xhci: Add tracing for input control context
[platform/kernel/linux-rpi.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/log2.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/slab.h>
17 #include <linux/dmi.h>
18 #include <linux/dma-mapping.h>
19
20 #include "xhci.h"
21 #include "xhci-trace.h"
22 #include "xhci-mtk.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28
29 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42         struct xhci_segment *seg = ring->first_seg;
43
44         if (!td || !td->start_seg)
45                 return false;
46         do {
47                 if (seg == td->start_seg)
48                         return true;
49                 seg = seg->next;
50         } while (seg && seg != ring->first_seg);
51
52         return false;
53 }
54
55 /* TODO: copied from ehci-hcd.c - can this be refactored? */
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
70 {
71         u32     result;
72
73         do {
74                 result = readl(ptr);
75                 if (result == ~(u32)0)          /* card removed */
76                         return -ENODEV;
77                 result &= mask;
78                 if (result == done)
79                         return 0;
80                 udelay(1);
81                 usec--;
82         } while (usec > 0);
83         return -ETIMEDOUT;
84 }
85
86 /*
87  * Disable interrupts and begin the xHCI halting process.
88  */
89 void xhci_quiesce(struct xhci_hcd *xhci)
90 {
91         u32 halted;
92         u32 cmd;
93         u32 mask;
94
95         mask = ~(XHCI_IRQS);
96         halted = readl(&xhci->op_regs->status) & STS_HALT;
97         if (!halted)
98                 mask &= ~CMD_RUN;
99
100         cmd = readl(&xhci->op_regs->command);
101         cmd &= mask;
102         writel(cmd, &xhci->op_regs->command);
103 }
104
105 /*
106  * Force HC into halt state.
107  *
108  * Disable any IRQs and clear the run/stop bit.
109  * HC will complete any current and actively pipelined transactions, and
110  * should halt within 16 ms of the run/stop bit being cleared.
111  * Read HC Halted bit in the status register to see when the HC is finished.
112  */
113 int xhci_halt(struct xhci_hcd *xhci)
114 {
115         int ret;
116         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
117         xhci_quiesce(xhci);
118
119         ret = xhci_handshake(&xhci->op_regs->status,
120                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
121         if (ret) {
122                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
123                 return ret;
124         }
125         xhci->xhc_state |= XHCI_STATE_HALTED;
126         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
127         return ret;
128 }
129
130 /*
131  * Set the run bit and wait for the host to be running.
132  */
133 int xhci_start(struct xhci_hcd *xhci)
134 {
135         u32 temp;
136         int ret;
137
138         temp = readl(&xhci->op_regs->command);
139         temp |= (CMD_RUN);
140         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
141                         temp);
142         writel(temp, &xhci->op_regs->command);
143
144         /*
145          * Wait for the HCHalted Status bit to be 0 to indicate the host is
146          * running.
147          */
148         ret = xhci_handshake(&xhci->op_regs->status,
149                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
150         if (ret == -ETIMEDOUT)
151                 xhci_err(xhci, "Host took too long to start, "
152                                 "waited %u microseconds.\n",
153                                 XHCI_MAX_HALT_USEC);
154         if (!ret)
155                 /* clear state flags. Including dying, halted or removing */
156                 xhci->xhc_state = 0;
157
158         return ret;
159 }
160
161 /*
162  * Reset a halted HC.
163  *
164  * This resets pipelines, timers, counters, state machines, etc.
165  * Transactions will be terminated immediately, and operational registers
166  * will be set to their defaults.
167  */
168 int xhci_reset(struct xhci_hcd *xhci)
169 {
170         u32 command;
171         u32 state;
172         int ret;
173
174         state = readl(&xhci->op_regs->status);
175
176         if (state == ~(u32)0) {
177                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
178                 return -ENODEV;
179         }
180
181         if ((state & STS_HALT) == 0) {
182                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
183                 return 0;
184         }
185
186         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
187         command = readl(&xhci->op_regs->command);
188         command |= CMD_RESET;
189         writel(command, &xhci->op_regs->command);
190
191         /* Existing Intel xHCI controllers require a delay of 1 mS,
192          * after setting the CMD_RESET bit, and before accessing any
193          * HC registers. This allows the HC to complete the
194          * reset operation and be ready for HC register access.
195          * Without this delay, the subsequent HC register access,
196          * may result in a system hang very rarely.
197          */
198         if (xhci->quirks & XHCI_INTEL_HOST)
199                 udelay(1000);
200
201         ret = xhci_handshake(&xhci->op_regs->command,
202                         CMD_RESET, 0, 10 * 1000 * 1000);
203         if (ret)
204                 return ret;
205
206         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
207                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
208
209         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
210                          "Wait for controller to be ready for doorbell rings");
211         /*
212          * xHCI cannot write to any doorbells or operational registers other
213          * than status until the "Controller Not Ready" flag is cleared.
214          */
215         ret = xhci_handshake(&xhci->op_regs->status,
216                         STS_CNR, 0, 10 * 1000 * 1000);
217
218         xhci->usb2_rhub.bus_state.port_c_suspend = 0;
219         xhci->usb2_rhub.bus_state.suspended_ports = 0;
220         xhci->usb2_rhub.bus_state.resuming_ports = 0;
221         xhci->usb3_rhub.bus_state.port_c_suspend = 0;
222         xhci->usb3_rhub.bus_state.suspended_ports = 0;
223         xhci->usb3_rhub.bus_state.resuming_ports = 0;
224
225         return ret;
226 }
227
228 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
229 {
230         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
231         int err, i;
232         u64 val;
233
234         /*
235          * Some Renesas controllers get into a weird state if they are
236          * reset while programmed with 64bit addresses (they will preserve
237          * the top half of the address in internal, non visible
238          * registers). You end up with half the address coming from the
239          * kernel, and the other half coming from the firmware. Also,
240          * changing the programming leads to extra accesses even if the
241          * controller is supposed to be halted. The controller ends up with
242          * a fatal fault, and is then ripe for being properly reset.
243          *
244          * Special care is taken to only apply this if the device is behind
245          * an iommu. Doing anything when there is no iommu is definitely
246          * unsafe...
247          */
248         if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
249                 return;
250
251         xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
252
253         /* Clear HSEIE so that faults do not get signaled */
254         val = readl(&xhci->op_regs->command);
255         val &= ~CMD_HSEIE;
256         writel(val, &xhci->op_regs->command);
257
258         /* Clear HSE (aka FATAL) */
259         val = readl(&xhci->op_regs->status);
260         val |= STS_FATAL;
261         writel(val, &xhci->op_regs->status);
262
263         /* Now zero the registers, and brace for impact */
264         val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
265         if (upper_32_bits(val))
266                 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
267         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
268         if (upper_32_bits(val))
269                 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
270
271         for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
272                 struct xhci_intr_reg __iomem *ir;
273
274                 ir = &xhci->run_regs->ir_set[i];
275                 val = xhci_read_64(xhci, &ir->erst_base);
276                 if (upper_32_bits(val))
277                         xhci_write_64(xhci, 0, &ir->erst_base);
278                 val= xhci_read_64(xhci, &ir->erst_dequeue);
279                 if (upper_32_bits(val))
280                         xhci_write_64(xhci, 0, &ir->erst_dequeue);
281         }
282
283         /* Wait for the fault to appear. It will be cleared on reset */
284         err = xhci_handshake(&xhci->op_regs->status,
285                              STS_FATAL, STS_FATAL,
286                              XHCI_MAX_HALT_USEC);
287         if (!err)
288                 xhci_info(xhci, "Fault detected\n");
289 }
290
291 #ifdef CONFIG_USB_PCI
292 /*
293  * Set up MSI
294  */
295 static int xhci_setup_msi(struct xhci_hcd *xhci)
296 {
297         int ret;
298         /*
299          * TODO:Check with MSI Soc for sysdev
300          */
301         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
302
303         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
304         if (ret < 0) {
305                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
306                                 "failed to allocate MSI entry");
307                 return ret;
308         }
309
310         ret = request_irq(pdev->irq, xhci_msi_irq,
311                                 0, "xhci_hcd", xhci_to_hcd(xhci));
312         if (ret) {
313                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
314                                 "disable MSI interrupt");
315                 pci_free_irq_vectors(pdev);
316         }
317
318         return ret;
319 }
320
321 /*
322  * Set up MSI-X
323  */
324 static int xhci_setup_msix(struct xhci_hcd *xhci)
325 {
326         int i, ret = 0;
327         struct usb_hcd *hcd = xhci_to_hcd(xhci);
328         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
329
330         /*
331          * calculate number of msi-x vectors supported.
332          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
333          *   with max number of interrupters based on the xhci HCSPARAMS1.
334          * - num_online_cpus: maximum msi-x vectors per CPUs core.
335          *   Add additional 1 vector to ensure always available interrupt.
336          */
337         xhci->msix_count = min(num_online_cpus() + 1,
338                                 HCS_MAX_INTRS(xhci->hcs_params1));
339
340         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
341                         PCI_IRQ_MSIX);
342         if (ret < 0) {
343                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
344                                 "Failed to enable MSI-X");
345                 return ret;
346         }
347
348         for (i = 0; i < xhci->msix_count; i++) {
349                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
350                                 "xhci_hcd", xhci_to_hcd(xhci));
351                 if (ret)
352                         goto disable_msix;
353         }
354
355         hcd->msix_enabled = 1;
356         return ret;
357
358 disable_msix:
359         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
360         while (--i >= 0)
361                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
362         pci_free_irq_vectors(pdev);
363         return ret;
364 }
365
366 /* Free any IRQs and disable MSI-X */
367 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
368 {
369         struct usb_hcd *hcd = xhci_to_hcd(xhci);
370         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
371
372         if (xhci->quirks & XHCI_PLAT)
373                 return;
374
375         /* return if using legacy interrupt */
376         if (hcd->irq > 0)
377                 return;
378
379         if (hcd->msix_enabled) {
380                 int i;
381
382                 for (i = 0; i < xhci->msix_count; i++)
383                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
384         } else {
385                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
386         }
387
388         pci_free_irq_vectors(pdev);
389         hcd->msix_enabled = 0;
390 }
391
392 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
393 {
394         struct usb_hcd *hcd = xhci_to_hcd(xhci);
395
396         if (hcd->msix_enabled) {
397                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
398                 int i;
399
400                 for (i = 0; i < xhci->msix_count; i++)
401                         synchronize_irq(pci_irq_vector(pdev, i));
402         }
403 }
404
405 static int xhci_try_enable_msi(struct usb_hcd *hcd)
406 {
407         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
408         struct pci_dev  *pdev;
409         int ret;
410
411         /* The xhci platform device has set up IRQs through usb_add_hcd. */
412         if (xhci->quirks & XHCI_PLAT)
413                 return 0;
414
415         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
416         /*
417          * Some Fresco Logic host controllers advertise MSI, but fail to
418          * generate interrupts.  Don't even try to enable MSI.
419          */
420         if (xhci->quirks & XHCI_BROKEN_MSI)
421                 goto legacy_irq;
422
423         /* unregister the legacy interrupt */
424         if (hcd->irq)
425                 free_irq(hcd->irq, hcd);
426         hcd->irq = 0;
427
428         ret = xhci_setup_msix(xhci);
429         if (ret)
430                 /* fall back to msi*/
431                 ret = xhci_setup_msi(xhci);
432
433         if (!ret) {
434                 hcd->msi_enabled = 1;
435                 return 0;
436         }
437
438         if (!pdev->irq) {
439                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
440                 return -EINVAL;
441         }
442
443  legacy_irq:
444         if (!strlen(hcd->irq_descr))
445                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
446                          hcd->driver->description, hcd->self.busnum);
447
448         /* fall back to legacy interrupt*/
449         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
450                         hcd->irq_descr, hcd);
451         if (ret) {
452                 xhci_err(xhci, "request interrupt %d failed\n",
453                                 pdev->irq);
454                 return ret;
455         }
456         hcd->irq = pdev->irq;
457         return 0;
458 }
459
460 #else
461
462 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
463 {
464         return 0;
465 }
466
467 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
468 {
469 }
470
471 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
472 {
473 }
474
475 #endif
476
477 static void compliance_mode_recovery(struct timer_list *t)
478 {
479         struct xhci_hcd *xhci;
480         struct usb_hcd *hcd;
481         struct xhci_hub *rhub;
482         u32 temp;
483         int i;
484
485         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
486         rhub = &xhci->usb3_rhub;
487
488         for (i = 0; i < rhub->num_ports; i++) {
489                 temp = readl(rhub->ports[i]->addr);
490                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
491                         /*
492                          * Compliance Mode Detected. Letting USB Core
493                          * handle the Warm Reset
494                          */
495                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
496                                         "Compliance mode detected->port %d",
497                                         i + 1);
498                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
499                                         "Attempting compliance mode recovery");
500                         hcd = xhci->shared_hcd;
501
502                         if (hcd->state == HC_STATE_SUSPENDED)
503                                 usb_hcd_resume_root_hub(hcd);
504
505                         usb_hcd_poll_rh_status(hcd);
506                 }
507         }
508
509         if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
510                 mod_timer(&xhci->comp_mode_recovery_timer,
511                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
512 }
513
514 /*
515  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
516  * that causes ports behind that hardware to enter compliance mode sometimes.
517  * The quirk creates a timer that polls every 2 seconds the link state of
518  * each host controller's port and recovers it by issuing a Warm reset
519  * if Compliance mode is detected, otherwise the port will become "dead" (no
520  * device connections or disconnections will be detected anymore). Becasue no
521  * status event is generated when entering compliance mode (per xhci spec),
522  * this quirk is needed on systems that have the failing hardware installed.
523  */
524 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
525 {
526         xhci->port_status_u0 = 0;
527         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
528                     0);
529         xhci->comp_mode_recovery_timer.expires = jiffies +
530                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
531
532         add_timer(&xhci->comp_mode_recovery_timer);
533         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
534                         "Compliance mode recovery timer initialized");
535 }
536
537 /*
538  * This function identifies the systems that have installed the SN65LVPE502CP
539  * USB3.0 re-driver and that need the Compliance Mode Quirk.
540  * Systems:
541  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
542  */
543 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
544 {
545         const char *dmi_product_name, *dmi_sys_vendor;
546
547         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
548         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
549         if (!dmi_product_name || !dmi_sys_vendor)
550                 return false;
551
552         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
553                 return false;
554
555         if (strstr(dmi_product_name, "Z420") ||
556                         strstr(dmi_product_name, "Z620") ||
557                         strstr(dmi_product_name, "Z820") ||
558                         strstr(dmi_product_name, "Z1 Workstation"))
559                 return true;
560
561         return false;
562 }
563
564 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
565 {
566         return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
567 }
568
569
570 /*
571  * Initialize memory for HCD and xHC (one-time init).
572  *
573  * Program the PAGESIZE register, initialize the device context array, create
574  * device contexts (?), set up a command ring segment (or two?), create event
575  * ring (one for now).
576  */
577 static int xhci_init(struct usb_hcd *hcd)
578 {
579         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
580         int retval = 0;
581
582         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
583         spin_lock_init(&xhci->lock);
584         if (xhci->hci_version == 0x95 && link_quirk) {
585                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
586                                 "QUIRK: Not clearing Link TRB chain bits.");
587                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
588         } else {
589                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
590                                 "xHCI doesn't need link TRB QUIRK");
591         }
592         retval = xhci_mem_init(xhci, GFP_KERNEL);
593         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
594
595         /* Initializing Compliance Mode Recovery Data If Needed */
596         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
597                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
598                 compliance_mode_recovery_timer_init(xhci);
599         }
600
601         return retval;
602 }
603
604 /*-------------------------------------------------------------------------*/
605
606
607 static int xhci_run_finished(struct xhci_hcd *xhci)
608 {
609         if (xhci_start(xhci)) {
610                 xhci_halt(xhci);
611                 return -ENODEV;
612         }
613         xhci->shared_hcd->state = HC_STATE_RUNNING;
614         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
615
616         if (xhci->quirks & XHCI_NEC_HOST)
617                 xhci_ring_cmd_db(xhci);
618
619         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
620                         "Finished xhci_run for USB3 roothub");
621         return 0;
622 }
623
624 /*
625  * Start the HC after it was halted.
626  *
627  * This function is called by the USB core when the HC driver is added.
628  * Its opposite is xhci_stop().
629  *
630  * xhci_init() must be called once before this function can be called.
631  * Reset the HC, enable device slot contexts, program DCBAAP, and
632  * set command ring pointer and event ring pointer.
633  *
634  * Setup MSI-X vectors and enable interrupts.
635  */
636 int xhci_run(struct usb_hcd *hcd)
637 {
638         u32 temp;
639         u64 temp_64;
640         int ret;
641         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
642
643         /* Start the xHCI host controller running only after the USB 2.0 roothub
644          * is setup.
645          */
646
647         hcd->uses_new_polling = 1;
648         if (!usb_hcd_is_primary_hcd(hcd))
649                 return xhci_run_finished(xhci);
650
651         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
652
653         ret = xhci_try_enable_msi(hcd);
654         if (ret)
655                 return ret;
656
657         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
658         temp_64 &= ~ERST_PTR_MASK;
659         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
660                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
661
662         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
663                         "// Set the interrupt modulation register");
664         temp = readl(&xhci->ir_set->irq_control);
665         temp &= ~ER_IRQ_INTERVAL_MASK;
666         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
667         writel(temp, &xhci->ir_set->irq_control);
668
669         /* Set the HCD state before we enable the irqs */
670         temp = readl(&xhci->op_regs->command);
671         temp |= (CMD_EIE);
672         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
673                         "// Enable interrupts, cmd = 0x%x.", temp);
674         writel(temp, &xhci->op_regs->command);
675
676         temp = readl(&xhci->ir_set->irq_pending);
677         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
678                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
679                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
680         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
681
682         if (xhci->quirks & XHCI_NEC_HOST) {
683                 struct xhci_command *command;
684
685                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
686                 if (!command)
687                         return -ENOMEM;
688
689                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
690                                 TRB_TYPE(TRB_NEC_GET_FW));
691                 if (ret)
692                         xhci_free_command(xhci, command);
693         }
694         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
695                         "Finished xhci_run for USB2 roothub");
696
697         xhci_dbc_init(xhci);
698
699         xhci_debugfs_init(xhci);
700
701         return 0;
702 }
703 EXPORT_SYMBOL_GPL(xhci_run);
704
705 /*
706  * Stop xHCI driver.
707  *
708  * This function is called by the USB core when the HC driver is removed.
709  * Its opposite is xhci_run().
710  *
711  * Disable device contexts, disable IRQs, and quiesce the HC.
712  * Reset the HC, finish any completed transactions, and cleanup memory.
713  */
714 static void xhci_stop(struct usb_hcd *hcd)
715 {
716         u32 temp;
717         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
718
719         mutex_lock(&xhci->mutex);
720
721         /* Only halt host and free memory after both hcds are removed */
722         if (!usb_hcd_is_primary_hcd(hcd)) {
723                 mutex_unlock(&xhci->mutex);
724                 return;
725         }
726
727         xhci_dbc_exit(xhci);
728
729         spin_lock_irq(&xhci->lock);
730         xhci->xhc_state |= XHCI_STATE_HALTED;
731         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
732         xhci_halt(xhci);
733         xhci_reset(xhci);
734         spin_unlock_irq(&xhci->lock);
735
736         xhci_cleanup_msix(xhci);
737
738         /* Deleting Compliance Mode Recovery Timer */
739         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
740                         (!(xhci_all_ports_seen_u0(xhci)))) {
741                 del_timer_sync(&xhci->comp_mode_recovery_timer);
742                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
743                                 "%s: compliance mode recovery timer deleted",
744                                 __func__);
745         }
746
747         if (xhci->quirks & XHCI_AMD_PLL_FIX)
748                 usb_amd_dev_put();
749
750         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
751                         "// Disabling event ring interrupts");
752         temp = readl(&xhci->op_regs->status);
753         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
754         temp = readl(&xhci->ir_set->irq_pending);
755         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
756
757         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
758         xhci_mem_cleanup(xhci);
759         xhci_debugfs_exit(xhci);
760         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
761                         "xhci_stop completed - status = %x",
762                         readl(&xhci->op_regs->status));
763         mutex_unlock(&xhci->mutex);
764 }
765
766 /*
767  * Shutdown HC (not bus-specific)
768  *
769  * This is called when the machine is rebooting or halting.  We assume that the
770  * machine will be powered off, and the HC's internal state will be reset.
