Merge remote-tracking branch 'stable/linux-4.19.y' into rpi-4.19.y
[platform/kernel/linux-rpi.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-mtk.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29
30 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40
41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43         struct xhci_segment *seg = ring->first_seg;
44
45         if (!td || !td->start_seg)
46                 return false;
47         do {
48                 if (seg == td->start_seg)
49                         return true;
50                 seg = seg->next;
51         } while (seg && seg != ring->first_seg);
52
53         return false;
54 }
55
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
70 {
71         u32     result;
72         int     ret;
73
74         ret = readl_poll_timeout_atomic(ptr, result,
75                                         (result & mask) == done ||
76                                         result == U32_MAX,
77                                         1, usec);
78         if (result == U32_MAX)          /* card removed */
79                 return -ENODEV;
80
81         return ret;
82 }
83
84 /*
85  * Disable interrupts and begin the xHCI halting process.
86  */
87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89         u32 halted;
90         u32 cmd;
91         u32 mask;
92
93         mask = ~(XHCI_IRQS);
94         halted = readl(&xhci->op_regs->status) & STS_HALT;
95         if (!halted)
96                 mask &= ~CMD_RUN;
97
98         cmd = readl(&xhci->op_regs->command);
99         cmd &= mask;
100         writel(cmd, &xhci->op_regs->command);
101 }
102
103 /*
104  * Force HC into halt state.
105  *
106  * Disable any IRQs and clear the run/stop bit.
107  * HC will complete any current and actively pipelined transactions, and
108  * should halt within 16 ms of the run/stop bit being cleared.
109  * Read HC Halted bit in the status register to see when the HC is finished.
110  */
111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113         int ret;
114         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115         xhci_quiesce(xhci);
116
117         ret = xhci_handshake(&xhci->op_regs->status,
118                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119         if (ret) {
120                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
121                 return ret;
122         }
123         xhci->xhc_state |= XHCI_STATE_HALTED;
124         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
125         return ret;
126 }
127
128 /*
129  * Set the run bit and wait for the host to be running.
130  */
131 int xhci_start(struct xhci_hcd *xhci)
132 {
133         u32 temp;
134         int ret;
135
136         temp = readl(&xhci->op_regs->command);
137         temp |= (CMD_RUN);
138         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
139                         temp);
140         writel(temp, &xhci->op_regs->command);
141
142         /*
143          * Wait for the HCHalted Status bit to be 0 to indicate the host is
144          * running.
145          */
146         ret = xhci_handshake(&xhci->op_regs->status,
147                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
148         if (ret == -ETIMEDOUT)
149                 xhci_err(xhci, "Host took too long to start, "
150                                 "waited %u microseconds.\n",
151                                 XHCI_MAX_HALT_USEC);
152         if (!ret)
153                 /* clear state flags. Including dying, halted or removing */
154                 xhci->xhc_state = 0;
155
156         return ret;
157 }
158
159 /*
160  * Reset a halted HC.
161  *
162  * This resets pipelines, timers, counters, state machines, etc.
163  * Transactions will be terminated immediately, and operational registers
164  * will be set to their defaults.
165  */
166 int xhci_reset(struct xhci_hcd *xhci)
167 {
168         u32 command;
169         u32 state;
170         int ret, i;
171
172         state = readl(&xhci->op_regs->status);
173
174         if (state == ~(u32)0) {
175                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
176                 return -ENODEV;
177         }
178
179         if ((state & STS_HALT) == 0) {
180                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
181                 return 0;
182         }
183
184         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
185         command = readl(&xhci->op_regs->command);
186         command |= CMD_RESET;
187         writel(command, &xhci->op_regs->command);
188
189         /* Existing Intel xHCI controllers require a delay of 1 mS,
190          * after setting the CMD_RESET bit, and before accessing any
191          * HC registers. This allows the HC to complete the
192          * reset operation and be ready for HC register access.
193          * Without this delay, the subsequent HC register access,
194          * may result in a system hang very rarely.
195          */
196         if (xhci->quirks & XHCI_INTEL_HOST)
197                 udelay(1000);
198
199         // Hack: reduce handshake timeout from 10s 0.5s due to unprogrammed vl805
200         ret = xhci_handshake(&xhci->op_regs->command,
201                         CMD_RESET, 0, 500 * 1000);
202         if (ret)
203                 return ret;
204
205         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
206                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
207
208         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
209                          "Wait for controller to be ready for doorbell rings");
210         /*
211          * xHCI cannot write to any doorbells or operational registers other
212          * than status until the "Controller Not Ready" flag is cleared.
213          */
214         ret = xhci_handshake(&xhci->op_regs->status,
215                         STS_CNR, 0, 10 * 1000 * 1000);
216
217         for (i = 0; i < 2; i++) {
218                 xhci->bus_state[i].port_c_suspend = 0;
219                 xhci->bus_state[i].suspended_ports = 0;
220                 xhci->bus_state[i].resuming_ports = 0;
221         }
222
223         return ret;
224 }
225
226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
227 {
228         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
229         int err, i;
230         u64 val;
231
232         /*
233          * Some Renesas controllers get into a weird state if they are
234          * reset while programmed with 64bit addresses (they will preserve
235          * the top half of the address in internal, non visible
236          * registers). You end up with half the address coming from the
237          * kernel, and the other half coming from the firmware. Also,
238          * changing the programming leads to extra accesses even if the
239          * controller is supposed to be halted. The controller ends up with
240          * a fatal fault, and is then ripe for being properly reset.
241          *
242          * Special care is taken to only apply this if the device is behind
243          * an iommu. Doing anything when there is no iommu is definitely
244          * unsafe...
245          */
246         if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !dev->iommu_group)
247                 return;
248
249         xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
250
251         /* Clear HSEIE so that faults do not get signaled */
252         val = readl(&xhci->op_regs->command);
253         val &= ~CMD_HSEIE;
254         writel(val, &xhci->op_regs->command);
255
256         /* Clear HSE (aka FATAL) */
257         val = readl(&xhci->op_regs->status);
258         val |= STS_FATAL;
259         writel(val, &xhci->op_regs->status);
260
261         /* Now zero the registers, and brace for impact */
262         val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263         if (upper_32_bits(val))
264                 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266         if (upper_32_bits(val))
267                 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
268
269         for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
270                 struct xhci_intr_reg __iomem *ir;
271
272                 ir = &xhci->run_regs->ir_set[i];
273                 val = xhci_read_64(xhci, &ir->erst_base);
274                 if (upper_32_bits(val))
275                         xhci_write_64(xhci, 0, &ir->erst_base);
276                 val= xhci_read_64(xhci, &ir->erst_dequeue);
277                 if (upper_32_bits(val))
278                         xhci_write_64(xhci, 0, &ir->erst_dequeue);
279         }
280
281         /* Wait for the fault to appear. It will be cleared on reset */
282         err = xhci_handshake(&xhci->op_regs->status,
283                              STS_FATAL, STS_FATAL,
284                              XHCI_MAX_HALT_USEC);
285         if (!err)
286                 xhci_info(xhci, "Fault detected\n");
287 }
288
289 #ifdef CONFIG_USB_PCI
290 /*
291  * Set up MSI
292  */
293 static int xhci_setup_msi(struct xhci_hcd *xhci)
294 {
295         int ret;
296         /*
297          * TODO:Check with MSI Soc for sysdev
298          */
299         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
300
301         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
302         if (ret < 0) {
303                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
304                                 "failed to allocate MSI entry");
305                 return ret;
306         }
307
308         ret = request_irq(pdev->irq, xhci_msi_irq,
309                                 0, "xhci_hcd", xhci_to_hcd(xhci));
310         if (ret) {
311                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
312                                 "disable MSI interrupt");
313                 pci_free_irq_vectors(pdev);
314         }
315
316         return ret;
317 }
318
319 /*
320  * Set up MSI-X
321  */
322 static int xhci_setup_msix(struct xhci_hcd *xhci)
323 {
324         int i, ret = 0;
325         struct usb_hcd *hcd = xhci_to_hcd(xhci);
326         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327
328         /*
329          * calculate number of msi-x vectors supported.
330          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
331          *   with max number of interrupters based on the xhci HCSPARAMS1.
332          * - num_online_cpus: maximum msi-x vectors per CPUs core.
333          *   Add additional 1 vector to ensure always available interrupt.
334          */
335         xhci->msix_count = min(num_online_cpus() + 1,
336                                 HCS_MAX_INTRS(xhci->hcs_params1));
337
338         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
339                         PCI_IRQ_MSIX);
340         if (ret < 0) {
341                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
342                                 "Failed to enable MSI-X");
343                 return ret;
344         }
345
346         for (i = 0; i < xhci->msix_count; i++) {
347                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
348                                 "xhci_hcd", xhci_to_hcd(xhci));
349                 if (ret)
350                         goto disable_msix;
351         }
352
353         hcd->msix_enabled = 1;
354         return ret;
355
356 disable_msix:
357         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
358         while (--i >= 0)
359                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
360         pci_free_irq_vectors(pdev);
361         return ret;
362 }
363
364 /* Free any IRQs and disable MSI-X */
365 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
366 {
367         struct usb_hcd *hcd = xhci_to_hcd(xhci);
368         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
369
370         if (xhci->quirks & XHCI_PLAT)
371                 return;
372
373         /* return if using legacy interrupt */
374         if (hcd->irq > 0)
375                 return;
376
377         if (hcd->msix_enabled) {
378                 int i;
379
380                 for (i = 0; i < xhci->msix_count; i++)
381                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
382         } else {
383                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
384         }
385
386         pci_free_irq_vectors(pdev);
387         hcd->msix_enabled = 0;
388 }
389
390 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
391 {
392         struct usb_hcd *hcd = xhci_to_hcd(xhci);
393
394         if (hcd->msix_enabled) {
395                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
396                 int i;
397
398                 for (i = 0; i < xhci->msix_count; i++)
399                         synchronize_irq(pci_irq_vector(pdev, i));
400         }
401 }
402
403 static int xhci_try_enable_msi(struct usb_hcd *hcd)
404 {
405         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
406         struct pci_dev  *pdev;
407         int ret;
408
409         /* The xhci platform device has set up IRQs through usb_add_hcd. */
410         if (xhci->quirks & XHCI_PLAT)
411                 return 0;
412
413         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
414         /*
415          * Some Fresco Logic host controllers advertise MSI, but fail to
416          * generate interrupts.  Don't even try to enable MSI.
417          */
418         if (xhci->quirks & XHCI_BROKEN_MSI)
419                 goto legacy_irq;
420
421         /* unregister the legacy interrupt */
422         if (hcd->irq)
423                 free_irq(hcd->irq, hcd);
424         hcd->irq = 0;
425
426         ret = xhci_setup_msix(xhci);
427         if (ret)
428                 /* fall back to msi*/
429                 ret = xhci_setup_msi(xhci);
430
431         if (!ret) {
432                 hcd->msi_enabled = 1;
433                 return 0;
434         }
435
436         if (!pdev->irq) {
437                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
438                 return -EINVAL;
439         }
440
441  legacy_irq:
442         if (!strlen(hcd->irq_descr))
443                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
444                          hcd->driver->description, hcd->self.busnum);
445
446         /* fall back to legacy interrupt*/
447         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
448                         hcd->irq_descr, hcd);
449         if (ret) {
450                 xhci_err(xhci, "request interrupt %d failed\n",
451                                 pdev->irq);
452                 return ret;
453         }
454         hcd->irq = pdev->irq;
455         return 0;
456 }
457
458 #else
459
460 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
461 {
462         return 0;
463 }
464
465 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
466 {
467 }
468
469 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
470 {
471 }
472
473 #endif
474
475 static void compliance_mode_recovery(struct timer_list *t)
476 {
477         struct xhci_hcd *xhci;
478         struct usb_hcd *hcd;
479         struct xhci_hub *rhub;
480         u32 temp;
481         int i;
482
483         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
484         rhub = &xhci->usb3_rhub;
485
486         for (i = 0; i < rhub->num_ports; i++) {
487                 temp = readl(rhub->ports[i]->addr);
488                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
489                         /*
490                          * Compliance Mode Detected. Letting USB Core
491                          * handle the Warm Reset
492                          */
493                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
494                                         "Compliance mode detected->port %d",
495                                         i + 1);
496                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497                                         "Attempting compliance mode recovery");
498                         hcd = xhci->shared_hcd;
499
500                         if (hcd->state == HC_STATE_SUSPENDED)
501                                 usb_hcd_resume_root_hub(hcd);
502
503                         usb_hcd_poll_rh_status(hcd);
504                 }
505         }
506
507         if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
508                 mod_timer(&xhci->comp_mode_recovery_timer,
509                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
510 }
511
512 /*
513  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
514  * that causes ports behind that hardware to enter compliance mode sometimes.
515  * The quirk creates a timer that polls every 2 seconds the link state of
516  * each host controller's port and recovers it by issuing a Warm reset
517  * if Compliance mode is detected, otherwise the port will become "dead" (no
518  * device connections or disconnections will be detected anymore). Becasue no
519  * status event is generated when entering compliance mode (per xhci spec),
520  * this quirk is needed on systems that have the failing hardware installed.
521  */
522 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
523 {
524         xhci->port_status_u0 = 0;
525         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
526                     0);
527         xhci->comp_mode_recovery_timer.expires = jiffies +
528                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
529
530         add_timer(&xhci->comp_mode_recovery_timer);
531         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
532                         "Compliance mode recovery timer initialized");
533 }
534
535 /*
536  * This function identifies the systems that have installed the SN65LVPE502CP
537  * USB3.0 re-driver and that need the Compliance Mode Quirk.
538  * Systems:
539  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
540  */
541 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
542 {
543         const char *dmi_product_name, *dmi_sys_vendor;
544
545         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
546         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
547         if (!dmi_product_name || !dmi_sys_vendor)
548                 return false;
549
550         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
551                 return false;
552
553         if (strstr(dmi_product_name, "Z420") ||
554                         strstr(dmi_product_name, "Z620") ||
555                         strstr(dmi_product_name, "Z820") ||
556                         strstr(dmi_product_name, "Z1 Workstation"))
557                 return true;
558
559         return false;
560 }
561
562 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
563 {
564         return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
565 }
566
567
568 /*
569  * Initialize memory for HCD and xHC (one-time init).
570  *
571  * Program the PAGESIZE register, initialize the device context array, create
572  * device contexts (?), set up a command ring segment (or two?), create event
573  * ring (one for now).
574  */
575 static int xhci_init(struct usb_hcd *hcd)
576 {
577         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
578         int retval = 0;
579
580         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
581         spin_lock_init(&xhci->lock);
582         if (xhci->hci_version == 0x95 && link_quirk) {
583                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
584                                 "QUIRK: Not clearing Link TRB chain bits.");
585                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
586         } else {
587                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
588                                 "xHCI doesn't need link TRB QUIRK");
589         }
590         retval = xhci_mem_init(xhci, GFP_KERNEL);
591         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
592
593         /* Initializing Compliance Mode Recovery Data If Needed */
594         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
595                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
596                 compliance_mode_recovery_timer_init(xhci);
597         }
598
599         return retval;
600 }
601
602 /*-------------------------------------------------------------------------*/
603
604
605 static int xhci_run_finished(struct xhci_hcd *xhci)
606 {
607         if (xhci_start(xhci)) {
608                 xhci_halt(xhci);
609                 return -ENODEV;
610         }
611         xhci->shared_hcd->state = HC_STATE_RUNNING;
612         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
613
614         if (xhci->quirks & XHCI_NEC_HOST)
615                 xhci_ring_cmd_db(xhci);
616
617         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
618                         "Finished xhci_run for USB3 roothub");
619         return 0;
620 }
621
622 /*
623  * Start the HC after it was halted.
624  *
625  * This function is called by the USB core when the HC driver is added.
626  * Its opposite is xhci_stop().
627  *
628  * xhci_init() must be called once before this function can be called.
629  * Reset the HC, enable device slot contexts, program DCBAAP, and
630  * set command ring pointer and event ring pointer.
631  *
632  * Setup MSI-X vectors and enable interrupts.
633  */
634 int xhci_run(struct usb_hcd *hcd)
635 {
636         u32 temp;
637         u64 temp_64;
638         int ret;
639         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
640
641         /* Start the xHCI host controller running only after the USB 2.0 roothub
642          * is setup.
643          */
644
645         hcd->uses_new_polling = 1;
646         if (!usb_hcd_is_primary_hcd(hcd))
647                 return xhci_run_finished(xhci);
648
649         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
650
651         ret = xhci_try_enable_msi(hcd);
652         if (ret)
653                 return ret;
654
655         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
656         temp_64 &= ~ERST_PTR_MASK;
657         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
658                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
659
660         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661                         "// Set the interrupt modulation register");
662         temp = readl(&xhci->ir_set->irq_control);
663         temp &= ~ER_IRQ_INTERVAL_MASK;
664         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
665         writel(temp, &xhci->ir_set->irq_control);
666
667         /* Set the HCD state before we enable the irqs */
668         temp = readl(&xhci->op_regs->command);
669         temp |= (CMD_EIE);
670         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
671                         "// Enable interrupts, cmd = 0x%x.", temp);
672         writel(temp, &xhci->op_regs->command);
673
674         temp = readl(&xhci->ir_set->irq_pending);
675         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
676                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
677                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
678         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
679
680         if (xhci->quirks & XHCI_NEC_HOST) {
681                 struct xhci_command *command;
682
683                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
684                 if (!command)
685                         return -ENOMEM;
686
687                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
688                                 TRB_TYPE(TRB_NEC_GET_FW));
689                 if (ret)
690                         xhci_free_command(xhci, command);
691         }
692         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
693                         "Finished xhci_run for USB2 roothub");
694
695         xhci_dbc_init(xhci);
696
697         xhci_debugfs_init(xhci);
698
699         return 0;
700 }
701 EXPORT_SYMBOL_GPL(xhci_run);
702
703 /*
704  * Stop xHCI driver.
705  *
706  * This function is called by the USB core when the HC driver is removed.
707  * Its opposite is xhci_run().
708  *
709  * Disable device contexts, disable IRQs, and quiesce the HC.
710  * Reset the HC, finish any completed transactions, and cleanup memory.
711  */
712 static void xhci_stop(struct usb_hcd *hcd)
713 {
714         u32 temp;
715         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
716
717         mutex_lock(&xhci->mutex);
718
719         /* Only halt host and free memory after both hcds are removed */
720         if (!usb_hcd_is_primary_hcd(hcd)) {
721                 mutex_unlock(&xhci->mutex);
722                 return;
723         }
724
725         xhci_dbc_exit(xhci);
726
727         spin_lock_irq(&xhci->lock);
728         xhci->xhc_state |= XHCI_STATE_HALTED;
729         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
730         xhci_halt(xhci);
731         xhci_reset(xhci);
732         spin_unlock_irq(&xhci->lock);
733
734         xhci_cleanup_msix(xhci);
735
736         /* Deleting Compliance Mode Recovery Timer */
737         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
738                         (!(xhci_all_ports_seen_u0(xhci)))) {
739                 del_timer_sync(&xhci->comp_mode_recovery_timer);
740                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
741                                 "%s: compliance mode recovery timer deleted",
742                                 __func__);
743         }
744
745         if (xhci->quirks & XHCI_AMD_PLL_FIX)
746                 usb_amd_dev_put();
747
748         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
749                         "// Disabling event ring interrupts");
750         temp = readl(&xhci->op_regs->status);
751         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
752         temp = readl(&xhci->ir_set->irq_pending);
753         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
754
755         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
756         xhci_mem_cleanup(xhci);
757         xhci_debugfs_exit(xhci);
758         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
759                         "xhci_stop completed - status = %x",
760                         readl(&xhci->op_regs->status));
761         mutex_unlock(&xhci->mutex);
762 }
763
764 /*
765  * Shutdown HC (not bus-specific)
766  *
767  * This is called when the machine is rebooting or halting.  We assume that the
768  * machine will be powered off, and the HC's internal state will be reset.
769  * Don't bother to free memory.
770  *
771  * This will only ever be called with the main usb_hcd (the USB3 roothub).
