Merge branch 'lpc32xx/dts' of git://git.antcom.de/linux-2.6 into next/dt
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30
31 #include "xhci.h"
32
33 #define DRIVER_AUTHOR "Sarah Sharp"
34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35
36 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
37 static int link_quirk;
38 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
39 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
40
41 /* TODO: copied from ehci-hcd.c - can this be refactored? */
42 /*
43  * handshake - spin reading hc until handshake completes or fails
44  * @ptr: address of hc register to be read
45  * @mask: bits to look at in result of read
46  * @done: value of those bits when handshake succeeds
47  * @usec: timeout in microseconds
48  *
49  * Returns negative errno, or zero on success
50  *
51  * Success happens when the "mask" bits have the specified value (hardware
52  * handshake done).  There are two failure modes:  "usec" have passed (major
53  * hardware flakeout), or the register reads as all-ones (hardware removed).
54  */
55 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
56                       u32 mask, u32 done, int usec)
57 {
58         u32     result;
59
60         do {
61                 result = xhci_readl(xhci, ptr);
62                 if (result == ~(u32)0)          /* card removed */
63                         return -ENODEV;
64                 result &= mask;
65                 if (result == done)
66                         return 0;
67                 udelay(1);
68                 usec--;
69         } while (usec > 0);
70         return -ETIMEDOUT;
71 }
72
73 /*
74  * Disable interrupts and begin the xHCI halting process.
75  */
76 void xhci_quiesce(struct xhci_hcd *xhci)
77 {
78         u32 halted;
79         u32 cmd;
80         u32 mask;
81
82         mask = ~(XHCI_IRQS);
83         halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
84         if (!halted)
85                 mask &= ~CMD_RUN;
86
87         cmd = xhci_readl(xhci, &xhci->op_regs->command);
88         cmd &= mask;
89         xhci_writel(xhci, cmd, &xhci->op_regs->command);
90 }
91
92 /*
93  * Force HC into halt state.
94  *
95  * Disable any IRQs and clear the run/stop bit.
96  * HC will complete any current and actively pipelined transactions, and
97  * should halt within 16 ms of the run/stop bit being cleared.
98  * Read HC Halted bit in the status register to see when the HC is finished.
99  */
100 int xhci_halt(struct xhci_hcd *xhci)
101 {
102         int ret;
103         xhci_dbg(xhci, "// Halt the HC\n");
104         xhci_quiesce(xhci);
105
106         ret = handshake(xhci, &xhci->op_regs->status,
107                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
108         if (!ret)
109                 xhci->xhc_state |= XHCI_STATE_HALTED;
110         else
111                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
112                                 XHCI_MAX_HALT_USEC);
113         return ret;
114 }
115
116 /*
117  * Set the run bit and wait for the host to be running.
118  */
119 static int xhci_start(struct xhci_hcd *xhci)
120 {
121         u32 temp;
122         int ret;
123
124         temp = xhci_readl(xhci, &xhci->op_regs->command);
125         temp |= (CMD_RUN);
126         xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
127                         temp);
128         xhci_writel(xhci, temp, &xhci->op_regs->command);
129
130         /*
131          * Wait for the HCHalted Status bit to be 0 to indicate the host is
132          * running.
133          */
134         ret = handshake(xhci, &xhci->op_regs->status,
135                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
136         if (ret == -ETIMEDOUT)
137                 xhci_err(xhci, "Host took too long to start, "
138                                 "waited %u microseconds.\n",
139                                 XHCI_MAX_HALT_USEC);
140         if (!ret)
141                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
142         return ret;
143 }
144
145 /*
146  * Reset a halted HC.
147  *
148  * This resets pipelines, timers, counters, state machines, etc.
149  * Transactions will be terminated immediately, and operational registers
150  * will be set to their defaults.
151  */
152 int xhci_reset(struct xhci_hcd *xhci)
153 {
154         u32 command;
155         u32 state;
156         int ret, i;
157
158         state = xhci_readl(xhci, &xhci->op_regs->status);
159         if ((state & STS_HALT) == 0) {
160                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
161                 return 0;
162         }
163
164         xhci_dbg(xhci, "// Reset the HC\n");
165         command = xhci_readl(xhci, &xhci->op_regs->command);
166         command |= CMD_RESET;
167         xhci_writel(xhci, command, &xhci->op_regs->command);
168
169         ret = handshake(xhci, &xhci->op_regs->command,
170                         CMD_RESET, 0, 10 * 1000 * 1000);
171         if (ret)
172                 return ret;
173
174         xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
175         /*
176          * xHCI cannot write to any doorbells or operational registers other
177          * than status until the "Controller Not Ready" flag is cleared.
178          */
179         ret = handshake(xhci, &xhci->op_regs->status,
180                         STS_CNR, 0, 10 * 1000 * 1000);
181
182         for (i = 0; i < 2; ++i) {
183                 xhci->bus_state[i].port_c_suspend = 0;
184                 xhci->bus_state[i].suspended_ports = 0;
185                 xhci->bus_state[i].resuming_ports = 0;
186         }
187
188         return ret;
189 }
190
191 #ifdef CONFIG_PCI
192 static int xhci_free_msi(struct xhci_hcd *xhci)
193 {
194         int i;
195
196         if (!xhci->msix_entries)
197                 return -EINVAL;
198
199         for (i = 0; i < xhci->msix_count; i++)
200                 if (xhci->msix_entries[i].vector)
201                         free_irq(xhci->msix_entries[i].vector,
202                                         xhci_to_hcd(xhci));
203         return 0;
204 }
205
206 /*
207  * Set up MSI
208  */
209 static int xhci_setup_msi(struct xhci_hcd *xhci)
210 {
211         int ret;
212         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
213
214         ret = pci_enable_msi(pdev);
215         if (ret) {
216                 xhci_dbg(xhci, "failed to allocate MSI entry\n");
217                 return ret;
218         }
219
220         ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
221                                 0, "xhci_hcd", xhci_to_hcd(xhci));
222         if (ret) {
223                 xhci_dbg(xhci, "disable MSI interrupt\n");
224                 pci_disable_msi(pdev);
225         }
226
227         return ret;
228 }
229
230 /*
231  * Free IRQs
232  * free all IRQs request
233  */
234 static void xhci_free_irq(struct xhci_hcd *xhci)
235 {
236         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
237         int ret;
238
239         /* return if using legacy interrupt */
240         if (xhci_to_hcd(xhci)->irq > 0)
241                 return;
242
243         ret = xhci_free_msi(xhci);
244         if (!ret)
245                 return;
246         if (pdev->irq > 0)
247                 free_irq(pdev->irq, xhci_to_hcd(xhci));
248
249         return;
250 }
251
252 /*
253  * Set up MSI-X
254  */
255 static int xhci_setup_msix(struct xhci_hcd *xhci)
256 {
257         int i, ret = 0;
258         struct usb_hcd *hcd = xhci_to_hcd(xhci);
259         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
260
261         /*
262          * calculate number of msi-x vectors supported.
263          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
264          *   with max number of interrupters based on the xhci HCSPARAMS1.
265          * - num_online_cpus: maximum msi-x vectors per CPUs core.
266          *   Add additional 1 vector to ensure always available interrupt.
267          */
268         xhci->msix_count = min(num_online_cpus() + 1,
269                                 HCS_MAX_INTRS(xhci->hcs_params1));
270
271         xhci->msix_entries =
272                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
273                                 GFP_KERNEL);
274         if (!xhci->msix_entries) {
275                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
276                 return -ENOMEM;
277         }
278
279         for (i = 0; i < xhci->msix_count; i++) {
280                 xhci->msix_entries[i].entry = i;
281                 xhci->msix_entries[i].vector = 0;
282         }
283
284         ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
285         if (ret) {
286                 xhci_dbg(xhci, "Failed to enable MSI-X\n");
287                 goto free_entries;
288         }
289
290         for (i = 0; i < xhci->msix_count; i++) {
291                 ret = request_irq(xhci->msix_entries[i].vector,
292                                 (irq_handler_t)xhci_msi_irq,
293                                 0, "xhci_hcd", xhci_to_hcd(xhci));
294                 if (ret)
295                         goto disable_msix;
296         }
297
298         hcd->msix_enabled = 1;
299         return ret;
300
301 disable_msix:
302         xhci_dbg(xhci, "disable MSI-X interrupt\n");
303         xhci_free_irq(xhci);
304         pci_disable_msix(pdev);
305 free_entries:
306         kfree(xhci->msix_entries);
307         xhci->msix_entries = NULL;
308         return ret;
309 }
310
311 /* Free any IRQs and disable MSI-X */
312 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
313 {
314         struct usb_hcd *hcd = xhci_to_hcd(xhci);
315         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
316
317         xhci_free_irq(xhci);
318
319         if (xhci->msix_entries) {
320                 pci_disable_msix(pdev);
321                 kfree(xhci->msix_entries);
322                 xhci->msix_entries = NULL;
323         } else {
324                 pci_disable_msi(pdev);
325         }
326
327         hcd->msix_enabled = 0;
328         return;
329 }
330
331 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
332 {
333         int i;
334
335         if (xhci->msix_entries) {
336                 for (i = 0; i < xhci->msix_count; i++)
337                         synchronize_irq(xhci->msix_entries[i].vector);
338         }
339 }
340
341 static int xhci_try_enable_msi(struct usb_hcd *hcd)
342 {
343         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
344         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
345         int ret;
346
347         /*
348          * Some Fresco Logic host controllers advertise MSI, but fail to
349          * generate interrupts.  Don't even try to enable MSI.
350          */
351         if (xhci->quirks & XHCI_BROKEN_MSI)
352                 return 0;
353
354         /* unregister the legacy interrupt */
355         if (hcd->irq)
356                 free_irq(hcd->irq, hcd);
357         hcd->irq = 0;
358
359         ret = xhci_setup_msix(xhci);
360         if (ret)
361                 /* fall back to msi*/
362                 ret = xhci_setup_msi(xhci);
363
364         if (!ret)
365                 /* hcd->irq is 0, we have MSI */
366                 return 0;
367
368         if (!pdev->irq) {
369                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
370                 return -EINVAL;
371         }
372
373         /* fall back to legacy interrupt*/
374         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
375                         hcd->irq_descr, hcd);
376         if (ret) {
377                 xhci_err(xhci, "request interrupt %d failed\n",
378                                 pdev->irq);
379                 return ret;
380         }
381         hcd->irq = pdev->irq;
382         return 0;
383 }
384
385 #else
386
387 static int xhci_try_enable_msi(struct usb_hcd *hcd)
388 {
389         return 0;
390 }
391
392 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
393 {
394 }
395
396 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
397 {
398 }
399
400 #endif
401
402 static void compliance_mode_recovery(unsigned long arg)
403 {
404         struct xhci_hcd *xhci;
405         struct usb_hcd *hcd;
406         u32 temp;
407         int i;
408
409         xhci = (struct xhci_hcd *)arg;
410
411         for (i = 0; i < xhci->num_usb3_ports; i++) {
412                 temp = xhci_readl(xhci, xhci->usb3_ports[i]);
413                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
414                         /*
415                          * Compliance Mode Detected. Letting USB Core
416                          * handle the Warm Reset
417                          */
418                         xhci_dbg(xhci, "Compliance Mode Detected->Port %d!\n",
419                                         i + 1);
420                         xhci_dbg(xhci, "Attempting Recovery routine!\n");
421                         hcd = xhci->shared_hcd;
422
423                         if (hcd->state == HC_STATE_SUSPENDED)
424                                 usb_hcd_resume_root_hub(hcd);
425
426                         usb_hcd_poll_rh_status(hcd);
427                 }
428         }
429
430         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
431                 mod_timer(&xhci->comp_mode_recovery_timer,
432                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
433 }
434
435 /*
436  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
437  * that causes ports behind that hardware to enter compliance mode sometimes.
438  * The quirk creates a timer that polls every 2 seconds the link state of
439  * each host controller's port and recovers it by issuing a Warm reset
440  * if Compliance mode is detected, otherwise the port will become "dead" (no
441  * device connections or disconnections will be detected anymore). Becasue no
442  * status event is generated when entering compliance mode (per xhci spec),
443  * this quirk is needed on systems that have the failing hardware installed.
444  */
445 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
446 {
447         xhci->port_status_u0 = 0;
448         init_timer(&xhci->comp_mode_recovery_timer);
449
450         xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
451         xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
452         xhci->comp_mode_recovery_timer.expires = jiffies +
453                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
454
455         set_timer_slack(&xhci->comp_mode_recovery_timer,
456                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
457         add_timer(&xhci->comp_mode_recovery_timer);
458         xhci_dbg(xhci, "Compliance Mode Recovery Timer Initialized.\n");
459 }
460
461 /*
462  * This function identifies the systems that have installed the SN65LVPE502CP
463  * USB3.0 re-driver and that need the Compliance Mode Quirk.
464  * Systems:
465  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
466  */
467 static bool compliance_mode_recovery_timer_quirk_check(void)
468 {
469         const char *dmi_product_name, *dmi_sys_vendor;
470
471         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
472         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
473
474         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
475                 return false;
476
477         if (strstr(dmi_product_name, "Z420") ||
478                         strstr(dmi_product_name, "Z620") ||
479                         strstr(dmi_product_name, "Z820"))
480                 return true;
481
482         return false;
483 }
484
485 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
486 {
487         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
488 }
489
490
491 /*
492  * Initialize memory for HCD and xHC (one-time init).
493  *
494  * Program the PAGESIZE register, initialize the device context array, create
495  * device contexts (?), set up a command ring segment (or two?), create event
496  * ring (one for now).
497  */
498 int xhci_init(struct usb_hcd *hcd)
499 {
500         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
501         int retval = 0;
502
503         xhci_dbg(xhci, "xhci_init\n");
504         spin_lock_init(&xhci->lock);
505         if (xhci->hci_version == 0x95 && link_quirk) {
506                 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
507                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
508         } else {
509                 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
510         }
511         retval = xhci_mem_init(xhci, GFP_KERNEL);
512         xhci_dbg(xhci, "Finished xhci_init\n");
513
514         /* Initializing Compliance Mode Recovery Data If Needed */
515         if (compliance_mode_recovery_timer_quirk_check()) {
516                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
517                 compliance_mode_recovery_timer_init(xhci);
518         }
519
520         return retval;
521 }
522
523 /*-------------------------------------------------------------------------*/
524
525
526 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
527 static void xhci_event_ring_work(unsigned long arg)
528 {
529         unsigned long flags;
530         int temp;
531         u64 temp_64;
532         struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
533         int i, j;
534
535         xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
536
537         spin_lock_irqsave(&xhci->lock, flags);
538         temp = xhci_readl(xhci, &xhci->op_regs->status);
539         xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
540         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
541                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
542                 xhci_dbg(xhci, "HW died, polling stopped.\n");
543                 spin_unlock_irqrestore(&xhci->lock, flags);
544                 return;
545         }
546
547         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
548         xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
549         xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
550         xhci->error_bitmask = 0;
551         xhci_dbg(xhci, "Event ring:\n");
552         xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
553         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
554         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
555         temp_64 &= ~ERST_PTR_MASK;
556         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
557         xhci_dbg(xhci, "Command ring:\n");
558         xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
559         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
560         xhci_dbg_cmd_ptrs(xhci);
561         for (i = 0; i < MAX_HC_SLOTS; ++i) {
562                 if (!xhci->devs[i])
563                         continue;
564                 for (j = 0; j < 31; ++j) {
565                         xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
566                 }
567         }
568         spin_unlock_irqrestore(&xhci->lock, flags);
569
570         if (!xhci->zombie)
571                 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
572         else
573                 xhci_dbg(xhci, "Quit polling the event ring.\n");
574 }
575 #endif
576
577 static int xhci_run_finished(struct xhci_hcd *xhci)
578 {
579         if (xhci_start(xhci)) {
580                 xhci_halt(xhci);
581                 return -ENODEV;
582         }
583         xhci->shared_hcd->state = HC_STATE_RUNNING;
584
585         if (xhci->quirks & XHCI_NEC_HOST)
586                 xhci_ring_cmd_db(xhci);
587
588         xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
589         return 0;
590 }
591
592 /*
593  * Start the HC after it was halted.
594  *
595  * This function is called by the USB core when the HC driver is added.
596  * Its opposite is xhci_stop().
597  *
598  * xhci_init() must be called once before this function can be called.
599  * Reset the HC, enable device slot contexts, program DCBAAP, and
600  * set command ring pointer and event ring pointer.
601  *
602  * Setup MSI-X vectors and enable interrupts.
603  */
604 int xhci_run(struct usb_hcd *hcd)
605 {
606         u32 temp;
607         u64 temp_64;
608         int ret;
609         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
610
611         /* Start the xHCI host controller running only after the USB 2.0 roothub
612          * is setup.
613          */
614
615         hcd->uses_new_polling = 1;
616         if (!usb_hcd_is_primary_hcd(hcd))
617                 return xhci_run_finished(xhci);
618
619         xhci_dbg(xhci, "xhci_run\n");
620
621         ret = xhci_try_enable_msi(hcd);
622         if (ret)
623                 return ret;
624
625 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
626         init_timer(&xhci->event_ring_timer);
627         xhci->event_ring_timer.data = (unsigned long) xhci;
628         xhci->event_ring_timer.function = xhci_event_ring_work;
629         /* Poll the event ring */
630         xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
631         xhci->zombie = 0;
632         xhci_dbg(xhci, "Setting event ring polling timer\n");
633         add_timer(&xhci->event_ring_timer);
634 #endif
635
636         xhci_dbg(xhci, "Command ring memory map follows:\n");
637         xhci_debug_ring(xhci, xhci->cmd_ring);
638         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
639         xhci_dbg_cmd_ptrs(xhci);
640
641         xhci_dbg(xhci, "ERST memory map follows:\n");
642         xhci_dbg_erst(xhci, &xhci->erst);
643         xhci_dbg(xhci, "Event ring:\n");
644         xhci_debug_ring(xhci, xhci->event_ring);
645         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
646         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
647         temp_64 &= ~ERST_PTR_MASK;
648         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
649
650         xhci_dbg(xhci, "// Set the interrupt modulation register\n");
651         temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
652         temp &= ~ER_IRQ_INTERVAL_MASK;
653         temp |= (u32) 160;
654         xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
655
656         /* Set the HCD state before we enable the irqs */
657         temp = xhci_readl(xhci, &xhci->op_regs->command);
658         temp |= (CMD_EIE);
659         xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
660                         temp);
661         xhci_writel(xhci, temp, &xhci->op_regs->command);
662
663         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
664         xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
665                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
666         xhci_writel(xhci, ER_IRQ_ENABLE(temp),
667                         &xhci->ir_set->irq_pending);
668         xhci_print_ir_set(xhci, 0);
669
670         if (xhci->quirks & XHCI_NEC_HOST)
671                 xhci_queue_vendor_command(xhci, 0, 0, 0,
672                                 TRB_TYPE(TRB_NEC_GET_FW));
673
674         xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
675         return 0;
676 }
677
678 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
679 {
680         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
681
682         spin_lock_irq(&xhci->lock);
683         xhci_halt(xhci);
684
685         /* The shared_hcd is going to be deallocated shortly (the USB core only
686          * calls this function when allocation fails in usb_add_hcd(), or
687          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
688          */
689         xhci->shared_hcd = NULL;
690         spin_unlock_irq(&xhci->lock);
691 }
692
693 /*
694  * Stop xHCI driver.
