xhci: Fix register save/restore order.
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29
30 #include "xhci.h"
31
32 #define DRIVER_AUTHOR "Sarah Sharp"
33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
34
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
39
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42  * handshake - spin reading hc until handshake completes or fails
43  * @ptr: address of hc register to be read
44  * @mask: bits to look at in result of read
45  * @done: value of those bits when handshake succeeds
46  * @usec: timeout in microseconds
47  *
48  * Returns negative errno, or zero on success
49  *
50  * Success happens when the "mask" bits have the specified value (hardware
51  * handshake done).  There are two failure modes:  "usec" have passed (major
52  * hardware flakeout), or the register reads as all-ones (hardware removed).
53  */
54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
55                       u32 mask, u32 done, int usec)
56 {
57         u32     result;
58
59         do {
60                 result = xhci_readl(xhci, ptr);
61                 if (result == ~(u32)0)          /* card removed */
62                         return -ENODEV;
63                 result &= mask;
64                 if (result == done)
65                         return 0;
66                 udelay(1);
67                 usec--;
68         } while (usec > 0);
69         return -ETIMEDOUT;
70 }
71
72 /*
73  * Disable interrupts and begin the xHCI halting process.
74  */
75 void xhci_quiesce(struct xhci_hcd *xhci)
76 {
77         u32 halted;
78         u32 cmd;
79         u32 mask;
80
81         mask = ~(XHCI_IRQS);
82         halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
83         if (!halted)
84                 mask &= ~CMD_RUN;
85
86         cmd = xhci_readl(xhci, &xhci->op_regs->command);
87         cmd &= mask;
88         xhci_writel(xhci, cmd, &xhci->op_regs->command);
89 }
90
91 /*
92  * Force HC into halt state.
93  *
94  * Disable any IRQs and clear the run/stop bit.
95  * HC will complete any current and actively pipelined transactions, and
96  * should halt within 16 ms of the run/stop bit being cleared.
97  * Read HC Halted bit in the status register to see when the HC is finished.
98  */
99 int xhci_halt(struct xhci_hcd *xhci)
100 {
101         int ret;
102         xhci_dbg(xhci, "// Halt the HC\n");
103         xhci_quiesce(xhci);
104
105         ret = handshake(xhci, &xhci->op_regs->status,
106                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
107         if (!ret)
108                 xhci->xhc_state |= XHCI_STATE_HALTED;
109         else
110                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
111                                 XHCI_MAX_HALT_USEC);
112         return ret;
113 }
114
115 /*
116  * Set the run bit and wait for the host to be running.
117  */
118 static int xhci_start(struct xhci_hcd *xhci)
119 {
120         u32 temp;
121         int ret;
122
123         temp = xhci_readl(xhci, &xhci->op_regs->command);
124         temp |= (CMD_RUN);
125         xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
126                         temp);
127         xhci_writel(xhci, temp, &xhci->op_regs->command);
128
129         /*
130          * Wait for the HCHalted Status bit to be 0 to indicate the host is
131          * running.
132          */
133         ret = handshake(xhci, &xhci->op_regs->status,
134                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
135         if (ret == -ETIMEDOUT)
136                 xhci_err(xhci, "Host took too long to start, "
137                                 "waited %u microseconds.\n",
138                                 XHCI_MAX_HALT_USEC);
139         if (!ret)
140                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
141         return ret;
142 }
143
144 /*
145  * Reset a halted HC.
146  *
147  * This resets pipelines, timers, counters, state machines, etc.
148  * Transactions will be terminated immediately, and operational registers
149  * will be set to their defaults.
150  */
151 int xhci_reset(struct xhci_hcd *xhci)
152 {
153         u32 command;
154         u32 state;
155         int ret;
156
157         state = xhci_readl(xhci, &xhci->op_regs->status);
158         if ((state & STS_HALT) == 0) {
159                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
160                 return 0;
161         }
162
163         xhci_dbg(xhci, "// Reset the HC\n");
164         command = xhci_readl(xhci, &xhci->op_regs->command);
165         command |= CMD_RESET;
166         xhci_writel(xhci, command, &xhci->op_regs->command);
167
168         ret = handshake(xhci, &xhci->op_regs->command,
169                         CMD_RESET, 0, 250 * 1000);
170         if (ret)
171                 return ret;
172
173         xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
174         /*
175          * xHCI cannot write to any doorbells or operational registers other
176          * than status until the "Controller Not Ready" flag is cleared.
177          */
178         return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000);
179 }
180
181 #ifdef CONFIG_PCI
182 static int xhci_free_msi(struct xhci_hcd *xhci)
183 {
184         int i;
185
186         if (!xhci->msix_entries)
187                 return -EINVAL;
188
189         for (i = 0; i < xhci->msix_count; i++)
190                 if (xhci->msix_entries[i].vector)
191                         free_irq(xhci->msix_entries[i].vector,
192                                         xhci_to_hcd(xhci));
193         return 0;
194 }
195
196 /*
197  * Set up MSI
198  */
199 static int xhci_setup_msi(struct xhci_hcd *xhci)
200 {
201         int ret;
202         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
203
204         ret = pci_enable_msi(pdev);
205         if (ret) {
206                 xhci_dbg(xhci, "failed to allocate MSI entry\n");
207                 return ret;
208         }
209
210         ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
211                                 0, "xhci_hcd", xhci_to_hcd(xhci));
212         if (ret) {
213                 xhci_dbg(xhci, "disable MSI interrupt\n");
214                 pci_disable_msi(pdev);
215         }
216
217         return ret;
218 }
219
220 /*
221  * Free IRQs
222  * free all IRQs request
223  */
224 static void xhci_free_irq(struct xhci_hcd *xhci)
225 {
226         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
227         int ret;
228
229         /* return if using legacy interrupt */
230         if (xhci_to_hcd(xhci)->irq > 0)
231                 return;
232
233         ret = xhci_free_msi(xhci);
234         if (!ret)
235                 return;
236         if (pdev->irq > 0)
237                 free_irq(pdev->irq, xhci_to_hcd(xhci));
238
239         return;
240 }
241
242 /*
243  * Set up MSI-X
244  */
245 static int xhci_setup_msix(struct xhci_hcd *xhci)
246 {
247         int i, ret = 0;
248         struct usb_hcd *hcd = xhci_to_hcd(xhci);
249         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
250
251         /*
252          * calculate number of msi-x vectors supported.
253          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
254          *   with max number of interrupters based on the xhci HCSPARAMS1.
255          * - num_online_cpus: maximum msi-x vectors per CPUs core.
256          *   Add additional 1 vector to ensure always available interrupt.
257          */
258         xhci->msix_count = min(num_online_cpus() + 1,
259                                 HCS_MAX_INTRS(xhci->hcs_params1));
260
261         xhci->msix_entries =
262                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
263                                 GFP_KERNEL);
264         if (!xhci->msix_entries) {
265                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
266                 return -ENOMEM;
267         }
268
269         for (i = 0; i < xhci->msix_count; i++) {
270                 xhci->msix_entries[i].entry = i;
271                 xhci->msix_entries[i].vector = 0;
272         }
273
274         ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
275         if (ret) {
276                 xhci_dbg(xhci, "Failed to enable MSI-X\n");
277                 goto free_entries;
278         }
279
280         for (i = 0; i < xhci->msix_count; i++) {
281                 ret = request_irq(xhci->msix_entries[i].vector,
282                                 (irq_handler_t)xhci_msi_irq,
283                                 0, "xhci_hcd", xhci_to_hcd(xhci));
284                 if (ret)
285                         goto disable_msix;
286         }
287
288         hcd->msix_enabled = 1;
289         return ret;
290
291 disable_msix:
292         xhci_dbg(xhci, "disable MSI-X interrupt\n");
293         xhci_free_irq(xhci);
294         pci_disable_msix(pdev);
295 free_entries:
296         kfree(xhci->msix_entries);
297         xhci->msix_entries = NULL;
298         return ret;
299 }
300
301 /* Free any IRQs and disable MSI-X */
302 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
303 {
304         struct usb_hcd *hcd = xhci_to_hcd(xhci);
305         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
306
307         xhci_free_irq(xhci);
308
309         if (xhci->msix_entries) {
310                 pci_disable_msix(pdev);
311                 kfree(xhci->msix_entries);
312                 xhci->msix_entries = NULL;
313         } else {
314                 pci_disable_msi(pdev);
315         }
316
317         hcd->msix_enabled = 0;
318         return;
319 }
320
321 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
322 {
323         int i;
324
325         if (xhci->msix_entries) {
326                 for (i = 0; i < xhci->msix_count; i++)
327                         synchronize_irq(xhci->msix_entries[i].vector);
328         }
329 }
330
331 static int xhci_try_enable_msi(struct usb_hcd *hcd)
332 {
333         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
334         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
335         int ret;
336
337         /*
338          * Some Fresco Logic host controllers advertise MSI, but fail to
339          * generate interrupts.  Don't even try to enable MSI.
340          */
341         if (xhci->quirks & XHCI_BROKEN_MSI)
342                 return 0;
343
344         /* unregister the legacy interrupt */
345         if (hcd->irq)
346                 free_irq(hcd->irq, hcd);
347         hcd->irq = 0;
348
349         ret = xhci_setup_msix(xhci);
350         if (ret)
351                 /* fall back to msi*/
352                 ret = xhci_setup_msi(xhci);
353
354         if (!ret)
355                 /* hcd->irq is 0, we have MSI */
356                 return 0;
357
358         if (!pdev->irq) {
359                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
360                 return -EINVAL;
361         }
362
363         /* fall back to legacy interrupt*/
364         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
365                         hcd->irq_descr, hcd);
366         if (ret) {
367                 xhci_err(xhci, "request interrupt %d failed\n",
368                                 pdev->irq);
369                 return ret;
370         }
371         hcd->irq = pdev->irq;
372         return 0;
373 }
374
375 #else
376
377 static int xhci_try_enable_msi(struct usb_hcd *hcd)
378 {
379         return 0;
380 }
381
382 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
383 {
384 }
385
386 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
387 {
388 }
389
390 #endif
391
392 /*
393  * Initialize memory for HCD and xHC (one-time init).
394  *
395  * Program the PAGESIZE register, initialize the device context array, create
396  * device contexts (?), set up a command ring segment (or two?), create event
397  * ring (one for now).
398  */
399 int xhci_init(struct usb_hcd *hcd)
400 {
401         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
402         int retval = 0;
403
404         xhci_dbg(xhci, "xhci_init\n");
405         spin_lock_init(&xhci->lock);
406         if (xhci->hci_version == 0x95 && link_quirk) {
407                 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
408                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
409         } else {
410                 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
411         }
412         retval = xhci_mem_init(xhci, GFP_KERNEL);
413         xhci_dbg(xhci, "Finished xhci_init\n");
414
415         return retval;
416 }
417
418 /*-------------------------------------------------------------------------*/
419
420
421 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
422 static void xhci_event_ring_work(unsigned long arg)
423 {
424         unsigned long flags;
425         int temp;
426         u64 temp_64;
427         struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
428         int i, j;
429
430         xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
431
432         spin_lock_irqsave(&xhci->lock, flags);
433         temp = xhci_readl(xhci, &xhci->op_regs->status);
434         xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
435         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
436                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
437                 xhci_dbg(xhci, "HW died, polling stopped.\n");
438                 spin_unlock_irqrestore(&xhci->lock, flags);
439                 return;
440         }
441
442         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
443         xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
444         xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
445         xhci->error_bitmask = 0;
446         xhci_dbg(xhci, "Event ring:\n");
447         xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
448         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
449         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
450         temp_64 &= ~ERST_PTR_MASK;
451         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
452         xhci_dbg(xhci, "Command ring:\n");
453         xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
454         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
455         xhci_dbg_cmd_ptrs(xhci);
456         for (i = 0; i < MAX_HC_SLOTS; ++i) {
457                 if (!xhci->devs[i])
458                         continue;
459                 for (j = 0; j < 31; ++j) {
460                         xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
461                 }
462         }
463         spin_unlock_irqrestore(&xhci->lock, flags);
464
465         if (!xhci->zombie)
466                 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
467         else
468                 xhci_dbg(xhci, "Quit polling the event ring.\n");
469 }
470 #endif
471
472 static int xhci_run_finished(struct xhci_hcd *xhci)
473 {
474         if (xhci_start(xhci)) {
475                 xhci_halt(xhci);
476                 return -ENODEV;
477         }
478         xhci->shared_hcd->state = HC_STATE_RUNNING;
479
480         if (xhci->quirks & XHCI_NEC_HOST)
481                 xhci_ring_cmd_db(xhci);
482
483         xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
484         return 0;
485 }
486
487 /*
488  * Start the HC after it was halted.
489  *
490  * This function is called by the USB core when the HC driver is added.
491  * Its opposite is xhci_stop().
492  *
493  * xhci_init() must be called once before this function can be called.
494  * Reset the HC, enable device slot contexts, program DCBAAP, and
495  * set command ring pointer and event ring pointer.
496  *
497  * Setup MSI-X vectors and enable interrupts.
498  */
499 int xhci_run(struct usb_hcd *hcd)
500 {
501         u32 temp;
502         u64 temp_64;
503         int ret;
504         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
505
506         /* Start the xHCI host controller running only after the USB 2.0 roothub
507          * is setup.
508          */
509
510         hcd->uses_new_polling = 1;
511         if (!usb_hcd_is_primary_hcd(hcd))
512                 return xhci_run_finished(xhci);
513
514         xhci_dbg(xhci, "xhci_run\n");
515
516         ret = xhci_try_enable_msi(hcd);
517         if (ret)
518                 return ret;
519
520 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
521         init_timer(&xhci->event_ring_timer);
522         xhci->event_ring_timer.data = (unsigned long) xhci;
523         xhci->event_ring_timer.function = xhci_event_ring_work;
524         /* Poll the event ring */
525         xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
526         xhci->zombie = 0;
527         xhci_dbg(xhci, "Setting event ring polling timer\n");
528         add_timer(&xhci->event_ring_timer);
529 #endif
530
531         xhci_dbg(xhci, "Command ring memory map follows:\n");
532         xhci_debug_ring(xhci, xhci->cmd_ring);
533         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
534         xhci_dbg_cmd_ptrs(xhci);
535
536         xhci_dbg(xhci, "ERST memory map follows:\n");
537         xhci_dbg_erst(xhci, &xhci->erst);
538         xhci_dbg(xhci, "Event ring:\n");
539         xhci_debug_ring(xhci, xhci->event_ring);
540         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
541         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
542         temp_64 &= ~ERST_PTR_MASK;
543         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
544
545         xhci_dbg(xhci, "// Set the interrupt modulation register\n");
546         temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
547         temp &= ~ER_IRQ_INTERVAL_MASK;
548         temp |= (u32) 160;
549         xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
550
551         /* Set the HCD state before we enable the irqs */
552         temp = xhci_readl(xhci, &xhci->op_regs->command);
553         temp |= (CMD_EIE);
554         xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
555                         temp);
556         xhci_writel(xhci, temp, &xhci->op_regs->command);
557
558         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
559         xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
560                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
561         xhci_writel(xhci, ER_IRQ_ENABLE(temp),
562                         &xhci->ir_set->irq_pending);
563         xhci_print_ir_set(xhci, 0);
564
565         if (xhci->quirks & XHCI_NEC_HOST)
566                 xhci_queue_vendor_command(xhci, 0, 0, 0,
567                                 TRB_TYPE(TRB_NEC_GET_FW));
568
569         xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
570         return 0;
571 }
572
573 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
574 {
575         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
576
577         spin_lock_irq(&xhci->lock);
578         xhci_halt(xhci);
579
580         /* The shared_hcd is going to be deallocated shortly (the USB core only
581          * calls this function when allocation fails in usb_add_hcd(), or
582          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
583          */
584         xhci->shared_hcd = NULL;
585         spin_unlock_irq(&xhci->lock);
586 }
587
588 /*
589  * Stop xHCI driver.
590  *
591  * This function is called by the USB core when the HC driver is removed.
592  * Its opposite is xhci_run().
593  *
594  * Disable device contexts, disable IRQs, and quiesce the HC.