772  */
773 void xhci_shutdown(struct usb_hcd *hcd)
774 {
775         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
776
777         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
778                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
779
780         spin_lock_irq(&xhci->lock);
781         xhci_halt(xhci);
782         /* Workaround for spurious wakeups at shutdown with HSW */
783         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
784                 xhci_reset(xhci);
785         spin_unlock_irq(&xhci->lock);
786
787         xhci_cleanup_msix(xhci);
788
789         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
790                         "xhci_shutdown completed - status = %x",
791                         readl(&xhci->op_regs->status));
792 }
793 EXPORT_SYMBOL_GPL(xhci_shutdown);
794
795 #ifdef CONFIG_PM
796 static void xhci_save_registers(struct xhci_hcd *xhci)
797 {
798         xhci->s3.command = readl(&xhci->op_regs->command);
799         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
800         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
801         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
802         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
803         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
804         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
805         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
806         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
807 }
808
809 static void xhci_restore_registers(struct xhci_hcd *xhci)
810 {
811         writel(xhci->s3.command, &xhci->op_regs->command);
812         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
813         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
814         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
815         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
816         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
817         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
818         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
819         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
820 }
821
822 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
823 {
824         u64     val_64;
825
826         /* step 2: initialize command ring buffer */
827         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
828         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
829                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
830                                       xhci->cmd_ring->dequeue) &
831                  (u64) ~CMD_RING_RSVD_BITS) |
832                 xhci->cmd_ring->cycle_state;
833         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
834                         "// Setting command ring address to 0x%llx",
835                         (long unsigned long) val_64);
836         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
837 }
838
839 /*
840  * The whole command ring must be cleared to zero when we suspend the host.
841  *
842  * The host doesn't save the command ring pointer in the suspend well, so we
843  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
844  * aligned, because of the reserved bits in the command ring dequeue pointer
845  * register.  Therefore, we can't just set the dequeue pointer back in the
846  * middle of the ring (TRBs are 16-byte aligned).
847  */
848 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
849 {
850         struct xhci_ring *ring;
851         struct xhci_segment *seg;
852
853         ring = xhci->cmd_ring;
854         seg = ring->deq_seg;
855         do {
856                 memset(seg->trbs, 0,
857                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
858                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
859                         cpu_to_le32(~TRB_CYCLE);
860                 seg = seg->next;
861         } while (seg != ring->deq_seg);
862
863         /* Reset the software enqueue and dequeue pointers */
864         ring->deq_seg = ring->first_seg;
865         ring->dequeue = ring->first_seg->trbs;
866         ring->enq_seg = ring->deq_seg;
867         ring->enqueue = ring->dequeue;
868
869         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
870         /*
871          * Ring is now zeroed, so the HW should look for change of ownership
872          * when the cycle bit is set to 1.
873          */
874         ring->cycle_state = 1;
875
876         /*
877          * Reset the hardware dequeue pointer.
878          * Yes, this will need to be re-written after resume, but we're paranoid
879          * and want to make sure the hardware doesn't access bogus memory
880          * because, say, the BIOS or an SMI started the host without changing
881          * the command ring pointers.
882          */
883         xhci_set_cmd_ring_deq(xhci);
884 }
885
886 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
887 {
888         struct xhci_port **ports;
889         int port_index;
890         unsigned long flags;
891         u32 t1, t2;
892
893         spin_lock_irqsave(&xhci->lock, flags);
894
895         /* disable usb3 ports Wake bits */
896         port_index = xhci->usb3_rhub.num_ports;
897         ports = xhci->usb3_rhub.ports;
898         while (port_index--) {
899                 t1 = readl(ports[port_index]->addr);
900                 t1 = xhci_port_state_to_neutral(t1);
901                 t2 = t1 & ~PORT_WAKE_BITS;
902                 if (t1 != t2)
903                         writel(t2, ports[port_index]->addr);
904         }
905
906         /* disable usb2 ports Wake bits */
907         port_index = xhci->usb2_rhub.num_ports;
908         ports = xhci->usb2_rhub.ports;
909         while (port_index--) {
910                 t1 = readl(ports[port_index]->addr);
911                 t1 = xhci_port_state_to_neutral(t1);
912                 t2 = t1 & ~PORT_WAKE_BITS;
913                 if (t1 != t2)
914                         writel(t2, ports[port_index]->addr);
915         }
916
917         spin_unlock_irqrestore(&xhci->lock, flags);
918 }
919
920 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
921 {
922         struct xhci_port        **ports;
923         int                     port_index;
924         u32                     status;
925         u32                     portsc;
926
927         status = readl(&xhci->op_regs->status);
928         if (status & STS_EINT)
929                 return true;
930         /*
931          * Checking STS_EINT is not enough as there is a lag between a change
932          * bit being set and the Port Status Change Event that it generated
933          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
934          */
935
936         port_index = xhci->usb2_rhub.num_ports;
937         ports = xhci->usb2_rhub.ports;
938         while (port_index--) {
939                 portsc = readl(ports[port_index]->addr);
940                 if (portsc & PORT_CHANGE_MASK ||
941                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
942                         return true;
943         }
944         port_index = xhci->usb3_rhub.num_ports;
945         ports = xhci->usb3_rhub.ports;
946         while (port_index--) {
947                 portsc = readl(ports[port_index]->addr);
948                 if (portsc & PORT_CHANGE_MASK ||
949                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
950                         return true;
951         }
952         return false;
953 }
954
955 /*
956  * Stop HC (not bus-specific)
957  *
958  * This is called when the machine transition into S3/S4 mode.
959  *
960  */
961 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
962 {
963         int                     rc = 0;
964         unsigned int            delay = XHCI_MAX_HALT_USEC * 2;
965         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
966         u32                     command;
967         u32                     res;
968
969         if (!hcd->state)
970                 return 0;
971
972         if (hcd->state != HC_STATE_SUSPENDED ||
973                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
974                 return -EINVAL;
975
976         xhci_dbc_suspend(xhci);
977
978         /* Clear root port wake on bits if wakeup not allowed. */
979         if (!do_wakeup)
980                 xhci_disable_port_wake_on_bits(xhci);
981
982         /* Don't poll the roothubs on bus suspend. */
983         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
984         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
985         del_timer_sync(&hcd->rh_timer);
986         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
987         del_timer_sync(&xhci->shared_hcd->rh_timer);
988
989         if (xhci->quirks & XHCI_SUSPEND_DELAY)
990                 usleep_range(1000, 1500);
991
992         spin_lock_irq(&xhci->lock);
993         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
994         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
995         /* step 1: stop endpoint */
996         /* skipped assuming that port suspend has done */
997
998         /* step 2: clear Run/Stop bit */
999         command = readl(&xhci->op_regs->command);
1000         command &= ~CMD_RUN;
1001         writel(command, &xhci->op_regs->command);
1002
1003         /* Some chips from Fresco Logic need an extraordinary delay */
1004         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1005
1006         if (xhci_handshake(&xhci->op_regs->status,
1007                       STS_HALT, STS_HALT, delay)) {
1008                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1009                 spin_unlock_irq(&xhci->lock);
1010                 return -ETIMEDOUT;
1011         }
1012         xhci_clear_command_ring(xhci);
1013
1014         /* step 3: save registers */
1015         xhci_save_registers(xhci);
1016
1017         /* step 4: set CSS flag */
1018         command = readl(&xhci->op_regs->command);
1019         command |= CMD_CSS;
1020         writel(command, &xhci->op_regs->command);
1021         xhci->broken_suspend = 0;
1022         if (xhci_handshake(&xhci->op_regs->status,
1023                                 STS_SAVE, 0, 20 * 1000)) {
1024         /*
1025          * AMD SNPS xHC 3.0 occasionally does not clear the
1026          * SSS bit of USBSTS and when driver tries to poll
1027          * to see if the xHC clears BIT(8) which never happens
1028          * and driver assumes that controller is not responding
1029          * and times out. To workaround this, its good to check
1030          * if SRE and HCE bits are not set (as per xhci
1031          * Section 5.4.2) and bypass the timeout.
1032          */
1033                 res = readl(&xhci->op_regs->status);
1034                 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1035                     (((res & STS_SRE) == 0) &&
1036                                 ((res & STS_HCE) == 0))) {
1037                         xhci->broken_suspend = 1;
1038                 } else {
1039                         xhci_warn(xhci, "WARN: xHC save state timeout\n");
1040                         spin_unlock_irq(&xhci->lock);
1041                         return -ETIMEDOUT;
1042                 }
1043         }
1044         spin_unlock_irq(&xhci->lock);
1045
1046         /*
1047          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1048          * is about to be suspended.
1049          */
1050         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1051                         (!(xhci_all_ports_seen_u0(xhci)))) {
1052                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1053                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1054                                 "%s: compliance mode recovery timer deleted",
1055                                 __func__);
1056         }
1057
1058         /* step 5: remove core well power */
1059         /* synchronize irq when using MSI-X */
1060         xhci_msix_sync_irqs(xhci);
1061
1062         return rc;
1063 }
1064 EXPORT_SYMBOL_GPL(xhci_suspend);
1065
1066 /*
1067  * start xHC (not bus-specific)
1068  *
1069  * This is called when the machine transition from S3/S4 mode.
1070  *
1071  */
1072 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1073 {
1074         u32                     command, temp = 0;
1075         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1076         struct usb_hcd          *secondary_hcd;
1077         int                     retval = 0;
1078         bool                    comp_timer_running = false;
1079
1080         if (!hcd->state)
1081                 return 0;
1082
1083         /* Wait a bit if either of the roothubs need to settle from the
1084          * transition into bus suspend.
1085          */
1086         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1087                         time_before(jiffies,
1088                                 xhci->bus_state[1].next_statechange))
1089                 msleep(100);
1090
1091         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1092         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1093
1094         spin_lock_irq(&xhci->lock);
1095         if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1096                 hibernated = true;
1097
1098         if (!hibernated) {
1099                 /*
1100                  * Some controllers might lose power during suspend, so wait
1101                  * for controller not ready bit to clear, just as in xHC init.
1102                  */
1103                 retval = xhci_handshake(&xhci->op_regs->status,
1104                                         STS_CNR, 0, 10 * 1000 * 1000);
1105                 if (retval) {
1106                         xhci_warn(xhci, "Controller not ready at resume %d\n",
1107                                   retval);
1108                         spin_unlock_irq(&xhci->lock);
1109                         return retval;
1110                 }
1111                 /* step 1: restore register */
1112                 xhci_restore_registers(xhci);
1113                 /* step 2: initialize command ring buffer */
1114                 xhci_set_cmd_ring_deq(xhci);
1115                 /* step 3: restore state and start state*/
1116                 /* step 3: set CRS flag */
1117                 command = readl(&xhci->op_regs->command);
1118                 command |= CMD_CRS;
1119                 writel(command, &xhci->op_regs->command);
1120                 /*
1121                  * Some controllers take up to 55+ ms to complete the controller
1122                  * restore so setting the timeout to 100ms. Xhci specification
1123                  * doesn't mention any timeout value.
1124                  */
1125                 if (xhci_handshake(&xhci->op_regs->status,
1126                               STS_RESTORE, 0, 100 * 1000)) {
1127                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1128                         spin_unlock_irq(&xhci->lock);
1129                         return -ETIMEDOUT;
1130                 }
1131                 temp = readl(&xhci->op_regs->status);
1132         }
1133
1134         /* If restore operation fails, re-initialize the HC during resume */
1135         if ((temp & STS_SRE) || hibernated) {
1136
1137                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1138                                 !(xhci_all_ports_seen_u0(xhci))) {
1139                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1140                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1141                                 "Compliance Mode Recovery Timer deleted!");
1142                 }
1143
1144                 /* Let the USB core know _both_ roothubs lost power. */
1145                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1146                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1147
1148                 xhci_dbg(xhci, "Stop HCD\n");
1149                 xhci_halt(xhci);
1150                 xhci_zero_64b_regs(xhci);
1151                 xhci_reset(xhci);
1152                 spin_unlock_irq(&xhci->lock);
1153                 xhci_cleanup_msix(xhci);
1154
1155                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1156                 temp = readl(&xhci->op_regs->status);
1157                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1158                 temp = readl(&xhci->ir_set->irq_pending);
1159                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1160
1161                 xhci_dbg(xhci, "cleaning up memory\n");
1162                 xhci_mem_cleanup(xhci);
1163                 xhci_debugfs_exit(xhci);
1164                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1165                             readl(&xhci->op_regs->status));
1166
1167                 /* USB core calls the PCI reinit and start functions twice:
1168                  * first with the primary HCD, and then with the secondary HCD.
1169                  * If we don't do the same, the host will never be started.
1170                  */
1171                 if (!usb_hcd_is_primary_hcd(hcd))
1172                         secondary_hcd = hcd;
1173                 else
1174                         secondary_hcd = xhci->shared_hcd;
1175
1176                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1177                 retval = xhci_init(hcd->primary_hcd);
1178                 if (retval)
1179                         return retval;
1180                 comp_timer_running = true;
1181
1182                 xhci_dbg(xhci, "Start the primary HCD\n");
1183                 retval = xhci_run(hcd->primary_hcd);
1184                 if (!retval) {
1185                         xhci_dbg(xhci, "Start the secondary HCD\n");
1186                         retval = xhci_run(secondary_hcd);
1187                 }
1188                 hcd->state = HC_STATE_SUSPENDED;
1189                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1190                 goto done;
1191         }
1192
1193         /* step 4: set Run/Stop bit */
1194         command = readl(&xhci->op_regs->command);
1195         command |= CMD_RUN;
1196         writel(command, &xhci->op_regs->command);
1197         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1198                   0, 250 * 1000);
1199
1200         /* step 5: walk topology and initialize portsc,
1201          * portpmsc and portli
1202          */
1203         /* this is done in bus_resume */
1204
1205         /* step 6: restart each of the previously
1206          * Running endpoints by ringing their doorbells
1207          */
1208
1209         spin_unlock_irq(&xhci->lock);
1210
1211         xhci_dbc_resume(xhci);
1212
1213  done:
1214         if (retval == 0) {
1215                 /* Resume root hubs only when have pending events. */
1216                 if (xhci_pending_portevent(xhci)) {
1217                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1218                         usb_hcd_resume_root_hub(hcd);
1219                 }
1220         }
1221
1222         /*
1223          * If system is subject to the Quirk, Compliance Mode Timer needs to
1224          * be re-initialized Always after a system resume. Ports are subject
1225          * to suffer the Compliance Mode issue again. It doesn't matter if
1226          * ports have entered previously to U0 before system's suspension.
1227          */
1228         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1229                 compliance_mode_recovery_timer_init(xhci);
1230
1231         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1232                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1233
1234         /* Re-enable port polling. */
1235         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1236         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1237         usb_hcd_poll_rh_status(xhci->shared_hcd);
1238         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1239         usb_hcd_poll_rh_status(hcd);
1240
1241         return retval;
1242 }
1243 EXPORT_SYMBOL_GPL(xhci_resume);
1244 #endif  /* CONFIG_PM */
1245
1246 /*-------------------------------------------------------------------------*/
1247
1248 /**
1249  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1250  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1251  * value to right shift 1 for the bitmask.
1252  *
1253  * Index  = (epnum * 2) + direction - 1,
1254  * where direction = 0 for OUT, 1 for IN.
1255  * For control endpoints, the IN index is used (OUT index is unused), so
1256  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1257  */
1258 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1259 {
1260         unsigned int index;
1261         if (usb_endpoint_xfer_control(desc))
1262                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1263         else
1264                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1265                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1266         return index;
1267 }
1268
1269 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1270  * address from the XHCI endpoint index.
1271  */
1272 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1273 {
1274         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1275         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1276         return direction | number;
1277 }
1278
1279 /* Find the flag for this endpoint (for use in the control context).  Use the
1280  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1281  * bit 1, etc.
1282  */
1283 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1284 {
1285         return 1 << (xhci_get_endpoint_index(desc) + 1);
1286 }
1287
1288 /* Find the flag for this endpoint (for use in the control context).  Use the
1289  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1290  * bit 1, etc.
1291  */
1292 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1293 {
1294         return 1 << (ep_index + 1);
1295 }
1296
1297 /* Compute the last valid endpoint context index.  Basically, this is the
1298  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1299  * we find the most significant bit set in the added contexts flags.
1300  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1301  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1302  */
1303 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1304 {
1305         return fls(added_ctxs) - 1;
1306 }
1307
1308 /* Returns 1 if the arguments are OK;
1309  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1310  */
1311 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1312                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1313                 const char *func) {
1314         struct xhci_hcd *xhci;
1315         struct xhci_virt_device *virt_dev;
1316
1317         if (!hcd || (check_ep && !ep) || !udev) {
1318                 pr_debug("xHCI %s called with invalid args\n", func);
1319                 return -EINVAL;
1320         }
1321         if (!udev->parent) {
1322                 pr_debug("xHCI %s called for root hub\n", func);
1323                 return 0;
1324         }
1325
1326         xhci = hcd_to_xhci(hcd);
1327         if (check_virt_dev) {
1328                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1329                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1330                                         func);
1331                         return -EINVAL;
1332                 }
1333
1334                 virt_dev = xhci->devs[udev->slot_id];
1335                 if (virt_dev->udev != udev) {
1336                         xhci_dbg(xhci, "xHCI %s called with udev and "
1337                                           "virt_dev does not match\n", func);
1338                         return -EINVAL;
1339                 }
1340         }
1341
1342         if (xhci->xhc_state & XHCI_STATE_HALTED)
1343                 return -ENODEV;
1344
1345         return 1;
1346 }
1347
1348 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1349                 struct usb_device *udev, struct xhci_command *command,
1350                 bool ctx_change, bool must_succeed);
1351
1352 /*
1353  * Full speed devices may have a max packet size greater than 8 bytes, but the
1354  * USB core doesn't know that until it reads the first 8 bytes of the
1355  * descriptor.  If the usb_device's max packet size changes after that point,
1356  * we need to issue an evaluate context command and wait on it.
1357  */
1358 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1359                 unsigned int ep_index, struct urb *urb)
1360 {
1361         struct xhci_container_ctx *out_ctx;
1362         struct xhci_input_control_ctx *ctrl_ctx;
1363         struct xhci_ep_ctx *ep_ctx;
1364         struct xhci_command *command;
1365         int max_packet_size;
1366         int hw_max_packet_size;
1367         int ret = 0;
1368
1369         out_ctx = xhci->devs[slot_id]->out_ctx;
1370         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1371         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1372         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1373         if (hw_max_packet_size != max_packet_size) {
1374                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1375                                 "Max Packet Size for ep 0 changed.");
1376                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1377                                 "Max packet size in usb_device = %d",
1378                                 max_packet_size);
1379                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1380                                 "Max packet size in xHCI HW = %d",
1381                                 hw_max_packet_size);
1382                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1383                                 "Issuing evaluate context command.");
1384
1385                 /* Set up the input context flags for the command */
1386                 /* FIXME: This won't work if a non-default control endpoint
1387                  * changes max packet sizes.
1388                  */
1389
1390                 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1391                 if (!command)
1392                         return -ENOMEM;
1393
1394                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1395                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1396                 if (!ctrl_ctx) {
1397                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1398                                         __func__);
1399                         ret = -ENOMEM;
1400                         goto command_cleanup;
1401                 }
1402                 /* Set up the modified control endpoint 0 */
1403                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1404                                 xhci->devs[slot_id]->out_ctx, ep_index);
1405
1406                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1407                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1408                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1409
1410                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1411                 ctrl_ctx->drop_flags = 0;
1412
1413                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1414                                 true, false);
1415
1416                 /* Clean up the input context for later use by bandwidth
1417                  * functions.
1418                  */
1419                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1420 command_cleanup:
1421                 kfree(command->completion);
1422                 kfree(command);
1423         }
1424         return ret;
1425 }
1426
1427 /*
1428  * RPI: Fixup endpoint intervals when requested
1429  * - Check interval versus the (cached) endpoint context
1430  * - set the endpoint interval to the new value
1431  * - force an endpoint configure command
1432  * XXX: bandwidth is not recalculated. We should probably do that.
1433  */
1434 static void xhci_fixup_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1435                                 struct usb_host_endpoint *ep, int interval)
1436 {
1437         struct xhci_hcd *xhci;
1438         struct xhci_ep_ctx *ep_ctx_out, *ep_ctx_in;
1439         struct xhci_command *command;
1440         struct xhci_input_control_ctx *ctrl_ctx;
1441         struct xhci_virt_device *vdev;
1442         int xhci_interval;
1443         int ret;
1444         int ep_index;
1445         unsigned long flags;
1446         u32 ep_info_tmp;
1447
1448         xhci = hcd_to_xhci(hcd);
1449         ep_index = xhci_get_endpoint_index(&ep->desc);
1450
1451         /* FS/LS interval translations */
1452         if ((udev->speed == USB_SPEED_FULL ||
1453              udev->speed == USB_SPEED_LOW))
1454                 interval *= 8;
1455
1456         mutex_lock(&xhci->mutex);
1457
1458         spin_lock_irqsave(&xhci->lock, flags);
1459
1460         vdev = xhci->devs[udev->slot_id];
1461         /* Get context-derived endpoint interval */
1462         ep_ctx_out = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
1463         ep_ctx_in = xhci_get_ep_ctx(xhci, vdev->in_ctx, ep_index);
1464         xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx_out->ep_info));
1465
1466         if (interval == xhci_interval) {
1467                 spin_unlock_irqrestore(&xhci->lock, flags);
1468                 mutex_unlock(&xhci->mutex);
1469                 return;
1470         }
1471
1472         xhci_dbg(xhci, "Fixup interval=%d xhci_interval=%d\n",
1473                  interval, xhci_interval);
1474         command = xhci_alloc_command_with_ctx(xhci, true, GFP_ATOMIC);
1475         if (!command) {
1476                 /* Failure here is benign, poll at the original rate */
1477                 spin_unlock_irqrestore(&xhci->lock, flags);
1478                 mutex_unlock(&xhci->mutex);
1479                 return;
1480         }
1481
1482         /* xHCI uses exponents for intervals... */
1483         xhci_interval = fls(interval) - 1;
1484         xhci_interval = clamp_val(xhci_interval, 3, 10);
1485         ep_info_tmp = le32_to_cpu(ep_ctx_out->ep_info);
1486         ep_info_tmp &= ~EP_INTERVAL(255);
1487         ep_info_tmp |= EP_INTERVAL(xhci_interval);
1488
1489         /* Keep the endpoint context up-to-date while issuing the command. */
1490         xhci_endpoint_copy(xhci, vdev->in_ctx,
1491                            vdev->out_ctx, ep_index);
1492         ep_ctx_in->ep_info = cpu_to_le32(ep_info_tmp);
1493
1494         /*
1495          * We need to drop the lock, so take an explicit copy
1496          * of the ep context.