695  *
696  * This function is called by the USB core when the HC driver is removed.
697  * Its opposite is xhci_run().
698  *
699  * Disable device contexts, disable IRQs, and quiesce the HC.
700  * Reset the HC, finish any completed transactions, and cleanup memory.
701  */
702 void xhci_stop(struct usb_hcd *hcd)
703 {
704         u32 temp;
705         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
706
707         if (!usb_hcd_is_primary_hcd(hcd)) {
708                 xhci_only_stop_hcd(xhci->shared_hcd);
709                 return;
710         }
711
712         spin_lock_irq(&xhci->lock);
713         /* Make sure the xHC is halted for a USB3 roothub
714          * (xhci_stop() could be called as part of failed init).
715          */
716         xhci_halt(xhci);
717         xhci_reset(xhci);
718         spin_unlock_irq(&xhci->lock);
719
720         xhci_cleanup_msix(xhci);
721
722 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
723         /* Tell the event ring poll function not to reschedule */
724         xhci->zombie = 1;
725         del_timer_sync(&xhci->event_ring_timer);
726 #endif
727
728         /* Deleting Compliance Mode Recovery Timer */
729         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
730                         (!(xhci_all_ports_seen_u0(xhci))))
731                 del_timer_sync(&xhci->comp_mode_recovery_timer);
732
733         if (xhci->quirks & XHCI_AMD_PLL_FIX)
734                 usb_amd_dev_put();
735
736         xhci_dbg(xhci, "// Disabling event ring interrupts\n");
737         temp = xhci_readl(xhci, &xhci->op_regs->status);
738         xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
739         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
740         xhci_writel(xhci, ER_IRQ_DISABLE(temp),
741                         &xhci->ir_set->irq_pending);
742         xhci_print_ir_set(xhci, 0);
743
744         xhci_dbg(xhci, "cleaning up memory\n");
745         xhci_mem_cleanup(xhci);
746         xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
747                     xhci_readl(xhci, &xhci->op_regs->status));
748 }
749
750 /*
751  * Shutdown HC (not bus-specific)
752  *
753  * This is called when the machine is rebooting or halting.  We assume that the
754  * machine will be powered off, and the HC's internal state will be reset.
755  * Don't bother to free memory.
756  *
757  * This will only ever be called with the main usb_hcd (the USB3 roothub).
758  */
759 void xhci_shutdown(struct usb_hcd *hcd)
760 {
761         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
762
763         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
764                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
765
766         spin_lock_irq(&xhci->lock);
767         xhci_halt(xhci);
768         spin_unlock_irq(&xhci->lock);
769
770         xhci_cleanup_msix(xhci);
771
772         xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
773                     xhci_readl(xhci, &xhci->op_regs->status));
774 }
775
776 #ifdef CONFIG_PM
777 static void xhci_save_registers(struct xhci_hcd *xhci)
778 {
779         xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
780         xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
781         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
782         xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
783         xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
784         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
785         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
786         xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
787         xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
788 }
789
790 static void xhci_restore_registers(struct xhci_hcd *xhci)
791 {
792         xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
793         xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
794         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
795         xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
796         xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
797         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
798         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
799         xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
800         xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
801 }
802
803 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
804 {
805         u64     val_64;
806
807         /* step 2: initialize command ring buffer */
808         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
809         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
810                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
811                                       xhci->cmd_ring->dequeue) &
812                  (u64) ~CMD_RING_RSVD_BITS) |
813                 xhci->cmd_ring->cycle_state;
814         xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
815                         (long unsigned long) val_64);
816         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
817 }
818
819 /*
820  * The whole command ring must be cleared to zero when we suspend the host.
821  *
822  * The host doesn't save the command ring pointer in the suspend well, so we
823  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
824  * aligned, because of the reserved bits in the command ring dequeue pointer
825  * register.  Therefore, we can't just set the dequeue pointer back in the
826  * middle of the ring (TRBs are 16-byte aligned).
827  */
828 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
829 {
830         struct xhci_ring *ring;
831         struct xhci_segment *seg;
832
833         ring = xhci->cmd_ring;
834         seg = ring->deq_seg;
835         do {
836                 memset(seg->trbs, 0,
837                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
838                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
839                         cpu_to_le32(~TRB_CYCLE);
840                 seg = seg->next;
841         } while (seg != ring->deq_seg);
842
843         /* Reset the software enqueue and dequeue pointers */
844         ring->deq_seg = ring->first_seg;
845         ring->dequeue = ring->first_seg->trbs;
846         ring->enq_seg = ring->deq_seg;
847         ring->enqueue = ring->dequeue;
848
849         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
850         /*
851          * Ring is now zeroed, so the HW should look for change of ownership
852          * when the cycle bit is set to 1.
853          */
854         ring->cycle_state = 1;
855
856         /*
857          * Reset the hardware dequeue pointer.
858          * Yes, this will need to be re-written after resume, but we're paranoid
859          * and want to make sure the hardware doesn't access bogus memory
860          * because, say, the BIOS or an SMI started the host without changing
861          * the command ring pointers.
862          */
863         xhci_set_cmd_ring_deq(xhci);
864 }
865
866 /*
867  * Stop HC (not bus-specific)
868  *
869  * This is called when the machine transition into S3/S4 mode.
870  *
871  */
872 int xhci_suspend(struct xhci_hcd *xhci)
873 {
874         int                     rc = 0;
875         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
876         u32                     command;
877
878         spin_lock_irq(&xhci->lock);
879         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
880         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
881         /* step 1: stop endpoint */
882         /* skipped assuming that port suspend has done */
883
884         /* step 2: clear Run/Stop bit */
885         command = xhci_readl(xhci, &xhci->op_regs->command);
886         command &= ~CMD_RUN;
887         xhci_writel(xhci, command, &xhci->op_regs->command);
888         if (handshake(xhci, &xhci->op_regs->status,
889                       STS_HALT, STS_HALT, 100*100)) {
890                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
891                 spin_unlock_irq(&xhci->lock);
892                 return -ETIMEDOUT;
893         }
894         xhci_clear_command_ring(xhci);
895
896         /* step 3: save registers */
897         xhci_save_registers(xhci);
898
899         /* step 4: set CSS flag */
900         command = xhci_readl(xhci, &xhci->op_regs->command);
901         command |= CMD_CSS;
902         xhci_writel(xhci, command, &xhci->op_regs->command);
903         if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10 * 1000)) {
904                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
905                 spin_unlock_irq(&xhci->lock);
906                 return -ETIMEDOUT;
907         }
908         spin_unlock_irq(&xhci->lock);
909
910         /*
911          * Deleting Compliance Mode Recovery Timer because the xHCI Host
912          * is about to be suspended.
913          */
914         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
915                         (!(xhci_all_ports_seen_u0(xhci)))) {
916                 del_timer_sync(&xhci->comp_mode_recovery_timer);
917                 xhci_dbg(xhci, "Compliance Mode Recovery Timer Deleted!\n");
918         }
919
920         /* step 5: remove core well power */
921         /* synchronize irq when using MSI-X */
922         xhci_msix_sync_irqs(xhci);
923
924         return rc;
925 }
926
927 /*
928  * start xHC (not bus-specific)
929  *
930  * This is called when the machine transition from S3/S4 mode.
931  *
932  */
933 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
934 {
935         u32                     command, temp = 0;
936         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
937         struct usb_hcd          *secondary_hcd;
938         int                     retval = 0;
939
940         /* Wait a bit if either of the roothubs need to settle from the
941          * transition into bus suspend.
942          */
943         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
944                         time_before(jiffies,
945                                 xhci->bus_state[1].next_statechange))
946                 msleep(100);
947
948         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
949         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
950
951         spin_lock_irq(&xhci->lock);
952         if (xhci->quirks & XHCI_RESET_ON_RESUME)
953                 hibernated = true;
954
955         if (!hibernated) {
956                 /* step 1: restore register */
957                 xhci_restore_registers(xhci);
958                 /* step 2: initialize command ring buffer */
959                 xhci_set_cmd_ring_deq(xhci);
960                 /* step 3: restore state and start state*/
961                 /* step 3: set CRS flag */
962                 command = xhci_readl(xhci, &xhci->op_regs->command);
963                 command |= CMD_CRS;
964                 xhci_writel(xhci, command, &xhci->op_regs->command);
965                 if (handshake(xhci, &xhci->op_regs->status,
966                               STS_RESTORE, 0, 10 * 1000)) {
967                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
968                         spin_unlock_irq(&xhci->lock);
969                         return -ETIMEDOUT;
970                 }
971                 temp = xhci_readl(xhci, &xhci->op_regs->status);
972         }
973
974         /* If restore operation fails, re-initialize the HC during resume */
975         if ((temp & STS_SRE) || hibernated) {
976                 /* Let the USB core know _both_ roothubs lost power. */
977                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
978                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
979
980                 xhci_dbg(xhci, "Stop HCD\n");
981                 xhci_halt(xhci);
982                 xhci_reset(xhci);
983                 spin_unlock_irq(&xhci->lock);
984                 xhci_cleanup_msix(xhci);
985
986 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
987                 /* Tell the event ring poll function not to reschedule */
988                 xhci->zombie = 1;
989                 del_timer_sync(&xhci->event_ring_timer);
990 #endif
991
992                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
993                 temp = xhci_readl(xhci, &xhci->op_regs->status);
994                 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
995                 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
996                 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
997                                 &xhci->ir_set->irq_pending);
998                 xhci_print_ir_set(xhci, 0);
999
1000                 xhci_dbg(xhci, "cleaning up memory\n");
1001                 xhci_mem_cleanup(xhci);
1002                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1003                             xhci_readl(xhci, &xhci->op_regs->status));
1004
1005                 /* USB core calls the PCI reinit and start functions twice:
1006                  * first with the primary HCD, and then with the secondary HCD.
1007                  * If we don't do the same, the host will never be started.
1008                  */
1009                 if (!usb_hcd_is_primary_hcd(hcd))
1010                         secondary_hcd = hcd;
1011                 else
1012                         secondary_hcd = xhci->shared_hcd;
1013
1014                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1015                 retval = xhci_init(hcd->primary_hcd);
1016                 if (retval)
1017                         return retval;
1018                 xhci_dbg(xhci, "Start the primary HCD\n");
1019                 retval = xhci_run(hcd->primary_hcd);
1020                 if (!retval) {
1021                         xhci_dbg(xhci, "Start the secondary HCD\n");
1022                         retval = xhci_run(secondary_hcd);
1023                 }
1024                 hcd->state = HC_STATE_SUSPENDED;
1025                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1026                 goto done;
1027         }
1028
1029         /* step 4: set Run/Stop bit */
1030         command = xhci_readl(xhci, &xhci->op_regs->command);
1031         command |= CMD_RUN;
1032         xhci_writel(xhci, command, &xhci->op_regs->command);
1033         handshake(xhci, &xhci->op_regs->status, STS_HALT,
1034                   0, 250 * 1000);
1035
1036         /* step 5: walk topology and initialize portsc,
1037          * portpmsc and portli
1038          */
1039         /* this is done in bus_resume */
1040
1041         /* step 6: restart each of the previously
1042          * Running endpoints by ringing their doorbells
1043          */
1044
1045         spin_unlock_irq(&xhci->lock);
1046
1047  done:
1048         if (retval == 0) {
1049                 usb_hcd_resume_root_hub(hcd);
1050                 usb_hcd_resume_root_hub(xhci->shared_hcd);
1051         }
1052
1053         /*
1054          * If system is subject to the Quirk, Compliance Mode Timer needs to
1055          * be re-initialized Always after a system resume. Ports are subject
1056          * to suffer the Compliance Mode issue again. It doesn't matter if
1057          * ports have entered previously to U0 before system's suspension.
1058          */
1059         if (xhci->quirks & XHCI_COMP_MODE_QUIRK)
1060                 compliance_mode_recovery_timer_init(xhci);
1061
1062         return retval;
1063 }
1064 #endif  /* CONFIG_PM */
1065
1066 /*-------------------------------------------------------------------------*/
1067
1068 /**
1069  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1070  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1071  * value to right shift 1 for the bitmask.
1072  *
1073  * Index  = (epnum * 2) + direction - 1,
1074  * where direction = 0 for OUT, 1 for IN.
1075  * For control endpoints, the IN index is used (OUT index is unused), so
1076  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1077  */
1078 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1079 {
1080         unsigned int index;
1081         if (usb_endpoint_xfer_control(desc))
1082                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1083         else
1084                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1085                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1086         return index;
1087 }
1088
1089 /* Find the flag for this endpoint (for use in the control context).  Use the
1090  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1091  * bit 1, etc.
1092  */
1093 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1094 {
1095         return 1 << (xhci_get_endpoint_index(desc) + 1);
1096 }
1097
1098 /* Find the flag for this endpoint (for use in the control context).  Use the
1099  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1100  * bit 1, etc.
1101  */
1102 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1103 {
1104         return 1 << (ep_index + 1);
1105 }
1106
1107 /* Compute the last valid endpoint context index.  Basically, this is the
1108  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1109  * we find the most significant bit set in the added contexts flags.
1110  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1111  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1112  */
1113 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1114 {
1115         return fls(added_ctxs) - 1;
1116 }
1117
1118 /* Returns 1 if the arguments are OK;
1119  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1120  */
1121 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1122                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1123                 const char *func) {
1124         struct xhci_hcd *xhci;
1125         struct xhci_virt_device *virt_dev;
1126
1127         if (!hcd || (check_ep && !ep) || !udev) {
1128                 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1129                                 func);
1130                 return -EINVAL;
1131         }
1132         if (!udev->parent) {
1133                 printk(KERN_DEBUG "xHCI %s called for root hub\n",
1134                                 func);
1135                 return 0;
1136         }
1137
1138         xhci = hcd_to_xhci(hcd);
1139         if (xhci->xhc_state & XHCI_STATE_HALTED)
1140                 return -ENODEV;
1141
1142         if (check_virt_dev) {
1143                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1144                         printk(KERN_DEBUG "xHCI %s called with unaddressed "
1145                                                 "device\n", func);
1146                         return -EINVAL;
1147                 }
1148
1149                 virt_dev = xhci->devs[udev->slot_id];
1150                 if (virt_dev->udev != udev) {
1151                         printk(KERN_DEBUG "xHCI %s called with udev and "
1152                                           "virt_dev does not match\n", func);
1153                         return -EINVAL;
1154                 }
1155         }
1156
1157         return 1;
1158 }
1159
1160 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1161                 struct usb_device *udev, struct xhci_command *command,
1162                 bool ctx_change, bool must_succeed);
1163
1164 /*
1165  * Full speed devices may have a max packet size greater than 8 bytes, but the
1166  * USB core doesn't know that until it reads the first 8 bytes of the
1167  * descriptor.  If the usb_device's max packet size changes after that point,
1168  * we need to issue an evaluate context command and wait on it.
1169  */
1170 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1171                 unsigned int ep_index, struct urb *urb)
1172 {
1173         struct xhci_container_ctx *in_ctx;
1174         struct xhci_container_ctx *out_ctx;
1175         struct xhci_input_control_ctx *ctrl_ctx;
1176         struct xhci_ep_ctx *ep_ctx;
1177         int max_packet_size;
1178         int hw_max_packet_size;
1179         int ret = 0;
1180
1181         out_ctx = xhci->devs[slot_id]->out_ctx;
1182         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1183         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1184         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1185         if (hw_max_packet_size != max_packet_size) {
1186                 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1187                 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1188                                 max_packet_size);
1189                 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1190                                 hw_max_packet_size);
1191                 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1192
1193                 /* Set up the modified control endpoint 0 */
1194                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1195                                 xhci->devs[slot_id]->out_ctx, ep_index);
1196                 in_ctx = xhci->devs[slot_id]->in_ctx;
1197                 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1198                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1199                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1200
1201                 /* Set up the input context flags for the command */
1202                 /* FIXME: This won't work if a non-default control endpoint
1203                  * changes max packet sizes.
1204                  */
1205                 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1206                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1207                 ctrl_ctx->drop_flags = 0;
1208
1209                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1210                 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1211                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1212                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1213
1214                 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1215                                 true, false);
1216
1217                 /* Clean up the input context for later use by bandwidth
1218                  * functions.
1219                  */
1220                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1221         }
1222         return ret;
1223 }
1224
1225 /*
1226  * non-error returns are a promise to giveback() the urb later
1227  * we drop ownership so next owner (or urb unlink) can get it
1228  */
1229 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1230 {
1231         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1232         struct xhci_td *buffer;
1233         unsigned long flags;
1234         int ret = 0;
1235         unsigned int slot_id, ep_index;
1236         struct urb_priv *urb_priv;
1237         int size, i;
1238
1239         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1240                                         true, true, __func__) <= 0)
1241                 return -EINVAL;
1242
1243         slot_id = urb->dev->slot_id;
1244         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1245
1246         if (!HCD_HW_ACCESSIBLE(hcd)) {
1247                 if (!in_interrupt())
1248                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1249                 ret = -ESHUTDOWN;
1250                 goto exit;
1251         }
1252
1253         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1254                 size = urb->number_of_packets;
1255         else
1256                 size = 1;
1257
1258         urb_priv = kzalloc(sizeof(struct urb_priv) +
1259                                   size * sizeof(struct xhci_td *), mem_flags);
1260         if (!urb_priv)
1261                 return -ENOMEM;
1262
1263         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1264         if (!buffer) {
1265                 kfree(urb_priv);
1266                 return -ENOMEM;
1267         }
1268
1269         for (i = 0; i < size; i++) {
1270                 urb_priv->td[i] = buffer;
1271                 buffer++;
1272         }
1273
1274         urb_priv->length = size;
1275         urb_priv->td_cnt = 0;
1276         urb->hcpriv = urb_priv;
1277
1278         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1279                 /* Check to see if the max packet size for the default control
1280                  * endpoint changed during FS device enumeration
1281                  */
1282                 if (urb->dev->speed == USB_SPEED_FULL) {
1283                         ret = xhci_check_maxpacket(xhci, slot_id,
1284                                         ep_index, urb);
1285                         if (ret < 0) {
1286                                 xhci_urb_free_priv(xhci, urb_priv);
1287                                 urb->hcpriv = NULL;
1288                                 return ret;
1289                         }
1290                 }
1291
1292                 /* We have a spinlock and interrupts disabled, so we must pass
1293                  * atomic context to this function, which may allocate memory.
