17a561abfab7aed05305c6624b08eb452b94dc56
[platform/kernel/linux-rpi.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28
29 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42         struct xhci_segment *seg = ring->first_seg;
43
44         if (!td || !td->start_seg)
45                 return false;
46         do {
47                 if (seg == td->start_seg)
48                         return true;
49                 seg = seg->next;
50         } while (seg && seg != ring->first_seg);
51
52         return false;
53 }
54
55 /*
56  * xhci_handshake - spin reading hc until handshake completes or fails
57  * @ptr: address of hc register to be read
58  * @mask: bits to look at in result of read
59  * @done: value of those bits when handshake succeeds
60  * @usec: timeout in microseconds
61  *
62  * Returns negative errno, or zero on success
63  *
64  * Success happens when the "mask" bits have the specified value (hardware
65  * handshake done).  There are two failure modes:  "usec" have passed (major
66  * hardware flakeout), or the register reads as all-ones (hardware removed).
67  */
68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
69 {
70         u32     result;
71         int     ret;
72
73         ret = readl_poll_timeout_atomic(ptr, result,
74                                         (result & mask) == done ||
75                                         result == U32_MAX,
76                                         1, usec);
77         if (result == U32_MAX)          /* card removed */
78                 return -ENODEV;
79
80         return ret;
81 }
82
83 /*
84  * Disable interrupts and begin the xHCI halting process.
85  */
86 void xhci_quiesce(struct xhci_hcd *xhci)
87 {
88         u32 halted;
89         u32 cmd;
90         u32 mask;
91
92         mask = ~(XHCI_IRQS);
93         halted = readl(&xhci->op_regs->status) & STS_HALT;
94         if (!halted)
95                 mask &= ~CMD_RUN;
96
97         cmd = readl(&xhci->op_regs->command);
98         cmd &= mask;
99         writel(cmd, &xhci->op_regs->command);
100 }
101
102 /*
103  * Force HC into halt state.
104  *
105  * Disable any IRQs and clear the run/stop bit.
106  * HC will complete any current and actively pipelined transactions, and
107  * should halt within 16 ms of the run/stop bit being cleared.
108  * Read HC Halted bit in the status register to see when the HC is finished.
109  */
110 int xhci_halt(struct xhci_hcd *xhci)
111 {
112         int ret;
113         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
114         xhci_quiesce(xhci);
115
116         ret = xhci_handshake(&xhci->op_regs->status,
117                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
118         if (ret) {
119                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
120                 return ret;
121         }
122         xhci->xhc_state |= XHCI_STATE_HALTED;
123         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
124         return ret;
125 }
126
127 /*
128  * Set the run bit and wait for the host to be running.
129  */
130 int xhci_start(struct xhci_hcd *xhci)
131 {
132         u32 temp;
133         int ret;
134
135         temp = readl(&xhci->op_regs->command);
136         temp |= (CMD_RUN);
137         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
138                         temp);
139         writel(temp, &xhci->op_regs->command);
140
141         /*
142          * Wait for the HCHalted Status bit to be 0 to indicate the host is
143          * running.
144          */
145         ret = xhci_handshake(&xhci->op_regs->status,
146                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
147         if (ret == -ETIMEDOUT)
148                 xhci_err(xhci, "Host took too long to start, "
149                                 "waited %u microseconds.\n",
150                                 XHCI_MAX_HALT_USEC);
151         if (!ret)
152                 /* clear state flags. Including dying, halted or removing */
153                 xhci->xhc_state = 0;
154
155         return ret;
156 }
157
158 /*
159  * Reset a halted HC.
160  *
161  * This resets pipelines, timers, counters, state machines, etc.
162  * Transactions will be terminated immediately, and operational registers
163  * will be set to their defaults.
164  */
165 int xhci_reset(struct xhci_hcd *xhci)
166 {
167         u32 command;
168         u32 state;
169         int ret;
170
171         state = readl(&xhci->op_regs->status);
172
173         if (state == ~(u32)0) {
174                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
175                 return -ENODEV;
176         }
177
178         if ((state & STS_HALT) == 0) {
179                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
180                 return 0;
181         }
182
183         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
184         command = readl(&xhci->op_regs->command);
185         command |= CMD_RESET;
186         writel(command, &xhci->op_regs->command);
187
188         /* Existing Intel xHCI controllers require a delay of 1 mS,
189          * after setting the CMD_RESET bit, and before accessing any
190          * HC registers. This allows the HC to complete the
191          * reset operation and be ready for HC register access.
192          * Without this delay, the subsequent HC register access,
193          * may result in a system hang very rarely.
194          */
195         if (xhci->quirks & XHCI_INTEL_HOST)
196                 udelay(1000);
197
198         ret = xhci_handshake(&xhci->op_regs->command,
199                         CMD_RESET, 0, 10 * 1000 * 1000);
200         if (ret)
201                 return ret;
202
203         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
204                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
205
206         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
207                          "Wait for controller to be ready for doorbell rings");
208         /*
209          * xHCI cannot write to any doorbells or operational registers other
210          * than status until the "Controller Not Ready" flag is cleared.
211          */
212         ret = xhci_handshake(&xhci->op_regs->status,
213                         STS_CNR, 0, 10 * 1000 * 1000);
214
215         xhci->usb2_rhub.bus_state.port_c_suspend = 0;
216         xhci->usb2_rhub.bus_state.suspended_ports = 0;
217         xhci->usb2_rhub.bus_state.resuming_ports = 0;
218         xhci->usb3_rhub.bus_state.port_c_suspend = 0;
219         xhci->usb3_rhub.bus_state.suspended_ports = 0;
220         xhci->usb3_rhub.bus_state.resuming_ports = 0;
221
222         return ret;
223 }
224
225 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
226 {
227         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
228         int err, i;
229         u64 val;
230         u32 intrs;
231
232         /*
233          * Some Renesas controllers get into a weird state if they are
234          * reset while programmed with 64bit addresses (they will preserve
235          * the top half of the address in internal, non visible
236          * registers). You end up with half the address coming from the
237          * kernel, and the other half coming from the firmware. Also,
238          * changing the programming leads to extra accesses even if the
239          * controller is supposed to be halted. The controller ends up with
240          * a fatal fault, and is then ripe for being properly reset.
241          *
242          * Special care is taken to only apply this if the device is behind
243          * an iommu. Doing anything when there is no iommu is definitely
244          * unsafe...
245          */
246         if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
247                 return;
248
249         xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
250
251         /* Clear HSEIE so that faults do not get signaled */
252         val = readl(&xhci->op_regs->command);
253         val &= ~CMD_HSEIE;
254         writel(val, &xhci->op_regs->command);
255
256         /* Clear HSE (aka FATAL) */
257         val = readl(&xhci->op_regs->status);
258         val |= STS_FATAL;
259         writel(val, &xhci->op_regs->status);
260
261         /* Now zero the registers, and brace for impact */
262         val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263         if (upper_32_bits(val))
264                 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266         if (upper_32_bits(val))
267                 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
268
269         intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
270                       ARRAY_SIZE(xhci->run_regs->ir_set));
271
272         for (i = 0; i < intrs; i++) {
273                 struct xhci_intr_reg __iomem *ir;
274
275                 ir = &xhci->run_regs->ir_set[i];
276                 val = xhci_read_64(xhci, &ir->erst_base);
277                 if (upper_32_bits(val))
278                         xhci_write_64(xhci, 0, &ir->erst_base);
279                 val= xhci_read_64(xhci, &ir->erst_dequeue);
280                 if (upper_32_bits(val))
281                         xhci_write_64(xhci, 0, &ir->erst_dequeue);
282         }
283
284         /* Wait for the fault to appear. It will be cleared on reset */
285         err = xhci_handshake(&xhci->op_regs->status,
286                              STS_FATAL, STS_FATAL,
287                              XHCI_MAX_HALT_USEC);
288         if (!err)
289                 xhci_info(xhci, "Fault detected\n");
290 }
291
292 #ifdef CONFIG_USB_PCI
293 /*
294  * Set up MSI
295  */
296 static int xhci_setup_msi(struct xhci_hcd *xhci)
297 {
298         int ret;
299         /*
300          * TODO:Check with MSI Soc for sysdev
301          */
302         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
303
304         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
305         if (ret < 0) {
306                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
307                                 "failed to allocate MSI entry");
308                 return ret;
309         }
310
311         ret = request_irq(pdev->irq, xhci_msi_irq,
312                                 0, "xhci_hcd", xhci_to_hcd(xhci));
313         if (ret) {
314                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
315                                 "disable MSI interrupt");
316                 pci_free_irq_vectors(pdev);
317         }
318
319         return ret;
320 }
321
322 /*
323  * Set up MSI-X
324  */
325 static int xhci_setup_msix(struct xhci_hcd *xhci)
326 {
327         int i, ret = 0;
328         struct usb_hcd *hcd = xhci_to_hcd(xhci);
329         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
330
331         /*
332          * calculate number of msi-x vectors supported.
333          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
334          *   with max number of interrupters based on the xhci HCSPARAMS1.
335          * - num_online_cpus: maximum msi-x vectors per CPUs core.
336          *   Add additional 1 vector to ensure always available interrupt.
337          */
338         xhci->msix_count = min(num_online_cpus() + 1,
339                                 HCS_MAX_INTRS(xhci->hcs_params1));
340
341         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
342                         PCI_IRQ_MSIX);
343         if (ret < 0) {
344                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
345                                 "Failed to enable MSI-X");
346                 return ret;
347         }
348
349         for (i = 0; i < xhci->msix_count; i++) {
350                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
351                                 "xhci_hcd", xhci_to_hcd(xhci));
352                 if (ret)
353                         goto disable_msix;
354         }
355
356         hcd->msix_enabled = 1;
357         return ret;
358
359 disable_msix:
360         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
361         while (--i >= 0)
362                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
363         pci_free_irq_vectors(pdev);
364         return ret;
365 }
366
367 /* Free any IRQs and disable MSI-X */
368 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
369 {
370         struct usb_hcd *hcd = xhci_to_hcd(xhci);
371         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
372
373         if (xhci->quirks & XHCI_PLAT)
374                 return;
375
376         /* return if using legacy interrupt */
377         if (hcd->irq > 0)
378                 return;
379
380         if (hcd->msix_enabled) {
381                 int i;
382
383                 for (i = 0; i < xhci->msix_count; i++)
384                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
385         } else {
386                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
387         }
388
389         pci_free_irq_vectors(pdev);
390         hcd->msix_enabled = 0;
391 }
392
393 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
394 {
395         struct usb_hcd *hcd = xhci_to_hcd(xhci);
396
397         if (hcd->msix_enabled) {
398                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
399                 int i;
400
401                 for (i = 0; i < xhci->msix_count; i++)
402                         synchronize_irq(pci_irq_vector(pdev, i));
403         }
404 }
405
406 static int xhci_try_enable_msi(struct usb_hcd *hcd)
407 {
408         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
409         struct pci_dev  *pdev;
410         int ret;
411
412         /* The xhci platform device has set up IRQs through usb_add_hcd. */
413         if (xhci->quirks & XHCI_PLAT)
414                 return 0;
415
416         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
417         /*
418          * Some Fresco Logic host controllers advertise MSI, but fail to
419          * generate interrupts.  Don't even try to enable MSI.
420          */
421         if (xhci->quirks & XHCI_BROKEN_MSI)
422                 goto legacy_irq;
423
424         /* unregister the legacy interrupt */
425         if (hcd->irq)
426                 free_irq(hcd->irq, hcd);
427         hcd->irq = 0;
428
429         ret = xhci_setup_msix(xhci);
430         if (ret)
431                 /* fall back to msi*/
432                 ret = xhci_setup_msi(xhci);
433
434         if (!ret) {
435                 hcd->msi_enabled = 1;
436                 return 0;
437         }
438
439         if (!pdev->irq) {
440                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
441                 return -EINVAL;
442         }
443
444  legacy_irq:
445         if (!strlen(hcd->irq_descr))
446                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
447                          hcd->driver->description, hcd->self.busnum);
448
449         /* fall back to legacy interrupt*/
450         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
451                         hcd->irq_descr, hcd);
452         if (ret) {
453                 xhci_err(xhci, "request interrupt %d failed\n",
454                                 pdev->irq);
455                 return ret;
456         }
457         hcd->irq = pdev->irq;
458         return 0;
459 }
460
461 #else
462
463 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
464 {
465         return 0;
466 }
467
468 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
469 {
470 }
471
472 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
473 {
474 }
475
476 #endif
477
478 static void compliance_mode_recovery(struct timer_list *t)
479 {
480         struct xhci_hcd *xhci;
481         struct usb_hcd *hcd;
482         struct xhci_hub *rhub;
483         u32 temp;
484         int i;
485
486         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
487         rhub = &xhci->usb3_rhub;
488
489         for (i = 0; i < rhub->num_ports; i++) {
490                 temp = readl(rhub->ports[i]->addr);
491                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
492                         /*
493                          * Compliance Mode Detected. Letting USB Core
494                          * handle the Warm Reset
495                          */
496                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497                                         "Compliance mode detected->port %d",
498                                         i + 1);
499                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
500                                         "Attempting compliance mode recovery");
501                         hcd = xhci->shared_hcd;
502
503                         if (hcd->state == HC_STATE_SUSPENDED)
504                                 usb_hcd_resume_root_hub(hcd);
505
506                         usb_hcd_poll_rh_status(hcd);
507                 }
508         }
509
510         if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
511                 mod_timer(&xhci->comp_mode_recovery_timer,
512                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
513 }
514
515 /*
516  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
517  * that causes ports behind that hardware to enter compliance mode sometimes.
518  * The quirk creates a timer that polls every 2 seconds the link state of
519  * each host controller's port and recovers it by issuing a Warm reset
520  * if Compliance mode is detected, otherwise the port will become "dead" (no
521  * device connections or disconnections will be detected anymore). Becasue no
522  * status event is generated when entering compliance mode (per xhci spec),
523  * this quirk is needed on systems that have the failing hardware installed.
524  */
525 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
526 {
527         xhci->port_status_u0 = 0;
528         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
529                     0);
530         xhci->comp_mode_recovery_timer.expires = jiffies +
531                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
532
533         add_timer(&xhci->comp_mode_recovery_timer);
534         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
535                         "Compliance mode recovery timer initialized");
536 }
537
538 /*
539  * This function identifies the systems that have installed the SN65LVPE502CP
540  * USB3.0 re-driver and that need the Compliance Mode Quirk.