1497          */
1498         xhci_endpoint_copy(xhci, command->in_ctx, vdev->in_ctx, ep_index);
1499
1500         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1501         if (!ctrl_ctx) {
1502                 xhci_warn(xhci,
1503                           "%s: Could not get input context, bad type.\n",
1504                           __func__);
1505                 spin_unlock_irqrestore(&xhci->lock, flags);
1506                 xhci_free_command(xhci, command);
1507                 mutex_unlock(&xhci->mutex);
1508                 return;
1509         }
1510         ctrl_ctx->add_flags = xhci_get_endpoint_flag_from_index(ep_index);
1511         ctrl_ctx->drop_flags = 0;
1512
1513         spin_unlock_irqrestore(&xhci->lock, flags);
1514
1515         ret = xhci_configure_endpoint(xhci, udev, command,
1516                                       false, false);
1517         if (ret)
1518                 xhci_warn(xhci, "%s: Configure endpoint failed: %d\n",
1519                           __func__, ret);
1520         xhci_free_command(xhci, command);
1521         mutex_unlock(&xhci->mutex);
1522 }
1523
1524 /*
1525  * non-error returns are a promise to giveback() the urb later
1526  * we drop ownership so next owner (or urb unlink) can get it
1527  */
1528 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1529 {
1530         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1531         unsigned long flags;
1532         int ret = 0;
1533         unsigned int slot_id, ep_index;
1534         unsigned int *ep_state;
1535         struct urb_priv *urb_priv;
1536         int num_tds;
1537
1538         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1539                                         true, true, __func__) <= 0)
1540                 return -EINVAL;
1541
1542         slot_id = urb->dev->slot_id;
1543         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1544         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1545
1546         if (!HCD_HW_ACCESSIBLE(hcd)) {
1547                 if (!in_interrupt())
1548                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1549                 return -ESHUTDOWN;
1550         }
1551         if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1552                 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1553                 return -ENODEV;
1554         }
1555
1556         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1557                 num_tds = urb->number_of_packets;
1558         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1559             urb->transfer_buffer_length > 0 &&
1560             urb->transfer_flags & URB_ZERO_PACKET &&
1561             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1562                 num_tds = 2;
1563         else
1564                 num_tds = 1;
1565
1566         urb_priv = kzalloc(sizeof(struct urb_priv) +
1567                            num_tds * sizeof(struct xhci_td), mem_flags);
1568         if (!urb_priv)
1569                 return -ENOMEM;
1570
1571         urb_priv->num_tds = num_tds;
1572         urb_priv->num_tds_done = 0;
1573         urb->hcpriv = urb_priv;
1574
1575         trace_xhci_urb_enqueue(urb);
1576
1577         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1578                 /* Check to see if the max packet size for the default control
1579                  * endpoint changed during FS device enumeration
1580                  */
1581                 if (urb->dev->speed == USB_SPEED_FULL) {
1582                         ret = xhci_check_maxpacket(xhci, slot_id,
1583                                         ep_index, urb);
1584                         if (ret < 0) {
1585                                 xhci_urb_free_priv(urb_priv);
1586                                 urb->hcpriv = NULL;
1587                                 return ret;
1588                         }
1589                 }
1590         }
1591
1592         spin_lock_irqsave(&xhci->lock, flags);
1593
1594         if (xhci->xhc_state & XHCI_STATE_DYING) {
1595                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1596                          urb->ep->desc.bEndpointAddress, urb);
1597                 ret = -ESHUTDOWN;
1598                 goto free_priv;
1599         }
1600         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1601                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1602                           *ep_state);
1603                 ret = -EINVAL;
1604                 goto free_priv;
1605         }
1606         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1607                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1608                 ret = -EINVAL;
1609                 goto free_priv;
1610         }
1611
1612         switch (usb_endpoint_type(&urb->ep->desc)) {
1613
1614         case USB_ENDPOINT_XFER_CONTROL:
1615                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1616                                          slot_id, ep_index);
1617                 break;
1618         case USB_ENDPOINT_XFER_BULK:
1619                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1620                                          slot_id, ep_index);
1621                 break;
1622         case USB_ENDPOINT_XFER_INT:
1623                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1624                                 slot_id, ep_index);
1625                 break;
1626         case USB_ENDPOINT_XFER_ISOC:
1627                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1628                                 slot_id, ep_index);
1629         }
1630
1631         if (ret) {
1632 free_priv:
1633                 xhci_urb_free_priv(urb_priv);
1634                 urb->hcpriv = NULL;
1635         }
1636         spin_unlock_irqrestore(&xhci->lock, flags);
1637         return ret;
1638 }
1639
1640 /*
1641  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1642  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1643  * should pick up where it left off in the TD, unless a Set Transfer Ring
1644  * Dequeue Pointer is issued.
1645  *
1646  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1647  * the ring.  Since the ring is a contiguous structure, they can't be physically
1648  * removed.  Instead, there are two options:
1649  *
1650  *  1) If the HC is in the middle of processing the URB to be canceled, we
1651  *     simply move the ring's dequeue pointer past those TRBs using the Set
1652  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1653  *     when drivers timeout on the last submitted URB and attempt to cancel.
1654  *
1655  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1656  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1657  *     HC will need to invalidate the any TRBs it has cached after the stop
1658  *     endpoint command, as noted in the xHCI 0.95 errata.
1659  *
1660  *  3) The TD may have completed by the time the Stop Endpoint Command
1661  *     completes, so software needs to handle that case too.
1662  *
1663  * This function should protect against the TD enqueueing code ringing the
1664  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1665  * It also needs to account for multiple cancellations on happening at the same
1666  * time for the same endpoint.
1667  *
1668  * Note that this function can be called in any context, or so says
1669  * usb_hcd_unlink_urb()
1670  */
1671 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1672 {
1673         unsigned long flags;
1674         int ret, i;
1675         u32 temp;
1676         struct xhci_hcd *xhci;
1677         struct urb_priv *urb_priv;
1678         struct xhci_td *td;
1679         unsigned int ep_index;
1680         struct xhci_ring *ep_ring;
1681         struct xhci_virt_ep *ep;
1682         struct xhci_command *command;
1683         struct xhci_virt_device *vdev;
1684
1685         xhci = hcd_to_xhci(hcd);
1686         spin_lock_irqsave(&xhci->lock, flags);
1687
1688         trace_xhci_urb_dequeue(urb);
1689
1690         /* Make sure the URB hasn't completed or been unlinked already */
1691         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1692         if (ret)
1693                 goto done;
1694
1695         /* give back URB now if we can't queue it for cancel */
1696         vdev = xhci->devs[urb->dev->slot_id];
1697         urb_priv = urb->hcpriv;
1698         if (!vdev || !urb_priv)
1699                 goto err_giveback;
1700
1701         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1702         ep = &vdev->eps[ep_index];
1703         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1704         if (!ep || !ep_ring)
1705                 goto err_giveback;
1706
1707         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1708         temp = readl(&xhci->op_regs->status);
1709         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1710                 xhci_hc_died(xhci);
1711                 goto done;
1712         }
1713
1714         /*
1715          * check ring is not re-allocated since URB was enqueued. If it is, then
1716          * make sure none of the ring related pointers in this URB private data
1717          * are touched, such as td_list, otherwise we overwrite freed data
1718          */
1719         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1720                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1721                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1722                         td = &urb_priv->td[i];
1723                         if (!list_empty(&td->cancelled_td_list))
1724                                 list_del_init(&td->cancelled_td_list);
1725                 }
1726                 goto err_giveback;
1727         }
1728
1729         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1730                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1731                                 "HC halted, freeing TD manually.");
1732                 for (i = urb_priv->num_tds_done;
1733                      i < urb_priv->num_tds;
1734                      i++) {
1735                         td = &urb_priv->td[i];
1736                         if (!list_empty(&td->td_list))
1737                                 list_del_init(&td->td_list);
1738                         if (!list_empty(&td->cancelled_td_list))
1739                                 list_del_init(&td->cancelled_td_list);
1740                 }
1741                 goto err_giveback;
1742         }
1743
1744         i = urb_priv->num_tds_done;
1745         if (i < urb_priv->num_tds)
1746                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1747                                 "Cancel URB %p, dev %s, ep 0x%x, "
1748                                 "starting at offset 0x%llx",
1749                                 urb, urb->dev->devpath,
1750                                 urb->ep->desc.bEndpointAddress,
1751                                 (unsigned long long) xhci_trb_virt_to_dma(
1752                                         urb_priv->td[i].start_seg,
1753                                         urb_priv->td[i].first_trb));
1754
1755         for (; i < urb_priv->num_tds; i++) {
1756                 td = &urb_priv->td[i];
1757                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1758         }
1759
1760         /* Queue a stop endpoint command, but only if this is
1761          * the first cancellation to be handled.
1762          */
1763         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1764                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1765                 if (!command) {
1766                         ret = -ENOMEM;
1767                         goto done;
1768                 }
1769                 ep->ep_state |= EP_STOP_CMD_PENDING;
1770                 ep->stop_cmd_timer.expires = jiffies +
1771                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1772                 add_timer(&ep->stop_cmd_timer);
1773                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1774                                          ep_index, 0);
1775                 xhci_ring_cmd_db(xhci);
1776         }
1777 done:
1778         spin_unlock_irqrestore(&xhci->lock, flags);
1779         return ret;
1780
1781 err_giveback:
1782         if (urb_priv)
1783                 xhci_urb_free_priv(urb_priv);
1784         usb_hcd_unlink_urb_from_ep(hcd, urb);
1785         spin_unlock_irqrestore(&xhci->lock, flags);
1786         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1787         return ret;
1788 }
1789
1790 /* Drop an endpoint from a new bandwidth configuration for this device.
1791  * Only one call to this function is allowed per endpoint before
1792  * check_bandwidth() or reset_bandwidth() must be called.
1793  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1794  * add the endpoint to the schedule with possibly new parameters denoted by a
1795  * different endpoint descriptor in usb_host_endpoint.
1796  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1797  * not allowed.
1798  *
1799  * The USB core will not allow URBs to be queued to an endpoint that is being
1800  * disabled, so there's no need for mutual exclusion to protect
1801  * the xhci->devs[slot_id] structure.
1802  */
1803 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1804                 struct usb_host_endpoint *ep)
1805 {
1806         struct xhci_hcd *xhci;
1807         struct xhci_container_ctx *in_ctx, *out_ctx;
1808         struct xhci_input_control_ctx *ctrl_ctx;
1809         unsigned int ep_index;
1810         struct xhci_ep_ctx *ep_ctx;
1811         u32 drop_flag;
1812         u32 new_add_flags, new_drop_flags;
1813         int ret;
1814
1815         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1816         if (ret <= 0)
1817                 return ret;
1818         xhci = hcd_to_xhci(hcd);
1819         if (xhci->xhc_state & XHCI_STATE_DYING)
1820                 return -ENODEV;
1821
1822         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1823         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1824         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1825                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1826                                 __func__, drop_flag);
1827                 return 0;
1828         }
1829
1830         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1831         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1832         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1833         if (!ctrl_ctx) {
1834                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1835                                 __func__);
1836                 return 0;
1837         }
1838
1839         ep_index = xhci_get_endpoint_index(&ep->desc);
1840         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1841         /* If the HC already knows the endpoint is disabled,
1842          * or the HCD has noted it is disabled, ignore this request
1843          */
1844         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1845             le32_to_cpu(ctrl_ctx->drop_flags) &
1846             xhci_get_endpoint_flag(&ep->desc)) {
1847                 /* Do not warn when called after a usb_device_reset */
1848                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1849                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1850                                   __func__, ep);
1851                 return 0;
1852         }
1853
1854         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1855         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1856
1857         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1858         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1859
1860         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1861
1862         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1863
1864         if (xhci->quirks & XHCI_MTK_HOST)
1865                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1866
1867         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1868                         (unsigned int) ep->desc.bEndpointAddress,
1869                         udev->slot_id,
1870                         (unsigned int) new_drop_flags,
1871                         (unsigned int) new_add_flags);
1872         return 0;
1873 }
1874
1875 /* Add an endpoint to a new possible bandwidth configuration for this device.
1876  * Only one call to this function is allowed per endpoint before
1877  * check_bandwidth() or reset_bandwidth() must be called.
1878  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1879  * add the endpoint to the schedule with possibly new parameters denoted by a
1880  * different endpoint descriptor in usb_host_endpoint.
1881  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1882  * not allowed.
1883  *
1884  * The USB core will not allow URBs to be queued to an endpoint until the
1885  * configuration or alt setting is installed in the device, so there's no need
1886  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1887  */
1888 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1889                 struct usb_host_endpoint *ep)
1890 {
1891         struct xhci_hcd *xhci;
1892         struct xhci_container_ctx *in_ctx;
1893         unsigned int ep_index;
1894         struct xhci_input_control_ctx *ctrl_ctx;
1895         u32 added_ctxs;
1896         u32 new_add_flags, new_drop_flags;
1897         struct xhci_virt_device *virt_dev;
1898         int ret = 0;
1899
1900         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1901         if (ret <= 0) {
1902                 /* So we won't queue a reset ep command for a root hub */
1903                 ep->hcpriv = NULL;
1904                 return ret;
1905         }
1906         xhci = hcd_to_xhci(hcd);
1907         if (xhci->xhc_state & XHCI_STATE_DYING)
1908                 return -ENODEV;
1909
1910         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1911         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1912                 /* FIXME when we have to issue an evaluate endpoint command to
1913                  * deal with ep0 max packet size changing once we get the
1914                  * descriptors
1915                  */
1916                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1917                                 __func__, added_ctxs);
1918                 return 0;
1919         }
1920
1921         virt_dev = xhci->devs[udev->slot_id];
1922         in_ctx = virt_dev->in_ctx;
1923         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1924         if (!ctrl_ctx) {
1925                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1926                                 __func__);
1927                 return 0;
1928         }
1929
1930         ep_index = xhci_get_endpoint_index(&ep->desc);
1931         /* If this endpoint is already in use, and the upper layers are trying
1932          * to add it again without dropping it, reject the addition.
1933          */
1934         if (virt_dev->eps[ep_index].ring &&
1935                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1936                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1937                                 "without dropping it.\n",
1938                                 (unsigned int) ep->desc.bEndpointAddress);
1939                 return -EINVAL;
1940         }
1941
1942         /* If the HCD has already noted the endpoint is enabled,
1943          * ignore this request.
1944          */
1945         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1946                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1947                                 __func__, ep);
1948                 return 0;
1949         }
1950
1951         /*
1952          * Configuration and alternate setting changes must be done in
1953          * process context, not interrupt context (or so documenation
1954          * for usb_set_interface() and usb_set_configuration() claim).
1955          */
1956         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1957                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1958                                 __func__, ep->desc.bEndpointAddress);
1959                 return -ENOMEM;
1960         }
1961
1962         if (xhci->quirks & XHCI_MTK_HOST) {
1963                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1964                 if (ret < 0) {
1965                         xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1966                         virt_dev->eps[ep_index].new_ring = NULL;
1967                         return ret;
1968                 }
1969         }
1970
1971         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1972         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1973
1974         /* If xhci_endpoint_disable() was called for this endpoint, but the
1975          * xHC hasn't been notified yet through the check_bandwidth() call,
1976          * this re-adds a new state for the endpoint from the new endpoint
1977          * descriptors.  We must drop and re-add this endpoint, so we leave the
1978          * drop flags alone.
1979          */
1980         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1981
1982         /* Store the usb_device pointer for later use */
1983         ep->hcpriv = udev;
1984
1985         xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1986
1987         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1988                         (unsigned int) ep->desc.bEndpointAddress,
1989                         udev->slot_id,
1990                         (unsigned int) new_drop_flags,
1991                         (unsigned int) new_add_flags);
1992         return 0;
1993 }
1994
1995 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1996 {
1997         struct xhci_input_control_ctx *ctrl_ctx;
1998         struct xhci_ep_ctx *ep_ctx;
1999         struct xhci_slot_ctx *slot_ctx;
2000         int i;
2001
2002         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2003         if (!ctrl_ctx) {
2004                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2005                                 __func__);
2006                 return;
2007         }
2008
2009         /* When a device's add flag and drop flag are zero, any subsequent
2010          * configure endpoint command will leave that endpoint's state
2011          * untouched.  Make sure we don't leave any old state in the input
2012          * endpoint contexts.
2013          */
2014         ctrl_ctx->drop_flags = 0;
2015         ctrl_ctx->add_flags = 0;
2016         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2017         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2018         /* Endpoint 0 is always valid */
2019         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2020         for (i = 1; i < 31; i++) {
2021                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2022                 ep_ctx->ep_info = 0;
2023                 ep_ctx->ep_info2 = 0;
2024                 ep_ctx->deq = 0;
2025                 ep_ctx->tx_info = 0;
2026         }
2027 }
2028
2029 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2030                 struct usb_device *udev, u32 *cmd_status)
2031 {
2032         int ret;
2033
2034         switch (*cmd_status) {
2035         case COMP_COMMAND_ABORTED:
2036         case COMP_COMMAND_RING_STOPPED:
2037                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2038                 ret = -ETIME;
2039                 break;
2040         case COMP_RESOURCE_ERROR:
2041                 dev_warn(&udev->dev,
2042                          "Not enough host controller resources for new device state.\n");
2043                 ret = -ENOMEM;
2044                 /* FIXME: can we allocate more resources for the HC? */
2045                 break;
2046         case COMP_BANDWIDTH_ERROR:
2047         case COMP_SECONDARY_BANDWIDTH_ERROR:
2048                 dev_warn(&udev->dev,
2049                          "Not enough bandwidth for new device state.\n");
2050                 ret = -ENOSPC;
2051                 /* FIXME: can we go back to the old state? */
2052                 break;
2053         case COMP_TRB_ERROR:
2054                 /* the HCD set up something wrong */
2055                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2056                                 "add flag = 1, "
2057                                 "and endpoint is not disabled.\n");
2058                 ret = -EINVAL;
2059                 break;
2060         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2061                 dev_warn(&udev->dev,
2062                          "ERROR: Incompatible device for endpoint configure command.\n");
2063                 ret = -ENODEV;
2064                 break;
2065         case COMP_SUCCESS:
2066                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2067                                 "Successful Endpoint Configure command");
2068                 ret = 0;
2069                 break;
2070         default:
2071                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2072                                 *cmd_status);
2073                 ret = -EINVAL;
2074                 break;
2075         }
2076         return ret;
2077 }
2078
2079 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2080                 struct usb_device *udev, u32 *cmd_status)
2081 {
2082         int ret;
2083
2084         switch (*cmd_status) {
2085         case COMP_COMMAND_ABORTED:
2086         case COMP_COMMAND_RING_STOPPED:
2087                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2088                 ret = -ETIME;
2089                 break;
2090         case COMP_PARAMETER_ERROR:
2091                 dev_warn(&udev->dev,
2092                          "WARN: xHCI driver setup invalid evaluate context command.\n");
2093                 ret = -EINVAL;
2094                 break;
2095         case COMP_SLOT_NOT_ENABLED_ERROR:
2096                 dev_warn(&udev->dev,
2097                         "WARN: slot not enabled for evaluate context command.\n");
2098                 ret = -EINVAL;
2099                 break;
2100         case COMP_CONTEXT_STATE_ERROR:
2101                 dev_warn(&udev->dev,
2102                         "WARN: invalid context state for evaluate context command.\n");
2103                 ret = -EINVAL;
2104                 break;
2105         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2106                 dev_warn(&udev->dev,
2107                         "ERROR: Incompatible device for evaluate context command.\n");
2108                 ret = -ENODEV;
2109                 break;
2110         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2111                 /* Max Exit Latency too large error */
2112                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2113                 ret = -EINVAL;
2114                 break;
2115         case COMP_SUCCESS:
2116                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2117                                 "Successful evaluate context command");
2118                 ret = 0;
2119                 break;
2120         default:
2121                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2122                         *cmd_status);
2123                 ret = -EINVAL;
2124                 break;
2125         }
2126         return ret;
2127 }
2128
2129 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2130                 struct xhci_input_control_ctx *ctrl_ctx)
2131 {
2132         u32 valid_add_flags;
2133         u32 valid_drop_flags;
2134
2135         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2136          * (bit 1).  The default control endpoint is added during the Address
2137          * Device command and is never removed until the slot is disabled.
