset_device(xhci, slot_id);
3362 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3363 list_del(&reset_device_cmd->cmd_list);
3364 spin_unlock_irqrestore(&xhci->lock, flags);
3365 goto command_cleanup;
3367 xhci_ring_cmd_db(xhci);
3368 spin_unlock_irqrestore(&xhci->lock, flags);
3370 /* Wait for the Reset Device command to finish */
3371 timeleft = wait_for_completion_interruptible_timeout(
3372 reset_device_cmd->completion,
3373 USB_CTRL_SET_TIMEOUT);
3374 if (timeleft <= 0) {
3375 xhci_warn(xhci, "%s while waiting for reset device command\n",
3376 timeleft == 0 ? "Timeout" : "Signal");
3377 spin_lock_irqsave(&xhci->lock, flags);
3378 /* The timeout might have raced with the event ring handler, so
3379 * only delete from the list if the item isn't poisoned.
3381 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3382 list_del(&reset_device_cmd->cmd_list);
3383 spin_unlock_irqrestore(&xhci->lock, flags);
3385 goto command_cleanup;
3388 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3389 * unless we tried to reset a slot ID that wasn't enabled,
3390 * or the device wasn't in the addressed or configured state.
3392 ret = reset_device_cmd->status;
3394 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3395 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3396 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3398 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3399 xhci_info(xhci, "Not freeing device rings.\n");
3400 /* Don't treat this as an error. May change my mind later. */
3402 goto command_cleanup;
3404 xhci_dbg(xhci, "Successful reset device command.\n");
3407 if (xhci_is_vendor_info_code(xhci, ret))
3409 xhci_warn(xhci, "Unknown completion code %u for "
3410 "reset device command.\n", ret);
3412 goto command_cleanup;
3415 /* Free up host controller endpoint resources */
3416 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3417 spin_lock_irqsave(&xhci->lock, flags);
3418 /* Don't delete the default control endpoint resources */
3419 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3420 spin_unlock_irqrestore(&xhci->lock, flags);
3423 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3424 last_freed_endpoint = 1;
3425 for (i = 1; i < 31; ++i) {
3426 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3428 if (ep->ep_state & EP_HAS_STREAMS) {
3429 xhci_free_stream_info(xhci, ep->stream_info);
3430 ep->stream_info = NULL;
3431 ep->ep_state &= ~EP_HAS_STREAMS;
3435 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3436 last_freed_endpoint = i;
3438 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3439 xhci_drop_ep_from_interval_table(xhci,
3440 &virt_dev->eps[i].bw_info,
3445 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3447 /* If necessary, update the number of active TTs on this root port */
3448 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3450 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3451 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3455 xhci_free_command(xhci, reset_device_cmd);
3460 * At this point, the struct usb_device is about to go away, the device has
3461 * disconnected, and all traffic has been stopped and the endpoints have been
3462 * disabled. Free any HC data structures associated with that device.
3464 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3466 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3467 struct xhci_virt_device *virt_dev;
3468 unsigned long flags;
3472 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3473 /* If the host is halted due to driver unload, we still need to free the
3476 if (ret <= 0 && ret != -ENODEV)
3479 virt_dev = xhci->devs[udev->slot_id];
3481 /* Stop any wayward timer functions (which may grab the lock) */
3482 for (i = 0; i < 31; ++i) {
3483 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3484 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3487 if (udev->usb2_hw_lpm_enabled) {
3488 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3489 udev->usb2_hw_lpm_enabled = 0;
3492 spin_lock_irqsave(&xhci->lock, flags);
3493 /* Don't disable the slot if the host controller is dead. */
3494 state = xhci_readl(xhci, &xhci->op_regs->status);
3495 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3496 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3497 xhci_free_virt_device(xhci, udev->slot_id);
3498 spin_unlock_irqrestore(&xhci->lock, flags);
3502 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3503 spin_unlock_irqrestore(&xhci->lock, flags);
3504 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3507 xhci_ring_cmd_db(xhci);
3508 spin_unlock_irqrestore(&xhci->lock, flags);
3510 * Event command completion handler will free any data structures
3511 * associated with the slot. XXX Can free sleep?