1294                  */
1295                 spin_lock_irqsave(&xhci->lock, flags);
1296                 if (xhci->xhc_state & XHCI_STATE_DYING)
1297                         goto dying;
1298                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1299                                 slot_id, ep_index);
1300                 if (ret)
1301                         goto free_priv;
1302                 spin_unlock_irqrestore(&xhci->lock, flags);
1303         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1304                 spin_lock_irqsave(&xhci->lock, flags);
1305                 if (xhci->xhc_state & XHCI_STATE_DYING)
1306                         goto dying;
1307                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1308                                 EP_GETTING_STREAMS) {
1309                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1310                                         "is transitioning to using streams.\n");
1311                         ret = -EINVAL;
1312                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1313                                 EP_GETTING_NO_STREAMS) {
1314                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1315                                         "is transitioning to "
1316                                         "not having streams.\n");
1317                         ret = -EINVAL;
1318                 } else {
1319                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1320                                         slot_id, ep_index);
1321                 }
1322                 if (ret)
1323                         goto free_priv;
1324                 spin_unlock_irqrestore(&xhci->lock, flags);
1325         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1326                 spin_lock_irqsave(&xhci->lock, flags);
1327                 if (xhci->xhc_state & XHCI_STATE_DYING)
1328                         goto dying;
1329                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1330                                 slot_id, ep_index);
1331                 if (ret)
1332                         goto free_priv;
1333                 spin_unlock_irqrestore(&xhci->lock, flags);
1334         } else {
1335                 spin_lock_irqsave(&xhci->lock, flags);
1336                 if (xhci->xhc_state & XHCI_STATE_DYING)
1337                         goto dying;
1338                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1339                                 slot_id, ep_index);
1340                 if (ret)
1341                         goto free_priv;
1342                 spin_unlock_irqrestore(&xhci->lock, flags);
1343         }
1344 exit:
1345         return ret;
1346 dying:
1347         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1348                         "non-responsive xHCI host.\n",
1349                         urb->ep->desc.bEndpointAddress, urb);
1350         ret = -ESHUTDOWN;
1351 free_priv:
1352         xhci_urb_free_priv(xhci, urb_priv);
1353         urb->hcpriv = NULL;
1354         spin_unlock_irqrestore(&xhci->lock, flags);
1355         return ret;
1356 }
1357
1358 /* Get the right ring for the given URB.
1359  * If the endpoint supports streams, boundary check the URB's stream ID.
1360  * If the endpoint doesn't support streams, return the singular endpoint ring.
1361  */
1362 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1363                 struct urb *urb)
1364 {
1365         unsigned int slot_id;
1366         unsigned int ep_index;
1367         unsigned int stream_id;
1368         struct xhci_virt_ep *ep;
1369
1370         slot_id = urb->dev->slot_id;
1371         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1372         stream_id = urb->stream_id;
1373         ep = &xhci->devs[slot_id]->eps[ep_index];
1374         /* Common case: no streams */
1375         if (!(ep->ep_state & EP_HAS_STREAMS))
1376                 return ep->ring;
1377
1378         if (stream_id == 0) {
1379                 xhci_warn(xhci,
1380                                 "WARN: Slot ID %u, ep index %u has streams, "
1381                                 "but URB has no stream ID.\n",
1382                                 slot_id, ep_index);
1383                 return NULL;
1384         }
1385
1386         if (stream_id < ep->stream_info->num_streams)
1387                 return ep->stream_info->stream_rings[stream_id];
1388
1389         xhci_warn(xhci,
1390                         "WARN: Slot ID %u, ep index %u has "
1391                         "stream IDs 1 to %u allocated, "
1392                         "but stream ID %u is requested.\n",
1393                         slot_id, ep_index,
1394                         ep->stream_info->num_streams - 1,
1395                         stream_id);
1396         return NULL;
1397 }
1398
1399 /*
1400  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1401  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1402  * should pick up where it left off in the TD, unless a Set Transfer Ring
1403  * Dequeue Pointer is issued.
1404  *
1405  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1406  * the ring.  Since the ring is a contiguous structure, they can't be physically
1407  * removed.  Instead, there are two options:
1408  *
1409  *  1) If the HC is in the middle of processing the URB to be canceled, we
1410  *     simply move the ring's dequeue pointer past those TRBs using the Set
1411  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1412  *     when drivers timeout on the last submitted URB and attempt to cancel.
1413  *
1414  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1415  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1416  *     HC will need to invalidate the any TRBs it has cached after the stop
1417  *     endpoint command, as noted in the xHCI 0.95 errata.
1418  *
1419  *  3) The TD may have completed by the time the Stop Endpoint Command
1420  *     completes, so software needs to handle that case too.
1421  *
1422  * This function should protect against the TD enqueueing code ringing the
1423  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1424  * It also needs to account for multiple cancellations on happening at the same
1425  * time for the same endpoint.
1426  *
1427  * Note that this function can be called in any context, or so says
1428  * usb_hcd_unlink_urb()
1429  */
1430 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1431 {
1432         unsigned long flags;
1433         int ret, i;
1434         u32 temp;
1435         struct xhci_hcd *xhci;
1436         struct urb_priv *urb_priv;
1437         struct xhci_td *td;
1438         unsigned int ep_index;
1439         struct xhci_ring *ep_ring;
1440         struct xhci_virt_ep *ep;
1441
1442         xhci = hcd_to_xhci(hcd);
1443         spin_lock_irqsave(&xhci->lock, flags);
1444         /* Make sure the URB hasn't completed or been unlinked already */
1445         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1446         if (ret || !urb->hcpriv)
1447                 goto done;
1448         temp = xhci_readl(xhci, &xhci->op_regs->status);
1449         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1450                 xhci_dbg(xhci, "HW died, freeing TD.\n");
1451                 urb_priv = urb->hcpriv;
1452                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1453                         td = urb_priv->td[i];
1454                         if (!list_empty(&td->td_list))
1455                                 list_del_init(&td->td_list);
1456                         if (!list_empty(&td->cancelled_td_list))
1457                                 list_del_init(&td->cancelled_td_list);
1458                 }
1459
1460                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1461                 spin_unlock_irqrestore(&xhci->lock, flags);
1462                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1463                 xhci_urb_free_priv(xhci, urb_priv);
1464                 return ret;
1465         }
1466         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1467                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1468                 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1469                                 "non-responsive xHCI host.\n",
1470                                 urb->ep->desc.bEndpointAddress, urb);
1471                 /* Let the stop endpoint command watchdog timer (which set this
1472                  * state) finish cleaning up the endpoint TD lists.  We must
1473                  * have caught it in the middle of dropping a lock and giving
1474                  * back an URB.
1475                  */
1476                 goto done;
1477         }
1478
1479         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1480         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1481         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1482         if (!ep_ring) {
1483                 ret = -EINVAL;
1484                 goto done;
1485         }
1486
1487         urb_priv = urb->hcpriv;
1488         i = urb_priv->td_cnt;
1489         if (i < urb_priv->length)
1490                 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1491                                 "starting at offset 0x%llx\n",
1492                                 urb, urb->dev->devpath,
1493                                 urb->ep->desc.bEndpointAddress,
1494                                 (unsigned long long) xhci_trb_virt_to_dma(
1495                                         urb_priv->td[i]->start_seg,
1496                                         urb_priv->td[i]->first_trb));
1497
1498         for (; i < urb_priv->length; i++) {
1499                 td = urb_priv->td[i];
1500                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1501         }
1502
1503         /* Queue a stop endpoint command, but only if this is
1504          * the first cancellation to be handled.
1505          */
1506         if (!(ep->ep_state & EP_HALT_PENDING)) {
1507                 ep->ep_state |= EP_HALT_PENDING;
1508                 ep->stop_cmds_pending++;
1509                 ep->stop_cmd_timer.expires = jiffies +
1510                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1511                 add_timer(&ep->stop_cmd_timer);
1512                 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1513                 xhci_ring_cmd_db(xhci);
1514         }
1515 done:
1516         spin_unlock_irqrestore(&xhci->lock, flags);
1517         return ret;
1518 }
1519
1520 /* Drop an endpoint from a new bandwidth configuration for this device.
1521  * Only one call to this function is allowed per endpoint before
1522  * check_bandwidth() or reset_bandwidth() must be called.
1523  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1524  * add the endpoint to the schedule with possibly new parameters denoted by a
1525  * different endpoint descriptor in usb_host_endpoint.
1526  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1527  * not allowed.
1528  *
1529  * The USB core will not allow URBs to be queued to an endpoint that is being
1530  * disabled, so there's no need for mutual exclusion to protect
1531  * the xhci->devs[slot_id] structure.
1532  */
1533 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1534                 struct usb_host_endpoint *ep)
1535 {
1536         struct xhci_hcd *xhci;
1537         struct xhci_container_ctx *in_ctx, *out_ctx;
1538         struct xhci_input_control_ctx *ctrl_ctx;
1539         struct xhci_slot_ctx *slot_ctx;
1540         unsigned int last_ctx;
1541         unsigned int ep_index;
1542         struct xhci_ep_ctx *ep_ctx;
1543         u32 drop_flag;
1544         u32 new_add_flags, new_drop_flags, new_slot_info;
1545         int ret;
1546
1547         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1548         if (ret <= 0)
1549                 return ret;
1550         xhci = hcd_to_xhci(hcd);
1551         if (xhci->xhc_state & XHCI_STATE_DYING)
1552                 return -ENODEV;
1553
1554         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1555         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1556         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1557                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1558                                 __func__, drop_flag);
1559                 return 0;
1560         }
1561
1562         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1563         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1564         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1565         ep_index = xhci_get_endpoint_index(&ep->desc);
1566         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1567         /* If the HC already knows the endpoint is disabled,
1568          * or the HCD has noted it is disabled, ignore this request
1569          */
1570         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1571              cpu_to_le32(EP_STATE_DISABLED)) ||
1572             le32_to_cpu(ctrl_ctx->drop_flags) &
1573             xhci_get_endpoint_flag(&ep->desc)) {
1574                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1575                                 __func__, ep);
1576                 return 0;
1577         }
1578
1579         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1580         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1581
1582         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1583         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1584
1585         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1586         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1587         /* Update the last valid endpoint context, if we deleted the last one */
1588         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1589             LAST_CTX(last_ctx)) {
1590                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1591                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1592         }
1593         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1594
1595         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1596
1597         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1598                         (unsigned int) ep->desc.bEndpointAddress,
1599                         udev->slot_id,
1600                         (unsigned int) new_drop_flags,
1601                         (unsigned int) new_add_flags,
1602                         (unsigned int) new_slot_info);
1603         return 0;
1604 }
1605
1606 /* Add an endpoint to a new possible bandwidth configuration for this device.
1607  * Only one call to this function is allowed per endpoint before
1608  * check_bandwidth() or reset_bandwidth() must be called.
1609  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1610  * add the endpoint to the schedule with possibly new parameters denoted by a
1611  * different endpoint descriptor in usb_host_endpoint.
1612  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1613  * not allowed.
1614  *
1615  * The USB core will not allow URBs to be queued to an endpoint until the
1616  * configuration or alt setting is installed in the device, so there's no need
1617  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1618  */
1619 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1620                 struct usb_host_endpoint *ep)
1621 {
1622         struct xhci_hcd *xhci;
1623         struct xhci_container_ctx *in_ctx, *out_ctx;
1624         unsigned int ep_index;
1625         struct xhci_ep_ctx *ep_ctx;
1626         struct xhci_slot_ctx *slot_ctx;
1627         struct xhci_input_control_ctx *ctrl_ctx;
1628         u32 added_ctxs;
1629         unsigned int last_ctx;
1630         u32 new_add_flags, new_drop_flags, new_slot_info;
1631         struct xhci_virt_device *virt_dev;
1632         int ret = 0;
1633
1634         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1635         if (ret <= 0) {
1636                 /* So we won't queue a reset ep command for a root hub */
1637                 ep->hcpriv = NULL;
1638                 return ret;
1639         }
1640         xhci = hcd_to_xhci(hcd);
1641         if (xhci->xhc_state & XHCI_STATE_DYING)
1642                 return -ENODEV;
1643
1644         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1645         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1646         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1647                 /* FIXME when we have to issue an evaluate endpoint command to
1648                  * deal with ep0 max packet size changing once we get the
1649                  * descriptors
1650                  */
1651                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1652                                 __func__, added_ctxs);
1653                 return 0;
1654         }
1655
1656         virt_dev = xhci->devs[udev->slot_id];
1657         in_ctx = virt_dev->in_ctx;
1658         out_ctx = virt_dev->out_ctx;
1659         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1660         ep_index = xhci_get_endpoint_index(&ep->desc);
1661         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1662
1663         /* If this endpoint is already in use, and the upper layers are trying
1664          * to add it again without dropping it, reject the addition.
1665          */
1666         if (virt_dev->eps[ep_index].ring &&
1667                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1668                                 xhci_get_endpoint_flag(&ep->desc))) {
1669                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1670                                 "without dropping it.\n",
1671                                 (unsigned int) ep->desc.bEndpointAddress);
1672                 return -EINVAL;
1673         }
1674
1675         /* If the HCD has already noted the endpoint is enabled,
1676          * ignore this request.
1677          */
1678         if (le32_to_cpu(ctrl_ctx->add_flags) &
1679             xhci_get_endpoint_flag(&ep->desc)) {
1680                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1681                                 __func__, ep);
1682                 return 0;
1683         }
1684
1685         /*
1686          * Configuration and alternate setting changes must be done in
1687          * process context, not interrupt context (or so documenation
1688          * for usb_set_interface() and usb_set_configuration() claim).
1689          */
1690         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1691                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1692                                 __func__, ep->desc.bEndpointAddress);
1693                 return -ENOMEM;
1694         }
1695
1696         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1697         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1698
1699         /* If xhci_endpoint_disable() was called for this endpoint, but the
1700          * xHC hasn't been notified yet through the check_bandwidth() call,
1701          * this re-adds a new state for the endpoint from the new endpoint
1702          * descriptors.  We must drop and re-add this endpoint, so we leave the
1703          * drop flags alone.
1704          */
1705         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1706
1707         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1708         /* Update the last valid endpoint context, if we just added one past */
1709         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1710             LAST_CTX(last_ctx)) {
1711                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1712                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1713         }
1714         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1715
1716         /* Store the usb_device pointer for later use */
1717         ep->hcpriv = udev;
1718
1719         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1720                         (unsigned int) ep->desc.bEndpointAddress,
1721                         udev->slot_id,
1722                         (unsigned int) new_drop_flags,
1723                         (unsigned int) new_add_flags,
1724                         (unsigned int) new_slot_info);
1725         return 0;
1726 }
1727
1728 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1729 {
1730         struct xhci_input_control_ctx *ctrl_ctx;
1731         struct xhci_ep_ctx *ep_ctx;
1732         struct xhci_slot_ctx *slot_ctx;
1733         int i;
1734
1735         /* When a device's add flag and drop flag are zero, any subsequent
1736          * configure endpoint command will leave that endpoint's state
1737          * untouched.  Make sure we don't leave any old state in the input
1738          * endpoint contexts.
1739          */
1740         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1741         ctrl_ctx->drop_flags = 0;
1742         ctrl_ctx->add_flags = 0;
1743         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1744         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1745         /* Endpoint 0 is always valid */
1746         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1747         for (i = 1; i < 31; ++i) {
1748                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1749                 ep_ctx->ep_info = 0;
1750                 ep_ctx->ep_info2 = 0;
1751                 ep_ctx->deq = 0;
1752                 ep_ctx->tx_info = 0;
1753         }
1754 }
1755
1756 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1757                 struct usb_device *udev, u32 *cmd_status)
1758 {
1759         int ret;
1760
1761         switch (*cmd_status) {
1762         case COMP_ENOMEM:
1763                 dev_warn(&udev->dev, "Not enough host controller resources "
1764                                 "for new device state.\n");
1765                 ret = -ENOMEM;
1766                 /* FIXME: can we allocate more resources for the HC? */
1767                 break;
1768         case COMP_BW_ERR:
1769         case COMP_2ND_BW_ERR:
1770                 dev_warn(&udev->dev, "Not enough bandwidth "
1771                                 "for new device state.\n");
1772                 ret = -ENOSPC;
1773                 /* FIXME: can we go back to the old state? */
1774                 break;
1775         case COMP_TRB_ERR:
1776                 /* the HCD set up something wrong */
1777                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1778                                 "add flag = 1, "
1779                                 "and endpoint is not disabled.\n");
1780                 ret = -EINVAL;
1781                 break;
1782         case COMP_DEV_ERR:
1783                 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1784                                 "configure command.\n");
1785                 ret = -ENODEV;
1786                 break;
1787         case COMP_SUCCESS:
1788                 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1789                 ret = 0;
1790                 break;
1791         default:
1792                 xhci_err(xhci, "ERROR: unexpected command completion "
1793                                 "code 0x%x.\n", *cmd_status);
1794                 ret = -EINVAL;
1795                 break;
1796         }
1797         return ret;
1798 }
1799
1800 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1801                 struct usb_device *udev, u32 *cmd_status)
1802 {
1803         int ret;
1804         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1805
1806         switch (*cmd_status) {
1807         case COMP_EINVAL:
1808                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1809                                 "context command.\n");
1810                 ret = -EINVAL;
1811                 break;
1812         case COMP_EBADSLT:
1813                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1814                                 "evaluate context command.\n");
1815         case COMP_CTX_STATE:
1816                 dev_warn(&udev->dev, "WARN: invalid context state for "
1817                                 "evaluate context command.\n");
1818                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1819                 ret = -EINVAL;
1820                 break;
1821         case COMP_DEV_ERR:
1822                 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1823                                 "context command.\n");
1824                 ret = -ENODEV;
1825                 break;
1826         case COMP_MEL_ERR:
1827                 /* Max Exit Latency too large error */
1828                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1829                 ret = -EINVAL;
1830                 break;
1831         case COMP_SUCCESS:
1832                 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1833                 ret = 0;
1834                 break;
1835         default:
1836                 xhci_err(xhci, "ERROR: unexpected command completion "
1837                                 "code 0x%x.\n", *cmd_status);
1838                 ret = -EINVAL;
1839                 break;
1840         }
1841         return ret;
1842 }
1843
1844 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1845                 struct xhci_container_ctx *in_ctx)
1846 {
1847         struct xhci_input_control_ctx *ctrl_ctx;
1848         u32 valid_add_flags;
1849         u32 valid_drop_flags;
1850
1851         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1852         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1853          * (bit 1).  The default control endpoint is added during the Address
1854          * Device command and is never removed until the slot is disabled.