771  * Don't bother to free memory.
772  *
773  * This will only ever be called with the main usb_hcd (the USB3 roothub).
774  */
775 static void xhci_shutdown(struct usb_hcd *hcd)
776 {
777         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
778
779         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
780                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
781
782         spin_lock_irq(&xhci->lock);
783         xhci_halt(xhci);
784         /* Workaround for spurious wakeups at shutdown with HSW */
785         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
786                 xhci_reset(xhci);
787         spin_unlock_irq(&xhci->lock);
788
789         xhci_cleanup_msix(xhci);
790
791         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
792                         "xhci_shutdown completed - status = %x",
793                         readl(&xhci->op_regs->status));
794
795         /* Yet another workaround for spurious wakeups at shutdown with HSW */
796         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
797                 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
798 }
799
800 #ifdef CONFIG_PM
801 static void xhci_save_registers(struct xhci_hcd *xhci)
802 {
803         xhci->s3.command = readl(&xhci->op_regs->command);
804         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
805         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
806         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
807         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
808         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
809         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
810         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
811         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
812 }
813
814 static void xhci_restore_registers(struct xhci_hcd *xhci)
815 {
816         writel(xhci->s3.command, &xhci->op_regs->command);
817         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
818         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
819         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
820         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
821         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
822         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
823         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
824         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
825 }
826
827 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
828 {
829         u64     val_64;
830
831         /* step 2: initialize command ring buffer */
832         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
833         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
834                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
835                                       xhci->cmd_ring->dequeue) &
836                  (u64) ~CMD_RING_RSVD_BITS) |
837                 xhci->cmd_ring->cycle_state;
838         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
839                         "// Setting command ring address to 0x%llx",
840                         (long unsigned long) val_64);
841         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
842 }
843
844 /*
845  * The whole command ring must be cleared to zero when we suspend the host.
846  *
847  * The host doesn't save the command ring pointer in the suspend well, so we
848  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
849  * aligned, because of the reserved bits in the command ring dequeue pointer
850  * register.  Therefore, we can't just set the dequeue pointer back in the
851  * middle of the ring (TRBs are 16-byte aligned).
852  */
853 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
854 {
855         struct xhci_ring *ring;
856         struct xhci_segment *seg;
857
858         ring = xhci->cmd_ring;
859         seg = ring->deq_seg;
860         do {
861                 memset(seg->trbs, 0,
862                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
863                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
864                         cpu_to_le32(~TRB_CYCLE);
865                 seg = seg->next;
866         } while (seg != ring->deq_seg);
867
868         /* Reset the software enqueue and dequeue pointers */
869         ring->deq_seg = ring->first_seg;
870         ring->dequeue = ring->first_seg->trbs;
871         ring->enq_seg = ring->deq_seg;
872         ring->enqueue = ring->dequeue;
873
874         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
875         /*
876          * Ring is now zeroed, so the HW should look for change of ownership
877          * when the cycle bit is set to 1.
878          */
879         ring->cycle_state = 1;
880
881         /*
882          * Reset the hardware dequeue pointer.
883          * Yes, this will need to be re-written after resume, but we're paranoid
884          * and want to make sure the hardware doesn't access bogus memory
885          * because, say, the BIOS or an SMI started the host without changing
886          * the command ring pointers.
887          */
888         xhci_set_cmd_ring_deq(xhci);
889 }
890
891 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
892 {
893         struct xhci_port **ports;
894         int port_index;
895         unsigned long flags;
896         u32 t1, t2, portsc;
897
898         spin_lock_irqsave(&xhci->lock, flags);
899
900         /* disable usb3 ports Wake bits */
901         port_index = xhci->usb3_rhub.num_ports;
902         ports = xhci->usb3_rhub.ports;
903         while (port_index--) {
904                 t1 = readl(ports[port_index]->addr);
905                 portsc = t1;
906                 t1 = xhci_port_state_to_neutral(t1);
907                 t2 = t1 & ~PORT_WAKE_BITS;
908                 if (t1 != t2) {
909                         writel(t2, ports[port_index]->addr);
910                         xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
911                                  xhci->usb3_rhub.hcd->self.busnum,
912                                  port_index + 1, portsc, t2);
913                 }
914         }
915
916         /* disable usb2 ports Wake bits */
917         port_index = xhci->usb2_rhub.num_ports;
918         ports = xhci->usb2_rhub.ports;
919         while (port_index--) {
920                 t1 = readl(ports[port_index]->addr);
921                 portsc = t1;
922                 t1 = xhci_port_state_to_neutral(t1);
923                 t2 = t1 & ~PORT_WAKE_BITS;
924                 if (t1 != t2) {
925                         writel(t2, ports[port_index]->addr);
926                         xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
927                                  xhci->usb2_rhub.hcd->self.busnum,
928                                  port_index + 1, portsc, t2);
929                 }
930         }
931         spin_unlock_irqrestore(&xhci->lock, flags);
932 }
933
934 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
935 {
936         struct xhci_port        **ports;
937         int                     port_index;
938         u32                     status;
939         u32                     portsc;
940
941         status = readl(&xhci->op_regs->status);
942         if (status & STS_EINT)
943                 return true;
944         /*
945          * Checking STS_EINT is not enough as there is a lag between a change
946          * bit being set and the Port Status Change Event that it generated
947          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
948          */
949
950         port_index = xhci->usb2_rhub.num_ports;
951         ports = xhci->usb2_rhub.ports;
952         while (port_index--) {
953                 portsc = readl(ports[port_index]->addr);
954                 if (portsc & PORT_CHANGE_MASK ||
955                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
956                         return true;
957         }
958         port_index = xhci->usb3_rhub.num_ports;
959         ports = xhci->usb3_rhub.ports;
960         while (port_index--) {
961                 portsc = readl(ports[port_index]->addr);
962                 if (portsc & PORT_CHANGE_MASK ||
963                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
964                         return true;
965         }
966         return false;
967 }
968
969 /*
970  * Stop HC (not bus-specific)
971  *
972  * This is called when the machine transition into S3/S4 mode.
973  *
974  */
975 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
976 {
977         int                     rc = 0;
978         unsigned int            delay = XHCI_MAX_HALT_USEC;
979         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
980         u32                     command;
981         u32                     res;
982
983         if (!hcd->state)
984                 return 0;
985
986         if (hcd->state != HC_STATE_SUSPENDED ||
987                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
988                 return -EINVAL;
989
990         xhci_dbc_suspend(xhci);
991
992         /* Clear root port wake on bits if wakeup not allowed. */
993         if (!do_wakeup)
994                 xhci_disable_port_wake_on_bits(xhci);
995
996         /* Don't poll the roothubs on bus suspend. */
997         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
998         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
999         del_timer_sync(&hcd->rh_timer);
1000         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1001         del_timer_sync(&xhci->shared_hcd->rh_timer);
1002
1003         if (xhci->quirks & XHCI_SUSPEND_DELAY)
1004                 usleep_range(1000, 1500);
1005
1006         spin_lock_irq(&xhci->lock);
1007         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1008         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1009         /* step 1: stop endpoint */
1010         /* skipped assuming that port suspend has done */
1011
1012         /* step 2: clear Run/Stop bit */
1013         command = readl(&xhci->op_regs->command);
1014         command &= ~CMD_RUN;
1015         writel(command, &xhci->op_regs->command);
1016
1017         /* Some chips from Fresco Logic need an extraordinary delay */
1018         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1019
1020         if (xhci_handshake(&xhci->op_regs->status,
1021                       STS_HALT, STS_HALT, delay)) {
1022                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1023                 spin_unlock_irq(&xhci->lock);
1024                 return -ETIMEDOUT;
1025         }
1026         xhci_clear_command_ring(xhci);
1027
1028         /* step 3: save registers */
1029         xhci_save_registers(xhci);
1030
1031         /* step 4: set CSS flag */
1032         command = readl(&xhci->op_regs->command);
1033         command |= CMD_CSS;
1034         writel(command, &xhci->op_regs->command);
1035         xhci->broken_suspend = 0;
1036         if (xhci_handshake(&xhci->op_regs->status,
1037                                 STS_SAVE, 0, 10 * 1000)) {
1038         /*
1039          * AMD SNPS xHC 3.0 occasionally does not clear the
1040          * SSS bit of USBSTS and when driver tries to poll
1041          * to see if the xHC clears BIT(8) which never happens
1042          * and driver assumes that controller is not responding
1043          * and times out. To workaround this, its good to check
1044          * if SRE and HCE bits are not set (as per xhci
1045          * Section 5.4.2) and bypass the timeout.
1046          */
1047                 res = readl(&xhci->op_regs->status);
1048                 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1049                     (((res & STS_SRE) == 0) &&
1050                                 ((res & STS_HCE) == 0))) {
1051                         xhci->broken_suspend = 1;
1052                 } else {
1053                         xhci_warn(xhci, "WARN: xHC save state timeout\n");
1054                         spin_unlock_irq(&xhci->lock);
1055                         return -ETIMEDOUT;
1056                 }
1057         }
1058         spin_unlock_irq(&xhci->lock);
1059
1060         /*
1061          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1062          * is about to be suspended.
1063          */
1064         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1065                         (!(xhci_all_ports_seen_u0(xhci)))) {
1066                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1067                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1068                                 "%s: compliance mode recovery timer deleted",
1069                                 __func__);
1070         }
1071
1072         /* step 5: remove core well power */
1073         /* synchronize irq when using MSI-X */
1074         xhci_msix_sync_irqs(xhci);
1075
1076         return rc;
1077 }
1078 EXPORT_SYMBOL_GPL(xhci_suspend);
1079
1080 /*
1081  * start xHC (not bus-specific)
1082  *
1083  * This is called when the machine transition from S3/S4 mode.
1084  *
1085  */
1086 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1087 {
1088         u32                     command, temp = 0;
1089         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1090         struct usb_hcd          *secondary_hcd;
1091         int                     retval = 0;
1092         bool                    comp_timer_running = false;
1093
1094         if (!hcd->state)
1095                 return 0;
1096
1097         /* Wait a bit if either of the roothubs need to settle from the
1098          * transition into bus suspend.
1099          */
1100
1101         if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1102             time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1103                 msleep(100);
1104
1105         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1106         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1107
1108         spin_lock_irq(&xhci->lock);
1109         if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1110                 hibernated = true;
1111
1112         if (!hibernated) {
1113                 /* step 1: restore register */
1114                 xhci_restore_registers(xhci);
1115                 /* step 2: initialize command ring buffer */
1116                 xhci_set_cmd_ring_deq(xhci);
1117                 /* step 3: restore state and start state*/
1118                 /* step 3: set CRS flag */
1119                 command = readl(&xhci->op_regs->command);
1120                 command |= CMD_CRS;
1121                 writel(command, &xhci->op_regs->command);
1122                 /*
1123                  * Some controllers take up to 55+ ms to complete the controller
1124                  * restore so setting the timeout to 100ms. Xhci specification
1125                  * doesn't mention any timeout value.
1126                  */
1127                 if (xhci_handshake(&xhci->op_regs->status,
1128                               STS_RESTORE, 0, 100 * 1000)) {
1129                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1130                         spin_unlock_irq(&xhci->lock);
1131                         return -ETIMEDOUT;
1132                 }
1133                 temp = readl(&xhci->op_regs->status);
1134         }
1135
1136         /* If restore operation fails, re-initialize the HC during resume */
1137         if ((temp & STS_SRE) || hibernated) {
1138
1139                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1140                                 !(xhci_all_ports_seen_u0(xhci))) {
1141                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1142                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1143                                 "Compliance Mode Recovery Timer deleted!");
1144                 }
1145
1146                 /* Let the USB core know _both_ roothubs lost power. */
1147                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1148                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1149
1150                 xhci_dbg(xhci, "Stop HCD\n");
1151                 xhci_halt(xhci);
1152                 xhci_zero_64b_regs(xhci);
1153                 xhci_reset(xhci);
1154                 spin_unlock_irq(&xhci->lock);
1155                 xhci_cleanup_msix(xhci);
1156
1157                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1158                 temp = readl(&xhci->op_regs->status);
1159                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1160                 temp = readl(&xhci->ir_set->irq_pending);
1161                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1162
1163                 xhci_dbg(xhci, "cleaning up memory\n");
1164                 xhci_mem_cleanup(xhci);
1165                 xhci_debugfs_exit(xhci);
1166                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1167                             readl(&xhci->op_regs->status));
1168
1169                 /* USB core calls the PCI reinit and start functions twice:
1170                  * first with the primary HCD, and then with the secondary HCD.
1171                  * If we don't do the same, the host will never be started.
1172                  */
1173                 if (!usb_hcd_is_primary_hcd(hcd))
1174                         secondary_hcd = hcd;
1175                 else
1176                         secondary_hcd = xhci->shared_hcd;
1177
1178                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1179                 retval = xhci_init(hcd->primary_hcd);
1180                 if (retval)
1181                         return retval;
1182                 comp_timer_running = true;
1183
1184                 xhci_dbg(xhci, "Start the primary HCD\n");
1185                 retval = xhci_run(hcd->primary_hcd);
1186                 if (!retval) {
1187                         xhci_dbg(xhci, "Start the secondary HCD\n");
1188                         retval = xhci_run(secondary_hcd);
1189                 }
1190                 hcd->state = HC_STATE_SUSPENDED;
1191                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1192                 goto done;
1193         }
1194
1195         /* step 4: set Run/Stop bit */
1196         command = readl(&xhci->op_regs->command);
1197         command |= CMD_RUN;
1198         writel(command, &xhci->op_regs->command);
1199         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1200                   0, 250 * 1000);
1201
1202         /* step 5: walk topology and initialize portsc,
1203          * portpmsc and portli
1204          */
1205         /* this is done in bus_resume */
1206
1207         /* step 6: restart each of the previously
1208          * Running endpoints by ringing their doorbells
1209          */
1210
1211         spin_unlock_irq(&xhci->lock);
1212
1213         xhci_dbc_resume(xhci);
1214
1215  done:
1216         if (retval == 0) {
1217                 /* Resume root hubs only when have pending events. */
1218                 if (xhci_pending_portevent(xhci)) {
1219                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1220                         usb_hcd_resume_root_hub(hcd);
1221                 }
1222         }
1223
1224         /*
1225          * If system is subject to the Quirk, Compliance Mode Timer needs to
1226          * be re-initialized Always after a system resume. Ports are subject
1227          * to suffer the Compliance Mode issue again. It doesn't matter if
1228          * ports have entered previously to U0 before system's suspension.
1229          */
1230         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1231                 compliance_mode_recovery_timer_init(xhci);
1232
1233         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1234                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1235
1236         /* Re-enable port polling. */
1237         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1238         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1239         usb_hcd_poll_rh_status(xhci->shared_hcd);
1240         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1241         usb_hcd_poll_rh_status(hcd);
1242
1243         return retval;
1244 }
1245 EXPORT_SYMBOL_GPL(xhci_resume);
1246 #endif  /* CONFIG_PM */
1247
1248 /*-------------------------------------------------------------------------*/
1249
1250 /*
1251  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1252  * we'll copy the actual data into the TRB address register. This is limited to
1253  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1254  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1255  */
1256 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1257                                 gfp_t mem_flags)
1258 {
1259         if (xhci_urb_suitable_for_idt(urb))
1260                 return 0;
1261
1262         return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1263 }
1264
1265 /**
1266  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1267  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1268  * value to right shift 1 for the bitmask.
1269  *
1270  * Index  = (epnum * 2) + direction - 1,
1271  * where direction = 0 for OUT, 1 for IN.
1272  * For control endpoints, the IN index is used (OUT index is unused), so
1273  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1274  */
1275 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1276 {
1277         unsigned int index;
1278         if (usb_endpoint_xfer_control(desc))
1279                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1280         else
1281                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1282                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1283         return index;
1284 }
1285
1286 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1287  * address from the XHCI endpoint index.
1288  */
1289 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1290 {
1291         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1292         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1293         return direction | number;
1294 }
1295
1296 /* Find the flag for this endpoint (for use in the control context).  Use the
1297  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1298  * bit 1, etc.
1299  */
1300 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1301 {
1302         return 1 << (xhci_get_endpoint_index(desc) + 1);
1303 }
1304
1305 /* Find the flag for this endpoint (for use in the control context).  Use the
1306  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1307  * bit 1, etc.
1308  */
1309 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1310 {
1311         return 1 << (ep_index + 1);
1312 }
1313
1314 /* Compute the last valid endpoint context index.  Basically, this is the
1315  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1316  * we find the most significant bit set in the added contexts flags.
1317  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1318  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1319  */
1320 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1321 {
1322         return fls(added_ctxs) - 1;
1323 }
1324
1325 /* Returns 1 if the arguments are OK;
1326  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1327  */
1328 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1329                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1330                 const char *func) {
1331         struct xhci_hcd *xhci;
1332         struct xhci_virt_device *virt_dev;
1333
1334         if (!hcd || (check_ep && !ep) || !udev) {
1335                 pr_debug("xHCI %s called with invalid args\n", func);
1336                 return -EINVAL;
1337         }
1338         if (!udev->parent) {
1339                 pr_debug("xHCI %s called for root hub\n", func);
1340                 return 0;
1341         }
1342
1343         xhci = hcd_to_xhci(hcd);
1344         if (check_virt_dev) {
1345                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1346                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1347                                         func);
1348                         return -EINVAL;
1349                 }
1350
1351                 virt_dev = xhci->devs[udev->slot_id];
1352                 if (virt_dev->udev != udev) {
1353                         xhci_dbg(xhci, "xHCI %s called with udev and "
1354                                           "virt_dev does not match\n", func);
1355                         return -EINVAL;
1356                 }
1357         }
1358
1359         if (xhci->xhc_state & XHCI_STATE_HALTED)
1360                 return -ENODEV;
1361
1362         return 1;
1363 }
1364
1365 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1366                 struct usb_device *udev, struct xhci_command *command,
1367                 bool ctx_change, bool must_succeed);
1368
1369 /*
1370  * Full speed devices may have a max packet size greater than 8 bytes, but the
1371  * USB core doesn't know that until it reads the first 8 bytes of the
1372  * descriptor.  If the usb_device's max packet size changes after that point,
1373  * we need to issue an evaluate context command and wait on it.
1374  */
1375 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1376                 unsigned int ep_index, struct urb *urb)
1377 {
1378         struct xhci_container_ctx *out_ctx;
1379         struct xhci_input_control_ctx *ctrl_ctx;
1380         struct xhci_ep_ctx *ep_ctx;
1381         struct xhci_command *command;
1382         int max_packet_size;
1383         int hw_max_packet_size;
1384         int ret = 0;
1385
1386         out_ctx = xhci->devs[slot_id]->out_ctx;
1387         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1388         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1389         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1390         if (hw_max_packet_size != max_packet_size) {
1391                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1392                                 "Max Packet Size for ep 0 changed.");
1393                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1394                                 "Max packet size in usb_device = %d",
1395                                 max_packet_size);
1396                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1397                                 "Max packet size in xHCI HW = %d",
1398                                 hw_max_packet_size);
1399                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1400                                 "Issuing evaluate context command.");
1401
1402                 /* Set up the input context flags for the command */
1403                 /* FIXME: This won't work if a non-default control endpoint
1404                  * changes max packet sizes.
1405                  */
1406
1407                 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1408                 if (!command)
1409                         return -ENOMEM;
1410
1411                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1412                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1413                 if (!ctrl_ctx) {
1414                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1415                                         __func__);
1416                         ret = -ENOMEM;
1417                         goto command_cleanup;
1418                 }
1419                 /* Set up the modified control endpoint 0 */
1420                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1421                                 xhci->devs[slot_id]->out_ctx, ep_index);
1422
1423                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1424                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1425                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1426
1427                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1428                 ctrl_ctx->drop_flags = 0;
1429
1430                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1431                                 true, false);
1432
1433                 /* Clean up the input context for later use by bandwidth
1434                  * functions.