3516 * Checks if we have enough host controller resources for the default control
3519 * Must be called with xhci->lock held.
3521 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3523 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3524 xhci_dbg(xhci, "Not enough ep ctxs: "
3525 "%u active, need to add 1, limit is %u.\n",
3526 xhci->num_active_eps, xhci->limit_active_eps);
3529 xhci->num_active_eps += 1;
3530 xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3531 xhci->num_active_eps);
3537 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3538 * timed out, or allocating memory failed. Returns 1 on success.
3540 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3542 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3543 unsigned long flags;
3547 spin_lock_irqsave(&xhci->lock, flags);
3548 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3550 spin_unlock_irqrestore(&xhci->lock, flags);
3551 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3554 xhci_ring_cmd_db(xhci);
3555 spin_unlock_irqrestore(&xhci->lock, flags);
3557 /* XXX: how much time for xHC slot assignment? */
3558 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3559 USB_CTRL_SET_TIMEOUT);
3560 if (timeleft <= 0) {
3561 xhci_warn(xhci, "%s while waiting for a slot\n",
3562 timeleft == 0 ? "Timeout" : "Signal");
3563 /* FIXME cancel the enable slot request */
3567 if (!xhci->slot_id) {
3568 xhci_err(xhci, "Error while assigning device slot ID\n");
3572 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3573 spin_lock_irqsave(&xhci->lock, flags);
3574 ret = xhci_reserve_host_control_ep_resources(xhci);
3576 spin_unlock_irqrestore(&xhci->lock, flags);
3577 xhci_warn(xhci, "Not enough host resources, "
3578 "active endpoint contexts = %u\n",
3579 xhci->num_active_eps);
3582 spin_unlock_irqrestore(&xhci->lock, flags);
3584 /* Use GFP_NOIO, since this function can be called from
3585 * xhci_discover_or_reset_device(), which may be called as part of
3586 * mass storage driver error handling.
3588 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3589 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3592 udev->slot_id = xhci->slot_id;
3593 /* Is this a LS or FS device under a HS hub? */
3594 /* Hub or peripherial? */
3598 /* Disable slot, if we can do it without mem alloc */
3599 spin_lock_irqsave(&xhci->lock, flags);
3600 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3601 xhci_ring_cmd_db(xhci);
3602 spin_unlock_irqrestore(&xhci->lock, flags);
3607 * Issue an Address Device command (which will issue a SetAddress request to
3609 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3610 * we should only issue and wait on one address command at the same time.
3612 * We add one to the device address issued by the hardware because the USB core
3613 * uses address 1 for the root hubs (even though they're not really devices).
3615 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3617 unsigned long flags;
3619 struct xhci_virt_device *virt_dev;
3621 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3622 struct xhci_slot_ctx *slot_ctx;
3623 struct xhci_input_control_ctx *ctrl_ctx;
3626 if (!udev->slot_id) {
3627 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3631 virt_dev = xhci->devs[udev->slot_id];
3633 if (WARN_ON(!virt_dev)) {
3635 * In plug/unplug torture test with an NEC controller,
3636 * a zero-dereference was observed once due to virt_dev = 0.
3637 * Print useful debug rather than crash if it is observed again!
3639 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3644 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3646 * If this is the first Set Address since device plug-in or
3647 * virt_device realloaction after a resume with an xHCI power loss,
3648 * then set up the slot context.