595  * Reset the HC, finish any completed transactions, and cleanup memory.
596  */
597 void xhci_stop(struct usb_hcd *hcd)
598 {
599         u32 temp;
600         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
601
602         if (!usb_hcd_is_primary_hcd(hcd)) {
603                 xhci_only_stop_hcd(xhci->shared_hcd);
604                 return;
605         }
606
607         spin_lock_irq(&xhci->lock);
608         /* Make sure the xHC is halted for a USB3 roothub
609          * (xhci_stop() could be called as part of failed init).
610          */
611         xhci_halt(xhci);
612         xhci_reset(xhci);
613         spin_unlock_irq(&xhci->lock);
614
615         xhci_cleanup_msix(xhci);
616
617 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
618         /* Tell the event ring poll function not to reschedule */
619         xhci->zombie = 1;
620         del_timer_sync(&xhci->event_ring_timer);
621 #endif
622
623         if (xhci->quirks & XHCI_AMD_PLL_FIX)
624                 usb_amd_dev_put();
625
626         xhci_dbg(xhci, "// Disabling event ring interrupts\n");
627         temp = xhci_readl(xhci, &xhci->op_regs->status);
628         xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
629         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
630         xhci_writel(xhci, ER_IRQ_DISABLE(temp),
631                         &xhci->ir_set->irq_pending);
632         xhci_print_ir_set(xhci, 0);
633
634         xhci_dbg(xhci, "cleaning up memory\n");
635         xhci_mem_cleanup(xhci);
636         xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
637                     xhci_readl(xhci, &xhci->op_regs->status));
638 }
639
640 /*
641  * Shutdown HC (not bus-specific)
642  *
643  * This is called when the machine is rebooting or halting.  We assume that the
644  * machine will be powered off, and the HC's internal state will be reset.
645  * Don't bother to free memory.
646  *
647  * This will only ever be called with the main usb_hcd (the USB3 roothub).
648  */
649 void xhci_shutdown(struct usb_hcd *hcd)
650 {
651         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
652
653         spin_lock_irq(&xhci->lock);
654         xhci_halt(xhci);
655         spin_unlock_irq(&xhci->lock);
656
657         xhci_cleanup_msix(xhci);
658
659         xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
660                     xhci_readl(xhci, &xhci->op_regs->status));
661 }
662
663 #ifdef CONFIG_PM
664 static void xhci_save_registers(struct xhci_hcd *xhci)
665 {
666         xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
667         xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
668         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
669         xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
670         xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
671         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
672         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
673         xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
674         xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
675 }
676
677 static void xhci_restore_registers(struct xhci_hcd *xhci)
678 {
679         xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
680         xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
681         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
682         xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
683         xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
684         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
685         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
686         xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
687         xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
688 }
689
690 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
691 {
692         u64     val_64;
693
694         /* step 2: initialize command ring buffer */
695         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
696         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
697                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
698                                       xhci->cmd_ring->dequeue) &
699                  (u64) ~CMD_RING_RSVD_BITS) |
700                 xhci->cmd_ring->cycle_state;
701         xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
702                         (long unsigned long) val_64);
703         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
704 }
705
706 /*
707  * The whole command ring must be cleared to zero when we suspend the host.
708  *
709  * The host doesn't save the command ring pointer in the suspend well, so we
710  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
711  * aligned, because of the reserved bits in the command ring dequeue pointer
712  * register.  Therefore, we can't just set the dequeue pointer back in the
713  * middle of the ring (TRBs are 16-byte aligned).
714  */
715 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
716 {
717         struct xhci_ring *ring;
718         struct xhci_segment *seg;
719
720         ring = xhci->cmd_ring;
721         seg = ring->deq_seg;
722         do {
723                 memset(seg->trbs, 0,
724                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
725                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
726                         cpu_to_le32(~TRB_CYCLE);
727                 seg = seg->next;
728         } while (seg != ring->deq_seg);
729
730         /* Reset the software enqueue and dequeue pointers */
731         ring->deq_seg = ring->first_seg;
732         ring->dequeue = ring->first_seg->trbs;
733         ring->enq_seg = ring->deq_seg;
734         ring->enqueue = ring->dequeue;
735
736         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
737         /*
738          * Ring is now zeroed, so the HW should look for change of ownership
739          * when the cycle bit is set to 1.
740          */
741         ring->cycle_state = 1;
742
743         /*
744          * Reset the hardware dequeue pointer.
745          * Yes, this will need to be re-written after resume, but we're paranoid
746          * and want to make sure the hardware doesn't access bogus memory
747          * because, say, the BIOS or an SMI started the host without changing
748          * the command ring pointers.
749          */
750         xhci_set_cmd_ring_deq(xhci);
751 }
752
753 /*
754  * Stop HC (not bus-specific)
755  *
756  * This is called when the machine transition into S3/S4 mode.
757  *
758  */
759 int xhci_suspend(struct xhci_hcd *xhci)
760 {
761         int                     rc = 0;
762         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
763         u32                     command;
764
765         spin_lock_irq(&xhci->lock);
766         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
767         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
768         /* step 1: stop endpoint */
769         /* skipped assuming that port suspend has done */
770
771         /* step 2: clear Run/Stop bit */
772         command = xhci_readl(xhci, &xhci->op_regs->command);
773         command &= ~CMD_RUN;
774         xhci_writel(xhci, command, &xhci->op_regs->command);
775         if (handshake(xhci, &xhci->op_regs->status,
776                       STS_HALT, STS_HALT, 100*100)) {
777                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
778                 spin_unlock_irq(&xhci->lock);
779                 return -ETIMEDOUT;
780         }
781         xhci_clear_command_ring(xhci);
782
783         /* step 3: save registers */
784         xhci_save_registers(xhci);
785
786         /* step 4: set CSS flag */
787         command = xhci_readl(xhci, &xhci->op_regs->command);
788         command |= CMD_CSS;
789         xhci_writel(xhci, command, &xhci->op_regs->command);
790         if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) {
791                 xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n");
792                 spin_unlock_irq(&xhci->lock);
793                 return -ETIMEDOUT;
794         }
795         spin_unlock_irq(&xhci->lock);
796
797         /* step 5: remove core well power */
798         /* synchronize irq when using MSI-X */
799         xhci_msix_sync_irqs(xhci);
800
801         return rc;
802 }
803
804 /*
805  * start xHC (not bus-specific)
806  *
807  * This is called when the machine transition from S3/S4 mode.
808  *
809  */
810 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
811 {
812         u32                     command, temp = 0;
813         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
814         struct usb_hcd          *secondary_hcd;
815         int                     retval = 0;
816
817         /* Wait a bit if either of the roothubs need to settle from the
818          * transition into bus suspend.
819          */
820         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
821                         time_before(jiffies,
822                                 xhci->bus_state[1].next_statechange))
823                 msleep(100);
824
825         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
826         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
827
828         spin_lock_irq(&xhci->lock);
829         if (xhci->quirks & XHCI_RESET_ON_RESUME)
830                 hibernated = true;
831
832         if (!hibernated) {
833                 /* step 1: restore register */
834                 xhci_restore_registers(xhci);
835                 /* step 2: initialize command ring buffer */
836                 xhci_set_cmd_ring_deq(xhci);
837                 /* step 3: restore state and start state*/
838                 /* step 3: set CRS flag */
839                 command = xhci_readl(xhci, &xhci->op_regs->command);
840                 command |= CMD_CRS;
841                 xhci_writel(xhci, command, &xhci->op_regs->command);
842                 if (handshake(xhci, &xhci->op_regs->status,
843                               STS_RESTORE, 0, 10*100)) {
844                         xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n");
845                         spin_unlock_irq(&xhci->lock);
846                         return -ETIMEDOUT;
847                 }
848                 temp = xhci_readl(xhci, &xhci->op_regs->status);
849         }
850
851         /* If restore operation fails, re-initialize the HC during resume */
852         if ((temp & STS_SRE) || hibernated) {
853                 /* Let the USB core know _both_ roothubs lost power. */
854                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
855                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
856
857                 xhci_dbg(xhci, "Stop HCD\n");
858                 xhci_halt(xhci);
859                 xhci_reset(xhci);
860                 spin_unlock_irq(&xhci->lock);
861                 xhci_cleanup_msix(xhci);
862
863 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
864                 /* Tell the event ring poll function not to reschedule */
865                 xhci->zombie = 1;
866                 del_timer_sync(&xhci->event_ring_timer);
867 #endif
868
869                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
870                 temp = xhci_readl(xhci, &xhci->op_regs->status);
871                 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
872                 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
873                 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
874                                 &xhci->ir_set->irq_pending);
875                 xhci_print_ir_set(xhci, 0);
876
877                 xhci_dbg(xhci, "cleaning up memory\n");
878                 xhci_mem_cleanup(xhci);
879                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
880                             xhci_readl(xhci, &xhci->op_regs->status));
881
882                 /* USB core calls the PCI reinit and start functions twice:
883                  * first with the primary HCD, and then with the secondary HCD.
884                  * If we don't do the same, the host will never be started.
885                  */
886                 if (!usb_hcd_is_primary_hcd(hcd))
887                         secondary_hcd = hcd;
888                 else
889                         secondary_hcd = xhci->shared_hcd;
890
891                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
892                 retval = xhci_init(hcd->primary_hcd);
893                 if (retval)
894                         return retval;
895                 xhci_dbg(xhci, "Start the primary HCD\n");
896                 retval = xhci_run(hcd->primary_hcd);
897                 if (!retval) {
898                         xhci_dbg(xhci, "Start the secondary HCD\n");
899                         retval = xhci_run(secondary_hcd);
900                 }
901                 hcd->state = HC_STATE_SUSPENDED;
902                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
903                 goto done;
904         }
905
906         /* step 4: set Run/Stop bit */
907         command = xhci_readl(xhci, &xhci->op_regs->command);
908         command |= CMD_RUN;
909         xhci_writel(xhci, command, &xhci->op_regs->command);
910         handshake(xhci, &xhci->op_regs->status, STS_HALT,
911                   0, 250 * 1000);
912
913         /* step 5: walk topology and initialize portsc,
914          * portpmsc and portli
915          */
916         /* this is done in bus_resume */
917
918         /* step 6: restart each of the previously
919          * Running endpoints by ringing their doorbells
920          */
921
922         spin_unlock_irq(&xhci->lock);
923
924  done:
925         if (retval == 0) {
926                 usb_hcd_resume_root_hub(hcd);
927                 usb_hcd_resume_root_hub(xhci->shared_hcd);
928         }
929         return retval;
930 }
931 #endif  /* CONFIG_PM */
932
933 /*-------------------------------------------------------------------------*/
934
935 /**
936  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
937  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
938  * value to right shift 1 for the bitmask.
939  *
940  * Index  = (epnum * 2) + direction - 1,
941  * where direction = 0 for OUT, 1 for IN.
942  * For control endpoints, the IN index is used (OUT index is unused), so
943  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
944  */
945 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
946 {
947         unsigned int index;
948         if (usb_endpoint_xfer_control(desc))
949                 index = (unsigned int) (usb_endpoint_num(desc)*2);
950         else
951                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
952                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
953         return index;
954 }
955
956 /* Find the flag for this endpoint (for use in the control context).  Use the
957  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
958  * bit 1, etc.
959  */
960 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
961 {
962         return 1 << (xhci_get_endpoint_index(desc) + 1);
963 }
964
965 /* Find the flag for this endpoint (for use in the control context).  Use the
966  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
967  * bit 1, etc.
968  */
969 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
970 {
971         return 1 << (ep_index + 1);
972 }
973
974 /* Compute the last valid endpoint context index.  Basically, this is the
975  * endpoint index plus one.  For slot contexts with more than valid endpoint,
976  * we find the most significant bit set in the added contexts flags.
977  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
978  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
979  */
980 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
981 {
982         return fls(added_ctxs) - 1;
983 }
984
985 /* Returns 1 if the arguments are OK;
986  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
987  */
988 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
989                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
990                 const char *func) {
991         struct xhci_hcd *xhci;
992         struct xhci_virt_device *virt_dev;
993
994         if (!hcd || (check_ep && !ep) || !udev) {
995                 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
996                                 func);
997                 return -EINVAL;
998         }
999         if (!udev->parent) {
1000                 printk(KERN_DEBUG "xHCI %s called for root hub\n",
1001                                 func);
1002                 return 0;
1003         }
1004
1005         xhci = hcd_to_xhci(hcd);
1006         if (xhci->xhc_state & XHCI_STATE_HALTED)
1007                 return -ENODEV;
1008
1009         if (check_virt_dev) {
1010                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1011                         printk(KERN_DEBUG "xHCI %s called with unaddressed "
1012                                                 "device\n", func);
1013                         return -EINVAL;
1014                 }
1015
1016                 virt_dev = xhci->devs[udev->slot_id];
1017                 if (virt_dev->udev != udev) {
1018                         printk(KERN_DEBUG "xHCI %s called with udev and "
1019                                           "virt_dev does not match\n", func);
1020                         return -EINVAL;
1021                 }
1022         }
1023
1024         return 1;
1025 }
1026
1027 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1028                 struct usb_device *udev, struct xhci_command *command,
1029                 bool ctx_change, bool must_succeed);
1030
1031 /*
1032  * Full speed devices may have a max packet size greater than 8 bytes, but the
1033  * USB core doesn't know that until it reads the first 8 bytes of the
1034  * descriptor.  If the usb_device's max packet size changes after that point,
1035  * we need to issue an evaluate context command and wait on it.
1036  */
1037 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1038                 unsigned int ep_index, struct urb *urb)
1039 {
1040         struct xhci_container_ctx *in_ctx;
1041         struct xhci_container_ctx *out_ctx;
1042         struct xhci_input_control_ctx *ctrl_ctx;
1043         struct xhci_ep_ctx *ep_ctx;
1044         int max_packet_size;
1045         int hw_max_packet_size;
1046         int ret = 0;
1047
1048         out_ctx = xhci->devs[slot_id]->out_ctx;
1049         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1050         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1051         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1052         if (hw_max_packet_size != max_packet_size) {
1053                 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1054                 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1055                                 max_packet_size);
1056                 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1057                                 hw_max_packet_size);
1058                 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1059
1060                 /* Set up the modified control endpoint 0 */
1061                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1062                                 xhci->devs[slot_id]->out_ctx, ep_index);
1063                 in_ctx = xhci->devs[slot_id]->in_ctx;
1064                 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1065                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1066                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1067
1068                 /* Set up the input context flags for the command */
1069                 /* FIXME: This won't work if a non-default control endpoint
1070                  * changes max packet sizes.
1071                  */
1072                 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1073                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1074                 ctrl_ctx->drop_flags = 0;
1075
1076                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1077                 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1078                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1079                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1080
1081                 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1082                                 true, false);
1083
1084                 /* Clean up the input context for later use by bandwidth
1085                  * functions.
1086                  */
1087                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1088         }
1089         return ret;
1090 }
1091
1092 /*
1093  * non-error returns are a promise to giveback() the urb later
1094  * we drop ownership so next owner (or urb unlink) can get it
1095  */
1096 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1097 {
1098         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1099         struct xhci_td *buffer;
1100         unsigned long flags;
1101         int ret = 0;
1102         unsigned int slot_id, ep_index;
1103         struct urb_priv *urb_priv;
1104         int size, i;
1105
1106         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1107                                         true, true, __func__) <= 0)
1108                 return -EINVAL;
1109
1110         slot_id = urb->dev->slot_id;
1111         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1112
1113         if (!HCD_HW_ACCESSIBLE(hcd)) {
1114                 if (!in_interrupt())
1115                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1116                 ret = -ESHUTDOWN;
1117                 goto exit;
1118         }
1119
1120         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1121                 size = urb->number_of_packets;
1122         else
1123                 size = 1;
1124
1125         urb_priv = kzalloc(sizeof(struct urb_priv) +
1126                                   size * sizeof(struct xhci_td *), mem_flags);
1127         if (!urb_priv)
1128                 return -ENOMEM;
1129
1130         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1131         if (!buffer) {
1132                 kfree(urb_priv);
1133                 return -ENOMEM;
1134         }
1135
1136         for (i = 0; i < size; i++) {
1137                 urb_priv->td[i] = buffer;
1138                 buffer++;
1139         }
1140
1141         urb_priv->length = size;
1142         urb_priv->td_cnt = 0;
1143         urb->hcpriv = urb_priv;
1144
1145         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1146                 /* Check to see if the max packet size for the default control
1147                  * endpoint changed during FS device enumeration
1148                  */
1149                 if (urb->dev->speed == USB_SPEED_FULL) {
1150                         ret = xhci_check_maxpacket(xhci, slot_id,
1151                                         ep_index, urb);
1152                         if (ret < 0) {
1153                                 xhci_urb_free_priv(xhci, urb_priv);
1154                                 urb->hcpriv = NULL;
1155                                 return ret;
1156                         }
1157                 }
1158
1159                 /* We have a spinlock and interrupts disabled, so we must pass
1160                  * atomic context to this function, which may allocate memory.