1435                  */
1436                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1437 command_cleanup:
1438                 kfree(command->completion);
1439                 kfree(command);
1440         }
1441         return ret;
1442 }
1443
1444 /*
1445  * non-error returns are a promise to giveback() the urb later
1446  * we drop ownership so next owner (or urb unlink) can get it
1447  */
1448 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1449 {
1450         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1451         unsigned long flags;
1452         int ret = 0;
1453         unsigned int slot_id, ep_index;
1454         unsigned int *ep_state;
1455         struct urb_priv *urb_priv;
1456         int num_tds;
1457
1458         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1459                                         true, true, __func__) <= 0)
1460                 return -EINVAL;
1461
1462         slot_id = urb->dev->slot_id;
1463         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1464         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1465
1466         if (!HCD_HW_ACCESSIBLE(hcd)) {
1467                 if (!in_interrupt())
1468                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1469                 return -ESHUTDOWN;
1470         }
1471
1472         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1473                 num_tds = urb->number_of_packets;
1474         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1475             urb->transfer_buffer_length > 0 &&
1476             urb->transfer_flags & URB_ZERO_PACKET &&
1477             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1478                 num_tds = 2;
1479         else
1480                 num_tds = 1;
1481
1482         urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1483         if (!urb_priv)
1484                 return -ENOMEM;
1485
1486         urb_priv->num_tds = num_tds;
1487         urb_priv->num_tds_done = 0;
1488         urb->hcpriv = urb_priv;
1489
1490         trace_xhci_urb_enqueue(urb);
1491
1492         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1493                 /* Check to see if the max packet size for the default control
1494                  * endpoint changed during FS device enumeration
1495                  */
1496                 if (urb->dev->speed == USB_SPEED_FULL) {
1497                         ret = xhci_check_maxpacket(xhci, slot_id,
1498                                         ep_index, urb);
1499                         if (ret < 0) {
1500                                 xhci_urb_free_priv(urb_priv);
1501                                 urb->hcpriv = NULL;
1502                                 return ret;
1503                         }
1504                 }
1505         }
1506
1507         spin_lock_irqsave(&xhci->lock, flags);
1508
1509         if (xhci->xhc_state & XHCI_STATE_DYING) {
1510                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1511                          urb->ep->desc.bEndpointAddress, urb);
1512                 ret = -ESHUTDOWN;
1513                 goto free_priv;
1514         }
1515         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1516                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1517                           *ep_state);
1518                 ret = -EINVAL;
1519                 goto free_priv;
1520         }
1521         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1522                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1523                 ret = -EINVAL;
1524                 goto free_priv;
1525         }
1526
1527         switch (usb_endpoint_type(&urb->ep->desc)) {
1528
1529         case USB_ENDPOINT_XFER_CONTROL:
1530                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1531                                          slot_id, ep_index);
1532                 break;
1533         case USB_ENDPOINT_XFER_BULK:
1534                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1535                                          slot_id, ep_index);
1536                 break;
1537         case USB_ENDPOINT_XFER_INT:
1538                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1539                                 slot_id, ep_index);
1540                 break;
1541         case USB_ENDPOINT_XFER_ISOC:
1542                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1543                                 slot_id, ep_index);
1544         }
1545
1546         if (ret) {
1547 free_priv:
1548                 xhci_urb_free_priv(urb_priv);
1549                 urb->hcpriv = NULL;
1550         }
1551         spin_unlock_irqrestore(&xhci->lock, flags);
1552         return ret;
1553 }
1554
1555 /*
1556  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1557  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1558  * should pick up where it left off in the TD, unless a Set Transfer Ring
1559  * Dequeue Pointer is issued.
1560  *
1561  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1562  * the ring.  Since the ring is a contiguous structure, they can't be physically
1563  * removed.  Instead, there are two options:
1564  *
1565  *  1) If the HC is in the middle of processing the URB to be canceled, we
1566  *     simply move the ring's dequeue pointer past those TRBs using the Set
1567  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1568  *     when drivers timeout on the last submitted URB and attempt to cancel.
1569  *
1570  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1571  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1572  *     HC will need to invalidate the any TRBs it has cached after the stop
1573  *     endpoint command, as noted in the xHCI 0.95 errata.
1574  *
1575  *  3) The TD may have completed by the time the Stop Endpoint Command
1576  *     completes, so software needs to handle that case too.
1577  *
1578  * This function should protect against the TD enqueueing code ringing the
1579  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1580  * It also needs to account for multiple cancellations on happening at the same
1581  * time for the same endpoint.
1582  *
1583  * Note that this function can be called in any context, or so says
1584  * usb_hcd_unlink_urb()
1585  */
1586 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1587 {
1588         unsigned long flags;
1589         int ret, i;
1590         u32 temp;
1591         struct xhci_hcd *xhci;
1592         struct urb_priv *urb_priv;
1593         struct xhci_td *td;
1594         unsigned int ep_index;
1595         struct xhci_ring *ep_ring;
1596         struct xhci_virt_ep *ep;
1597         struct xhci_command *command;
1598         struct xhci_virt_device *vdev;
1599
1600         xhci = hcd_to_xhci(hcd);
1601         spin_lock_irqsave(&xhci->lock, flags);
1602
1603         trace_xhci_urb_dequeue(urb);
1604
1605         /* Make sure the URB hasn't completed or been unlinked already */
1606         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1607         if (ret)
1608                 goto done;
1609
1610         /* give back URB now if we can't queue it for cancel */
1611         vdev = xhci->devs[urb->dev->slot_id];
1612         urb_priv = urb->hcpriv;
1613         if (!vdev || !urb_priv)
1614                 goto err_giveback;
1615
1616         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1617         ep = &vdev->eps[ep_index];
1618         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1619         if (!ep || !ep_ring)
1620                 goto err_giveback;
1621
1622         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1623         temp = readl(&xhci->op_regs->status);
1624         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1625                 xhci_hc_died(xhci);
1626                 goto done;
1627         }
1628
1629         /*
1630          * check ring is not re-allocated since URB was enqueued. If it is, then
1631          * make sure none of the ring related pointers in this URB private data
1632          * are touched, such as td_list, otherwise we overwrite freed data
1633          */
1634         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1635                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1636                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1637                         td = &urb_priv->td[i];
1638                         if (!list_empty(&td->cancelled_td_list))
1639                                 list_del_init(&td->cancelled_td_list);
1640                 }
1641                 goto err_giveback;
1642         }
1643
1644         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1645                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1646                                 "HC halted, freeing TD manually.");
1647                 for (i = urb_priv->num_tds_done;
1648                      i < urb_priv->num_tds;
1649                      i++) {
1650                         td = &urb_priv->td[i];
1651                         if (!list_empty(&td->td_list))
1652                                 list_del_init(&td->td_list);
1653                         if (!list_empty(&td->cancelled_td_list))
1654                                 list_del_init(&td->cancelled_td_list);
1655                 }
1656                 goto err_giveback;
1657         }
1658
1659         i = urb_priv->num_tds_done;
1660         if (i < urb_priv->num_tds)
1661                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1662                                 "Cancel URB %p, dev %s, ep 0x%x, "
1663                                 "starting at offset 0x%llx",
1664                                 urb, urb->dev->devpath,
1665                                 urb->ep->desc.bEndpointAddress,
1666                                 (unsigned long long) xhci_trb_virt_to_dma(
1667                                         urb_priv->td[i].start_seg,
1668                                         urb_priv->td[i].first_trb));
1669
1670         for (; i < urb_priv->num_tds; i++) {
1671                 td = &urb_priv->td[i];
1672                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1673         }
1674
1675         /* Queue a stop endpoint command, but only if this is
1676          * the first cancellation to be handled.
1677          */
1678         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1679                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1680                 if (!command) {
1681                         ret = -ENOMEM;
1682                         goto done;
1683                 }
1684                 ep->ep_state |= EP_STOP_CMD_PENDING;
1685                 ep->stop_cmd_timer.expires = jiffies +
1686                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1687                 add_timer(&ep->stop_cmd_timer);
1688                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1689                                          ep_index, 0);
1690                 xhci_ring_cmd_db(xhci);
1691         }
1692 done:
1693         spin_unlock_irqrestore(&xhci->lock, flags);
1694         return ret;
1695
1696 err_giveback:
1697         if (urb_priv)
1698                 xhci_urb_free_priv(urb_priv);
1699         usb_hcd_unlink_urb_from_ep(hcd, urb);
1700         spin_unlock_irqrestore(&xhci->lock, flags);
1701         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1702         return ret;
1703 }
1704
1705 /* Drop an endpoint from a new bandwidth configuration for this device.
1706  * Only one call to this function is allowed per endpoint before
1707  * check_bandwidth() or reset_bandwidth() must be called.
1708  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1709  * add the endpoint to the schedule with possibly new parameters denoted by a
1710  * different endpoint descriptor in usb_host_endpoint.
1711  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1712  * not allowed.
1713  *
1714  * The USB core will not allow URBs to be queued to an endpoint that is being
1715  * disabled, so there's no need for mutual exclusion to protect
1716  * the xhci->devs[slot_id] structure.
1717  */
1718 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1719                 struct usb_host_endpoint *ep)
1720 {
1721         struct xhci_hcd *xhci;
1722         struct xhci_container_ctx *in_ctx, *out_ctx;
1723         struct xhci_input_control_ctx *ctrl_ctx;
1724         unsigned int ep_index;
1725         struct xhci_ep_ctx *ep_ctx;
1726         u32 drop_flag;
1727         u32 new_add_flags, new_drop_flags;
1728         int ret;
1729
1730         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1731         if (ret <= 0)
1732                 return ret;
1733         xhci = hcd_to_xhci(hcd);
1734         if (xhci->xhc_state & XHCI_STATE_DYING)
1735                 return -ENODEV;
1736
1737         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1738         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1739         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1740                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1741                                 __func__, drop_flag);
1742                 return 0;
1743         }
1744
1745         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1746         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1747         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1748         if (!ctrl_ctx) {
1749                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1750                                 __func__);
1751                 return 0;
1752         }
1753
1754         ep_index = xhci_get_endpoint_index(&ep->desc);
1755         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1756         /* If the HC already knows the endpoint is disabled,
1757          * or the HCD has noted it is disabled, ignore this request
1758          */
1759         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1760             le32_to_cpu(ctrl_ctx->drop_flags) &
1761             xhci_get_endpoint_flag(&ep->desc)) {
1762                 /* Do not warn when called after a usb_device_reset */
1763                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1764                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1765                                   __func__, ep);
1766                 return 0;
1767         }
1768
1769         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1770         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1771
1772         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1773         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1774
1775         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1776
1777         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1778
1779         if (xhci->quirks & XHCI_MTK_HOST)
1780                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1781
1782         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1783                         (unsigned int) ep->desc.bEndpointAddress,
1784                         udev->slot_id,
1785                         (unsigned int) new_drop_flags,
1786                         (unsigned int) new_add_flags);
1787         return 0;
1788 }
1789
1790 /* Add an endpoint to a new possible bandwidth configuration for this device.
1791  * Only one call to this function is allowed per endpoint before
1792  * check_bandwidth() or reset_bandwidth() must be called.
1793  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1794  * add the endpoint to the schedule with possibly new parameters denoted by a
1795  * different endpoint descriptor in usb_host_endpoint.
1796  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1797  * not allowed.
1798  *
1799  * The USB core will not allow URBs to be queued to an endpoint until the
1800  * configuration or alt setting is installed in the device, so there's no need
1801  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1802  */
1803 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1804                 struct usb_host_endpoint *ep)
1805 {
1806         struct xhci_hcd *xhci;
1807         struct xhci_container_ctx *in_ctx;
1808         unsigned int ep_index;
1809         struct xhci_input_control_ctx *ctrl_ctx;
1810         u32 added_ctxs;
1811         u32 new_add_flags, new_drop_flags;
1812         struct xhci_virt_device *virt_dev;
1813         int ret = 0;
1814
1815         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1816         if (ret <= 0) {
1817                 /* So we won't queue a reset ep command for a root hub */
1818                 ep->hcpriv = NULL;
1819                 return ret;
1820         }
1821         xhci = hcd_to_xhci(hcd);
1822         if (xhci->xhc_state & XHCI_STATE_DYING)
1823                 return -ENODEV;
1824
1825         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1826         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1827                 /* FIXME when we have to issue an evaluate endpoint command to
1828                  * deal with ep0 max packet size changing once we get the
1829                  * descriptors
1830                  */
1831                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1832                                 __func__, added_ctxs);
1833                 return 0;
1834         }
1835
1836         virt_dev = xhci->devs[udev->slot_id];
1837         in_ctx = virt_dev->in_ctx;
1838         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1839         if (!ctrl_ctx) {
1840                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1841                                 __func__);
1842                 return 0;
1843         }
1844
1845         ep_index = xhci_get_endpoint_index(&ep->desc);
1846         /* If this endpoint is already in use, and the upper layers are trying
1847          * to add it again without dropping it, reject the addition.
1848          */
1849         if (virt_dev->eps[ep_index].ring &&
1850                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1851                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1852                                 "without dropping it.\n",
1853                                 (unsigned int) ep->desc.bEndpointAddress);
1854                 return -EINVAL;
1855         }
1856
1857         /* If the HCD has already noted the endpoint is enabled,
1858          * ignore this request.
1859          */
1860         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1861                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1862                                 __func__, ep);
1863                 return 0;
1864         }
1865
1866         /*
1867          * Configuration and alternate setting changes must be done in
1868          * process context, not interrupt context (or so documenation
1869          * for usb_set_interface() and usb_set_configuration() claim).
1870          */
1871         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1872                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1873                                 __func__, ep->desc.bEndpointAddress);
1874                 return -ENOMEM;
1875         }
1876
1877         if (xhci->quirks & XHCI_MTK_HOST) {
1878                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1879                 if (ret < 0) {
1880                         xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1881                         virt_dev->eps[ep_index].new_ring = NULL;
1882                         return ret;
1883                 }
1884         }
1885
1886         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1887         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1888
1889         /* If xhci_endpoint_disable() was called for this endpoint, but the
1890          * xHC hasn't been notified yet through the check_bandwidth() call,
1891          * this re-adds a new state for the endpoint from the new endpoint
1892          * descriptors.  We must drop and re-add this endpoint, so we leave the
1893          * drop flags alone.
1894          */
1895         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1896
1897         /* Store the usb_device pointer for later use */
1898         ep->hcpriv = udev;
1899
1900         xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1901
1902         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1903                         (unsigned int) ep->desc.bEndpointAddress,
1904                         udev->slot_id,
1905                         (unsigned int) new_drop_flags,
1906                         (unsigned int) new_add_flags);
1907         return 0;
1908 }
1909
1910 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1911 {
1912         struct xhci_input_control_ctx *ctrl_ctx;
1913         struct xhci_ep_ctx *ep_ctx;
1914         struct xhci_slot_ctx *slot_ctx;
1915         int i;
1916
1917         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1918         if (!ctrl_ctx) {
1919                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1920                                 __func__);
1921                 return;
1922         }
1923
1924         /* When a device's add flag and drop flag are zero, any subsequent
1925          * configure endpoint command will leave that endpoint's state
1926          * untouched.  Make sure we don't leave any old state in the input
1927          * endpoint contexts.
1928          */
1929         ctrl_ctx->drop_flags = 0;
1930         ctrl_ctx->add_flags = 0;
1931         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1932         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1933         /* Endpoint 0 is always valid */
1934         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1935         for (i = 1; i < 31; i++) {
1936                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1937                 ep_ctx->ep_info = 0;
1938                 ep_ctx->ep_info2 = 0;
1939                 ep_ctx->deq = 0;
1940                 ep_ctx->tx_info = 0;
1941         }
1942 }
1943
1944 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1945                 struct usb_device *udev, u32 *cmd_status)
1946 {
1947         int ret;
1948
1949         switch (*cmd_status) {
1950         case COMP_COMMAND_ABORTED:
1951         case COMP_COMMAND_RING_STOPPED:
1952                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1953                 ret = -ETIME;
1954                 break;
1955         case COMP_RESOURCE_ERROR:
1956                 dev_warn(&udev->dev,
1957                          "Not enough host controller resources for new device state.\n");
1958                 ret = -ENOMEM;
1959                 /* FIXME: can we allocate more resources for the HC? */
1960                 break;
1961         case COMP_BANDWIDTH_ERROR:
1962         case COMP_SECONDARY_BANDWIDTH_ERROR:
1963                 dev_warn(&udev->dev,
1964                          "Not enough bandwidth for new device state.\n");
1965                 ret = -ENOSPC;
1966                 /* FIXME: can we go back to the old state? */
1967                 break;
1968         case COMP_TRB_ERROR:
1969                 /* the HCD set up something wrong */
1970                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1971                                 "add flag = 1, "
1972                                 "and endpoint is not disabled.\n");
1973                 ret = -EINVAL;
1974                 break;
1975         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1976                 dev_warn(&udev->dev,
1977                          "ERROR: Incompatible device for endpoint configure command.\n");
1978                 ret = -ENODEV;
1979                 break;
1980         case COMP_SUCCESS:
1981                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1982                                 "Successful Endpoint Configure command");
1983                 ret = 0;
1984                 break;
1985         default:
1986                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1987                                 *cmd_status);
1988                 ret = -EINVAL;
1989                 break;
1990         }
1991         return ret;
1992 }
1993
1994 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1995                 struct usb_device *udev, u32 *cmd_status)
1996 {
1997         int ret;
1998
1999         switch (*cmd_status) {
2000         case COMP_COMMAND_ABORTED:
2001         case COMP_COMMAND_RING_STOPPED:
2002                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2003                 ret = -ETIME;
2004                 break;
2005         case COMP_PARAMETER_ERROR:
2006                 dev_warn(&udev->dev,
2007                          "WARN: xHCI driver setup invalid evaluate context command.\n");
2008                 ret = -EINVAL;
2009                 break;
2010         case COMP_SLOT_NOT_ENABLED_ERROR:
2011                 dev_warn(&udev->dev,
2012                         "WARN: slot not enabled for evaluate context command.\n");
2013                 ret = -EINVAL;
2014                 break;
2015         case COMP_CONTEXT_STATE_ERROR:
2016                 dev_warn(&udev->dev,
2017                         "WARN: invalid context state for evaluate context command.\n");
2018                 ret = -EINVAL;
2019                 break;
2020         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2021                 dev_warn(&udev->dev,
2022                         "ERROR: Incompatible device for evaluate context command.\n");
2023                 ret = -ENODEV;
2024                 break;
2025         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2026                 /* Max Exit Latency too large error */
2027                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2028                 ret = -EINVAL;
2029                 break;
2030         case COMP_SUCCESS:
2031                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2032                                 "Successful evaluate context command");
2033                 ret = 0;
2034                 break;
2035         default:
2036                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2037                         *cmd_status);
2038                 ret = -EINVAL;
2039                 break;
2040         }
2041         return ret;
2042 }
2043
2044 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2045                 struct xhci_input_control_ctx *ctrl_ctx)
2046 {
2047         u32 valid_add_flags;
2048         u32 valid_drop_flags;
2049
2050         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2051          * (bit 1).  The default control endpoint is added during the Address
2052          * Device command and is never removed until the slot is disabled.
2053          */
2054         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2055         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2056
2057         /* Use hweight32 to count the number of ones in the add flags, or
2058          * number of endpoints added.  Don't count endpoints that are changed
2059          * (both added and dropped).
2060          */
2061         return hweight32(valid_add_flags) -
2062                 hweight32(valid_add_flags & valid_drop_flags);
2063 }
2064
2065 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2066                 struct xhci_input_control_ctx *ctrl_ctx)
2067 {
2068         u32 valid_add_flags;
2069         u32 valid_drop_flags;
2070
2071         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2072         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2073
2074         return hweight32(valid_drop_flags) -
2075                 hweight32(valid_add_flags & valid_drop_flags);
2076 }
2077
2078 /*
2079  * We need to reserve the new number of endpoints before the configure endpoint
2080  * command completes.  We can't subtract the dropped endpoints from the number
2081  * of active endpoints until the command completes because we can oversubscribe
2082  * the host in this case:
2083  *
2084  *  - the first configure endpoint command drops more endpoints than it adds
2085  *  - a second configure endpoint command that adds more endpoints is queued
2086  *  - the first configure endpoint command fails, so the config is unchanged
2087  *  - the second command may succeed, even though there isn't enough resources
2088  *
2089  * Must be called with xhci->lock held.