3650 if (!slot_ctx->dev_info)
3651 xhci_setup_addressable_virt_dev(xhci, udev);
3652 /* Otherwise, update the control endpoint ring enqueue pointer. */
3654 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3655 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3656 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3657 ctrl_ctx->drop_flags = 0;
3659 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3660 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3662 spin_lock_irqsave(&xhci->lock, flags);
3663 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3666 spin_unlock_irqrestore(&xhci->lock, flags);
3667 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3670 xhci_ring_cmd_db(xhci);
3671 spin_unlock_irqrestore(&xhci->lock, flags);
3673 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3674 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3675 USB_CTRL_SET_TIMEOUT);
3676 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3677 * the SetAddress() "recovery interval" required by USB and aborting the
3678 * command on a timeout.
3680 if (timeleft <= 0) {
3681 xhci_warn(xhci, "%s while waiting for address device command\n",
3682 timeleft == 0 ? "Timeout" : "Signal");
3683 /* FIXME cancel the address device command */
3687 switch (virt_dev->cmd_status) {
3688 case COMP_CTX_STATE:
3690 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3695 dev_warn(&udev->dev, "Device not responding to set address.\n");
3699 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3700 "device command.\n");
3704 xhci_dbg(xhci, "Successful Address Device command\n");
3707 xhci_err(xhci, "ERROR: unexpected command completion "
3708 "code 0x%x.\n", virt_dev->cmd_status);
3709 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3710 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3717 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3718 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3719 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3721 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3722 (unsigned long long)
3723 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3724 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3725 (unsigned long long)virt_dev->out_ctx->dma);
3726 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3727 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3728 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3729 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3731 * USB core uses address 1 for the roothubs, so we add one to the
3732 * address given back to us by the HC.
3734 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3735 /* Use kernel assigned address for devices; store xHC assigned
3736 * address locally. */
3737 virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3739 /* Zero the input context control for later use */
3740 ctrl_ctx->add_flags = 0;
3741 ctrl_ctx->drop_flags = 0;
3743 xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3748 #ifdef CONFIG_USB_SUSPEND
3750 /* BESL to HIRD Encoding array for USB2 LPM */
3751 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3752 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3754 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3755 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3756 struct usb_device *udev)
3758 int u2del, besl, besl_host;
3759 int besl_device = 0;
3762 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3763 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3765 if (field & USB_BESL_SUPPORT) {
3766 for (besl_host = 0; besl_host < 16; besl_host++) {
3767 if (xhci_besl_encoding[besl_host] >= u2del)
3770 /* Use baseline BESL value as default */
3771 if (field & USB_BESL_BASELINE_VALID)
3772 besl_device = USB_GET_BESL_BASELINE(field);
3773 else if (field & USB_BESL_DEEP_VALID)
3774 besl_device = USB_GET_BESL_DEEP(field);
3779 besl_host = (u2del - 51) / 75 + 1;
3782 besl = besl_host + besl_device;
3789 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3790 struct usb_device *udev)
3792 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3793 struct dev_info *dev_info;
3794 __le32 __iomem **port_array;
3795 __le32 __iomem *addr, *pm_addr;
3797 unsigned int port_num;
3798 unsigned long flags;
3802 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3806 /* we only support lpm for non-hub device connected to root hub yet */
3807 if (!udev->parent || udev->parent->parent ||
3808 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3811 spin_lock_irqsave(&xhci->lock, flags);
3813 /* Look for devices in lpm_failed_devs list */
3814 dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3815 le16_to_cpu(udev->descriptor.idProduct);
3816 list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3817 if (dev_info->dev_id == dev_id) {
3823 port_array = xhci->usb2_ports;
3824 port_num = udev->portnum - 1;
3826 if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3827 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3833 * Test USB 2.0 software LPM.
3834 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3835 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3836 * in the June 2011 errata release.
3838 xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3840 * Set L1 Device Slot and HIRD/BESL.