1161                  */
1162                 spin_lock_irqsave(&xhci->lock, flags);
1163                 if (xhci->xhc_state & XHCI_STATE_DYING)
1164                         goto dying;
1165                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1166                                 slot_id, ep_index);
1167                 if (ret)
1168                         goto free_priv;
1169                 spin_unlock_irqrestore(&xhci->lock, flags);
1170         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1171                 spin_lock_irqsave(&xhci->lock, flags);
1172                 if (xhci->xhc_state & XHCI_STATE_DYING)
1173                         goto dying;
1174                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1175                                 EP_GETTING_STREAMS) {
1176                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1177                                         "is transitioning to using streams.\n");
1178                         ret = -EINVAL;
1179                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1180                                 EP_GETTING_NO_STREAMS) {
1181                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1182                                         "is transitioning to "
1183                                         "not having streams.\n");
1184                         ret = -EINVAL;
1185                 } else {
1186                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1187                                         slot_id, ep_index);
1188                 }
1189                 if (ret)
1190                         goto free_priv;
1191                 spin_unlock_irqrestore(&xhci->lock, flags);
1192         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1193                 spin_lock_irqsave(&xhci->lock, flags);
1194                 if (xhci->xhc_state & XHCI_STATE_DYING)
1195                         goto dying;
1196                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1197                                 slot_id, ep_index);
1198                 if (ret)
1199                         goto free_priv;
1200                 spin_unlock_irqrestore(&xhci->lock, flags);
1201         } else {
1202                 spin_lock_irqsave(&xhci->lock, flags);
1203                 if (xhci->xhc_state & XHCI_STATE_DYING)
1204                         goto dying;
1205                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1206                                 slot_id, ep_index);
1207                 if (ret)
1208                         goto free_priv;
1209                 spin_unlock_irqrestore(&xhci->lock, flags);
1210         }
1211 exit:
1212         return ret;
1213 dying:
1214         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1215                         "non-responsive xHCI host.\n",
1216                         urb->ep->desc.bEndpointAddress, urb);
1217         ret = -ESHUTDOWN;
1218 free_priv:
1219         xhci_urb_free_priv(xhci, urb_priv);
1220         urb->hcpriv = NULL;
1221         spin_unlock_irqrestore(&xhci->lock, flags);
1222         return ret;
1223 }
1224
1225 /* Get the right ring for the given URB.
1226  * If the endpoint supports streams, boundary check the URB's stream ID.
1227  * If the endpoint doesn't support streams, return the singular endpoint ring.
1228  */
1229 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1230                 struct urb *urb)
1231 {
1232         unsigned int slot_id;
1233         unsigned int ep_index;
1234         unsigned int stream_id;
1235         struct xhci_virt_ep *ep;
1236
1237         slot_id = urb->dev->slot_id;
1238         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1239         stream_id = urb->stream_id;
1240         ep = &xhci->devs[slot_id]->eps[ep_index];
1241         /* Common case: no streams */
1242         if (!(ep->ep_state & EP_HAS_STREAMS))
1243                 return ep->ring;
1244
1245         if (stream_id == 0) {
1246                 xhci_warn(xhci,
1247                                 "WARN: Slot ID %u, ep index %u has streams, "
1248                                 "but URB has no stream ID.\n",
1249                                 slot_id, ep_index);
1250                 return NULL;
1251         }
1252
1253         if (stream_id < ep->stream_info->num_streams)
1254                 return ep->stream_info->stream_rings[stream_id];
1255
1256         xhci_warn(xhci,
1257                         "WARN: Slot ID %u, ep index %u has "
1258                         "stream IDs 1 to %u allocated, "
1259                         "but stream ID %u is requested.\n",
1260                         slot_id, ep_index,
1261                         ep->stream_info->num_streams - 1,
1262                         stream_id);
1263         return NULL;
1264 }
1265
1266 /*
1267  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1268  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1269  * should pick up where it left off in the TD, unless a Set Transfer Ring
1270  * Dequeue Pointer is issued.
1271  *
1272  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1273  * the ring.  Since the ring is a contiguous structure, they can't be physically
1274  * removed.  Instead, there are two options:
1275  *
1276  *  1) If the HC is in the middle of processing the URB to be canceled, we
1277  *     simply move the ring's dequeue pointer past those TRBs using the Set
1278  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1279  *     when drivers timeout on the last submitted URB and attempt to cancel.
1280  *
1281  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1282  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1283  *     HC will need to invalidate the any TRBs it has cached after the stop
1284  *     endpoint command, as noted in the xHCI 0.95 errata.
1285  *
1286  *  3) The TD may have completed by the time the Stop Endpoint Command
1287  *     completes, so software needs to handle that case too.
1288  *
1289  * This function should protect against the TD enqueueing code ringing the
1290  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1291  * It also needs to account for multiple cancellations on happening at the same
1292  * time for the same endpoint.
1293  *
1294  * Note that this function can be called in any context, or so says
1295  * usb_hcd_unlink_urb()
1296  */
1297 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1298 {
1299         unsigned long flags;
1300         int ret, i;
1301         u32 temp;
1302         struct xhci_hcd *xhci;
1303         struct urb_priv *urb_priv;
1304         struct xhci_td *td;
1305         unsigned int ep_index;
1306         struct xhci_ring *ep_ring;
1307         struct xhci_virt_ep *ep;
1308
1309         xhci = hcd_to_xhci(hcd);
1310         spin_lock_irqsave(&xhci->lock, flags);
1311         /* Make sure the URB hasn't completed or been unlinked already */
1312         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1313         if (ret || !urb->hcpriv)
1314                 goto done;
1315         temp = xhci_readl(xhci, &xhci->op_regs->status);
1316         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1317                 xhci_dbg(xhci, "HW died, freeing TD.\n");
1318                 urb_priv = urb->hcpriv;
1319                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1320                         td = urb_priv->td[i];
1321                         if (!list_empty(&td->td_list))
1322                                 list_del_init(&td->td_list);
1323                         if (!list_empty(&td->cancelled_td_list))
1324                                 list_del_init(&td->cancelled_td_list);
1325                 }
1326
1327                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1328                 spin_unlock_irqrestore(&xhci->lock, flags);
1329                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1330                 xhci_urb_free_priv(xhci, urb_priv);
1331                 return ret;
1332         }
1333         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1334                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1335                 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1336                                 "non-responsive xHCI host.\n",
1337                                 urb->ep->desc.bEndpointAddress, urb);
1338                 /* Let the stop endpoint command watchdog timer (which set this
1339                  * state) finish cleaning up the endpoint TD lists.  We must
1340                  * have caught it in the middle of dropping a lock and giving
1341                  * back an URB.
1342                  */
1343                 goto done;
1344         }
1345
1346         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1347         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1348         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1349         if (!ep_ring) {
1350                 ret = -EINVAL;
1351                 goto done;
1352         }
1353
1354         urb_priv = urb->hcpriv;
1355         i = urb_priv->td_cnt;
1356         if (i < urb_priv->length)
1357                 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1358                                 "starting at offset 0x%llx\n",
1359                                 urb, urb->dev->devpath,
1360                                 urb->ep->desc.bEndpointAddress,
1361                                 (unsigned long long) xhci_trb_virt_to_dma(
1362                                         urb_priv->td[i]->start_seg,
1363                                         urb_priv->td[i]->first_trb));
1364
1365         for (; i < urb_priv->length; i++) {
1366                 td = urb_priv->td[i];
1367                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1368         }
1369
1370         /* Queue a stop endpoint command, but only if this is
1371          * the first cancellation to be handled.
1372          */
1373         if (!(ep->ep_state & EP_HALT_PENDING)) {
1374                 ep->ep_state |= EP_HALT_PENDING;
1375                 ep->stop_cmds_pending++;
1376                 ep->stop_cmd_timer.expires = jiffies +
1377                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1378                 add_timer(&ep->stop_cmd_timer);
1379                 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1380                 xhci_ring_cmd_db(xhci);
1381         }
1382 done:
1383         spin_unlock_irqrestore(&xhci->lock, flags);
1384         return ret;
1385 }
1386
1387 /* Drop an endpoint from a new bandwidth configuration for this device.
1388  * Only one call to this function is allowed per endpoint before
1389  * check_bandwidth() or reset_bandwidth() must be called.
1390  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1391  * add the endpoint to the schedule with possibly new parameters denoted by a
1392  * different endpoint descriptor in usb_host_endpoint.
1393  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1394  * not allowed.
1395  *
1396  * The USB core will not allow URBs to be queued to an endpoint that is being
1397  * disabled, so there's no need for mutual exclusion to protect
1398  * the xhci->devs[slot_id] structure.
1399  */
1400 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1401                 struct usb_host_endpoint *ep)
1402 {
1403         struct xhci_hcd *xhci;
1404         struct xhci_container_ctx *in_ctx, *out_ctx;
1405         struct xhci_input_control_ctx *ctrl_ctx;
1406         struct xhci_slot_ctx *slot_ctx;
1407         unsigned int last_ctx;
1408         unsigned int ep_index;
1409         struct xhci_ep_ctx *ep_ctx;
1410         u32 drop_flag;
1411         u32 new_add_flags, new_drop_flags, new_slot_info;
1412         int ret;
1413
1414         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1415         if (ret <= 0)
1416                 return ret;
1417         xhci = hcd_to_xhci(hcd);
1418         if (xhci->xhc_state & XHCI_STATE_DYING)
1419                 return -ENODEV;
1420
1421         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1422         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1423         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1424                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1425                                 __func__, drop_flag);
1426                 return 0;
1427         }
1428
1429         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1430         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1431         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1432         ep_index = xhci_get_endpoint_index(&ep->desc);
1433         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1434         /* If the HC already knows the endpoint is disabled,
1435          * or the HCD has noted it is disabled, ignore this request
1436          */
1437         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1438              cpu_to_le32(EP_STATE_DISABLED)) ||
1439             le32_to_cpu(ctrl_ctx->drop_flags) &
1440             xhci_get_endpoint_flag(&ep->desc)) {
1441                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1442                                 __func__, ep);
1443                 return 0;
1444         }
1445
1446         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1447         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1448
1449         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1450         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1451
1452         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1453         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1454         /* Update the last valid endpoint context, if we deleted the last one */
1455         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1456             LAST_CTX(last_ctx)) {
1457                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1458                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1459         }
1460         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1461
1462         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1463
1464         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1465                         (unsigned int) ep->desc.bEndpointAddress,
1466                         udev->slot_id,
1467                         (unsigned int) new_drop_flags,
1468                         (unsigned int) new_add_flags,
1469                         (unsigned int) new_slot_info);
1470         return 0;
1471 }
1472
1473 /* Add an endpoint to a new possible bandwidth configuration for this device.
1474  * Only one call to this function is allowed per endpoint before
1475  * check_bandwidth() or reset_bandwidth() must be called.
1476  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1477  * add the endpoint to the schedule with possibly new parameters denoted by a
1478  * different endpoint descriptor in usb_host_endpoint.
1479  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1480  * not allowed.
1481  *
1482  * The USB core will not allow URBs to be queued to an endpoint until the
1483  * configuration or alt setting is installed in the device, so there's no need
1484  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1485  */
1486 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1487                 struct usb_host_endpoint *ep)
1488 {
1489         struct xhci_hcd *xhci;
1490         struct xhci_container_ctx *in_ctx, *out_ctx;
1491         unsigned int ep_index;
1492         struct xhci_ep_ctx *ep_ctx;
1493         struct xhci_slot_ctx *slot_ctx;
1494         struct xhci_input_control_ctx *ctrl_ctx;
1495         u32 added_ctxs;
1496         unsigned int last_ctx;
1497         u32 new_add_flags, new_drop_flags, new_slot_info;
1498         struct xhci_virt_device *virt_dev;
1499         int ret = 0;
1500
1501         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1502         if (ret <= 0) {
1503                 /* So we won't queue a reset ep command for a root hub */
1504                 ep->hcpriv = NULL;
1505                 return ret;
1506         }
1507         xhci = hcd_to_xhci(hcd);
1508         if (xhci->xhc_state & XHCI_STATE_DYING)
1509                 return -ENODEV;
1510
1511         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1512         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1513         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1514                 /* FIXME when we have to issue an evaluate endpoint command to
1515                  * deal with ep0 max packet size changing once we get the
1516                  * descriptors
1517                  */
1518                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1519                                 __func__, added_ctxs);
1520                 return 0;
1521         }
1522
1523         virt_dev = xhci->devs[udev->slot_id];
1524         in_ctx = virt_dev->in_ctx;
1525         out_ctx = virt_dev->out_ctx;
1526         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1527         ep_index = xhci_get_endpoint_index(&ep->desc);
1528         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1529
1530         /* If this endpoint is already in use, and the upper layers are trying
1531          * to add it again without dropping it, reject the addition.
1532          */
1533         if (virt_dev->eps[ep_index].ring &&
1534                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1535                                 xhci_get_endpoint_flag(&ep->desc))) {
1536                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1537                                 "without dropping it.\n",
1538                                 (unsigned int) ep->desc.bEndpointAddress);
1539                 return -EINVAL;
1540         }
1541
1542         /* If the HCD has already noted the endpoint is enabled,
1543          * ignore this request.
1544          */
1545         if (le32_to_cpu(ctrl_ctx->add_flags) &
1546             xhci_get_endpoint_flag(&ep->desc)) {
1547                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1548                                 __func__, ep);
1549                 return 0;
1550         }
1551
1552         /*
1553          * Configuration and alternate setting changes must be done in
1554          * process context, not interrupt context (or so documenation
1555          * for usb_set_interface() and usb_set_configuration() claim).
1556          */
1557         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1558                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1559                                 __func__, ep->desc.bEndpointAddress);
1560                 return -ENOMEM;
1561         }
1562
1563         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1564         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1565
1566         /* If xhci_endpoint_disable() was called for this endpoint, but the
1567          * xHC hasn't been notified yet through the check_bandwidth() call,
1568          * this re-adds a new state for the endpoint from the new endpoint
1569          * descriptors.  We must drop and re-add this endpoint, so we leave the
1570          * drop flags alone.
1571          */
1572         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1573
1574         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1575         /* Update the last valid endpoint context, if we just added one past */
1576         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1577             LAST_CTX(last_ctx)) {
1578                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1579                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1580         }
1581         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1582
1583         /* Store the usb_device pointer for later use */
1584         ep->hcpriv = udev;
1585
1586         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1587                         (unsigned int) ep->desc.bEndpointAddress,
1588                         udev->slot_id,
1589                         (unsigned int) new_drop_flags,
1590                         (unsigned int) new_add_flags,
1591                         (unsigned int) new_slot_info);
1592         return 0;
1593 }
1594
1595 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1596 {
1597         struct xhci_input_control_ctx *ctrl_ctx;
1598         struct xhci_ep_ctx *ep_ctx;
1599         struct xhci_slot_ctx *slot_ctx;
1600         int i;
1601
1602         /* When a device's add flag and drop flag are zero, any subsequent
1603          * configure endpoint command will leave that endpoint's state
1604          * untouched.  Make sure we don't leave any old state in the input
1605          * endpoint contexts.