2138          */
2139         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2140         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2141
2142         /* Use hweight32 to count the number of ones in the add flags, or
2143          * number of endpoints added.  Don't count endpoints that are changed
2144          * (both added and dropped).
2145          */
2146         return hweight32(valid_add_flags) -
2147                 hweight32(valid_add_flags & valid_drop_flags);
2148 }
2149
2150 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2151                 struct xhci_input_control_ctx *ctrl_ctx)
2152 {
2153         u32 valid_add_flags;
2154         u32 valid_drop_flags;
2155
2156         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2157         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2158
2159         return hweight32(valid_drop_flags) -
2160                 hweight32(valid_add_flags & valid_drop_flags);
2161 }
2162
2163 /*
2164  * We need to reserve the new number of endpoints before the configure endpoint
2165  * command completes.  We can't subtract the dropped endpoints from the number
2166  * of active endpoints until the command completes because we can oversubscribe
2167  * the host in this case:
2168  *
2169  *  - the first configure endpoint command drops more endpoints than it adds
2170  *  - a second configure endpoint command that adds more endpoints is queued
2171  *  - the first configure endpoint command fails, so the config is unchanged
2172  *  - the second command may succeed, even though there isn't enough resources
2173  *
2174  * Must be called with xhci->lock held.
2175  */
2176 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2177                 struct xhci_input_control_ctx *ctrl_ctx)
2178 {
2179         u32 added_eps;
2180
2181         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2182         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2183                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2184                                 "Not enough ep ctxs: "
2185                                 "%u active, need to add %u, limit is %u.",
2186                                 xhci->num_active_eps, added_eps,
2187                                 xhci->limit_active_eps);
2188                 return -ENOMEM;
2189         }
2190         xhci->num_active_eps += added_eps;
2191         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2192                         "Adding %u ep ctxs, %u now active.", added_eps,
2193                         xhci->num_active_eps);
2194         return 0;
2195 }
2196
2197 /*
2198  * The configure endpoint was failed by the xHC for some other reason, so we
2199  * need to revert the resources that failed configuration would have used.
2200  *
2201  * Must be called with xhci->lock held.
2202  */
2203 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2204                 struct xhci_input_control_ctx *ctrl_ctx)
2205 {
2206         u32 num_failed_eps;
2207
2208         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2209         xhci->num_active_eps -= num_failed_eps;
2210         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2211                         "Removing %u failed ep ctxs, %u now active.",
2212                         num_failed_eps,
2213                         xhci->num_active_eps);
2214 }
2215
2216 /*
2217  * Now that the command has completed, clean up the active endpoint count by
2218  * subtracting out the endpoints that were dropped (but not changed).
2219  *
2220  * Must be called with xhci->lock held.
2221  */
2222 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2223                 struct xhci_input_control_ctx *ctrl_ctx)
2224 {
2225         u32 num_dropped_eps;
2226
2227         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2228         xhci->num_active_eps -= num_dropped_eps;
2229         if (num_dropped_eps)
2230                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2231                                 "Removing %u dropped ep ctxs, %u now active.",
2232                                 num_dropped_eps,
2233                                 xhci->num_active_eps);
2234 }
2235
2236 static unsigned int xhci_get_block_size(struct usb_device *udev)
2237 {
2238         switch (udev->speed) {
2239         case USB_SPEED_LOW:
2240         case USB_SPEED_FULL:
2241                 return FS_BLOCK;
2242         case USB_SPEED_HIGH:
2243                 return HS_BLOCK;
2244         case USB_SPEED_SUPER:
2245         case USB_SPEED_SUPER_PLUS:
2246                 return SS_BLOCK;
2247         case USB_SPEED_UNKNOWN:
2248         case USB_SPEED_WIRELESS:
2249         default:
2250                 /* Should never happen */
2251                 return 1;
2252         }
2253 }
2254
2255 static unsigned int
2256 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2257 {
2258         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2259                 return LS_OVERHEAD;
2260         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2261                 return FS_OVERHEAD;
2262         return HS_OVERHEAD;
2263 }
2264
2265 /* If we are changing a LS/FS device under a HS hub,
2266  * make sure (if we are activating a new TT) that the HS bus has enough
2267  * bandwidth for this new TT.
2268  */
2269 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2270                 struct xhci_virt_device *virt_dev,
2271                 int old_active_eps)
2272 {
2273         struct xhci_interval_bw_table *bw_table;
2274         struct xhci_tt_bw_info *tt_info;
2275
2276         /* Find the bandwidth table for the root port this TT is attached to. */
2277         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2278         tt_info = virt_dev->tt_info;
2279         /* If this TT already had active endpoints, the bandwidth for this TT
2280          * has already been added.  Removing all periodic endpoints (and thus
2281          * making the TT enactive) will only decrease the bandwidth used.
2282          */
2283         if (old_active_eps)
2284                 return 0;
2285         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2286                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2287                         return -ENOMEM;
2288                 return 0;
2289         }
2290         /* Not sure why we would have no new active endpoints...
2291          *
2292          * Maybe because of an Evaluate Context change for a hub update or a
2293          * control endpoint 0 max packet size change?
2294          * FIXME: skip the bandwidth calculation in that case.
2295          */
2296         return 0;
2297 }
2298
2299 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2300                 struct xhci_virt_device *virt_dev)
2301 {
2302         unsigned int bw_reserved;
2303
2304         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2305         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2306                 return -ENOMEM;
2307
2308         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2309         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2310                 return -ENOMEM;
2311
2312         return 0;
2313 }
2314
2315 /*
2316  * This algorithm is a very conservative estimate of the worst-case scheduling
2317  * scenario for any one interval.  The hardware dynamically schedules the
2318  * packets, so we can't tell which microframe could be the limiting factor in
2319  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2320  *
2321  * Obviously, we can't solve an NP complete problem to find the minimum worst
2322  * case scenario.  Instead, we come up with an estimate that is no less than
2323  * the worst case bandwidth used for any one microframe, but may be an
2324  * over-estimate.
2325  *
2326  * We walk the requirements for each endpoint by interval, starting with the
2327  * smallest interval, and place packets in the schedule where there is only one
2328  * possible way to schedule packets for that interval.  In order to simplify
2329  * this algorithm, we record the largest max packet size for each interval, and
2330  * assume all packets will be that size.
2331  *
2332  * For interval 0, we obviously must schedule all packets for each interval.
2333  * The bandwidth for interval 0 is just the amount of data to be transmitted
2334  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2335  * the number of packets).
2336  *
2337  * For interval 1, we have two possible microframes to schedule those packets
2338  * in.  For this algorithm, if we can schedule the same number of packets for
2339  * each possible scheduling opportunity (each microframe), we will do so.  The
2340  * remaining number of packets will be saved to be transmitted in the gaps in
2341  * the next interval's scheduling sequence.
2342  *
2343  * As we move those remaining packets to be scheduled with interval 2 packets,
2344  * we have to double the number of remaining packets to transmit.  This is
2345  * because the intervals are actually powers of 2, and we would be transmitting
2346  * the previous interval's packets twice in this interval.  We also have to be
2347  * sure that when we look at the largest max packet size for this interval, we
2348  * also look at the largest max packet size for the remaining packets and take
2349  * the greater of the two.
2350  *
2351  * The algorithm continues to evenly distribute packets in each scheduling
2352  * opportunity, and push the remaining packets out, until we get to the last
2353  * interval.  Then those packets and their associated overhead are just added
2354  * to the bandwidth used.
2355  */
2356 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2357                 struct xhci_virt_device *virt_dev,
2358                 int old_active_eps)
2359 {
2360         unsigned int bw_reserved;
2361         unsigned int max_bandwidth;
2362         unsigned int bw_used;
2363         unsigned int block_size;
2364         struct xhci_interval_bw_table *bw_table;
2365         unsigned int packet_size = 0;
2366         unsigned int overhead = 0;
2367         unsigned int packets_transmitted = 0;
2368         unsigned int packets_remaining = 0;
2369         unsigned int i;
2370
2371         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2372                 return xhci_check_ss_bw(xhci, virt_dev);
2373
2374         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2375                 max_bandwidth = HS_BW_LIMIT;
2376                 /* Convert percent of bus BW reserved to blocks reserved */
2377                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2378         } else {
2379                 max_bandwidth = FS_BW_LIMIT;
2380                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2381         }
2382
2383         bw_table = virt_dev->bw_table;
2384         /* We need to translate the max packet size and max ESIT payloads into
2385          * the units the hardware uses.
2386          */
2387         block_size = xhci_get_block_size(virt_dev->udev);
2388
2389         /* If we are manipulating a LS/FS device under a HS hub, double check
2390          * that the HS bus has enough bandwidth if we are activing a new TT.
2391          */
2392         if (virt_dev->tt_info) {
2393                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2394                                 "Recalculating BW for rootport %u",
2395                                 virt_dev->real_port);
2396                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2397                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2398                                         "newly activated TT.\n");
2399                         return -ENOMEM;
2400                 }
2401                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2402                                 "Recalculating BW for TT slot %u port %u",
2403                                 virt_dev->tt_info->slot_id,
2404                                 virt_dev->tt_info->ttport);
2405         } else {
2406                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2407                                 "Recalculating BW for rootport %u",
2408                                 virt_dev->real_port);
2409         }
2410
2411         /* Add in how much bandwidth will be used for interval zero, or the
2412          * rounded max ESIT payload + number of packets * largest overhead.
2413          */
2414         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2415                 bw_table->interval_bw[0].num_packets *
2416                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2417
2418         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2419                 unsigned int bw_added;
2420                 unsigned int largest_mps;
2421                 unsigned int interval_overhead;
2422
2423                 /*
2424                  * How many packets could we transmit in this interval?
2425                  * If packets didn't fit in the previous interval, we will need
2426                  * to transmit that many packets twice within this interval.
2427                  */
2428                 packets_remaining = 2 * packets_remaining +
2429                         bw_table->interval_bw[i].num_packets;
2430
2431                 /* Find the largest max packet size of this or the previous
2432                  * interval.
2433                  */
2434                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2435                         largest_mps = 0;
2436                 else {
2437                         struct xhci_virt_ep *virt_ep;
2438                         struct list_head *ep_entry;
2439
2440                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2441                         virt_ep = list_entry(ep_entry,
2442                                         struct xhci_virt_ep, bw_endpoint_list);
2443                         /* Convert to blocks, rounding up */
2444                         largest_mps = DIV_ROUND_UP(
2445                                         virt_ep->bw_info.max_packet_size,
2446                                         block_size);
2447                 }
2448                 if (largest_mps > packet_size)
2449                         packet_size = largest_mps;
2450
2451                 /* Use the larger overhead of this or the previous interval. */
2452                 interval_overhead = xhci_get_largest_overhead(
2453                                 &bw_table->interval_bw[i]);
2454                 if (interval_overhead > overhead)
2455                         overhead = interval_overhead;
2456
2457                 /* How many packets can we evenly distribute across
2458                  * (1 << (i + 1)) possible scheduling opportunities?
2459                  */
2460                 packets_transmitted = packets_remaining >> (i + 1);
2461
2462                 /* Add in the bandwidth used for those scheduled packets */
2463                 bw_added = packets_transmitted * (overhead + packet_size);
2464
2465                 /* How many packets do we have remaining to transmit? */
2466                 packets_remaining = packets_remaining % (1 << (i + 1));
2467
2468                 /* What largest max packet size should those packets have? */
2469                 /* If we've transmitted all packets, don't carry over the
2470                  * largest packet size.
2471                  */
2472                 if (packets_remaining == 0) {
2473                         packet_size = 0;
2474                         overhead = 0;
2475                 } else if (packets_transmitted > 0) {
2476                         /* Otherwise if we do have remaining packets, and we've
2477                          * scheduled some packets in this interval, take the
2478                          * largest max packet size from endpoints with this
2479                          * interval.
2480                          */
2481                         packet_size = largest_mps;
2482                         overhead = interval_overhead;
2483                 }
2484                 /* Otherwise carry over packet_size and overhead from the last
2485                  * time we had a remainder.
2486                  */
2487                 bw_used += bw_added;
2488                 if (bw_used > max_bandwidth) {
2489                         xhci_warn(xhci, "Not enough bandwidth. "
2490                                         "Proposed: %u, Max: %u\n",
2491                                 bw_used, max_bandwidth);
2492                         return -ENOMEM;
2493                 }
2494         }
2495         /*
2496          * Ok, we know we have some packets left over after even-handedly
2497          * scheduling interval 15.  We don't know which microframes they will
2498          * fit into, so we over-schedule and say they will be scheduled every
2499          * microframe.
2500          */
2501         if (packets_remaining > 0)
2502                 bw_used += overhead + packet_size;
2503
2504         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2505                 unsigned int port_index = virt_dev->real_port - 1;
2506
2507                 /* OK, we're manipulating a HS device attached to a
2508                  * root port bandwidth domain.  Include the number of active TTs
2509                  * in the bandwidth used.
2510                  */
2511                 bw_used += TT_HS_OVERHEAD *
2512                         xhci->rh_bw[port_index].num_active_tts;
2513         }
2514
2515         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2516                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2517                 "Available: %u " "percent",
2518                 bw_used, max_bandwidth, bw_reserved,
2519                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2520                 max_bandwidth);
2521
2522         bw_used += bw_reserved;
2523         if (bw_used > max_bandwidth) {
2524                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2525                                 bw_used, max_bandwidth);
2526                 return -ENOMEM;
2527         }
2528
2529         bw_table->bw_used = bw_used;
2530         return 0;
2531 }
2532
2533 static bool xhci_is_async_ep(unsigned int ep_type)
2534 {
2535         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2536                                         ep_type != ISOC_IN_EP &&
2537                                         ep_type != INT_IN_EP);
2538 }
2539
2540 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2541 {
2542         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2543 }
2544
2545 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2546 {
2547         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2548
2549         if (ep_bw->ep_interval == 0)
2550                 return SS_OVERHEAD_BURST +
2551                         (ep_bw->mult * ep_bw->num_packets *
2552                                         (SS_OVERHEAD + mps));
2553         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2554                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2555                                 1 << ep_bw->ep_interval);
2556
2557 }
2558
2559 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2560                 struct xhci_bw_info *ep_bw,
2561                 struct xhci_interval_bw_table *bw_table,
2562                 struct usb_device *udev,
2563                 struct xhci_virt_ep *virt_ep,
2564                 struct xhci_tt_bw_info *tt_info)
2565 {
2566         struct xhci_interval_bw *interval_bw;
2567         int normalized_interval;
2568
2569         if (xhci_is_async_ep(ep_bw->type))
2570                 return;
2571
2572         if (udev->speed >= USB_SPEED_SUPER) {
2573                 if (xhci_is_sync_in_ep(ep_bw->type))
2574                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2575                                 xhci_get_ss_bw_consumed(ep_bw);
2576                 else
2577                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2578                                 xhci_get_ss_bw_consumed(ep_bw);
2579                 return;
2580         }
2581
2582         /* SuperSpeed endpoints never get added to intervals in the table, so
2583          * this check is only valid for HS/FS/LS devices.
2584          */
2585         if (list_empty(&virt_ep->bw_endpoint_list))
2586                 return;
2587         /* For LS/FS devices, we need to translate the interval expressed in
2588          * microframes to frames.
2589          */
2590         if (udev->speed == USB_SPEED_HIGH)
2591                 normalized_interval = ep_bw->ep_interval;
2592         else
2593                 normalized_interval = ep_bw->ep_interval - 3;
2594
2595         if (normalized_interval == 0)
2596                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2597         interval_bw = &bw_table->interval_bw[normalized_interval];
2598         interval_bw->num_packets -= ep_bw->num_packets;
2599         switch (udev->speed) {
2600         case USB_SPEED_LOW:
2601                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2602                 break;
2603         case USB_SPEED_FULL:
2604                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2605                 break;
2606         case USB_SPEED_HIGH:
2607                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2608                 break;
2609         case USB_SPEED_SUPER:
2610         case USB_SPEED_SUPER_PLUS:
2611         case USB_SPEED_UNKNOWN:
2612         case USB_SPEED_WIRELESS:
2613                 /* Should never happen because only LS/FS/HS endpoints will get
2614                  * added to the endpoint list.
2615                  */
2616                 return;
2617         }
2618         if (tt_info)
2619                 tt_info->active_eps -= 1;
2620         list_del_init(&virt_ep->bw_endpoint_list);
2621 }
2622
2623 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2624                 struct xhci_bw_info *ep_bw,
2625                 struct xhci_interval_bw_table *bw_table,
2626                 struct usb_device *udev,
2627                 struct xhci_virt_ep *virt_ep,
2628                 struct xhci_tt_bw_info *tt_info)
2629 {
2630         struct xhci_interval_bw *interval_bw;
2631         struct xhci_virt_ep *smaller_ep;
2632         int normalized_interval;
2633
2634         if (xhci_is_async_ep(ep_bw->type))
2635                 return;
2636
2637         if (udev->speed == USB_SPEED_SUPER) {
2638                 if (xhci_is_sync_in_ep(ep_bw->type))
2639                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2640                                 xhci_get_ss_bw_consumed(ep_bw);
2641                 else
2642                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2643                                 xhci_get_ss_bw_consumed(ep_bw);
2644                 return;
2645         }
2646
2647         /* For LS/FS devices, we need to translate the interval expressed in
2648          * microframes to frames.
2649          */
2650         if (udev->speed == USB_SPEED_HIGH)
2651                 normalized_interval = ep_bw->ep_interval;
2652         else
2653                 normalized_interval = ep_bw->ep_interval - 3;
2654
2655         if (normalized_interval == 0)
2656                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2657         interval_bw = &bw_table->interval_bw[normalized_interval];
2658         interval_bw->num_packets += ep_bw->num_packets;
2659         switch (udev->speed) {
2660         case USB_SPEED_LOW:
2661                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2662                 break;
2663         case USB_SPEED_FULL:
2664                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2665                 break;
2666         case USB_SPEED_HIGH:
2667                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2668                 break;
2669         case USB_SPEED_SUPER:
2670         case USB_SPEED_SUPER_PLUS:
2671         case USB_SPEED_UNKNOWN:
2672         case USB_SPEED_WIRELESS:
2673                 /* Should never happen because only LS/FS/HS endpoints will get
2674                  * added to the endpoint list.
2675                  */
2676                 return;
2677         }
2678
2679         if (tt_info)
2680                 tt_info->active_eps += 1;
2681         /* Insert the endpoint into the list, largest max packet size first. */
2682         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2683                         bw_endpoint_list) {
2684                 if (ep_bw->max_packet_size >=
2685                                 smaller_ep->bw_info.max_packet_size) {
2686                         /* Add the new ep before the smaller endpoint */
2687                         list_add_tail(&virt_ep->bw_endpoint_list,
2688                                         &smaller_ep->bw_endpoint_list);
2689                         return;
2690                 }
2691         }
2692         /* Add the new endpoint at the end of the list. */
2693         list_add_tail(&virt_ep->bw_endpoint_list,
2694                         &interval_bw->endpoints);
2695 }
2696
2697 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2698                 struct xhci_virt_device *virt_dev,
2699                 int old_active_eps)
2700 {
2701         struct xhci_root_port_bw_info *rh_bw_info;
2702         if (!virt_dev->tt_info)
2703                 return;
2704
2705         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2706         if (old_active_eps == 0 &&
2707                                 virt_dev->tt_info->active_eps != 0) {
2708                 rh_bw_info->num_active_tts += 1;
2709                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2710         } else if (old_active_eps != 0 &&
2711                                 virt_dev->tt_info->active_eps == 0) {
2712                 rh_bw_info->num_active_tts -= 1;
2713                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2714         }
2715 }
2716
2717 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2718                 struct xhci_virt_device *virt_dev,
2719                 struct xhci_container_ctx *in_ctx)
2720 {
2721         struct xhci_bw_info ep_bw_info[31];
2722         int i;
2723         struct xhci_input_control_ctx *ctrl_ctx;
2724         int old_active_eps = 0;
2725
2726         if (virt_dev->tt_info)
2727                 old_active_eps = virt_dev->tt_info->active_eps;
2728
2729         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2730         if (!ctrl_ctx) {
2731                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2732                                 __func__);
2733                 return -ENOMEM;
2734         }
2735
2736         for (i = 0; i < 31; i++) {
2737                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2738                         continue;
2739
2740                 /* Make a copy of the BW info in case we need to revert this */
2741                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2742                                 sizeof(ep_bw_info[i]));
2743                 /* Drop the endpoint from the interval table if the endpoint is
2744                  * being dropped or changed.