1855          */
1856         valid_add_flags = ctrl_ctx->add_flags >> 2;
1857         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1858
1859         /* Use hweight32 to count the number of ones in the add flags, or
1860          * number of endpoints added.  Don't count endpoints that are changed
1861          * (both added and dropped).
1862          */
1863         return hweight32(valid_add_flags) -
1864                 hweight32(valid_add_flags & valid_drop_flags);
1865 }
1866
1867 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1868                 struct xhci_container_ctx *in_ctx)
1869 {
1870         struct xhci_input_control_ctx *ctrl_ctx;
1871         u32 valid_add_flags;
1872         u32 valid_drop_flags;
1873
1874         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1875         valid_add_flags = ctrl_ctx->add_flags >> 2;
1876         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1877
1878         return hweight32(valid_drop_flags) -
1879                 hweight32(valid_add_flags & valid_drop_flags);
1880 }
1881
1882 /*
1883  * We need to reserve the new number of endpoints before the configure endpoint
1884  * command completes.  We can't subtract the dropped endpoints from the number
1885  * of active endpoints until the command completes because we can oversubscribe
1886  * the host in this case:
1887  *
1888  *  - the first configure endpoint command drops more endpoints than it adds
1889  *  - a second configure endpoint command that adds more endpoints is queued
1890  *  - the first configure endpoint command fails, so the config is unchanged
1891  *  - the second command may succeed, even though there isn't enough resources
1892  *
1893  * Must be called with xhci->lock held.
1894  */
1895 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1896                 struct xhci_container_ctx *in_ctx)
1897 {
1898         u32 added_eps;
1899
1900         added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1901         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1902                 xhci_dbg(xhci, "Not enough ep ctxs: "
1903                                 "%u active, need to add %u, limit is %u.\n",
1904                                 xhci->num_active_eps, added_eps,
1905                                 xhci->limit_active_eps);
1906                 return -ENOMEM;
1907         }
1908         xhci->num_active_eps += added_eps;
1909         xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1910                         xhci->num_active_eps);
1911         return 0;
1912 }
1913
1914 /*
1915  * The configure endpoint was failed by the xHC for some other reason, so we
1916  * need to revert the resources that failed configuration would have used.
1917  *
1918  * Must be called with xhci->lock held.
1919  */
1920 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1921                 struct xhci_container_ctx *in_ctx)
1922 {
1923         u32 num_failed_eps;
1924
1925         num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1926         xhci->num_active_eps -= num_failed_eps;
1927         xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1928                         num_failed_eps,
1929                         xhci->num_active_eps);
1930 }
1931
1932 /*
1933  * Now that the command has completed, clean up the active endpoint count by
1934  * subtracting out the endpoints that were dropped (but not changed).
1935  *
1936  * Must be called with xhci->lock held.
1937  */
1938 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1939                 struct xhci_container_ctx *in_ctx)
1940 {
1941         u32 num_dropped_eps;
1942
1943         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1944         xhci->num_active_eps -= num_dropped_eps;
1945         if (num_dropped_eps)
1946                 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1947                                 num_dropped_eps,
1948                                 xhci->num_active_eps);
1949 }
1950
1951 unsigned int xhci_get_block_size(struct usb_device *udev)
1952 {
1953         switch (udev->speed) {
1954         case USB_SPEED_LOW:
1955         case USB_SPEED_FULL:
1956                 return FS_BLOCK;
1957         case USB_SPEED_HIGH:
1958                 return HS_BLOCK;
1959         case USB_SPEED_SUPER:
1960                 return SS_BLOCK;
1961         case USB_SPEED_UNKNOWN:
1962         case USB_SPEED_WIRELESS:
1963         default:
1964                 /* Should never happen */
1965                 return 1;
1966         }
1967 }
1968
1969 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1970 {
1971         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1972                 return LS_OVERHEAD;
1973         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1974                 return FS_OVERHEAD;
1975         return HS_OVERHEAD;
1976 }
1977
1978 /* If we are changing a LS/FS device under a HS hub,
1979  * make sure (if we are activating a new TT) that the HS bus has enough
1980  * bandwidth for this new TT.
1981  */
1982 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1983                 struct xhci_virt_device *virt_dev,
1984                 int old_active_eps)
1985 {
1986         struct xhci_interval_bw_table *bw_table;
1987         struct xhci_tt_bw_info *tt_info;
1988
1989         /* Find the bandwidth table for the root port this TT is attached to. */
1990         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1991         tt_info = virt_dev->tt_info;
1992         /* If this TT already had active endpoints, the bandwidth for this TT
1993          * has already been added.  Removing all periodic endpoints (and thus
1994          * making the TT enactive) will only decrease the bandwidth used.
1995          */
1996         if (old_active_eps)
1997                 return 0;
1998         if (old_active_eps == 0 && tt_info->active_eps != 0) {
1999                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2000                         return -ENOMEM;
2001                 return 0;
2002         }
2003         /* Not sure why we would have no new active endpoints...
2004          *
2005          * Maybe because of an Evaluate Context change for a hub update or a
2006          * control endpoint 0 max packet size change?
2007          * FIXME: skip the bandwidth calculation in that case.
2008          */
2009         return 0;
2010 }
2011
2012 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2013                 struct xhci_virt_device *virt_dev)
2014 {
2015         unsigned int bw_reserved;
2016
2017         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2018         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2019                 return -ENOMEM;
2020
2021         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2022         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2023                 return -ENOMEM;
2024
2025         return 0;
2026 }
2027
2028 /*
2029  * This algorithm is a very conservative estimate of the worst-case scheduling
2030  * scenario for any one interval.  The hardware dynamically schedules the
2031  * packets, so we can't tell which microframe could be the limiting factor in
2032  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2033  *
2034  * Obviously, we can't solve an NP complete problem to find the minimum worst
2035  * case scenario.  Instead, we come up with an estimate that is no less than
2036  * the worst case bandwidth used for any one microframe, but may be an
2037  * over-estimate.
2038  *
2039  * We walk the requirements for each endpoint by interval, starting with the
2040  * smallest interval, and place packets in the schedule where there is only one
2041  * possible way to schedule packets for that interval.  In order to simplify
2042  * this algorithm, we record the largest max packet size for each interval, and
2043  * assume all packets will be that size.
2044  *
2045  * For interval 0, we obviously must schedule all packets for each interval.
2046  * The bandwidth for interval 0 is just the amount of data to be transmitted
2047  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2048  * the number of packets).
2049  *
2050  * For interval 1, we have two possible microframes to schedule those packets
2051  * in.  For this algorithm, if we can schedule the same number of packets for
2052  * each possible scheduling opportunity (each microframe), we will do so.  The
2053  * remaining number of packets will be saved to be transmitted in the gaps in
2054  * the next interval's scheduling sequence.
2055  *
2056  * As we move those remaining packets to be scheduled with interval 2 packets,
2057  * we have to double the number of remaining packets to transmit.  This is
2058  * because the intervals are actually powers of 2, and we would be transmitting
2059  * the previous interval's packets twice in this interval.  We also have to be
2060  * sure that when we look at the largest max packet size for this interval, we
2061  * also look at the largest max packet size for the remaining packets and take
2062  * the greater of the two.
2063  *
2064  * The algorithm continues to evenly distribute packets in each scheduling
2065  * opportunity, and push the remaining packets out, until we get to the last
2066  * interval.  Then those packets and their associated overhead are just added
2067  * to the bandwidth used.
2068  */
2069 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2070                 struct xhci_virt_device *virt_dev,
2071                 int old_active_eps)
2072 {
2073         unsigned int bw_reserved;
2074         unsigned int max_bandwidth;
2075         unsigned int bw_used;
2076         unsigned int block_size;
2077         struct xhci_interval_bw_table *bw_table;
2078         unsigned int packet_size = 0;
2079         unsigned int overhead = 0;
2080         unsigned int packets_transmitted = 0;
2081         unsigned int packets_remaining = 0;
2082         unsigned int i;
2083
2084         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2085                 return xhci_check_ss_bw(xhci, virt_dev);
2086
2087         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2088                 max_bandwidth = HS_BW_LIMIT;
2089                 /* Convert percent of bus BW reserved to blocks reserved */
2090                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2091         } else {
2092                 max_bandwidth = FS_BW_LIMIT;
2093                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2094         }
2095
2096         bw_table = virt_dev->bw_table;
2097         /* We need to translate the max packet size and max ESIT payloads into
2098          * the units the hardware uses.
2099          */
2100         block_size = xhci_get_block_size(virt_dev->udev);
2101
2102         /* If we are manipulating a LS/FS device under a HS hub, double check
2103          * that the HS bus has enough bandwidth if we are activing a new TT.
2104          */
2105         if (virt_dev->tt_info) {
2106                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2107                                 virt_dev->real_port);
2108                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2109                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2110                                         "newly activated TT.\n");
2111                         return -ENOMEM;
2112                 }
2113                 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2114                                 virt_dev->tt_info->slot_id,
2115                                 virt_dev->tt_info->ttport);
2116         } else {
2117                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2118                                 virt_dev->real_port);
2119         }
2120
2121         /* Add in how much bandwidth will be used for interval zero, or the
2122          * rounded max ESIT payload + number of packets * largest overhead.
2123          */
2124         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2125                 bw_table->interval_bw[0].num_packets *
2126                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2127
2128         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2129                 unsigned int bw_added;
2130                 unsigned int largest_mps;
2131                 unsigned int interval_overhead;
2132
2133                 /*
2134                  * How many packets could we transmit in this interval?
2135                  * If packets didn't fit in the previous interval, we will need
2136                  * to transmit that many packets twice within this interval.
2137                  */
2138                 packets_remaining = 2 * packets_remaining +
2139                         bw_table->interval_bw[i].num_packets;
2140
2141                 /* Find the largest max packet size of this or the previous
2142                  * interval.
2143                  */
2144                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2145                         largest_mps = 0;
2146                 else {
2147                         struct xhci_virt_ep *virt_ep;
2148                         struct list_head *ep_entry;
2149
2150                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2151                         virt_ep = list_entry(ep_entry,
2152                                         struct xhci_virt_ep, bw_endpoint_list);
2153                         /* Convert to blocks, rounding up */
2154                         largest_mps = DIV_ROUND_UP(
2155                                         virt_ep->bw_info.max_packet_size,
2156                                         block_size);
2157                 }
2158                 if (largest_mps > packet_size)
2159                         packet_size = largest_mps;
2160
2161                 /* Use the larger overhead of this or the previous interval. */
2162                 interval_overhead = xhci_get_largest_overhead(
2163                                 &bw_table->interval_bw[i]);
2164                 if (interval_overhead > overhead)
2165                         overhead = interval_overhead;
2166
2167                 /* How many packets can we evenly distribute across
2168                  * (1 << (i + 1)) possible scheduling opportunities?
2169                  */
2170                 packets_transmitted = packets_remaining >> (i + 1);
2171
2172                 /* Add in the bandwidth used for those scheduled packets */
2173                 bw_added = packets_transmitted * (overhead + packet_size);
2174
2175                 /* How many packets do we have remaining to transmit? */
2176                 packets_remaining = packets_remaining % (1 << (i + 1));
2177
2178                 /* What largest max packet size should those packets have? */
2179                 /* If we've transmitted all packets, don't carry over the
2180                  * largest packet size.
2181                  */
2182                 if (packets_remaining == 0) {
2183                         packet_size = 0;
2184                         overhead = 0;
2185                 } else if (packets_transmitted > 0) {
2186                         /* Otherwise if we do have remaining packets, and we've
2187                          * scheduled some packets in this interval, take the
2188                          * largest max packet size from endpoints with this
2189                          * interval.
2190                          */
2191                         packet_size = largest_mps;
2192                         overhead = interval_overhead;
2193                 }
2194                 /* Otherwise carry over packet_size and overhead from the last
2195                  * time we had a remainder.
2196                  */
2197                 bw_used += bw_added;
2198                 if (bw_used > max_bandwidth) {
2199                         xhci_warn(xhci, "Not enough bandwidth. "
2200                                         "Proposed: %u, Max: %u\n",
2201                                 bw_used, max_bandwidth);
2202                         return -ENOMEM;
2203                 }
2204         }
2205         /*
2206          * Ok, we know we have some packets left over after even-handedly
2207          * scheduling interval 15.  We don't know which microframes they will
2208          * fit into, so we over-schedule and say they will be scheduled every
2209          * microframe.
2210          */
2211         if (packets_remaining > 0)
2212                 bw_used += overhead + packet_size;
2213
2214         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2215                 unsigned int port_index = virt_dev->real_port - 1;
2216
2217                 /* OK, we're manipulating a HS device attached to a
2218                  * root port bandwidth domain.  Include the number of active TTs
2219                  * in the bandwidth used.
2220                  */
2221                 bw_used += TT_HS_OVERHEAD *
2222                         xhci->rh_bw[port_index].num_active_tts;
2223         }
2224
2225         xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2226                 "Available: %u " "percent\n",
2227                 bw_used, max_bandwidth, bw_reserved,
2228                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2229                 max_bandwidth);
2230
2231         bw_used += bw_reserved;
2232         if (bw_used > max_bandwidth) {
2233                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2234                                 bw_used, max_bandwidth);
2235                 return -ENOMEM;
2236         }
2237
2238         bw_table->bw_used = bw_used;
2239         return 0;
2240 }
2241
2242 static bool xhci_is_async_ep(unsigned int ep_type)
2243 {
2244         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2245                                         ep_type != ISOC_IN_EP &&
2246                                         ep_type != INT_IN_EP);
2247 }
2248
2249 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2250 {
2251         return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
2252 }
2253
2254 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2255 {
2256         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2257
2258         if (ep_bw->ep_interval == 0)
2259                 return SS_OVERHEAD_BURST +
2260                         (ep_bw->mult * ep_bw->num_packets *
2261                                         (SS_OVERHEAD + mps));
2262         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2263                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2264                                 1 << ep_bw->ep_interval);
2265
2266 }
2267
2268 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2269                 struct xhci_bw_info *ep_bw,
2270                 struct xhci_interval_bw_table *bw_table,
2271                 struct usb_device *udev,
2272                 struct xhci_virt_ep *virt_ep,
2273                 struct xhci_tt_bw_info *tt_info)
2274 {
2275         struct xhci_interval_bw *interval_bw;
2276         int normalized_interval;
2277
2278         if (xhci_is_async_ep(ep_bw->type))
2279                 return;
2280
2281         if (udev->speed == USB_SPEED_SUPER) {
2282                 if (xhci_is_sync_in_ep(ep_bw->type))
2283                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2284                                 xhci_get_ss_bw_consumed(ep_bw);
2285                 else
2286                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2287                                 xhci_get_ss_bw_consumed(ep_bw);
2288                 return;
2289         }
2290
2291         /* SuperSpeed endpoints never get added to intervals in the table, so
2292          * this check is only valid for HS/FS/LS devices.
2293          */
2294         if (list_empty(&virt_ep->bw_endpoint_list))
2295                 return;
2296         /* For LS/FS devices, we need to translate the interval expressed in
2297          * microframes to frames.
2298          */
2299         if (udev->speed == USB_SPEED_HIGH)
2300                 normalized_interval = ep_bw->ep_interval;
2301         else
2302                 normalized_interval = ep_bw->ep_interval - 3;
2303
2304         if (normalized_interval == 0)
2305                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2306         interval_bw = &bw_table->interval_bw[normalized_interval];
2307         interval_bw->num_packets -= ep_bw->num_packets;
2308         switch (udev->speed) {
2309         case USB_SPEED_LOW:
2310                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2311                 break;
2312         case USB_SPEED_FULL:
2313                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2314                 break;
2315         case USB_SPEED_HIGH:
2316                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2317                 break;
2318         case USB_SPEED_SUPER:
2319         case USB_SPEED_UNKNOWN:
2320         case USB_SPEED_WIRELESS:
2321                 /* Should never happen because only LS/FS/HS endpoints will get
2322                  * added to the endpoint list.
2323                  */
2324                 return;
2325         }
2326         if (tt_info)
2327                 tt_info->active_eps -= 1;
2328         list_del_init(&virt_ep->bw_endpoint_list);
2329 }
2330
2331 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2332                 struct xhci_bw_info *ep_bw,
2333                 struct xhci_interval_bw_table *bw_table,
2334                 struct usb_device *udev,
2335                 struct xhci_virt_ep *virt_ep,
2336                 struct xhci_tt_bw_info *tt_info)
2337 {
2338         struct xhci_interval_bw *interval_bw;
2339         struct xhci_virt_ep *smaller_ep;
2340         int normalized_interval;
2341
2342         if (xhci_is_async_ep(ep_bw->type))
2343                 return;
2344
2345         if (udev->speed == USB_SPEED_SUPER) {
2346                 if (xhci_is_sync_in_ep(ep_bw->type))
2347                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2348                                 xhci_get_ss_bw_consumed(ep_bw);
2349                 else
2350                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2351                                 xhci_get_ss_bw_consumed(ep_bw);
2352                 return;
2353         }
2354
2355         /* For LS/FS devices, we need to translate the interval expressed in
2356          * microframes to frames.