2090  */
2091 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2092                 struct xhci_input_control_ctx *ctrl_ctx)
2093 {
2094         u32 added_eps;
2095
2096         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2097         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2098                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2099                                 "Not enough ep ctxs: "
2100                                 "%u active, need to add %u, limit is %u.",
2101                                 xhci->num_active_eps, added_eps,
2102                                 xhci->limit_active_eps);
2103                 return -ENOMEM;
2104         }
2105         xhci->num_active_eps += added_eps;
2106         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2107                         "Adding %u ep ctxs, %u now active.", added_eps,
2108                         xhci->num_active_eps);
2109         return 0;
2110 }
2111
2112 /*
2113  * The configure endpoint was failed by the xHC for some other reason, so we
2114  * need to revert the resources that failed configuration would have used.
2115  *
2116  * Must be called with xhci->lock held.
2117  */
2118 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2119                 struct xhci_input_control_ctx *ctrl_ctx)
2120 {
2121         u32 num_failed_eps;
2122
2123         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2124         xhci->num_active_eps -= num_failed_eps;
2125         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2126                         "Removing %u failed ep ctxs, %u now active.",
2127                         num_failed_eps,
2128                         xhci->num_active_eps);
2129 }
2130
2131 /*
2132  * Now that the command has completed, clean up the active endpoint count by
2133  * subtracting out the endpoints that were dropped (but not changed).
2134  *
2135  * Must be called with xhci->lock held.
2136  */
2137 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2138                 struct xhci_input_control_ctx *ctrl_ctx)
2139 {
2140         u32 num_dropped_eps;
2141
2142         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2143         xhci->num_active_eps -= num_dropped_eps;
2144         if (num_dropped_eps)
2145                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2146                                 "Removing %u dropped ep ctxs, %u now active.",
2147                                 num_dropped_eps,
2148                                 xhci->num_active_eps);
2149 }
2150
2151 static unsigned int xhci_get_block_size(struct usb_device *udev)
2152 {
2153         switch (udev->speed) {
2154         case USB_SPEED_LOW:
2155         case USB_SPEED_FULL:
2156                 return FS_BLOCK;
2157         case USB_SPEED_HIGH:
2158                 return HS_BLOCK;
2159         case USB_SPEED_SUPER:
2160         case USB_SPEED_SUPER_PLUS:
2161                 return SS_BLOCK;
2162         case USB_SPEED_UNKNOWN:
2163         case USB_SPEED_WIRELESS:
2164         default:
2165                 /* Should never happen */
2166                 return 1;
2167         }
2168 }
2169
2170 static unsigned int
2171 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2172 {
2173         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2174                 return LS_OVERHEAD;
2175         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2176                 return FS_OVERHEAD;
2177         return HS_OVERHEAD;
2178 }
2179
2180 /* If we are changing a LS/FS device under a HS hub,
2181  * make sure (if we are activating a new TT) that the HS bus has enough
2182  * bandwidth for this new TT.
2183  */
2184 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2185                 struct xhci_virt_device *virt_dev,
2186                 int old_active_eps)
2187 {
2188         struct xhci_interval_bw_table *bw_table;
2189         struct xhci_tt_bw_info *tt_info;
2190
2191         /* Find the bandwidth table for the root port this TT is attached to. */
2192         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2193         tt_info = virt_dev->tt_info;
2194         /* If this TT already had active endpoints, the bandwidth for this TT
2195          * has already been added.  Removing all periodic endpoints (and thus
2196          * making the TT enactive) will only decrease the bandwidth used.
2197          */
2198         if (old_active_eps)
2199                 return 0;
2200         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2201                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2202                         return -ENOMEM;
2203                 return 0;
2204         }
2205         /* Not sure why we would have no new active endpoints...
2206          *
2207          * Maybe because of an Evaluate Context change for a hub update or a
2208          * control endpoint 0 max packet size change?
2209          * FIXME: skip the bandwidth calculation in that case.
2210          */
2211         return 0;
2212 }
2213
2214 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2215                 struct xhci_virt_device *virt_dev)
2216 {
2217         unsigned int bw_reserved;
2218
2219         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2220         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2221                 return -ENOMEM;
2222
2223         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2224         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2225                 return -ENOMEM;
2226
2227         return 0;
2228 }
2229
2230 /*
2231  * This algorithm is a very conservative estimate of the worst-case scheduling
2232  * scenario for any one interval.  The hardware dynamically schedules the
2233  * packets, so we can't tell which microframe could be the limiting factor in
2234  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2235  *
2236  * Obviously, we can't solve an NP complete problem to find the minimum worst
2237  * case scenario.  Instead, we come up with an estimate that is no less than
2238  * the worst case bandwidth used for any one microframe, but may be an
2239  * over-estimate.
2240  *
2241  * We walk the requirements for each endpoint by interval, starting with the
2242  * smallest interval, and place packets in the schedule where there is only one
2243  * possible way to schedule packets for that interval.  In order to simplify
2244  * this algorithm, we record the largest max packet size for each interval, and
2245  * assume all packets will be that size.
2246  *
2247  * For interval 0, we obviously must schedule all packets for each interval.
2248  * The bandwidth for interval 0 is just the amount of data to be transmitted
2249  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2250  * the number of packets).
2251  *
2252  * For interval 1, we have two possible microframes to schedule those packets
2253  * in.  For this algorithm, if we can schedule the same number of packets for
2254  * each possible scheduling opportunity (each microframe), we will do so.  The
2255  * remaining number of packets will be saved to be transmitted in the gaps in
2256  * the next interval's scheduling sequence.
2257  *
2258  * As we move those remaining packets to be scheduled with interval 2 packets,
2259  * we have to double the number of remaining packets to transmit.  This is
2260  * because the intervals are actually powers of 2, and we would be transmitting
2261  * the previous interval's packets twice in this interval.  We also have to be
2262  * sure that when we look at the largest max packet size for this interval, we
2263  * also look at the largest max packet size for the remaining packets and take
2264  * the greater of the two.
2265  *
2266  * The algorithm continues to evenly distribute packets in each scheduling
2267  * opportunity, and push the remaining packets out, until we get to the last
2268  * interval.  Then those packets and their associated overhead are just added
2269  * to the bandwidth used.
2270  */
2271 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2272                 struct xhci_virt_device *virt_dev,
2273                 int old_active_eps)
2274 {
2275         unsigned int bw_reserved;
2276         unsigned int max_bandwidth;
2277         unsigned int bw_used;
2278         unsigned int block_size;
2279         struct xhci_interval_bw_table *bw_table;
2280         unsigned int packet_size = 0;
2281         unsigned int overhead = 0;
2282         unsigned int packets_transmitted = 0;
2283         unsigned int packets_remaining = 0;
2284         unsigned int i;
2285
2286         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2287                 return xhci_check_ss_bw(xhci, virt_dev);
2288
2289         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2290                 max_bandwidth = HS_BW_LIMIT;
2291                 /* Convert percent of bus BW reserved to blocks reserved */
2292                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2293         } else {
2294                 max_bandwidth = FS_BW_LIMIT;
2295                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2296         }
2297
2298         bw_table = virt_dev->bw_table;
2299         /* We need to translate the max packet size and max ESIT payloads into
2300          * the units the hardware uses.
2301          */
2302         block_size = xhci_get_block_size(virt_dev->udev);
2303
2304         /* If we are manipulating a LS/FS device under a HS hub, double check
2305          * that the HS bus has enough bandwidth if we are activing a new TT.
2306          */
2307         if (virt_dev->tt_info) {
2308                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2309                                 "Recalculating BW for rootport %u",
2310                                 virt_dev->real_port);
2311                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2312                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2313                                         "newly activated TT.\n");
2314                         return -ENOMEM;
2315                 }
2316                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2317                                 "Recalculating BW for TT slot %u port %u",
2318                                 virt_dev->tt_info->slot_id,
2319                                 virt_dev->tt_info->ttport);
2320         } else {
2321                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2322                                 "Recalculating BW for rootport %u",
2323                                 virt_dev->real_port);
2324         }
2325
2326         /* Add in how much bandwidth will be used for interval zero, or the
2327          * rounded max ESIT payload + number of packets * largest overhead.
2328          */
2329         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2330                 bw_table->interval_bw[0].num_packets *
2331                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2332
2333         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2334                 unsigned int bw_added;
2335                 unsigned int largest_mps;
2336                 unsigned int interval_overhead;
2337
2338                 /*
2339                  * How many packets could we transmit in this interval?
2340                  * If packets didn't fit in the previous interval, we will need
2341                  * to transmit that many packets twice within this interval.
2342                  */
2343                 packets_remaining = 2 * packets_remaining +
2344                         bw_table->interval_bw[i].num_packets;
2345
2346                 /* Find the largest max packet size of this or the previous
2347                  * interval.
2348                  */
2349                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2350                         largest_mps = 0;
2351                 else {
2352                         struct xhci_virt_ep *virt_ep;
2353                         struct list_head *ep_entry;
2354
2355                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2356                         virt_ep = list_entry(ep_entry,
2357                                         struct xhci_virt_ep, bw_endpoint_list);
2358                         /* Convert to blocks, rounding up */
2359                         largest_mps = DIV_ROUND_UP(
2360                                         virt_ep->bw_info.max_packet_size,
2361                                         block_size);
2362                 }
2363                 if (largest_mps > packet_size)
2364                         packet_size = largest_mps;
2365
2366                 /* Use the larger overhead of this or the previous interval. */
2367                 interval_overhead = xhci_get_largest_overhead(
2368                                 &bw_table->interval_bw[i]);
2369                 if (interval_overhead > overhead)
2370                         overhead = interval_overhead;
2371
2372                 /* How many packets can we evenly distribute across
2373                  * (1 << (i + 1)) possible scheduling opportunities?
2374                  */
2375                 packets_transmitted = packets_remaining >> (i + 1);
2376
2377                 /* Add in the bandwidth used for those scheduled packets */
2378                 bw_added = packets_transmitted * (overhead + packet_size);
2379
2380                 /* How many packets do we have remaining to transmit? */
2381                 packets_remaining = packets_remaining % (1 << (i + 1));
2382
2383                 /* What largest max packet size should those packets have? */
2384                 /* If we've transmitted all packets, don't carry over the
2385                  * largest packet size.
2386                  */
2387                 if (packets_remaining == 0) {
2388                         packet_size = 0;
2389                         overhead = 0;
2390                 } else if (packets_transmitted > 0) {
2391                         /* Otherwise if we do have remaining packets, and we've
2392                          * scheduled some packets in this interval, take the
2393                          * largest max packet size from endpoints with this
2394                          * interval.
2395                          */
2396                         packet_size = largest_mps;
2397                         overhead = interval_overhead;
2398                 }
2399                 /* Otherwise carry over packet_size and overhead from the last
2400                  * time we had a remainder.
2401                  */
2402                 bw_used += bw_added;
2403                 if (bw_used > max_bandwidth) {
2404                         xhci_warn(xhci, "Not enough bandwidth. "
2405                                         "Proposed: %u, Max: %u\n",
2406                                 bw_used, max_bandwidth);
2407                         return -ENOMEM;
2408                 }
2409         }
2410         /*
2411          * Ok, we know we have some packets left over after even-handedly
2412          * scheduling interval 15.  We don't know which microframes they will
2413          * fit into, so we over-schedule and say they will be scheduled every
2414          * microframe.
2415          */
2416         if (packets_remaining > 0)
2417                 bw_used += overhead + packet_size;
2418
2419         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2420                 unsigned int port_index = virt_dev->real_port - 1;
2421
2422                 /* OK, we're manipulating a HS device attached to a
2423                  * root port bandwidth domain.  Include the number of active TTs
2424                  * in the bandwidth used.
2425                  */
2426                 bw_used += TT_HS_OVERHEAD *
2427                         xhci->rh_bw[port_index].num_active_tts;
2428         }
2429
2430         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2431                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2432                 "Available: %u " "percent",
2433                 bw_used, max_bandwidth, bw_reserved,
2434                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2435                 max_bandwidth);
2436
2437         bw_used += bw_reserved;
2438         if (bw_used > max_bandwidth) {
2439                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2440                                 bw_used, max_bandwidth);
2441                 return -ENOMEM;
2442         }
2443
2444         bw_table->bw_used = bw_used;
2445         return 0;
2446 }
2447
2448 static bool xhci_is_async_ep(unsigned int ep_type)
2449 {
2450         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2451                                         ep_type != ISOC_IN_EP &&
2452                                         ep_type != INT_IN_EP);
2453 }
2454
2455 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2456 {
2457         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2458 }
2459
2460 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2461 {
2462         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2463
2464         if (ep_bw->ep_interval == 0)
2465                 return SS_OVERHEAD_BURST +
2466                         (ep_bw->mult * ep_bw->num_packets *
2467                                         (SS_OVERHEAD + mps));
2468         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2469                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2470                                 1 << ep_bw->ep_interval);
2471
2472 }
2473
2474 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2475                 struct xhci_bw_info *ep_bw,
2476                 struct xhci_interval_bw_table *bw_table,
2477                 struct usb_device *udev,
2478                 struct xhci_virt_ep *virt_ep,
2479                 struct xhci_tt_bw_info *tt_info)
2480 {
2481         struct xhci_interval_bw *interval_bw;
2482         int normalized_interval;
2483
2484         if (xhci_is_async_ep(ep_bw->type))
2485                 return;
2486
2487         if (udev->speed >= USB_SPEED_SUPER) {
2488                 if (xhci_is_sync_in_ep(ep_bw->type))
2489                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2490                                 xhci_get_ss_bw_consumed(ep_bw);
2491                 else
2492                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2493                                 xhci_get_ss_bw_consumed(ep_bw);
2494                 return;
2495         }
2496
2497         /* SuperSpeed endpoints never get added to intervals in the table, so
2498          * this check is only valid for HS/FS/LS devices.
2499          */
2500         if (list_empty(&virt_ep->bw_endpoint_list))
2501                 return;
2502         /* For LS/FS devices, we need to translate the interval expressed in
2503          * microframes to frames.
2504          */
2505         if (udev->speed == USB_SPEED_HIGH)
2506                 normalized_interval = ep_bw->ep_interval;
2507         else
2508                 normalized_interval = ep_bw->ep_interval - 3;
2509
2510         if (normalized_interval == 0)
2511                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2512         interval_bw = &bw_table->interval_bw[normalized_interval];
2513         interval_bw->num_packets -= ep_bw->num_packets;
2514         switch (udev->speed) {
2515         case USB_SPEED_LOW:
2516                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2517                 break;
2518         case USB_SPEED_FULL:
2519                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2520                 break;
2521         case USB_SPEED_HIGH:
2522                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2523                 break;
2524         case USB_SPEED_SUPER:
2525         case USB_SPEED_SUPER_PLUS:
2526         case USB_SPEED_UNKNOWN:
2527         case USB_SPEED_WIRELESS:
2528                 /* Should never happen because only LS/FS/HS endpoints will get
2529                  * added to the endpoint list.
2530                  */
2531                 return;
2532         }
2533         if (tt_info)
2534                 tt_info->active_eps -= 1;
2535         list_del_init(&virt_ep->bw_endpoint_list);
2536 }
2537
2538 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2539                 struct xhci_bw_info *ep_bw,
2540                 struct xhci_interval_bw_table *bw_table,
2541                 struct usb_device *udev,
2542                 struct xhci_virt_ep *virt_ep,
2543                 struct xhci_tt_bw_info *tt_info)
2544 {
2545         struct xhci_interval_bw *interval_bw;
2546         struct xhci_virt_ep *smaller_ep;
2547         int normalized_interval;
2548
2549         if (xhci_is_async_ep(ep_bw->type))
2550                 return;
2551
2552         if (udev->speed == USB_SPEED_SUPER) {
2553                 if (xhci_is_sync_in_ep(ep_bw->type))
2554                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2555                                 xhci_get_ss_bw_consumed(ep_bw);
2556                 else
2557                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2558                                 xhci_get_ss_bw_consumed(ep_bw);
2559                 return;
2560         }
2561
2562         /* For LS/FS devices, we need to translate the interval expressed in
2563          * microframes to frames.
2564          */
2565         if (udev->speed == USB_SPEED_HIGH)
2566                 normalized_interval = ep_bw->ep_interval;
2567         else
2568                 normalized_interval = ep_bw->ep_interval - 3;
2569
2570         if (normalized_interval == 0)
2571                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2572         interval_bw = &bw_table->interval_bw[normalized_interval];
2573         interval_bw->num_packets += ep_bw->num_packets;
2574         switch (udev->speed) {
2575         case USB_SPEED_LOW:
2576                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2577                 break;
2578         case USB_SPEED_FULL:
2579                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2580                 break;
2581         case USB_SPEED_HIGH:
2582                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2583                 break;
2584         case USB_SPEED_SUPER:
2585         case USB_SPEED_SUPER_PLUS:
2586         case USB_SPEED_UNKNOWN:
2587         case USB_SPEED_WIRELESS:
2588                 /* Should never happen because only LS/FS/HS endpoints will get
2589                  * added to the endpoint list.
2590                  */
2591                 return;
2592         }
2593
2594         if (tt_info)
2595                 tt_info->active_eps += 1;
2596         /* Insert the endpoint into the list, largest max packet size first. */
2597         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2598                         bw_endpoint_list) {
2599                 if (ep_bw->max_packet_size >=
2600                                 smaller_ep->bw_info.max_packet_size) {
2601                         /* Add the new ep before the smaller endpoint */
2602                         list_add_tail(&virt_ep->bw_endpoint_list,
2603                                         &smaller_ep->bw_endpoint_list);
2604                         return;
2605                 }
2606         }
2607         /* Add the new endpoint at the end of the list. */
2608         list_add_tail(&virt_ep->bw_endpoint_list,
2609                         &interval_bw->endpoints);
2610 }
2611
2612 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2613                 struct xhci_virt_device *virt_dev,
2614                 int old_active_eps)
2615 {
2616         struct xhci_root_port_bw_info *rh_bw_info;
2617         if (!virt_dev->tt_info)
2618                 return;
2619
2620         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2621         if (old_active_eps == 0 &&
2622                                 virt_dev->tt_info->active_eps != 0) {
2623                 rh_bw_info->num_active_tts += 1;
2624                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2625         } else if (old_active_eps != 0 &&
2626                                 virt_dev->tt_info->active_eps == 0) {
2627                 rh_bw_info->num_active_tts -= 1;
2628                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2629         }
2630 }
2631
2632 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2633                 struct xhci_virt_device *virt_dev,
2634                 struct xhci_container_ctx *in_ctx)
2635 {
2636         struct xhci_bw_info ep_bw_info[31];
2637         int i;
2638         struct xhci_input_control_ctx *ctrl_ctx;
2639         int old_active_eps = 0;
2640
2641         if (virt_dev->tt_info)
2642                 old_active_eps = virt_dev->tt_info->active_eps;
2643
2644         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2645         if (!ctrl_ctx) {
2646                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2647                                 __func__);
2648                 return -ENOMEM;
2649         }
2650
2651         for (i = 0; i < 31; i++) {
2652                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2653                         continue;
2654
2655                 /* Make a copy of the BW info in case we need to revert this */
2656                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2657                                 sizeof(ep_bw_info[i]));
2658                 /* Drop the endpoint from the interval table if the endpoint is
2659                  * being dropped or changed.
2660                  */
2661                 if (EP_IS_DROPPED(ctrl_ctx, i))
2662                         xhci_drop_ep_from_interval_table(xhci,
2663                                         &virt_dev->eps[i].bw_info,
2664                                         virt_dev->bw_table,
2665                                         virt_dev->udev,
2666                                         &virt_dev->eps[i],
2667                                         virt_dev->tt_info);
2668         }
2669         /* Overwrite the information stored in the endpoints' bw_info */
2670         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2671         for (i = 0; i < 31; i++) {
2672                 /* Add any changed or added endpoints to the interval table */
2673                 if (EP_IS_ADDED(ctrl_ctx, i))
2674                         xhci_add_ep_to_interval_table(xhci,
2675                                         &virt_dev->eps[i].bw_info,
2676                                         virt_dev->bw_table,
2677                                         virt_dev->udev,
2678                                         &virt_dev->eps[i],
2679                                         virt_dev->tt_info);
2680         }
2681
2682         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2683                 /* Ok, this fits in the bandwidth we have.