3841 * Check device's USB 2.0 extension descriptor to determine whether
3842 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3844 pm_addr = port_array[port_num] + 1;
3845 hird = xhci_calculate_hird_besl(xhci, udev);
3846 temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3847 xhci_writel(xhci, temp, pm_addr);
3849 /* Set port link state to U2(L1) */
3850 addr = port_array[port_num];
3851 xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3854 spin_unlock_irqrestore(&xhci->lock, flags);
3856 spin_lock_irqsave(&xhci->lock, flags);
3858 /* Check L1 Status */
3859 ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3860 if (ret != -ETIMEDOUT) {
3861 /* enter L1 successfully */
3862 temp = xhci_readl(xhci, addr);
3863 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3867 temp = xhci_readl(xhci, pm_addr);
3868 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3869 port_num, temp & PORT_L1S_MASK);
3873 /* Resume the port */
3874 xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3876 spin_unlock_irqrestore(&xhci->lock, flags);
3878 spin_lock_irqsave(&xhci->lock, flags);
3881 xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3883 /* Check PORTSC to make sure the device is in the right state */
3885 temp = xhci_readl(xhci, addr);
3886 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
3887 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3888 (temp & PORT_PLS_MASK) != XDEV_U0) {
3889 xhci_dbg(xhci, "port L1 resume fail\n");
3895 /* Insert dev to lpm_failed_devs list */
3896 xhci_warn(xhci, "device LPM test failed, may disconnect and "
3898 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3903 dev_info->dev_id = dev_id;
3904 INIT_LIST_HEAD(&dev_info->list);
3905 list_add(&dev_info->list, &xhci->lpm_failed_devs);
3907 xhci_ring_device(xhci, udev->slot_id);
3911 spin_unlock_irqrestore(&xhci->lock, flags);
3915 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3916 struct usb_device *udev, int enable)
3918 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3919 __le32 __iomem **port_array;
3920 __le32 __iomem *pm_addr;
3922 unsigned int port_num;
3923 unsigned long flags;
3926 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3930 if (!udev->parent || udev->parent->parent ||
3931 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3934 if (udev->usb2_hw_lpm_capable != 1)
3937 spin_lock_irqsave(&xhci->lock, flags);
3939 port_array = xhci->usb2_ports;
3940 port_num = udev->portnum - 1;
3941 pm_addr = port_array[port_num] + 1;
3942 temp = xhci_readl(xhci, pm_addr);
3944 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3945 enable ? "enable" : "disable", port_num);
3947 hird = xhci_calculate_hird_besl(xhci, udev);
3950 temp &= ~PORT_HIRD_MASK;
3951 temp |= PORT_HIRD(hird) | PORT_RWE;
3952 xhci_writel(xhci, temp, pm_addr);
3953 temp = xhci_readl(xhci, pm_addr);
3955 xhci_writel(xhci, temp, pm_addr);
3957 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3958 xhci_writel(xhci, temp, pm_addr);
3961 spin_unlock_irqrestore(&xhci->lock, flags);
3965 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3967 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3970 ret = xhci_usb2_software_lpm_test(hcd, udev);
3972 xhci_dbg(xhci, "software LPM test succeed\n");
3973 if (xhci->hw_lpm_support == 1) {
3974 udev->usb2_hw_lpm_capable = 1;
3975 ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
3977 udev->usb2_hw_lpm_enabled = 1;
3986 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3987 struct usb_device *udev, int enable)
3992 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3997 #endif /* CONFIG_USB_SUSPEND */
3999 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4002 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4003 static unsigned long long xhci_service_interval_to_ns(
4004 struct usb_endpoint_descriptor *desc)
4006 return (1 << (desc->bInterval - 1)) * 125 * 1000;
4009 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4010 enum usb3_link_state state)
4012 unsigned long long sel;
4013 unsigned long long pel;
4014 unsigned int max_sel_pel;
4019 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4020 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4021 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4022 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4026 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4027 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4028 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4032 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4034 return USB3_LPM_DISABLED;
4037 if (sel <= max_sel_pel && pel <= max_sel_pel)
4038 return USB3_LPM_DEVICE_INITIATED;
4040 if (sel > max_sel_pel)
4041 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4042 "due to long SEL %llu ms\n",
4045 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4046 "due to long PEL %llu\n ms",
4048 return USB3_LPM_DISABLED;
4051 /* Returns the hub-encoded U1 timeout value.