2745                  */
2746                 if (EP_IS_DROPPED(ctrl_ctx, i))
2747                         xhci_drop_ep_from_interval_table(xhci,
2748                                         &virt_dev->eps[i].bw_info,
2749                                         virt_dev->bw_table,
2750                                         virt_dev->udev,
2751                                         &virt_dev->eps[i],
2752                                         virt_dev->tt_info);
2753         }
2754         /* Overwrite the information stored in the endpoints' bw_info */
2755         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2756         for (i = 0; i < 31; i++) {
2757                 /* Add any changed or added endpoints to the interval table */
2758                 if (EP_IS_ADDED(ctrl_ctx, i))
2759                         xhci_add_ep_to_interval_table(xhci,
2760                                         &virt_dev->eps[i].bw_info,
2761                                         virt_dev->bw_table,
2762                                         virt_dev->udev,
2763                                         &virt_dev->eps[i],
2764                                         virt_dev->tt_info);
2765         }
2766
2767         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2768                 /* Ok, this fits in the bandwidth we have.
2769                  * Update the number of active TTs.
2770                  */
2771                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2772                 return 0;
2773         }
2774
2775         /* We don't have enough bandwidth for this, revert the stored info. */
2776         for (i = 0; i < 31; i++) {
2777                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2778                         continue;
2779
2780                 /* Drop the new copies of any added or changed endpoints from
2781                  * the interval table.
2782                  */
2783                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2784                         xhci_drop_ep_from_interval_table(xhci,
2785                                         &virt_dev->eps[i].bw_info,
2786                                         virt_dev->bw_table,
2787                                         virt_dev->udev,
2788                                         &virt_dev->eps[i],
2789                                         virt_dev->tt_info);
2790                 }
2791                 /* Revert the endpoint back to its old information */
2792                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2793                                 sizeof(ep_bw_info[i]));
2794                 /* Add any changed or dropped endpoints back into the table */
2795                 if (EP_IS_DROPPED(ctrl_ctx, i))
2796                         xhci_add_ep_to_interval_table(xhci,
2797                                         &virt_dev->eps[i].bw_info,
2798                                         virt_dev->bw_table,
2799                                         virt_dev->udev,
2800                                         &virt_dev->eps[i],
2801                                         virt_dev->tt_info);
2802         }
2803         return -ENOMEM;
2804 }
2805
2806
2807 /* Issue a configure endpoint command or evaluate context command
2808  * and wait for it to finish.
2809  */
2810 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2811                 struct usb_device *udev,
2812                 struct xhci_command *command,
2813                 bool ctx_change, bool must_succeed)
2814 {
2815         int ret;
2816         unsigned long flags;
2817         struct xhci_input_control_ctx *ctrl_ctx;
2818         struct xhci_virt_device *virt_dev;
2819         struct xhci_slot_ctx *slot_ctx;
2820
2821         if (!command)
2822                 return -EINVAL;
2823
2824         spin_lock_irqsave(&xhci->lock, flags);
2825
2826         if (xhci->xhc_state & XHCI_STATE_DYING) {
2827                 spin_unlock_irqrestore(&xhci->lock, flags);
2828                 return -ESHUTDOWN;
2829         }
2830
2831         virt_dev = xhci->devs[udev->slot_id];
2832
2833         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2834         if (!ctrl_ctx) {
2835                 spin_unlock_irqrestore(&xhci->lock, flags);
2836                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2837                                 __func__);
2838                 return -ENOMEM;
2839         }
2840
2841         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2842                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2843                 spin_unlock_irqrestore(&xhci->lock, flags);
2844                 xhci_warn(xhci, "Not enough host resources, "
2845                                 "active endpoint contexts = %u\n",
2846                                 xhci->num_active_eps);
2847                 return -ENOMEM;
2848         }
2849         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2850             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2851                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2852                         xhci_free_host_resources(xhci, ctrl_ctx);
2853                 spin_unlock_irqrestore(&xhci->lock, flags);
2854                 xhci_warn(xhci, "Not enough bandwidth\n");
2855                 return -ENOMEM;
2856         }
2857
2858         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2859         trace_xhci_configure_endpoint(slot_ctx);
2860
2861         if (!ctx_change)
2862                 ret = xhci_queue_configure_endpoint(xhci, command,
2863                                 command->in_ctx->dma,
2864                                 udev->slot_id, must_succeed);
2865         else
2866                 ret = xhci_queue_evaluate_context(xhci, command,
2867                                 command->in_ctx->dma,
2868                                 udev->slot_id, must_succeed);
2869         if (ret < 0) {
2870                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2871                         xhci_free_host_resources(xhci, ctrl_ctx);
2872                 spin_unlock_irqrestore(&xhci->lock, flags);
2873                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2874                                 "FIXME allocate a new ring segment");
2875                 return -ENOMEM;
2876         }
2877         xhci_ring_cmd_db(xhci);
2878         spin_unlock_irqrestore(&xhci->lock, flags);
2879
2880         /* Wait for the configure endpoint command to complete */
2881         wait_for_completion(command->completion);
2882
2883         if (!ctx_change)
2884                 ret = xhci_configure_endpoint_result(xhci, udev,
2885                                                      &command->status);
2886         else
2887                 ret = xhci_evaluate_context_result(xhci, udev,
2888                                                    &command->status);
2889
2890         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2891                 spin_lock_irqsave(&xhci->lock, flags);
2892                 /* If the command failed, remove the reserved resources.
2893                  * Otherwise, clean up the estimate to include dropped eps.
2894                  */
2895                 if (ret)
2896                         xhci_free_host_resources(xhci, ctrl_ctx);
2897                 else
2898                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2899                 spin_unlock_irqrestore(&xhci->lock, flags);
2900         }
2901         return ret;
2902 }
2903
2904 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2905         struct xhci_virt_device *vdev, int i)
2906 {
2907         struct xhci_virt_ep *ep = &vdev->eps[i];
2908
2909         if (ep->ep_state & EP_HAS_STREAMS) {
2910                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2911                                 xhci_get_endpoint_address(i));
2912                 xhci_free_stream_info(xhci, ep->stream_info);
2913                 ep->stream_info = NULL;
2914                 ep->ep_state &= ~EP_HAS_STREAMS;
2915         }
2916 }
2917
2918 /* Called after one or more calls to xhci_add_endpoint() or
2919  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2920  * to call xhci_reset_bandwidth().
2921  *
2922  * Since we are in the middle of changing either configuration or
2923  * installing a new alt setting, the USB core won't allow URBs to be
2924  * enqueued for any endpoint on the old config or interface.  Nothing
2925  * else should be touching the xhci->devs[slot_id] structure, so we
2926  * don't need to take the xhci->lock for manipulating that.
2927  */
2928 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2929 {
2930         int i;
2931         int ret = 0;
2932         struct xhci_hcd *xhci;
2933         struct xhci_virt_device *virt_dev;
2934         struct xhci_input_control_ctx *ctrl_ctx;
2935         struct xhci_slot_ctx *slot_ctx;
2936         struct xhci_command *command;
2937
2938         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2939         if (ret <= 0)
2940                 return ret;
2941         xhci = hcd_to_xhci(hcd);
2942         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2943                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2944                 return -ENODEV;
2945
2946         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2947         virt_dev = xhci->devs[udev->slot_id];
2948
2949         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2950         if (!command)
2951                 return -ENOMEM;
2952
2953         command->in_ctx = virt_dev->in_ctx;
2954
2955         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2956         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2957         if (!ctrl_ctx) {
2958                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2959                                 __func__);
2960                 ret = -ENOMEM;
2961                 goto command_cleanup;
2962         }
2963         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2964         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2965         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2966
2967         /* Don't issue the command if there's no endpoints to update. */
2968         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2969             ctrl_ctx->drop_flags == 0) {
2970                 ret = 0;
2971                 goto command_cleanup;
2972         }
2973         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2974         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2975         for (i = 31; i >= 1; i--) {
2976                 __le32 le32 = cpu_to_le32(BIT(i));
2977
2978                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2979                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2980                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2981                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2982                         break;
2983                 }
2984         }
2985
2986         ret = xhci_configure_endpoint(xhci, udev, command,
2987                         false, false);
2988         if (ret)
2989                 /* Callee should call reset_bandwidth() */
2990                 goto command_cleanup;
2991
2992         /* Free any rings that were dropped, but not changed. */
2993         for (i = 1; i < 31; i++) {
2994                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2995                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2996                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2997                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2998                 }
2999         }
3000         xhci_zero_in_ctx(xhci, virt_dev);
3001         /*
3002          * Install any rings for completely new endpoints or changed endpoints,
3003          * and free any old rings from changed endpoints.
3004          */
3005         for (i = 1; i < 31; i++) {
3006                 if (!virt_dev->eps[i].new_ring)
3007                         continue;
3008                 /* Only free the old ring if it exists.
3009                  * It may not if this is the first add of an endpoint.
3010                  */
3011                 if (virt_dev->eps[i].ring) {
3012                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3013                 }
3014                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3015                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3016                 virt_dev->eps[i].new_ring = NULL;
3017         }
3018 command_cleanup:
3019         kfree(command->completion);
3020         kfree(command);
3021
3022         return ret;
3023 }
3024
3025 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3026 {
3027         struct xhci_hcd *xhci;
3028         struct xhci_virt_device *virt_dev;
3029         int i, ret;
3030
3031         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3032         if (ret <= 0)
3033                 return;
3034         xhci = hcd_to_xhci(hcd);
3035
3036         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3037         virt_dev = xhci->devs[udev->slot_id];
3038         /* Free any rings allocated for added endpoints */
3039         for (i = 0; i < 31; i++) {
3040                 if (virt_dev->eps[i].new_ring) {
3041                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3042                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3043                         virt_dev->eps[i].new_ring = NULL;
3044                 }
3045         }
3046         xhci_zero_in_ctx(xhci, virt_dev);
3047 }
3048
3049 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3050                 struct xhci_container_ctx *in_ctx,
3051                 struct xhci_container_ctx *out_ctx,
3052                 struct xhci_input_control_ctx *ctrl_ctx,
3053                 u32 add_flags, u32 drop_flags)
3054 {
3055         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3056         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3057         xhci_slot_copy(xhci, in_ctx, out_ctx);
3058         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3059 }
3060
3061 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
3062                 unsigned int slot_id, unsigned int ep_index,
3063                 struct xhci_dequeue_state *deq_state)
3064 {
3065         struct xhci_input_control_ctx *ctrl_ctx;
3066         struct xhci_container_ctx *in_ctx;
3067         struct xhci_ep_ctx *ep_ctx;
3068         u32 added_ctxs;
3069         dma_addr_t addr;
3070
3071         in_ctx = xhci->devs[slot_id]->in_ctx;
3072         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
3073         if (!ctrl_ctx) {
3074                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3075                                 __func__);
3076                 return;
3077         }
3078
3079         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
3080                         xhci->devs[slot_id]->out_ctx, ep_index);
3081         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
3082         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3083                         deq_state->new_deq_ptr);
3084         if (addr == 0) {
3085                 xhci_warn(xhci, "WARN Cannot submit config ep after "
3086                                 "reset ep command\n");
3087                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
3088                                 deq_state->new_deq_seg,
3089                                 deq_state->new_deq_ptr);
3090                 return;
3091         }
3092         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
3093
3094         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
3095         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
3096                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
3097                         added_ctxs, added_ctxs);
3098 }
3099
3100 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
3101                                unsigned int stream_id, struct xhci_td *td)
3102 {
3103         struct xhci_dequeue_state deq_state;
3104         struct usb_device *udev = td->urb->dev;
3105
3106         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3107                         "Cleaning up stalled endpoint ring");
3108         /* We need to move the HW's dequeue pointer past this TD,
3109          * or it will attempt to resend it on the next doorbell ring.
3110          */
3111         xhci_find_new_dequeue_state(xhci, udev->slot_id,
3112                         ep_index, stream_id, td, &deq_state);
3113
3114         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3115                 return;
3116
3117         /* HW with the reset endpoint quirk will use the saved dequeue state to
3118          * issue a configure endpoint command later.
3119          */
3120         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3121                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3122                                 "Queueing new dequeue state");
3123                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
3124                                 ep_index, &deq_state);
3125         } else {
3126                 /* Better hope no one uses the input context between now and the
3127                  * reset endpoint completion!
3128                  * XXX: No idea how this hardware will react when stream rings
3129                  * are enabled.
3130                  */
3131                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3132                                 "Setting up input context for "
3133                                 "configure endpoint command");
3134                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
3135                                 ep_index, &deq_state);
3136         }
3137 }
3138
3139 /*
3140  * Called after usb core issues a clear halt control message.
3141  * The host side of the halt should already be cleared by a reset endpoint
3142  * command issued when the STALL event was received.
3143  *
3144  * The reset endpoint command may only be issued to endpoints in the halted
3145  * state. For software that wishes to reset the data toggle or sequence number
3146  * of an endpoint that isn't in the halted state this function will issue a
3147  * configure endpoint command with the Drop and Add bits set for the target
3148  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3149  */
3150
3151 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3152                 struct usb_host_endpoint *host_ep)
3153 {
3154         struct xhci_hcd *xhci;
3155         struct usb_device *udev;
3156         struct xhci_virt_device *vdev;
3157         struct xhci_virt_ep *ep;
3158         struct xhci_input_control_ctx *ctrl_ctx;
3159         struct xhci_command *stop_cmd, *cfg_cmd;
3160         unsigned int ep_index;
3161         unsigned long flags;
3162         u32 ep_flag;
3163         int err;
3164
3165         xhci = hcd_to_xhci(hcd);
3166         if (!host_ep->hcpriv)
3167                 return;
3168         udev = (struct usb_device *) host_ep->hcpriv;
3169         vdev = xhci->devs[udev->slot_id];
3170         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3171         ep = &vdev->eps[ep_index];
3172
3173         /* Bail out if toggle is already being cleared by a endpoint reset */
3174         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3175                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3176                 return;
3177         }
3178         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3179         if (usb_endpoint_xfer_control(&host_ep->desc) ||
3180             usb_endpoint_xfer_isoc(&host_ep->desc))
3181                 return;
3182
3183         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3184
3185         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3186                 return;
3187
3188         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3189         if (!stop_cmd)
3190                 return;
3191
3192         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3193         if (!cfg_cmd)
3194                 goto cleanup;
3195
3196         spin_lock_irqsave(&xhci->lock, flags);
3197
3198         /* block queuing new trbs and ringing ep doorbell */
3199         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3200
3201         /*
3202          * Make sure endpoint ring is empty before resetting the toggle/seq.
3203          * Driver is required to synchronously cancel all transfer request.
3204          * Stop the endpoint to force xHC to update the output context
3205          */
3206
3207         if (!list_empty(&ep->ring->td_list)) {
3208                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3209                 spin_unlock_irqrestore(&xhci->lock, flags);
3210                 xhci_free_command(xhci, cfg_cmd);
3211                 goto cleanup;
3212         }
3213
3214         err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3215                                         ep_index, 0);
3216         if (err < 0) {
3217                 spin_unlock_irqrestore(&xhci->lock, flags);
3218                 xhci_free_command(xhci, cfg_cmd);
3219                 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3220                                 __func__, err);
3221                 goto cleanup;
3222         }
3223
3224         xhci_ring_cmd_db(xhci);
3225         spin_unlock_irqrestore(&xhci->lock, flags);
3226
3227         wait_for_completion(stop_cmd->completion);
3228
3229         spin_lock_irqsave(&xhci->lock, flags);
3230
3231         /* config ep command clears toggle if add and drop ep flags are set */
3232         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3233         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3234                                            ctrl_ctx, ep_flag, ep_flag);
3235         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3236
3237         err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3238                                       udev->slot_id, false);
3239         if (err < 0) {
3240                 spin_unlock_irqrestore(&xhci->lock, flags);
3241                 xhci_free_command(xhci, cfg_cmd);
3242                 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3243                                 __func__, err);
3244                 goto cleanup;
3245         }
3246
3247         xhci_ring_cmd_db(xhci);
3248         spin_unlock_irqrestore(&xhci->lock, flags);
3249
3250         wait_for_completion(cfg_cmd->completion);
3251
3252         ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3253         xhci_free_command(xhci, cfg_cmd);
3254 cleanup:
3255         xhci_free_command(xhci, stop_cmd);
3256 }
3257
3258 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3259                 struct usb_device *udev, struct usb_host_endpoint *ep,
3260                 unsigned int slot_id)
3261 {
3262         int ret;
3263         unsigned int ep_index;
3264         unsigned int ep_state;
3265
3266         if (!ep)
3267                 return -EINVAL;
3268         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3269         if (ret <= 0)
3270                 return -EINVAL;
3271         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3272                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3273                                 " descriptor for ep 0x%x does not support streams\n",
3274                                 ep->desc.bEndpointAddress);
3275                 return -EINVAL;
3276         }
3277
3278         ep_index = xhci_get_endpoint_index(&ep->desc);
3279         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3280         if (ep_state & EP_HAS_STREAMS ||
3281                         ep_state & EP_GETTING_STREAMS) {
3282                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3283                                 "already has streams set up.\n",
3284                                 ep->desc.bEndpointAddress);
3285                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3286                                 "dynamic stream context array reallocation.\n");
3287                 return -EINVAL;
3288         }
3289         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3290                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3291                                 "endpoint 0x%x; URBs are pending.\n",
3292                                 ep->desc.bEndpointAddress);
3293                 return -EINVAL;
3294         }
3295         return 0;
3296 }
3297
3298 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3299                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3300 {
3301         unsigned int max_streams;
3302
3303         /* The stream context array size must be a power of two */
3304         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3305         /*
3306          * Find out how many primary stream array entries the host controller
3307          * supports.  Later we may use secondary stream arrays (similar to 2nd
3308          * level page entries), but that's an optional feature for xHCI host
3309          * controllers. xHCs must support at least 4 stream IDs.
3310          */
3311         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3312         if (*num_stream_ctxs > max_streams) {
3313                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3314                                 max_streams);
3315                 *num_stream_ctxs = max_streams;
3316                 *num_streams = max_streams;
3317         }
3318 }
3319
3320 /* Returns an error code if one of the endpoint already has streams.
3321  * This does not change any data structures, it only checks and gathers
3322  * information.
3323  */
3324 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3325                 struct usb_device *udev,
3326                 struct usb_host_endpoint **eps, unsigned int num_eps,
3327                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3328 {
3329         unsigned int max_streams;
3330         unsigned int endpoint_flag;
3331         int i;
3332         int ret;
3333
3334         for (i = 0; i < num_eps; i++) {
3335                 ret = xhci_check_streams_endpoint(xhci, udev,
3336                                 eps[i], udev->slot_id);
3337                 if (ret < 0)
3338                         return ret;
3339
3340                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3341                 if (max_streams < (*num_streams - 1)) {
3342                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3343                                         eps[i]->desc.bEndpointAddress,
3344                                         max_streams);
3345                         *num_streams = max_streams+1;
3346                 }
3347
3348                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3349                 if (*changed_ep_bitmask & endpoint_flag)
3350                         return -EINVAL;
3351                 *changed_ep_bitmask |= endpoint_flag;
3352         }
3353         return 0;
3354 }
3355
3356 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3357                 struct usb_device *udev,
3358                 struct usb_host_endpoint **eps, unsigned int num_eps)
3359 {
3360         u32 changed_ep_bitmask = 0;
3361         unsigned int slot_id;
3362         unsigned int ep_index;
3363         unsigned int ep_state;
3364         int i;
3365
3366         slot_id = udev->slot_id;
3367         if (!xhci->devs[slot_id])
3368                 return 0;
3369
3370         for (i = 0; i < num_eps; i++) {
3371                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3372                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3373                 /* Are streams already being freed for the endpoint? */
3374                 if (ep_state & EP_GETTING_NO_STREAMS) {
3375                         xhci_warn(xhci, "WARN Can't disable streams for "
3376                                         "endpoint 0x%x, "
3377                                         "streams are being disabled already\n",
3378                                         eps[i]->desc.bEndpointAddress);
3379                         return 0;
3380                 }
3381                 /* Are there actually any streams to free? */
3382                 if (!(ep_state & EP_HAS_STREAMS) &&
3383                                 !(ep_state & EP_GETTING_STREAMS)) {
3384                         xhci_warn(xhci, "WARN Can't disable streams for "
3385                                         "endpoint 0x%x, "
3386                                         "streams are already disabled!\n",
3387                                         eps[i]->desc.bEndpointAddress);
3388                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3389                                         "with non-streams endpoint\n");
3390                         return 0;
3391                 }
3392                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3393         }
3394         return changed_ep_bitmask;
3395 }
3396
3397 /*
3398  * The USB device drivers use this function (through the HCD interface in USB
3399  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3400  * coordinate mass storage command queueing across multiple endpoints (basically
3401  * a stream ID == a task ID).