1606          */
1607         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1608         ctrl_ctx->drop_flags = 0;
1609         ctrl_ctx->add_flags = 0;
1610         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1611         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1612         /* Endpoint 0 is always valid */
1613         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1614         for (i = 1; i < 31; ++i) {
1615                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1616                 ep_ctx->ep_info = 0;
1617                 ep_ctx->ep_info2 = 0;
1618                 ep_ctx->deq = 0;
1619                 ep_ctx->tx_info = 0;
1620         }
1621 }
1622
1623 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1624                 struct usb_device *udev, u32 *cmd_status)
1625 {
1626         int ret;
1627
1628         switch (*cmd_status) {
1629         case COMP_ENOMEM:
1630                 dev_warn(&udev->dev, "Not enough host controller resources "
1631                                 "for new device state.\n");
1632                 ret = -ENOMEM;
1633                 /* FIXME: can we allocate more resources for the HC? */
1634                 break;
1635         case COMP_BW_ERR:
1636         case COMP_2ND_BW_ERR:
1637                 dev_warn(&udev->dev, "Not enough bandwidth "
1638                                 "for new device state.\n");
1639                 ret = -ENOSPC;
1640                 /* FIXME: can we go back to the old state? */
1641                 break;
1642         case COMP_TRB_ERR:
1643                 /* the HCD set up something wrong */
1644                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1645                                 "add flag = 1, "
1646                                 "and endpoint is not disabled.\n");
1647                 ret = -EINVAL;
1648                 break;
1649         case COMP_DEV_ERR:
1650                 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1651                                 "configure command.\n");
1652                 ret = -ENODEV;
1653                 break;
1654         case COMP_SUCCESS:
1655                 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1656                 ret = 0;
1657                 break;
1658         default:
1659                 xhci_err(xhci, "ERROR: unexpected command completion "
1660                                 "code 0x%x.\n", *cmd_status);
1661                 ret = -EINVAL;
1662                 break;
1663         }
1664         return ret;
1665 }
1666
1667 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1668                 struct usb_device *udev, u32 *cmd_status)
1669 {
1670         int ret;
1671         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1672
1673         switch (*cmd_status) {
1674         case COMP_EINVAL:
1675                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1676                                 "context command.\n");
1677                 ret = -EINVAL;
1678                 break;
1679         case COMP_EBADSLT:
1680                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1681                                 "evaluate context command.\n");
1682         case COMP_CTX_STATE:
1683                 dev_warn(&udev->dev, "WARN: invalid context state for "
1684                                 "evaluate context command.\n");
1685                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1686                 ret = -EINVAL;
1687                 break;
1688         case COMP_DEV_ERR:
1689                 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1690                                 "context command.\n");
1691                 ret = -ENODEV;
1692                 break;
1693         case COMP_MEL_ERR:
1694                 /* Max Exit Latency too large error */
1695                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1696                 ret = -EINVAL;
1697                 break;
1698         case COMP_SUCCESS:
1699                 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1700                 ret = 0;
1701                 break;
1702         default:
1703                 xhci_err(xhci, "ERROR: unexpected command completion "
1704                                 "code 0x%x.\n", *cmd_status);
1705                 ret = -EINVAL;
1706                 break;
1707         }
1708         return ret;
1709 }
1710
1711 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1712                 struct xhci_container_ctx *in_ctx)
1713 {
1714         struct xhci_input_control_ctx *ctrl_ctx;
1715         u32 valid_add_flags;
1716         u32 valid_drop_flags;
1717
1718         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1719         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1720          * (bit 1).  The default control endpoint is added during the Address
1721          * Device command and is never removed until the slot is disabled.
1722          */
1723         valid_add_flags = ctrl_ctx->add_flags >> 2;
1724         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1725
1726         /* Use hweight32 to count the number of ones in the add flags, or
1727          * number of endpoints added.  Don't count endpoints that are changed
1728          * (both added and dropped).
1729          */
1730         return hweight32(valid_add_flags) -
1731                 hweight32(valid_add_flags & valid_drop_flags);
1732 }
1733
1734 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1735                 struct xhci_container_ctx *in_ctx)
1736 {
1737         struct xhci_input_control_ctx *ctrl_ctx;
1738         u32 valid_add_flags;
1739         u32 valid_drop_flags;
1740
1741         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1742         valid_add_flags = ctrl_ctx->add_flags >> 2;
1743         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1744
1745         return hweight32(valid_drop_flags) -
1746                 hweight32(valid_add_flags & valid_drop_flags);
1747 }
1748
1749 /*
1750  * We need to reserve the new number of endpoints before the configure endpoint
1751  * command completes.  We can't subtract the dropped endpoints from the number
1752  * of active endpoints until the command completes because we can oversubscribe
1753  * the host in this case:
1754  *
1755  *  - the first configure endpoint command drops more endpoints than it adds
1756  *  - a second configure endpoint command that adds more endpoints is queued
1757  *  - the first configure endpoint command fails, so the config is unchanged
1758  *  - the second command may succeed, even though there isn't enough resources
1759  *
1760  * Must be called with xhci->lock held.
1761  */
1762 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1763                 struct xhci_container_ctx *in_ctx)
1764 {
1765         u32 added_eps;
1766
1767         added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1768         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1769                 xhci_dbg(xhci, "Not enough ep ctxs: "
1770                                 "%u active, need to add %u, limit is %u.\n",
1771                                 xhci->num_active_eps, added_eps,
1772                                 xhci->limit_active_eps);
1773                 return -ENOMEM;
1774         }
1775         xhci->num_active_eps += added_eps;
1776         xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1777                         xhci->num_active_eps);
1778         return 0;
1779 }
1780
1781 /*
1782  * The configure endpoint was failed by the xHC for some other reason, so we
1783  * need to revert the resources that failed configuration would have used.
1784  *
1785  * Must be called with xhci->lock held.
1786  */
1787 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1788                 struct xhci_container_ctx *in_ctx)
1789 {
1790         u32 num_failed_eps;
1791
1792         num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1793         xhci->num_active_eps -= num_failed_eps;
1794         xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1795                         num_failed_eps,
1796                         xhci->num_active_eps);
1797 }
1798
1799 /*
1800  * Now that the command has completed, clean up the active endpoint count by
1801  * subtracting out the endpoints that were dropped (but not changed).
1802  *
1803  * Must be called with xhci->lock held.
1804  */
1805 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1806                 struct xhci_container_ctx *in_ctx)
1807 {
1808         u32 num_dropped_eps;
1809
1810         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1811         xhci->num_active_eps -= num_dropped_eps;
1812         if (num_dropped_eps)
1813                 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1814                                 num_dropped_eps,
1815                                 xhci->num_active_eps);
1816 }
1817
1818 unsigned int xhci_get_block_size(struct usb_device *udev)
1819 {
1820         switch (udev->speed) {
1821         case USB_SPEED_LOW:
1822         case USB_SPEED_FULL:
1823                 return FS_BLOCK;
1824         case USB_SPEED_HIGH:
1825                 return HS_BLOCK;
1826         case USB_SPEED_SUPER:
1827                 return SS_BLOCK;
1828         case USB_SPEED_UNKNOWN:
1829         case USB_SPEED_WIRELESS:
1830         default:
1831                 /* Should never happen */
1832                 return 1;
1833         }
1834 }
1835
1836 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1837 {
1838         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1839                 return LS_OVERHEAD;
1840         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1841                 return FS_OVERHEAD;
1842         return HS_OVERHEAD;
1843 }
1844
1845 /* If we are changing a LS/FS device under a HS hub,
1846  * make sure (if we are activating a new TT) that the HS bus has enough
1847  * bandwidth for this new TT.
1848  */
1849 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1850                 struct xhci_virt_device *virt_dev,
1851                 int old_active_eps)
1852 {
1853         struct xhci_interval_bw_table *bw_table;
1854         struct xhci_tt_bw_info *tt_info;
1855
1856         /* Find the bandwidth table for the root port this TT is attached to. */
1857         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1858         tt_info = virt_dev->tt_info;
1859         /* If this TT already had active endpoints, the bandwidth for this TT
1860          * has already been added.  Removing all periodic endpoints (and thus
1861          * making the TT enactive) will only decrease the bandwidth used.
1862          */
1863         if (old_active_eps)
1864                 return 0;
1865         if (old_active_eps == 0 && tt_info->active_eps != 0) {
1866                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
1867                         return -ENOMEM;
1868                 return 0;
1869         }
1870         /* Not sure why we would have no new active endpoints...
1871          *
1872          * Maybe because of an Evaluate Context change for a hub update or a
1873          * control endpoint 0 max packet size change?
1874          * FIXME: skip the bandwidth calculation in that case.
1875          */
1876         return 0;
1877 }
1878
1879 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
1880                 struct xhci_virt_device *virt_dev)
1881 {
1882         unsigned int bw_reserved;
1883
1884         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
1885         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
1886                 return -ENOMEM;
1887
1888         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
1889         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
1890                 return -ENOMEM;
1891
1892         return 0;
1893 }
1894
1895 /*
1896  * This algorithm is a very conservative estimate of the worst-case scheduling
1897  * scenario for any one interval.  The hardware dynamically schedules the
1898  * packets, so we can't tell which microframe could be the limiting factor in
1899  * the bandwidth scheduling.  This only takes into account periodic endpoints.
1900  *
1901  * Obviously, we can't solve an NP complete problem to find the minimum worst
1902  * case scenario.  Instead, we come up with an estimate that is no less than
1903  * the worst case bandwidth used for any one microframe, but may be an
1904  * over-estimate.
1905  *
1906  * We walk the requirements for each endpoint by interval, starting with the
1907  * smallest interval, and place packets in the schedule where there is only one
1908  * possible way to schedule packets for that interval.  In order to simplify
1909  * this algorithm, we record the largest max packet size for each interval, and
1910  * assume all packets will be that size.
1911  *
1912  * For interval 0, we obviously must schedule all packets for each interval.
1913  * The bandwidth for interval 0 is just the amount of data to be transmitted
1914  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
1915  * the number of packets).
1916  *
1917  * For interval 1, we have two possible microframes to schedule those packets
1918  * in.  For this algorithm, if we can schedule the same number of packets for
1919  * each possible scheduling opportunity (each microframe), we will do so.  The
1920  * remaining number of packets will be saved to be transmitted in the gaps in
1921  * the next interval's scheduling sequence.
1922  *
1923  * As we move those remaining packets to be scheduled with interval 2 packets,
1924  * we have to double the number of remaining packets to transmit.  This is
1925  * because the intervals are actually powers of 2, and we would be transmitting
1926  * the previous interval's packets twice in this interval.  We also have to be
1927  * sure that when we look at the largest max packet size for this interval, we
1928  * also look at the largest max packet size for the remaining packets and take
1929  * the greater of the two.
1930  *
1931  * The algorithm continues to evenly distribute packets in each scheduling
1932  * opportunity, and push the remaining packets out, until we get to the last
1933  * interval.  Then those packets and their associated overhead are just added
1934  * to the bandwidth used.
1935  */
1936 static int xhci_check_bw_table(struct xhci_hcd *xhci,
1937                 struct xhci_virt_device *virt_dev,
1938                 int old_active_eps)
1939 {
1940         unsigned int bw_reserved;
1941         unsigned int max_bandwidth;
1942         unsigned int bw_used;
1943         unsigned int block_size;
1944         struct xhci_interval_bw_table *bw_table;
1945         unsigned int packet_size = 0;
1946         unsigned int overhead = 0;
1947         unsigned int packets_transmitted = 0;
1948         unsigned int packets_remaining = 0;
1949         unsigned int i;
1950
1951         if (virt_dev->udev->speed == USB_SPEED_SUPER)
1952                 return xhci_check_ss_bw(xhci, virt_dev);
1953
1954         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
1955                 max_bandwidth = HS_BW_LIMIT;
1956                 /* Convert percent of bus BW reserved to blocks reserved */
1957                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
1958         } else {
1959                 max_bandwidth = FS_BW_LIMIT;
1960                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
1961         }
1962
1963         bw_table = virt_dev->bw_table;
1964         /* We need to translate the max packet size and max ESIT payloads into
1965          * the units the hardware uses.
1966          */
1967         block_size = xhci_get_block_size(virt_dev->udev);
1968
1969         /* If we are manipulating a LS/FS device under a HS hub, double check
1970          * that the HS bus has enough bandwidth if we are activing a new TT.
1971          */
1972         if (virt_dev->tt_info) {
1973                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1974                                 virt_dev->real_port);
1975                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
1976                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
1977                                         "newly activated TT.\n");
1978                         return -ENOMEM;
1979                 }
1980                 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
1981                                 virt_dev->tt_info->slot_id,
1982                                 virt_dev->tt_info->ttport);
1983         } else {
1984                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1985                                 virt_dev->real_port);
1986         }
1987
1988         /* Add in how much bandwidth will be used for interval zero, or the
1989          * rounded max ESIT payload + number of packets * largest overhead.
1990          */
1991         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
1992                 bw_table->interval_bw[0].num_packets *
1993                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
1994
1995         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
1996                 unsigned int bw_added;
1997                 unsigned int largest_mps;
1998                 unsigned int interval_overhead;
1999
2000                 /*
2001                  * How many packets could we transmit in this interval?
2002                  * If packets didn't fit in the previous interval, we will need
2003                  * to transmit that many packets twice within this interval.
2004                  */
2005                 packets_remaining = 2 * packets_remaining +
2006                         bw_table->interval_bw[i].num_packets;
2007
2008                 /* Find the largest max packet size of this or the previous
2009                  * interval.
2010                  */
2011                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2012                         largest_mps = 0;
2013                 else {
2014                         struct xhci_virt_ep *virt_ep;
2015                         struct list_head *ep_entry;
2016
2017                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2018                         virt_ep = list_entry(ep_entry,
2019                                         struct xhci_virt_ep, bw_endpoint_list);
2020                         /* Convert to blocks, rounding up */
2021                         largest_mps = DIV_ROUND_UP(
2022                                         virt_ep->bw_info.max_packet_size,
2023                                         block_size);
2024                 }
2025                 if (largest_mps > packet_size)
2026                         packet_size = largest_mps;
2027
2028                 /* Use the larger overhead of this or the previous interval. */
2029                 interval_overhead = xhci_get_largest_overhead(
2030                                 &bw_table->interval_bw[i]);
2031                 if (interval_overhead > overhead)
2032                         overhead = interval_overhead;
2033
2034                 /* How many packets can we evenly distribute across
2035                  * (1 << (i + 1)) possible scheduling opportunities?
2036                  */
2037                 packets_transmitted = packets_remaining >> (i + 1);
2038
2039                 /* Add in the bandwidth used for those scheduled packets */
2040                 bw_added = packets_transmitted * (overhead + packet_size);
2041
2042                 /* How many packets do we have remaining to transmit? */
2043                 packets_remaining = packets_remaining % (1 << (i + 1));
2044
2045                 /* What largest max packet size should those packets have? */
2046                 /* If we've transmitted all packets, don't carry over the
2047                  * largest packet size.
2048                  */
2049                 if (packets_remaining == 0) {
2050                         packet_size = 0;
2051                         overhead = 0;
2052                 } else if (packets_transmitted > 0) {
2053                         /* Otherwise if we do have remaining packets, and we've
2054                          * scheduled some packets in this interval, take the
2055                          * largest max packet size from endpoints with this
2056                          * interval.
2057                          */
2058                         packet_size = largest_mps;
2059                         overhead = interval_overhead;
2060                 }
2061                 /* Otherwise carry over packet_size and overhead from the last
2062                  * time we had a remainder.
2063                  */
2064                 bw_used += bw_added;
2065                 if (bw_used > max_bandwidth) {
2066                         xhci_warn(xhci, "Not enough bandwidth. "
2067                                         "Proposed: %u, Max: %u\n",
2068                                 bw_used, max_bandwidth);
2069                         return -ENOMEM;
2070                 }
2071         }
2072         /*
2073          * Ok, we know we have some packets left over after even-handedly
2074          * scheduling interval 15.  We don't know which microframes they will
2075          * fit into, so we over-schedule and say they will be scheduled every
2076          * microframe.
2077          */
2078         if (packets_remaining > 0)
2079                 bw_used += overhead + packet_size;
2080
2081         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2082                 unsigned int port_index = virt_dev->real_port - 1;
2083
2084                 /* OK, we're manipulating a HS device attached to a
2085                  * root port bandwidth domain.  Include the number of active TTs
2086                  * in the bandwidth used.