2357          */
2358         if (udev->speed == USB_SPEED_HIGH)
2359                 normalized_interval = ep_bw->ep_interval;
2360         else
2361                 normalized_interval = ep_bw->ep_interval - 3;
2362
2363         if (normalized_interval == 0)
2364                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2365         interval_bw = &bw_table->interval_bw[normalized_interval];
2366         interval_bw->num_packets += ep_bw->num_packets;
2367         switch (udev->speed) {
2368         case USB_SPEED_LOW:
2369                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2370                 break;
2371         case USB_SPEED_FULL:
2372                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2373                 break;
2374         case USB_SPEED_HIGH:
2375                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2376                 break;
2377         case USB_SPEED_SUPER:
2378         case USB_SPEED_UNKNOWN:
2379         case USB_SPEED_WIRELESS:
2380                 /* Should never happen because only LS/FS/HS endpoints will get
2381                  * added to the endpoint list.
2382                  */
2383                 return;
2384         }
2385
2386         if (tt_info)
2387                 tt_info->active_eps += 1;
2388         /* Insert the endpoint into the list, largest max packet size first. */
2389         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2390                         bw_endpoint_list) {
2391                 if (ep_bw->max_packet_size >=
2392                                 smaller_ep->bw_info.max_packet_size) {
2393                         /* Add the new ep before the smaller endpoint */
2394                         list_add_tail(&virt_ep->bw_endpoint_list,
2395                                         &smaller_ep->bw_endpoint_list);
2396                         return;
2397                 }
2398         }
2399         /* Add the new endpoint at the end of the list. */
2400         list_add_tail(&virt_ep->bw_endpoint_list,
2401                         &interval_bw->endpoints);
2402 }
2403
2404 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2405                 struct xhci_virt_device *virt_dev,
2406                 int old_active_eps)
2407 {
2408         struct xhci_root_port_bw_info *rh_bw_info;
2409         if (!virt_dev->tt_info)
2410                 return;
2411
2412         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2413         if (old_active_eps == 0 &&
2414                                 virt_dev->tt_info->active_eps != 0) {
2415                 rh_bw_info->num_active_tts += 1;
2416                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2417         } else if (old_active_eps != 0 &&
2418                                 virt_dev->tt_info->active_eps == 0) {
2419                 rh_bw_info->num_active_tts -= 1;
2420                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2421         }
2422 }
2423
2424 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2425                 struct xhci_virt_device *virt_dev,
2426                 struct xhci_container_ctx *in_ctx)
2427 {
2428         struct xhci_bw_info ep_bw_info[31];
2429         int i;
2430         struct xhci_input_control_ctx *ctrl_ctx;
2431         int old_active_eps = 0;
2432
2433         if (virt_dev->tt_info)
2434                 old_active_eps = virt_dev->tt_info->active_eps;
2435
2436         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2437
2438         for (i = 0; i < 31; i++) {
2439                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2440                         continue;
2441
2442                 /* Make a copy of the BW info in case we need to revert this */
2443                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2444                                 sizeof(ep_bw_info[i]));
2445                 /* Drop the endpoint from the interval table if the endpoint is
2446                  * being dropped or changed.
2447                  */
2448                 if (EP_IS_DROPPED(ctrl_ctx, i))
2449                         xhci_drop_ep_from_interval_table(xhci,
2450                                         &virt_dev->eps[i].bw_info,
2451                                         virt_dev->bw_table,
2452                                         virt_dev->udev,
2453                                         &virt_dev->eps[i],
2454                                         virt_dev->tt_info);
2455         }
2456         /* Overwrite the information stored in the endpoints' bw_info */
2457         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2458         for (i = 0; i < 31; i++) {
2459                 /* Add any changed or added endpoints to the interval table */
2460                 if (EP_IS_ADDED(ctrl_ctx, i))
2461                         xhci_add_ep_to_interval_table(xhci,
2462                                         &virt_dev->eps[i].bw_info,
2463                                         virt_dev->bw_table,
2464                                         virt_dev->udev,
2465                                         &virt_dev->eps[i],
2466                                         virt_dev->tt_info);
2467         }
2468
2469         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2470                 /* Ok, this fits in the bandwidth we have.
2471                  * Update the number of active TTs.
2472                  */
2473                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2474                 return 0;
2475         }
2476
2477         /* We don't have enough bandwidth for this, revert the stored info. */
2478         for (i = 0; i < 31; i++) {
2479                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2480                         continue;
2481
2482                 /* Drop the new copies of any added or changed endpoints from
2483                  * the interval table.
2484                  */
2485                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2486                         xhci_drop_ep_from_interval_table(xhci,
2487                                         &virt_dev->eps[i].bw_info,
2488                                         virt_dev->bw_table,
2489                                         virt_dev->udev,
2490                                         &virt_dev->eps[i],
2491                                         virt_dev->tt_info);
2492                 }
2493                 /* Revert the endpoint back to its old information */
2494                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2495                                 sizeof(ep_bw_info[i]));
2496                 /* Add any changed or dropped endpoints back into the table */
2497                 if (EP_IS_DROPPED(ctrl_ctx, i))
2498                         xhci_add_ep_to_interval_table(xhci,
2499                                         &virt_dev->eps[i].bw_info,
2500                                         virt_dev->bw_table,
2501                                         virt_dev->udev,
2502                                         &virt_dev->eps[i],
2503                                         virt_dev->tt_info);
2504         }
2505         return -ENOMEM;
2506 }
2507
2508
2509 /* Issue a configure endpoint command or evaluate context command
2510  * and wait for it to finish.
2511  */
2512 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2513                 struct usb_device *udev,
2514                 struct xhci_command *command,
2515                 bool ctx_change, bool must_succeed)
2516 {
2517         int ret;
2518         int timeleft;
2519         unsigned long flags;
2520         struct xhci_container_ctx *in_ctx;
2521         struct completion *cmd_completion;
2522         u32 *cmd_status;
2523         struct xhci_virt_device *virt_dev;
2524
2525         spin_lock_irqsave(&xhci->lock, flags);
2526         virt_dev = xhci->devs[udev->slot_id];
2527
2528         if (command)
2529                 in_ctx = command->in_ctx;
2530         else
2531                 in_ctx = virt_dev->in_ctx;
2532
2533         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2534                         xhci_reserve_host_resources(xhci, in_ctx)) {
2535                 spin_unlock_irqrestore(&xhci->lock, flags);
2536                 xhci_warn(xhci, "Not enough host resources, "
2537                                 "active endpoint contexts = %u\n",
2538                                 xhci->num_active_eps);
2539                 return -ENOMEM;
2540         }
2541         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2542                         xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2543                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2544                         xhci_free_host_resources(xhci, in_ctx);
2545                 spin_unlock_irqrestore(&xhci->lock, flags);
2546                 xhci_warn(xhci, "Not enough bandwidth\n");
2547                 return -ENOMEM;
2548         }
2549
2550         if (command) {
2551                 cmd_completion = command->completion;
2552                 cmd_status = &command->status;
2553                 command->command_trb = xhci->cmd_ring->enqueue;
2554
2555                 /* Enqueue pointer can be left pointing to the link TRB,
2556                  * we must handle that
2557                  */
2558                 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2559                         command->command_trb =
2560                                 xhci->cmd_ring->enq_seg->next->trbs;
2561
2562                 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2563         } else {
2564                 cmd_completion = &virt_dev->cmd_completion;
2565                 cmd_status = &virt_dev->cmd_status;
2566         }
2567         init_completion(cmd_completion);
2568
2569         if (!ctx_change)
2570                 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2571                                 udev->slot_id, must_succeed);
2572         else
2573                 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2574                                 udev->slot_id, must_succeed);
2575         if (ret < 0) {
2576                 if (command)
2577                         list_del(&command->cmd_list);
2578                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2579                         xhci_free_host_resources(xhci, in_ctx);
2580                 spin_unlock_irqrestore(&xhci->lock, flags);
2581                 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2582                 return -ENOMEM;
2583         }
2584         xhci_ring_cmd_db(xhci);
2585         spin_unlock_irqrestore(&xhci->lock, flags);
2586
2587         /* Wait for the configure endpoint command to complete */
2588         timeleft = wait_for_completion_interruptible_timeout(
2589                         cmd_completion,
2590                         USB_CTRL_SET_TIMEOUT);
2591         if (timeleft <= 0) {
2592                 xhci_warn(xhci, "%s while waiting for %s command\n",
2593                                 timeleft == 0 ? "Timeout" : "Signal",
2594                                 ctx_change == 0 ?
2595                                         "configure endpoint" :
2596                                         "evaluate context");
2597                 /* FIXME cancel the configure endpoint command */
2598                 return -ETIME;
2599         }
2600
2601         if (!ctx_change)
2602                 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2603         else
2604                 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2605
2606         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2607                 spin_lock_irqsave(&xhci->lock, flags);
2608                 /* If the command failed, remove the reserved resources.
2609                  * Otherwise, clean up the estimate to include dropped eps.
2610                  */
2611                 if (ret)
2612                         xhci_free_host_resources(xhci, in_ctx);
2613                 else
2614                         xhci_finish_resource_reservation(xhci, in_ctx);
2615                 spin_unlock_irqrestore(&xhci->lock, flags);
2616         }
2617         return ret;
2618 }
2619
2620 /* Called after one or more calls to xhci_add_endpoint() or
2621  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2622  * to call xhci_reset_bandwidth().
2623  *
2624  * Since we are in the middle of changing either configuration or
2625  * installing a new alt setting, the USB core won't allow URBs to be
2626  * enqueued for any endpoint on the old config or interface.  Nothing
2627  * else should be touching the xhci->devs[slot_id] structure, so we
2628  * don't need to take the xhci->lock for manipulating that.
2629  */
2630 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2631 {
2632         int i;
2633         int ret = 0;
2634         struct xhci_hcd *xhci;
2635         struct xhci_virt_device *virt_dev;
2636         struct xhci_input_control_ctx *ctrl_ctx;
2637         struct xhci_slot_ctx *slot_ctx;
2638
2639         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2640         if (ret <= 0)
2641                 return ret;
2642         xhci = hcd_to_xhci(hcd);
2643         if (xhci->xhc_state & XHCI_STATE_DYING)
2644                 return -ENODEV;
2645
2646         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2647         virt_dev = xhci->devs[udev->slot_id];
2648
2649         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2650         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2651         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2652         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2653         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2654
2655         /* Don't issue the command if there's no endpoints to update. */
2656         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2657                         ctrl_ctx->drop_flags == 0)
2658                 return 0;
2659
2660         xhci_dbg(xhci, "New Input Control Context:\n");
2661         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2662         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2663                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2664
2665         ret = xhci_configure_endpoint(xhci, udev, NULL,
2666                         false, false);
2667         if (ret) {
2668                 /* Callee should call reset_bandwidth() */
2669                 return ret;
2670         }
2671
2672         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2673         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2674                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2675
2676         /* Free any rings that were dropped, but not changed. */
2677         for (i = 1; i < 31; ++i) {
2678                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2679                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2680                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2681         }
2682         xhci_zero_in_ctx(xhci, virt_dev);
2683         /*
2684          * Install any rings for completely new endpoints or changed endpoints,
2685          * and free or cache any old rings from changed endpoints.
2686          */
2687         for (i = 1; i < 31; ++i) {
2688                 if (!virt_dev->eps[i].new_ring)
2689                         continue;
2690                 /* Only cache or free the old ring if it exists.
2691                  * It may not if this is the first add of an endpoint.
2692                  */
2693                 if (virt_dev->eps[i].ring) {
2694                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2695                 }
2696                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2697                 virt_dev->eps[i].new_ring = NULL;
2698         }
2699
2700         return ret;
2701 }
2702
2703 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2704 {
2705         struct xhci_hcd *xhci;
2706         struct xhci_virt_device *virt_dev;
2707         int i, ret;
2708
2709         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2710         if (ret <= 0)
2711                 return;
2712         xhci = hcd_to_xhci(hcd);
2713
2714         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2715         virt_dev = xhci->devs[udev->slot_id];
2716         /* Free any rings allocated for added endpoints */
2717         for (i = 0; i < 31; ++i) {
2718                 if (virt_dev->eps[i].new_ring) {
2719                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2720                         virt_dev->eps[i].new_ring = NULL;
2721                 }
2722         }
2723         xhci_zero_in_ctx(xhci, virt_dev);
2724 }
2725
2726 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2727                 struct xhci_container_ctx *in_ctx,
2728                 struct xhci_container_ctx *out_ctx,
2729                 u32 add_flags, u32 drop_flags)
2730 {
2731         struct xhci_input_control_ctx *ctrl_ctx;
2732         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2733         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2734         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2735         xhci_slot_copy(xhci, in_ctx, out_ctx);
2736         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2737
2738         xhci_dbg(xhci, "Input Context:\n");
2739         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2740 }
2741
2742 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2743                 unsigned int slot_id, unsigned int ep_index,
2744                 struct xhci_dequeue_state *deq_state)
2745 {
2746         struct xhci_container_ctx *in_ctx;
2747         struct xhci_ep_ctx *ep_ctx;
2748         u32 added_ctxs;
2749         dma_addr_t addr;
2750
2751         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2752                         xhci->devs[slot_id]->out_ctx, ep_index);
2753         in_ctx = xhci->devs[slot_id]->in_ctx;
2754         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2755         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2756                         deq_state->new_deq_ptr);
2757         if (addr == 0) {
2758                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2759                                 "reset ep command\n");
2760                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2761                                 deq_state->new_deq_seg,
2762                                 deq_state->new_deq_ptr);
2763                 return;
2764         }
2765         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2766
2767         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2768         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2769                         xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2770 }
2771
2772 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2773                 struct usb_device *udev, unsigned int ep_index)
2774 {
2775         struct xhci_dequeue_state deq_state;
2776         struct xhci_virt_ep *ep;
2777
2778         xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2779         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2780         /* We need to move the HW's dequeue pointer past this TD,
2781          * or it will attempt to resend it on the next doorbell ring.
2782          */
2783         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2784                         ep_index, ep->stopped_stream, ep->stopped_td,
2785                         &deq_state);
2786
2787         /* HW with the reset endpoint quirk will use the saved dequeue state to
2788          * issue a configure endpoint command later.
2789          */
2790         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2791                 xhci_dbg(xhci, "Queueing new dequeue state\n");
2792                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2793                                 ep_index, ep->stopped_stream, &deq_state);
2794         } else {
2795                 /* Better hope no one uses the input context between now and the
2796                  * reset endpoint completion!
2797                  * XXX: No idea how this hardware will react when stream rings
2798                  * are enabled.
2799                  */
2800                 xhci_dbg(xhci, "Setting up input context for "
2801                                 "configure endpoint command\n");
2802                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2803                                 ep_index, &deq_state);
2804         }
2805 }
2806
2807 /* Deal with stalled endpoints.  The core should have sent the control message
2808  * to clear the halt condition.  However, we need to make the xHCI hardware
2809  * reset its sequence number, since a device will expect a sequence number of
2810  * zero after the halt condition is cleared.
2811  * Context: in_interrupt
2812  */
2813 void xhci_endpoint_reset(struct usb_hcd *hcd,
2814                 struct usb_host_endpoint *ep)
2815 {
2816         struct xhci_hcd *xhci;
2817         struct usb_device *udev;
2818         unsigned int ep_index;
2819         unsigned long flags;
2820         int ret;
2821         struct xhci_virt_ep *virt_ep;
2822
2823         xhci = hcd_to_xhci(hcd);
2824         udev = (struct usb_device *) ep->hcpriv;
2825         /* Called with a root hub endpoint (or an endpoint that wasn't added
2826          * with xhci_add_endpoint()
2827          */
2828         if (!ep->hcpriv)
2829                 return;
2830         ep_index = xhci_get_endpoint_index(&ep->desc);
2831         virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2832         if (!virt_ep->stopped_td) {
2833                 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2834                                 ep->desc.bEndpointAddress);
2835                 return;
2836         }
2837         if (usb_endpoint_xfer_control(&ep->desc)) {
2838                 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2839                 return;
2840         }
2841
2842         xhci_dbg(xhci, "Queueing reset endpoint command\n");
2843         spin_lock_irqsave(&xhci->lock, flags);
2844         ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2845         /*
2846          * Can't change the ring dequeue pointer until it's transitioned to the
2847          * stopped state, which is only upon a successful reset endpoint
2848          * command.  Better hope that last command worked!
2849          */
2850         if (!ret) {
2851                 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2852                 kfree(virt_ep->stopped_td);
2853                 xhci_ring_cmd_db(xhci);
2854         }
2855         virt_ep->stopped_td = NULL;
2856         virt_ep->stopped_trb = NULL;
2857         virt_ep->stopped_stream = 0;
2858         spin_unlock_irqrestore(&xhci->lock, flags);
2859
2860         if (ret)
2861                 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2862 }
2863
2864 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2865                 struct usb_device *udev, struct usb_host_endpoint *ep,
2866                 unsigned int slot_id)
2867 {
2868         int ret;
2869         unsigned int ep_index;
2870         unsigned int ep_state;
2871
2872         if (!ep)
2873                 return -EINVAL;
2874         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2875         if (ret <= 0)
2876                 return -EINVAL;
2877         if (ep->ss_ep_comp.bmAttributes == 0) {
2878                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2879                                 " descriptor for ep 0x%x does not support streams\n",
2880                                 ep->desc.bEndpointAddress);
2881                 return -EINVAL;
2882         }
2883
2884         ep_index = xhci_get_endpoint_index(&ep->desc);
2885         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2886         if (ep_state & EP_HAS_STREAMS ||
2887                         ep_state & EP_GETTING_STREAMS) {
2888                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2889                                 "already has streams set up.\n",
2890                                 ep->desc.bEndpointAddress);
2891                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2892                                 "dynamic stream context array reallocation.\n");
2893                 return -EINVAL;
2894         }
2895         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2896                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2897                                 "endpoint 0x%x; URBs are pending.\n",
2898                                 ep->desc.bEndpointAddress);
2899                 return -EINVAL;
2900         }
2901         return 0;
2902 }
2903
2904 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2905                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2906 {
2907         unsigned int max_streams;
2908
2909         /* The stream context array size must be a power of two */
2910         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2911         /*
2912          * Find out how many primary stream array entries the host controller
2913          * supports.  Later we may use secondary stream arrays (similar to 2nd
2914          * level page entries), but that's an optional feature for xHCI host
2915          * controllers. xHCs must support at least 4 stream IDs.
2916          */
2917         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2918         if (*num_stream_ctxs > max_streams) {
2919                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2920                                 max_streams);
2921                 *num_stream_ctxs = max_streams;
2922                 *num_streams = max_streams;
2923         }
2924 }
2925
2926 /* Returns an error code if one of the endpoint already has streams.