541  * Systems:
542  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
543  */
544 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
545 {
546         const char *dmi_product_name, *dmi_sys_vendor;
547
548         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
549         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
550         if (!dmi_product_name || !dmi_sys_vendor)
551                 return false;
552
553         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
554                 return false;
555
556         if (strstr(dmi_product_name, "Z420") ||
557                         strstr(dmi_product_name, "Z620") ||
558                         strstr(dmi_product_name, "Z820") ||
559                         strstr(dmi_product_name, "Z1 Workstation"))
560                 return true;
561
562         return false;
563 }
564
565 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
566 {
567         return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
568 }
569
570
571 /*
572  * Initialize memory for HCD and xHC (one-time init).
573  *
574  * Program the PAGESIZE register, initialize the device context array, create
575  * device contexts (?), set up a command ring segment (or two?), create event
576  * ring (one for now).
577  */
578 static int xhci_init(struct usb_hcd *hcd)
579 {
580         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
581         int retval = 0;
582
583         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
584         spin_lock_init(&xhci->lock);
585         if (xhci->hci_version == 0x95 && link_quirk) {
586                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
587                                 "QUIRK: Not clearing Link TRB chain bits.");
588                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
589         } else {
590                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
591                                 "xHCI doesn't need link TRB QUIRK");
592         }
593         retval = xhci_mem_init(xhci, GFP_KERNEL);
594         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
595
596         /* Initializing Compliance Mode Recovery Data If Needed */
597         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
598                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
599                 compliance_mode_recovery_timer_init(xhci);
600         }
601
602         return retval;
603 }
604
605 /*-------------------------------------------------------------------------*/
606
607
608 static int xhci_run_finished(struct xhci_hcd *xhci)
609 {
610         if (xhci_start(xhci)) {
611                 xhci_halt(xhci);
612                 return -ENODEV;
613         }
614         xhci->shared_hcd->state = HC_STATE_RUNNING;
615         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
616
617         if (xhci->quirks & XHCI_NEC_HOST)
618                 xhci_ring_cmd_db(xhci);
619
620         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
621                         "Finished xhci_run for USB3 roothub");
622         return 0;
623 }
624
625 /*
626  * Start the HC after it was halted.
627  *
628  * This function is called by the USB core when the HC driver is added.
629  * Its opposite is xhci_stop().
630  *
631  * xhci_init() must be called once before this function can be called.
632  * Reset the HC, enable device slot contexts, program DCBAAP, and
633  * set command ring pointer and event ring pointer.
634  *
635  * Setup MSI-X vectors and enable interrupts.
636  */
637 int xhci_run(struct usb_hcd *hcd)
638 {
639         u32 temp;
640         u64 temp_64;
641         int ret;
642         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
643
644         /* Start the xHCI host controller running only after the USB 2.0 roothub
645          * is setup.
646          */
647
648         hcd->uses_new_polling = 1;
649         if (!usb_hcd_is_primary_hcd(hcd))
650                 return xhci_run_finished(xhci);
651
652         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
653
654         ret = xhci_try_enable_msi(hcd);
655         if (ret)
656                 return ret;
657
658         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
659         temp_64 &= ~ERST_PTR_MASK;
660         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
662
663         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
664                         "// Set the interrupt modulation register");
665         temp = readl(&xhci->ir_set->irq_control);
666         temp &= ~ER_IRQ_INTERVAL_MASK;
667         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
668         writel(temp, &xhci->ir_set->irq_control);
669
670         /* Set the HCD state before we enable the irqs */
671         temp = readl(&xhci->op_regs->command);
672         temp |= (CMD_EIE);
673         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
674                         "// Enable interrupts, cmd = 0x%x.", temp);
675         writel(temp, &xhci->op_regs->command);
676
677         temp = readl(&xhci->ir_set->irq_pending);
678         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
679                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
680                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
681         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
682
683         if (xhci->quirks & XHCI_NEC_HOST) {
684                 struct xhci_command *command;
685
686                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
687                 if (!command)
688                         return -ENOMEM;
689
690                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
691                                 TRB_TYPE(TRB_NEC_GET_FW));
692                 if (ret)
693                         xhci_free_command(xhci, command);
694         }
695         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
696                         "Finished xhci_run for USB2 roothub");
697
698         xhci_create_dbc_dev(xhci);
699
700         xhci_debugfs_init(xhci);
701
702         return 0;
703 }
704 EXPORT_SYMBOL_GPL(xhci_run);
705
706 /*
707  * Stop xHCI driver.
708  *
709  * This function is called by the USB core when the HC driver is removed.
710  * Its opposite is xhci_run().
711  *
712  * Disable device contexts, disable IRQs, and quiesce the HC.
713  * Reset the HC, finish any completed transactions, and cleanup memory.
714  */
715 static void xhci_stop(struct usb_hcd *hcd)
716 {
717         u32 temp;
718         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
719
720         mutex_lock(&xhci->mutex);
721
722         /* Only halt host and free memory after both hcds are removed */
723         if (!usb_hcd_is_primary_hcd(hcd)) {
724                 mutex_unlock(&xhci->mutex);
725                 return;
726         }
727
728         xhci_remove_dbc_dev(xhci);
729
730         spin_lock_irq(&xhci->lock);
731         xhci->xhc_state |= XHCI_STATE_HALTED;
732         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
733         xhci_halt(xhci);
734         xhci_reset(xhci);
735         spin_unlock_irq(&xhci->lock);
736
737         xhci_cleanup_msix(xhci);
738
739         /* Deleting Compliance Mode Recovery Timer */
740         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
741                         (!(xhci_all_ports_seen_u0(xhci)))) {
742                 del_timer_sync(&xhci->comp_mode_recovery_timer);
743                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
744                                 "%s: compliance mode recovery timer deleted",
745                                 __func__);
746         }
747
748         if (xhci->quirks & XHCI_AMD_PLL_FIX)
749                 usb_amd_dev_put();
750
751         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
752                         "// Disabling event ring interrupts");
753         temp = readl(&xhci->op_regs->status);
754         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
755         temp = readl(&xhci->ir_set->irq_pending);
756         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
757
758         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
759         xhci_mem_cleanup(xhci);
760         xhci_debugfs_exit(xhci);
761         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
762                         "xhci_stop completed - status = %x",
763                         readl(&xhci->op_regs->status));
764         mutex_unlock(&xhci->mutex);
765 }
766
767 /*
768  * Shutdown HC (not bus-specific)
769  *
770  * This is called when the machine is rebooting or halting.  We assume that the
771  * machine will be powered off, and the HC's internal state will be reset.
772  * Don't bother to free memory.
773  *
774  * This will only ever be called with the main usb_hcd (the USB3 roothub).
775  */
776 void xhci_shutdown(struct usb_hcd *hcd)
777 {
778         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
779
780         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
781                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
782
783         spin_lock_irq(&xhci->lock);
784         xhci_halt(xhci);
785         /* Workaround for spurious wakeups at shutdown with HSW */
786         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
787                 xhci_reset(xhci);
788         spin_unlock_irq(&xhci->lock);
789
790         xhci_cleanup_msix(xhci);
791
792         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
793                         "xhci_shutdown completed - status = %x",
794                         readl(&xhci->op_regs->status));
795 }
796 EXPORT_SYMBOL_GPL(xhci_shutdown);
797
798 #ifdef CONFIG_PM
799 static void xhci_save_registers(struct xhci_hcd *xhci)
800 {
801         xhci->s3.command = readl(&xhci->op_regs->command);
802         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
803         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
804         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
805         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
806         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
807         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
808         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
809         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
810 }
811
812 static void xhci_restore_registers(struct xhci_hcd *xhci)
813 {
814         writel(xhci->s3.command, &xhci->op_regs->command);
815         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
816         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
817         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
818         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
819         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
820         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
821         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
822         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
823 }
824
825 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
826 {
827         u64     val_64;
828
829         /* step 2: initialize command ring buffer */
830         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
831         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
832                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
833                                       xhci->cmd_ring->dequeue) &
834                  (u64) ~CMD_RING_RSVD_BITS) |
835                 xhci->cmd_ring->cycle_state;
836         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
837                         "// Setting command ring address to 0x%llx",
838                         (long unsigned long) val_64);
839         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
840 }
841
842 /*
843  * The whole command ring must be cleared to zero when we suspend the host.
844  *
845  * The host doesn't save the command ring pointer in the suspend well, so we
846  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
847  * aligned, because of the reserved bits in the command ring dequeue pointer
848  * register.  Therefore, we can't just set the dequeue pointer back in the
849  * middle of the ring (TRBs are 16-byte aligned).
850  */
851 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
852 {
853         struct xhci_ring *ring;
854         struct xhci_segment *seg;
855
856         ring = xhci->cmd_ring;
857         seg = ring->deq_seg;
858         do {
859                 memset(seg->trbs, 0,
860                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
861                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
862                         cpu_to_le32(~TRB_CYCLE);
863                 seg = seg->next;
864         } while (seg != ring->deq_seg);
865
866         /* Reset the software enqueue and dequeue pointers */
867         ring->deq_seg = ring->first_seg;
868         ring->dequeue = ring->first_seg->trbs;
869         ring->enq_seg = ring->deq_seg;
870         ring->enqueue = ring->dequeue;
871
872         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
873         /*
874          * Ring is now zeroed, so the HW should look for change of ownership
875          * when the cycle bit is set to 1.
876          */
877         ring->cycle_state = 1;
878
879         /*
880          * Reset the hardware dequeue pointer.
881          * Yes, this will need to be re-written after resume, but we're paranoid
882          * and want to make sure the hardware doesn't access bogus memory
883          * because, say, the BIOS or an SMI started the host without changing
884          * the command ring pointers.
885          */
886         xhci_set_cmd_ring_deq(xhci);
887 }
888
889 /*
890  * Disable port wake bits if do_wakeup is not set.
891  *
892  * Also clear a possible internal port wake state left hanging for ports that
893  * detected termination but never successfully enumerated (trained to 0U).
894  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
895  * at enumeration clears this wake, force one here as well for unconnected ports
896  */
897
898 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
899                                        struct xhci_hub *rhub,
900                                        bool do_wakeup)
901 {
902         unsigned long flags;
903         u32 t1, t2, portsc;
904         int i;
905
906         spin_lock_irqsave(&xhci->lock, flags);
907
908         for (i = 0; i < rhub->num_ports; i++) {
909                 portsc = readl(rhub->ports[i]->addr);
910                 t1 = xhci_port_state_to_neutral(portsc);
911                 t2 = t1;
912
913                 /* clear wake bits if do_wake is not set */
914                 if (!do_wakeup)
915                         t2 &= ~PORT_WAKE_BITS;
916
917                 /* Don't touch csc bit if connected or connect change is set */
918                 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
919                         t2 |= PORT_CSC;
920
921                 if (t1 != t2) {
922                         writel(t2, rhub->ports[i]->addr);
923                         xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
924                                  rhub->hcd->self.busnum, i + 1, portsc, t2);
925                 }
926         }
927         spin_unlock_irqrestore(&xhci->lock, flags);
928 }
929
930 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
931 {
932         struct xhci_port        **ports;
933         int                     port_index;
934         u32                     status;
935         u32                     portsc;
936
937         status = readl(&xhci->op_regs->status);
938         if (status & STS_EINT)
939                 return true;
940         /*
941          * Checking STS_EINT is not enough as there is a lag between a change
942          * bit being set and the Port Status Change Event that it generated
943          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
944          */
945
946         port_index = xhci->usb2_rhub.num_ports;
947         ports = xhci->usb2_rhub.ports;
948         while (port_index--) {
949                 portsc = readl(ports[port_index]->addr);
950                 if (portsc & PORT_CHANGE_MASK ||
951                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
952                         return true;
953         }
954         port_index = xhci->usb3_rhub.num_ports;
955         ports = xhci->usb3_rhub.ports;
956         while (port_index--) {
957                 portsc = readl(ports[port_index]->addr);
958                 if (portsc & PORT_CHANGE_MASK ||
959                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
960                         return true;
961         }
962         return false;
963 }
964
965 /*
966  * Stop HC (not bus-specific)
967  *
968  * This is called when the machine transition into S3/S4 mode.
969  *
970  */
971 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
972 {
973         int                     rc = 0;
974         unsigned int            delay = XHCI_MAX_HALT_USEC * 2;
975         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
976         u32                     command;
977         u32                     res;
978
979         if (!hcd->state)
980                 return 0;
981
982         if (hcd->state != HC_STATE_SUSPENDED ||
983                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
984                 return -EINVAL;
985
986         /* Clear root port wake on bits if wakeup not allowed. */
987         xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
988         xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
989
990         if (!HCD_HW_ACCESSIBLE(hcd))
991                 return 0;
992
993         xhci_dbc_suspend(xhci);
994
995         /* Don't poll the roothubs on bus suspend. */
996         xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
997                  __func__, hcd->self.busnum);
998         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
999         del_timer_sync(&hcd->rh_timer);
1000         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1001         del_timer_sync(&xhci->shared_hcd->rh_timer);
1002
1003         if (xhci->quirks & XHCI_SUSPEND_DELAY)
1004                 usleep_range(1000, 1500);
1005
1006         spin_lock_irq(&xhci->lock);
1007         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1008         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1009         /* step 1: stop endpoint */
1010         /* skipped assuming that port suspend has done */
1011
1012         /* step 2: clear Run/Stop bit */
1013         command = readl(&xhci->op_regs->command);
1014         command &= ~CMD_RUN;
1015         writel(command, &xhci->op_regs->command);
1016
1017         /* Some chips from Fresco Logic need an extraordinary delay */
1018         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1019
1020         if (xhci_handshake(&xhci->op_regs->status,
1021                       STS_HALT, STS_HALT, delay)) {
1022                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1023                 spin_unlock_irq(&xhci->lock);
1024                 return -ETIMEDOUT;
1025         }
1026         xhci_clear_command_ring(xhci);
1027
1028         /* step 3: save registers */
1029         xhci_save_registers(xhci);
1030
1031         /* step 4: set CSS flag */
1032         command = readl(&xhci->op_regs->command);
1033         command |= CMD_CSS;
1034         writel(command, &xhci->op_regs->command);
1035         xhci->broken_suspend = 0;
1036         if (xhci_handshake(&xhci->op_regs->status,
1037                                 STS_SAVE, 0, 20 * 1000)) {
1038         /*
1039          * AMD SNPS xHC 3.0 occasionally does not clear the
1040          * SSS bit of USBSTS and when driver tries to poll
1041          * to see if the xHC clears BIT(8) which never happens
1042          * and driver assumes that controller is not responding
1043          * and times out. To workaround this, its good to check
1044          * if SRE and HCE bits are not set (as per xhci
1045          * Section 5.4.2) and bypass the timeout.