2684                  * Update the number of active TTs.
2685                  */
2686                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2687                 return 0;
2688         }
2689
2690         /* We don't have enough bandwidth for this, revert the stored info. */
2691         for (i = 0; i < 31; i++) {
2692                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2693                         continue;
2694
2695                 /* Drop the new copies of any added or changed endpoints from
2696                  * the interval table.
2697                  */
2698                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2699                         xhci_drop_ep_from_interval_table(xhci,
2700                                         &virt_dev->eps[i].bw_info,
2701                                         virt_dev->bw_table,
2702                                         virt_dev->udev,
2703                                         &virt_dev->eps[i],
2704                                         virt_dev->tt_info);
2705                 }
2706                 /* Revert the endpoint back to its old information */
2707                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2708                                 sizeof(ep_bw_info[i]));
2709                 /* Add any changed or dropped endpoints back into the table */
2710                 if (EP_IS_DROPPED(ctrl_ctx, i))
2711                         xhci_add_ep_to_interval_table(xhci,
2712                                         &virt_dev->eps[i].bw_info,
2713                                         virt_dev->bw_table,
2714                                         virt_dev->udev,
2715                                         &virt_dev->eps[i],
2716                                         virt_dev->tt_info);
2717         }
2718         return -ENOMEM;
2719 }
2720
2721
2722 /* Issue a configure endpoint command or evaluate context command
2723  * and wait for it to finish.
2724  */
2725 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2726                 struct usb_device *udev,
2727                 struct xhci_command *command,
2728                 bool ctx_change, bool must_succeed)
2729 {
2730         int ret;
2731         unsigned long flags;
2732         struct xhci_input_control_ctx *ctrl_ctx;
2733         struct xhci_virt_device *virt_dev;
2734         struct xhci_slot_ctx *slot_ctx;
2735
2736         if (!command)
2737                 return -EINVAL;
2738
2739         spin_lock_irqsave(&xhci->lock, flags);
2740
2741         if (xhci->xhc_state & XHCI_STATE_DYING) {
2742                 spin_unlock_irqrestore(&xhci->lock, flags);
2743                 return -ESHUTDOWN;
2744         }
2745
2746         virt_dev = xhci->devs[udev->slot_id];
2747
2748         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2749         if (!ctrl_ctx) {
2750                 spin_unlock_irqrestore(&xhci->lock, flags);
2751                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2752                                 __func__);
2753                 return -ENOMEM;
2754         }
2755
2756         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2757                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2758                 spin_unlock_irqrestore(&xhci->lock, flags);
2759                 xhci_warn(xhci, "Not enough host resources, "
2760                                 "active endpoint contexts = %u\n",
2761                                 xhci->num_active_eps);
2762                 return -ENOMEM;
2763         }
2764         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2765             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2766                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2767                         xhci_free_host_resources(xhci, ctrl_ctx);
2768                 spin_unlock_irqrestore(&xhci->lock, flags);
2769                 xhci_warn(xhci, "Not enough bandwidth\n");
2770                 return -ENOMEM;
2771         }
2772
2773         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2774
2775         trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2776         trace_xhci_configure_endpoint(slot_ctx);
2777
2778         if (!ctx_change)
2779                 ret = xhci_queue_configure_endpoint(xhci, command,
2780                                 command->in_ctx->dma,
2781                                 udev->slot_id, must_succeed);
2782         else
2783                 ret = xhci_queue_evaluate_context(xhci, command,
2784                                 command->in_ctx->dma,
2785                                 udev->slot_id, must_succeed);
2786         if (ret < 0) {
2787                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2788                         xhci_free_host_resources(xhci, ctrl_ctx);
2789                 spin_unlock_irqrestore(&xhci->lock, flags);
2790                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2791                                 "FIXME allocate a new ring segment");
2792                 return -ENOMEM;
2793         }
2794         xhci_ring_cmd_db(xhci);
2795         spin_unlock_irqrestore(&xhci->lock, flags);
2796
2797         /* Wait for the configure endpoint command to complete */
2798         wait_for_completion(command->completion);
2799
2800         if (!ctx_change)
2801                 ret = xhci_configure_endpoint_result(xhci, udev,
2802                                                      &command->status);
2803         else
2804                 ret = xhci_evaluate_context_result(xhci, udev,
2805                                                    &command->status);
2806
2807         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2808                 spin_lock_irqsave(&xhci->lock, flags);
2809                 /* If the command failed, remove the reserved resources.
2810                  * Otherwise, clean up the estimate to include dropped eps.
2811                  */
2812                 if (ret)
2813                         xhci_free_host_resources(xhci, ctrl_ctx);
2814                 else
2815                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2816                 spin_unlock_irqrestore(&xhci->lock, flags);
2817         }
2818         return ret;
2819 }
2820
2821 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2822         struct xhci_virt_device *vdev, int i)
2823 {
2824         struct xhci_virt_ep *ep = &vdev->eps[i];
2825
2826         if (ep->ep_state & EP_HAS_STREAMS) {
2827                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2828                                 xhci_get_endpoint_address(i));
2829                 xhci_free_stream_info(xhci, ep->stream_info);
2830                 ep->stream_info = NULL;
2831                 ep->ep_state &= ~EP_HAS_STREAMS;
2832         }
2833 }
2834
2835 /* Called after one or more calls to xhci_add_endpoint() or
2836  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2837  * to call xhci_reset_bandwidth().
2838  *
2839  * Since we are in the middle of changing either configuration or
2840  * installing a new alt setting, the USB core won't allow URBs to be
2841  * enqueued for any endpoint on the old config or interface.  Nothing
2842  * else should be touching the xhci->devs[slot_id] structure, so we
2843  * don't need to take the xhci->lock for manipulating that.
2844  */
2845 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2846 {
2847         int i;
2848         int ret = 0;
2849         struct xhci_hcd *xhci;
2850         struct xhci_virt_device *virt_dev;
2851         struct xhci_input_control_ctx *ctrl_ctx;
2852         struct xhci_slot_ctx *slot_ctx;
2853         struct xhci_command *command;
2854
2855         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2856         if (ret <= 0)
2857                 return ret;
2858         xhci = hcd_to_xhci(hcd);
2859         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2860                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2861                 return -ENODEV;
2862
2863         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2864         virt_dev = xhci->devs[udev->slot_id];
2865
2866         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2867         if (!command)
2868                 return -ENOMEM;
2869
2870         command->in_ctx = virt_dev->in_ctx;
2871
2872         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2873         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2874         if (!ctrl_ctx) {
2875                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2876                                 __func__);
2877                 ret = -ENOMEM;
2878                 goto command_cleanup;
2879         }
2880         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2881         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2882         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2883
2884         /* Don't issue the command if there's no endpoints to update. */
2885         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2886             ctrl_ctx->drop_flags == 0) {
2887                 ret = 0;
2888                 goto command_cleanup;
2889         }
2890         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2891         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2892         for (i = 31; i >= 1; i--) {
2893                 __le32 le32 = cpu_to_le32(BIT(i));
2894
2895                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2896                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2897                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2898                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2899                         break;
2900                 }
2901         }
2902
2903         ret = xhci_configure_endpoint(xhci, udev, command,
2904                         false, false);
2905         if (ret)
2906                 /* Callee should call reset_bandwidth() */
2907                 goto command_cleanup;
2908
2909         /* Free any rings that were dropped, but not changed. */
2910         for (i = 1; i < 31; i++) {
2911                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2912                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2913                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2914                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2915                 }
2916         }
2917         xhci_zero_in_ctx(xhci, virt_dev);
2918         /*
2919          * Install any rings for completely new endpoints or changed endpoints,
2920          * and free any old rings from changed endpoints.
2921          */
2922         for (i = 1; i < 31; i++) {
2923                 if (!virt_dev->eps[i].new_ring)
2924                         continue;
2925                 /* Only free the old ring if it exists.
2926                  * It may not if this is the first add of an endpoint.
2927                  */
2928                 if (virt_dev->eps[i].ring) {
2929                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2930                 }
2931                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2932                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2933                 virt_dev->eps[i].new_ring = NULL;
2934         }
2935 command_cleanup:
2936         kfree(command->completion);
2937         kfree(command);
2938
2939         return ret;
2940 }
2941
2942 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2943 {
2944         struct xhci_hcd *xhci;
2945         struct xhci_virt_device *virt_dev;
2946         int i, ret;
2947
2948         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2949         if (ret <= 0)
2950                 return;
2951         xhci = hcd_to_xhci(hcd);
2952
2953         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2954         virt_dev = xhci->devs[udev->slot_id];
2955         /* Free any rings allocated for added endpoints */
2956         for (i = 0; i < 31; i++) {
2957                 if (virt_dev->eps[i].new_ring) {
2958                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2959                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2960                         virt_dev->eps[i].new_ring = NULL;
2961                 }
2962         }
2963         xhci_zero_in_ctx(xhci, virt_dev);
2964 }
2965
2966 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2967                 struct xhci_container_ctx *in_ctx,
2968                 struct xhci_container_ctx *out_ctx,
2969                 struct xhci_input_control_ctx *ctrl_ctx,
2970                 u32 add_flags, u32 drop_flags)
2971 {
2972         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2973         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2974         xhci_slot_copy(xhci, in_ctx, out_ctx);
2975         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2976 }
2977
2978 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2979                 unsigned int slot_id, unsigned int ep_index,
2980                 struct xhci_dequeue_state *deq_state)
2981 {
2982         struct xhci_input_control_ctx *ctrl_ctx;
2983         struct xhci_container_ctx *in_ctx;
2984         struct xhci_ep_ctx *ep_ctx;
2985         u32 added_ctxs;
2986         dma_addr_t addr;
2987
2988         in_ctx = xhci->devs[slot_id]->in_ctx;
2989         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2990         if (!ctrl_ctx) {
2991                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2992                                 __func__);
2993                 return;
2994         }
2995
2996         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2997                         xhci->devs[slot_id]->out_ctx, ep_index);
2998         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2999         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3000                         deq_state->new_deq_ptr);
3001         if (addr == 0) {
3002                 xhci_warn(xhci, "WARN Cannot submit config ep after "
3003                                 "reset ep command\n");
3004                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
3005                                 deq_state->new_deq_seg,
3006                                 deq_state->new_deq_ptr);
3007                 return;
3008         }
3009         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
3010
3011         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
3012         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
3013                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
3014                         added_ctxs, added_ctxs);
3015 }
3016
3017 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
3018                                unsigned int stream_id, struct xhci_td *td)
3019 {
3020         struct xhci_dequeue_state deq_state;
3021         struct usb_device *udev = td->urb->dev;
3022
3023         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3024                         "Cleaning up stalled endpoint ring");
3025         /* We need to move the HW's dequeue pointer past this TD,
3026          * or it will attempt to resend it on the next doorbell ring.
3027          */
3028         xhci_find_new_dequeue_state(xhci, udev->slot_id,
3029                         ep_index, stream_id, td, &deq_state);
3030
3031         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3032                 return;
3033
3034         /* HW with the reset endpoint quirk will use the saved dequeue state to
3035          * issue a configure endpoint command later.
3036          */
3037         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3038                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3039                                 "Queueing new dequeue state");
3040                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
3041                                 ep_index, &deq_state);
3042         } else {
3043                 /* Better hope no one uses the input context between now and the
3044                  * reset endpoint completion!
3045                  * XXX: No idea how this hardware will react when stream rings
3046                  * are enabled.
3047                  */
3048                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3049                                 "Setting up input context for "
3050                                 "configure endpoint command");
3051                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
3052                                 ep_index, &deq_state);
3053         }
3054 }
3055
3056 /*
3057  * Called after usb core issues a clear halt control message.
3058  * The host side of the halt should already be cleared by a reset endpoint
3059  * command issued when the STALL event was received.
3060  *
3061  * The reset endpoint command may only be issued to endpoints in the halted
3062  * state. For software that wishes to reset the data toggle or sequence number
3063  * of an endpoint that isn't in the halted state this function will issue a
3064  * configure endpoint command with the Drop and Add bits set for the target
3065  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3066  */
3067
3068 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3069                 struct usb_host_endpoint *host_ep)
3070 {
3071         struct xhci_hcd *xhci;
3072         struct usb_device *udev;
3073         struct xhci_virt_device *vdev;
3074         struct xhci_virt_ep *ep;
3075         struct xhci_input_control_ctx *ctrl_ctx;
3076         struct xhci_command *stop_cmd, *cfg_cmd;
3077         unsigned int ep_index;
3078         unsigned long flags;
3079         u32 ep_flag;
3080
3081         xhci = hcd_to_xhci(hcd);
3082         if (!host_ep->hcpriv)
3083                 return;
3084         udev = (struct usb_device *) host_ep->hcpriv;
3085         vdev = xhci->devs[udev->slot_id];
3086         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3087         ep = &vdev->eps[ep_index];
3088
3089         /* Bail out if toggle is already being cleared by a endpoint reset */
3090         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3091                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3092                 return;
3093         }
3094         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3095         if (usb_endpoint_xfer_control(&host_ep->desc) ||
3096             usb_endpoint_xfer_isoc(&host_ep->desc))
3097                 return;
3098
3099         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3100
3101         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3102                 return;
3103
3104         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3105         if (!stop_cmd)
3106                 return;
3107
3108         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3109         if (!cfg_cmd)
3110                 goto cleanup;
3111
3112         spin_lock_irqsave(&xhci->lock, flags);
3113
3114         /* block queuing new trbs and ringing ep doorbell */
3115         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3116
3117         /*
3118          * Make sure endpoint ring is empty before resetting the toggle/seq.
3119          * Driver is required to synchronously cancel all transfer request.
3120          * Stop the endpoint to force xHC to update the output context
3121          */
3122
3123         if (!list_empty(&ep->ring->td_list)) {
3124                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3125                 spin_unlock_irqrestore(&xhci->lock, flags);
3126                 xhci_free_command(xhci, cfg_cmd);
3127                 goto cleanup;
3128         }
3129         xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, ep_index, 0);
3130         xhci_ring_cmd_db(xhci);
3131         spin_unlock_irqrestore(&xhci->lock, flags);
3132
3133         wait_for_completion(stop_cmd->completion);
3134
3135         spin_lock_irqsave(&xhci->lock, flags);
3136
3137         /* config ep command clears toggle if add and drop ep flags are set */
3138         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3139         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3140                                            ctrl_ctx, ep_flag, ep_flag);
3141         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3142
3143         xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3144                                       udev->slot_id, false);
3145         xhci_ring_cmd_db(xhci);
3146         spin_unlock_irqrestore(&xhci->lock, flags);
3147
3148         wait_for_completion(cfg_cmd->completion);
3149
3150         ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3151         xhci_free_command(xhci, cfg_cmd);
3152 cleanup:
3153         xhci_free_command(xhci, stop_cmd);
3154 }
3155
3156 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3157                 struct usb_device *udev, struct usb_host_endpoint *ep,
3158                 unsigned int slot_id)
3159 {
3160         int ret;
3161         unsigned int ep_index;
3162         unsigned int ep_state;
3163
3164         if (!ep)
3165                 return -EINVAL;
3166         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3167         if (ret <= 0)
3168                 return -EINVAL;
3169         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3170                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3171                                 " descriptor for ep 0x%x does not support streams\n",
3172                                 ep->desc.bEndpointAddress);
3173                 return -EINVAL;
3174         }
3175
3176         ep_index = xhci_get_endpoint_index(&ep->desc);
3177         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3178         if (ep_state & EP_HAS_STREAMS ||
3179                         ep_state & EP_GETTING_STREAMS) {
3180                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3181                                 "already has streams set up.\n",
3182                                 ep->desc.bEndpointAddress);
3183                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3184                                 "dynamic stream context array reallocation.\n");
3185                 return -EINVAL;
3186         }
3187         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3188                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3189                                 "endpoint 0x%x; URBs are pending.\n",
3190                                 ep->desc.bEndpointAddress);
3191                 return -EINVAL;
3192         }
3193         return 0;
3194 }
3195
3196 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3197                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3198 {
3199         unsigned int max_streams;
3200
3201         /* The stream context array size must be a power of two */
3202         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3203         /*
3204          * Find out how many primary stream array entries the host controller
3205          * supports.  Later we may use secondary stream arrays (similar to 2nd
3206          * level page entries), but that's an optional feature for xHCI host
3207          * controllers. xHCs must support at least 4 stream IDs.
3208          */
3209         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3210         if (*num_stream_ctxs > max_streams) {
3211                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3212                                 max_streams);
3213                 *num_stream_ctxs = max_streams;
3214                 *num_streams = max_streams;
3215         }
3216 }
3217
3218 /* Returns an error code if one of the endpoint already has streams.
3219  * This does not change any data structures, it only checks and gathers
3220  * information.
3221  */
3222 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3223                 struct usb_device *udev,
3224                 struct usb_host_endpoint **eps, unsigned int num_eps,
3225                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3226 {
3227         unsigned int max_streams;
3228         unsigned int endpoint_flag;
3229         int i;
3230         int ret;
3231
3232         for (i = 0; i < num_eps; i++) {
3233                 ret = xhci_check_streams_endpoint(xhci, udev,
3234                                 eps[i], udev->slot_id);
3235                 if (ret < 0)
3236                         return ret;
3237
3238                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3239                 if (max_streams < (*num_streams - 1)) {
3240                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3241                                         eps[i]->desc.bEndpointAddress,
3242                                         max_streams);
3243                         *num_streams = max_streams+1;
3244                 }
3245
3246                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3247                 if (*changed_ep_bitmask & endpoint_flag)
3248                         return -EINVAL;
3249                 *changed_ep_bitmask |= endpoint_flag;
3250         }
3251         return 0;
3252 }
3253
3254 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3255                 struct usb_device *udev,
3256                 struct usb_host_endpoint **eps, unsigned int num_eps)
3257 {
3258         u32 changed_ep_bitmask = 0;
3259         unsigned int slot_id;
3260         unsigned int ep_index;
3261         unsigned int ep_state;
3262         int i;
3263
3264         slot_id = udev->slot_id;
3265         if (!xhci->devs[slot_id])
3266                 return 0;
3267
3268         for (i = 0; i < num_eps; i++) {
3269                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3270                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3271                 /* Are streams already being freed for the endpoint? */
3272                 if (ep_state & EP_GETTING_NO_STREAMS) {
3273                         xhci_warn(xhci, "WARN Can't disable streams for "
3274                                         "endpoint 0x%x, "
3275                                         "streams are being disabled already\n",
3276                                         eps[i]->desc.bEndpointAddress);
3277                         return 0;
3278                 }
3279                 /* Are there actually any streams to free? */
3280                 if (!(ep_state & EP_HAS_STREAMS) &&
3281                                 !(ep_state & EP_GETTING_STREAMS)) {
3282                         xhci_warn(xhci, "WARN Can't disable streams for "
3283                                         "endpoint 0x%x, "
3284                                         "streams are already disabled!\n",
3285                                         eps[i]->desc.bEndpointAddress);
3286                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3287                                         "with non-streams endpoint\n");
3288                         return 0;
3289                 }
3290                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3291         }
3292         return changed_ep_bitmask;
3293 }
3294
3295 /*
3296  * The USB device drivers use this function (through the HCD interface in USB
3297  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3298  * coordinate mass storage command queueing across multiple endpoints (basically
3299  * a stream ID == a task ID).
3300  *
3301  * Setting up streams involves allocating the same size stream context array
3302  * for each endpoint and issuing a configure endpoint command for all endpoints.
3303  *
3304  * Don't allow the call to succeed if one endpoint only supports one stream
3305  * (which means it doesn't support streams at all).
3306  *
3307  * Drivers may get less stream IDs than they asked for, if the host controller
3308  * hardware or endpoints claim they can't support the number of requested
3309  * stream IDs.