2927  * This does not change any data structures, it only checks and gathers
2928  * information.
2929  */
2930 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2931                 struct usb_device *udev,
2932                 struct usb_host_endpoint **eps, unsigned int num_eps,
2933                 unsigned int *num_streams, u32 *changed_ep_bitmask)
2934 {
2935         unsigned int max_streams;
2936         unsigned int endpoint_flag;
2937         int i;
2938         int ret;
2939
2940         for (i = 0; i < num_eps; i++) {
2941                 ret = xhci_check_streams_endpoint(xhci, udev,
2942                                 eps[i], udev->slot_id);
2943                 if (ret < 0)
2944                         return ret;
2945
2946                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2947                 if (max_streams < (*num_streams - 1)) {
2948                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2949                                         eps[i]->desc.bEndpointAddress,
2950                                         max_streams);
2951                         *num_streams = max_streams+1;
2952                 }
2953
2954                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2955                 if (*changed_ep_bitmask & endpoint_flag)
2956                         return -EINVAL;
2957                 *changed_ep_bitmask |= endpoint_flag;
2958         }
2959         return 0;
2960 }
2961
2962 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2963                 struct usb_device *udev,
2964                 struct usb_host_endpoint **eps, unsigned int num_eps)
2965 {
2966         u32 changed_ep_bitmask = 0;
2967         unsigned int slot_id;
2968         unsigned int ep_index;
2969         unsigned int ep_state;
2970         int i;
2971
2972         slot_id = udev->slot_id;
2973         if (!xhci->devs[slot_id])
2974                 return 0;
2975
2976         for (i = 0; i < num_eps; i++) {
2977                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2978                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2979                 /* Are streams already being freed for the endpoint? */
2980                 if (ep_state & EP_GETTING_NO_STREAMS) {
2981                         xhci_warn(xhci, "WARN Can't disable streams for "
2982                                         "endpoint 0x%x\n, "
2983                                         "streams are being disabled already.",
2984                                         eps[i]->desc.bEndpointAddress);
2985                         return 0;
2986                 }
2987                 /* Are there actually any streams to free? */
2988                 if (!(ep_state & EP_HAS_STREAMS) &&
2989                                 !(ep_state & EP_GETTING_STREAMS)) {
2990                         xhci_warn(xhci, "WARN Can't disable streams for "
2991                                         "endpoint 0x%x\n, "
2992                                         "streams are already disabled!",
2993                                         eps[i]->desc.bEndpointAddress);
2994                         xhci_warn(xhci, "WARN xhci_free_streams() called "
2995                                         "with non-streams endpoint\n");
2996                         return 0;
2997                 }
2998                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2999         }
3000         return changed_ep_bitmask;
3001 }
3002
3003 /*
3004  * The USB device drivers use this function (though the HCD interface in USB
3005  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3006  * coordinate mass storage command queueing across multiple endpoints (basically
3007  * a stream ID == a task ID).
3008  *
3009  * Setting up streams involves allocating the same size stream context array
3010  * for each endpoint and issuing a configure endpoint command for all endpoints.
3011  *
3012  * Don't allow the call to succeed if one endpoint only supports one stream
3013  * (which means it doesn't support streams at all).
3014  *
3015  * Drivers may get less stream IDs than they asked for, if the host controller
3016  * hardware or endpoints claim they can't support the number of requested
3017  * stream IDs.
3018  */
3019 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3020                 struct usb_host_endpoint **eps, unsigned int num_eps,
3021                 unsigned int num_streams, gfp_t mem_flags)
3022 {
3023         int i, ret;
3024         struct xhci_hcd *xhci;
3025         struct xhci_virt_device *vdev;
3026         struct xhci_command *config_cmd;
3027         unsigned int ep_index;
3028         unsigned int num_stream_ctxs;
3029         unsigned long flags;
3030         u32 changed_ep_bitmask = 0;
3031
3032         if (!eps)
3033                 return -EINVAL;
3034
3035         /* Add one to the number of streams requested to account for
3036          * stream 0 that is reserved for xHCI usage.
3037          */
3038         num_streams += 1;
3039         xhci = hcd_to_xhci(hcd);
3040         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3041                         num_streams);
3042
3043         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3044         if (!config_cmd) {
3045                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3046                 return -ENOMEM;
3047         }
3048
3049         /* Check to make sure all endpoints are not already configured for
3050          * streams.  While we're at it, find the maximum number of streams that
3051          * all the endpoints will support and check for duplicate endpoints.
3052          */
3053         spin_lock_irqsave(&xhci->lock, flags);
3054         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3055                         num_eps, &num_streams, &changed_ep_bitmask);
3056         if (ret < 0) {
3057                 xhci_free_command(xhci, config_cmd);
3058                 spin_unlock_irqrestore(&xhci->lock, flags);
3059                 return ret;
3060         }
3061         if (num_streams <= 1) {
3062                 xhci_warn(xhci, "WARN: endpoints can't handle "
3063                                 "more than one stream.\n");
3064                 xhci_free_command(xhci, config_cmd);
3065                 spin_unlock_irqrestore(&xhci->lock, flags);
3066                 return -EINVAL;
3067         }
3068         vdev = xhci->devs[udev->slot_id];
3069         /* Mark each endpoint as being in transition, so
3070          * xhci_urb_enqueue() will reject all URBs.
3071          */
3072         for (i = 0; i < num_eps; i++) {
3073                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3074                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3075         }
3076         spin_unlock_irqrestore(&xhci->lock, flags);
3077
3078         /* Setup internal data structures and allocate HW data structures for
3079          * streams (but don't install the HW structures in the input context
3080          * until we're sure all memory allocation succeeded).
3081          */
3082         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3083         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3084                         num_stream_ctxs, num_streams);
3085
3086         for (i = 0; i < num_eps; i++) {
3087                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3088                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3089                                 num_stream_ctxs,
3090                                 num_streams, mem_flags);
3091                 if (!vdev->eps[ep_index].stream_info)
3092                         goto cleanup;
3093                 /* Set maxPstreams in endpoint context and update deq ptr to
3094                  * point to stream context array. FIXME
3095                  */
3096         }
3097
3098         /* Set up the input context for a configure endpoint command. */
3099         for (i = 0; i < num_eps; i++) {
3100                 struct xhci_ep_ctx *ep_ctx;
3101
3102                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3103                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3104
3105                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3106                                 vdev->out_ctx, ep_index);
3107                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3108                                 vdev->eps[ep_index].stream_info);
3109         }
3110         /* Tell the HW to drop its old copy of the endpoint context info
3111          * and add the updated copy from the input context.
3112          */
3113         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3114                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3115
3116         /* Issue and wait for the configure endpoint command */
3117         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3118                         false, false);
3119
3120         /* xHC rejected the configure endpoint command for some reason, so we
3121          * leave the old ring intact and free our internal streams data
3122          * structure.
3123          */
3124         if (ret < 0)
3125                 goto cleanup;
3126
3127         spin_lock_irqsave(&xhci->lock, flags);
3128         for (i = 0; i < num_eps; i++) {
3129                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3130                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3131                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3132                          udev->slot_id, ep_index);
3133                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3134         }
3135         xhci_free_command(xhci, config_cmd);
3136         spin_unlock_irqrestore(&xhci->lock, flags);
3137
3138         /* Subtract 1 for stream 0, which drivers can't use */
3139         return num_streams - 1;
3140
3141 cleanup:
3142         /* If it didn't work, free the streams! */
3143         for (i = 0; i < num_eps; i++) {
3144                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3145                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3146                 vdev->eps[ep_index].stream_info = NULL;
3147                 /* FIXME Unset maxPstreams in endpoint context and
3148                  * update deq ptr to point to normal string ring.
3149                  */
3150                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3151                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3152                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3153         }
3154         xhci_free_command(xhci, config_cmd);
3155         return -ENOMEM;
3156 }
3157
3158 /* Transition the endpoint from using streams to being a "normal" endpoint
3159  * without streams.
3160  *
3161  * Modify the endpoint context state, submit a configure endpoint command,
3162  * and free all endpoint rings for streams if that completes successfully.
3163  */
3164 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3165                 struct usb_host_endpoint **eps, unsigned int num_eps,
3166                 gfp_t mem_flags)
3167 {
3168         int i, ret;
3169         struct xhci_hcd *xhci;
3170         struct xhci_virt_device *vdev;
3171         struct xhci_command *command;
3172         unsigned int ep_index;
3173         unsigned long flags;
3174         u32 changed_ep_bitmask;
3175
3176         xhci = hcd_to_xhci(hcd);
3177         vdev = xhci->devs[udev->slot_id];
3178
3179         /* Set up a configure endpoint command to remove the streams rings */
3180         spin_lock_irqsave(&xhci->lock, flags);
3181         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3182                         udev, eps, num_eps);
3183         if (changed_ep_bitmask == 0) {
3184                 spin_unlock_irqrestore(&xhci->lock, flags);
3185                 return -EINVAL;
3186         }
3187
3188         /* Use the xhci_command structure from the first endpoint.  We may have
3189          * allocated too many, but the driver may call xhci_free_streams() for
3190          * each endpoint it grouped into one call to xhci_alloc_streams().
3191          */
3192         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3193         command = vdev->eps[ep_index].stream_info->free_streams_command;
3194         for (i = 0; i < num_eps; i++) {
3195                 struct xhci_ep_ctx *ep_ctx;
3196
3197                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3198                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3199                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3200                         EP_GETTING_NO_STREAMS;
3201
3202                 xhci_endpoint_copy(xhci, command->in_ctx,
3203                                 vdev->out_ctx, ep_index);
3204                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3205                                 &vdev->eps[ep_index]);
3206         }
3207         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3208                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3209         spin_unlock_irqrestore(&xhci->lock, flags);
3210
3211         /* Issue and wait for the configure endpoint command,
3212          * which must succeed.
3213          */
3214         ret = xhci_configure_endpoint(xhci, udev, command,
3215                         false, true);
3216
3217         /* xHC rejected the configure endpoint command for some reason, so we
3218          * leave the streams rings intact.
3219          */
3220         if (ret < 0)
3221                 return ret;
3222
3223         spin_lock_irqsave(&xhci->lock, flags);
3224         for (i = 0; i < num_eps; i++) {
3225                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3226                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3227                 vdev->eps[ep_index].stream_info = NULL;
3228                 /* FIXME Unset maxPstreams in endpoint context and
3229                  * update deq ptr to point to normal string ring.
3230                  */
3231                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3232                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3233         }
3234         spin_unlock_irqrestore(&xhci->lock, flags);
3235
3236         return 0;
3237 }
3238
3239 /*
3240  * Deletes endpoint resources for endpoints that were active before a Reset
3241  * Device command, or a Disable Slot command.  The Reset Device command leaves
3242  * the control endpoint intact, whereas the Disable Slot command deletes it.
3243  *
3244  * Must be called with xhci->lock held.
3245  */
3246 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3247         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3248 {
3249         int i;
3250         unsigned int num_dropped_eps = 0;
3251         unsigned int drop_flags = 0;
3252
3253         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3254                 if (virt_dev->eps[i].ring) {
3255                         drop_flags |= 1 << i;
3256                         num_dropped_eps++;
3257                 }
3258         }
3259         xhci->num_active_eps -= num_dropped_eps;
3260         if (num_dropped_eps)
3261                 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3262                                 "%u now active.\n",
3263                                 num_dropped_eps, drop_flags,
3264                                 xhci->num_active_eps);
3265 }
3266
3267 /*
3268  * This submits a Reset Device Command, which will set the device state to 0,
3269  * set the device address to 0, and disable all the endpoints except the default
3270  * control endpoint.  The USB core should come back and call
3271  * xhci_address_device(), and then re-set up the configuration.  If this is
3272  * called because of a usb_reset_and_verify_device(), then the old alternate
3273  * settings will be re-installed through the normal bandwidth allocation
3274  * functions.
3275  *
3276  * Wait for the Reset Device command to finish.  Remove all structures
3277  * associated with the endpoints that were disabled.  Clear the input device
3278  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3279  *
3280  * If the virt_dev to be reset does not exist or does not match the udev,
3281  * it means the device is lost, possibly due to the xHC restore error and
3282  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3283  * re-allocate the device.
3284  */
3285 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3286 {
3287         int ret, i;
3288         unsigned long flags;
3289         struct xhci_hcd *xhci;
3290         unsigned int slot_id;
3291         struct xhci_virt_device *virt_dev;
3292         struct xhci_command *reset_device_cmd;
3293         int timeleft;
3294         int last_freed_endpoint;
3295         struct xhci_slot_ctx *slot_ctx;
3296         int old_active_eps = 0;
3297
3298         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3299         if (ret <= 0)
3300                 return ret;
3301         xhci = hcd_to_xhci(hcd);
3302         slot_id = udev->slot_id;
3303         virt_dev = xhci->devs[slot_id];
3304         if (!virt_dev) {
3305                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3306                                 "not exist. Re-allocate the device\n", slot_id);
3307                 ret = xhci_alloc_dev(hcd, udev);
3308                 if (ret == 1)
3309                         return 0;
3310                 else
3311                         return -EINVAL;
3312         }
3313
3314         if (virt_dev->udev != udev) {
3315                 /* If the virt_dev and the udev does not match, this virt_dev
3316                  * may belong to another udev.
3317                  * Re-allocate the device.
3318                  */
3319                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3320                                 "not match the udev. Re-allocate the device\n",
3321                                 slot_id);
3322                 ret = xhci_alloc_dev(hcd, udev);
3323                 if (ret == 1)
3324                         return 0;
3325                 else
3326                         return -EINVAL;
3327         }
3328
3329         /* If device is not setup, there is no point in resetting it */
3330         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3331         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3332                                                 SLOT_STATE_DISABLED)
3333                 return 0;
3334
3335         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3336         /* Allocate the command structure that holds the struct completion.
3337          * Assume we're in process context, since the normal device reset
3338          * process has to wait for the device anyway.  Storage devices are
3339          * reset as part of error handling, so use GFP_NOIO instead of
3340          * GFP_KERNEL.
3341          */
3342         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3343         if (!reset_device_cmd) {
3344                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3345                 return -ENOMEM;
3346         }
3347
3348         /* Attempt to submit the Reset Device command to the command ring */
3349         spin_lock_irqsave(&xhci->lock, flags);
3350         reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3351
3352         /* Enqueue pointer can be left pointing to the link TRB,
3353          * we must handle that
3354          */
3355         if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3356                 reset_device_cmd->command_trb =
3357                         xhci->cmd_ring->enq_seg->next->trbs;
3358
3359         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3360         ret = xhci_queue_reset_device(xhci, slot_id);
3361         if (ret) {
3362                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3363                 list_del(&reset_device_cmd->cmd_list);
3364                 spin_unlock_irqrestore(&xhci->lock, flags);
3365                 goto command_cleanup;
3366         }
3367         xhci_ring_cmd_db(xhci);
3368         spin_unlock_irqrestore(&xhci->lock, flags);
3369
3370         /* Wait for the Reset Device command to finish */
3371         timeleft = wait_for_completion_interruptible_timeout(
3372                         reset_device_cmd->completion,
3373                         USB_CTRL_SET_TIMEOUT);
3374         if (timeleft <= 0) {
3375                 xhci_warn(xhci, "%s while waiting for reset device command\n",
3376                                 timeleft == 0 ? "Timeout" : "Signal");
3377                 spin_lock_irqsave(&xhci->lock, flags);
3378                 /* The timeout might have raced with the event ring handler, so
3379                  * only delete from the list if the item isn't poisoned.
3380                  */
3381                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3382                         list_del(&reset_device_cmd->cmd_list);
3383                 spin_unlock_irqrestore(&xhci->lock, flags);
3384                 ret = -ETIME;
3385                 goto command_cleanup;
3386         }
3387
3388         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3389          * unless we tried to reset a slot ID that wasn't enabled,
3390          * or the device wasn't in the addressed or configured state.
3391          */
3392         ret = reset_device_cmd->status;
3393         switch (ret) {
3394         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3395         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3396                 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3397                                 slot_id,
3398                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3399                 xhci_info(xhci, "Not freeing device rings.\n");
3400                 /* Don't treat this as an error.  May change my mind later. */
3401                 ret = 0;
3402                 goto command_cleanup;
3403         case COMP_SUCCESS:
3404                 xhci_dbg(xhci, "Successful reset device command.\n");
3405                 break;
3406         default:
3407                 if (xhci_is_vendor_info_code(xhci, ret))
3408                         break;
3409                 xhci_warn(xhci, "Unknown completion code %u for "
3410                                 "reset device command.\n", ret);
3411                 ret = -EINVAL;
3412                 goto command_cleanup;
3413         }
3414
3415         /* Free up host controller endpoint resources */
3416         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3417                 spin_lock_irqsave(&xhci->lock, flags);
3418                 /* Don't delete the default control endpoint resources */
3419                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3420                 spin_unlock_irqrestore(&xhci->lock, flags);
3421         }
3422
3423         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3424         last_freed_endpoint = 1;
3425         for (i = 1; i < 31; ++i) {
3426                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3427
3428                 if (ep->ep_state & EP_HAS_STREAMS) {
3429                         xhci_free_stream_info(xhci, ep->stream_info);
3430                         ep->stream_info = NULL;
3431                         ep->ep_state &= ~EP_HAS_STREAMS;
3432                 }
3433
3434                 if (ep->ring) {
3435                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3436                         last_freed_endpoint = i;
3437                 }
3438                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3439                         xhci_drop_ep_from_interval_table(xhci,
3440                                         &virt_dev->eps[i].bw_info,
3441                                         virt_dev->bw_table,
3442                                         udev,
3443                                         &virt_dev->eps[i],
3444                                         virt_dev->tt_info);
3445                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3446         }
3447         /* If necessary, update the number of active TTs on this root port */
3448         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3449
3450         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3451         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3452         ret = 0;
3453
3454 command_cleanup:
3455         xhci_free_command(xhci, reset_device_cmd);
3456         return ret;
3457 }
3458
3459 /*
3460  * At this point, the struct usb_device is about to go away, the device has
3461  * disconnected, and all traffic has been stopped and the endpoints have been
3462  * disabled.  Free any HC data structures associated with that device.
3463  */
3464 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3465 {
3466         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3467         struct xhci_virt_device *virt_dev;
3468         unsigned long flags;
3469         u32 state;
3470         int i, ret;
3471
3472         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3473         /* If the host is halted due to driver unload, we still need to free the
3474          * device.