3402  *
3403  * Setting up streams involves allocating the same size stream context array
3404  * for each endpoint and issuing a configure endpoint command for all endpoints.
3405  *
3406  * Don't allow the call to succeed if one endpoint only supports one stream
3407  * (which means it doesn't support streams at all).
3408  *
3409  * Drivers may get less stream IDs than they asked for, if the host controller
3410  * hardware or endpoints claim they can't support the number of requested
3411  * stream IDs.
3412  */
3413 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3414                 struct usb_host_endpoint **eps, unsigned int num_eps,
3415                 unsigned int num_streams, gfp_t mem_flags)
3416 {
3417         int i, ret;
3418         struct xhci_hcd *xhci;
3419         struct xhci_virt_device *vdev;
3420         struct xhci_command *config_cmd;
3421         struct xhci_input_control_ctx *ctrl_ctx;
3422         unsigned int ep_index;
3423         unsigned int num_stream_ctxs;
3424         unsigned int max_packet;
3425         unsigned long flags;
3426         u32 changed_ep_bitmask = 0;
3427
3428         if (!eps)
3429                 return -EINVAL;
3430
3431         /* Add one to the number of streams requested to account for
3432          * stream 0 that is reserved for xHCI usage.
3433          */
3434         num_streams += 1;
3435         xhci = hcd_to_xhci(hcd);
3436         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3437                         num_streams);
3438
3439         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3440         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3441                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3442                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3443                 return -ENOSYS;
3444         }
3445
3446         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3447         if (!config_cmd)
3448                 return -ENOMEM;
3449
3450         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3451         if (!ctrl_ctx) {
3452                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3453                                 __func__);
3454                 xhci_free_command(xhci, config_cmd);
3455                 return -ENOMEM;
3456         }
3457
3458         /* Check to make sure all endpoints are not already configured for
3459          * streams.  While we're at it, find the maximum number of streams that
3460          * all the endpoints will support and check for duplicate endpoints.
3461          */
3462         spin_lock_irqsave(&xhci->lock, flags);
3463         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3464                         num_eps, &num_streams, &changed_ep_bitmask);
3465         if (ret < 0) {
3466                 xhci_free_command(xhci, config_cmd);
3467                 spin_unlock_irqrestore(&xhci->lock, flags);
3468                 return ret;
3469         }
3470         if (num_streams <= 1) {
3471                 xhci_warn(xhci, "WARN: endpoints can't handle "
3472                                 "more than one stream.\n");
3473                 xhci_free_command(xhci, config_cmd);
3474                 spin_unlock_irqrestore(&xhci->lock, flags);
3475                 return -EINVAL;
3476         }
3477         vdev = xhci->devs[udev->slot_id];
3478         /* Mark each endpoint as being in transition, so
3479          * xhci_urb_enqueue() will reject all URBs.
3480          */
3481         for (i = 0; i < num_eps; i++) {
3482                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3483                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3484         }
3485         spin_unlock_irqrestore(&xhci->lock, flags);
3486
3487         /* Setup internal data structures and allocate HW data structures for
3488          * streams (but don't install the HW structures in the input context
3489          * until we're sure all memory allocation succeeded).
3490          */
3491         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3492         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3493                         num_stream_ctxs, num_streams);
3494
3495         for (i = 0; i < num_eps; i++) {
3496                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3497                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3498                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3499                                 num_stream_ctxs,
3500                                 num_streams,
3501                                 max_packet, mem_flags);
3502                 if (!vdev->eps[ep_index].stream_info)
3503                         goto cleanup;
3504                 /* Set maxPstreams in endpoint context and update deq ptr to
3505                  * point to stream context array. FIXME
3506                  */
3507         }
3508
3509         /* Set up the input context for a configure endpoint command. */
3510         for (i = 0; i < num_eps; i++) {
3511                 struct xhci_ep_ctx *ep_ctx;
3512
3513                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3514                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3515
3516                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3517                                 vdev->out_ctx, ep_index);
3518                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3519                                 vdev->eps[ep_index].stream_info);
3520         }
3521         /* Tell the HW to drop its old copy of the endpoint context info
3522          * and add the updated copy from the input context.
3523          */
3524         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3525                         vdev->out_ctx, ctrl_ctx,
3526                         changed_ep_bitmask, changed_ep_bitmask);
3527
3528         /* Issue and wait for the configure endpoint command */
3529         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3530                         false, false);
3531
3532         /* xHC rejected the configure endpoint command for some reason, so we
3533          * leave the old ring intact and free our internal streams data
3534          * structure.
3535          */
3536         if (ret < 0)
3537                 goto cleanup;
3538
3539         spin_lock_irqsave(&xhci->lock, flags);
3540         for (i = 0; i < num_eps; i++) {
3541                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3542                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3543                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3544                          udev->slot_id, ep_index);
3545                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3546         }
3547         xhci_free_command(xhci, config_cmd);
3548         spin_unlock_irqrestore(&xhci->lock, flags);
3549
3550         /* Subtract 1 for stream 0, which drivers can't use */
3551         return num_streams - 1;
3552
3553 cleanup:
3554         /* If it didn't work, free the streams! */
3555         for (i = 0; i < num_eps; i++) {
3556                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3557                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3558                 vdev->eps[ep_index].stream_info = NULL;
3559                 /* FIXME Unset maxPstreams in endpoint context and
3560                  * update deq ptr to point to normal string ring.
3561                  */
3562                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3563                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3564                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3565         }
3566         xhci_free_command(xhci, config_cmd);
3567         return -ENOMEM;
3568 }
3569
3570 /* Transition the endpoint from using streams to being a "normal" endpoint
3571  * without streams.
3572  *
3573  * Modify the endpoint context state, submit a configure endpoint command,
3574  * and free all endpoint rings for streams if that completes successfully.
3575  */
3576 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3577                 struct usb_host_endpoint **eps, unsigned int num_eps,
3578                 gfp_t mem_flags)
3579 {
3580         int i, ret;
3581         struct xhci_hcd *xhci;
3582         struct xhci_virt_device *vdev;
3583         struct xhci_command *command;
3584         struct xhci_input_control_ctx *ctrl_ctx;
3585         unsigned int ep_index;
3586         unsigned long flags;
3587         u32 changed_ep_bitmask;
3588
3589         xhci = hcd_to_xhci(hcd);
3590         vdev = xhci->devs[udev->slot_id];
3591
3592         /* Set up a configure endpoint command to remove the streams rings */
3593         spin_lock_irqsave(&xhci->lock, flags);
3594         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3595                         udev, eps, num_eps);
3596         if (changed_ep_bitmask == 0) {
3597                 spin_unlock_irqrestore(&xhci->lock, flags);
3598                 return -EINVAL;
3599         }
3600
3601         /* Use the xhci_command structure from the first endpoint.  We may have
3602          * allocated too many, but the driver may call xhci_free_streams() for
3603          * each endpoint it grouped into one call to xhci_alloc_streams().
3604          */
3605         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3606         command = vdev->eps[ep_index].stream_info->free_streams_command;
3607         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3608         if (!ctrl_ctx) {
3609                 spin_unlock_irqrestore(&xhci->lock, flags);
3610                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3611                                 __func__);
3612                 return -EINVAL;
3613         }
3614
3615         for (i = 0; i < num_eps; i++) {
3616                 struct xhci_ep_ctx *ep_ctx;
3617
3618                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3619                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3620                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3621                         EP_GETTING_NO_STREAMS;
3622
3623                 xhci_endpoint_copy(xhci, command->in_ctx,
3624                                 vdev->out_ctx, ep_index);
3625                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3626                                 &vdev->eps[ep_index]);
3627         }
3628         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3629                         vdev->out_ctx, ctrl_ctx,
3630                         changed_ep_bitmask, changed_ep_bitmask);
3631         spin_unlock_irqrestore(&xhci->lock, flags);
3632
3633         /* Issue and wait for the configure endpoint command,
3634          * which must succeed.
3635          */
3636         ret = xhci_configure_endpoint(xhci, udev, command,
3637                         false, true);
3638
3639         /* xHC rejected the configure endpoint command for some reason, so we
3640          * leave the streams rings intact.
3641          */
3642         if (ret < 0)
3643                 return ret;
3644
3645         spin_lock_irqsave(&xhci->lock, flags);
3646         for (i = 0; i < num_eps; i++) {
3647                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3648                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3649                 vdev->eps[ep_index].stream_info = NULL;
3650                 /* FIXME Unset maxPstreams in endpoint context and
3651                  * update deq ptr to point to normal string ring.
3652                  */
3653                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3654                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3655         }
3656         spin_unlock_irqrestore(&xhci->lock, flags);
3657
3658         return 0;
3659 }
3660
3661 /*
3662  * Deletes endpoint resources for endpoints that were active before a Reset
3663  * Device command, or a Disable Slot command.  The Reset Device command leaves
3664  * the control endpoint intact, whereas the Disable Slot command deletes it.
3665  *
3666  * Must be called with xhci->lock held.
3667  */
3668 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3669         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3670 {
3671         int i;
3672         unsigned int num_dropped_eps = 0;
3673         unsigned int drop_flags = 0;
3674
3675         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3676                 if (virt_dev->eps[i].ring) {
3677                         drop_flags |= 1 << i;
3678                         num_dropped_eps++;
3679                 }
3680         }
3681         xhci->num_active_eps -= num_dropped_eps;
3682         if (num_dropped_eps)
3683                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3684                                 "Dropped %u ep ctxs, flags = 0x%x, "
3685                                 "%u now active.",
3686                                 num_dropped_eps, drop_flags,
3687                                 xhci->num_active_eps);
3688 }
3689
3690 /*
3691  * This submits a Reset Device Command, which will set the device state to 0,
3692  * set the device address to 0, and disable all the endpoints except the default
3693  * control endpoint.  The USB core should come back and call
3694  * xhci_address_device(), and then re-set up the configuration.  If this is
3695  * called because of a usb_reset_and_verify_device(), then the old alternate
3696  * settings will be re-installed through the normal bandwidth allocation
3697  * functions.
3698  *
3699  * Wait for the Reset Device command to finish.  Remove all structures
3700  * associated with the endpoints that were disabled.  Clear the input device
3701  * structure? Reset the control endpoint 0 max packet size?
3702  *
3703  * If the virt_dev to be reset does not exist or does not match the udev,
3704  * it means the device is lost, possibly due to the xHC restore error and
3705  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3706  * re-allocate the device.
3707  */
3708 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3709                 struct usb_device *udev)
3710 {
3711         int ret, i;
3712         unsigned long flags;
3713         struct xhci_hcd *xhci;
3714         unsigned int slot_id;
3715         struct xhci_virt_device *virt_dev;
3716         struct xhci_command *reset_device_cmd;
3717         struct xhci_slot_ctx *slot_ctx;
3718         int old_active_eps = 0;
3719
3720         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3721         if (ret <= 0)
3722                 return ret;
3723         xhci = hcd_to_xhci(hcd);
3724         slot_id = udev->slot_id;
3725         virt_dev = xhci->devs[slot_id];
3726         if (!virt_dev) {
3727                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3728                                 "not exist. Re-allocate the device\n", slot_id);
3729                 ret = xhci_alloc_dev(hcd, udev);
3730                 if (ret == 1)
3731                         return 0;
3732                 else
3733                         return -EINVAL;
3734         }
3735
3736         if (virt_dev->tt_info)
3737                 old_active_eps = virt_dev->tt_info->active_eps;
3738
3739         if (virt_dev->udev != udev) {
3740                 /* If the virt_dev and the udev does not match, this virt_dev
3741                  * may belong to another udev.
3742                  * Re-allocate the device.
3743                  */
3744                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3745                                 "not match the udev. Re-allocate the device\n",
3746                                 slot_id);
3747                 ret = xhci_alloc_dev(hcd, udev);
3748                 if (ret == 1)
3749                         return 0;
3750                 else
3751                         return -EINVAL;
3752         }
3753
3754         /* If device is not setup, there is no point in resetting it */
3755         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3756         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3757                                                 SLOT_STATE_DISABLED)
3758                 return 0;
3759
3760         trace_xhci_discover_or_reset_device(slot_ctx);
3761
3762         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3763         /* Allocate the command structure that holds the struct completion.
3764          * Assume we're in process context, since the normal device reset
3765          * process has to wait for the device anyway.  Storage devices are
3766          * reset as part of error handling, so use GFP_NOIO instead of
3767          * GFP_KERNEL.
3768          */
3769         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3770         if (!reset_device_cmd) {
3771                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3772                 return -ENOMEM;
3773         }
3774
3775         /* Attempt to submit the Reset Device command to the command ring */
3776         spin_lock_irqsave(&xhci->lock, flags);
3777
3778         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3779         if (ret) {
3780                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3781                 spin_unlock_irqrestore(&xhci->lock, flags);
3782                 goto command_cleanup;
3783         }
3784         xhci_ring_cmd_db(xhci);
3785         spin_unlock_irqrestore(&xhci->lock, flags);
3786
3787         /* Wait for the Reset Device command to finish */
3788         wait_for_completion(reset_device_cmd->completion);
3789
3790         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3791          * unless we tried to reset a slot ID that wasn't enabled,
3792          * or the device wasn't in the addressed or configured state.
3793          */
3794         ret = reset_device_cmd->status;
3795         switch (ret) {
3796         case COMP_COMMAND_ABORTED:
3797         case COMP_COMMAND_RING_STOPPED:
3798                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3799                 ret = -ETIME;
3800                 goto command_cleanup;
3801         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3802         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3803                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3804                                 slot_id,
3805                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3806                 xhci_dbg(xhci, "Not freeing device rings.\n");
3807                 /* Don't treat this as an error.  May change my mind later. */
3808                 ret = 0;
3809                 goto command_cleanup;
3810         case COMP_SUCCESS:
3811                 xhci_dbg(xhci, "Successful reset device command.\n");
3812                 break;
3813         default:
3814                 if (xhci_is_vendor_info_code(xhci, ret))
3815                         break;
3816                 xhci_warn(xhci, "Unknown completion code %u for "
3817                                 "reset device command.\n", ret);
3818                 ret = -EINVAL;
3819                 goto command_cleanup;
3820         }
3821
3822         /* Free up host controller endpoint resources */
3823         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3824                 spin_lock_irqsave(&xhci->lock, flags);
3825                 /* Don't delete the default control endpoint resources */
3826                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3827                 spin_unlock_irqrestore(&xhci->lock, flags);
3828         }
3829
3830         /* Everything but endpoint 0 is disabled, so free the rings. */
3831         for (i = 1; i < 31; i++) {
3832                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3833
3834                 if (ep->ep_state & EP_HAS_STREAMS) {
3835                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3836                                         xhci_get_endpoint_address(i));
3837                         xhci_free_stream_info(xhci, ep->stream_info);
3838                         ep->stream_info = NULL;
3839                         ep->ep_state &= ~EP_HAS_STREAMS;
3840                 }
3841
3842                 if (ep->ring) {
3843                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3844                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3845                 }
3846                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3847                         xhci_drop_ep_from_interval_table(xhci,
3848                                         &virt_dev->eps[i].bw_info,
3849                                         virt_dev->bw_table,
3850                                         udev,
3851                                         &virt_dev->eps[i],
3852                                         virt_dev->tt_info);
3853                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3854         }
3855         /* If necessary, update the number of active TTs on this root port */
3856         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3857         virt_dev->flags = 0;
3858         ret = 0;
3859
3860 command_cleanup:
3861         xhci_free_command(xhci, reset_device_cmd);
3862         return ret;
3863 }
3864
3865 /*
3866  * At this point, the struct usb_device is about to go away, the device has
3867  * disconnected, and all traffic has been stopped and the endpoints have been
3868  * disabled.  Free any HC data structures associated with that device.
3869  */
3870 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3871 {
3872         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3873         struct xhci_virt_device *virt_dev;
3874         struct xhci_slot_ctx *slot_ctx;
3875         int i, ret;
3876
3877 #ifndef CONFIG_USB_DEFAULT_PERSIST
3878         /*
3879          * We called pm_runtime_get_noresume when the device was attached.
3880          * Decrement the counter here to allow controller to runtime suspend
3881          * if no devices remain.
3882          */
3883         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3884                 pm_runtime_put_noidle(hcd->self.controller);
3885 #endif
3886
3887         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3888         /* If the host is halted due to driver unload, we still need to free the
3889          * device.
3890          */
3891         if (ret <= 0 && ret != -ENODEV)
3892                 return;
3893
3894         virt_dev = xhci->devs[udev->slot_id];
3895         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3896         trace_xhci_free_dev(slot_ctx);
3897
3898         /* Stop any wayward timer functions (which may grab the lock) */
3899         for (i = 0; i < 31; i++) {
3900                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3901                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3902         }
3903         xhci_debugfs_remove_slot(xhci, udev->slot_id);
3904         virt_dev->udev = NULL;
3905         ret = xhci_disable_slot(xhci, udev->slot_id);
3906         if (ret)
3907                 xhci_free_virt_device(xhci, udev->slot_id);
3908 }
3909
3910 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3911 {
3912         struct xhci_command *command;
3913         unsigned long flags;
3914         u32 state;
3915         int ret = 0;
3916
3917         command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3918         if (!command)
3919                 return -ENOMEM;
3920
3921         spin_lock_irqsave(&xhci->lock, flags);
3922         /* Don't disable the slot if the host controller is dead. */
3923         state = readl(&xhci->op_regs->status);
3924         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3925                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3926                 spin_unlock_irqrestore(&xhci->lock, flags);
3927                 kfree(command);
3928                 return -ENODEV;
3929         }
3930
3931         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3932                                 slot_id);
3933         if (ret) {
3934                 spin_unlock_irqrestore(&xhci->lock, flags);
3935                 kfree(command);
3936                 return ret;
3937         }
3938         xhci_ring_cmd_db(xhci);
3939         spin_unlock_irqrestore(&xhci->lock, flags);
3940         return ret;
3941 }
3942
3943 /*
3944  * Checks if we have enough host controller resources for the default control
3945  * endpoint.
3946  *
3947  * Must be called with xhci->lock held.
3948  */
3949 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3950 {
3951         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3952                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3953                                 "Not enough ep ctxs: "
3954                                 "%u active, need to add 1, limit is %u.",
3955                                 xhci->num_active_eps, xhci->limit_active_eps);
3956                 return -ENOMEM;
3957         }
3958         xhci->num_active_eps += 1;
3959         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3960                         "Adding 1 ep ctx, %u now active.",
3961                         xhci->num_active_eps);
3962         return 0;
3963 }
3964
3965
3966 /*
3967  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3968  * timed out, or allocating memory failed.  Returns 1 on success.
3969  */
3970 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3971 {
3972         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3973         struct xhci_virt_device *vdev;
3974         struct xhci_slot_ctx *slot_ctx;
3975         unsigned long flags;
3976         int ret, slot_id;
3977         struct xhci_command *command;
3978
3979         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3980         if (!command)
3981                 return 0;
3982
3983         spin_lock_irqsave(&xhci->lock, flags);
3984         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3985         if (ret) {
3986                 spin_unlock_irqrestore(&xhci->lock, flags);
3987                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3988                 xhci_free_command(xhci, command);
3989                 return 0;
3990         }
3991         xhci_ring_cmd_db(xhci);
3992         spin_unlock_irqrestore(&xhci->lock, flags);
3993
3994         wait_for_completion(command->completion);
3995         slot_id = command->slot_id;
3996
3997         if (!slot_id || command->status != COMP_SUCCESS) {
3998                 xhci_err(xhci, "Error while assigning device slot ID\n");
3999                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4000                                 HCS_MAX_SLOTS(
4001                                         readl(&xhci->cap_regs->hcs_params1)));
4002                 xhci_free_command(xhci, command);
4003                 return 0;
4004         }
4005
4006         xhci_free_command(xhci, command);
4007
4008         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4009                 spin_lock_irqsave(&xhci->lock, flags);
4010                 ret = xhci_reserve_host_control_ep_resources(xhci);
4011                 if (ret) {
4012                         spin_unlock_irqrestore(&xhci->lock, flags);
4013                         xhci_warn(xhci, "Not enough host resources, "
4014                                         "active endpoint contexts = %u\n",
4015                                         xhci->num_active_eps);
4016                         goto disable_slot;
4017                 }
4018                 spin_unlock_irqrestore(&xhci->lock, flags);
4019         }
4020         /* Use GFP_NOIO, since this function can be called from
4021          * xhci_discover_or_reset_device(), which may be called as part of
4022          * mass storage driver error handling.