4052 * The U1 timeout should be the maximum of the following values:
4053 * - For control endpoints, U1 system exit latency (SEL) * 3
4054 * - For bulk endpoints, U1 SEL * 5
4055 * - For interrupt endpoints:
4056 * - Notification EPs, U1 SEL * 3
4057 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4058 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4060 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4061 struct usb_endpoint_descriptor *desc)
4063 unsigned long long timeout_ns;
4067 ep_type = usb_endpoint_type(desc);
4069 case USB_ENDPOINT_XFER_CONTROL:
4070 timeout_ns = udev->u1_params.sel * 3;
4072 case USB_ENDPOINT_XFER_BULK:
4073 timeout_ns = udev->u1_params.sel * 5;
4075 case USB_ENDPOINT_XFER_INT:
4076 intr_type = usb_endpoint_interrupt_type(desc);
4077 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4078 timeout_ns = udev->u1_params.sel * 3;
4081 /* Otherwise the calculation is the same as isoc eps */
4082 case USB_ENDPOINT_XFER_ISOC:
4083 timeout_ns = xhci_service_interval_to_ns(desc);
4084 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4085 if (timeout_ns < udev->u1_params.sel * 2)
4086 timeout_ns = udev->u1_params.sel * 2;
4092 /* The U1 timeout is encoded in 1us intervals. */
4093 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4094 /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4095 if (timeout_ns == USB3_LPM_DISABLED)
4098 /* If the necessary timeout value is bigger than what we can set in the
4099 * USB 3.0 hub, we have to disable hub-initiated U1.
4101 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4103 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4104 "due to long timeout %llu ms\n", timeout_ns);
4105 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4108 /* Returns the hub-encoded U2 timeout value.
4109 * The U2 timeout should be the maximum of:
4110 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4111 * - largest bInterval of any active periodic endpoint (to avoid going
4112 * into lower power link states between intervals).
4113 * - the U2 Exit Latency of the device
4115 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4116 struct usb_endpoint_descriptor *desc)
4118 unsigned long long timeout_ns;
4119 unsigned long long u2_del_ns;
4121 timeout_ns = 10 * 1000 * 1000;
4123 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4124 (xhci_service_interval_to_ns(desc) > timeout_ns))
4125 timeout_ns = xhci_service_interval_to_ns(desc);
4127 u2_del_ns = udev->bos->ss_cap->bU2DevExitLat * 1000;
4128 if (u2_del_ns > timeout_ns)
4129 timeout_ns = u2_del_ns;
4131 /* The U2 timeout is encoded in 256us intervals */
4132 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4133 /* If the necessary timeout value is bigger than what we can set in the
4134 * USB 3.0 hub, we have to disable hub-initiated U2.
4136 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4138 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4139 "due to long timeout %llu ms\n", timeout_ns);
4140 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4143 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4144 struct usb_device *udev,
4145 struct usb_endpoint_descriptor *desc,
4146 enum usb3_link_state state,
4149 if (state == USB3_LPM_U1) {
4150 if (xhci->quirks & XHCI_INTEL_HOST)
4151 return xhci_calculate_intel_u1_timeout(udev, desc);
4153 if (xhci->quirks & XHCI_INTEL_HOST)
4154 return xhci_calculate_intel_u2_timeout(udev, desc);
4157 return USB3_LPM_DISABLED;
4160 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4161 struct usb_device *udev,
4162 struct usb_endpoint_descriptor *desc,
4163 enum usb3_link_state state,
4168 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4169 desc, state, timeout);
4171 /* If we found we can't enable hub-initiated LPM, or
4172 * the U1 or U2 exit latency was too high to allow
4173 * device-initiated LPM as well, just stop searching.