3475          */
3476         if (ret <= 0 && ret != -ENODEV)
3477                 return;
3478
3479         virt_dev = xhci->devs[udev->slot_id];
3480
3481         /* Stop any wayward timer functions (which may grab the lock) */
3482         for (i = 0; i < 31; ++i) {
3483                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3484                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3485         }
3486
3487         if (udev->usb2_hw_lpm_enabled) {
3488                 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3489                 udev->usb2_hw_lpm_enabled = 0;
3490         }
3491
3492         spin_lock_irqsave(&xhci->lock, flags);
3493         /* Don't disable the slot if the host controller is dead. */
3494         state = xhci_readl(xhci, &xhci->op_regs->status);
3495         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3496                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3497                 xhci_free_virt_device(xhci, udev->slot_id);
3498                 spin_unlock_irqrestore(&xhci->lock, flags);
3499                 return;
3500         }
3501
3502         if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3503                 spin_unlock_irqrestore(&xhci->lock, flags);
3504                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3505                 return;
3506         }
3507         xhci_ring_cmd_db(xhci);
3508         spin_unlock_irqrestore(&xhci->lock, flags);
3509         /*
3510          * Event command completion handler will free any data structures
3511          * associated with the slot.  XXX Can free sleep?
3512          */
3513 }
3514
3515 /*
3516  * Checks if we have enough host controller resources for the default control
3517  * endpoint.
3518  *
3519  * Must be called with xhci->lock held.
3520  */
3521 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3522 {
3523         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3524                 xhci_dbg(xhci, "Not enough ep ctxs: "
3525                                 "%u active, need to add 1, limit is %u.\n",
3526                                 xhci->num_active_eps, xhci->limit_active_eps);
3527                 return -ENOMEM;
3528         }
3529         xhci->num_active_eps += 1;
3530         xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3531                         xhci->num_active_eps);
3532         return 0;
3533 }
3534
3535
3536 /*
3537  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3538  * timed out, or allocating memory failed.  Returns 1 on success.
3539  */
3540 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3541 {
3542         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3543         unsigned long flags;
3544         int timeleft;
3545         int ret;
3546
3547         spin_lock_irqsave(&xhci->lock, flags);
3548         ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3549         if (ret) {
3550                 spin_unlock_irqrestore(&xhci->lock, flags);
3551                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3552                 return 0;
3553         }
3554         xhci_ring_cmd_db(xhci);
3555         spin_unlock_irqrestore(&xhci->lock, flags);
3556
3557         /* XXX: how much time for xHC slot assignment? */
3558         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3559                         USB_CTRL_SET_TIMEOUT);
3560         if (timeleft <= 0) {
3561                 xhci_warn(xhci, "%s while waiting for a slot\n",
3562                                 timeleft == 0 ? "Timeout" : "Signal");
3563                 /* FIXME cancel the enable slot request */
3564                 return 0;
3565         }
3566
3567         if (!xhci->slot_id) {
3568                 xhci_err(xhci, "Error while assigning device slot ID\n");
3569                 return 0;
3570         }
3571
3572         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3573                 spin_lock_irqsave(&xhci->lock, flags);
3574                 ret = xhci_reserve_host_control_ep_resources(xhci);
3575                 if (ret) {
3576                         spin_unlock_irqrestore(&xhci->lock, flags);
3577                         xhci_warn(xhci, "Not enough host resources, "
3578                                         "active endpoint contexts = %u\n",
3579                                         xhci->num_active_eps);
3580                         goto disable_slot;
3581                 }
3582                 spin_unlock_irqrestore(&xhci->lock, flags);
3583         }
3584         /* Use GFP_NOIO, since this function can be called from
3585          * xhci_discover_or_reset_device(), which may be called as part of
3586          * mass storage driver error handling.
3587          */
3588         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3589                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3590                 goto disable_slot;
3591         }
3592         udev->slot_id = xhci->slot_id;
3593         /* Is this a LS or FS device under a HS hub? */
3594         /* Hub or peripherial? */
3595         return 1;
3596
3597 disable_slot:
3598         /* Disable slot, if we can do it without mem alloc */
3599         spin_lock_irqsave(&xhci->lock, flags);
3600         if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3601                 xhci_ring_cmd_db(xhci);
3602         spin_unlock_irqrestore(&xhci->lock, flags);
3603         return 0;
3604 }
3605
3606 /*
3607  * Issue an Address Device command (which will issue a SetAddress request to
3608  * the device).
3609  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3610  * we should only issue and wait on one address command at the same time.
3611  *
3612  * We add one to the device address issued by the hardware because the USB core
3613  * uses address 1 for the root hubs (even though they're not really devices).
3614  */
3615 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3616 {
3617         unsigned long flags;
3618         int timeleft;
3619         struct xhci_virt_device *virt_dev;
3620         int ret = 0;
3621         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3622         struct xhci_slot_ctx *slot_ctx;
3623         struct xhci_input_control_ctx *ctrl_ctx;
3624         u64 temp_64;
3625
3626         if (!udev->slot_id) {
3627                 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3628                 return -EINVAL;
3629         }
3630
3631         virt_dev = xhci->devs[udev->slot_id];
3632
3633         if (WARN_ON(!virt_dev)) {
3634                 /*
3635                  * In plug/unplug torture test with an NEC controller,
3636                  * a zero-dereference was observed once due to virt_dev = 0.
3637                  * Print useful debug rather than crash if it is observed again!
3638                  */
3639                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3640                         udev->slot_id);
3641                 return -EINVAL;
3642         }
3643
3644         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3645         /*
3646          * If this is the first Set Address since device plug-in or
3647          * virt_device realloaction after a resume with an xHCI power loss,
3648          * then set up the slot context.
3649          */
3650         if (!slot_ctx->dev_info)
3651                 xhci_setup_addressable_virt_dev(xhci, udev);
3652         /* Otherwise, update the control endpoint ring enqueue pointer. */
3653         else
3654                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3655         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3656         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3657         ctrl_ctx->drop_flags = 0;
3658
3659         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3660         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3661
3662         spin_lock_irqsave(&xhci->lock, flags);
3663         ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3664                                         udev->slot_id);
3665         if (ret) {
3666                 spin_unlock_irqrestore(&xhci->lock, flags);
3667                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3668                 return ret;
3669         }
3670         xhci_ring_cmd_db(xhci);
3671         spin_unlock_irqrestore(&xhci->lock, flags);
3672
3673         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3674         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3675                         USB_CTRL_SET_TIMEOUT);
3676         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3677          * the SetAddress() "recovery interval" required by USB and aborting the
3678          * command on a timeout.
3679          */
3680         if (timeleft <= 0) {
3681                 xhci_warn(xhci, "%s while waiting for address device command\n",
3682                                 timeleft == 0 ? "Timeout" : "Signal");
3683                 /* FIXME cancel the address device command */
3684                 return -ETIME;
3685         }
3686
3687         switch (virt_dev->cmd_status) {
3688         case COMP_CTX_STATE:
3689         case COMP_EBADSLT:
3690                 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3691                                 udev->slot_id);
3692                 ret = -EINVAL;
3693                 break;
3694         case COMP_TX_ERR:
3695                 dev_warn(&udev->dev, "Device not responding to set address.\n");
3696                 ret = -EPROTO;
3697                 break;
3698         case COMP_DEV_ERR:
3699                 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3700                                 "device command.\n");
3701                 ret = -ENODEV;
3702                 break;
3703         case COMP_SUCCESS:
3704                 xhci_dbg(xhci, "Successful Address Device command\n");
3705                 break;
3706         default:
3707                 xhci_err(xhci, "ERROR: unexpected command completion "
3708                                 "code 0x%x.\n", virt_dev->cmd_status);
3709                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3710                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3711                 ret = -EINVAL;
3712                 break;
3713         }
3714         if (ret) {
3715                 return ret;
3716         }
3717         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3718         xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3719         xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3720                  udev->slot_id,
3721                  &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3722                  (unsigned long long)
3723                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3724         xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3725                         (unsigned long long)virt_dev->out_ctx->dma);
3726         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3727         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3728         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3729         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3730         /*
3731          * USB core uses address 1 for the roothubs, so we add one to the
3732          * address given back to us by the HC.
3733          */
3734         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3735         /* Use kernel assigned address for devices; store xHC assigned
3736          * address locally. */
3737         virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3738                 + 1;
3739         /* Zero the input context control for later use */
3740         ctrl_ctx->add_flags = 0;
3741         ctrl_ctx->drop_flags = 0;
3742
3743         xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3744
3745         return 0;
3746 }
3747
3748 #ifdef CONFIG_USB_SUSPEND
3749
3750 /* BESL to HIRD Encoding array for USB2 LPM */
3751 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3752         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3753
3754 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3755 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3756                                         struct usb_device *udev)
3757 {
3758         int u2del, besl, besl_host;
3759         int besl_device = 0;
3760         u32 field;
3761
3762         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3763         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3764
3765         if (field & USB_BESL_SUPPORT) {
3766                 for (besl_host = 0; besl_host < 16; besl_host++) {
3767                         if (xhci_besl_encoding[besl_host] >= u2del)
3768                                 break;
3769                 }
3770                 /* Use baseline BESL value as default */
3771                 if (field & USB_BESL_BASELINE_VALID)
3772                         besl_device = USB_GET_BESL_BASELINE(field);
3773                 else if (field & USB_BESL_DEEP_VALID)
3774                         besl_device = USB_GET_BESL_DEEP(field);
3775         } else {
3776                 if (u2del <= 50)
3777                         besl_host = 0;
3778                 else
3779                         besl_host = (u2del - 51) / 75 + 1;
3780         }
3781
3782         besl = besl_host + besl_device;
3783         if (besl > 15)
3784                 besl = 15;
3785
3786         return besl;
3787 }
3788
3789 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3790                                         struct usb_device *udev)
3791 {
3792         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3793         struct dev_info *dev_info;
3794         __le32 __iomem  **port_array;
3795         __le32 __iomem  *addr, *pm_addr;
3796         u32             temp, dev_id;
3797         unsigned int    port_num;
3798         unsigned long   flags;
3799         int             hird;
3800         int             ret;
3801
3802         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3803                         !udev->lpm_capable)
3804                 return -EINVAL;
3805
3806         /* we only support lpm for non-hub device connected to root hub yet */
3807         if (!udev->parent || udev->parent->parent ||
3808                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3809                 return -EINVAL;
3810
3811         spin_lock_irqsave(&xhci->lock, flags);
3812
3813         /* Look for devices in lpm_failed_devs list */
3814         dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3815                         le16_to_cpu(udev->descriptor.idProduct);
3816         list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3817                 if (dev_info->dev_id == dev_id) {
3818                         ret = -EINVAL;
3819                         goto finish;
3820                 }
3821         }
3822
3823         port_array = xhci->usb2_ports;
3824         port_num = udev->portnum - 1;
3825
3826         if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3827                 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3828                 ret = -EINVAL;
3829                 goto finish;
3830         }
3831
3832         /*
3833          * Test USB 2.0 software LPM.
3834          * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3835          * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3836          * in the June 2011 errata release.
3837          */
3838         xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3839         /*
3840          * Set L1 Device Slot and HIRD/BESL.
3841          * Check device's USB 2.0 extension descriptor to determine whether
3842          * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3843          */
3844         pm_addr = port_array[port_num] + 1;
3845         hird = xhci_calculate_hird_besl(xhci, udev);
3846         temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3847         xhci_writel(xhci, temp, pm_addr);
3848
3849         /* Set port link state to U2(L1) */
3850         addr = port_array[port_num];
3851         xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3852
3853         /* wait for ACK */
3854         spin_unlock_irqrestore(&xhci->lock, flags);
3855         msleep(10);
3856         spin_lock_irqsave(&xhci->lock, flags);
3857
3858         /* Check L1 Status */
3859         ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3860         if (ret != -ETIMEDOUT) {
3861                 /* enter L1 successfully */
3862                 temp = xhci_readl(xhci, addr);
3863                 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3864                                 port_num, temp);
3865                 ret = 0;
3866         } else {
3867                 temp = xhci_readl(xhci, pm_addr);
3868                 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3869                                 port_num, temp & PORT_L1S_MASK);
3870                 ret = -EINVAL;
3871         }
3872
3873         /* Resume the port */
3874         xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3875
3876         spin_unlock_irqrestore(&xhci->lock, flags);
3877         msleep(10);
3878         spin_lock_irqsave(&xhci->lock, flags);
3879
3880         /* Clear PLC */
3881         xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3882
3883         /* Check PORTSC to make sure the device is in the right state */
3884         if (!ret) {
3885                 temp = xhci_readl(xhci, addr);
3886                 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
3887                 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3888                                 (temp & PORT_PLS_MASK) != XDEV_U0) {
3889                         xhci_dbg(xhci, "port L1 resume fail\n");
3890                         ret = -EINVAL;
3891                 }
3892         }
3893
3894         if (ret) {
3895                 /* Insert dev to lpm_failed_devs list */
3896                 xhci_warn(xhci, "device LPM test failed, may disconnect and "
3897                                 "re-enumerate\n");
3898                 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3899                 if (!dev_info) {
3900                         ret = -ENOMEM;
3901                         goto finish;
3902                 }
3903                 dev_info->dev_id = dev_id;
3904                 INIT_LIST_HEAD(&dev_info->list);
3905                 list_add(&dev_info->list, &xhci->lpm_failed_devs);
3906         } else {
3907                 xhci_ring_device(xhci, udev->slot_id);
3908         }
3909
3910 finish:
3911         spin_unlock_irqrestore(&xhci->lock, flags);
3912         return ret;
3913 }
3914
3915 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3916                         struct usb_device *udev, int enable)
3917 {
3918         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3919         __le32 __iomem  **port_array;
3920         __le32 __iomem  *pm_addr;
3921         u32             temp;
3922         unsigned int    port_num;
3923         unsigned long   flags;
3924         int             hird;
3925
3926         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3927                         !udev->lpm_capable)
3928                 return -EPERM;
3929
3930         if (!udev->parent || udev->parent->parent ||
3931                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3932                 return -EPERM;
3933
3934         if (udev->usb2_hw_lpm_capable != 1)
3935                 return -EPERM;
3936
3937         spin_lock_irqsave(&xhci->lock, flags);
3938
3939         port_array = xhci->usb2_ports;
3940         port_num = udev->portnum - 1;
3941         pm_addr = port_array[port_num] + 1;
3942         temp = xhci_readl(xhci, pm_addr);
3943
3944         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3945                         enable ? "enable" : "disable", port_num);
3946
3947         hird = xhci_calculate_hird_besl(xhci, udev);
3948
3949         if (enable) {
3950                 temp &= ~PORT_HIRD_MASK;
3951                 temp |= PORT_HIRD(hird) | PORT_RWE;
3952                 xhci_writel(xhci, temp, pm_addr);
3953                 temp = xhci_readl(xhci, pm_addr);
3954                 temp |= PORT_HLE;
3955                 xhci_writel(xhci, temp, pm_addr);
3956         } else {
3957                 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3958                 xhci_writel(xhci, temp, pm_addr);
3959         }
3960
3961         spin_unlock_irqrestore(&xhci->lock, flags);
3962         return 0;
3963 }
3964
3965 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3966 {
3967         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3968         int             ret;
3969
3970         ret = xhci_usb2_software_lpm_test(hcd, udev);
3971         if (!ret) {
3972                 xhci_dbg(xhci, "software LPM test succeed\n");
3973                 if (xhci->hw_lpm_support == 1) {
3974                         udev->usb2_hw_lpm_capable = 1;
3975                         ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
3976                         if (!ret)
3977                                 udev->usb2_hw_lpm_enabled = 1;
3978                 }
3979         }
3980
3981         return 0;
3982 }
3983
3984 #else
3985
3986 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3987                                 struct usb_device *udev, int enable)
3988 {
3989         return 0;
3990 }
3991
3992 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3993 {
3994         return 0;
3995 }
3996
3997 #endif /* CONFIG_USB_SUSPEND */
3998
3999 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4000
4001 #ifdef CONFIG_PM
4002 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4003 static unsigned long long xhci_service_interval_to_ns(
4004                 struct usb_endpoint_descriptor *desc)
4005 {
4006         return (1 << (desc->bInterval - 1)) * 125 * 1000;
4007 }
4008
4009 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4010                 enum usb3_link_state state)
4011 {
4012         unsigned long long sel;
4013         unsigned long long pel;
4014         unsigned int max_sel_pel;
4015         char *state_name;
4016
4017         switch (state) {
4018         case USB3_LPM_U1:
4019                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4020                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4021                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4022                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4023                 state_name = "U1";
4024                 break;
4025         case USB3_LPM_U2:
4026                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4027                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4028                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4029                 state_name = "U2";
4030                 break;
4031         default:
4032                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4033                                 __func__);
4034                 return USB3_LPM_DISABLED;
4035         }
4036
4037         if (sel <= max_sel_pel && pel <= max_sel_pel)
4038                 return USB3_LPM_DEVICE_INITIATED;
4039
4040         if (sel > max_sel_pel)
4041                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4042                                 "due to long SEL %llu ms\n",
4043                                 state_name, sel);
4044         else
4045                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4046                                 "due to long PEL %llu\n ms",
4047                                 state_name, pel);
4048         return USB3_LPM_DISABLED;
4049 }
4050
4051 /* Returns the hub-encoded U1 timeout value.
4052  * The U1 timeout should be the maximum of the following values:
4053  *  - For control endpoints, U1 system exit latency (SEL) * 3
4054  *  - For bulk endpoints, U1 SEL * 5
4055  *  - For interrupt endpoints:
4056  *    - Notification EPs, U1 SEL * 3
4057  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4058  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4059  */
4060 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4061                 struct usb_endpoint_descriptor *desc)
4062 {
4063         unsigned long long timeout_ns;
4064         int ep_type;
4065         int intr_type;
4066
4067         ep_type = usb_endpoint_type(desc);
4068         switch (ep_type) {
4069         case USB_ENDPOINT_XFER_CONTROL:
4070                 timeout_ns = udev->u1_params.sel * 3;
4071                 break;
4072         case USB_ENDPOINT_XFER_BULK:
4073                 timeout_ns = udev->u1_params.sel * 5;
4074                 break;
4075         case USB_ENDPOINT_XFER_INT:
4076                 intr_type = usb_endpoint_interrupt_type(desc);
4077                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4078                         timeout_ns = udev->u1_params.sel * 3;
4079                         break;
4080                 }
4081                 /* Otherwise the calculation is the same as isoc eps */
4082         case USB_ENDPOINT_XFER_ISOC:
4083                 timeout_ns = xhci_service_interval_to_ns(desc);
4084                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4085                 if (timeout_ns < udev->u1_params.sel * 2)
4086                         timeout_ns = udev->u1_params.sel * 2;
4087                 break;
4088         default:
4089                 return 0;
4090         }
4091
4092         /* The U1 timeout is encoded in 1us intervals. */
4093         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4094         /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4095         if (timeout_ns == USB3_LPM_DISABLED)
4096                 timeout_ns++;
4097
4098         /* If the necessary timeout value is bigger than what we can set in the
4099          * USB 3.0 hub, we have to disable hub-initiated U1.