1046          */
1047                 res = readl(&xhci->op_regs->status);
1048                 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1049                     (((res & STS_SRE) == 0) &&
1050                                 ((res & STS_HCE) == 0))) {
1051                         xhci->broken_suspend = 1;
1052                 } else {
1053                         xhci_warn(xhci, "WARN: xHC save state timeout\n");
1054                         spin_unlock_irq(&xhci->lock);
1055                         return -ETIMEDOUT;
1056                 }
1057         }
1058         spin_unlock_irq(&xhci->lock);
1059
1060         /*
1061          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1062          * is about to be suspended.
1063          */
1064         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1065                         (!(xhci_all_ports_seen_u0(xhci)))) {
1066                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1067                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1068                                 "%s: compliance mode recovery timer deleted",
1069                                 __func__);
1070         }
1071
1072         /* step 5: remove core well power */
1073         /* synchronize irq when using MSI-X */
1074         xhci_msix_sync_irqs(xhci);
1075
1076         return rc;
1077 }
1078 EXPORT_SYMBOL_GPL(xhci_suspend);
1079
1080 /*
1081  * start xHC (not bus-specific)
1082  *
1083  * This is called when the machine transition from S3/S4 mode.
1084  *
1085  */
1086 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1087 {
1088         u32                     command, temp = 0;
1089         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1090         struct usb_hcd          *secondary_hcd;
1091         int                     retval = 0;
1092         bool                    comp_timer_running = false;
1093         bool                    pending_portevent = false;
1094
1095         if (!hcd->state)
1096                 return 0;
1097
1098         /* Wait a bit if either of the roothubs need to settle from the
1099          * transition into bus suspend.
1100          */
1101
1102         if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1103             time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1104                 msleep(100);
1105
1106         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1107         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1108
1109         spin_lock_irq(&xhci->lock);
1110         if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1111                 hibernated = true;
1112
1113         if (!hibernated) {
1114                 /*
1115                  * Some controllers might lose power during suspend, so wait
1116                  * for controller not ready bit to clear, just as in xHC init.
1117                  */
1118                 retval = xhci_handshake(&xhci->op_regs->status,
1119                                         STS_CNR, 0, 10 * 1000 * 1000);
1120                 if (retval) {
1121                         xhci_warn(xhci, "Controller not ready at resume %d\n",
1122                                   retval);
1123                         spin_unlock_irq(&xhci->lock);
1124                         return retval;
1125                 }
1126                 /* step 1: restore register */
1127                 xhci_restore_registers(xhci);
1128                 /* step 2: initialize command ring buffer */
1129                 xhci_set_cmd_ring_deq(xhci);
1130                 /* step 3: restore state and start state*/
1131                 /* step 3: set CRS flag */
1132                 command = readl(&xhci->op_regs->command);
1133                 command |= CMD_CRS;
1134                 writel(command, &xhci->op_regs->command);
1135                 /*
1136                  * Some controllers take up to 55+ ms to complete the controller
1137                  * restore so setting the timeout to 100ms. Xhci specification
1138                  * doesn't mention any timeout value.
1139                  */
1140                 if (xhci_handshake(&xhci->op_regs->status,
1141                               STS_RESTORE, 0, 100 * 1000)) {
1142                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1143                         spin_unlock_irq(&xhci->lock);
1144                         return -ETIMEDOUT;
1145                 }
1146                 temp = readl(&xhci->op_regs->status);
1147         }
1148
1149         /* If restore operation fails, re-initialize the HC during resume */
1150         if ((temp & STS_SRE) || hibernated) {
1151
1152                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1153                                 !(xhci_all_ports_seen_u0(xhci))) {
1154                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1155                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1156                                 "Compliance Mode Recovery Timer deleted!");
1157                 }
1158
1159                 /* Let the USB core know _both_ roothubs lost power. */
1160                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1161                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1162
1163                 xhci_dbg(xhci, "Stop HCD\n");
1164                 xhci_halt(xhci);
1165                 xhci_zero_64b_regs(xhci);
1166                 retval = xhci_reset(xhci);
1167                 spin_unlock_irq(&xhci->lock);
1168                 if (retval)
1169                         return retval;
1170                 xhci_cleanup_msix(xhci);
1171
1172                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1173                 temp = readl(&xhci->op_regs->status);
1174                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1175                 temp = readl(&xhci->ir_set->irq_pending);
1176                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1177
1178                 xhci_dbg(xhci, "cleaning up memory\n");
1179                 xhci_mem_cleanup(xhci);
1180                 xhci_debugfs_exit(xhci);
1181                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1182                             readl(&xhci->op_regs->status));
1183
1184                 /* USB core calls the PCI reinit and start functions twice:
1185                  * first with the primary HCD, and then with the secondary HCD.
1186                  * If we don't do the same, the host will never be started.
1187                  */
1188                 if (!usb_hcd_is_primary_hcd(hcd))
1189                         secondary_hcd = hcd;
1190                 else
1191                         secondary_hcd = xhci->shared_hcd;
1192
1193                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1194                 retval = xhci_init(hcd->primary_hcd);
1195                 if (retval)
1196                         return retval;
1197                 comp_timer_running = true;
1198
1199                 xhci_dbg(xhci, "Start the primary HCD\n");
1200                 retval = xhci_run(hcd->primary_hcd);
1201                 if (!retval) {
1202                         xhci_dbg(xhci, "Start the secondary HCD\n");
1203                         retval = xhci_run(secondary_hcd);
1204                 }
1205                 hcd->state = HC_STATE_SUSPENDED;
1206                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1207                 goto done;
1208         }
1209
1210         /* step 4: set Run/Stop bit */
1211         command = readl(&xhci->op_regs->command);
1212         command |= CMD_RUN;
1213         writel(command, &xhci->op_regs->command);
1214         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1215                   0, 250 * 1000);
1216
1217         /* step 5: walk topology and initialize portsc,
1218          * portpmsc and portli
1219          */
1220         /* this is done in bus_resume */
1221
1222         /* step 6: restart each of the previously
1223          * Running endpoints by ringing their doorbells
1224          */
1225
1226         spin_unlock_irq(&xhci->lock);
1227
1228         xhci_dbc_resume(xhci);
1229
1230  done:
1231         if (retval == 0) {
1232                 /*
1233                  * Resume roothubs only if there are pending events.
1234                  * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1235                  * the first wake signalling failed, give it that chance.
1236                  */
1237                 pending_portevent = xhci_pending_portevent(xhci);
1238                 if (!pending_portevent) {
1239                         msleep(120);
1240                         pending_portevent = xhci_pending_portevent(xhci);
1241                 }
1242
1243                 if (pending_portevent) {
1244                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1245                         usb_hcd_resume_root_hub(hcd);
1246                 }
1247         }
1248         /*
1249          * If system is subject to the Quirk, Compliance Mode Timer needs to
1250          * be re-initialized Always after a system resume. Ports are subject
1251          * to suffer the Compliance Mode issue again. It doesn't matter if
1252          * ports have entered previously to U0 before system's suspension.
1253          */
1254         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1255                 compliance_mode_recovery_timer_init(xhci);
1256
1257         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1258                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1259
1260         /* Re-enable port polling. */
1261         xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1262                  __func__, hcd->self.busnum);
1263         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1264         usb_hcd_poll_rh_status(xhci->shared_hcd);
1265         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1266         usb_hcd_poll_rh_status(hcd);
1267
1268         return retval;
1269 }
1270 EXPORT_SYMBOL_GPL(xhci_resume);
1271 #endif  /* CONFIG_PM */
1272
1273 /*-------------------------------------------------------------------------*/
1274
1275 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1276 {
1277         void *temp;
1278         int ret = 0;
1279         unsigned int buf_len;
1280         enum dma_data_direction dir;
1281
1282         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1283         buf_len = urb->transfer_buffer_length;
1284
1285         temp = kzalloc_node(buf_len, GFP_ATOMIC,
1286                             dev_to_node(hcd->self.sysdev));
1287
1288         if (usb_urb_dir_out(urb))
1289                 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1290                                    temp, buf_len, 0);
1291
1292         urb->transfer_buffer = temp;
1293         urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1294                                            urb->transfer_buffer,
1295                                            urb->transfer_buffer_length,
1296                                            dir);
1297
1298         if (dma_mapping_error(hcd->self.sysdev,
1299                               urb->transfer_dma)) {
1300                 ret = -EAGAIN;
1301                 kfree(temp);
1302         } else {
1303                 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1304         }
1305
1306         return ret;
1307 }
1308
1309 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1310                                           struct urb *urb)
1311 {
1312         bool ret = false;
1313         unsigned int i;
1314         unsigned int len = 0;
1315         unsigned int trb_size;
1316         unsigned int max_pkt;
1317         struct scatterlist *sg;
1318         struct scatterlist *tail_sg;
1319
1320         tail_sg = urb->sg;
1321         max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1322
1323         if (!urb->num_sgs)
1324                 return ret;
1325
1326         if (urb->dev->speed >= USB_SPEED_SUPER)
1327                 trb_size = TRB_CACHE_SIZE_SS;
1328         else
1329                 trb_size = TRB_CACHE_SIZE_HS;
1330
1331         if (urb->transfer_buffer_length != 0 &&
1332             !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1333                 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1334                         len = len + sg->length;
1335                         if (i > trb_size - 2) {
1336                                 len = len - tail_sg->length;
1337                                 if (len < max_pkt) {
1338                                         ret = true;
1339                                         break;
1340                                 }
1341
1342                                 tail_sg = sg_next(tail_sg);
1343                         }
1344                 }
1345         }
1346         return ret;
1347 }
1348
1349 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1350 {
1351         unsigned int len;
1352         unsigned int buf_len;
1353         enum dma_data_direction dir;
1354
1355         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1356
1357         buf_len = urb->transfer_buffer_length;
1358
1359         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1360             (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1361                 dma_unmap_single(hcd->self.sysdev,
1362                                  urb->transfer_dma,
1363                                  urb->transfer_buffer_length,
1364                                  dir);
1365
1366         if (usb_urb_dir_in(urb)) {
1367                 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1368                                            urb->transfer_buffer,
1369                                            buf_len,
1370                                            0);
1371                 if (len != buf_len) {
1372                         xhci_dbg(hcd_to_xhci(hcd),
1373                                  "Copy from tmp buf to urb sg list failed\n");
1374                         urb->actual_length = len;
1375                 }
1376         }
1377         urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1378         kfree(urb->transfer_buffer);
1379         urb->transfer_buffer = NULL;
1380 }
1381
1382 /*
1383  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1384  * we'll copy the actual data into the TRB address register. This is limited to
1385  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1386  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1387  */
1388 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1389                                 gfp_t mem_flags)
1390 {
1391         struct xhci_hcd *xhci;
1392
1393         xhci = hcd_to_xhci(hcd);
1394
1395         if (xhci_urb_suitable_for_idt(urb))
1396                 return 0;
1397
1398         if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1399                 if (xhci_urb_temp_buffer_required(hcd, urb))
1400                         return xhci_map_temp_buffer(hcd, urb);
1401         }
1402         return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1403 }
1404
1405 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1406 {
1407         struct xhci_hcd *xhci;
1408         bool unmap_temp_buf = false;
1409
1410         xhci = hcd_to_xhci(hcd);
1411
1412         if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1413                 unmap_temp_buf = true;
1414
1415         if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1416                 xhci_unmap_temp_buf(hcd, urb);
1417         else
1418                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1419 }
1420
1421 /**
1422  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1423  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1424  * value to right shift 1 for the bitmask.
1425  *
1426  * Index  = (epnum * 2) + direction - 1,
1427  * where direction = 0 for OUT, 1 for IN.
1428  * For control endpoints, the IN index is used (OUT index is unused), so
1429  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1430  */
1431 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1432 {
1433         unsigned int index;
1434         if (usb_endpoint_xfer_control(desc))
1435                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1436         else
1437                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1438                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1439         return index;
1440 }
1441 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1442
1443 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1444  * address from the XHCI endpoint index.
1445  */
1446 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1447 {
1448         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1449         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1450         return direction | number;
1451 }
1452
1453 /* Find the flag for this endpoint (for use in the control context).  Use the
1454  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1455  * bit 1, etc.
1456  */
1457 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1458 {
1459         return 1 << (xhci_get_endpoint_index(desc) + 1);
1460 }
1461
1462 /* Compute the last valid endpoint context index.  Basically, this is the
1463  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1464  * we find the most significant bit set in the added contexts flags.
1465  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1466  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1467  */
1468 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1469 {
1470         return fls(added_ctxs) - 1;
1471 }
1472
1473 /* Returns 1 if the arguments are OK;
1474  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1475  */
1476 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1477                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1478                 const char *func) {
1479         struct xhci_hcd *xhci;
1480         struct xhci_virt_device *virt_dev;
1481
1482         if (!hcd || (check_ep && !ep) || !udev) {
1483                 pr_debug("xHCI %s called with invalid args\n", func);
1484                 return -EINVAL;
1485         }
1486         if (!udev->parent) {
1487                 pr_debug("xHCI %s called for root hub\n", func);
1488                 return 0;
1489         }
1490
1491         xhci = hcd_to_xhci(hcd);
1492         if (check_virt_dev) {
1493                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1494                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1495                                         func);
1496                         return -EINVAL;
1497                 }
1498
1499                 virt_dev = xhci->devs[udev->slot_id];
1500                 if (virt_dev->udev != udev) {
1501                         xhci_dbg(xhci, "xHCI %s called with udev and "
1502                                           "virt_dev does not match\n", func);
1503                         return -EINVAL;
1504                 }
1505         }
1506
1507         if (xhci->xhc_state & XHCI_STATE_HALTED)
1508                 return -ENODEV;
1509
1510         return 1;
1511 }
1512
1513 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1514                 struct usb_device *udev, struct xhci_command *command,
1515                 bool ctx_change, bool must_succeed);
1516
1517 /*
1518  * Full speed devices may have a max packet size greater than 8 bytes, but the
1519  * USB core doesn't know that until it reads the first 8 bytes of the
1520  * descriptor.  If the usb_device's max packet size changes after that point,
1521  * we need to issue an evaluate context command and wait on it.