4175 if (alt_timeout == USB3_LPM_DISABLED ||
4176 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4177 *timeout = alt_timeout;
4180 if (alt_timeout > *timeout)
4181 *timeout = alt_timeout;
4185 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4186 struct usb_device *udev,
4187 struct usb_host_interface *alt,
4188 enum usb3_link_state state,
4193 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4194 if (xhci_update_timeout_for_endpoint(xhci, udev,
4195 &alt->endpoint[j].desc, state, timeout))
4202 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4203 enum usb3_link_state state)
4205 struct usb_device *parent;
4206 unsigned int num_hubs;
4208 if (state == USB3_LPM_U2)
4211 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4212 for (parent = udev->parent, num_hubs = 0; parent->parent;
4213 parent = parent->parent)
4219 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4220 " below second-tier hub.\n");
4221 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4222 "to decrease power consumption.\n");
4226 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4227 struct usb_device *udev,
4228 enum usb3_link_state state)
4230 if (xhci->quirks & XHCI_INTEL_HOST)
4231 return xhci_check_intel_tier_policy(udev, state);
4235 /* Returns the U1 or U2 timeout that should be enabled.
4236 * If the tier check or timeout setting functions return with a non-zero exit
4237 * code, that means the timeout value has been finalized and we shouldn't look
4238 * at any more endpoints.
4240 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4241 struct usb_device *udev, enum usb3_link_state state)
4243 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4244 struct usb_host_config *config;
4247 u16 timeout = USB3_LPM_DISABLED;
4249 if (state == USB3_LPM_U1)
4251 else if (state == USB3_LPM_U2)
4254 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4259 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4262 /* Gather some information about the currently installed configuration
4263 * and alternate interface settings.
4265 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4269 config = udev->actconfig;
4273 for (i = 0; i < USB_MAXINTERFACES; i++) {
4274 struct usb_driver *driver;
4275 struct usb_interface *intf = config->interface[i];
4280 /* Check if any currently bound drivers want hub-initiated LPM
4283 if (intf->dev.driver) {
4284 driver = to_usb_driver(intf->dev.driver);
4285 if (driver && driver->disable_hub_initiated_lpm) {
4286 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4287 "at request of driver %s\n",
4288 state_name, driver->name);
4289 return xhci_get_timeout_no_hub_lpm(udev, state);
4293 /* Not sure how this could happen... */
4294 if (!intf->cur_altsetting)
4297 if (xhci_update_timeout_for_interface(xhci, udev,
4298 intf->cur_altsetting,
4306 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4307 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4309 static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4310 struct usb_device *udev, u16 max_exit_latency)
4312 struct xhci_virt_device *virt_dev;
4313 struct xhci_command *command;
4314 struct xhci_input_control_ctx *ctrl_ctx;
4315 struct xhci_slot_ctx *slot_ctx;
4316 unsigned long flags;
4319 spin_lock_irqsave(&xhci->lock, flags);
4320 if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
4321 spin_unlock_irqrestore(&xhci->lock, flags);
4325 /* Attempt to issue an Evaluate Context command to change the MEL. */
4326 virt_dev = xhci->devs[udev->slot_id];
4327 command = xhci->lpm_command;
4328 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4329 spin_unlock_irqrestore(&xhci->lock, flags);
4331 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
4332 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4333 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4334 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4335 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4337 xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
4338 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4339 xhci_dbg_ctx(xhci, command->in_ctx, 0);
4341 /* Issue and wait for the evaluate context command. */
4342 ret = xhci_configure_endpoint(xhci, udev, command,
4344 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4345 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4348 spin_lock_irqsave(&xhci->lock, flags);
4349 virt_dev->current_mel = max_exit_latency;
4350 spin_unlock_irqrestore(&xhci->lock, flags);
4355 static int calculate_max_exit_latency(struct usb_device *udev,
4356 enum usb3_link_state state_changed,
4357 u16 hub_encoded_timeout)
4359 unsigned long long u1_mel_us = 0;
4360 unsigned long long u2_mel_us = 0;
4361 unsigned long long mel_us = 0;
4367 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4368 hub_encoded_timeout == USB3_LPM_DISABLED);
4369 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4370 hub_encoded_timeout == USB3_LPM_DISABLED);
4372 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4373 hub_encoded_timeout != USB3_LPM_DISABLED);
4374 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4375 hub_encoded_timeout != USB3_LPM_DISABLED);
4377 /* If U1 was already enabled and we're not disabling it,
4378 * or we're going to enable U1, account for the U1 max exit latency.