2087                  */
2088                 bw_used += TT_HS_OVERHEAD *
2089                         xhci->rh_bw[port_index].num_active_tts;
2090         }
2091
2092         xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2093                 "Available: %u " "percent\n",
2094                 bw_used, max_bandwidth, bw_reserved,
2095                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2096                 max_bandwidth);
2097
2098         bw_used += bw_reserved;
2099         if (bw_used > max_bandwidth) {
2100                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2101                                 bw_used, max_bandwidth);
2102                 return -ENOMEM;
2103         }
2104
2105         bw_table->bw_used = bw_used;
2106         return 0;
2107 }
2108
2109 static bool xhci_is_async_ep(unsigned int ep_type)
2110 {
2111         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2112                                         ep_type != ISOC_IN_EP &&
2113                                         ep_type != INT_IN_EP);
2114 }
2115
2116 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2117 {
2118         return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
2119 }
2120
2121 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2122 {
2123         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2124
2125         if (ep_bw->ep_interval == 0)
2126                 return SS_OVERHEAD_BURST +
2127                         (ep_bw->mult * ep_bw->num_packets *
2128                                         (SS_OVERHEAD + mps));
2129         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2130                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2131                                 1 << ep_bw->ep_interval);
2132
2133 }
2134
2135 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2136                 struct xhci_bw_info *ep_bw,
2137                 struct xhci_interval_bw_table *bw_table,
2138                 struct usb_device *udev,
2139                 struct xhci_virt_ep *virt_ep,
2140                 struct xhci_tt_bw_info *tt_info)
2141 {
2142         struct xhci_interval_bw *interval_bw;
2143         int normalized_interval;
2144
2145         if (xhci_is_async_ep(ep_bw->type))
2146                 return;
2147
2148         if (udev->speed == USB_SPEED_SUPER) {
2149                 if (xhci_is_sync_in_ep(ep_bw->type))
2150                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2151                                 xhci_get_ss_bw_consumed(ep_bw);
2152                 else
2153                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2154                                 xhci_get_ss_bw_consumed(ep_bw);
2155                 return;
2156         }
2157
2158         /* SuperSpeed endpoints never get added to intervals in the table, so
2159          * this check is only valid for HS/FS/LS devices.
2160          */
2161         if (list_empty(&virt_ep->bw_endpoint_list))
2162                 return;
2163         /* For LS/FS devices, we need to translate the interval expressed in
2164          * microframes to frames.
2165          */
2166         if (udev->speed == USB_SPEED_HIGH)
2167                 normalized_interval = ep_bw->ep_interval;
2168         else
2169                 normalized_interval = ep_bw->ep_interval - 3;
2170
2171         if (normalized_interval == 0)
2172                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2173         interval_bw = &bw_table->interval_bw[normalized_interval];
2174         interval_bw->num_packets -= ep_bw->num_packets;
2175         switch (udev->speed) {
2176         case USB_SPEED_LOW:
2177                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2178                 break;
2179         case USB_SPEED_FULL:
2180                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2181                 break;
2182         case USB_SPEED_HIGH:
2183                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2184                 break;
2185         case USB_SPEED_SUPER:
2186         case USB_SPEED_UNKNOWN:
2187         case USB_SPEED_WIRELESS:
2188                 /* Should never happen because only LS/FS/HS endpoints will get
2189                  * added to the endpoint list.
2190                  */
2191                 return;
2192         }
2193         if (tt_info)
2194                 tt_info->active_eps -= 1;
2195         list_del_init(&virt_ep->bw_endpoint_list);
2196 }
2197
2198 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2199                 struct xhci_bw_info *ep_bw,
2200                 struct xhci_interval_bw_table *bw_table,
2201                 struct usb_device *udev,
2202                 struct xhci_virt_ep *virt_ep,
2203                 struct xhci_tt_bw_info *tt_info)
2204 {
2205         struct xhci_interval_bw *interval_bw;
2206         struct xhci_virt_ep *smaller_ep;
2207         int normalized_interval;
2208
2209         if (xhci_is_async_ep(ep_bw->type))
2210                 return;
2211
2212         if (udev->speed == USB_SPEED_SUPER) {
2213                 if (xhci_is_sync_in_ep(ep_bw->type))
2214                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2215                                 xhci_get_ss_bw_consumed(ep_bw);
2216                 else
2217                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2218                                 xhci_get_ss_bw_consumed(ep_bw);
2219                 return;
2220         }
2221
2222         /* For LS/FS devices, we need to translate the interval expressed in
2223          * microframes to frames.
2224          */
2225         if (udev->speed == USB_SPEED_HIGH)
2226                 normalized_interval = ep_bw->ep_interval;
2227         else
2228                 normalized_interval = ep_bw->ep_interval - 3;
2229
2230         if (normalized_interval == 0)
2231                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2232         interval_bw = &bw_table->interval_bw[normalized_interval];
2233         interval_bw->num_packets += ep_bw->num_packets;
2234         switch (udev->speed) {
2235         case USB_SPEED_LOW:
2236                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2237                 break;
2238         case USB_SPEED_FULL:
2239                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2240                 break;
2241         case USB_SPEED_HIGH:
2242                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2243                 break;
2244         case USB_SPEED_SUPER:
2245         case USB_SPEED_UNKNOWN:
2246         case USB_SPEED_WIRELESS:
2247                 /* Should never happen because only LS/FS/HS endpoints will get
2248                  * added to the endpoint list.
2249                  */
2250                 return;
2251         }
2252
2253         if (tt_info)
2254                 tt_info->active_eps += 1;
2255         /* Insert the endpoint into the list, largest max packet size first. */
2256         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2257                         bw_endpoint_list) {
2258                 if (ep_bw->max_packet_size >=
2259                                 smaller_ep->bw_info.max_packet_size) {
2260                         /* Add the new ep before the smaller endpoint */
2261                         list_add_tail(&virt_ep->bw_endpoint_list,
2262                                         &smaller_ep->bw_endpoint_list);
2263                         return;
2264                 }
2265         }
2266         /* Add the new endpoint at the end of the list. */
2267         list_add_tail(&virt_ep->bw_endpoint_list,
2268                         &interval_bw->endpoints);
2269 }
2270
2271 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2272                 struct xhci_virt_device *virt_dev,
2273                 int old_active_eps)
2274 {
2275         struct xhci_root_port_bw_info *rh_bw_info;
2276         if (!virt_dev->tt_info)
2277                 return;
2278
2279         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2280         if (old_active_eps == 0 &&
2281                                 virt_dev->tt_info->active_eps != 0) {
2282                 rh_bw_info->num_active_tts += 1;
2283                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2284         } else if (old_active_eps != 0 &&
2285                                 virt_dev->tt_info->active_eps == 0) {
2286                 rh_bw_info->num_active_tts -= 1;
2287                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2288         }
2289 }
2290
2291 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2292                 struct xhci_virt_device *virt_dev,
2293                 struct xhci_container_ctx *in_ctx)
2294 {
2295         struct xhci_bw_info ep_bw_info[31];
2296         int i;
2297         struct xhci_input_control_ctx *ctrl_ctx;
2298         int old_active_eps = 0;
2299
2300         if (virt_dev->tt_info)
2301                 old_active_eps = virt_dev->tt_info->active_eps;
2302
2303         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2304
2305         for (i = 0; i < 31; i++) {
2306                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2307                         continue;
2308
2309                 /* Make a copy of the BW info in case we need to revert this */
2310                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2311                                 sizeof(ep_bw_info[i]));
2312                 /* Drop the endpoint from the interval table if the endpoint is
2313                  * being dropped or changed.
2314                  */
2315                 if (EP_IS_DROPPED(ctrl_ctx, i))
2316                         xhci_drop_ep_from_interval_table(xhci,
2317                                         &virt_dev->eps[i].bw_info,
2318                                         virt_dev->bw_table,
2319                                         virt_dev->udev,
2320                                         &virt_dev->eps[i],
2321                                         virt_dev->tt_info);
2322         }
2323         /* Overwrite the information stored in the endpoints' bw_info */
2324         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2325         for (i = 0; i < 31; i++) {
2326                 /* Add any changed or added endpoints to the interval table */
2327                 if (EP_IS_ADDED(ctrl_ctx, i))
2328                         xhci_add_ep_to_interval_table(xhci,
2329                                         &virt_dev->eps[i].bw_info,
2330                                         virt_dev->bw_table,
2331                                         virt_dev->udev,
2332                                         &virt_dev->eps[i],
2333                                         virt_dev->tt_info);
2334         }
2335
2336         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2337                 /* Ok, this fits in the bandwidth we have.
2338                  * Update the number of active TTs.
2339                  */
2340                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2341                 return 0;
2342         }
2343
2344         /* We don't have enough bandwidth for this, revert the stored info. */
2345         for (i = 0; i < 31; i++) {
2346                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2347                         continue;
2348
2349                 /* Drop the new copies of any added or changed endpoints from
2350                  * the interval table.
2351                  */
2352                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2353                         xhci_drop_ep_from_interval_table(xhci,
2354                                         &virt_dev->eps[i].bw_info,
2355                                         virt_dev->bw_table,
2356                                         virt_dev->udev,
2357                                         &virt_dev->eps[i],
2358                                         virt_dev->tt_info);
2359                 }
2360                 /* Revert the endpoint back to its old information */
2361                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2362                                 sizeof(ep_bw_info[i]));
2363                 /* Add any changed or dropped endpoints back into the table */
2364                 if (EP_IS_DROPPED(ctrl_ctx, i))
2365                         xhci_add_ep_to_interval_table(xhci,
2366                                         &virt_dev->eps[i].bw_info,
2367                                         virt_dev->bw_table,
2368                                         virt_dev->udev,
2369                                         &virt_dev->eps[i],
2370                                         virt_dev->tt_info);
2371         }
2372         return -ENOMEM;
2373 }
2374
2375
2376 /* Issue a configure endpoint command or evaluate context command
2377  * and wait for it to finish.
2378  */
2379 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2380                 struct usb_device *udev,
2381                 struct xhci_command *command,
2382                 bool ctx_change, bool must_succeed)
2383 {
2384         int ret;
2385         int timeleft;
2386         unsigned long flags;
2387         struct xhci_container_ctx *in_ctx;
2388         struct completion *cmd_completion;
2389         u32 *cmd_status;
2390         struct xhci_virt_device *virt_dev;
2391
2392         spin_lock_irqsave(&xhci->lock, flags);
2393         virt_dev = xhci->devs[udev->slot_id];
2394
2395         if (command)
2396                 in_ctx = command->in_ctx;
2397         else
2398                 in_ctx = virt_dev->in_ctx;
2399
2400         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2401                         xhci_reserve_host_resources(xhci, in_ctx)) {
2402                 spin_unlock_irqrestore(&xhci->lock, flags);
2403                 xhci_warn(xhci, "Not enough host resources, "
2404                                 "active endpoint contexts = %u\n",
2405                                 xhci->num_active_eps);
2406                 return -ENOMEM;
2407         }
2408         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2409                         xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2410                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2411                         xhci_free_host_resources(xhci, in_ctx);
2412                 spin_unlock_irqrestore(&xhci->lock, flags);
2413                 xhci_warn(xhci, "Not enough bandwidth\n");
2414                 return -ENOMEM;
2415         }
2416
2417         if (command) {
2418                 cmd_completion = command->completion;
2419                 cmd_status = &command->status;
2420                 command->command_trb = xhci->cmd_ring->enqueue;
2421
2422                 /* Enqueue pointer can be left pointing to the link TRB,
2423                  * we must handle that
2424                  */
2425                 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2426                         command->command_trb =
2427                                 xhci->cmd_ring->enq_seg->next->trbs;
2428
2429                 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2430         } else {
2431                 cmd_completion = &virt_dev->cmd_completion;
2432                 cmd_status = &virt_dev->cmd_status;
2433         }
2434         init_completion(cmd_completion);
2435
2436         if (!ctx_change)
2437                 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2438                                 udev->slot_id, must_succeed);
2439         else
2440                 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2441                                 udev->slot_id);
2442         if (ret < 0) {
2443                 if (command)
2444                         list_del(&command->cmd_list);
2445                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2446                         xhci_free_host_resources(xhci, in_ctx);
2447                 spin_unlock_irqrestore(&xhci->lock, flags);
2448                 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2449                 return -ENOMEM;
2450         }
2451         xhci_ring_cmd_db(xhci);
2452         spin_unlock_irqrestore(&xhci->lock, flags);
2453
2454         /* Wait for the configure endpoint command to complete */
2455         timeleft = wait_for_completion_interruptible_timeout(
2456                         cmd_completion,
2457                         USB_CTRL_SET_TIMEOUT);
2458         if (timeleft <= 0) {
2459                 xhci_warn(xhci, "%s while waiting for %s command\n",
2460                                 timeleft == 0 ? "Timeout" : "Signal",
2461                                 ctx_change == 0 ?
2462                                         "configure endpoint" :
2463                                         "evaluate context");
2464                 /* FIXME cancel the configure endpoint command */
2465                 return -ETIME;
2466         }
2467
2468         if (!ctx_change)
2469                 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2470         else
2471                 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2472
2473         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2474                 spin_lock_irqsave(&xhci->lock, flags);
2475                 /* If the command failed, remove the reserved resources.
2476                  * Otherwise, clean up the estimate to include dropped eps.
2477                  */
2478                 if (ret)
2479                         xhci_free_host_resources(xhci, in_ctx);
2480                 else
2481                         xhci_finish_resource_reservation(xhci, in_ctx);
2482                 spin_unlock_irqrestore(&xhci->lock, flags);
2483         }
2484         return ret;
2485 }
2486
2487 /* Called after one or more calls to xhci_add_endpoint() or
2488  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2489  * to call xhci_reset_bandwidth().
2490  *
2491  * Since we are in the middle of changing either configuration or
2492  * installing a new alt setting, the USB core won't allow URBs to be
2493  * enqueued for any endpoint on the old config or interface.  Nothing
2494  * else should be touching the xhci->devs[slot_id] structure, so we
2495  * don't need to take the xhci->lock for manipulating that.
2496  */
2497 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2498 {
2499         int i;
2500         int ret = 0;
2501         struct xhci_hcd *xhci;
2502         struct xhci_virt_device *virt_dev;
2503         struct xhci_input_control_ctx *ctrl_ctx;
2504         struct xhci_slot_ctx *slot_ctx;
2505
2506         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2507         if (ret <= 0)
2508                 return ret;
2509         xhci = hcd_to_xhci(hcd);
2510         if (xhci->xhc_state & XHCI_STATE_DYING)
2511                 return -ENODEV;
2512
2513         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2514         virt_dev = xhci->devs[udev->slot_id];
2515
2516         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2517         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2518         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2519         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2520         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2521
2522         /* Don't issue the command if there's no endpoints to update. */
2523         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2524                         ctrl_ctx->drop_flags == 0)
2525                 return 0;
2526
2527         xhci_dbg(xhci, "New Input Control Context:\n");
2528         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2529         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2530                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2531
2532         ret = xhci_configure_endpoint(xhci, udev, NULL,
2533                         false, false);
2534         if (ret) {
2535                 /* Callee should call reset_bandwidth() */
2536                 return ret;
2537         }
2538
2539         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2540         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2541                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2542
2543         /* Free any rings that were dropped, but not changed. */
2544         for (i = 1; i < 31; ++i) {
2545                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2546                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2547                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2548         }
2549         xhci_zero_in_ctx(xhci, virt_dev);
2550         /*
2551          * Install any rings for completely new endpoints or changed endpoints,
2552          * and free or cache any old rings from changed endpoints.
2553          */
2554         for (i = 1; i < 31; ++i) {
2555                 if (!virt_dev->eps[i].new_ring)
2556                         continue;
2557                 /* Only cache or free the old ring if it exists.
2558                  * It may not if this is the first add of an endpoint.