1522  */
1523 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1524                 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1525 {
1526         struct xhci_container_ctx *out_ctx;
1527         struct xhci_input_control_ctx *ctrl_ctx;
1528         struct xhci_ep_ctx *ep_ctx;
1529         struct xhci_command *command;
1530         int max_packet_size;
1531         int hw_max_packet_size;
1532         int ret = 0;
1533
1534         out_ctx = xhci->devs[slot_id]->out_ctx;
1535         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1536         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1537         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1538         if (hw_max_packet_size != max_packet_size) {
1539                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1540                                 "Max Packet Size for ep 0 changed.");
1541                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1542                                 "Max packet size in usb_device = %d",
1543                                 max_packet_size);
1544                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1545                                 "Max packet size in xHCI HW = %d",
1546                                 hw_max_packet_size);
1547                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1548                                 "Issuing evaluate context command.");
1549
1550                 /* Set up the input context flags for the command */
1551                 /* FIXME: This won't work if a non-default control endpoint
1552                  * changes max packet sizes.
1553                  */
1554
1555                 command = xhci_alloc_command(xhci, true, mem_flags);
1556                 if (!command)
1557                         return -ENOMEM;
1558
1559                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1560                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1561                 if (!ctrl_ctx) {
1562                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1563                                         __func__);
1564                         ret = -ENOMEM;
1565                         goto command_cleanup;
1566                 }
1567                 /* Set up the modified control endpoint 0 */
1568                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1569                                 xhci->devs[slot_id]->out_ctx, ep_index);
1570
1571                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1572                 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1573                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1574                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1575
1576                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1577                 ctrl_ctx->drop_flags = 0;
1578
1579                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1580                                 true, false);
1581
1582                 /* Clean up the input context for later use by bandwidth
1583                  * functions.
1584                  */
1585                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1586 command_cleanup:
1587                 kfree(command->completion);
1588                 kfree(command);
1589         }
1590         return ret;
1591 }
1592
1593 /*
1594  * non-error returns are a promise to giveback() the urb later
1595  * we drop ownership so next owner (or urb unlink) can get it
1596  */
1597 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1598 {
1599         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1600         unsigned long flags;
1601         int ret = 0;
1602         unsigned int slot_id, ep_index;
1603         unsigned int *ep_state;
1604         struct urb_priv *urb_priv;
1605         int num_tds;
1606
1607         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1608                                         true, true, __func__) <= 0)
1609                 return -EINVAL;
1610
1611         slot_id = urb->dev->slot_id;
1612         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1613         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1614
1615         if (!HCD_HW_ACCESSIBLE(hcd))
1616                 return -ESHUTDOWN;
1617
1618         if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1619                 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1620                 return -ENODEV;
1621         }
1622
1623         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1624                 num_tds = urb->number_of_packets;
1625         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1626             urb->transfer_buffer_length > 0 &&
1627             urb->transfer_flags & URB_ZERO_PACKET &&
1628             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1629                 num_tds = 2;
1630         else
1631                 num_tds = 1;
1632
1633         urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1634         if (!urb_priv)
1635                 return -ENOMEM;
1636
1637         urb_priv->num_tds = num_tds;
1638         urb_priv->num_tds_done = 0;
1639         urb->hcpriv = urb_priv;
1640
1641         trace_xhci_urb_enqueue(urb);
1642
1643         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1644                 /* Check to see if the max packet size for the default control
1645                  * endpoint changed during FS device enumeration
1646                  */
1647                 if (urb->dev->speed == USB_SPEED_FULL) {
1648                         ret = xhci_check_maxpacket(xhci, slot_id,
1649                                         ep_index, urb, mem_flags);
1650                         if (ret < 0) {
1651                                 xhci_urb_free_priv(urb_priv);
1652                                 urb->hcpriv = NULL;
1653                                 return ret;
1654                         }
1655                 }
1656         }
1657
1658         spin_lock_irqsave(&xhci->lock, flags);
1659
1660         if (xhci->xhc_state & XHCI_STATE_DYING) {
1661                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1662                          urb->ep->desc.bEndpointAddress, urb);
1663                 ret = -ESHUTDOWN;
1664                 goto free_priv;
1665         }
1666         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1667                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1668                           *ep_state);
1669                 ret = -EINVAL;
1670                 goto free_priv;
1671         }
1672         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1673                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1674                 ret = -EINVAL;
1675                 goto free_priv;
1676         }
1677
1678         switch (usb_endpoint_type(&urb->ep->desc)) {
1679
1680         case USB_ENDPOINT_XFER_CONTROL:
1681                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1682                                          slot_id, ep_index);
1683                 break;
1684         case USB_ENDPOINT_XFER_BULK:
1685                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1686                                          slot_id, ep_index);
1687                 break;
1688         case USB_ENDPOINT_XFER_INT:
1689                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1690                                 slot_id, ep_index);
1691                 break;
1692         case USB_ENDPOINT_XFER_ISOC:
1693                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1694                                 slot_id, ep_index);
1695         }
1696
1697         if (ret) {
1698 free_priv:
1699                 xhci_urb_free_priv(urb_priv);
1700                 urb->hcpriv = NULL;
1701         }
1702         spin_unlock_irqrestore(&xhci->lock, flags);
1703         return ret;
1704 }
1705
1706 /*
1707  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1708  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1709  * should pick up where it left off in the TD, unless a Set Transfer Ring
1710  * Dequeue Pointer is issued.
1711  *
1712  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1713  * the ring.  Since the ring is a contiguous structure, they can't be physically
1714  * removed.  Instead, there are two options:
1715  *
1716  *  1) If the HC is in the middle of processing the URB to be canceled, we
1717  *     simply move the ring's dequeue pointer past those TRBs using the Set
1718  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1719  *     when drivers timeout on the last submitted URB and attempt to cancel.
1720  *
1721  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1722  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1723  *     HC will need to invalidate the any TRBs it has cached after the stop
1724  *     endpoint command, as noted in the xHCI 0.95 errata.
1725  *
1726  *  3) The TD may have completed by the time the Stop Endpoint Command
1727  *     completes, so software needs to handle that case too.
1728  *
1729  * This function should protect against the TD enqueueing code ringing the
1730  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1731  * It also needs to account for multiple cancellations on happening at the same
1732  * time for the same endpoint.
1733  *
1734  * Note that this function can be called in any context, or so says
1735  * usb_hcd_unlink_urb()
1736  */
1737 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1738 {
1739         unsigned long flags;
1740         int ret, i;
1741         u32 temp;
1742         struct xhci_hcd *xhci;
1743         struct urb_priv *urb_priv;
1744         struct xhci_td *td;
1745         unsigned int ep_index;
1746         struct xhci_ring *ep_ring;
1747         struct xhci_virt_ep *ep;
1748         struct xhci_command *command;
1749         struct xhci_virt_device *vdev;
1750
1751         xhci = hcd_to_xhci(hcd);
1752         spin_lock_irqsave(&xhci->lock, flags);
1753
1754         trace_xhci_urb_dequeue(urb);
1755
1756         /* Make sure the URB hasn't completed or been unlinked already */
1757         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1758         if (ret)
1759                 goto done;
1760
1761         /* give back URB now if we can't queue it for cancel */
1762         vdev = xhci->devs[urb->dev->slot_id];
1763         urb_priv = urb->hcpriv;
1764         if (!vdev || !urb_priv)
1765                 goto err_giveback;
1766
1767         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1768         ep = &vdev->eps[ep_index];
1769         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1770         if (!ep || !ep_ring)
1771                 goto err_giveback;
1772
1773         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1774         temp = readl(&xhci->op_regs->status);
1775         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1776                 xhci_hc_died(xhci);
1777                 goto done;
1778         }
1779
1780         /*
1781          * check ring is not re-allocated since URB was enqueued. If it is, then
1782          * make sure none of the ring related pointers in this URB private data
1783          * are touched, such as td_list, otherwise we overwrite freed data
1784          */
1785         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1786                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1787                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1788                         td = &urb_priv->td[i];
1789                         if (!list_empty(&td->cancelled_td_list))
1790                                 list_del_init(&td->cancelled_td_list);
1791                 }
1792                 goto err_giveback;
1793         }
1794
1795         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1796                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1797                                 "HC halted, freeing TD manually.");
1798                 for (i = urb_priv->num_tds_done;
1799                      i < urb_priv->num_tds;
1800                      i++) {
1801                         td = &urb_priv->td[i];
1802                         if (!list_empty(&td->td_list))
1803                                 list_del_init(&td->td_list);
1804                         if (!list_empty(&td->cancelled_td_list))
1805                                 list_del_init(&td->cancelled_td_list);
1806                 }
1807                 goto err_giveback;
1808         }
1809
1810         i = urb_priv->num_tds_done;
1811         if (i < urb_priv->num_tds)
1812                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1813                                 "Cancel URB %p, dev %s, ep 0x%x, "
1814                                 "starting at offset 0x%llx",
1815                                 urb, urb->dev->devpath,
1816                                 urb->ep->desc.bEndpointAddress,
1817                                 (unsigned long long) xhci_trb_virt_to_dma(
1818                                         urb_priv->td[i].start_seg,
1819                                         urb_priv->td[i].first_trb));
1820
1821         for (; i < urb_priv->num_tds; i++) {
1822                 td = &urb_priv->td[i];
1823                 /* TD can already be on cancelled list if ep halted on it */
1824                 if (list_empty(&td->cancelled_td_list)) {
1825                         td->cancel_status = TD_DIRTY;
1826                         list_add_tail(&td->cancelled_td_list,
1827                                       &ep->cancelled_td_list);
1828                 }
1829         }
1830
1831         /* Queue a stop endpoint command, but only if this is
1832          * the first cancellation to be handled.
1833          */
1834         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1835                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1836                 if (!command) {
1837                         ret = -ENOMEM;
1838                         goto done;
1839                 }
1840                 ep->ep_state |= EP_STOP_CMD_PENDING;
1841                 ep->stop_cmd_timer.expires = jiffies +
1842                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1843                 add_timer(&ep->stop_cmd_timer);
1844                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1845                                          ep_index, 0);
1846                 xhci_ring_cmd_db(xhci);
1847         }
1848 done:
1849         spin_unlock_irqrestore(&xhci->lock, flags);
1850         return ret;
1851
1852 err_giveback:
1853         if (urb_priv)
1854                 xhci_urb_free_priv(urb_priv);
1855         usb_hcd_unlink_urb_from_ep(hcd, urb);
1856         spin_unlock_irqrestore(&xhci->lock, flags);
1857         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1858         return ret;
1859 }
1860
1861 /* Drop an endpoint from a new bandwidth configuration for this device.
1862  * Only one call to this function is allowed per endpoint before
1863  * check_bandwidth() or reset_bandwidth() must be called.
1864  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1865  * add the endpoint to the schedule with possibly new parameters denoted by a
1866  * different endpoint descriptor in usb_host_endpoint.
1867  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1868  * not allowed.
1869  *
1870  * The USB core will not allow URBs to be queued to an endpoint that is being
1871  * disabled, so there's no need for mutual exclusion to protect
1872  * the xhci->devs[slot_id] structure.
1873  */
1874 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1875                        struct usb_host_endpoint *ep)
1876 {
1877         struct xhci_hcd *xhci;
1878         struct xhci_container_ctx *in_ctx, *out_ctx;
1879         struct xhci_input_control_ctx *ctrl_ctx;
1880         unsigned int ep_index;
1881         struct xhci_ep_ctx *ep_ctx;
1882         u32 drop_flag;
1883         u32 new_add_flags, new_drop_flags;
1884         int ret;
1885
1886         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1887         if (ret <= 0)
1888                 return ret;
1889         xhci = hcd_to_xhci(hcd);
1890         if (xhci->xhc_state & XHCI_STATE_DYING)
1891                 return -ENODEV;
1892
1893         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1894         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1895         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1896                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1897                                 __func__, drop_flag);
1898                 return 0;
1899         }
1900
1901         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1902         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1903         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1904         if (!ctrl_ctx) {
1905                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1906                                 __func__);
1907                 return 0;
1908         }
1909
1910         ep_index = xhci_get_endpoint_index(&ep->desc);
1911         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1912         /* If the HC already knows the endpoint is disabled,
1913          * or the HCD has noted it is disabled, ignore this request
1914          */
1915         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1916             le32_to_cpu(ctrl_ctx->drop_flags) &
1917             xhci_get_endpoint_flag(&ep->desc)) {
1918                 /* Do not warn when called after a usb_device_reset */
1919                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1920                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1921                                   __func__, ep);
1922                 return 0;
1923         }
1924
1925         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1926         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1927
1928         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1929         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1930
1931         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1932
1933         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1934
1935         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1936                         (unsigned int) ep->desc.bEndpointAddress,
1937                         udev->slot_id,
1938                         (unsigned int) new_drop_flags,
1939                         (unsigned int) new_add_flags);
1940         return 0;
1941 }
1942 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1943
1944 /* Add an endpoint to a new possible bandwidth configuration for this device.
1945  * Only one call to this function is allowed per endpoint before
1946  * check_bandwidth() or reset_bandwidth() must be called.
1947  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1948  * add the endpoint to the schedule with possibly new parameters denoted by a
1949  * different endpoint descriptor in usb_host_endpoint.
1950  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1951  * not allowed.
1952  *
1953  * The USB core will not allow URBs to be queued to an endpoint until the
1954  * configuration or alt setting is installed in the device, so there's no need
1955  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1956  */
1957 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1958                       struct usb_host_endpoint *ep)
1959 {
1960         struct xhci_hcd *xhci;
1961         struct xhci_container_ctx *in_ctx;
1962         unsigned int ep_index;
1963         struct xhci_input_control_ctx *ctrl_ctx;
1964         struct xhci_ep_ctx *ep_ctx;
1965         u32 added_ctxs;
1966         u32 new_add_flags, new_drop_flags;
1967         struct xhci_virt_device *virt_dev;
1968         int ret = 0;
1969
1970         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1971         if (ret <= 0) {
1972                 /* So we won't queue a reset ep command for a root hub */
1973                 ep->hcpriv = NULL;
1974                 return ret;
1975         }
1976         xhci = hcd_to_xhci(hcd);
1977         if (xhci->xhc_state & XHCI_STATE_DYING)
1978                 return -ENODEV;
1979
1980         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1981         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1982                 /* FIXME when we have to issue an evaluate endpoint command to
1983                  * deal with ep0 max packet size changing once we get the
1984                  * descriptors
1985                  */
1986                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1987                                 __func__, added_ctxs);
1988                 return 0;
1989         }
1990
1991         virt_dev = xhci->devs[udev->slot_id];
1992         in_ctx = virt_dev->in_ctx;
1993         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1994         if (!ctrl_ctx) {
1995                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1996                                 __func__);
1997                 return 0;
1998         }
1999
2000         ep_index = xhci_get_endpoint_index(&ep->desc);
2001         /* If this endpoint is already in use, and the upper layers are trying
2002          * to add it again without dropping it, reject the addition.