4380 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4382 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4383 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4385 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4387 if (u1_mel_us > u2_mel_us)
4391 /* xHCI host controller max exit latency field is only 16 bits wide. */
4392 if (mel_us > MAX_EXIT) {
4393 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4394 "is too big.\n", mel_us);
4400 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4401 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4402 struct usb_device *udev, enum usb3_link_state state)
4404 struct xhci_hcd *xhci;
4405 u16 hub_encoded_timeout;
4409 xhci = hcd_to_xhci(hcd);
4410 /* The LPM timeout values are pretty host-controller specific, so don't
4411 * enable hub-initiated timeouts unless the vendor has provided
4412 * information about their timeout algorithm.
4414 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4415 !xhci->devs[udev->slot_id])
4416 return USB3_LPM_DISABLED;
4418 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4419 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4421 /* Max Exit Latency is too big, disable LPM. */
4422 hub_encoded_timeout = USB3_LPM_DISABLED;
4426 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4429 return hub_encoded_timeout;
4432 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4433 struct usb_device *udev, enum usb3_link_state state)
4435 struct xhci_hcd *xhci;
4439 xhci = hcd_to_xhci(hcd);
4440 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4441 !xhci->devs[udev->slot_id])
4444 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4445 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4450 #else /* CONFIG_PM */
4452 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4453 struct usb_device *udev, enum usb3_link_state state)
4455 return USB3_LPM_DISABLED;
4458 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4459 struct usb_device *udev, enum usb3_link_state state)
4463 #endif /* CONFIG_PM */
4465 /*-------------------------------------------------------------------------*/
4467 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4468 * internal data structures for the device.
4470 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4471 struct usb_tt *tt, gfp_t mem_flags)
4473 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4474 struct xhci_virt_device *vdev;
4475 struct xhci_command *config_cmd;
4476 struct xhci_input_control_ctx *ctrl_ctx;
4477 struct xhci_slot_ctx *slot_ctx;
4478 unsigned long flags;
4479 unsigned think_time;
4482 /* Ignore root hubs */
4486 vdev = xhci->devs[hdev->slot_id];
4488 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4491 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4493 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4497 spin_lock_irqsave(&xhci->lock, flags);
4498 if (hdev->speed == USB_SPEED_HIGH &&
4499 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4500 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4501 xhci_free_command(xhci, config_cmd);
4502 spin_unlock_irqrestore(&xhci->lock, flags);
4506 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4507 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4508 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4509 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4510 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4512 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4513 if (xhci->hci_version > 0x95) {
4514 xhci_dbg(xhci, "xHCI version %x needs hub "
4515 "TT think time and number of ports\n",
4516 (unsigned int) xhci->hci_version);
4517 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4518 /* Set TT think time - convert from ns to FS bit times.
4519 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4520 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4522 * xHCI 1.0: this field shall be 0 if the device is not a
4525 think_time = tt->think_time;
4526 if (think_time != 0)
4527 think_time = (think_time / 666) - 1;
4528 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4529 slot_ctx->tt_info |=
4530 cpu_to_le32(TT_THINK_TIME(think_time));
4532 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4533 "TT think time or number of ports\n",
4534 (unsigned int) xhci->hci_version);
4536 slot_ctx->dev_state = 0;
4537 spin_unlock_irqrestore(&xhci->lock, flags);
4539 xhci_dbg(xhci, "Set up %s for hub device.\n",
4540 (xhci->hci_version > 0x95) ?