4023          */
4024         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4025                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4026                 goto disable_slot;
4027         }
4028         vdev = xhci->devs[slot_id];
4029         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4030         trace_xhci_alloc_dev(slot_ctx);
4031
4032         udev->slot_id = slot_id;
4033
4034         xhci_debugfs_create_slot(xhci, slot_id);
4035
4036 #ifndef CONFIG_USB_DEFAULT_PERSIST
4037         /*
4038          * If resetting upon resume, we can't put the controller into runtime
4039          * suspend if there is a device attached.
4040          */
4041         if (xhci->quirks & XHCI_RESET_ON_RESUME)
4042                 pm_runtime_get_noresume(hcd->self.controller);
4043 #endif
4044
4045         /* Is this a LS or FS device under a HS hub? */
4046         /* Hub or peripherial? */
4047         return 1;
4048
4049 disable_slot:
4050         ret = xhci_disable_slot(xhci, udev->slot_id);
4051         if (ret)
4052                 xhci_free_virt_device(xhci, udev->slot_id);
4053
4054         return 0;
4055 }
4056
4057 /*
4058  * Issue an Address Device command and optionally send a corresponding
4059  * SetAddress request to the device.
4060  */
4061 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4062                              enum xhci_setup_dev setup)
4063 {
4064         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4065         unsigned long flags;
4066         struct xhci_virt_device *virt_dev;
4067         int ret = 0;
4068         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4069         struct xhci_slot_ctx *slot_ctx;
4070         struct xhci_input_control_ctx *ctrl_ctx;
4071         u64 temp_64;
4072         struct xhci_command *command = NULL;
4073
4074         mutex_lock(&xhci->mutex);
4075
4076         if (xhci->xhc_state) {  /* dying, removing or halted */
4077                 ret = -ESHUTDOWN;
4078                 goto out;
4079         }
4080
4081         if (!udev->slot_id) {
4082                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4083                                 "Bad Slot ID %d", udev->slot_id);
4084                 ret = -EINVAL;
4085                 goto out;
4086         }
4087
4088         virt_dev = xhci->devs[udev->slot_id];
4089
4090         if (WARN_ON(!virt_dev)) {
4091                 /*
4092                  * In plug/unplug torture test with an NEC controller,
4093                  * a zero-dereference was observed once due to virt_dev = 0.
4094                  * Print useful debug rather than crash if it is observed again!
4095                  */
4096                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4097                         udev->slot_id);
4098                 ret = -EINVAL;
4099                 goto out;
4100         }
4101         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4102         trace_xhci_setup_device_slot(slot_ctx);
4103
4104         if (setup == SETUP_CONTEXT_ONLY) {
4105                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4106                     SLOT_STATE_DEFAULT) {
4107                         xhci_dbg(xhci, "Slot already in default state\n");
4108                         goto out;
4109                 }
4110         }
4111
4112         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4113         if (!command) {
4114                 ret = -ENOMEM;
4115                 goto out;
4116         }
4117
4118         command->in_ctx = virt_dev->in_ctx;
4119
4120         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4121         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4122         if (!ctrl_ctx) {
4123                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4124                                 __func__);
4125                 ret = -EINVAL;
4126                 goto out;
4127         }
4128         /*
4129          * If this is the first Set Address since device plug-in or
4130          * virt_device realloaction after a resume with an xHCI power loss,
4131          * then set up the slot context.
4132          */
4133         if (!slot_ctx->dev_info)
4134                 xhci_setup_addressable_virt_dev(xhci, udev);
4135         /* Otherwise, update the control endpoint ring enqueue pointer. */
4136         else
4137                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4138         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4139         ctrl_ctx->drop_flags = 0;
4140
4141         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4142                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4143
4144         spin_lock_irqsave(&xhci->lock, flags);
4145         trace_xhci_setup_device(virt_dev);
4146         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4147                                         udev->slot_id, setup);
4148         if (ret) {
4149                 spin_unlock_irqrestore(&xhci->lock, flags);
4150                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4151                                 "FIXME: allocate a command ring segment");
4152                 goto out;
4153         }
4154         xhci_ring_cmd_db(xhci);
4155         spin_unlock_irqrestore(&xhci->lock, flags);
4156
4157         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4158         wait_for_completion(command->completion);
4159
4160         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4161          * the SetAddress() "recovery interval" required by USB and aborting the
4162          * command on a timeout.
4163          */
4164         switch (command->status) {
4165         case COMP_COMMAND_ABORTED:
4166         case COMP_COMMAND_RING_STOPPED:
4167                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4168                 ret = -ETIME;
4169                 break;
4170         case COMP_CONTEXT_STATE_ERROR:
4171         case COMP_SLOT_NOT_ENABLED_ERROR:
4172                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4173                          act, udev->slot_id);
4174                 ret = -EINVAL;
4175                 break;
4176         case COMP_USB_TRANSACTION_ERROR:
4177                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4178
4179                 mutex_unlock(&xhci->mutex);
4180                 ret = xhci_disable_slot(xhci, udev->slot_id);
4181                 if (!ret)
4182                         xhci_alloc_dev(hcd, udev);
4183                 kfree(command->completion);
4184                 kfree(command);
4185                 return -EPROTO;
4186         case COMP_INCOMPATIBLE_DEVICE_ERROR:
4187                 dev_warn(&udev->dev,
4188                          "ERROR: Incompatible device for setup %s command\n", act);
4189                 ret = -ENODEV;
4190                 break;
4191         case COMP_SUCCESS:
4192                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4193                                "Successful setup %s command", act);
4194                 break;
4195         default:
4196                 xhci_err(xhci,
4197                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
4198                          act, command->status);
4199                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4200                 ret = -EINVAL;
4201                 break;
4202         }
4203         if (ret)
4204                 goto out;
4205         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4206         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4207                         "Op regs DCBAA ptr = %#016llx", temp_64);
4208         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4209                 "Slot ID %d dcbaa entry @%p = %#016llx",
4210                 udev->slot_id,
4211                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4212                 (unsigned long long)
4213                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4214         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4215                         "Output Context DMA address = %#08llx",
4216                         (unsigned long long)virt_dev->out_ctx->dma);
4217         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4218                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4219         /*
4220          * USB core uses address 1 for the roothubs, so we add one to the
4221          * address given back to us by the HC.
4222          */
4223         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4224                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4225         /* Zero the input context control for later use */
4226         ctrl_ctx->add_flags = 0;
4227         ctrl_ctx->drop_flags = 0;
4228
4229         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4230                        "Internal device address = %d",
4231                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4232 out:
4233         mutex_unlock(&xhci->mutex);
4234         if (command) {
4235                 kfree(command->completion);
4236                 kfree(command);
4237         }
4238         return ret;
4239 }
4240
4241 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4242 {
4243         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4244 }
4245
4246 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4247 {
4248         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4249 }
4250
4251 /*
4252  * Transfer the port index into real index in the HW port status
4253  * registers. Caculate offset between the port's PORTSC register
4254  * and port status base. Divide the number of per port register
4255  * to get the real index. The raw port number bases 1.
4256  */
4257 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4258 {
4259         struct xhci_hub *rhub;
4260
4261         rhub = xhci_get_rhub(hcd);
4262         return rhub->ports[port1 - 1]->hw_portnum + 1;
4263 }
4264
4265 /*
4266  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4267  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4268  */
4269 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4270                         struct usb_device *udev, u16 max_exit_latency)
4271 {
4272         struct xhci_virt_device *virt_dev;
4273         struct xhci_command *command;
4274         struct xhci_input_control_ctx *ctrl_ctx;
4275         struct xhci_slot_ctx *slot_ctx;
4276         unsigned long flags;
4277         int ret;
4278
4279         spin_lock_irqsave(&xhci->lock, flags);
4280
4281         virt_dev = xhci->devs[udev->slot_id];
4282
4283         /*
4284          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4285          * xHC was re-initialized. Exit latency will be set later after
4286          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4287          */
4288
4289         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4290                 spin_unlock_irqrestore(&xhci->lock, flags);
4291                 return 0;
4292         }
4293
4294         /* Attempt to issue an Evaluate Context command to change the MEL. */
4295         command = xhci->lpm_command;
4296         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4297         if (!ctrl_ctx) {
4298                 spin_unlock_irqrestore(&xhci->lock, flags);
4299                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4300                                 __func__);
4301                 return -ENOMEM;
4302         }
4303
4304         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4305         spin_unlock_irqrestore(&xhci->lock, flags);
4306
4307         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4308         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4309         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4310         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4311         slot_ctx->dev_state = 0;
4312
4313         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4314                         "Set up evaluate context for LPM MEL change.");
4315
4316         /* Issue and wait for the evaluate context command. */
4317         ret = xhci_configure_endpoint(xhci, udev, command,
4318                         true, true);
4319
4320         if (!ret) {
4321                 spin_lock_irqsave(&xhci->lock, flags);
4322                 virt_dev->current_mel = max_exit_latency;
4323                 spin_unlock_irqrestore(&xhci->lock, flags);
4324         }
4325         return ret;
4326 }
4327
4328 #ifdef CONFIG_PM
4329
4330 /* BESL to HIRD Encoding array for USB2 LPM */
4331 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4332         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4333
4334 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4335 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4336                                         struct usb_device *udev)
4337 {
4338         int u2del, besl, besl_host;
4339         int besl_device = 0;
4340         u32 field;
4341
4342         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4343         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4344
4345         if (field & USB_BESL_SUPPORT) {
4346                 for (besl_host = 0; besl_host < 16; besl_host++) {
4347                         if (xhci_besl_encoding[besl_host] >= u2del)
4348                                 break;
4349                 }
4350                 /* Use baseline BESL value as default */
4351                 if (field & USB_BESL_BASELINE_VALID)
4352                         besl_device = USB_GET_BESL_BASELINE(field);
4353                 else if (field & USB_BESL_DEEP_VALID)
4354                         besl_device = USB_GET_BESL_DEEP(field);
4355         } else {
4356                 if (u2del <= 50)
4357                         besl_host = 0;
4358                 else
4359                         besl_host = (u2del - 51) / 75 + 1;
4360         }
4361
4362         besl = besl_host + besl_device;
4363         if (besl > 15)
4364                 besl = 15;
4365
4366         return besl;
4367 }
4368
4369 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4370 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4371 {
4372         u32 field;
4373         int l1;
4374         int besld = 0;
4375         int hirdm = 0;
4376
4377         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4378
4379         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4380         l1 = udev->l1_params.timeout / 256;
4381
4382         /* device has preferred BESLD */
4383         if (field & USB_BESL_DEEP_VALID) {
4384                 besld = USB_GET_BESL_DEEP(field);
4385                 hirdm = 1;
4386         }
4387
4388         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4389 }
4390
4391 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4392                         struct usb_device *udev, int enable)
4393 {
4394         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4395         struct xhci_port **ports;
4396         __le32 __iomem  *pm_addr, *hlpm_addr;
4397         u32             pm_val, hlpm_val, field;
4398         unsigned int    port_num;
4399         unsigned long   flags;
4400         int             hird, exit_latency;
4401         int             ret;
4402
4403         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4404                         !udev->lpm_capable)
4405                 return -EPERM;
4406
4407         if (!udev->parent || udev->parent->parent ||
4408                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4409                 return -EPERM;
4410
4411         if (udev->usb2_hw_lpm_capable != 1)
4412                 return -EPERM;
4413
4414         spin_lock_irqsave(&xhci->lock, flags);
4415
4416         ports = xhci->usb2_rhub.ports;
4417         port_num = udev->portnum - 1;
4418         pm_addr = ports[port_num]->addr + PORTPMSC;
4419         pm_val = readl(pm_addr);
4420         hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4421
4422         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4423                         enable ? "enable" : "disable", port_num + 1);
4424
4425         if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4426                 /* Host supports BESL timeout instead of HIRD */
4427                 if (udev->usb2_hw_lpm_besl_capable) {
4428                         /* if device doesn't have a preferred BESL value use a
4429                          * default one which works with mixed HIRD and BESL
4430                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4431                          */
4432                         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4433                         if ((field & USB_BESL_SUPPORT) &&
4434                             (field & USB_BESL_BASELINE_VALID))
4435                                 hird = USB_GET_BESL_BASELINE(field);
4436                         else
4437                                 hird = udev->l1_params.besl;
4438
4439                         exit_latency = xhci_besl_encoding[hird];
4440                         spin_unlock_irqrestore(&xhci->lock, flags);
4441
4442                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4443                          * input context for link powermanagement evaluate
4444                          * context commands. It is protected by hcd->bandwidth
4445                          * mutex and is shared by all devices. We need to set
4446                          * the max ext latency in USB 2 BESL LPM as well, so
4447                          * use the same mutex and xhci_change_max_exit_latency()
4448                          */
4449                         mutex_lock(hcd->bandwidth_mutex);
4450                         ret = xhci_change_max_exit_latency(xhci, udev,
4451                                                            exit_latency);
4452                         mutex_unlock(hcd->bandwidth_mutex);
4453
4454                         if (ret < 0)
4455                                 return ret;
4456                         spin_lock_irqsave(&xhci->lock, flags);
4457
4458                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4459                         writel(hlpm_val, hlpm_addr);
4460                         /* flush write */
4461                         readl(hlpm_addr);
4462                 } else {
4463                         hird = xhci_calculate_hird_besl(xhci, udev);
4464                 }
4465
4466                 pm_val &= ~PORT_HIRD_MASK;
4467                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4468                 writel(pm_val, pm_addr);
4469                 pm_val = readl(pm_addr);
4470                 pm_val |= PORT_HLE;
4471                 writel(pm_val, pm_addr);
4472                 /* flush write */
4473                 readl(pm_addr);
4474         } else {
4475                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4476                 writel(pm_val, pm_addr);
4477                 /* flush write */
4478                 readl(pm_addr);
4479                 if (udev->usb2_hw_lpm_besl_capable) {
4480                         spin_unlock_irqrestore(&xhci->lock, flags);
4481                         mutex_lock(hcd->bandwidth_mutex);
4482                         xhci_change_max_exit_latency(xhci, udev, 0);
4483                         mutex_unlock(hcd->bandwidth_mutex);
4484                         return 0;
4485                 }
4486         }
4487
4488         spin_unlock_irqrestore(&xhci->lock, flags);
4489         return 0;
4490 }
4491
4492 /* check if a usb2 port supports a given extened capability protocol
4493  * only USB2 ports extended protocol capability values are cached.
4494  * Return 1 if capability is supported
4495  */
4496 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4497                                            unsigned capability)
4498 {
4499         u32 port_offset, port_count;
4500         int i;
4501
4502         for (i = 0; i < xhci->num_ext_caps; i++) {
4503                 if (xhci->ext_caps[i] & capability) {
4504                         /* port offsets starts at 1 */
4505                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4506                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4507                         if (port >= port_offset &&
4508                             port < port_offset + port_count)
4509                                 return 1;
4510                 }
4511         }
4512         return 0;
4513 }
4514
4515 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4516 {
4517         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4518         int             portnum = udev->portnum - 1;
4519
4520         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4521                         !udev->lpm_capable)
4522                 return 0;
4523
4524         /* we only support lpm for non-hub device connected to root hub yet */
4525         if (!udev->parent || udev->parent->parent ||
4526                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4527                 return 0;
4528
4529         if (xhci->hw_lpm_support == 1 &&
4530                         xhci_check_usb2_port_capability(
4531                                 xhci, portnum, XHCI_HLC)) {
4532                 udev->usb2_hw_lpm_capable = 1;
4533                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4534                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4535                 if (xhci_check_usb2_port_capability(xhci, portnum,
4536                                         XHCI_BLC))
4537                         udev->usb2_hw_lpm_besl_capable = 1;
4538         }
4539
4540         return 0;
4541 }
4542
4543 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4544
4545 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4546 static unsigned long long xhci_service_interval_to_ns(
4547                 struct usb_endpoint_descriptor *desc)
4548 {
4549         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4550 }
4551
4552 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4553                 enum usb3_link_state state)
4554 {
4555         unsigned long long sel;
4556         unsigned long long pel;
4557         unsigned int max_sel_pel;
4558         char *state_name;
4559
4560         switch (state) {
4561         case USB3_LPM_U1:
4562                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4563                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4564                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4565                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4566                 state_name = "U1";
4567                 break;
4568         case USB3_LPM_U2:
4569                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4570                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4571                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4572                 state_name = "U2";
4573                 break;
4574         default:
4575                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4576                                 __func__);
4577                 return USB3_LPM_DISABLED;
4578         }
4579
4580         if (sel <= max_sel_pel && pel <= max_sel_pel)
4581                 return USB3_LPM_DEVICE_INITIATED;
4582
4583         if (sel > max_sel_pel)
4584                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4585                                 "due to long SEL %llu ms\n",
4586                                 state_name, sel);
4587         else
4588                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4589                                 "due to long PEL %llu ms\n",
4590                                 state_name, pel);
4591         return USB3_LPM_DISABLED;
4592 }
4593
4594 /* The U1 timeout should be the maximum of the following values:
4595  *  - For control endpoints, U1 system exit latency (SEL) * 3
4596  *  - For bulk endpoints, U1 SEL * 5
4597  *  - For interrupt endpoints:
4598  *    - Notification EPs, U1 SEL * 3
4599  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4600  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4601  */
4602 static unsigned long long xhci_calculate_intel_u1_timeout(
4603                 struct usb_device *udev,
4604                 struct usb_endpoint_descriptor *desc)
4605 {
4606         unsigned long long timeout_ns;
4607         int ep_type;
4608         int intr_type;
4609
4610         ep_type = usb_endpoint_type(desc);
4611         switch (ep_type) {
4612         case USB_ENDPOINT_XFER_CONTROL:
4613                 timeout_ns = udev->u1_params.sel * 3;
4614                 break;
4615         case USB_ENDPOINT_XFER_BULK:
4616                 timeout_ns = udev->u1_params.sel * 5;
4617                 break;
4618         case USB_ENDPOINT_XFER_INT:
4619                 intr_type = usb_endpoint_interrupt_type(desc);
4620                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4621                         timeout_ns = udev->u1_params.sel * 3;
4622                         break;
4623                 }
4624                 /* Otherwise the calculation is the same as isoc eps */
4625                 /* fall through */
4626         case USB_ENDPOINT_XFER_ISOC:
4627                 timeout_ns = xhci_service_interval_to_ns(desc);
4628                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4629                 if (timeout_ns < udev->u1_params.sel * 2)
4630                         timeout_ns = udev->u1_params.sel * 2;
4631                 break;
4632         default:
4633                 return 0;
4634         }
4635
4636         return timeout_ns;
4637 }
4638
4639 /* Returns the hub-encoded U1 timeout value. */
4640 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4641                 struct usb_device *udev,
4642                 struct usb_endpoint_descriptor *desc)
4643 {
4644         unsigned long long timeout_ns;
4645
4646         /* Prevent U1 if service interval is shorter than U1 exit latency */
4647         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4648                 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4649                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4650                         return USB3_LPM_DISABLED;
4651                 }
4652         }
4653
4654         if (xhci->quirks & XHCI_INTEL_HOST)
4655                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4656         else
4657                 timeout_ns = udev->u1_params.sel;
4658
4659         /* The U1 timeout is encoded in 1us intervals.
4660          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4661          */
4662         if (timeout_ns == USB3_LPM_DISABLED)
4663                 timeout_ns = 1;
4664         else
4665                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4666
4667         /* If the necessary timeout value is bigger than what we can set in the
4668          * USB 3.0 hub, we have to disable hub-initiated U1.
4669          */
4670         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4671                 return timeout_ns;
4672         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4673                         "due to long timeout %llu ms\n", timeout_ns);
4674         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4675 }
4676
4677 /* The U2 timeout should be the maximum of:
4678  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4679  *  - largest bInterval of any active periodic endpoint (to avoid going
4680  *    into lower power link states between intervals).