2559                  */
2560                 if (virt_dev->eps[i].ring) {
2561                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2562                 }
2563                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2564                 virt_dev->eps[i].new_ring = NULL;
2565         }
2566
2567         return ret;
2568 }
2569
2570 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2571 {
2572         struct xhci_hcd *xhci;
2573         struct xhci_virt_device *virt_dev;
2574         int i, ret;
2575
2576         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2577         if (ret <= 0)
2578                 return;
2579         xhci = hcd_to_xhci(hcd);
2580
2581         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2582         virt_dev = xhci->devs[udev->slot_id];
2583         /* Free any rings allocated for added endpoints */
2584         for (i = 0; i < 31; ++i) {
2585                 if (virt_dev->eps[i].new_ring) {
2586                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2587                         virt_dev->eps[i].new_ring = NULL;
2588                 }
2589         }
2590         xhci_zero_in_ctx(xhci, virt_dev);
2591 }
2592
2593 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2594                 struct xhci_container_ctx *in_ctx,
2595                 struct xhci_container_ctx *out_ctx,
2596                 u32 add_flags, u32 drop_flags)
2597 {
2598         struct xhci_input_control_ctx *ctrl_ctx;
2599         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2600         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2601         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2602         xhci_slot_copy(xhci, in_ctx, out_ctx);
2603         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2604
2605         xhci_dbg(xhci, "Input Context:\n");
2606         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2607 }
2608
2609 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2610                 unsigned int slot_id, unsigned int ep_index,
2611                 struct xhci_dequeue_state *deq_state)
2612 {
2613         struct xhci_container_ctx *in_ctx;
2614         struct xhci_ep_ctx *ep_ctx;
2615         u32 added_ctxs;
2616         dma_addr_t addr;
2617
2618         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2619                         xhci->devs[slot_id]->out_ctx, ep_index);
2620         in_ctx = xhci->devs[slot_id]->in_ctx;
2621         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2622         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2623                         deq_state->new_deq_ptr);
2624         if (addr == 0) {
2625                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2626                                 "reset ep command\n");
2627                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2628                                 deq_state->new_deq_seg,
2629                                 deq_state->new_deq_ptr);
2630                 return;
2631         }
2632         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2633
2634         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2635         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2636                         xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2637 }
2638
2639 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2640                 struct usb_device *udev, unsigned int ep_index)
2641 {
2642         struct xhci_dequeue_state deq_state;
2643         struct xhci_virt_ep *ep;
2644
2645         xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2646         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2647         /* We need to move the HW's dequeue pointer past this TD,
2648          * or it will attempt to resend it on the next doorbell ring.
2649          */
2650         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2651                         ep_index, ep->stopped_stream, ep->stopped_td,
2652                         &deq_state);
2653
2654         /* HW with the reset endpoint quirk will use the saved dequeue state to
2655          * issue a configure endpoint command later.
2656          */
2657         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2658                 xhci_dbg(xhci, "Queueing new dequeue state\n");
2659                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2660                                 ep_index, ep->stopped_stream, &deq_state);
2661         } else {
2662                 /* Better hope no one uses the input context between now and the
2663                  * reset endpoint completion!
2664                  * XXX: No idea how this hardware will react when stream rings
2665                  * are enabled.
2666                  */
2667                 xhci_dbg(xhci, "Setting up input context for "
2668                                 "configure endpoint command\n");
2669                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2670                                 ep_index, &deq_state);
2671         }
2672 }
2673
2674 /* Deal with stalled endpoints.  The core should have sent the control message
2675  * to clear the halt condition.  However, we need to make the xHCI hardware
2676  * reset its sequence number, since a device will expect a sequence number of
2677  * zero after the halt condition is cleared.
2678  * Context: in_interrupt
2679  */
2680 void xhci_endpoint_reset(struct usb_hcd *hcd,
2681                 struct usb_host_endpoint *ep)
2682 {
2683         struct xhci_hcd *xhci;
2684         struct usb_device *udev;
2685         unsigned int ep_index;
2686         unsigned long flags;
2687         int ret;
2688         struct xhci_virt_ep *virt_ep;
2689
2690         xhci = hcd_to_xhci(hcd);
2691         udev = (struct usb_device *) ep->hcpriv;
2692         /* Called with a root hub endpoint (or an endpoint that wasn't added
2693          * with xhci_add_endpoint()
2694          */
2695         if (!ep->hcpriv)
2696                 return;
2697         ep_index = xhci_get_endpoint_index(&ep->desc);
2698         virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2699         if (!virt_ep->stopped_td) {
2700                 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2701                                 ep->desc.bEndpointAddress);
2702                 return;
2703         }
2704         if (usb_endpoint_xfer_control(&ep->desc)) {
2705                 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2706                 return;
2707         }
2708
2709         xhci_dbg(xhci, "Queueing reset endpoint command\n");
2710         spin_lock_irqsave(&xhci->lock, flags);
2711         ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2712         /*
2713          * Can't change the ring dequeue pointer until it's transitioned to the
2714          * stopped state, which is only upon a successful reset endpoint
2715          * command.  Better hope that last command worked!
2716          */
2717         if (!ret) {
2718                 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2719                 kfree(virt_ep->stopped_td);
2720                 xhci_ring_cmd_db(xhci);
2721         }
2722         virt_ep->stopped_td = NULL;
2723         virt_ep->stopped_trb = NULL;
2724         virt_ep->stopped_stream = 0;
2725         spin_unlock_irqrestore(&xhci->lock, flags);
2726
2727         if (ret)
2728                 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2729 }
2730
2731 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2732                 struct usb_device *udev, struct usb_host_endpoint *ep,
2733                 unsigned int slot_id)
2734 {
2735         int ret;
2736         unsigned int ep_index;
2737         unsigned int ep_state;
2738
2739         if (!ep)
2740                 return -EINVAL;
2741         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2742         if (ret <= 0)
2743                 return -EINVAL;
2744         if (ep->ss_ep_comp.bmAttributes == 0) {
2745                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2746                                 " descriptor for ep 0x%x does not support streams\n",
2747                                 ep->desc.bEndpointAddress);
2748                 return -EINVAL;
2749         }
2750
2751         ep_index = xhci_get_endpoint_index(&ep->desc);
2752         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2753         if (ep_state & EP_HAS_STREAMS ||
2754                         ep_state & EP_GETTING_STREAMS) {
2755                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2756                                 "already has streams set up.\n",
2757                                 ep->desc.bEndpointAddress);
2758                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2759                                 "dynamic stream context array reallocation.\n");
2760                 return -EINVAL;
2761         }
2762         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2763                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2764                                 "endpoint 0x%x; URBs are pending.\n",
2765                                 ep->desc.bEndpointAddress);
2766                 return -EINVAL;
2767         }
2768         return 0;
2769 }
2770
2771 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2772                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2773 {
2774         unsigned int max_streams;
2775
2776         /* The stream context array size must be a power of two */
2777         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2778         /*
2779          * Find out how many primary stream array entries the host controller
2780          * supports.  Later we may use secondary stream arrays (similar to 2nd
2781          * level page entries), but that's an optional feature for xHCI host
2782          * controllers. xHCs must support at least 4 stream IDs.
2783          */
2784         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2785         if (*num_stream_ctxs > max_streams) {
2786                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2787                                 max_streams);
2788                 *num_stream_ctxs = max_streams;
2789                 *num_streams = max_streams;
2790         }
2791 }
2792
2793 /* Returns an error code if one of the endpoint already has streams.
2794  * This does not change any data structures, it only checks and gathers
2795  * information.
2796  */
2797 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2798                 struct usb_device *udev,
2799                 struct usb_host_endpoint **eps, unsigned int num_eps,
2800                 unsigned int *num_streams, u32 *changed_ep_bitmask)
2801 {
2802         unsigned int max_streams;
2803         unsigned int endpoint_flag;
2804         int i;
2805         int ret;
2806
2807         for (i = 0; i < num_eps; i++) {
2808                 ret = xhci_check_streams_endpoint(xhci, udev,
2809                                 eps[i], udev->slot_id);
2810                 if (ret < 0)
2811                         return ret;
2812
2813                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2814                 if (max_streams < (*num_streams - 1)) {
2815                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2816                                         eps[i]->desc.bEndpointAddress,
2817                                         max_streams);
2818                         *num_streams = max_streams+1;
2819                 }
2820
2821                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2822                 if (*changed_ep_bitmask & endpoint_flag)
2823                         return -EINVAL;
2824                 *changed_ep_bitmask |= endpoint_flag;
2825         }
2826         return 0;
2827 }
2828
2829 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2830                 struct usb_device *udev,
2831                 struct usb_host_endpoint **eps, unsigned int num_eps)
2832 {
2833         u32 changed_ep_bitmask = 0;
2834         unsigned int slot_id;
2835         unsigned int ep_index;
2836         unsigned int ep_state;
2837         int i;
2838
2839         slot_id = udev->slot_id;
2840         if (!xhci->devs[slot_id])
2841                 return 0;
2842
2843         for (i = 0; i < num_eps; i++) {
2844                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2845                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2846                 /* Are streams already being freed for the endpoint? */
2847                 if (ep_state & EP_GETTING_NO_STREAMS) {
2848                         xhci_warn(xhci, "WARN Can't disable streams for "
2849                                         "endpoint 0x%x\n, "
2850                                         "streams are being disabled already.",
2851                                         eps[i]->desc.bEndpointAddress);
2852                         return 0;
2853                 }
2854                 /* Are there actually any streams to free? */
2855                 if (!(ep_state & EP_HAS_STREAMS) &&
2856                                 !(ep_state & EP_GETTING_STREAMS)) {
2857                         xhci_warn(xhci, "WARN Can't disable streams for "
2858                                         "endpoint 0x%x\n, "
2859                                         "streams are already disabled!",
2860                                         eps[i]->desc.bEndpointAddress);
2861                         xhci_warn(xhci, "WARN xhci_free_streams() called "
2862                                         "with non-streams endpoint\n");
2863                         return 0;
2864                 }
2865                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2866         }
2867         return changed_ep_bitmask;
2868 }
2869
2870 /*
2871  * The USB device drivers use this function (though the HCD interface in USB
2872  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
2873  * coordinate mass storage command queueing across multiple endpoints (basically
2874  * a stream ID == a task ID).
2875  *
2876  * Setting up streams involves allocating the same size stream context array
2877  * for each endpoint and issuing a configure endpoint command for all endpoints.
2878  *
2879  * Don't allow the call to succeed if one endpoint only supports one stream
2880  * (which means it doesn't support streams at all).
2881  *
2882  * Drivers may get less stream IDs than they asked for, if the host controller
2883  * hardware or endpoints claim they can't support the number of requested
2884  * stream IDs.
2885  */
2886 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
2887                 struct usb_host_endpoint **eps, unsigned int num_eps,
2888                 unsigned int num_streams, gfp_t mem_flags)
2889 {
2890         int i, ret;
2891         struct xhci_hcd *xhci;
2892         struct xhci_virt_device *vdev;
2893         struct xhci_command *config_cmd;
2894         unsigned int ep_index;
2895         unsigned int num_stream_ctxs;
2896         unsigned long flags;
2897         u32 changed_ep_bitmask = 0;
2898
2899         if (!eps)
2900                 return -EINVAL;
2901
2902         /* Add one to the number of streams requested to account for
2903          * stream 0 that is reserved for xHCI usage.
2904          */
2905         num_streams += 1;
2906         xhci = hcd_to_xhci(hcd);
2907         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
2908                         num_streams);
2909
2910         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2911         if (!config_cmd) {
2912                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2913                 return -ENOMEM;
2914         }
2915
2916         /* Check to make sure all endpoints are not already configured for
2917          * streams.  While we're at it, find the maximum number of streams that
2918          * all the endpoints will support and check for duplicate endpoints.
2919          */
2920         spin_lock_irqsave(&xhci->lock, flags);
2921         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2922                         num_eps, &num_streams, &changed_ep_bitmask);
2923         if (ret < 0) {
2924                 xhci_free_command(xhci, config_cmd);
2925                 spin_unlock_irqrestore(&xhci->lock, flags);
2926                 return ret;
2927         }
2928         if (num_streams <= 1) {
2929                 xhci_warn(xhci, "WARN: endpoints can't handle "
2930                                 "more than one stream.\n");
2931                 xhci_free_command(xhci, config_cmd);
2932                 spin_unlock_irqrestore(&xhci->lock, flags);
2933                 return -EINVAL;
2934         }
2935         vdev = xhci->devs[udev->slot_id];
2936         /* Mark each endpoint as being in transition, so
2937          * xhci_urb_enqueue() will reject all URBs.
2938          */
2939         for (i = 0; i < num_eps; i++) {
2940                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2941                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2942         }
2943         spin_unlock_irqrestore(&xhci->lock, flags);
2944
2945         /* Setup internal data structures and allocate HW data structures for
2946          * streams (but don't install the HW structures in the input context
2947          * until we're sure all memory allocation succeeded).
2948          */
2949         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2950         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2951                         num_stream_ctxs, num_streams);
2952
2953         for (i = 0; i < num_eps; i++) {
2954                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2955                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2956                                 num_stream_ctxs,
2957                                 num_streams, mem_flags);
2958                 if (!vdev->eps[ep_index].stream_info)
2959                         goto cleanup;
2960                 /* Set maxPstreams in endpoint context and update deq ptr to
2961                  * point to stream context array. FIXME
2962                  */
2963         }
2964
2965         /* Set up the input context for a configure endpoint command. */
2966         for (i = 0; i < num_eps; i++) {
2967                 struct xhci_ep_ctx *ep_ctx;
2968
2969                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2970                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2971
2972                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2973                                 vdev->out_ctx, ep_index);
2974                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2975                                 vdev->eps[ep_index].stream_info);
2976         }
2977         /* Tell the HW to drop its old copy of the endpoint context info
2978          * and add the updated copy from the input context.
2979          */
2980         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2981                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2982
2983         /* Issue and wait for the configure endpoint command */
2984         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2985                         false, false);
2986
2987         /* xHC rejected the configure endpoint command for some reason, so we
2988          * leave the old ring intact and free our internal streams data
2989          * structure.
2990          */
2991         if (ret < 0)
2992                 goto cleanup;
2993
2994         spin_lock_irqsave(&xhci->lock, flags);
2995         for (i = 0; i < num_eps; i++) {
2996                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2997                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2998                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
2999                          udev->slot_id, ep_index);
3000                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3001         }
3002         xhci_free_command(xhci, config_cmd);
3003         spin_unlock_irqrestore(&xhci->lock, flags);
3004
3005         /* Subtract 1 for stream 0, which drivers can't use */
3006         return num_streams - 1;
3007
3008 cleanup:
3009         /* If it didn't work, free the streams! */
3010         for (i = 0; i < num_eps; i++) {
3011                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3012                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3013                 vdev->eps[ep_index].stream_info = NULL;
3014                 /* FIXME Unset maxPstreams in endpoint context and
3015                  * update deq ptr to point to normal string ring.
3016                  */
3017                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3018                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3019                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3020         }
3021         xhci_free_command(xhci, config_cmd);
3022         return -ENOMEM;
3023 }
3024
3025 /* Transition the endpoint from using streams to being a "normal" endpoint
3026  * without streams.
3027  *
3028  * Modify the endpoint context state, submit a configure endpoint command,
3029  * and free all endpoint rings for streams if that completes successfully.
3030  */
3031 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3032                 struct usb_host_endpoint **eps, unsigned int num_eps,
3033                 gfp_t mem_flags)
3034 {
3035         int i, ret;
3036         struct xhci_hcd *xhci;
3037         struct xhci_virt_device *vdev;
3038         struct xhci_command *command;
3039         unsigned int ep_index;
3040         unsigned long flags;
3041         u32 changed_ep_bitmask;
3042
3043         xhci = hcd_to_xhci(hcd);
3044         vdev = xhci->devs[udev->slot_id];
3045
3046         /* Set up a configure endpoint command to remove the streams rings */
3047         spin_lock_irqsave(&xhci->lock, flags);
3048         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3049                         udev, eps, num_eps);
3050         if (changed_ep_bitmask == 0) {
3051                 spin_unlock_irqrestore(&xhci->lock, flags);
3052                 return -EINVAL;
3053         }
3054
3055         /* Use the xhci_command structure from the first endpoint.  We may have
3056          * allocated too many, but the driver may call xhci_free_streams() for
3057          * each endpoint it grouped into one call to xhci_alloc_streams().