4541 "configure endpoint" : "evaluate context");
4542 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4543 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4545 /* Issue and wait for the configure endpoint or
4546 * evaluate context command.
4548 if (xhci->hci_version > 0x95)
4549 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4552 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4555 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4556 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4558 xhci_free_command(xhci, config_cmd);
4562 int xhci_get_frame(struct usb_hcd *hcd)
4564 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4565 /* EHCI mods by the periodic size. Why? */
4566 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4569 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4571 struct xhci_hcd *xhci;
4572 struct device *dev = hcd->self.controller;
4576 /* Accept arbitrarily long scatter-gather lists */
4577 hcd->self.sg_tablesize = ~0;
4578 /* XHCI controllers don't stop the ep queue on short packets :| */
4579 hcd->self.no_stop_on_short = 1;
4581 if (usb_hcd_is_primary_hcd(hcd)) {
4582 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4585 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4586 xhci->main_hcd = hcd;
4587 /* Mark the first roothub as being USB 2.0.
4588 * The xHCI driver will register the USB 3.0 roothub.
4590 hcd->speed = HCD_USB2;
4591 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4593 * USB 2.0 roothub under xHCI has an integrated TT,
4594 * (rate matching hub) as opposed to having an OHCI/UHCI
4595 * companion controller.
4599 /* xHCI private pointer was set in xhci_pci_probe for the second
4600 * registered roothub.
4602 xhci = hcd_to_xhci(hcd);
4603 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4604 if (HCC_64BIT_ADDR(temp)) {
4605 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4606 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4608 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4613 xhci->cap_regs = hcd->regs;
4614 xhci->op_regs = hcd->regs +
4615 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4616 xhci->run_regs = hcd->regs +
4617 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4618 /* Cache read-only capability registers */
4619 xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4620 xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4621 xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4622 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4623 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4624 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4625 xhci_print_registers(xhci);
4627 get_quirks(dev, xhci);
4629 /* Make sure the HC is halted. */
4630 retval = xhci_halt(xhci);
4634 xhci_dbg(xhci, "Resetting HCD\n");
4635 /* Reset the internal HC memory state and registers. */
4636 retval = xhci_reset(xhci);
4639 xhci_dbg(xhci, "Reset complete\n");
4641 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4642 if (HCC_64BIT_ADDR(temp)) {
4643 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4644 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4646 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4649 xhci_dbg(xhci, "Calling HCD init\n");
4650 /* Initialize HCD and host controller data structures. */
4651 retval = xhci_init(hcd);
4654 xhci_dbg(xhci, "Called HCD init\n");
4661 MODULE_DESCRIPTION(DRIVER_DESC);
4662 MODULE_AUTHOR(DRIVER_AUTHOR);
4663 MODULE_LICENSE("GPL");
4665 static int __init xhci_hcd_init(void)
4669 retval = xhci_register_pci();
4671 printk(KERN_DEBUG "Problem registering PCI driver.");
4674 retval = xhci_register_plat();
4676 printk(KERN_DEBUG "Problem registering platform driver.");
4680 * Check the compiler generated sizes of structures that must be laid
4681 * out in specific ways for hardware access.
4683 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4684 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4685 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4686 /* xhci_device_control has eight fields, and also
4687 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4689 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4690 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4691 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4692 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4693 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4694 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4695 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4698 xhci_unregister_pci();
4701 module_init(xhci_hcd_init);
4703 static void __exit xhci_hcd_cleanup(void)
4705 xhci_unregister_pci();
4706 xhci_unregister_plat();
4708 module_exit(xhci_hcd_cleanup);