3310  */
3311 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3312                 struct usb_host_endpoint **eps, unsigned int num_eps,
3313                 unsigned int num_streams, gfp_t mem_flags)
3314 {
3315         int i, ret;
3316         struct xhci_hcd *xhci;
3317         struct xhci_virt_device *vdev;
3318         struct xhci_command *config_cmd;
3319         struct xhci_input_control_ctx *ctrl_ctx;
3320         unsigned int ep_index;
3321         unsigned int num_stream_ctxs;
3322         unsigned int max_packet;
3323         unsigned long flags;
3324         u32 changed_ep_bitmask = 0;
3325
3326         if (!eps)
3327                 return -EINVAL;
3328
3329         /* Add one to the number of streams requested to account for
3330          * stream 0 that is reserved for xHCI usage.
3331          */
3332         num_streams += 1;
3333         xhci = hcd_to_xhci(hcd);
3334         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3335                         num_streams);
3336
3337         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3338         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3339                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3340                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3341                 return -ENOSYS;
3342         }
3343
3344         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3345         if (!config_cmd)
3346                 return -ENOMEM;
3347
3348         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3349         if (!ctrl_ctx) {
3350                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3351                                 __func__);
3352                 xhci_free_command(xhci, config_cmd);
3353                 return -ENOMEM;
3354         }
3355
3356         /* Check to make sure all endpoints are not already configured for
3357          * streams.  While we're at it, find the maximum number of streams that
3358          * all the endpoints will support and check for duplicate endpoints.
3359          */
3360         spin_lock_irqsave(&xhci->lock, flags);
3361         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3362                         num_eps, &num_streams, &changed_ep_bitmask);
3363         if (ret < 0) {
3364                 xhci_free_command(xhci, config_cmd);
3365                 spin_unlock_irqrestore(&xhci->lock, flags);
3366                 return ret;
3367         }
3368         if (num_streams <= 1) {
3369                 xhci_warn(xhci, "WARN: endpoints can't handle "
3370                                 "more than one stream.\n");
3371                 xhci_free_command(xhci, config_cmd);
3372                 spin_unlock_irqrestore(&xhci->lock, flags);
3373                 return -EINVAL;
3374         }
3375         vdev = xhci->devs[udev->slot_id];
3376         /* Mark each endpoint as being in transition, so
3377          * xhci_urb_enqueue() will reject all URBs.
3378          */
3379         for (i = 0; i < num_eps; i++) {
3380                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3381                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3382         }
3383         spin_unlock_irqrestore(&xhci->lock, flags);
3384
3385         /* Setup internal data structures and allocate HW data structures for
3386          * streams (but don't install the HW structures in the input context
3387          * until we're sure all memory allocation succeeded).
3388          */
3389         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3390         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3391                         num_stream_ctxs, num_streams);
3392
3393         for (i = 0; i < num_eps; i++) {
3394                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3395                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3396                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3397                                 num_stream_ctxs,
3398                                 num_streams,
3399                                 max_packet, mem_flags);
3400                 if (!vdev->eps[ep_index].stream_info)
3401                         goto cleanup;
3402                 /* Set maxPstreams in endpoint context and update deq ptr to
3403                  * point to stream context array. FIXME
3404                  */
3405         }
3406
3407         /* Set up the input context for a configure endpoint command. */
3408         for (i = 0; i < num_eps; i++) {
3409                 struct xhci_ep_ctx *ep_ctx;
3410
3411                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3412                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3413
3414                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3415                                 vdev->out_ctx, ep_index);
3416                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3417                                 vdev->eps[ep_index].stream_info);
3418         }
3419         /* Tell the HW to drop its old copy of the endpoint context info
3420          * and add the updated copy from the input context.
3421          */
3422         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3423                         vdev->out_ctx, ctrl_ctx,
3424                         changed_ep_bitmask, changed_ep_bitmask);
3425
3426         /* Issue and wait for the configure endpoint command */
3427         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3428                         false, false);
3429
3430         /* xHC rejected the configure endpoint command for some reason, so we
3431          * leave the old ring intact and free our internal streams data
3432          * structure.
3433          */
3434         if (ret < 0)
3435                 goto cleanup;
3436
3437         spin_lock_irqsave(&xhci->lock, flags);
3438         for (i = 0; i < num_eps; i++) {
3439                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3440                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3441                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3442                          udev->slot_id, ep_index);
3443                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3444         }
3445         xhci_free_command(xhci, config_cmd);
3446         spin_unlock_irqrestore(&xhci->lock, flags);
3447
3448         /* Subtract 1 for stream 0, which drivers can't use */
3449         return num_streams - 1;
3450
3451 cleanup:
3452         /* If it didn't work, free the streams! */
3453         for (i = 0; i < num_eps; i++) {
3454                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3455                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3456                 vdev->eps[ep_index].stream_info = NULL;
3457                 /* FIXME Unset maxPstreams in endpoint context and
3458                  * update deq ptr to point to normal string ring.
3459                  */
3460                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3461                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3462                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3463         }
3464         xhci_free_command(xhci, config_cmd);
3465         return -ENOMEM;
3466 }
3467
3468 /* Transition the endpoint from using streams to being a "normal" endpoint
3469  * without streams.
3470  *
3471  * Modify the endpoint context state, submit a configure endpoint command,
3472  * and free all endpoint rings for streams if that completes successfully.
3473  */
3474 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3475                 struct usb_host_endpoint **eps, unsigned int num_eps,
3476                 gfp_t mem_flags)
3477 {
3478         int i, ret;
3479         struct xhci_hcd *xhci;
3480         struct xhci_virt_device *vdev;
3481         struct xhci_command *command;
3482         struct xhci_input_control_ctx *ctrl_ctx;
3483         unsigned int ep_index;
3484         unsigned long flags;
3485         u32 changed_ep_bitmask;
3486
3487         xhci = hcd_to_xhci(hcd);
3488         vdev = xhci->devs[udev->slot_id];
3489
3490         /* Set up a configure endpoint command to remove the streams rings */
3491         spin_lock_irqsave(&xhci->lock, flags);
3492         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3493                         udev, eps, num_eps);
3494         if (changed_ep_bitmask == 0) {
3495                 spin_unlock_irqrestore(&xhci->lock, flags);
3496                 return -EINVAL;
3497         }
3498
3499         /* Use the xhci_command structure from the first endpoint.  We may have
3500          * allocated too many, but the driver may call xhci_free_streams() for
3501          * each endpoint it grouped into one call to xhci_alloc_streams().
3502          */
3503         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3504         command = vdev->eps[ep_index].stream_info->free_streams_command;
3505         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3506         if (!ctrl_ctx) {
3507                 spin_unlock_irqrestore(&xhci->lock, flags);
3508                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3509                                 __func__);
3510                 return -EINVAL;
3511         }
3512
3513         for (i = 0; i < num_eps; i++) {
3514                 struct xhci_ep_ctx *ep_ctx;
3515
3516                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3517                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3518                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3519                         EP_GETTING_NO_STREAMS;
3520
3521                 xhci_endpoint_copy(xhci, command->in_ctx,
3522                                 vdev->out_ctx, ep_index);
3523                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3524                                 &vdev->eps[ep_index]);
3525         }
3526         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3527                         vdev->out_ctx, ctrl_ctx,
3528                         changed_ep_bitmask, changed_ep_bitmask);
3529         spin_unlock_irqrestore(&xhci->lock, flags);
3530
3531         /* Issue and wait for the configure endpoint command,
3532          * which must succeed.
3533          */
3534         ret = xhci_configure_endpoint(xhci, udev, command,
3535                         false, true);
3536
3537         /* xHC rejected the configure endpoint command for some reason, so we
3538          * leave the streams rings intact.
3539          */
3540         if (ret < 0)
3541                 return ret;
3542
3543         spin_lock_irqsave(&xhci->lock, flags);
3544         for (i = 0; i < num_eps; i++) {
3545                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3546                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3547                 vdev->eps[ep_index].stream_info = NULL;
3548                 /* FIXME Unset maxPstreams in endpoint context and
3549                  * update deq ptr to point to normal string ring.
3550                  */
3551                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3552                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3553         }
3554         spin_unlock_irqrestore(&xhci->lock, flags);
3555
3556         return 0;
3557 }
3558
3559 /*
3560  * Deletes endpoint resources for endpoints that were active before a Reset
3561  * Device command, or a Disable Slot command.  The Reset Device command leaves
3562  * the control endpoint intact, whereas the Disable Slot command deletes it.
3563  *
3564  * Must be called with xhci->lock held.
3565  */
3566 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3567         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3568 {
3569         int i;
3570         unsigned int num_dropped_eps = 0;
3571         unsigned int drop_flags = 0;
3572
3573         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3574                 if (virt_dev->eps[i].ring) {
3575                         drop_flags |= 1 << i;
3576                         num_dropped_eps++;
3577                 }
3578         }
3579         xhci->num_active_eps -= num_dropped_eps;
3580         if (num_dropped_eps)
3581                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3582                                 "Dropped %u ep ctxs, flags = 0x%x, "
3583                                 "%u now active.",
3584                                 num_dropped_eps, drop_flags,
3585                                 xhci->num_active_eps);
3586 }
3587
3588 /*
3589  * This submits a Reset Device Command, which will set the device state to 0,
3590  * set the device address to 0, and disable all the endpoints except the default
3591  * control endpoint.  The USB core should come back and call
3592  * xhci_address_device(), and then re-set up the configuration.  If this is
3593  * called because of a usb_reset_and_verify_device(), then the old alternate
3594  * settings will be re-installed through the normal bandwidth allocation
3595  * functions.
3596  *
3597  * Wait for the Reset Device command to finish.  Remove all structures
3598  * associated with the endpoints that were disabled.  Clear the input device
3599  * structure? Reset the control endpoint 0 max packet size?
3600  *
3601  * If the virt_dev to be reset does not exist or does not match the udev,
3602  * it means the device is lost, possibly due to the xHC restore error and
3603  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3604  * re-allocate the device.
3605  */
3606 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3607                 struct usb_device *udev)
3608 {
3609         int ret, i;
3610         unsigned long flags;
3611         struct xhci_hcd *xhci;
3612         unsigned int slot_id;
3613         struct xhci_virt_device *virt_dev;
3614         struct xhci_command *reset_device_cmd;
3615         struct xhci_slot_ctx *slot_ctx;
3616         int old_active_eps = 0;
3617
3618         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3619         if (ret <= 0)
3620                 return ret;
3621         xhci = hcd_to_xhci(hcd);
3622         slot_id = udev->slot_id;
3623         virt_dev = xhci->devs[slot_id];
3624         if (!virt_dev) {
3625                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3626                                 "not exist. Re-allocate the device\n", slot_id);
3627                 ret = xhci_alloc_dev(hcd, udev);
3628                 if (ret == 1)
3629                         return 0;
3630                 else
3631                         return -EINVAL;
3632         }
3633
3634         if (virt_dev->tt_info)
3635                 old_active_eps = virt_dev->tt_info->active_eps;
3636
3637         if (virt_dev->udev != udev) {
3638                 /* If the virt_dev and the udev does not match, this virt_dev
3639                  * may belong to another udev.
3640                  * Re-allocate the device.
3641                  */
3642                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3643                                 "not match the udev. Re-allocate the device\n",
3644                                 slot_id);
3645                 ret = xhci_alloc_dev(hcd, udev);
3646                 if (ret == 1)
3647                         return 0;
3648                 else
3649                         return -EINVAL;
3650         }
3651
3652         /* If device is not setup, there is no point in resetting it */
3653         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3654         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3655                                                 SLOT_STATE_DISABLED)
3656                 return 0;
3657
3658         trace_xhci_discover_or_reset_device(slot_ctx);
3659
3660         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3661         /* Allocate the command structure that holds the struct completion.
3662          * Assume we're in process context, since the normal device reset
3663          * process has to wait for the device anyway.  Storage devices are
3664          * reset as part of error handling, so use GFP_NOIO instead of
3665          * GFP_KERNEL.
3666          */
3667         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3668         if (!reset_device_cmd) {
3669                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3670                 return -ENOMEM;
3671         }
3672
3673         /* Attempt to submit the Reset Device command to the command ring */
3674         spin_lock_irqsave(&xhci->lock, flags);
3675
3676         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3677         if (ret) {
3678                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3679                 spin_unlock_irqrestore(&xhci->lock, flags);
3680                 goto command_cleanup;
3681         }
3682         xhci_ring_cmd_db(xhci);
3683         spin_unlock_irqrestore(&xhci->lock, flags);
3684
3685         /* Wait for the Reset Device command to finish */
3686         wait_for_completion(reset_device_cmd->completion);
3687
3688         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3689          * unless we tried to reset a slot ID that wasn't enabled,
3690          * or the device wasn't in the addressed or configured state.
3691          */
3692         ret = reset_device_cmd->status;
3693         switch (ret) {
3694         case COMP_COMMAND_ABORTED:
3695         case COMP_COMMAND_RING_STOPPED:
3696                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3697                 ret = -ETIME;
3698                 goto command_cleanup;
3699         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3700         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3701                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3702                                 slot_id,
3703                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3704                 xhci_dbg(xhci, "Not freeing device rings.\n");
3705                 /* Don't treat this as an error.  May change my mind later. */
3706                 ret = 0;
3707                 goto command_cleanup;
3708         case COMP_SUCCESS:
3709                 xhci_dbg(xhci, "Successful reset device command.\n");
3710                 break;
3711         default:
3712                 if (xhci_is_vendor_info_code(xhci, ret))
3713                         break;
3714                 xhci_warn(xhci, "Unknown completion code %u for "
3715                                 "reset device command.\n", ret);
3716                 ret = -EINVAL;
3717                 goto command_cleanup;
3718         }
3719
3720         /* Free up host controller endpoint resources */
3721         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3722                 spin_lock_irqsave(&xhci->lock, flags);
3723                 /* Don't delete the default control endpoint resources */
3724                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3725                 spin_unlock_irqrestore(&xhci->lock, flags);
3726         }
3727
3728         /* Everything but endpoint 0 is disabled, so free the rings. */
3729         for (i = 1; i < 31; i++) {
3730                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3731
3732                 if (ep->ep_state & EP_HAS_STREAMS) {
3733                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3734                                         xhci_get_endpoint_address(i));
3735                         xhci_free_stream_info(xhci, ep->stream_info);
3736                         ep->stream_info = NULL;
3737                         ep->ep_state &= ~EP_HAS_STREAMS;
3738                 }
3739
3740                 if (ep->ring) {
3741                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3742                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3743                 }
3744                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3745                         xhci_drop_ep_from_interval_table(xhci,
3746                                         &virt_dev->eps[i].bw_info,
3747                                         virt_dev->bw_table,
3748                                         udev,
3749                                         &virt_dev->eps[i],
3750                                         virt_dev->tt_info);
3751                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3752         }
3753         /* If necessary, update the number of active TTs on this root port */
3754         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3755         ret = 0;
3756
3757 command_cleanup:
3758         xhci_free_command(xhci, reset_device_cmd);
3759         return ret;
3760 }
3761
3762 /*
3763  * At this point, the struct usb_device is about to go away, the device has
3764  * disconnected, and all traffic has been stopped and the endpoints have been
3765  * disabled.  Free any HC data structures associated with that device.
3766  */
3767 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3768 {
3769         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3770         struct xhci_virt_device *virt_dev;
3771         struct xhci_slot_ctx *slot_ctx;
3772         int i, ret;
3773
3774 #ifndef CONFIG_USB_DEFAULT_PERSIST
3775         /*
3776          * We called pm_runtime_get_noresume when the device was attached.
3777          * Decrement the counter here to allow controller to runtime suspend
3778          * if no devices remain.
3779          */
3780         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3781                 pm_runtime_put_noidle(hcd->self.controller);
3782 #endif
3783
3784         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3785         /* If the host is halted due to driver unload, we still need to free the
3786          * device.
3787          */
3788         if (ret <= 0 && ret != -ENODEV)
3789                 return;
3790
3791         virt_dev = xhci->devs[udev->slot_id];
3792         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3793         trace_xhci_free_dev(slot_ctx);
3794
3795         /* Stop any wayward timer functions (which may grab the lock) */
3796         for (i = 0; i < 31; i++) {
3797                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3798                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3799         }
3800         xhci_debugfs_remove_slot(xhci, udev->slot_id);
3801         virt_dev->udev = NULL;
3802         ret = xhci_disable_slot(xhci, udev->slot_id);
3803         if (ret)
3804                 xhci_free_virt_device(xhci, udev->slot_id);
3805 }
3806
3807 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3808 {
3809         struct xhci_command *command;
3810         unsigned long flags;
3811         u32 state;
3812         int ret = 0;
3813
3814         command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3815         if (!command)
3816                 return -ENOMEM;
3817
3818         spin_lock_irqsave(&xhci->lock, flags);
3819         /* Don't disable the slot if the host controller is dead. */
3820         state = readl(&xhci->op_regs->status);
3821         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3822                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3823                 spin_unlock_irqrestore(&xhci->lock, flags);
3824                 kfree(command);
3825                 return -ENODEV;
3826         }
3827
3828         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3829                                 slot_id);
3830         if (ret) {
3831                 spin_unlock_irqrestore(&xhci->lock, flags);
3832                 kfree(command);
3833                 return ret;
3834         }
3835         xhci_ring_cmd_db(xhci);
3836         spin_unlock_irqrestore(&xhci->lock, flags);
3837         return ret;
3838 }
3839
3840 /*
3841  * Checks if we have enough host controller resources for the default control
3842  * endpoint.
3843  *
3844  * Must be called with xhci->lock held.
3845  */
3846 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3847 {
3848         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3849                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3850                                 "Not enough ep ctxs: "
3851                                 "%u active, need to add 1, limit is %u.",
3852                                 xhci->num_active_eps, xhci->limit_active_eps);
3853                 return -ENOMEM;
3854         }
3855         xhci->num_active_eps += 1;
3856         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3857                         "Adding 1 ep ctx, %u now active.",
3858                         xhci->num_active_eps);
3859         return 0;
3860 }
3861
3862
3863 /*
3864  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3865  * timed out, or allocating memory failed.  Returns 1 on success.
3866  */
3867 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3868 {
3869         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3870         struct xhci_virt_device *vdev;
3871         struct xhci_slot_ctx *slot_ctx;
3872         unsigned long flags;
3873         int ret, slot_id;
3874         struct xhci_command *command;
3875
3876         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3877         if (!command)
3878                 return 0;
3879
3880         spin_lock_irqsave(&xhci->lock, flags);
3881         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3882         if (ret) {
3883                 spin_unlock_irqrestore(&xhci->lock, flags);
3884                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3885                 xhci_free_command(xhci, command);
3886                 return 0;
3887         }
3888         xhci_ring_cmd_db(xhci);
3889         spin_unlock_irqrestore(&xhci->lock, flags);
3890
3891         wait_for_completion(command->completion);
3892         slot_id = command->slot_id;
3893
3894         if (!slot_id || command->status != COMP_SUCCESS) {
3895                 xhci_err(xhci, "Error while assigning device slot ID\n");
3896                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3897                                 HCS_MAX_SLOTS(
3898                                         readl(&xhci->cap_regs->hcs_params1)));
3899                 xhci_free_command(xhci, command);
3900                 return 0;
3901         }
3902
3903         xhci_free_command(xhci, command);
3904
3905         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3906                 spin_lock_irqsave(&xhci->lock, flags);
3907                 ret = xhci_reserve_host_control_ep_resources(xhci);
3908                 if (ret) {
3909                         spin_unlock_irqrestore(&xhci->lock, flags);
3910                         xhci_warn(xhci, "Not enough host resources, "
3911                                         "active endpoint contexts = %u\n",
3912                                         xhci->num_active_eps);
3913                         goto disable_slot;
3914                 }
3915                 spin_unlock_irqrestore(&xhci->lock, flags);
3916         }
3917         /* Use GFP_NOIO, since this function can be called from
3918          * xhci_discover_or_reset_device(), which may be called as part of
3919          * mass storage driver error handling.