4681  *  - the U2 Exit Latency of the device
4682  */
4683 static unsigned long long xhci_calculate_intel_u2_timeout(
4684                 struct usb_device *udev,
4685                 struct usb_endpoint_descriptor *desc)
4686 {
4687         unsigned long long timeout_ns;
4688         unsigned long long u2_del_ns;
4689
4690         timeout_ns = 10 * 1000 * 1000;
4691
4692         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4693                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4694                 timeout_ns = xhci_service_interval_to_ns(desc);
4695
4696         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4697         if (u2_del_ns > timeout_ns)
4698                 timeout_ns = u2_del_ns;
4699
4700         return timeout_ns;
4701 }
4702
4703 /* Returns the hub-encoded U2 timeout value. */
4704 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4705                 struct usb_device *udev,
4706                 struct usb_endpoint_descriptor *desc)
4707 {
4708         unsigned long long timeout_ns;
4709
4710         /* Prevent U2 if service interval is shorter than U2 exit latency */
4711         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4712                 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4713                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4714                         return USB3_LPM_DISABLED;
4715                 }
4716         }
4717
4718         if (xhci->quirks & XHCI_INTEL_HOST)
4719                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4720         else
4721                 timeout_ns = udev->u2_params.sel;
4722
4723         /* The U2 timeout is encoded in 256us intervals */
4724         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4725         /* If the necessary timeout value is bigger than what we can set in the
4726          * USB 3.0 hub, we have to disable hub-initiated U2.
4727          */
4728         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4729                 return timeout_ns;
4730         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4731                         "due to long timeout %llu ms\n", timeout_ns);
4732         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4733 }
4734
4735 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4736                 struct usb_device *udev,
4737                 struct usb_endpoint_descriptor *desc,
4738                 enum usb3_link_state state,
4739                 u16 *timeout)
4740 {
4741         if (state == USB3_LPM_U1)
4742                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4743         else if (state == USB3_LPM_U2)
4744                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4745
4746         return USB3_LPM_DISABLED;
4747 }
4748
4749 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4750                 struct usb_device *udev,
4751                 struct usb_endpoint_descriptor *desc,
4752                 enum usb3_link_state state,
4753                 u16 *timeout)
4754 {
4755         u16 alt_timeout;
4756
4757         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4758                 desc, state, timeout);
4759
4760         /* If we found we can't enable hub-initiated LPM, and
4761          * the U1 or U2 exit latency was too high to allow
4762          * device-initiated LPM as well, then we will disable LPM
4763          * for this device, so stop searching any further.
4764          */
4765         if (alt_timeout == USB3_LPM_DISABLED) {
4766                 *timeout = alt_timeout;
4767                 return -E2BIG;
4768         }
4769         if (alt_timeout > *timeout)
4770                 *timeout = alt_timeout;
4771         return 0;
4772 }
4773
4774 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4775                 struct usb_device *udev,
4776                 struct usb_host_interface *alt,
4777                 enum usb3_link_state state,
4778                 u16 *timeout)
4779 {
4780         int j;
4781
4782         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4783                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4784                                         &alt->endpoint[j].desc, state, timeout))
4785                         return -E2BIG;
4786                 continue;
4787         }
4788         return 0;
4789 }
4790
4791 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4792                 enum usb3_link_state state)
4793 {
4794         struct usb_device *parent;
4795         unsigned int num_hubs;
4796
4797         if (state == USB3_LPM_U2)
4798                 return 0;
4799
4800         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4801         for (parent = udev->parent, num_hubs = 0; parent->parent;
4802                         parent = parent->parent)
4803                 num_hubs++;
4804
4805         if (num_hubs < 2)
4806                 return 0;
4807
4808         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4809                         " below second-tier hub.\n");
4810         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4811                         "to decrease power consumption.\n");
4812         return -E2BIG;
4813 }
4814
4815 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4816                 struct usb_device *udev,
4817                 enum usb3_link_state state)
4818 {
4819         if (xhci->quirks & XHCI_INTEL_HOST)
4820                 return xhci_check_intel_tier_policy(udev, state);
4821         else
4822                 return 0;
4823 }
4824
4825 /* Returns the U1 or U2 timeout that should be enabled.
4826  * If the tier check or timeout setting functions return with a non-zero exit
4827  * code, that means the timeout value has been finalized and we shouldn't look
4828  * at any more endpoints.
4829  */
4830 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4831                         struct usb_device *udev, enum usb3_link_state state)
4832 {
4833         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4834         struct usb_host_config *config;
4835         char *state_name;
4836         int i;
4837         u16 timeout = USB3_LPM_DISABLED;
4838
4839         if (state == USB3_LPM_U1)
4840                 state_name = "U1";
4841         else if (state == USB3_LPM_U2)
4842                 state_name = "U2";
4843         else {
4844                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4845                                 state);
4846                 return timeout;
4847         }
4848
4849         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4850                 return timeout;
4851
4852         /* Gather some information about the currently installed configuration
4853          * and alternate interface settings.
4854          */
4855         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4856                         state, &timeout))
4857                 return timeout;
4858
4859         config = udev->actconfig;
4860         if (!config)
4861                 return timeout;
4862
4863         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4864                 struct usb_driver *driver;
4865                 struct usb_interface *intf = config->interface[i];
4866
4867                 if (!intf)
4868                         continue;
4869
4870                 /* Check if any currently bound drivers want hub-initiated LPM
4871                  * disabled.
4872                  */
4873                 if (intf->dev.driver) {
4874                         driver = to_usb_driver(intf->dev.driver);
4875                         if (driver && driver->disable_hub_initiated_lpm) {
4876                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4877                                         state_name, driver->name);
4878                                 timeout = xhci_get_timeout_no_hub_lpm(udev,
4879                                                                       state);
4880                                 if (timeout == USB3_LPM_DISABLED)
4881                                         return timeout;
4882                         }
4883                 }
4884
4885                 /* Not sure how this could happen... */
4886                 if (!intf->cur_altsetting)
4887                         continue;
4888
4889                 if (xhci_update_timeout_for_interface(xhci, udev,
4890                                         intf->cur_altsetting,
4891                                         state, &timeout))
4892                         return timeout;
4893         }
4894         return timeout;
4895 }
4896
4897 static int calculate_max_exit_latency(struct usb_device *udev,
4898                 enum usb3_link_state state_changed,
4899                 u16 hub_encoded_timeout)
4900 {
4901         unsigned long long u1_mel_us = 0;
4902         unsigned long long u2_mel_us = 0;
4903         unsigned long long mel_us = 0;
4904         bool disabling_u1;
4905         bool disabling_u2;
4906         bool enabling_u1;
4907         bool enabling_u2;
4908
4909         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4910                         hub_encoded_timeout == USB3_LPM_DISABLED);
4911         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4912                         hub_encoded_timeout == USB3_LPM_DISABLED);
4913
4914         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4915                         hub_encoded_timeout != USB3_LPM_DISABLED);
4916         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4917                         hub_encoded_timeout != USB3_LPM_DISABLED);
4918
4919         /* If U1 was already enabled and we're not disabling it,
4920          * or we're going to enable U1, account for the U1 max exit latency.
4921          */
4922         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4923                         enabling_u1)
4924                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4925         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4926                         enabling_u2)
4927                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4928
4929         if (u1_mel_us > u2_mel_us)
4930                 mel_us = u1_mel_us;
4931         else
4932                 mel_us = u2_mel_us;
4933         /* xHCI host controller max exit latency field is only 16 bits wide. */
4934         if (mel_us > MAX_EXIT) {
4935                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4936                                 "is too big.\n", mel_us);
4937                 return -E2BIG;
4938         }
4939         return mel_us;
4940 }
4941
4942 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4943 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4944                         struct usb_device *udev, enum usb3_link_state state)
4945 {
4946         struct xhci_hcd *xhci;
4947         u16 hub_encoded_timeout;
4948         int mel;
4949         int ret;
4950
4951         xhci = hcd_to_xhci(hcd);
4952         /* The LPM timeout values are pretty host-controller specific, so don't
4953          * enable hub-initiated timeouts unless the vendor has provided
4954          * information about their timeout algorithm.
4955          */
4956         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4957                         !xhci->devs[udev->slot_id])
4958                 return USB3_LPM_DISABLED;
4959
4960         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4961         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4962         if (mel < 0) {
4963                 /* Max Exit Latency is too big, disable LPM. */
4964                 hub_encoded_timeout = USB3_LPM_DISABLED;
4965                 mel = 0;
4966         }
4967
4968         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4969         if (ret)
4970                 return ret;
4971         return hub_encoded_timeout;
4972 }
4973
4974 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4975                         struct usb_device *udev, enum usb3_link_state state)
4976 {
4977         struct xhci_hcd *xhci;
4978         u16 mel;
4979
4980         xhci = hcd_to_xhci(hcd);
4981         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4982                         !xhci->devs[udev->slot_id])
4983                 return 0;
4984
4985         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4986         return xhci_change_max_exit_latency(xhci, udev, mel);
4987 }
4988 #else /* CONFIG_PM */
4989
4990 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4991                                 struct usb_device *udev, int enable)
4992 {
4993         return 0;
4994 }
4995
4996 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4997 {
4998         return 0;
4999 }
5000
5001 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5002                         struct usb_device *udev, enum usb3_link_state state)
5003 {
5004         return USB3_LPM_DISABLED;
5005 }
5006
5007 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5008                         struct usb_device *udev, enum usb3_link_state state)
5009 {
5010         return 0;
5011 }
5012 #endif  /* CONFIG_PM */
5013
5014 /*-------------------------------------------------------------------------*/
5015
5016 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5017  * internal data structures for the device.
5018  */
5019 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5020                         struct usb_tt *tt, gfp_t mem_flags)
5021 {
5022         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5023         struct xhci_virt_device *vdev;
5024         struct xhci_command *config_cmd;
5025         struct xhci_input_control_ctx *ctrl_ctx;
5026         struct xhci_slot_ctx *slot_ctx;
5027         unsigned long flags;
5028         unsigned think_time;
5029         int ret;
5030
5031         /* Ignore root hubs */
5032         if (!hdev->parent)
5033                 return 0;
5034
5035         vdev = xhci->devs[hdev->slot_id];
5036         if (!vdev) {
5037                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5038                 return -EINVAL;
5039         }
5040
5041         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5042         if (!config_cmd)
5043                 return -ENOMEM;
5044
5045         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5046         if (!ctrl_ctx) {
5047                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5048                                 __func__);
5049                 xhci_free_command(xhci, config_cmd);
5050                 return -ENOMEM;
5051         }
5052
5053         spin_lock_irqsave(&xhci->lock, flags);
5054         if (hdev->speed == USB_SPEED_HIGH &&
5055                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5056                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5057                 xhci_free_command(xhci, config_cmd);
5058                 spin_unlock_irqrestore(&xhci->lock, flags);
5059                 return -ENOMEM;
5060         }
5061
5062         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5063         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5064         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5065         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5066         /*
5067          * refer to section 6.2.2: MTT should be 0 for full speed hub,
5068          * but it may be already set to 1 when setup an xHCI virtual
5069          * device, so clear it anyway.
5070          */
5071         if (tt->multi)
5072                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5073         else if (hdev->speed == USB_SPEED_FULL)
5074                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5075
5076         if (xhci->hci_version > 0x95) {
5077                 xhci_dbg(xhci, "xHCI version %x needs hub "
5078                                 "TT think time and number of ports\n",
5079                                 (unsigned int) xhci->hci_version);
5080                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5081                 /* Set TT think time - convert from ns to FS bit times.
5082                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
5083                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
5084                  *
5085                  * xHCI 1.0: this field shall be 0 if the device is not a
5086                  * High-spped hub.
5087                  */
5088                 think_time = tt->think_time;
5089                 if (think_time != 0)
5090                         think_time = (think_time / 666) - 1;
5091                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5092                         slot_ctx->tt_info |=
5093                                 cpu_to_le32(TT_THINK_TIME(think_time));
5094         } else {
5095                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5096                                 "TT think time or number of ports\n",
5097                                 (unsigned int) xhci->hci_version);
5098         }
5099         slot_ctx->dev_state = 0;
5100         spin_unlock_irqrestore(&xhci->lock, flags);
5101
5102         xhci_dbg(xhci, "Set up %s for hub device.\n",
5103                         (xhci->hci_version > 0x95) ?
5104                         "configure endpoint" : "evaluate context");
5105
5106         /* Issue and wait for the configure endpoint or
5107          * evaluate context command.
5108          */
5109         if (xhci->hci_version > 0x95)
5110                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5111                                 false, false);
5112         else
5113                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5114                                 true, false);
5115
5116         xhci_free_command(xhci, config_cmd);
5117         return ret;
5118 }
5119
5120 static int xhci_get_frame(struct usb_hcd *hcd)
5121 {
5122         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5123         /* EHCI mods by the periodic size.  Why? */
5124         return readl(&xhci->run_regs->microframe_index) >> 3;
5125 }
5126
5127 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5128 {
5129         struct xhci_hcd         *xhci;
5130         /*
5131          * TODO: Check with DWC3 clients for sysdev according to
5132          * quirks
5133          */
5134         struct device           *dev = hcd->self.sysdev;
5135         unsigned int            minor_rev;
5136         int                     retval;
5137
5138         /* Accept arbitrarily long scatter-gather lists */
5139         hcd->self.sg_tablesize = ~0;
5140
5141         /* support to build packet from discontinuous buffers */
5142         hcd->self.no_sg_constraint = 1;
5143
5144         /* XHCI controllers don't stop the ep queue on short packets :| */
5145         hcd->self.no_stop_on_short = 1;
5146
5147         xhci = hcd_to_xhci(hcd);
5148
5149         if (usb_hcd_is_primary_hcd(hcd)) {
5150                 xhci->main_hcd = hcd;
5151                 xhci->usb2_rhub.hcd = hcd;
5152                 /* Mark the first roothub as being USB 2.0.
5153                  * The xHCI driver will register the USB 3.0 roothub.
5154                  */
5155                 hcd->speed = HCD_USB2;
5156                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5157                 /*
5158                  * USB 2.0 roothub under xHCI has an integrated TT,
5159                  * (rate matching hub) as opposed to having an OHCI/UHCI
5160                  * companion controller.
5161                  */
5162                 hcd->has_tt = 1;
5163         } else {
5164                 /*
5165                  * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5166                  * should return 0x31 for sbrn, or that the minor revision
5167                  * is a two digit BCD containig minor and sub-minor numbers.
5168                  * This was later clarified in xHCI 1.2.
5169                  *
5170                  * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5171                  * minor revision set to 0x1 instead of 0x10.
5172                  */
5173                 if (xhci->usb3_rhub.min_rev == 0x1)
5174                         minor_rev = 1;
5175                 else
5176                         minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5177
5178                 switch (minor_rev) {
5179                 case 2:
5180                         hcd->speed = HCD_USB32;
5181                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5182                         hcd->self.root_hub->rx_lanes = 2;
5183                         hcd->self.root_hub->tx_lanes = 2;
5184                         break;
5185                 case 1:
5186                         hcd->speed = HCD_USB31;
5187                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5188                         break;
5189                 }
5190                 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5191                           minor_rev,
5192                           minor_rev ? "Enhanced " : "");
5193
5194                 xhci->usb3_rhub.hcd = hcd;
5195                 /* xHCI private pointer was set in xhci_pci_probe for the second
5196                  * registered roothub.
5197                  */
5198                 return 0;
5199         }
5200
5201         mutex_init(&xhci->mutex);
5202         xhci->cap_regs = hcd->regs;
5203         xhci->op_regs = hcd->regs +
5204                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5205         xhci->run_regs = hcd->regs +
5206                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5207         /* Cache read-only capability registers */
5208         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5209         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5210         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5211         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5212         xhci->hci_version = HC_VERSION(xhci->hcc_params);
5213         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5214         if (xhci->hci_version > 0x100)
5215                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5216
5217         xhci->quirks |= quirks;
5218
5219         get_quirks(dev, xhci);
5220
5221         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5222          * success event after a short transfer. This quirk will ignore such
5223          * spurious event.
5224          */
5225         if (xhci->hci_version > 0x96)
5226                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5227
5228         /* Make sure the HC is halted. */
5229         retval = xhci_halt(xhci);
5230         if (retval)
5231                 return retval;
5232
5233         xhci_zero_64b_regs(xhci);
5234
5235         xhci_dbg(xhci, "Resetting HCD\n");
5236         /* Reset the internal HC memory state and registers. */
5237         retval = xhci_reset(xhci);
5238         if (retval)
5239                 return retval;
5240         xhci_dbg(xhci, "Reset complete\n");
5241
5242         /*
5243          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5244          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5245          * address memory pointers actually. So, this driver clears the AC64
5246          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5247          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5248          */
5249         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5250                 xhci->hcc_params &= ~BIT(0);
5251
5252         /* Set dma_mask and coherent_dma_mask to 64-bits,
5253          * if xHC supports 64-bit addressing */
5254         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5255                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5256                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5257                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5258         } else {
5259                 /*
5260                  * This is to avoid error in cases where a 32-bit USB
5261                  * controller is used on a 64-bit capable system.
5262                  */
5263                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5264                 if (retval)
5265                         return retval;
5266                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5267                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5268         }
5269
5270         xhci_dbg(xhci, "Calling HCD init\n");
5271         /* Initialize HCD and host controller data structures. */
5272         retval = xhci_init(hcd);
5273         if (retval)
5274                 return retval;
5275         xhci_dbg(xhci, "Called HCD init\n");
5276
5277         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5278                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5279
5280         return 0;
5281 }
5282 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5283
5284 static const struct hc_driver xhci_hc_driver = {
5285         .description =          "xhci-hcd",
5286         .product_desc =         "xHCI Host Controller",
5287         .hcd_priv_size =        sizeof(struct xhci_hcd),
5288
5289         /*
5290          * generic hardware linkage
5291          */
5292         .irq =                  xhci_irq,
5293         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
5294
5295         /*
5296          * basic lifecycle operations
5297          */
5298         .reset =                NULL, /* set in xhci_init_driver() */
5299         .start =                xhci_run,
5300         .stop =                 xhci_stop,
5301         .shutdown =             xhci_shutdown,
5302
5303         /*
5304          * managing i/o requests and associated device resources
5305          */
5306         .urb_enqueue =          xhci_urb_enqueue,
5307         .urb_dequeue =          xhci_urb_dequeue,
5308         .alloc_dev =            xhci_alloc_dev,
5309         .free_dev =             xhci_free_dev,
5310         .alloc_streams =        xhci_alloc_streams,
5311         .free_streams =         xhci_free_streams,
5312         .add_endpoint =         xhci_add_endpoint,
5313         .drop_endpoint =        xhci_drop_endpoint,
5314         .endpoint_reset =       xhci_endpoint_reset,
5315         .check_bandwidth =      xhci_check_bandwidth,
5316         .reset_bandwidth =      xhci_reset_bandwidth,
5317         .fixup_endpoint =       xhci_fixup_endpoint,
5318         .address_device =       xhci_address_device,
5319         .enable_device =        xhci_enable_device,
5320         .update_hub_device =    xhci_update_hub_device,
5321         .reset_device =         xhci_discover_or_reset_device,
5322
5323         /*
5324          * scheduling support
5325          */
5326         .get_frame_number =     xhci_get_frame,
5327
5328         /*
5329          * root hub support
5330          */
5331         .hub_control =          xhci_hub_control,
5332         .hub_status_data =      xhci_hub_status_data,
5333         .bus_suspend =          xhci_bus_suspend,
5334         .bus_resume =           xhci_bus_resume,
5335         .get_resuming_ports =   xhci_get_resuming_ports,
5336
5337         /*
5338          * call back when device connected and addressed
5339          */
5340         .update_device =        xhci_update_device,
5341         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5342         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5343         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5344         .find_raw_port_number = xhci_find_raw_port_number,
5345 };
5346
5347 void xhci_init_driver(struct hc_driver *drv,
5348                       const struct xhci_driver_overrides *over)
5349 {
5350         BUG_ON(!over);
5351
5352         /* Copy the generic table to drv then apply the overrides */
5353         *drv = xhci_hc_driver;
5354
5355         if (over) {
5356                 drv->hcd_priv_size += over->extra_priv_size;
5357                 if (over->reset)
5358                         drv->reset = over->reset;
5359                 if (over->start)
5360                         drv->start = over->start;
5361         }
5362 }
5363 EXPORT_SYMBOL_GPL(xhci_init_driver);
5364
5365 MODULE_DESCRIPTION(DRIVER_DESC);
5366 MODULE_AUTHOR(DRIVER_AUTHOR);
5367 MODULE_LICENSE("GPL");
5368
5369 static int __init xhci_hcd_init(void)
5370 {
5371         /*
5372          * Check the compiler generated sizes of structures that must be laid
5373          * out in specific ways for hardware access.
5374          */
5375         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5376         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5377         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5378         /* xhci_device_control has eight fields, and also
5379          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5380          */
5381         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5382         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5383         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5384         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5385         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5386         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5387         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5388
5389         if (usb_disabled())
5390                 return -ENODEV;
5391
5392         xhci_debugfs_create_root();
5393
5394         return 0;
5395 }
5396
5397 /*
5398  * If an init function is provided, an exit function must also be provided
5399  * to allow module unload.
5400  */
5401 static void __exit xhci_hcd_fini(void)
5402 {
5403         xhci_debugfs_remove_root();
5404 }
5405
5406 module_init(xhci_hcd_init);
5407 module_exit(xhci_hcd_fini);