3058          */
3059         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3060         command = vdev->eps[ep_index].stream_info->free_streams_command;
3061         for (i = 0; i < num_eps; i++) {
3062                 struct xhci_ep_ctx *ep_ctx;
3063
3064                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3065                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3066                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3067                         EP_GETTING_NO_STREAMS;
3068
3069                 xhci_endpoint_copy(xhci, command->in_ctx,
3070                                 vdev->out_ctx, ep_index);
3071                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3072                                 &vdev->eps[ep_index]);
3073         }
3074         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3075                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3076         spin_unlock_irqrestore(&xhci->lock, flags);
3077
3078         /* Issue and wait for the configure endpoint command,
3079          * which must succeed.
3080          */
3081         ret = xhci_configure_endpoint(xhci, udev, command,
3082                         false, true);
3083
3084         /* xHC rejected the configure endpoint command for some reason, so we
3085          * leave the streams rings intact.
3086          */
3087         if (ret < 0)
3088                 return ret;
3089
3090         spin_lock_irqsave(&xhci->lock, flags);
3091         for (i = 0; i < num_eps; i++) {
3092                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3093                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3094                 vdev->eps[ep_index].stream_info = NULL;
3095                 /* FIXME Unset maxPstreams in endpoint context and
3096                  * update deq ptr to point to normal string ring.
3097                  */
3098                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3099                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3100         }
3101         spin_unlock_irqrestore(&xhci->lock, flags);
3102
3103         return 0;
3104 }
3105
3106 /*
3107  * Deletes endpoint resources for endpoints that were active before a Reset
3108  * Device command, or a Disable Slot command.  The Reset Device command leaves
3109  * the control endpoint intact, whereas the Disable Slot command deletes it.
3110  *
3111  * Must be called with xhci->lock held.
3112  */
3113 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3114         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3115 {
3116         int i;
3117         unsigned int num_dropped_eps = 0;
3118         unsigned int drop_flags = 0;
3119
3120         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3121                 if (virt_dev->eps[i].ring) {
3122                         drop_flags |= 1 << i;
3123                         num_dropped_eps++;
3124                 }
3125         }
3126         xhci->num_active_eps -= num_dropped_eps;
3127         if (num_dropped_eps)
3128                 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3129                                 "%u now active.\n",
3130                                 num_dropped_eps, drop_flags,
3131                                 xhci->num_active_eps);
3132 }
3133
3134 /*
3135  * This submits a Reset Device Command, which will set the device state to 0,
3136  * set the device address to 0, and disable all the endpoints except the default
3137  * control endpoint.  The USB core should come back and call
3138  * xhci_address_device(), and then re-set up the configuration.  If this is
3139  * called because of a usb_reset_and_verify_device(), then the old alternate
3140  * settings will be re-installed through the normal bandwidth allocation
3141  * functions.
3142  *
3143  * Wait for the Reset Device command to finish.  Remove all structures
3144  * associated with the endpoints that were disabled.  Clear the input device
3145  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3146  *
3147  * If the virt_dev to be reset does not exist or does not match the udev,
3148  * it means the device is lost, possibly due to the xHC restore error and
3149  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3150  * re-allocate the device.
3151  */
3152 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3153 {
3154         int ret, i;
3155         unsigned long flags;
3156         struct xhci_hcd *xhci;
3157         unsigned int slot_id;
3158         struct xhci_virt_device *virt_dev;
3159         struct xhci_command *reset_device_cmd;
3160         int timeleft;
3161         int last_freed_endpoint;
3162         struct xhci_slot_ctx *slot_ctx;
3163         int old_active_eps = 0;
3164
3165         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3166         if (ret <= 0)
3167                 return ret;
3168         xhci = hcd_to_xhci(hcd);
3169         slot_id = udev->slot_id;
3170         virt_dev = xhci->devs[slot_id];
3171         if (!virt_dev) {
3172                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3173                                 "not exist. Re-allocate the device\n", slot_id);
3174                 ret = xhci_alloc_dev(hcd, udev);
3175                 if (ret == 1)
3176                         return 0;
3177                 else
3178                         return -EINVAL;
3179         }
3180
3181         if (virt_dev->udev != udev) {
3182                 /* If the virt_dev and the udev does not match, this virt_dev
3183                  * may belong to another udev.
3184                  * Re-allocate the device.
3185                  */
3186                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3187                                 "not match the udev. Re-allocate the device\n",
3188                                 slot_id);
3189                 ret = xhci_alloc_dev(hcd, udev);
3190                 if (ret == 1)
3191                         return 0;
3192                 else
3193                         return -EINVAL;
3194         }
3195
3196         /* If device is not setup, there is no point in resetting it */
3197         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3198         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3199                                                 SLOT_STATE_DISABLED)
3200                 return 0;
3201
3202         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3203         /* Allocate the command structure that holds the struct completion.
3204          * Assume we're in process context, since the normal device reset
3205          * process has to wait for the device anyway.  Storage devices are
3206          * reset as part of error handling, so use GFP_NOIO instead of
3207          * GFP_KERNEL.
3208          */
3209         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3210         if (!reset_device_cmd) {
3211                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3212                 return -ENOMEM;
3213         }
3214
3215         /* Attempt to submit the Reset Device command to the command ring */
3216         spin_lock_irqsave(&xhci->lock, flags);
3217         reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3218
3219         /* Enqueue pointer can be left pointing to the link TRB,
3220          * we must handle that
3221          */
3222         if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3223                 reset_device_cmd->command_trb =
3224                         xhci->cmd_ring->enq_seg->next->trbs;
3225
3226         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3227         ret = xhci_queue_reset_device(xhci, slot_id);
3228         if (ret) {
3229                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3230                 list_del(&reset_device_cmd->cmd_list);
3231                 spin_unlock_irqrestore(&xhci->lock, flags);
3232                 goto command_cleanup;
3233         }
3234         xhci_ring_cmd_db(xhci);
3235         spin_unlock_irqrestore(&xhci->lock, flags);
3236
3237         /* Wait for the Reset Device command to finish */
3238         timeleft = wait_for_completion_interruptible_timeout(
3239                         reset_device_cmd->completion,
3240                         USB_CTRL_SET_TIMEOUT);
3241         if (timeleft <= 0) {
3242                 xhci_warn(xhci, "%s while waiting for reset device command\n",
3243                                 timeleft == 0 ? "Timeout" : "Signal");
3244                 spin_lock_irqsave(&xhci->lock, flags);
3245                 /* The timeout might have raced with the event ring handler, so
3246                  * only delete from the list if the item isn't poisoned.
3247                  */
3248                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3249                         list_del(&reset_device_cmd->cmd_list);
3250                 spin_unlock_irqrestore(&xhci->lock, flags);
3251                 ret = -ETIME;
3252                 goto command_cleanup;
3253         }
3254
3255         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3256          * unless we tried to reset a slot ID that wasn't enabled,
3257          * or the device wasn't in the addressed or configured state.
3258          */
3259         ret = reset_device_cmd->status;
3260         switch (ret) {
3261         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3262         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3263                 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3264                                 slot_id,
3265                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3266                 xhci_info(xhci, "Not freeing device rings.\n");
3267                 /* Don't treat this as an error.  May change my mind later. */
3268                 ret = 0;
3269                 goto command_cleanup;
3270         case COMP_SUCCESS:
3271                 xhci_dbg(xhci, "Successful reset device command.\n");
3272                 break;
3273         default:
3274                 if (xhci_is_vendor_info_code(xhci, ret))
3275                         break;
3276                 xhci_warn(xhci, "Unknown completion code %u for "
3277                                 "reset device command.\n", ret);
3278                 ret = -EINVAL;
3279                 goto command_cleanup;
3280         }
3281
3282         /* Free up host controller endpoint resources */
3283         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3284                 spin_lock_irqsave(&xhci->lock, flags);
3285                 /* Don't delete the default control endpoint resources */
3286                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3287                 spin_unlock_irqrestore(&xhci->lock, flags);
3288         }
3289
3290         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3291         last_freed_endpoint = 1;
3292         for (i = 1; i < 31; ++i) {
3293                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3294
3295                 if (ep->ep_state & EP_HAS_STREAMS) {
3296                         xhci_free_stream_info(xhci, ep->stream_info);
3297                         ep->stream_info = NULL;
3298                         ep->ep_state &= ~EP_HAS_STREAMS;
3299                 }
3300
3301                 if (ep->ring) {
3302                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3303                         last_freed_endpoint = i;
3304                 }
3305                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3306                         xhci_drop_ep_from_interval_table(xhci,
3307                                         &virt_dev->eps[i].bw_info,
3308                                         virt_dev->bw_table,
3309                                         udev,
3310                                         &virt_dev->eps[i],
3311                                         virt_dev->tt_info);
3312                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3313         }
3314         /* If necessary, update the number of active TTs on this root port */
3315         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3316
3317         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3318         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3319         ret = 0;
3320
3321 command_cleanup:
3322         xhci_free_command(xhci, reset_device_cmd);
3323         return ret;
3324 }
3325
3326 /*
3327  * At this point, the struct usb_device is about to go away, the device has
3328  * disconnected, and all traffic has been stopped and the endpoints have been
3329  * disabled.  Free any HC data structures associated with that device.
3330  */
3331 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3332 {
3333         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3334         struct xhci_virt_device *virt_dev;
3335         unsigned long flags;
3336         u32 state;
3337         int i, ret;
3338
3339         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3340         /* If the host is halted due to driver unload, we still need to free the
3341          * device.
3342          */
3343         if (ret <= 0 && ret != -ENODEV)
3344                 return;
3345
3346         virt_dev = xhci->devs[udev->slot_id];
3347
3348         /* Stop any wayward timer functions (which may grab the lock) */
3349         for (i = 0; i < 31; ++i) {
3350                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3351                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3352         }
3353
3354         if (udev->usb2_hw_lpm_enabled) {
3355                 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3356                 udev->usb2_hw_lpm_enabled = 0;
3357         }
3358
3359         spin_lock_irqsave(&xhci->lock, flags);
3360         /* Don't disable the slot if the host controller is dead. */
3361         state = xhci_readl(xhci, &xhci->op_regs->status);
3362         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3363                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3364                 xhci_free_virt_device(xhci, udev->slot_id);
3365                 spin_unlock_irqrestore(&xhci->lock, flags);
3366                 return;
3367         }
3368
3369         if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3370                 spin_unlock_irqrestore(&xhci->lock, flags);
3371                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3372                 return;
3373         }
3374         xhci_ring_cmd_db(xhci);
3375         spin_unlock_irqrestore(&xhci->lock, flags);
3376         /*
3377          * Event command completion handler will free any data structures
3378          * associated with the slot.  XXX Can free sleep?
3379          */
3380 }
3381
3382 /*
3383  * Checks if we have enough host controller resources for the default control
3384  * endpoint.
3385  *
3386  * Must be called with xhci->lock held.
3387  */
3388 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3389 {
3390         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3391                 xhci_dbg(xhci, "Not enough ep ctxs: "
3392                                 "%u active, need to add 1, limit is %u.\n",
3393                                 xhci->num_active_eps, xhci->limit_active_eps);
3394                 return -ENOMEM;
3395         }
3396         xhci->num_active_eps += 1;
3397         xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3398                         xhci->num_active_eps);
3399         return 0;
3400 }
3401
3402
3403 /*
3404  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3405  * timed out, or allocating memory failed.  Returns 1 on success.
3406  */
3407 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3408 {
3409         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3410         unsigned long flags;
3411         int timeleft;
3412         int ret;
3413
3414         spin_lock_irqsave(&xhci->lock, flags);
3415         ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3416         if (ret) {
3417                 spin_unlock_irqrestore(&xhci->lock, flags);
3418                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3419                 return 0;
3420         }
3421         xhci_ring_cmd_db(xhci);
3422         spin_unlock_irqrestore(&xhci->lock, flags);
3423
3424         /* XXX: how much time for xHC slot assignment? */
3425         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3426                         USB_CTRL_SET_TIMEOUT);
3427         if (timeleft <= 0) {
3428                 xhci_warn(xhci, "%s while waiting for a slot\n",
3429                                 timeleft == 0 ? "Timeout" : "Signal");
3430                 /* FIXME cancel the enable slot request */
3431                 return 0;
3432         }
3433
3434         if (!xhci->slot_id) {
3435                 xhci_err(xhci, "Error while assigning device slot ID\n");
3436                 return 0;
3437         }
3438
3439         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3440                 spin_lock_irqsave(&xhci->lock, flags);
3441                 ret = xhci_reserve_host_control_ep_resources(xhci);
3442                 if (ret) {
3443                         spin_unlock_irqrestore(&xhci->lock, flags);
3444                         xhci_warn(xhci, "Not enough host resources, "
3445                                         "active endpoint contexts = %u\n",
3446                                         xhci->num_active_eps);
3447                         goto disable_slot;
3448                 }
3449                 spin_unlock_irqrestore(&xhci->lock, flags);
3450         }
3451         /* Use GFP_NOIO, since this function can be called from
3452          * xhci_discover_or_reset_device(), which may be called as part of
3453          * mass storage driver error handling.
3454          */
3455         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3456                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3457                 goto disable_slot;
3458         }
3459         udev->slot_id = xhci->slot_id;
3460         /* Is this a LS or FS device under a HS hub? */
3461         /* Hub or peripherial? */
3462         return 1;
3463
3464 disable_slot:
3465         /* Disable slot, if we can do it without mem alloc */
3466         spin_lock_irqsave(&xhci->lock, flags);
3467         if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3468                 xhci_ring_cmd_db(xhci);
3469         spin_unlock_irqrestore(&xhci->lock, flags);
3470         return 0;
3471 }
3472
3473 /*
3474  * Issue an Address Device command (which will issue a SetAddress request to
3475  * the device).
3476  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3477  * we should only issue and wait on one address command at the same time.
3478  *
3479  * We add one to the device address issued by the hardware because the USB core
3480  * uses address 1 for the root hubs (even though they're not really devices).
3481  */
3482 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3483 {
3484         unsigned long flags;
3485         int timeleft;
3486         struct xhci_virt_device *virt_dev;
3487         int ret = 0;
3488         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3489         struct xhci_slot_ctx *slot_ctx;
3490         struct xhci_input_control_ctx *ctrl_ctx;
3491         u64 temp_64;
3492
3493         if (!udev->slot_id) {
3494                 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3495                 return -EINVAL;
3496         }
3497
3498         virt_dev = xhci->devs[udev->slot_id];
3499
3500         if (WARN_ON(!virt_dev)) {
3501                 /*
3502                  * In plug/unplug torture test with an NEC controller,
3503                  * a zero-dereference was observed once due to virt_dev = 0.
3504                  * Print useful debug rather than crash if it is observed again!
3505                  */
3506                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3507                         udev->slot_id);
3508                 return -EINVAL;
3509         }
3510
3511         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3512         /*
3513          * If this is the first Set Address since device plug-in or
3514          * virt_device realloaction after a resume with an xHCI power loss,
3515          * then set up the slot context.
3516          */
3517         if (!slot_ctx->dev_info)
3518                 xhci_setup_addressable_virt_dev(xhci, udev);
3519         /* Otherwise, update the control endpoint ring enqueue pointer. */
3520         else
3521                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3522         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3523         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3524         ctrl_ctx->drop_flags = 0;
3525
3526         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3527         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3528
3529         spin_lock_irqsave(&xhci->lock, flags);
3530         ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3531                                         udev->slot_id);
3532         if (ret) {
3533                 spin_unlock_irqrestore(&xhci->lock, flags);
3534                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3535                 return ret;
3536         }
3537         xhci_ring_cmd_db(xhci);
3538         spin_unlock_irqrestore(&xhci->lock, flags);
3539
3540         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3541         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3542                         USB_CTRL_SET_TIMEOUT);
3543         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3544          * the SetAddress() "recovery interval" required by USB and aborting the
3545          * command on a timeout.