3920          */
3921         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3922                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3923                 goto disable_slot;
3924         }
3925         vdev = xhci->devs[slot_id];
3926         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3927         trace_xhci_alloc_dev(slot_ctx);
3928
3929         udev->slot_id = slot_id;
3930
3931         xhci_debugfs_create_slot(xhci, slot_id);
3932
3933 #ifndef CONFIG_USB_DEFAULT_PERSIST
3934         /*
3935          * If resetting upon resume, we can't put the controller into runtime
3936          * suspend if there is a device attached.
3937          */
3938         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3939                 pm_runtime_get_noresume(hcd->self.controller);
3940 #endif
3941
3942         /* Is this a LS or FS device under a HS hub? */
3943         /* Hub or peripherial? */
3944         return 1;
3945
3946 disable_slot:
3947         ret = xhci_disable_slot(xhci, udev->slot_id);
3948         if (ret)
3949                 xhci_free_virt_device(xhci, udev->slot_id);
3950
3951         return 0;
3952 }
3953
3954 /*
3955  * Issue an Address Device command and optionally send a corresponding
3956  * SetAddress request to the device.
3957  */
3958 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3959                              enum xhci_setup_dev setup)
3960 {
3961         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3962         unsigned long flags;
3963         struct xhci_virt_device *virt_dev;
3964         int ret = 0;
3965         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3966         struct xhci_slot_ctx *slot_ctx;
3967         struct xhci_input_control_ctx *ctrl_ctx;
3968         u64 temp_64;
3969         struct xhci_command *command = NULL;
3970
3971         mutex_lock(&xhci->mutex);
3972
3973         if (xhci->xhc_state) {  /* dying, removing or halted */
3974                 ret = -ESHUTDOWN;
3975                 goto out;
3976         }
3977
3978         if (!udev->slot_id) {
3979                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3980                                 "Bad Slot ID %d", udev->slot_id);
3981                 ret = -EINVAL;
3982                 goto out;
3983         }
3984
3985         virt_dev = xhci->devs[udev->slot_id];
3986
3987         if (WARN_ON(!virt_dev)) {
3988                 /*
3989                  * In plug/unplug torture test with an NEC controller,
3990                  * a zero-dereference was observed once due to virt_dev = 0.
3991                  * Print useful debug rather than crash if it is observed again!
3992                  */
3993                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3994                         udev->slot_id);
3995                 ret = -EINVAL;
3996                 goto out;
3997         }
3998         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3999         trace_xhci_setup_device_slot(slot_ctx);
4000
4001         if (setup == SETUP_CONTEXT_ONLY) {
4002                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4003                     SLOT_STATE_DEFAULT) {
4004                         xhci_dbg(xhci, "Slot already in default state\n");
4005                         goto out;
4006                 }
4007         }
4008
4009         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4010         if (!command) {
4011                 ret = -ENOMEM;
4012                 goto out;
4013         }
4014
4015         command->in_ctx = virt_dev->in_ctx;
4016
4017         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4018         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4019         if (!ctrl_ctx) {
4020                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4021                                 __func__);
4022                 ret = -EINVAL;
4023                 goto out;
4024         }
4025         /*
4026          * If this is the first Set Address since device plug-in or
4027          * virt_device realloaction after a resume with an xHCI power loss,
4028          * then set up the slot context.
4029          */
4030         if (!slot_ctx->dev_info)
4031                 xhci_setup_addressable_virt_dev(xhci, udev);
4032         /* Otherwise, update the control endpoint ring enqueue pointer. */
4033         else
4034                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4035         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4036         ctrl_ctx->drop_flags = 0;
4037
4038         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4039                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4040
4041         trace_xhci_address_ctrl_ctx(ctrl_ctx);
4042         spin_lock_irqsave(&xhci->lock, flags);
4043         trace_xhci_setup_device(virt_dev);
4044         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4045                                         udev->slot_id, setup);
4046         if (ret) {
4047                 spin_unlock_irqrestore(&xhci->lock, flags);
4048                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4049                                 "FIXME: allocate a command ring segment");
4050                 goto out;
4051         }
4052         xhci_ring_cmd_db(xhci);
4053         spin_unlock_irqrestore(&xhci->lock, flags);
4054
4055         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4056         wait_for_completion(command->completion);
4057
4058         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4059          * the SetAddress() "recovery interval" required by USB and aborting the
4060          * command on a timeout.
4061          */
4062         switch (command->status) {
4063         case COMP_COMMAND_ABORTED:
4064         case COMP_COMMAND_RING_STOPPED:
4065                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4066                 ret = -ETIME;
4067                 break;
4068         case COMP_CONTEXT_STATE_ERROR:
4069         case COMP_SLOT_NOT_ENABLED_ERROR:
4070                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4071                          act, udev->slot_id);
4072                 ret = -EINVAL;
4073                 break;
4074         case COMP_USB_TRANSACTION_ERROR:
4075                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4076
4077                 mutex_unlock(&xhci->mutex);
4078                 ret = xhci_disable_slot(xhci, udev->slot_id);
4079                 if (!ret)
4080                         xhci_alloc_dev(hcd, udev);
4081                 kfree(command->completion);
4082                 kfree(command);
4083                 return -EPROTO;
4084         case COMP_INCOMPATIBLE_DEVICE_ERROR:
4085                 dev_warn(&udev->dev,
4086                          "ERROR: Incompatible device for setup %s command\n", act);
4087                 ret = -ENODEV;
4088                 break;
4089         case COMP_SUCCESS:
4090                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4091                                "Successful setup %s command", act);
4092                 break;
4093         default:
4094                 xhci_err(xhci,
4095                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
4096                          act, command->status);
4097                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4098                 ret = -EINVAL;
4099                 break;
4100         }
4101         if (ret)
4102                 goto out;
4103         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4104         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4105                         "Op regs DCBAA ptr = %#016llx", temp_64);
4106         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4107                 "Slot ID %d dcbaa entry @%p = %#016llx",
4108                 udev->slot_id,
4109                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4110                 (unsigned long long)
4111                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4112         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4113                         "Output Context DMA address = %#08llx",
4114                         (unsigned long long)virt_dev->out_ctx->dma);
4115         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4116                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4117         /*
4118          * USB core uses address 1 for the roothubs, so we add one to the
4119          * address given back to us by the HC.
4120          */
4121         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4122                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4123         /* Zero the input context control for later use */
4124         ctrl_ctx->add_flags = 0;
4125         ctrl_ctx->drop_flags = 0;
4126
4127         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4128                        "Internal device address = %d",
4129                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4130 out:
4131         mutex_unlock(&xhci->mutex);
4132         if (command) {
4133                 kfree(command->completion);
4134                 kfree(command);
4135         }
4136         return ret;
4137 }
4138
4139 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4140 {
4141         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4142 }
4143
4144 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4145 {
4146         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4147 }
4148
4149 /*
4150  * Transfer the port index into real index in the HW port status
4151  * registers. Caculate offset between the port's PORTSC register
4152  * and port status base. Divide the number of per port register
4153  * to get the real index. The raw port number bases 1.
4154  */
4155 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4156 {
4157         struct xhci_hub *rhub;
4158
4159         rhub = xhci_get_rhub(hcd);
4160         return rhub->ports[port1 - 1]->hw_portnum + 1;
4161 }
4162
4163 /*
4164  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4165  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4166  */
4167 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4168                         struct usb_device *udev, u16 max_exit_latency)
4169 {
4170         struct xhci_virt_device *virt_dev;
4171         struct xhci_command *command;
4172         struct xhci_input_control_ctx *ctrl_ctx;
4173         struct xhci_slot_ctx *slot_ctx;
4174         unsigned long flags;
4175         int ret;
4176
4177         spin_lock_irqsave(&xhci->lock, flags);
4178
4179         virt_dev = xhci->devs[udev->slot_id];
4180
4181         /*
4182          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4183          * xHC was re-initialized. Exit latency will be set later after
4184          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4185          */
4186
4187         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4188                 spin_unlock_irqrestore(&xhci->lock, flags);
4189                 return 0;
4190         }
4191
4192         /* Attempt to issue an Evaluate Context command to change the MEL. */
4193         command = xhci->lpm_command;
4194         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4195         if (!ctrl_ctx) {
4196                 spin_unlock_irqrestore(&xhci->lock, flags);
4197                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4198                                 __func__);
4199                 return -ENOMEM;
4200         }
4201
4202         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4203         spin_unlock_irqrestore(&xhci->lock, flags);
4204
4205         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4206         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4207         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4208         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4209         slot_ctx->dev_state = 0;
4210
4211         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4212                         "Set up evaluate context for LPM MEL change.");
4213
4214         /* Issue and wait for the evaluate context command. */
4215         ret = xhci_configure_endpoint(xhci, udev, command,
4216                         true, true);
4217
4218         if (!ret) {
4219                 spin_lock_irqsave(&xhci->lock, flags);
4220                 virt_dev->current_mel = max_exit_latency;
4221                 spin_unlock_irqrestore(&xhci->lock, flags);
4222         }
4223         return ret;
4224 }
4225
4226 #ifdef CONFIG_PM
4227
4228 /* BESL to HIRD Encoding array for USB2 LPM */
4229 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4230         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4231
4232 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4233 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4234                                         struct usb_device *udev)
4235 {
4236         int u2del, besl, besl_host;
4237         int besl_device = 0;
4238         u32 field;
4239
4240         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4241         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4242
4243         if (field & USB_BESL_SUPPORT) {
4244                 for (besl_host = 0; besl_host < 16; besl_host++) {
4245                         if (xhci_besl_encoding[besl_host] >= u2del)
4246                                 break;
4247                 }
4248                 /* Use baseline BESL value as default */
4249                 if (field & USB_BESL_BASELINE_VALID)
4250                         besl_device = USB_GET_BESL_BASELINE(field);
4251                 else if (field & USB_BESL_DEEP_VALID)
4252                         besl_device = USB_GET_BESL_DEEP(field);
4253         } else {
4254                 if (u2del <= 50)
4255                         besl_host = 0;
4256                 else
4257                         besl_host = (u2del - 51) / 75 + 1;
4258         }
4259
4260         besl = besl_host + besl_device;
4261         if (besl > 15)
4262                 besl = 15;
4263
4264         return besl;
4265 }
4266
4267 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4268 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4269 {
4270         u32 field;
4271         int l1;
4272         int besld = 0;
4273         int hirdm = 0;
4274
4275         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4276
4277         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4278         l1 = udev->l1_params.timeout / 256;
4279
4280         /* device has preferred BESLD */
4281         if (field & USB_BESL_DEEP_VALID) {
4282                 besld = USB_GET_BESL_DEEP(field);
4283                 hirdm = 1;
4284         }
4285
4286         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4287 }
4288
4289 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4290                         struct usb_device *udev, int enable)
4291 {
4292         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4293         struct xhci_port **ports;
4294         __le32 __iomem  *pm_addr, *hlpm_addr;
4295         u32             pm_val, hlpm_val, field;
4296         unsigned int    port_num;
4297         unsigned long   flags;
4298         int             hird, exit_latency;
4299         int             ret;
4300
4301         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4302                         !udev->lpm_capable)
4303                 return -EPERM;
4304
4305         if (!udev->parent || udev->parent->parent ||
4306                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4307                 return -EPERM;
4308
4309         if (udev->usb2_hw_lpm_capable != 1)
4310                 return -EPERM;
4311
4312         spin_lock_irqsave(&xhci->lock, flags);
4313
4314         ports = xhci->usb2_rhub.ports;
4315         port_num = udev->portnum - 1;
4316         pm_addr = ports[port_num]->addr + PORTPMSC;
4317         pm_val = readl(pm_addr);
4318         hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4319         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4320
4321         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4322                         enable ? "enable" : "disable", port_num + 1);
4323
4324         if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4325                 /* Host supports BESL timeout instead of HIRD */
4326                 if (udev->usb2_hw_lpm_besl_capable) {
4327                         /* if device doesn't have a preferred BESL value use a
4328                          * default one which works with mixed HIRD and BESL
4329                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4330                          */
4331                         if ((field & USB_BESL_SUPPORT) &&
4332                             (field & USB_BESL_BASELINE_VALID))
4333                                 hird = USB_GET_BESL_BASELINE(field);
4334                         else
4335                                 hird = udev->l1_params.besl;
4336
4337                         exit_latency = xhci_besl_encoding[hird];
4338                         spin_unlock_irqrestore(&xhci->lock, flags);
4339
4340                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4341                          * input context for link powermanagement evaluate
4342                          * context commands. It is protected by hcd->bandwidth
4343                          * mutex and is shared by all devices. We need to set
4344                          * the max ext latency in USB 2 BESL LPM as well, so
4345                          * use the same mutex and xhci_change_max_exit_latency()
4346                          */
4347                         mutex_lock(hcd->bandwidth_mutex);
4348                         ret = xhci_change_max_exit_latency(xhci, udev,
4349                                                            exit_latency);
4350                         mutex_unlock(hcd->bandwidth_mutex);
4351
4352                         if (ret < 0)
4353                                 return ret;
4354                         spin_lock_irqsave(&xhci->lock, flags);
4355
4356                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4357                         writel(hlpm_val, hlpm_addr);
4358                         /* flush write */
4359                         readl(hlpm_addr);
4360                 } else {
4361                         hird = xhci_calculate_hird_besl(xhci, udev);
4362                 }
4363
4364                 pm_val &= ~PORT_HIRD_MASK;
4365                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4366                 writel(pm_val, pm_addr);
4367                 pm_val = readl(pm_addr);
4368                 pm_val |= PORT_HLE;
4369                 writel(pm_val, pm_addr);
4370                 /* flush write */
4371                 readl(pm_addr);
4372         } else {
4373                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4374                 writel(pm_val, pm_addr);
4375                 /* flush write */
4376                 readl(pm_addr);
4377                 if (udev->usb2_hw_lpm_besl_capable) {
4378                         spin_unlock_irqrestore(&xhci->lock, flags);
4379                         mutex_lock(hcd->bandwidth_mutex);
4380                         xhci_change_max_exit_latency(xhci, udev, 0);
4381                         mutex_unlock(hcd->bandwidth_mutex);
4382                         return 0;
4383                 }
4384         }
4385
4386         spin_unlock_irqrestore(&xhci->lock, flags);
4387         return 0;
4388 }
4389
4390 /* check if a usb2 port supports a given extened capability protocol
4391  * only USB2 ports extended protocol capability values are cached.
4392  * Return 1 if capability is supported
4393  */
4394 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4395                                            unsigned capability)
4396 {
4397         u32 port_offset, port_count;
4398         int i;
4399
4400         for (i = 0; i < xhci->num_ext_caps; i++) {
4401                 if (xhci->ext_caps[i] & capability) {
4402                         /* port offsets starts at 1 */
4403                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4404                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4405                         if (port >= port_offset &&
4406                             port < port_offset + port_count)
4407                                 return 1;
4408                 }
4409         }
4410         return 0;
4411 }
4412
4413 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4414 {
4415         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4416         int             portnum = udev->portnum - 1;
4417
4418         if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4419                 return 0;
4420
4421         /* we only support lpm for non-hub device connected to root hub yet */
4422         if (!udev->parent || udev->parent->parent ||
4423                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4424                 return 0;
4425
4426         if (xhci->hw_lpm_support == 1 &&
4427                         xhci_check_usb2_port_capability(
4428                                 xhci, portnum, XHCI_HLC)) {
4429                 udev->usb2_hw_lpm_capable = 1;
4430                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4431                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4432                 if (xhci_check_usb2_port_capability(xhci, portnum,
4433                                         XHCI_BLC))
4434                         udev->usb2_hw_lpm_besl_capable = 1;
4435         }
4436
4437         return 0;
4438 }
4439
4440 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4441
4442 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4443 static unsigned long long xhci_service_interval_to_ns(
4444                 struct usb_endpoint_descriptor *desc)
4445 {
4446         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4447 }
4448
4449 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4450                 enum usb3_link_state state)
4451 {
4452         unsigned long long sel;
4453         unsigned long long pel;
4454         unsigned int max_sel_pel;
4455         char *state_name;
4456
4457         switch (state) {
4458         case USB3_LPM_U1:
4459                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4460                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4461                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4462                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4463                 state_name = "U1";
4464                 break;
4465         case USB3_LPM_U2:
4466                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4467                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4468                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4469                 state_name = "U2";
4470                 break;
4471         default:
4472                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4473                                 __func__);
4474                 return USB3_LPM_DISABLED;
4475         }
4476
4477         if (sel <= max_sel_pel && pel <= max_sel_pel)
4478                 return USB3_LPM_DEVICE_INITIATED;
4479
4480         if (sel > max_sel_pel)
4481                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4482                                 "due to long SEL %llu ms\n",
4483                                 state_name, sel);
4484         else
4485                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4486                                 "due to long PEL %llu ms\n",
4487                                 state_name, pel);
4488         return USB3_LPM_DISABLED;
4489 }
4490
4491 /* The U1 timeout should be the maximum of the following values:
4492  *  - For control endpoints, U1 system exit latency (SEL) * 3
4493  *  - For bulk endpoints, U1 SEL * 5
4494  *  - For interrupt endpoints:
4495  *    - Notification EPs, U1 SEL * 3
4496  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4497  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4498  */
4499 static unsigned long long xhci_calculate_intel_u1_timeout(
4500                 struct usb_device *udev,
4501                 struct usb_endpoint_descriptor *desc)
4502 {
4503         unsigned long long timeout_ns;
4504         int ep_type;
4505         int intr_type;
4506
4507         ep_type = usb_endpoint_type(desc);
4508         switch (ep_type) {
4509         case USB_ENDPOINT_XFER_CONTROL:
4510                 timeout_ns = udev->u1_params.sel * 3;
4511                 break;
4512         case USB_ENDPOINT_XFER_BULK:
4513                 timeout_ns = udev->u1_params.sel * 5;
4514                 break;
4515         case USB_ENDPOINT_XFER_INT:
4516                 intr_type = usb_endpoint_interrupt_type(desc);
4517                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4518                         timeout_ns = udev->u1_params.sel * 3;
4519                         break;
4520                 }
4521                 /* Otherwise the calculation is the same as isoc eps */
4522                 /* fall through */
4523         case USB_ENDPOINT_XFER_ISOC:
4524                 timeout_ns = xhci_service_interval_to_ns(desc);
4525                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4526                 if (timeout_ns < udev->u1_params.sel * 2)
4527                         timeout_ns = udev->u1_params.sel * 2;
4528                 break;
4529         default:
4530                 return 0;
4531         }
4532
4533         return timeout_ns;
4534 }
4535
4536 /* Returns the hub-encoded U1 timeout value. */
4537 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4538                 struct usb_device *udev,
4539                 struct usb_endpoint_descriptor *desc)
4540 {
4541         unsigned long long timeout_ns;
4542
4543         /* Prevent U1 if service interval is shorter than U1 exit latency */
4544         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4545                 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4546                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4547                         return USB3_LPM_DISABLED;
4548                 }
4549         }
4550
4551         if (xhci->quirks & XHCI_INTEL_HOST)
4552                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4553         else
4554                 timeout_ns = udev->u1_params.sel;
4555
4556         /* The U1 timeout is encoded in 1us intervals.
4557          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4558          */
4559         if (timeout_ns == USB3_LPM_DISABLED)
4560                 timeout_ns = 1;
4561         else
4562                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4563
4564         /* If the necessary timeout value is bigger than what we can set in the
4565          * USB 3.0 hub, we have to disable hub-initiated U1.
4566          */
4567         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4568                 return timeout_ns;
4569         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4570                         "due to long timeout %llu ms\n", timeout_ns);
4571         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4572 }
4573
4574 /* The U2 timeout should be the maximum of:
4575  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4576  *  - largest bInterval of any active periodic endpoint (to avoid going
4577  *    into lower power link states between intervals).