2003          */
2004         if (virt_dev->eps[ep_index].ring &&
2005                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2006                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
2007                                 "without dropping it.\n",
2008                                 (unsigned int) ep->desc.bEndpointAddress);
2009                 return -EINVAL;
2010         }
2011
2012         /* If the HCD has already noted the endpoint is enabled,
2013          * ignore this request.
2014          */
2015         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2016                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2017                                 __func__, ep);
2018                 return 0;
2019         }
2020
2021         /*
2022          * Configuration and alternate setting changes must be done in
2023          * process context, not interrupt context (or so documenation
2024          * for usb_set_interface() and usb_set_configuration() claim).
2025          */
2026         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2027                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2028                                 __func__, ep->desc.bEndpointAddress);
2029                 return -ENOMEM;
2030         }
2031
2032         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2033         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2034
2035         /* If xhci_endpoint_disable() was called for this endpoint, but the
2036          * xHC hasn't been notified yet through the check_bandwidth() call,
2037          * this re-adds a new state for the endpoint from the new endpoint
2038          * descriptors.  We must drop and re-add this endpoint, so we leave the
2039          * drop flags alone.
2040          */
2041         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2042
2043         /* Store the usb_device pointer for later use */
2044         ep->hcpriv = udev;
2045
2046         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2047         trace_xhci_add_endpoint(ep_ctx);
2048
2049         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2050                         (unsigned int) ep->desc.bEndpointAddress,
2051                         udev->slot_id,
2052                         (unsigned int) new_drop_flags,
2053                         (unsigned int) new_add_flags);
2054         return 0;
2055 }
2056 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2057
2058 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2059 {
2060         struct xhci_input_control_ctx *ctrl_ctx;
2061         struct xhci_ep_ctx *ep_ctx;
2062         struct xhci_slot_ctx *slot_ctx;
2063         int i;
2064
2065         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2066         if (!ctrl_ctx) {
2067                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2068                                 __func__);
2069                 return;
2070         }
2071
2072         /* When a device's add flag and drop flag are zero, any subsequent
2073          * configure endpoint command will leave that endpoint's state
2074          * untouched.  Make sure we don't leave any old state in the input
2075          * endpoint contexts.
2076          */
2077         ctrl_ctx->drop_flags = 0;
2078         ctrl_ctx->add_flags = 0;
2079         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2080         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2081         /* Endpoint 0 is always valid */
2082         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2083         for (i = 1; i < 31; i++) {
2084                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2085                 ep_ctx->ep_info = 0;
2086                 ep_ctx->ep_info2 = 0;
2087                 ep_ctx->deq = 0;
2088                 ep_ctx->tx_info = 0;
2089         }
2090 }
2091
2092 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2093                 struct usb_device *udev, u32 *cmd_status)
2094 {
2095         int ret;
2096
2097         switch (*cmd_status) {
2098         case COMP_COMMAND_ABORTED:
2099         case COMP_COMMAND_RING_STOPPED:
2100                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2101                 ret = -ETIME;
2102                 break;
2103         case COMP_RESOURCE_ERROR:
2104                 dev_warn(&udev->dev,
2105                          "Not enough host controller resources for new device state.\n");
2106                 ret = -ENOMEM;
2107                 /* FIXME: can we allocate more resources for the HC? */
2108                 break;
2109         case COMP_BANDWIDTH_ERROR:
2110         case COMP_SECONDARY_BANDWIDTH_ERROR:
2111                 dev_warn(&udev->dev,
2112                          "Not enough bandwidth for new device state.\n");
2113                 ret = -ENOSPC;
2114                 /* FIXME: can we go back to the old state? */
2115                 break;
2116         case COMP_TRB_ERROR:
2117                 /* the HCD set up something wrong */
2118                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2119                                 "add flag = 1, "
2120                                 "and endpoint is not disabled.\n");
2121                 ret = -EINVAL;
2122                 break;
2123         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2124                 dev_warn(&udev->dev,
2125                          "ERROR: Incompatible device for endpoint configure command.\n");
2126                 ret = -ENODEV;
2127                 break;
2128         case COMP_SUCCESS:
2129                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2130                                 "Successful Endpoint Configure command");
2131                 ret = 0;
2132                 break;
2133         default:
2134                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2135                                 *cmd_status);
2136                 ret = -EINVAL;
2137                 break;
2138         }
2139         return ret;
2140 }
2141
2142 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2143                 struct usb_device *udev, u32 *cmd_status)
2144 {
2145         int ret;
2146
2147         switch (*cmd_status) {
2148         case COMP_COMMAND_ABORTED:
2149         case COMP_COMMAND_RING_STOPPED:
2150                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2151                 ret = -ETIME;
2152                 break;
2153         case COMP_PARAMETER_ERROR:
2154                 dev_warn(&udev->dev,
2155                          "WARN: xHCI driver setup invalid evaluate context command.\n");
2156                 ret = -EINVAL;
2157                 break;
2158         case COMP_SLOT_NOT_ENABLED_ERROR:
2159                 dev_warn(&udev->dev,
2160                         "WARN: slot not enabled for evaluate context command.\n");
2161                 ret = -EINVAL;
2162                 break;
2163         case COMP_CONTEXT_STATE_ERROR:
2164                 dev_warn(&udev->dev,
2165                         "WARN: invalid context state for evaluate context command.\n");
2166                 ret = -EINVAL;
2167                 break;
2168         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2169                 dev_warn(&udev->dev,
2170                         "ERROR: Incompatible device for evaluate context command.\n");
2171                 ret = -ENODEV;
2172                 break;
2173         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2174                 /* Max Exit Latency too large error */
2175                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2176                 ret = -EINVAL;
2177                 break;
2178         case COMP_SUCCESS:
2179                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2180                                 "Successful evaluate context command");
2181                 ret = 0;
2182                 break;
2183         default:
2184                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2185                         *cmd_status);
2186                 ret = -EINVAL;
2187                 break;
2188         }
2189         return ret;
2190 }
2191
2192 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2193                 struct xhci_input_control_ctx *ctrl_ctx)
2194 {
2195         u32 valid_add_flags;
2196         u32 valid_drop_flags;
2197
2198         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2199          * (bit 1).  The default control endpoint is added during the Address
2200          * Device command and is never removed until the slot is disabled.
2201          */
2202         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2203         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2204
2205         /* Use hweight32 to count the number of ones in the add flags, or
2206          * number of endpoints added.  Don't count endpoints that are changed
2207          * (both added and dropped).
2208          */
2209         return hweight32(valid_add_flags) -
2210                 hweight32(valid_add_flags & valid_drop_flags);
2211 }
2212
2213 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2214                 struct xhci_input_control_ctx *ctrl_ctx)
2215 {
2216         u32 valid_add_flags;
2217         u32 valid_drop_flags;
2218
2219         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2220         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2221
2222         return hweight32(valid_drop_flags) -
2223                 hweight32(valid_add_flags & valid_drop_flags);
2224 }
2225
2226 /*
2227  * We need to reserve the new number of endpoints before the configure endpoint
2228  * command completes.  We can't subtract the dropped endpoints from the number
2229  * of active endpoints until the command completes because we can oversubscribe
2230  * the host in this case:
2231  *
2232  *  - the first configure endpoint command drops more endpoints than it adds
2233  *  - a second configure endpoint command that adds more endpoints is queued
2234  *  - the first configure endpoint command fails, so the config is unchanged
2235  *  - the second command may succeed, even though there isn't enough resources
2236  *
2237  * Must be called with xhci->lock held.
2238  */
2239 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2240                 struct xhci_input_control_ctx *ctrl_ctx)
2241 {
2242         u32 added_eps;
2243
2244         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2245         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2246                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2247                                 "Not enough ep ctxs: "
2248                                 "%u active, need to add %u, limit is %u.",
2249                                 xhci->num_active_eps, added_eps,
2250                                 xhci->limit_active_eps);
2251                 return -ENOMEM;
2252         }
2253         xhci->num_active_eps += added_eps;
2254         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2255                         "Adding %u ep ctxs, %u now active.", added_eps,
2256                         xhci->num_active_eps);
2257         return 0;
2258 }
2259
2260 /*
2261  * The configure endpoint was failed by the xHC for some other reason, so we
2262  * need to revert the resources that failed configuration would have used.
2263  *
2264  * Must be called with xhci->lock held.
2265  */
2266 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2267                 struct xhci_input_control_ctx *ctrl_ctx)
2268 {
2269         u32 num_failed_eps;
2270
2271         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2272         xhci->num_active_eps -= num_failed_eps;
2273         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2274                         "Removing %u failed ep ctxs, %u now active.",
2275                         num_failed_eps,
2276                         xhci->num_active_eps);
2277 }
2278
2279 /*
2280  * Now that the command has completed, clean up the active endpoint count by
2281  * subtracting out the endpoints that were dropped (but not changed).
2282  *
2283  * Must be called with xhci->lock held.
2284  */
2285 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2286                 struct xhci_input_control_ctx *ctrl_ctx)
2287 {
2288         u32 num_dropped_eps;
2289
2290         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2291         xhci->num_active_eps -= num_dropped_eps;
2292         if (num_dropped_eps)
2293                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2294                                 "Removing %u dropped ep ctxs, %u now active.",
2295                                 num_dropped_eps,
2296                                 xhci->num_active_eps);
2297 }
2298
2299 static unsigned int xhci_get_block_size(struct usb_device *udev)
2300 {
2301         switch (udev->speed) {
2302         case USB_SPEED_LOW:
2303         case USB_SPEED_FULL:
2304                 return FS_BLOCK;
2305         case USB_SPEED_HIGH:
2306                 return HS_BLOCK;
2307         case USB_SPEED_SUPER:
2308         case USB_SPEED_SUPER_PLUS:
2309                 return SS_BLOCK;
2310         case USB_SPEED_UNKNOWN:
2311         case USB_SPEED_WIRELESS:
2312         default:
2313                 /* Should never happen */
2314                 return 1;
2315         }
2316 }
2317
2318 static unsigned int
2319 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2320 {
2321         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2322                 return LS_OVERHEAD;
2323         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2324                 return FS_OVERHEAD;
2325         return HS_OVERHEAD;
2326 }
2327
2328 /* If we are changing a LS/FS device under a HS hub,
2329  * make sure (if we are activating a new TT) that the HS bus has enough
2330  * bandwidth for this new TT.
2331  */
2332 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2333                 struct xhci_virt_device *virt_dev,
2334                 int old_active_eps)
2335 {
2336         struct xhci_interval_bw_table *bw_table;
2337         struct xhci_tt_bw_info *tt_info;
2338
2339         /* Find the bandwidth table for the root port this TT is attached to. */
2340         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2341         tt_info = virt_dev->tt_info;
2342         /* If this TT already had active endpoints, the bandwidth for this TT
2343          * has already been added.  Removing all periodic endpoints (and thus
2344          * making the TT enactive) will only decrease the bandwidth used.
2345          */
2346         if (old_active_eps)
2347                 return 0;
2348         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2349                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2350                         return -ENOMEM;
2351                 return 0;
2352         }
2353         /* Not sure why we would have no new active endpoints...
2354          *
2355          * Maybe because of an Evaluate Context change for a hub update or a
2356          * control endpoint 0 max packet size change?
2357          * FIXME: skip the bandwidth calculation in that case.
2358          */
2359         return 0;
2360 }
2361
2362 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2363                 struct xhci_virt_device *virt_dev)
2364 {
2365         unsigned int bw_reserved;
2366
2367         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2368         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2369                 return -ENOMEM;
2370
2371         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2372         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2373                 return -ENOMEM;
2374
2375         return 0;
2376 }
2377
2378 /*
2379  * This algorithm is a very conservative estimate of the worst-case scheduling
2380  * scenario for any one interval.  The hardware dynamically schedules the
2381  * packets, so we can't tell which microframe could be the limiting factor in
2382  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2383  *
2384  * Obviously, we can't solve an NP complete problem to find the minimum worst
2385  * case scenario.  Instead, we come up with an estimate that is no less than
2386  * the worst case bandwidth used for any one microframe, but may be an
2387  * over-estimate.
2388  *
2389  * We walk the requirements for each endpoint by interval, starting with the
2390  * smallest interval, and place packets in the schedule where there is only one
2391  * possible way to schedule packets for that interval.  In order to simplify
2392  * this algorithm, we record the largest max packet size for each interval, and
2393  * assume all packets will be that size.
2394  *
2395  * For interval 0, we obviously must schedule all packets for each interval.
2396  * The bandwidth for interval 0 is just the amount of data to be transmitted
2397  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2398  * the number of packets).
2399  *
2400  * For interval 1, we have two possible microframes to schedule those packets
2401  * in.  For this algorithm, if we can schedule the same number of packets for
2402  * each possible scheduling opportunity (each microframe), we will do so.  The
2403  * remaining number of packets will be saved to be transmitted in the gaps in
2404  * the next interval's scheduling sequence.
2405  *
2406  * As we move those remaining packets to be scheduled with interval 2 packets,
2407  * we have to double the number of remaining packets to transmit.  This is
2408  * because the intervals are actually powers of 2, and we would be transmitting
2409  * the previous interval's packets twice in this interval.  We also have to be
2410  * sure that when we look at the largest max packet size for this interval, we
2411  * also look at the largest max packet size for the remaining packets and take
2412  * the greater of the two.
2413  *
2414  * The algorithm continues to evenly distribute packets in each scheduling
2415  * opportunity, and push the remaining packets out, until we get to the last
2416  * interval.  Then those packets and their associated overhead are just added
2417  * to the bandwidth used.
2418  */
2419 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2420                 struct xhci_virt_device *virt_dev,
2421                 int old_active_eps)
2422 {
2423         unsigned int bw_reserved;
2424         unsigned int max_bandwidth;
2425         unsigned int bw_used;
2426         unsigned int block_size;
2427         struct xhci_interval_bw_table *bw_table;
2428         unsigned int packet_size = 0;
2429         unsigned int overhead = 0;
2430         unsigned int packets_transmitted = 0;
2431         unsigned int packets_remaining = 0;
2432         unsigned int i;
2433
2434         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2435                 return xhci_check_ss_bw(xhci, virt_dev);
2436
2437         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2438                 max_bandwidth = HS_BW_LIMIT;
2439                 /* Convert percent of bus BW reserved to blocks reserved */
2440                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2441         } else {
2442                 max_bandwidth = FS_BW_LIMIT;
2443                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2444         }
2445
2446         bw_table = virt_dev->bw_table;
2447         /* We need to translate the max packet size and max ESIT payloads into
2448          * the units the hardware uses.