4100          */
4101         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4102                 return timeout_ns;
4103         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4104                         "due to long timeout %llu ms\n", timeout_ns);
4105         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4106 }
4107
4108 /* Returns the hub-encoded U2 timeout value.
4109  * The U2 timeout should be the maximum of:
4110  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4111  *  - largest bInterval of any active periodic endpoint (to avoid going
4112  *    into lower power link states between intervals).
4113  *  - the U2 Exit Latency of the device
4114  */
4115 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4116                 struct usb_endpoint_descriptor *desc)
4117 {
4118         unsigned long long timeout_ns;
4119         unsigned long long u2_del_ns;
4120
4121         timeout_ns = 10 * 1000 * 1000;
4122
4123         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4124                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4125                 timeout_ns = xhci_service_interval_to_ns(desc);
4126
4127         u2_del_ns = udev->bos->ss_cap->bU2DevExitLat * 1000;
4128         if (u2_del_ns > timeout_ns)
4129                 timeout_ns = u2_del_ns;
4130
4131         /* The U2 timeout is encoded in 256us intervals */
4132         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4133         /* If the necessary timeout value is bigger than what we can set in the
4134          * USB 3.0 hub, we have to disable hub-initiated U2.
4135          */
4136         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4137                 return timeout_ns;
4138         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4139                         "due to long timeout %llu ms\n", timeout_ns);
4140         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4141 }
4142
4143 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4144                 struct usb_device *udev,
4145                 struct usb_endpoint_descriptor *desc,
4146                 enum usb3_link_state state,
4147                 u16 *timeout)
4148 {
4149         if (state == USB3_LPM_U1) {
4150                 if (xhci->quirks & XHCI_INTEL_HOST)
4151                         return xhci_calculate_intel_u1_timeout(udev, desc);
4152         } else {
4153                 if (xhci->quirks & XHCI_INTEL_HOST)
4154                         return xhci_calculate_intel_u2_timeout(udev, desc);
4155         }
4156
4157         return USB3_LPM_DISABLED;
4158 }
4159
4160 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4161                 struct usb_device *udev,
4162                 struct usb_endpoint_descriptor *desc,
4163                 enum usb3_link_state state,
4164                 u16 *timeout)
4165 {
4166         u16 alt_timeout;
4167
4168         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4169                 desc, state, timeout);
4170
4171         /* If we found we can't enable hub-initiated LPM, or
4172          * the U1 or U2 exit latency was too high to allow
4173          * device-initiated LPM as well, just stop searching.
4174          */
4175         if (alt_timeout == USB3_LPM_DISABLED ||
4176                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4177                 *timeout = alt_timeout;
4178                 return -E2BIG;
4179         }
4180         if (alt_timeout > *timeout)
4181                 *timeout = alt_timeout;
4182         return 0;
4183 }
4184
4185 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4186                 struct usb_device *udev,
4187                 struct usb_host_interface *alt,
4188                 enum usb3_link_state state,
4189                 u16 *timeout)
4190 {
4191         int j;
4192
4193         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4194                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4195                                         &alt->endpoint[j].desc, state, timeout))
4196                         return -E2BIG;
4197                 continue;
4198         }
4199         return 0;
4200 }
4201
4202 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4203                 enum usb3_link_state state)
4204 {
4205         struct usb_device *parent;
4206         unsigned int num_hubs;
4207
4208         if (state == USB3_LPM_U2)
4209                 return 0;
4210
4211         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4212         for (parent = udev->parent, num_hubs = 0; parent->parent;
4213                         parent = parent->parent)
4214                 num_hubs++;
4215
4216         if (num_hubs < 2)
4217                 return 0;
4218
4219         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4220                         " below second-tier hub.\n");
4221         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4222                         "to decrease power consumption.\n");
4223         return -E2BIG;
4224 }
4225
4226 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4227                 struct usb_device *udev,
4228                 enum usb3_link_state state)
4229 {
4230         if (xhci->quirks & XHCI_INTEL_HOST)
4231                 return xhci_check_intel_tier_policy(udev, state);
4232         return -EINVAL;
4233 }
4234
4235 /* Returns the U1 or U2 timeout that should be enabled.
4236  * If the tier check or timeout setting functions return with a non-zero exit
4237  * code, that means the timeout value has been finalized and we shouldn't look
4238  * at any more endpoints.
4239  */
4240 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4241                         struct usb_device *udev, enum usb3_link_state state)
4242 {
4243         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4244         struct usb_host_config *config;
4245         char *state_name;
4246         int i;
4247         u16 timeout = USB3_LPM_DISABLED;
4248
4249         if (state == USB3_LPM_U1)
4250                 state_name = "U1";
4251         else if (state == USB3_LPM_U2)
4252                 state_name = "U2";
4253         else {
4254                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4255                                 state);
4256                 return timeout;
4257         }
4258
4259         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4260                 return timeout;
4261
4262         /* Gather some information about the currently installed configuration
4263          * and alternate interface settings.
4264          */
4265         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4266                         state, &timeout))
4267                 return timeout;
4268
4269         config = udev->actconfig;
4270         if (!config)
4271                 return timeout;
4272
4273         for (i = 0; i < USB_MAXINTERFACES; i++) {
4274                 struct usb_driver *driver;
4275                 struct usb_interface *intf = config->interface[i];
4276
4277                 if (!intf)
4278                         continue;
4279
4280                 /* Check if any currently bound drivers want hub-initiated LPM
4281                  * disabled.
4282                  */
4283                 if (intf->dev.driver) {
4284                         driver = to_usb_driver(intf->dev.driver);
4285                         if (driver && driver->disable_hub_initiated_lpm) {
4286                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4287                                                 "at request of driver %s\n",
4288                                                 state_name, driver->name);
4289                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4290                         }
4291                 }
4292
4293                 /* Not sure how this could happen... */
4294                 if (!intf->cur_altsetting)
4295                         continue;
4296
4297                 if (xhci_update_timeout_for_interface(xhci, udev,
4298                                         intf->cur_altsetting,
4299                                         state, &timeout))
4300                         return timeout;
4301         }
4302         return timeout;
4303 }
4304
4305 /*
4306  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4307  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4308  */
4309 static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4310                         struct usb_device *udev, u16 max_exit_latency)
4311 {
4312         struct xhci_virt_device *virt_dev;
4313         struct xhci_command *command;
4314         struct xhci_input_control_ctx *ctrl_ctx;
4315         struct xhci_slot_ctx *slot_ctx;
4316         unsigned long flags;
4317         int ret;
4318
4319         spin_lock_irqsave(&xhci->lock, flags);
4320         if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
4321                 spin_unlock_irqrestore(&xhci->lock, flags);
4322                 return 0;
4323         }
4324
4325         /* Attempt to issue an Evaluate Context command to change the MEL. */
4326         virt_dev = xhci->devs[udev->slot_id];
4327         command = xhci->lpm_command;
4328         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4329         spin_unlock_irqrestore(&xhci->lock, flags);
4330
4331         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
4332         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4333         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4334         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4335         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4336
4337         xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
4338         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4339         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4340
4341         /* Issue and wait for the evaluate context command. */
4342         ret = xhci_configure_endpoint(xhci, udev, command,
4343                         true, true);
4344         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4345         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4346
4347         if (!ret) {
4348                 spin_lock_irqsave(&xhci->lock, flags);
4349                 virt_dev->current_mel = max_exit_latency;
4350                 spin_unlock_irqrestore(&xhci->lock, flags);
4351         }
4352         return ret;
4353 }
4354
4355 static int calculate_max_exit_latency(struct usb_device *udev,
4356                 enum usb3_link_state state_changed,
4357                 u16 hub_encoded_timeout)
4358 {
4359         unsigned long long u1_mel_us = 0;
4360         unsigned long long u2_mel_us = 0;
4361         unsigned long long mel_us = 0;
4362         bool disabling_u1;
4363         bool disabling_u2;
4364         bool enabling_u1;
4365         bool enabling_u2;
4366
4367         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4368                         hub_encoded_timeout == USB3_LPM_DISABLED);
4369         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4370                         hub_encoded_timeout == USB3_LPM_DISABLED);
4371
4372         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4373                         hub_encoded_timeout != USB3_LPM_DISABLED);
4374         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4375                         hub_encoded_timeout != USB3_LPM_DISABLED);
4376
4377         /* If U1 was already enabled and we're not disabling it,
4378          * or we're going to enable U1, account for the U1 max exit latency.
4379          */
4380         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4381                         enabling_u1)
4382                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4383         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4384                         enabling_u2)
4385                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4386
4387         if (u1_mel_us > u2_mel_us)
4388                 mel_us = u1_mel_us;
4389         else
4390                 mel_us = u2_mel_us;
4391         /* xHCI host controller max exit latency field is only 16 bits wide. */
4392         if (mel_us > MAX_EXIT) {
4393                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4394                                 "is too big.\n", mel_us);
4395                 return -E2BIG;
4396         }
4397         return mel_us;
4398 }
4399
4400 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4401 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4402                         struct usb_device *udev, enum usb3_link_state state)
4403 {
4404         struct xhci_hcd *xhci;
4405         u16 hub_encoded_timeout;
4406         int mel;
4407         int ret;
4408
4409         xhci = hcd_to_xhci(hcd);
4410         /* The LPM timeout values are pretty host-controller specific, so don't
4411          * enable hub-initiated timeouts unless the vendor has provided
4412          * information about their timeout algorithm.
4413          */
4414         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4415                         !xhci->devs[udev->slot_id])
4416                 return USB3_LPM_DISABLED;
4417
4418         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4419         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4420         if (mel < 0) {
4421                 /* Max Exit Latency is too big, disable LPM. */
4422                 hub_encoded_timeout = USB3_LPM_DISABLED;
4423                 mel = 0;
4424         }
4425
4426         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4427         if (ret)
4428                 return ret;
4429         return hub_encoded_timeout;
4430 }
4431
4432 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4433                         struct usb_device *udev, enum usb3_link_state state)
4434 {
4435         struct xhci_hcd *xhci;
4436         u16 mel;
4437         int ret;
4438
4439         xhci = hcd_to_xhci(hcd);
4440         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4441                         !xhci->devs[udev->slot_id])
4442                 return 0;
4443
4444         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4445         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4446         if (ret)
4447                 return ret;
4448         return 0;
4449 }
4450 #else /* CONFIG_PM */
4451
4452 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4453                         struct usb_device *udev, enum usb3_link_state state)
4454 {
4455         return USB3_LPM_DISABLED;
4456 }
4457
4458 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4459                         struct usb_device *udev, enum usb3_link_state state)
4460 {
4461         return 0;
4462 }
4463 #endif  /* CONFIG_PM */
4464
4465 /*-------------------------------------------------------------------------*/
4466
4467 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4468  * internal data structures for the device.
4469  */
4470 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4471                         struct usb_tt *tt, gfp_t mem_flags)
4472 {
4473         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4474         struct xhci_virt_device *vdev;
4475         struct xhci_command *config_cmd;
4476         struct xhci_input_control_ctx *ctrl_ctx;
4477         struct xhci_slot_ctx *slot_ctx;
4478         unsigned long flags;
4479         unsigned think_time;
4480         int ret;
4481
4482         /* Ignore root hubs */
4483         if (!hdev->parent)
4484                 return 0;
4485
4486         vdev = xhci->devs[hdev->slot_id];
4487         if (!vdev) {
4488                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4489                 return -EINVAL;
4490         }
4491         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4492         if (!config_cmd) {
4493                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4494                 return -ENOMEM;
4495         }
4496
4497         spin_lock_irqsave(&xhci->lock, flags);
4498         if (hdev->speed == USB_SPEED_HIGH &&
4499                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4500                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4501                 xhci_free_command(xhci, config_cmd);
4502                 spin_unlock_irqrestore(&xhci->lock, flags);
4503                 return -ENOMEM;
4504         }
4505
4506         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4507         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4508         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4509         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4510         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4511         if (tt->multi)
4512                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4513         if (xhci->hci_version > 0x95) {
4514                 xhci_dbg(xhci, "xHCI version %x needs hub "
4515                                 "TT think time and number of ports\n",
4516                                 (unsigned int) xhci->hci_version);
4517                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4518                 /* Set TT think time - convert from ns to FS bit times.
4519                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4520                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4521                  *
4522                  * xHCI 1.0: this field shall be 0 if the device is not a
4523                  * High-spped hub.
4524                  */
4525                 think_time = tt->think_time;
4526                 if (think_time != 0)
4527                         think_time = (think_time / 666) - 1;
4528                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4529                         slot_ctx->tt_info |=
4530                                 cpu_to_le32(TT_THINK_TIME(think_time));
4531         } else {
4532                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4533                                 "TT think time or number of ports\n",
4534                                 (unsigned int) xhci->hci_version);
4535         }
4536         slot_ctx->dev_state = 0;
4537         spin_unlock_irqrestore(&xhci->lock, flags);
4538
4539         xhci_dbg(xhci, "Set up %s for hub device.\n",
4540                         (xhci->hci_version > 0x95) ?
4541                         "configure endpoint" : "evaluate context");
4542         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4543         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4544
4545         /* Issue and wait for the configure endpoint or
4546          * evaluate context command.
4547          */
4548         if (xhci->hci_version > 0x95)
4549                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4550                                 false, false);
4551         else
4552                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4553                                 true, false);
4554
4555         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4556         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4557
4558         xhci_free_command(xhci, config_cmd);
4559         return ret;
4560 }
4561
4562 int xhci_get_frame(struct usb_hcd *hcd)
4563 {
4564         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4565         /* EHCI mods by the periodic size.  Why? */
4566         return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4567 }
4568
4569 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4570 {
4571         struct xhci_hcd         *xhci;
4572         struct device           *dev = hcd->self.controller;
4573         int                     retval;
4574         u32                     temp;
4575
4576         /* Accept arbitrarily long scatter-gather lists */
4577         hcd->self.sg_tablesize = ~0;
4578         /* XHCI controllers don't stop the ep queue on short packets :| */
4579         hcd->self.no_stop_on_short = 1;
4580
4581         if (usb_hcd_is_primary_hcd(hcd)) {
4582                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4583                 if (!xhci)
4584                         return -ENOMEM;
4585                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4586                 xhci->main_hcd = hcd;
4587                 /* Mark the first roothub as being USB 2.0.
4588                  * The xHCI driver will register the USB 3.0 roothub.
4589                  */
4590                 hcd->speed = HCD_USB2;
4591                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4592                 /*
4593                  * USB 2.0 roothub under xHCI has an integrated TT,
4594                  * (rate matching hub) as opposed to having an OHCI/UHCI
4595                  * companion controller.
4596                  */
4597                 hcd->has_tt = 1;
4598         } else {
4599                 /* xHCI private pointer was set in xhci_pci_probe for the second
4600                  * registered roothub.
4601                  */
4602                 xhci = hcd_to_xhci(hcd);
4603                 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4604                 if (HCC_64BIT_ADDR(temp)) {
4605                         xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4606                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4607                 } else {
4608                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4609                 }
4610                 return 0;
4611         }
4612
4613         xhci->cap_regs = hcd->regs;
4614         xhci->op_regs = hcd->regs +
4615                 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4616         xhci->run_regs = hcd->regs +
4617                 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4618         /* Cache read-only capability registers */
4619         xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4620         xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4621         xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4622         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4623         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4624         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4625         xhci_print_registers(xhci);
4626
4627         get_quirks(dev, xhci);
4628
4629         /* Make sure the HC is halted. */
4630         retval = xhci_halt(xhci);
4631         if (retval)
4632                 goto error;
4633
4634         xhci_dbg(xhci, "Resetting HCD\n");
4635         /* Reset the internal HC memory state and registers. */
4636         retval = xhci_reset(xhci);
4637         if (retval)
4638                 goto error;
4639         xhci_dbg(xhci, "Reset complete\n");
4640
4641         temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4642         if (HCC_64BIT_ADDR(temp)) {
4643                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4644                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4645         } else {
4646                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4647         }
4648
4649         xhci_dbg(xhci, "Calling HCD init\n");
4650         /* Initialize HCD and host controller data structures. */
4651         retval = xhci_init(hcd);
4652         if (retval)
4653                 goto error;
4654         xhci_dbg(xhci, "Called HCD init\n");
4655         return 0;
4656 error:
4657         kfree(xhci);
4658         return retval;
4659 }
4660
4661 MODULE_DESCRIPTION(DRIVER_DESC);
4662 MODULE_AUTHOR(DRIVER_AUTHOR);
4663 MODULE_LICENSE("GPL");
4664
4665 static int __init xhci_hcd_init(void)
4666 {
4667         int retval;
4668
4669         retval = xhci_register_pci();
4670         if (retval < 0) {
4671                 printk(KERN_DEBUG "Problem registering PCI driver.");
4672                 return retval;
4673         }
4674         retval = xhci_register_plat();
4675         if (retval < 0) {
4676                 printk(KERN_DEBUG "Problem registering platform driver.");
4677                 goto unreg_pci;
4678         }
4679         /*
4680          * Check the compiler generated sizes of structures that must be laid
4681          * out in specific ways for hardware access.
4682          */
4683         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4684         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4685         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4686         /* xhci_device_control has eight fields, and also
4687          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4688          */
4689         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4690         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4691         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4692         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4693         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4694         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4695         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4696         return 0;
4697 unreg_pci:
4698         xhci_unregister_pci();
4699         return retval;
4700 }
4701 module_init(xhci_hcd_init);
4702
4703 static void __exit xhci_hcd_cleanup(void)
4704 {
4705         xhci_unregister_pci();
4706         xhci_unregister_plat();
4707 }
4708 module_exit(xhci_hcd_cleanup);