4578  *  - the U2 Exit Latency of the device
4579  */
4580 static unsigned long long xhci_calculate_intel_u2_timeout(
4581                 struct usb_device *udev,
4582                 struct usb_endpoint_descriptor *desc)
4583 {
4584         unsigned long long timeout_ns;
4585         unsigned long long u2_del_ns;
4586
4587         timeout_ns = 10 * 1000 * 1000;
4588
4589         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4590                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4591                 timeout_ns = xhci_service_interval_to_ns(desc);
4592
4593         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4594         if (u2_del_ns > timeout_ns)
4595                 timeout_ns = u2_del_ns;
4596
4597         return timeout_ns;
4598 }
4599
4600 /* Returns the hub-encoded U2 timeout value. */
4601 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4602                 struct usb_device *udev,
4603                 struct usb_endpoint_descriptor *desc)
4604 {
4605         unsigned long long timeout_ns;
4606
4607         /* Prevent U2 if service interval is shorter than U2 exit latency */
4608         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4609                 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4610                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4611                         return USB3_LPM_DISABLED;
4612                 }
4613         }
4614
4615         if (xhci->quirks & XHCI_INTEL_HOST)
4616                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4617         else
4618                 timeout_ns = udev->u2_params.sel;
4619
4620         /* The U2 timeout is encoded in 256us intervals */
4621         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4622         /* If the necessary timeout value is bigger than what we can set in the
4623          * USB 3.0 hub, we have to disable hub-initiated U2.
4624          */
4625         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4626                 return timeout_ns;
4627         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4628                         "due to long timeout %llu ms\n", timeout_ns);
4629         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4630 }
4631
4632 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4633                 struct usb_device *udev,
4634                 struct usb_endpoint_descriptor *desc,
4635                 enum usb3_link_state state,
4636                 u16 *timeout)
4637 {
4638         if (state == USB3_LPM_U1)
4639                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4640         else if (state == USB3_LPM_U2)
4641                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4642
4643         return USB3_LPM_DISABLED;
4644 }
4645
4646 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4647                 struct usb_device *udev,
4648                 struct usb_endpoint_descriptor *desc,
4649                 enum usb3_link_state state,
4650                 u16 *timeout)
4651 {
4652         u16 alt_timeout;
4653
4654         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4655                 desc, state, timeout);
4656
4657         /* If we found we can't enable hub-initiated LPM, or
4658          * the U1 or U2 exit latency was too high to allow
4659          * device-initiated LPM as well, just stop searching.
4660          */
4661         if (alt_timeout == USB3_LPM_DISABLED ||
4662                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4663                 *timeout = alt_timeout;
4664                 return -E2BIG;
4665         }
4666         if (alt_timeout > *timeout)
4667                 *timeout = alt_timeout;
4668         return 0;
4669 }
4670
4671 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4672                 struct usb_device *udev,
4673                 struct usb_host_interface *alt,
4674                 enum usb3_link_state state,
4675                 u16 *timeout)
4676 {
4677         int j;
4678
4679         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4680                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4681                                         &alt->endpoint[j].desc, state, timeout))
4682                         return -E2BIG;
4683                 continue;
4684         }
4685         return 0;
4686 }
4687
4688 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4689                 enum usb3_link_state state)
4690 {
4691         struct usb_device *parent;
4692         unsigned int num_hubs;
4693
4694         if (state == USB3_LPM_U2)
4695                 return 0;
4696
4697         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4698         for (parent = udev->parent, num_hubs = 0; parent->parent;
4699                         parent = parent->parent)
4700                 num_hubs++;
4701
4702         if (num_hubs < 2)
4703                 return 0;
4704
4705         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4706                         " below second-tier hub.\n");
4707         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4708                         "to decrease power consumption.\n");
4709         return -E2BIG;
4710 }
4711
4712 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4713                 struct usb_device *udev,
4714                 enum usb3_link_state state)
4715 {
4716         if (xhci->quirks & XHCI_INTEL_HOST)
4717                 return xhci_check_intel_tier_policy(udev, state);
4718         else
4719                 return 0;
4720 }
4721
4722 /* Returns the U1 or U2 timeout that should be enabled.
4723  * If the tier check or timeout setting functions return with a non-zero exit
4724  * code, that means the timeout value has been finalized and we shouldn't look
4725  * at any more endpoints.
4726  */
4727 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4728                         struct usb_device *udev, enum usb3_link_state state)
4729 {
4730         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4731         struct usb_host_config *config;
4732         char *state_name;
4733         int i;
4734         u16 timeout = USB3_LPM_DISABLED;
4735
4736         if (state == USB3_LPM_U1)
4737                 state_name = "U1";
4738         else if (state == USB3_LPM_U2)
4739                 state_name = "U2";
4740         else {
4741                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4742                                 state);
4743                 return timeout;
4744         }
4745
4746         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4747                 return timeout;
4748
4749         /* Gather some information about the currently installed configuration
4750          * and alternate interface settings.
4751          */
4752         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4753                         state, &timeout))
4754                 return timeout;
4755
4756         config = udev->actconfig;
4757         if (!config)
4758                 return timeout;
4759
4760         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4761                 struct usb_driver *driver;
4762                 struct usb_interface *intf = config->interface[i];
4763
4764                 if (!intf)
4765                         continue;
4766
4767                 /* Check if any currently bound drivers want hub-initiated LPM
4768                  * disabled.
4769                  */
4770                 if (intf->dev.driver) {
4771                         driver = to_usb_driver(intf->dev.driver);
4772                         if (driver && driver->disable_hub_initiated_lpm) {
4773                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4774                                                 "at request of driver %s\n",
4775                                                 state_name, driver->name);
4776                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4777                         }
4778                 }
4779
4780                 /* Not sure how this could happen... */
4781                 if (!intf->cur_altsetting)
4782                         continue;
4783
4784                 if (xhci_update_timeout_for_interface(xhci, udev,
4785                                         intf->cur_altsetting,
4786                                         state, &timeout))
4787                         return timeout;
4788         }
4789         return timeout;
4790 }
4791
4792 static int calculate_max_exit_latency(struct usb_device *udev,
4793                 enum usb3_link_state state_changed,
4794                 u16 hub_encoded_timeout)
4795 {
4796         unsigned long long u1_mel_us = 0;
4797         unsigned long long u2_mel_us = 0;
4798         unsigned long long mel_us = 0;
4799         bool disabling_u1;
4800         bool disabling_u2;
4801         bool enabling_u1;
4802         bool enabling_u2;
4803
4804         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4805                         hub_encoded_timeout == USB3_LPM_DISABLED);
4806         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4807                         hub_encoded_timeout == USB3_LPM_DISABLED);
4808
4809         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4810                         hub_encoded_timeout != USB3_LPM_DISABLED);
4811         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4812                         hub_encoded_timeout != USB3_LPM_DISABLED);
4813
4814         /* If U1 was already enabled and we're not disabling it,
4815          * or we're going to enable U1, account for the U1 max exit latency.
4816          */
4817         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4818                         enabling_u1)
4819                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4820         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4821                         enabling_u2)
4822                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4823
4824         if (u1_mel_us > u2_mel_us)
4825                 mel_us = u1_mel_us;
4826         else
4827                 mel_us = u2_mel_us;
4828         /* xHCI host controller max exit latency field is only 16 bits wide. */
4829         if (mel_us > MAX_EXIT) {
4830                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4831                                 "is too big.\n", mel_us);
4832                 return -E2BIG;
4833         }
4834         return mel_us;
4835 }
4836
4837 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4838 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4839                         struct usb_device *udev, enum usb3_link_state state)
4840 {
4841         struct xhci_hcd *xhci;
4842         u16 hub_encoded_timeout;
4843         int mel;
4844         int ret;
4845
4846         xhci = hcd_to_xhci(hcd);
4847         /* The LPM timeout values are pretty host-controller specific, so don't
4848          * enable hub-initiated timeouts unless the vendor has provided
4849          * information about their timeout algorithm.
4850          */
4851         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4852                         !xhci->devs[udev->slot_id])
4853                 return USB3_LPM_DISABLED;
4854
4855         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4856         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4857         if (mel < 0) {
4858                 /* Max Exit Latency is too big, disable LPM. */
4859                 hub_encoded_timeout = USB3_LPM_DISABLED;
4860                 mel = 0;
4861         }
4862
4863         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4864         if (ret)
4865                 return ret;
4866         return hub_encoded_timeout;
4867 }
4868
4869 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4870                         struct usb_device *udev, enum usb3_link_state state)
4871 {
4872         struct xhci_hcd *xhci;
4873         u16 mel;
4874
4875         xhci = hcd_to_xhci(hcd);
4876         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4877                         !xhci->devs[udev->slot_id])
4878                 return 0;
4879
4880         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4881         return xhci_change_max_exit_latency(xhci, udev, mel);
4882 }
4883 #else /* CONFIG_PM */
4884
4885 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4886                                 struct usb_device *udev, int enable)
4887 {
4888         return 0;
4889 }
4890
4891 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4892 {
4893         return 0;
4894 }
4895
4896 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4897                         struct usb_device *udev, enum usb3_link_state state)
4898 {
4899         return USB3_LPM_DISABLED;
4900 }
4901
4902 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4903                         struct usb_device *udev, enum usb3_link_state state)
4904 {
4905         return 0;
4906 }
4907 #endif  /* CONFIG_PM */
4908
4909 /*-------------------------------------------------------------------------*/
4910
4911 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4912  * internal data structures for the device.
4913  */
4914 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4915                         struct usb_tt *tt, gfp_t mem_flags)
4916 {
4917         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4918         struct xhci_virt_device *vdev;
4919         struct xhci_command *config_cmd;
4920         struct xhci_input_control_ctx *ctrl_ctx;
4921         struct xhci_slot_ctx *slot_ctx;
4922         unsigned long flags;
4923         unsigned think_time;
4924         int ret;
4925
4926         /* Ignore root hubs */
4927         if (!hdev->parent)
4928                 return 0;
4929
4930         vdev = xhci->devs[hdev->slot_id];
4931         if (!vdev) {
4932                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4933                 return -EINVAL;
4934         }
4935
4936         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
4937         if (!config_cmd)
4938                 return -ENOMEM;
4939
4940         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4941         if (!ctrl_ctx) {
4942                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4943                                 __func__);
4944                 xhci_free_command(xhci, config_cmd);
4945                 return -ENOMEM;
4946         }
4947
4948         spin_lock_irqsave(&xhci->lock, flags);
4949         if (hdev->speed == USB_SPEED_HIGH &&
4950                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4951                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4952                 xhci_free_command(xhci, config_cmd);
4953                 spin_unlock_irqrestore(&xhci->lock, flags);
4954                 return -ENOMEM;
4955         }
4956
4957         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4958         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4959         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4960         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4961         /*
4962          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4963          * but it may be already set to 1 when setup an xHCI virtual
4964          * device, so clear it anyway.
4965          */
4966         if (tt->multi)
4967                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4968         else if (hdev->speed == USB_SPEED_FULL)
4969                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4970
4971         if (xhci->hci_version > 0x95) {
4972                 xhci_dbg(xhci, "xHCI version %x needs hub "
4973                                 "TT think time and number of ports\n",
4974                                 (unsigned int) xhci->hci_version);
4975                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4976                 /* Set TT think time - convert from ns to FS bit times.
4977                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4978                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4979                  *
4980                  * xHCI 1.0: this field shall be 0 if the device is not a
4981                  * High-spped hub.
4982                  */
4983                 think_time = tt->think_time;
4984                 if (think_time != 0)
4985                         think_time = (think_time / 666) - 1;
4986                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4987                         slot_ctx->tt_info |=
4988                                 cpu_to_le32(TT_THINK_TIME(think_time));
4989         } else {
4990                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4991                                 "TT think time or number of ports\n",
4992                                 (unsigned int) xhci->hci_version);
4993         }
4994         slot_ctx->dev_state = 0;
4995         spin_unlock_irqrestore(&xhci->lock, flags);
4996
4997         xhci_dbg(xhci, "Set up %s for hub device.\n",
4998                         (xhci->hci_version > 0x95) ?
4999                         "configure endpoint" : "evaluate context");
5000
5001         /* Issue and wait for the configure endpoint or
5002          * evaluate context command.
5003          */
5004         if (xhci->hci_version > 0x95)
5005                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5006                                 false, false);
5007         else
5008                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5009                                 true, false);
5010
5011         xhci_free_command(xhci, config_cmd);
5012         return ret;
5013 }
5014
5015 static int xhci_get_frame(struct usb_hcd *hcd)
5016 {
5017         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5018         /* EHCI mods by the periodic size.  Why? */
5019         return readl(&xhci->run_regs->microframe_index) >> 3;
5020 }
5021
5022 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5023 {
5024         struct xhci_hcd         *xhci;
5025         /*
5026          * TODO: Check with DWC3 clients for sysdev according to
5027          * quirks
5028          */
5029         struct device           *dev = hcd->self.sysdev;
5030         unsigned int            minor_rev;
5031         int                     retval;
5032
5033         /* Accept arbitrarily long scatter-gather lists */
5034         hcd->self.sg_tablesize = ~0;
5035
5036         /* support to build packet from discontinuous buffers */
5037         hcd->self.no_sg_constraint = 1;
5038
5039         /* XHCI controllers don't stop the ep queue on short packets :| */
5040         hcd->self.no_stop_on_short = 1;
5041
5042         xhci = hcd_to_xhci(hcd);
5043
5044         if (usb_hcd_is_primary_hcd(hcd)) {
5045                 xhci->main_hcd = hcd;
5046                 xhci->usb2_rhub.hcd = hcd;
5047                 /* Mark the first roothub as being USB 2.0.
5048                  * The xHCI driver will register the USB 3.0 roothub.
5049                  */
5050                 hcd->speed = HCD_USB2;
5051                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5052                 /*
5053                  * USB 2.0 roothub under xHCI has an integrated TT,
5054                  * (rate matching hub) as opposed to having an OHCI/UHCI
5055                  * companion controller.
5056                  */
5057                 hcd->has_tt = 1;
5058         } else {
5059                 /*
5060                  * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol
5061                  * minor revision instead of sbrn
5062                  */
5063                 minor_rev = xhci->usb3_rhub.min_rev;
5064                 if (minor_rev) {
5065                         hcd->speed = HCD_USB31;
5066                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5067                 }
5068                 xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n",
5069                           minor_rev,
5070                           minor_rev ? "Enhanced" : "");
5071
5072                 xhci->usb3_rhub.hcd = hcd;
5073                 /* xHCI private pointer was set in xhci_pci_probe for the second
5074                  * registered roothub.
5075                  */
5076                 return 0;
5077         }
5078
5079         mutex_init(&xhci->mutex);
5080         xhci->cap_regs = hcd->regs;
5081         xhci->op_regs = hcd->regs +
5082                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5083         xhci->run_regs = hcd->regs +
5084                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5085         /* Cache read-only capability registers */
5086         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5087         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5088         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5089         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5090         xhci->hci_version = HC_VERSION(xhci->hcc_params);
5091         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5092         if (xhci->hci_version > 0x100)
5093                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5094
5095         xhci->quirks |= quirks;
5096
5097         get_quirks(dev, xhci);
5098
5099         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5100          * success event after a short transfer. This quirk will ignore such
5101          * spurious event.
5102          */
5103         if (xhci->hci_version > 0x96)
5104                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5105
5106         /* Make sure the HC is halted. */
5107         retval = xhci_halt(xhci);
5108         if (retval)
5109                 return retval;
5110
5111         xhci_zero_64b_regs(xhci);
5112
5113         xhci_dbg(xhci, "Resetting HCD\n");
5114         /* Reset the internal HC memory state and registers. */
5115         retval = xhci_reset(xhci);
5116         if (retval)
5117                 return retval;
5118         xhci_dbg(xhci, "Reset complete\n");
5119
5120         /*
5121          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5122          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5123          * address memory pointers actually. So, this driver clears the AC64
5124          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5125          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5126          */
5127         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5128                 xhci->hcc_params &= ~BIT(0);
5129
5130         /* Set dma_mask and coherent_dma_mask to 64-bits,
5131          * if xHC supports 64-bit addressing */
5132         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5133                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5134                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5135                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5136         } else {
5137                 /*
5138                  * This is to avoid error in cases where a 32-bit USB
5139                  * controller is used on a 64-bit capable system.
5140                  */
5141                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5142                 if (retval)
5143                         return retval;
5144                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5145                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5146         }
5147
5148         xhci_dbg(xhci, "Calling HCD init\n");
5149         /* Initialize HCD and host controller data structures. */
5150         retval = xhci_init(hcd);
5151         if (retval)
5152                 return retval;
5153         xhci_dbg(xhci, "Called HCD init\n");
5154
5155         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5156                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5157
5158         return 0;
5159 }
5160 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5161
5162 static const struct hc_driver xhci_hc_driver = {
5163         .description =          "xhci-hcd",
5164         .product_desc =         "xHCI Host Controller",
5165         .hcd_priv_size =        sizeof(struct xhci_hcd),
5166
5167         /*
5168          * generic hardware linkage
5169          */
5170         .irq =                  xhci_irq,
5171         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
5172
5173         /*
5174          * basic lifecycle operations
5175          */
5176         .reset =                NULL, /* set in xhci_init_driver() */
5177         .start =                xhci_run,
5178         .stop =                 xhci_stop,
5179         .shutdown =             xhci_shutdown,
5180
5181         /*
5182          * managing i/o requests and associated device resources
5183          */
5184         .map_urb_for_dma =      xhci_map_urb_for_dma,
5185         .urb_enqueue =          xhci_urb_enqueue,
5186         .urb_dequeue =          xhci_urb_dequeue,
5187         .alloc_dev =            xhci_alloc_dev,
5188         .free_dev =             xhci_free_dev,
5189         .alloc_streams =        xhci_alloc_streams,
5190         .free_streams =         xhci_free_streams,
5191         .add_endpoint =         xhci_add_endpoint,
5192         .drop_endpoint =        xhci_drop_endpoint,
5193         .endpoint_reset =       xhci_endpoint_reset,
5194         .check_bandwidth =      xhci_check_bandwidth,
5195         .reset_bandwidth =      xhci_reset_bandwidth,
5196         .address_device =       xhci_address_device,
5197         .enable_device =        xhci_enable_device,
5198         .update_hub_device =    xhci_update_hub_device,
5199         .reset_device =         xhci_discover_or_reset_device,
5200
5201         /*
5202          * scheduling support
5203          */
5204         .get_frame_number =     xhci_get_frame,
5205
5206         /*
5207          * root hub support
5208          */
5209         .hub_control =          xhci_hub_control,
5210         .hub_status_data =      xhci_hub_status_data,
5211         .bus_suspend =          xhci_bus_suspend,
5212         .bus_resume =           xhci_bus_resume,
5213         .get_resuming_ports =   xhci_get_resuming_ports,
5214
5215         /*
5216          * call back when device connected and addressed
5217          */
5218         .update_device =        xhci_update_device,
5219         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5220         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5221         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5222         .find_raw_port_number = xhci_find_raw_port_number,
5223 };
5224
5225 void xhci_init_driver(struct hc_driver *drv,
5226                       const struct xhci_driver_overrides *over)
5227 {
5228         BUG_ON(!over);
5229
5230         /* Copy the generic table to drv then apply the overrides */
5231         *drv = xhci_hc_driver;
5232
5233         if (over) {
5234                 drv->hcd_priv_size += over->extra_priv_size;
5235                 if (over->reset)
5236                         drv->reset = over->reset;
5237                 if (over->start)
5238                         drv->start = over->start;
5239         }
5240 }
5241 EXPORT_SYMBOL_GPL(xhci_init_driver);
5242
5243 MODULE_DESCRIPTION(DRIVER_DESC);
5244 MODULE_AUTHOR(DRIVER_AUTHOR);
5245 MODULE_LICENSE("GPL");
5246
5247 static int __init xhci_hcd_init(void)
5248 {
5249         /*
5250          * Check the compiler generated sizes of structures that must be laid
5251          * out in specific ways for hardware access.
5252          */
5253         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5254         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5255         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5256         /* xhci_device_control has eight fields, and also
5257          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5258          */
5259         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5260         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5261         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5262         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5263         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5264         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5265         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5266
5267         if (usb_disabled())
5268                 return -ENODEV;
5269
5270         xhci_debugfs_create_root();
5271
5272         return 0;
5273 }
5274
5275 /*
5276  * If an init function is provided, an exit function must also be provided
5277  * to allow module unload.
5278  */
5279 static void __exit xhci_hcd_fini(void)
5280 {
5281         xhci_debugfs_remove_root();
5282 }
5283
5284 module_init(xhci_hcd_init);
5285 module_exit(xhci_hcd_fini);