2449          */
2450         block_size = xhci_get_block_size(virt_dev->udev);
2451
2452         /* If we are manipulating a LS/FS device under a HS hub, double check
2453          * that the HS bus has enough bandwidth if we are activing a new TT.
2454          */
2455         if (virt_dev->tt_info) {
2456                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2457                                 "Recalculating BW for rootport %u",
2458                                 virt_dev->real_port);
2459                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2460                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2461                                         "newly activated TT.\n");
2462                         return -ENOMEM;
2463                 }
2464                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2465                                 "Recalculating BW for TT slot %u port %u",
2466                                 virt_dev->tt_info->slot_id,
2467                                 virt_dev->tt_info->ttport);
2468         } else {
2469                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2470                                 "Recalculating BW for rootport %u",
2471                                 virt_dev->real_port);
2472         }
2473
2474         /* Add in how much bandwidth will be used for interval zero, or the
2475          * rounded max ESIT payload + number of packets * largest overhead.
2476          */
2477         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2478                 bw_table->interval_bw[0].num_packets *
2479                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2480
2481         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2482                 unsigned int bw_added;
2483                 unsigned int largest_mps;
2484                 unsigned int interval_overhead;
2485
2486                 /*
2487                  * How many packets could we transmit in this interval?
2488                  * If packets didn't fit in the previous interval, we will need
2489                  * to transmit that many packets twice within this interval.
2490                  */
2491                 packets_remaining = 2 * packets_remaining +
2492                         bw_table->interval_bw[i].num_packets;
2493
2494                 /* Find the largest max packet size of this or the previous
2495                  * interval.
2496                  */
2497                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2498                         largest_mps = 0;
2499                 else {
2500                         struct xhci_virt_ep *virt_ep;
2501                         struct list_head *ep_entry;
2502
2503                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2504                         virt_ep = list_entry(ep_entry,
2505                                         struct xhci_virt_ep, bw_endpoint_list);
2506                         /* Convert to blocks, rounding up */
2507                         largest_mps = DIV_ROUND_UP(
2508                                         virt_ep->bw_info.max_packet_size,
2509                                         block_size);
2510                 }
2511                 if (largest_mps > packet_size)
2512                         packet_size = largest_mps;
2513
2514                 /* Use the larger overhead of this or the previous interval. */
2515                 interval_overhead = xhci_get_largest_overhead(
2516                                 &bw_table->interval_bw[i]);
2517                 if (interval_overhead > overhead)
2518                         overhead = interval_overhead;
2519
2520                 /* How many packets can we evenly distribute across
2521                  * (1 << (i + 1)) possible scheduling opportunities?
2522                  */
2523                 packets_transmitted = packets_remaining >> (i + 1);
2524
2525                 /* Add in the bandwidth used for those scheduled packets */
2526                 bw_added = packets_transmitted * (overhead + packet_size);
2527
2528                 /* How many packets do we have remaining to transmit? */
2529                 packets_remaining = packets_remaining % (1 << (i + 1));
2530
2531                 /* What largest max packet size should those packets have? */
2532                 /* If we've transmitted all packets, don't carry over the
2533                  * largest packet size.
2534                  */
2535                 if (packets_remaining == 0) {
2536                         packet_size = 0;
2537                         overhead = 0;
2538                 } else if (packets_transmitted > 0) {
2539                         /* Otherwise if we do have remaining packets, and we've
2540                          * scheduled some packets in this interval, take the
2541                          * largest max packet size from endpoints with this
2542                          * interval.
2543                          */
2544                         packet_size = largest_mps;
2545                         overhead = interval_overhead;
2546                 }
2547                 /* Otherwise carry over packet_size and overhead from the last
2548                  * time we had a remainder.
2549                  */
2550                 bw_used += bw_added;
2551                 if (bw_used > max_bandwidth) {
2552                         xhci_warn(xhci, "Not enough bandwidth. "
2553                                         "Proposed: %u, Max: %u\n",
2554                                 bw_used, max_bandwidth);
2555                         return -ENOMEM;
2556                 }
2557         }
2558         /*
2559          * Ok, we know we have some packets left over after even-handedly
2560          * scheduling interval 15.  We don't know which microframes they will
2561          * fit into, so we over-schedule and say they will be scheduled every
2562          * microframe.
2563          */
2564         if (packets_remaining > 0)
2565                 bw_used += overhead + packet_size;
2566
2567         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2568                 unsigned int port_index = virt_dev->real_port - 1;
2569
2570                 /* OK, we're manipulating a HS device attached to a
2571                  * root port bandwidth domain.  Include the number of active TTs
2572                  * in the bandwidth used.
2573                  */
2574                 bw_used += TT_HS_OVERHEAD *
2575                         xhci->rh_bw[port_index].num_active_tts;
2576         }
2577
2578         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2579                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2580                 "Available: %u " "percent",
2581                 bw_used, max_bandwidth, bw_reserved,
2582                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2583                 max_bandwidth);
2584
2585         bw_used += bw_reserved;
2586         if (bw_used > max_bandwidth) {
2587                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2588                                 bw_used, max_bandwidth);
2589                 return -ENOMEM;
2590         }
2591
2592         bw_table->bw_used = bw_used;
2593         return 0;
2594 }
2595
2596 static bool xhci_is_async_ep(unsigned int ep_type)
2597 {
2598         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2599                                         ep_type != ISOC_IN_EP &&
2600                                         ep_type != INT_IN_EP);
2601 }
2602
2603 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2604 {
2605         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2606 }
2607
2608 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2609 {
2610         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2611
2612         if (ep_bw->ep_interval == 0)
2613                 return SS_OVERHEAD_BURST +
2614                         (ep_bw->mult * ep_bw->num_packets *
2615                                         (SS_OVERHEAD + mps));
2616         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2617                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2618                                 1 << ep_bw->ep_interval);
2619
2620 }
2621
2622 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2623                 struct xhci_bw_info *ep_bw,
2624                 struct xhci_interval_bw_table *bw_table,
2625                 struct usb_device *udev,
2626                 struct xhci_virt_ep *virt_ep,
2627                 struct xhci_tt_bw_info *tt_info)
2628 {
2629         struct xhci_interval_bw *interval_bw;
2630         int normalized_interval;
2631
2632         if (xhci_is_async_ep(ep_bw->type))
2633                 return;
2634
2635         if (udev->speed >= USB_SPEED_SUPER) {
2636                 if (xhci_is_sync_in_ep(ep_bw->type))
2637                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2638                                 xhci_get_ss_bw_consumed(ep_bw);
2639                 else
2640                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2641                                 xhci_get_ss_bw_consumed(ep_bw);
2642                 return;
2643         }
2644
2645         /* SuperSpeed endpoints never get added to intervals in the table, so
2646          * this check is only valid for HS/FS/LS devices.
2647          */
2648         if (list_empty(&virt_ep->bw_endpoint_list))
2649                 return;
2650         /* For LS/FS devices, we need to translate the interval expressed in
2651          * microframes to frames.
2652          */
2653         if (udev->speed == USB_SPEED_HIGH)
2654                 normalized_interval = ep_bw->ep_interval;
2655         else
2656                 normalized_interval = ep_bw->ep_interval - 3;
2657
2658         if (normalized_interval == 0)
2659                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2660         interval_bw = &bw_table->interval_bw[normalized_interval];
2661         interval_bw->num_packets -= ep_bw->num_packets;
2662         switch (udev->speed) {
2663         case USB_SPEED_LOW:
2664                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2665                 break;
2666         case USB_SPEED_FULL:
2667                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2668                 break;
2669         case USB_SPEED_HIGH:
2670                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2671                 break;
2672         case USB_SPEED_SUPER:
2673         case USB_SPEED_SUPER_PLUS:
2674         case USB_SPEED_UNKNOWN:
2675         case USB_SPEED_WIRELESS:
2676                 /* Should never happen because only LS/FS/HS endpoints will get
2677                  * added to the endpoint list.
2678                  */
2679                 return;
2680         }
2681         if (tt_info)
2682                 tt_info->active_eps -= 1;
2683         list_del_init(&virt_ep->bw_endpoint_list);
2684 }
2685
2686 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2687                 struct xhci_bw_info *ep_bw,
2688                 struct xhci_interval_bw_table *bw_table,
2689                 struct usb_device *udev,
2690                 struct xhci_virt_ep *virt_ep,
2691                 struct xhci_tt_bw_info *tt_info)
2692 {
2693         struct xhci_interval_bw *interval_bw;
2694         struct xhci_virt_ep *smaller_ep;
2695         int normalized_interval;
2696
2697         if (xhci_is_async_ep(ep_bw->type))
2698                 return;
2699
2700         if (udev->speed == USB_SPEED_SUPER) {
2701                 if (xhci_is_sync_in_ep(ep_bw->type))
2702                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2703                                 xhci_get_ss_bw_consumed(ep_bw);
2704                 else
2705                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2706                                 xhci_get_ss_bw_consumed(ep_bw);
2707                 return;
2708         }
2709
2710         /* For LS/FS devices, we need to translate the interval expressed in
2711          * microframes to frames.
2712          */
2713         if (udev->speed == USB_SPEED_HIGH)
2714                 normalized_interval = ep_bw->ep_interval;
2715         else
2716                 normalized_interval = ep_bw->ep_interval - 3;
2717
2718         if (normalized_interval == 0)
2719                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2720         interval_bw = &bw_table->interval_bw[normalized_interval];
2721         interval_bw->num_packets += ep_bw->num_packets;
2722         switch (udev->speed) {
2723         case USB_SPEED_LOW:
2724                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2725                 break;
2726         case USB_SPEED_FULL:
2727                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2728                 break;
2729         case USB_SPEED_HIGH:
2730                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2731                 break;
2732         case USB_SPEED_SUPER:
2733         case USB_SPEED_SUPER_PLUS:
2734         case USB_SPEED_UNKNOWN:
2735         case USB_SPEED_WIRELESS:
2736                 /* Should never happen because only LS/FS/HS endpoints will get
2737                  * added to the endpoint list.
2738                  */
2739                 return;
2740         }
2741
2742         if (tt_info)
2743                 tt_info->active_eps += 1;
2744         /* Insert the endpoint into the list, largest max packet size first. */
2745         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2746                         bw_endpoint_list) {
2747                 if (ep_bw->max_packet_size >=
2748                                 smaller_ep->bw_info.max_packet_size) {
2749                         /* Add the new ep before the smaller endpoint */
2750                         list_add_tail(&virt_ep->bw_endpoint_list,
2751                                         &smaller_ep->bw_endpoint_list);
2752                         return;
2753                 }
2754         }
2755         /* Add the new endpoint at the end of the list. */
2756         list_add_tail(&virt_ep->bw_endpoint_list,
2757                         &interval_bw->endpoints);
2758 }
2759
2760 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2761                 struct xhci_virt_device *virt_dev,
2762                 int old_active_eps)
2763 {
2764         struct xhci_root_port_bw_info *rh_bw_info;
2765         if (!virt_dev->tt_info)
2766                 return;
2767
2768         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2769         if (old_active_eps == 0 &&
2770                                 virt_dev->tt_info->active_eps != 0) {
2771                 rh_bw_info->num_active_tts += 1;
2772                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2773         } else if (old_active_eps != 0 &&
2774                                 virt_dev->tt_info->active_eps == 0) {
2775                 rh_bw_info->num_active_tts -= 1;
2776                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2777         }
2778 }
2779
2780 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2781                 struct xhci_virt_device *virt_dev,
2782                 struct xhci_container_ctx *in_ctx)
2783 {
2784         struct xhci_bw_info ep_bw_info[31];
2785         int i;
2786         struct xhci_input_control_ctx *ctrl_ctx;
2787         int old_active_eps = 0;
2788
2789         if (virt_dev->tt_info)
2790                 old_active_eps = virt_dev->tt_info->active_eps;
2791
2792         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2793         if (!ctrl_ctx) {
2794                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2795                                 __func__);
2796                 return -ENOMEM;
2797         }
2798
2799         for (i = 0; i < 31; i++) {
2800                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2801                         continue;
2802
2803                 /* Make a copy of the BW info in case we need to revert this */
2804                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2805                                 sizeof(ep_bw_info[i]));
2806                 /* Drop the endpoint from the interval table if the endpoint is
2807                  * being dropped or changed.
2808                  */
2809                 if (EP_IS_DROPPED(ctrl_ctx, i))
2810                         xhci_drop_ep_from_interval_table(xhci,
2811                                         &virt_dev->eps[i].bw_info,
2812                                         virt_dev->bw_table,
2813                                         virt_dev->udev,
2814                                         &virt_dev->eps[i],
2815                                         virt_dev->tt_info);
2816         }
2817         /* Overwrite the information stored in the endpoints' bw_info */
2818         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2819         for (i = 0; i < 31; i++) {
2820                 /* Add any changed or added endpoints to the interval table */
2821                 if (EP_IS_ADDED(ctrl_ctx, i))
2822                         xhci_add_ep_to_interval_table(xhci,
2823                                         &virt_dev->eps[i].bw_info,
2824                                         virt_dev->bw_table,
2825                                         virt_dev->udev,
2826                                         &virt_dev->eps[i],
2827                                         virt_dev->tt_info);
2828         }
2829
2830         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2831                 /* Ok, this fits in the bandwidth we have.
2832                  * Update the number of active TTs.
2833                  */
2834                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2835                 return 0;
2836         }
2837
2838         /* We don't have enough bandwidth for this, revert the stored info. */
2839         for (i = 0; i < 31; i++) {
2840                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2841                         continue;
2842
2843                 /* Drop the new copies of any added or changed endpoints from
2844                  * the interval table.
2845                  */
2846                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2847                         xhci_drop_ep_from_interval_table(xhci,
2848                                         &virt_dev->eps[i].bw_info,
2849                                         virt_dev->bw_table,
2850                                         virt_dev->udev,
2851                                         &virt_dev->eps[i],
2852                                         virt_dev->tt_info);
2853                 }
2854                 /* Revert the endpoint back to its old information */
2855                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2856                                 sizeof(ep_bw_info[i]));
2857                 /* Add any changed or dropped endpoints back into the table */
2858                 if (EP_IS_DROPPED(ctrl_ctx, i))
2859                         xhci_add_ep_to_interval_table(xhci,
2860                                         &virt_dev->eps[i].bw_info,
2861                                         virt_dev->bw_table,
2862                                         virt_dev->udev,
2863                                         &virt_dev->eps[i],
2864                                         virt_dev->tt_info);
2865         }
2866         return -ENOMEM;
2867 }
2868
2869
2870 /* Issue a configure endpoint command or evaluate context command
2871  * and wait for it to finish.