3546          */
3547         if (timeleft <= 0) {
3548                 xhci_warn(xhci, "%s while waiting for address device command\n",
3549                                 timeleft == 0 ? "Timeout" : "Signal");
3550                 /* FIXME cancel the address device command */
3551                 return -ETIME;
3552         }
3553
3554         switch (virt_dev->cmd_status) {
3555         case COMP_CTX_STATE:
3556         case COMP_EBADSLT:
3557                 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3558                                 udev->slot_id);
3559                 ret = -EINVAL;
3560                 break;
3561         case COMP_TX_ERR:
3562                 dev_warn(&udev->dev, "Device not responding to set address.\n");
3563                 ret = -EPROTO;
3564                 break;
3565         case COMP_DEV_ERR:
3566                 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3567                                 "device command.\n");
3568                 ret = -ENODEV;
3569                 break;
3570         case COMP_SUCCESS:
3571                 xhci_dbg(xhci, "Successful Address Device command\n");
3572                 break;
3573         default:
3574                 xhci_err(xhci, "ERROR: unexpected command completion "
3575                                 "code 0x%x.\n", virt_dev->cmd_status);
3576                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3577                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3578                 ret = -EINVAL;
3579                 break;
3580         }
3581         if (ret) {
3582                 return ret;
3583         }
3584         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3585         xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3586         xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3587                  udev->slot_id,
3588                  &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3589                  (unsigned long long)
3590                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3591         xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3592                         (unsigned long long)virt_dev->out_ctx->dma);
3593         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3594         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3595         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3596         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3597         /*
3598          * USB core uses address 1 for the roothubs, so we add one to the
3599          * address given back to us by the HC.
3600          */
3601         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3602         /* Use kernel assigned address for devices; store xHC assigned
3603          * address locally. */
3604         virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3605                 + 1;
3606         /* Zero the input context control for later use */
3607         ctrl_ctx->add_flags = 0;
3608         ctrl_ctx->drop_flags = 0;
3609
3610         xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3611
3612         return 0;
3613 }
3614
3615 #ifdef CONFIG_USB_SUSPEND
3616
3617 /* BESL to HIRD Encoding array for USB2 LPM */
3618 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3619         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3620
3621 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3622 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3623                                         struct usb_device *udev)
3624 {
3625         int u2del, besl, besl_host;
3626         int besl_device = 0;
3627         u32 field;
3628
3629         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3630         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3631
3632         if (field & USB_BESL_SUPPORT) {
3633                 for (besl_host = 0; besl_host < 16; besl_host++) {
3634                         if (xhci_besl_encoding[besl_host] >= u2del)
3635                                 break;
3636                 }
3637                 /* Use baseline BESL value as default */
3638                 if (field & USB_BESL_BASELINE_VALID)
3639                         besl_device = USB_GET_BESL_BASELINE(field);
3640                 else if (field & USB_BESL_DEEP_VALID)
3641                         besl_device = USB_GET_BESL_DEEP(field);
3642         } else {
3643                 if (u2del <= 50)
3644                         besl_host = 0;
3645                 else
3646                         besl_host = (u2del - 51) / 75 + 1;
3647         }
3648
3649         besl = besl_host + besl_device;
3650         if (besl > 15)
3651                 besl = 15;
3652
3653         return besl;
3654 }
3655
3656 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3657                                         struct usb_device *udev)
3658 {
3659         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3660         struct dev_info *dev_info;
3661         __le32 __iomem  **port_array;
3662         __le32 __iomem  *addr, *pm_addr;
3663         u32             temp, dev_id;
3664         unsigned int    port_num;
3665         unsigned long   flags;
3666         int             hird;
3667         int             ret;
3668
3669         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3670                         !udev->lpm_capable)
3671                 return -EINVAL;
3672
3673         /* we only support lpm for non-hub device connected to root hub yet */
3674         if (!udev->parent || udev->parent->parent ||
3675                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3676                 return -EINVAL;
3677
3678         spin_lock_irqsave(&xhci->lock, flags);
3679
3680         /* Look for devices in lpm_failed_devs list */
3681         dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3682                         le16_to_cpu(udev->descriptor.idProduct);
3683         list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3684                 if (dev_info->dev_id == dev_id) {
3685                         ret = -EINVAL;
3686                         goto finish;
3687                 }
3688         }
3689
3690         port_array = xhci->usb2_ports;
3691         port_num = udev->portnum - 1;
3692
3693         if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3694                 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3695                 ret = -EINVAL;
3696                 goto finish;
3697         }
3698
3699         /*
3700          * Test USB 2.0 software LPM.
3701          * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3702          * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3703          * in the June 2011 errata release.
3704          */
3705         xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3706         /*
3707          * Set L1 Device Slot and HIRD/BESL.
3708          * Check device's USB 2.0 extension descriptor to determine whether
3709          * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3710          */
3711         pm_addr = port_array[port_num] + 1;
3712         hird = xhci_calculate_hird_besl(xhci, udev);
3713         temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3714         xhci_writel(xhci, temp, pm_addr);
3715
3716         /* Set port link state to U2(L1) */
3717         addr = port_array[port_num];
3718         xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3719
3720         /* wait for ACK */
3721         spin_unlock_irqrestore(&xhci->lock, flags);
3722         msleep(10);
3723         spin_lock_irqsave(&xhci->lock, flags);
3724
3725         /* Check L1 Status */
3726         ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3727         if (ret != -ETIMEDOUT) {
3728                 /* enter L1 successfully */
3729                 temp = xhci_readl(xhci, addr);
3730                 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3731                                 port_num, temp);
3732                 ret = 0;
3733         } else {
3734                 temp = xhci_readl(xhci, pm_addr);
3735                 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3736                                 port_num, temp & PORT_L1S_MASK);
3737                 ret = -EINVAL;
3738         }
3739
3740         /* Resume the port */
3741         xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3742
3743         spin_unlock_irqrestore(&xhci->lock, flags);
3744         msleep(10);
3745         spin_lock_irqsave(&xhci->lock, flags);
3746
3747         /* Clear PLC */
3748         xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3749
3750         /* Check PORTSC to make sure the device is in the right state */
3751         if (!ret) {
3752                 temp = xhci_readl(xhci, addr);
3753                 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
3754                 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3755                                 (temp & PORT_PLS_MASK) != XDEV_U0) {
3756                         xhci_dbg(xhci, "port L1 resume fail\n");
3757                         ret = -EINVAL;
3758                 }
3759         }
3760
3761         if (ret) {
3762                 /* Insert dev to lpm_failed_devs list */
3763                 xhci_warn(xhci, "device LPM test failed, may disconnect and "
3764                                 "re-enumerate\n");
3765                 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3766                 if (!dev_info) {
3767                         ret = -ENOMEM;
3768                         goto finish;
3769                 }
3770                 dev_info->dev_id = dev_id;
3771                 INIT_LIST_HEAD(&dev_info->list);
3772                 list_add(&dev_info->list, &xhci->lpm_failed_devs);
3773         } else {
3774                 xhci_ring_device(xhci, udev->slot_id);
3775         }
3776
3777 finish:
3778         spin_unlock_irqrestore(&xhci->lock, flags);
3779         return ret;
3780 }
3781
3782 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3783                         struct usb_device *udev, int enable)
3784 {
3785         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3786         __le32 __iomem  **port_array;
3787         __le32 __iomem  *pm_addr;
3788         u32             temp;
3789         unsigned int    port_num;
3790         unsigned long   flags;
3791         int             hird;
3792
3793         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3794                         !udev->lpm_capable)
3795                 return -EPERM;
3796
3797         if (!udev->parent || udev->parent->parent ||
3798                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3799                 return -EPERM;
3800
3801         if (udev->usb2_hw_lpm_capable != 1)
3802                 return -EPERM;
3803
3804         spin_lock_irqsave(&xhci->lock, flags);
3805
3806         port_array = xhci->usb2_ports;
3807         port_num = udev->portnum - 1;
3808         pm_addr = port_array[port_num] + 1;
3809         temp = xhci_readl(xhci, pm_addr);
3810
3811         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3812                         enable ? "enable" : "disable", port_num);
3813
3814         hird = xhci_calculate_hird_besl(xhci, udev);
3815
3816         if (enable) {
3817                 temp &= ~PORT_HIRD_MASK;
3818                 temp |= PORT_HIRD(hird) | PORT_RWE;
3819                 xhci_writel(xhci, temp, pm_addr);
3820                 temp = xhci_readl(xhci, pm_addr);
3821                 temp |= PORT_HLE;
3822                 xhci_writel(xhci, temp, pm_addr);
3823         } else {
3824                 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3825                 xhci_writel(xhci, temp, pm_addr);
3826         }
3827
3828         spin_unlock_irqrestore(&xhci->lock, flags);
3829         return 0;
3830 }
3831
3832 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3833 {
3834         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3835         int             ret;
3836
3837         ret = xhci_usb2_software_lpm_test(hcd, udev);
3838         if (!ret) {
3839                 xhci_dbg(xhci, "software LPM test succeed\n");
3840                 if (xhci->hw_lpm_support == 1) {
3841                         udev->usb2_hw_lpm_capable = 1;
3842                         ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
3843                         if (!ret)
3844                                 udev->usb2_hw_lpm_enabled = 1;
3845                 }
3846         }
3847
3848         return 0;
3849 }
3850
3851 #else
3852
3853 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3854                                 struct usb_device *udev, int enable)
3855 {
3856         return 0;
3857 }
3858
3859 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3860 {
3861         return 0;
3862 }
3863
3864 #endif /* CONFIG_USB_SUSPEND */
3865
3866 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
3867  * internal data structures for the device.
3868  */
3869 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
3870                         struct usb_tt *tt, gfp_t mem_flags)
3871 {
3872         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3873         struct xhci_virt_device *vdev;
3874         struct xhci_command *config_cmd;
3875         struct xhci_input_control_ctx *ctrl_ctx;
3876         struct xhci_slot_ctx *slot_ctx;
3877         unsigned long flags;
3878         unsigned think_time;
3879         int ret;
3880
3881         /* Ignore root hubs */
3882         if (!hdev->parent)
3883                 return 0;
3884
3885         vdev = xhci->devs[hdev->slot_id];
3886         if (!vdev) {
3887                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
3888                 return -EINVAL;
3889         }
3890         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3891         if (!config_cmd) {
3892                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3893                 return -ENOMEM;
3894         }
3895
3896         spin_lock_irqsave(&xhci->lock, flags);
3897         if (hdev->speed == USB_SPEED_HIGH &&
3898                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
3899                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
3900                 xhci_free_command(xhci, config_cmd);
3901                 spin_unlock_irqrestore(&xhci->lock, flags);
3902                 return -ENOMEM;
3903         }
3904
3905         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
3906         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3907         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3908         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
3909         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
3910         if (tt->multi)
3911                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
3912         if (xhci->hci_version > 0x95) {
3913                 xhci_dbg(xhci, "xHCI version %x needs hub "
3914                                 "TT think time and number of ports\n",
3915                                 (unsigned int) xhci->hci_version);
3916                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
3917                 /* Set TT think time - convert from ns to FS bit times.
3918                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
3919                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
3920                  *
3921                  * xHCI 1.0: this field shall be 0 if the device is not a
3922                  * High-spped hub.
3923                  */
3924                 think_time = tt->think_time;
3925                 if (think_time != 0)
3926                         think_time = (think_time / 666) - 1;
3927                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
3928                         slot_ctx->tt_info |=
3929                                 cpu_to_le32(TT_THINK_TIME(think_time));
3930         } else {
3931                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
3932                                 "TT think time or number of ports\n",
3933                                 (unsigned int) xhci->hci_version);
3934         }
3935         slot_ctx->dev_state = 0;
3936         spin_unlock_irqrestore(&xhci->lock, flags);
3937
3938         xhci_dbg(xhci, "Set up %s for hub device.\n",
3939                         (xhci->hci_version > 0x95) ?
3940                         "configure endpoint" : "evaluate context");
3941         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
3942         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
3943
3944         /* Issue and wait for the configure endpoint or
3945          * evaluate context command.
3946          */
3947         if (xhci->hci_version > 0x95)
3948                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3949                                 false, false);
3950         else
3951                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3952                                 true, false);
3953
3954         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
3955         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
3956
3957         xhci_free_command(xhci, config_cmd);
3958         return ret;
3959 }
3960
3961 int xhci_get_frame(struct usb_hcd *hcd)
3962 {
3963         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3964         /* EHCI mods by the periodic size.  Why? */
3965         return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
3966 }
3967
3968 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
3969 {
3970         struct xhci_hcd         *xhci;
3971         struct device           *dev = hcd->self.controller;
3972         int                     retval;
3973         u32                     temp;
3974
3975         /* Accept arbitrarily long scatter-gather lists */
3976         hcd->self.sg_tablesize = ~0;
3977
3978         if (usb_hcd_is_primary_hcd(hcd)) {
3979                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
3980                 if (!xhci)
3981                         return -ENOMEM;
3982                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
3983                 xhci->main_hcd = hcd;
3984                 /* Mark the first roothub as being USB 2.0.
3985                  * The xHCI driver will register the USB 3.0 roothub.
3986                  */
3987                 hcd->speed = HCD_USB2;
3988                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
3989                 /*
3990                  * USB 2.0 roothub under xHCI has an integrated TT,
3991                  * (rate matching hub) as opposed to having an OHCI/UHCI
3992                  * companion controller.
3993                  */
3994                 hcd->has_tt = 1;
3995         } else {
3996                 /* xHCI private pointer was set in xhci_pci_probe for the second
3997                  * registered roothub.
3998                  */
3999                 xhci = hcd_to_xhci(hcd);
4000                 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4001                 if (HCC_64BIT_ADDR(temp)) {
4002                         xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4003                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4004                 } else {
4005                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4006                 }
4007                 return 0;
4008         }
4009
4010         xhci->cap_regs = hcd->regs;
4011         xhci->op_regs = hcd->regs +
4012                 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4013         xhci->run_regs = hcd->regs +
4014                 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4015         /* Cache read-only capability registers */
4016         xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4017         xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4018         xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4019         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4020         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4021         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4022         xhci_print_registers(xhci);
4023
4024         get_quirks(dev, xhci);
4025
4026         /* Make sure the HC is halted. */
4027         retval = xhci_halt(xhci);
4028         if (retval)
4029                 goto error;
4030
4031         xhci_dbg(xhci, "Resetting HCD\n");
4032         /* Reset the internal HC memory state and registers. */
4033         retval = xhci_reset(xhci);
4034         if (retval)
4035                 goto error;
4036         xhci_dbg(xhci, "Reset complete\n");
4037
4038         temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4039         if (HCC_64BIT_ADDR(temp)) {
4040                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4041                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4042         } else {
4043                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4044         }
4045
4046         xhci_dbg(xhci, "Calling HCD init\n");
4047         /* Initialize HCD and host controller data structures. */
4048         retval = xhci_init(hcd);
4049         if (retval)
4050                 goto error;
4051         xhci_dbg(xhci, "Called HCD init\n");
4052         return 0;
4053 error:
4054         kfree(xhci);
4055         return retval;
4056 }
4057
4058 MODULE_DESCRIPTION(DRIVER_DESC);
4059 MODULE_AUTHOR(DRIVER_AUTHOR);
4060 MODULE_LICENSE("GPL");
4061
4062 static int __init xhci_hcd_init(void)
4063 {
4064         int retval;
4065
4066         retval = xhci_register_pci();
4067         if (retval < 0) {
4068                 printk(KERN_DEBUG "Problem registering PCI driver.");
4069                 return retval;
4070         }
4071         retval = xhci_register_plat();
4072         if (retval < 0) {
4073                 printk(KERN_DEBUG "Problem registering platform driver.");
4074                 goto unreg_pci;
4075         }
4076         /*
4077          * Check the compiler generated sizes of structures that must be laid
4078          * out in specific ways for hardware access.
4079          */
4080         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4081         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4082         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4083         /* xhci_device_control has eight fields, and also
4084          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4085          */
4086         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4087         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4088         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4089         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4090         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4091         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4092         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4093         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4094         return 0;
4095 unreg_pci:
4096         xhci_unregister_pci();
4097         return retval;
4098 }
4099 module_init(xhci_hcd_init);
4100
4101 static void __exit xhci_hcd_cleanup(void)
4102 {
4103         xhci_unregister_pci();
4104         xhci_unregister_plat();
4105 }
4106 module_exit(xhci_hcd_cleanup);