2872  */
2873 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2874                 struct usb_device *udev,
2875                 struct xhci_command *command,
2876                 bool ctx_change, bool must_succeed)
2877 {
2878         int ret;
2879         unsigned long flags;
2880         struct xhci_input_control_ctx *ctrl_ctx;
2881         struct xhci_virt_device *virt_dev;
2882         struct xhci_slot_ctx *slot_ctx;
2883
2884         if (!command)
2885                 return -EINVAL;
2886
2887         spin_lock_irqsave(&xhci->lock, flags);
2888
2889         if (xhci->xhc_state & XHCI_STATE_DYING) {
2890                 spin_unlock_irqrestore(&xhci->lock, flags);
2891                 return -ESHUTDOWN;
2892         }
2893
2894         virt_dev = xhci->devs[udev->slot_id];
2895
2896         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2897         if (!ctrl_ctx) {
2898                 spin_unlock_irqrestore(&xhci->lock, flags);
2899                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2900                                 __func__);
2901                 return -ENOMEM;
2902         }
2903
2904         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2905                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2906                 spin_unlock_irqrestore(&xhci->lock, flags);
2907                 xhci_warn(xhci, "Not enough host resources, "
2908                                 "active endpoint contexts = %u\n",
2909                                 xhci->num_active_eps);
2910                 return -ENOMEM;
2911         }
2912         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2913             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2914                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2915                         xhci_free_host_resources(xhci, ctrl_ctx);
2916                 spin_unlock_irqrestore(&xhci->lock, flags);
2917                 xhci_warn(xhci, "Not enough bandwidth\n");
2918                 return -ENOMEM;
2919         }
2920
2921         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2922
2923         trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2924         trace_xhci_configure_endpoint(slot_ctx);
2925
2926         if (!ctx_change)
2927                 ret = xhci_queue_configure_endpoint(xhci, command,
2928                                 command->in_ctx->dma,
2929                                 udev->slot_id, must_succeed);
2930         else
2931                 ret = xhci_queue_evaluate_context(xhci, command,
2932                                 command->in_ctx->dma,
2933                                 udev->slot_id, must_succeed);
2934         if (ret < 0) {
2935                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2936                         xhci_free_host_resources(xhci, ctrl_ctx);
2937                 spin_unlock_irqrestore(&xhci->lock, flags);
2938                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2939                                 "FIXME allocate a new ring segment");
2940                 return -ENOMEM;
2941         }
2942         xhci_ring_cmd_db(xhci);
2943         spin_unlock_irqrestore(&xhci->lock, flags);
2944
2945         /* Wait for the configure endpoint command to complete */
2946         wait_for_completion(command->completion);
2947
2948         if (!ctx_change)
2949                 ret = xhci_configure_endpoint_result(xhci, udev,
2950                                                      &command->status);
2951         else
2952                 ret = xhci_evaluate_context_result(xhci, udev,
2953                                                    &command->status);
2954
2955         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2956                 spin_lock_irqsave(&xhci->lock, flags);
2957                 /* If the command failed, remove the reserved resources.
2958                  * Otherwise, clean up the estimate to include dropped eps.
2959                  */
2960                 if (ret)
2961                         xhci_free_host_resources(xhci, ctrl_ctx);
2962                 else
2963                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2964                 spin_unlock_irqrestore(&xhci->lock, flags);
2965         }
2966         return ret;
2967 }
2968
2969 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2970         struct xhci_virt_device *vdev, int i)
2971 {
2972         struct xhci_virt_ep *ep = &vdev->eps[i];
2973
2974         if (ep->ep_state & EP_HAS_STREAMS) {
2975                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2976                                 xhci_get_endpoint_address(i));
2977                 xhci_free_stream_info(xhci, ep->stream_info);
2978                 ep->stream_info = NULL;
2979                 ep->ep_state &= ~EP_HAS_STREAMS;
2980         }
2981 }
2982
2983 /* Called after one or more calls to xhci_add_endpoint() or
2984  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2985  * to call xhci_reset_bandwidth().
2986  *
2987  * Since we are in the middle of changing either configuration or
2988  * installing a new alt setting, the USB core won't allow URBs to be
2989  * enqueued for any endpoint on the old config or interface.  Nothing
2990  * else should be touching the xhci->devs[slot_id] structure, so we
2991  * don't need to take the xhci->lock for manipulating that.
2992  */
2993 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2994 {
2995         int i;
2996         int ret = 0;
2997         struct xhci_hcd *xhci;
2998         struct xhci_virt_device *virt_dev;
2999         struct xhci_input_control_ctx *ctrl_ctx;
3000         struct xhci_slot_ctx *slot_ctx;
3001         struct xhci_command *command;
3002
3003         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3004         if (ret <= 0)
3005                 return ret;
3006         xhci = hcd_to_xhci(hcd);
3007         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3008                 (xhci->xhc_state & XHCI_STATE_REMOVING))
3009                 return -ENODEV;
3010
3011         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3012         virt_dev = xhci->devs[udev->slot_id];
3013
3014         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3015         if (!command)
3016                 return -ENOMEM;
3017
3018         command->in_ctx = virt_dev->in_ctx;
3019
3020         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3021         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3022         if (!ctrl_ctx) {
3023                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3024                                 __func__);
3025                 ret = -ENOMEM;
3026                 goto command_cleanup;
3027         }
3028         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3029         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3030         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3031
3032         /* Don't issue the command if there's no endpoints to update. */
3033         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3034             ctrl_ctx->drop_flags == 0) {
3035                 ret = 0;
3036                 goto command_cleanup;
3037         }
3038         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3039         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3040         for (i = 31; i >= 1; i--) {
3041                 __le32 le32 = cpu_to_le32(BIT(i));
3042
3043                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3044                     || (ctrl_ctx->add_flags & le32) || i == 1) {
3045                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3046                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3047                         break;
3048                 }
3049         }
3050
3051         ret = xhci_configure_endpoint(xhci, udev, command,
3052                         false, false);
3053         if (ret)
3054                 /* Callee should call reset_bandwidth() */
3055                 goto command_cleanup;
3056
3057         /* Free any rings that were dropped, but not changed. */
3058         for (i = 1; i < 31; i++) {
3059                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3060                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3061                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3062                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3063                 }
3064         }
3065         xhci_zero_in_ctx(xhci, virt_dev);
3066         /*
3067          * Install any rings for completely new endpoints or changed endpoints,
3068          * and free any old rings from changed endpoints.
3069          */
3070         for (i = 1; i < 31; i++) {
3071                 if (!virt_dev->eps[i].new_ring)
3072                         continue;
3073                 /* Only free the old ring if it exists.
3074                  * It may not if this is the first add of an endpoint.
3075                  */
3076                 if (virt_dev->eps[i].ring) {
3077                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3078                 }
3079                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3080                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3081                 virt_dev->eps[i].new_ring = NULL;
3082                 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3083         }
3084 command_cleanup:
3085         kfree(command->completion);
3086         kfree(command);
3087
3088         return ret;
3089 }
3090 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3091
3092 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3093 {
3094         struct xhci_hcd *xhci;
3095         struct xhci_virt_device *virt_dev;
3096         int i, ret;
3097
3098         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3099         if (ret <= 0)
3100                 return;
3101         xhci = hcd_to_xhci(hcd);
3102
3103         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3104         virt_dev = xhci->devs[udev->slot_id];
3105         /* Free any rings allocated for added endpoints */
3106         for (i = 0; i < 31; i++) {
3107                 if (virt_dev->eps[i].new_ring) {
3108                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3109                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3110                         virt_dev->eps[i].new_ring = NULL;
3111                 }
3112         }
3113         xhci_zero_in_ctx(xhci, virt_dev);
3114 }
3115 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3116
3117 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3118                 struct xhci_container_ctx *in_ctx,
3119                 struct xhci_container_ctx *out_ctx,
3120                 struct xhci_input_control_ctx *ctrl_ctx,
3121                 u32 add_flags, u32 drop_flags)
3122 {
3123         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3124         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3125         xhci_slot_copy(xhci, in_ctx, out_ctx);
3126         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3127 }
3128
3129 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3130                                   struct usb_host_endpoint *host_ep)
3131 {
3132         struct xhci_hcd         *xhci;
3133         struct xhci_virt_device *vdev;
3134         struct xhci_virt_ep     *ep;
3135         struct usb_device       *udev;
3136         unsigned long           flags;
3137         unsigned int            ep_index;
3138
3139         xhci = hcd_to_xhci(hcd);
3140 rescan:
3141         spin_lock_irqsave(&xhci->lock, flags);
3142
3143         udev = (struct usb_device *)host_ep->hcpriv;
3144         if (!udev || !udev->slot_id)
3145                 goto done;
3146
3147         vdev = xhci->devs[udev->slot_id];
3148         if (!vdev)
3149                 goto done;
3150
3151         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3152         ep = &vdev->eps[ep_index];
3153         if (!ep)
3154                 goto done;
3155
3156         /* wait for hub_tt_work to finish clearing hub TT */
3157         if (ep->ep_state & EP_CLEARING_TT) {
3158                 spin_unlock_irqrestore(&xhci->lock, flags);
3159                 schedule_timeout_uninterruptible(1);
3160                 goto rescan;
3161         }
3162
3163         if (ep->ep_state)
3164                 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3165                          ep->ep_state);
3166 done:
3167         host_ep->hcpriv = NULL;
3168         spin_unlock_irqrestore(&xhci->lock, flags);
3169 }
3170
3171 /*
3172  * Called after usb core issues a clear halt control message.
3173  * The host side of the halt should already be cleared by a reset endpoint
3174  * command issued when the STALL event was received.
3175  *
3176  * The reset endpoint command may only be issued to endpoints in the halted
3177  * state. For software that wishes to reset the data toggle or sequence number
3178  * of an endpoint that isn't in the halted state this function will issue a
3179  * configure endpoint command with the Drop and Add bits set for the target
3180  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3181  */
3182
3183 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3184                 struct usb_host_endpoint *host_ep)
3185 {
3186         struct xhci_hcd *xhci;
3187         struct usb_device *udev;
3188         struct xhci_virt_device *vdev;
3189         struct xhci_virt_ep *ep;
3190         struct xhci_input_control_ctx *ctrl_ctx;
3191         struct xhci_command *stop_cmd, *cfg_cmd;
3192         unsigned int ep_index;
3193         unsigned long flags;
3194         u32 ep_flag;
3195         int err;
3196
3197         xhci = hcd_to_xhci(hcd);
3198         if (!host_ep->hcpriv)
3199                 return;
3200         udev = (struct usb_device *) host_ep->hcpriv;
3201         vdev = xhci->devs[udev->slot_id];
3202
3203         /*
3204          * vdev may be lost due to xHC restore error and re-initialization
3205          * during S3/S4 resume. A new vdev will be allocated later by
3206          * xhci_discover_or_reset_device()
3207          */
3208         if (!udev->slot_id || !vdev)
3209                 return;
3210         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3211         ep = &vdev->eps[ep_index];
3212         if (!ep)
3213                 return;
3214
3215         /* Bail out if toggle is already being cleared by a endpoint reset */
3216         spin_lock_irqsave(&xhci->lock, flags);
3217         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3218                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3219                 spin_unlock_irqrestore(&xhci->lock, flags);
3220                 return;
3221         }
3222         spin_unlock_irqrestore(&xhci->lock, flags);
3223         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3224         if (usb_endpoint_xfer_control(&host_ep->desc) ||
3225             usb_endpoint_xfer_isoc(&host_ep->desc))
3226                 return;
3227
3228         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3229
3230         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3231                 return;
3232
3233         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3234         if (!stop_cmd)
3235                 return;
3236
3237         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3238         if (!cfg_cmd)
3239                 goto cleanup;
3240
3241         spin_lock_irqsave(&xhci->lock, flags);
3242
3243         /* block queuing new trbs and ringing ep doorbell */
3244         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3245
3246         /*
3247          * Make sure endpoint ring is empty before resetting the toggle/seq.
3248          * Driver is required to synchronously cancel all transfer request.
3249          * Stop the endpoint to force xHC to update the output context
3250          */
3251
3252         if (!list_empty(&ep->ring->td_list)) {
3253                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3254                 spin_unlock_irqrestore(&xhci->lock, flags);
3255                 xhci_free_command(xhci, cfg_cmd);
3256                 goto cleanup;
3257         }
3258
3259         err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3260                                         ep_index, 0);
3261         if (err < 0) {
3262                 spin_unlock_irqrestore(&xhci->lock, flags);
3263                 xhci_free_command(xhci, cfg_cmd);
3264                 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3265                                 __func__, err);
3266                 goto cleanup;
3267         }
3268
3269         xhci_ring_cmd_db(xhci);
3270         spin_unlock_irqrestore(&xhci->lock, flags);
3271
3272         wait_for_completion(stop_cmd->completion);
3273
3274         spin_lock_irqsave(&xhci->lock, flags);
3275
3276         /* config ep command clears toggle if add and drop ep flags are set */
3277         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3278         if (!ctrl_ctx) {
3279                 spin_unlock_irqrestore(&xhci->lock, flags);
3280                 xhci_free_command(xhci, cfg_cmd);
3281                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3282                                 __func__);
3283                 goto cleanup;
3284         }
3285
3286         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3287                                            ctrl_ctx, ep_flag, ep_flag);
3288         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3289
3290         err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3291                                       udev->slot_id, false);
3292         if (err < 0) {
3293                 spin_unlock_irqrestore(&xhci->lock, flags);
3294                 xhci_free_command(xhci, cfg_cmd);
3295                 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3296                                 __func__, err);
3297                 goto cleanup;
3298         }
3299
3300         xhci_ring_cmd_db(xhci);
3301         spin_unlock_irqrestore(&xhci->lock, flags);
3302
3303         wait_for_completion(cfg_cmd->completion);
3304
3305         xhci_free_command(xhci, cfg_cmd);
3306 cleanup:
3307         xhci_free_command(xhci, stop_cmd);
3308         spin_lock_irqsave(&xhci->lock, flags);
3309         if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3310                 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3311         spin_unlock_irqrestore(&xhci->lock, flags);
3312 }
3313
3314 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3315                 struct usb_device *udev, struct usb_host_endpoint *ep,
3316                 unsigned int slot_id)
3317 {
3318         int ret;
3319         unsigned int ep_index;
3320         unsigned int ep_state;
3321
3322         if (!ep)
3323                 return -EINVAL;
3324         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3325         if (ret <= 0)
3326                 return -EINVAL;
3327         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3328                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3329                                 " descriptor for ep 0x%x does not support streams\n",
3330                                 ep->desc.bEndpointAddress);
3331                 return -EINVAL;
3332         }
3333
3334         ep_index = xhci_get_endpoint_index(&ep->desc);
3335         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3336         if (ep_state & EP_HAS_STREAMS ||
3337                         ep_state & EP_GETTING_STREAMS) {
3338                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3339                                 "already has streams set up.\n",
3340                                 ep->desc.bEndpointAddress);
3341                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3342                                 "dynamic stream context array reallocation.\n");
3343                 return -EINVAL;
3344         }
3345         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3346                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3347                                 "endpoint 0x%x; URBs are pending.\n",
3348                                 ep->desc.bEndpointAddress);
3349                 return -EINVAL;
3350         }
3351         return 0;
3352 }
3353
3354 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3355                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3356 {
3357         unsigned int max_streams;
3358
3359         /* The stream context array size must be a power of two */
3360         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3361         /*
3362          * Find out how many primary stream array entries the host controller
3363          * supports.  Later we may use secondary stream arrays (similar to 2nd
3364          * level page entries), but that's an optional feature for xHCI host
3365          * controllers. xHCs must support at least 4 stream IDs.
3366          */
3367         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3368         if (*num_stream_ctxs > max_streams) {
3369                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3370                                 max_streams);
3371                 *num_stream_ctxs = max_streams;
3372                 *num_streams = max_streams;
3373         }
3374 }
3375
3376 /* Returns an error code if one of the endpoint already has streams.
3377  * This does not change any data structures, it only checks and gathers
3378  * information.
3379  */
3380 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3381                 struct usb_device *udev,
3382                 struct usb_host_endpoint **eps, unsigned int num_eps,
3383                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3384 {
3385         unsigned int max_streams;
3386         unsigned int endpoint_flag;
3387         int i;
3388         int ret;
3389
3390         for (i = 0; i < num_eps; i++) {
3391                 ret = xhci_check_streams_endpoint(xhci, udev,
3392                                 eps[i], udev->slot_id);
3393                 if (ret < 0)
3394                         return ret;
3395
3396                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3397                 if (max_streams < (*num_streams - 1)) {
3398                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3399                                         eps[i]->desc.bEndpointAddress,
3400                                         max_streams);
3401                         *num_streams = max_streams+1;
3402                 }
3403
3404                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3405                 if (*changed_ep_bitmask & endpoint_flag)
3406                         return -EINVAL;
3407                 *changed_ep_bitmask |= endpoint_flag;
3408         }
3409         return 0;
3410 }
3411
3412 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3413                 struct usb_device *udev,
3414                 struct usb_host_endpoint **eps, unsigned int num_eps)
3415 {
3416         u32 changed_ep_bitmask = 0;
3417         unsigned int slot_id;
3418         unsigned int ep_index;
3419         unsigned int ep_state;
3420         int i;
3421
3422         slot_id = udev->slot_id;
3423         if (!xhci->devs[slot_id])
3424                 return 0;
3425
3426         for (i = 0; i < num_eps; i++) {
3427                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3428                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3429                 /* Are streams already being freed for the endpoint? */
3430                 if (ep_state & EP_GETTING_NO_STREAMS) {
3431                         xhci_warn(xhci, "WARN Can't disable streams for "
3432                                         "endpoint 0x%x, "
3433                                         "streams are being disabled already\n",
3434                                         eps[i]->desc.bEndpointAddress);
3435                         return 0;
3436                 }
3437                 /* Are there actually any streams to free? */
3438                 if (!(ep_state & EP_HAS_STREAMS) &&
3439                                 !(ep_state & EP_GETTING_STREAMS)) {
3440                         xhci_warn(xhci, "WARN Can't disable streams for "
3441                                         "endpoint 0x%x, "
3442                                         "streams are already disabled!\n",
3443                                         eps[i]->desc.bEndpointAddress);
3444                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3445                                         "with non-streams endpoint\n");
3446                         return 0;
3447                 }
3448                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3449         }
3450         return changed_ep_bitmask;
3451 }
3452
3453 /*
3454  * The USB device drivers use this function (through the HCD interface in USB
3455  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3456  * coordinate mass storage command queueing across multiple endpoints (basically
3457  * a stream ID == a task ID).
3458  *
3459  * Setting up streams involves allocating the same size stream context array
3460  * for each endpoint and issuing a configure endpoint command for all endpoints.
3461  *
3462  * Don't allow the call to succeed if one endpoint only supports one stream
3463  * (which means it doesn't support streams at all).
3464  *
3465  * Drivers may get less stream IDs than they asked for, if the host controller
3466  * hardware or endpoints claim they can't support the number of requested
3467  * stream IDs.
3468  */
3469 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3470                 struct usb_host_endpoint **eps, unsigned int num_eps,
3471                 unsigned int num_streams, gfp_t mem_flags)
3472 {
3473         int i, ret;
3474         struct xhci_hcd *xhci;
3475         struct xhci_virt_device *vdev;
3476         struct xhci_command *config_cmd;
3477         struct xhci_input_control_ctx *ctrl_ctx;
3478         unsigned int ep_index;
3479         unsigned int num_stream_ctxs;
3480         unsigned int max_packet;
3481         unsigned long flags;
3482         u32 changed_ep_bitmask = 0;
3483
3484         if (!eps)
3485                 return -EINVAL;
3486
3487         /* Add one to the number of streams requested to account for
3488          * stream 0 that is reserved for xHCI usage.
3489          */
3490         num_streams += 1;
3491         xhci = hcd_to_xhci(hcd);
3492         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3493                         num_streams);
3494
3495         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3496         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3497                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3498                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3499                 return -ENOSYS;
3500         }
3501
3502         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3503         if (!config_cmd)
3504                 return -ENOMEM;
3505
3506         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3507         if (!ctrl_ctx) {
3508                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3509                                 __func__);
3510                 xhci_free_command(xhci, config_cmd);
3511                 return -ENOMEM;
3512         }
3513
3514         /* Check to make sure all endpoints are not already configured for
3515          * streams.  While we're at it, find the maximum number of streams that
3516          * all the endpoints will support and check for duplicate endpoints.
3517          */
3518         spin_lock_irqsave(&xhci->lock, flags);
3519         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3520                         num_eps, &num_streams, &changed_ep_bitmask);
3521         if (ret < 0) {
3522                 xhci_free_command(xhci, config_cmd);
3523                 spin_unlock_irqrestore(&xhci->lock, flags);
3524                 return ret;
3525         }
3526         if (num_streams <= 1) {
3527                 xhci_warn(xhci, "WARN: endpoints can't handle "
3528                                 "more than one stream.\n");
3529                 xhci_free_command(xhci, config_cmd);
3530                 spin_unlock_irqrestore(&xhci->lock, flags);
3531                 return -EINVAL;
3532         }
3533         vdev = xhci->devs[udev->slot_id];
3534         /* Mark each endpoint as being in transition, so
3535          * xhci_urb_enqueue() will reject all URBs.
3536          */
3537         for (i = 0; i < num_eps; i++) {
3538                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3539                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3540         }
3541         spin_unlock_irqrestore(&xhci->lock, flags);
3542
3543         /* Setup internal data structures and allocate HW data structures for
3544          * streams (but don't install the HW structures in the input context
3545          * until we're sure all memory allocation succeeded).
3546          */
3547         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3548         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3549                         num_stream_ctxs, num_streams);
3550
3551         for (i = 0; i < num_eps; i++) {
3552                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3553                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3554                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3555                                 num_stream_ctxs,
3556                                 num_streams,
3557                                 max_packet, mem_flags);
3558                 if (!vdev->eps[ep_index].stream_info)
3559                         goto cleanup;
3560                 /* Set maxPstreams in endpoint context and update deq ptr to
3561                  * point to stream context array. FIXME
3562                  */
3563         }
3564
3565         /* Set up the input context for a configure endpoint command. */
3566         for (i = 0; i < num_eps; i++) {
3567                 struct xhci_ep_ctx *ep_ctx;
3568
3569                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3570                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3571
3572                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3573                                 vdev->out_ctx, ep_index);
3574                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3575                                 vdev->eps[ep_index].stream_info);
3576         }
3577         /* Tell the HW to drop its old copy of the endpoint context info
3578          * and add the updated copy from the input context.
3579          */
3580         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3581                         vdev->out_ctx, ctrl_ctx,
3582                         changed_ep_bitmask, changed_ep_bitmask);
3583
3584         /* Issue and wait for the configure endpoint command */
3585         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3586                         false, false);
3587
3588         /* xHC rejected the configure endpoint command for some reason, so we
3589          * leave the old ring intact and free our internal streams data
3590          * structure.
3591          */
3592         if (ret < 0)
3593                 goto cleanup;
3594
3595         spin_lock_irqsave(&xhci->lock, flags);
3596         for (i = 0; i < num_eps; i++) {
3597                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3598                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3599                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3600                          udev->slot_id, ep_index);
3601                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3602         }
3603         xhci_free_command(xhci, config_cmd);
3604         spin_unlock_irqrestore(&xhci->lock, flags);
3605
3606         for (i = 0; i < num_eps; i++) {
3607                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3608                 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3609         }
3610         /* Subtract 1 for stream 0, which drivers can't use */
3611         return num_streams - 1;
3612
3613 cleanup:
3614         /* If it didn't work, free the streams! */
3615         for (i = 0; i < num_eps; i++) {
3616                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3617                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3618                 vdev->eps[ep_index].stream_info = NULL;
3619                 /* FIXME Unset maxPstreams in endpoint context and
3620                  * update deq ptr to point to normal string ring.
3621                  */
3622                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3623                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3624                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3625         }
3626         xhci_free_command(xhci, config_cmd);
3627         return -ENOMEM;
3628 }
3629
3630 /* Transition the endpoint from using streams to being a "normal" endpoint
3631  * without streams.
3632  *
3633  * Modify the endpoint context state, submit a configure endpoint command,
3634  * and free all endpoint rings for streams if that completes successfully.
3635  */
3636 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3637                 struct usb_host_endpoint **eps, unsigned int num_eps,
3638                 gfp_t mem_flags)
3639 {
3640         int i, ret;
3641         struct xhci_hcd *xhci;
3642         struct xhci_virt_device *vdev;
3643         struct xhci_command *command;
3644         struct xhci_input_control_ctx *ctrl_ctx;
3645         unsigned int ep_index;
3646         unsigned long flags;
3647         u32 changed_ep_bitmask;
3648
3649         xhci = hcd_to_xhci(hcd);
3650         vdev = xhci->devs[udev->slot_id];
3651
3652         /* Set up a configure endpoint command to remove the streams rings */
3653         spin_lock_irqsave(&xhci->lock, flags);
3654         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3655                         udev, eps, num_eps);
3656         if (changed_ep_bitmask == 0) {
3657                 spin_unlock_irqrestore(&xhci->lock, flags);
3658                 return -EINVAL;
3659         }
3660
3661         /* Use the xhci_command structure from the first endpoint.  We may have
3662          * allocated too many, but the driver may call xhci_free_streams() for
3663          * each endpoint it grouped into one call to xhci_alloc_streams().
3664          */
3665         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3666         command = vdev->eps[ep_index].stream_info->free_streams_command;
3667         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3668         if (!ctrl_ctx) {
3669                 spin_unlock_irqrestore(&xhci->lock, flags);
3670                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3671                                 __func__);
3672                 return -EINVAL;
3673         }
3674
3675         for (i = 0; i < num_eps; i++) {
3676                 struct xhci_ep_ctx *ep_ctx;
3677
3678                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3679                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3680                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3681                         EP_GETTING_NO_STREAMS;
3682
3683                 xhci_endpoint_copy(xhci, command->in_ctx,
3684                                 vdev->out_ctx, ep_index);
3685                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3686                                 &vdev->eps[ep_index]);
3687         }
3688         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3689                         vdev->out_ctx, ctrl_ctx,
3690                         changed_ep_bitmask, changed_ep_bitmask);
3691         spin_unlock_irqrestore(&xhci->lock, flags);
3692
3693         /* Issue and wait for the configure endpoint command,
3694          * which must succeed.
3695          */
3696         ret = xhci_configure_endpoint(xhci, udev, command,
3697                         false, true);
3698
3699         /* xHC rejected the configure endpoint command for some reason, so we
3700          * leave the streams rings intact.
3701          */
3702         if (ret < 0)
3703                 return ret;
3704
3705         spin_lock_irqsave(&xhci->lock, flags);
3706         for (i = 0; i < num_eps; i++) {
3707                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3708                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3709                 vdev->eps[ep_index].stream_info = NULL;
3710                 /* FIXME Unset maxPstreams in endpoint context and
3711                  * update deq ptr to point to normal string ring.
3712                  */
3713                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3714                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3715         }
3716         spin_unlock_irqrestore(&xhci->lock, flags);
3717
3718         return 0;
3719 }
3720
3721 /*
3722  * Deletes endpoint resources for endpoints that were active before a Reset
3723  * Device command, or a Disable Slot command.  The Reset Device command leaves
3724  * the control endpoint intact, whereas the Disable Slot command deletes it.
3725  *
3726  * Must be called with xhci->lock held.
3727  */
3728 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3729         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3730 {
3731         int i;
3732         unsigned int num_dropped_eps = 0;
3733         unsigned int drop_flags = 0;
3734
3735         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3736                 if (virt_dev->eps[i].ring) {
3737                         drop_flags |= 1 << i;
3738                         num_dropped_eps++;
3739                 }
3740         }
3741         xhci->num_active_eps -= num_dropped_eps;
3742         if (num_dropped_eps)
3743                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3744                                 "Dropped %u ep ctxs, flags = 0x%x, "
3745                                 "%u now active.",
3746                                 num_dropped_eps, drop_flags,
3747                                 xhci->num_active_eps);
3748 }
3749
3750 /*
3751  * This submits a Reset Device Command, which will set the device state to 0,
3752  * set the device address to 0, and disable all the endpoints except the default
3753  * control endpoint.  The USB core should come back and call
3754  * xhci_address_device(), and then re-set up the configuration.  If this is
3755  * called because of a usb_reset_and_verify_device(), then the old alternate
3756  * settings will be re-installed through the normal bandwidth allocation
3757  * functions.
3758  *
3759  * Wait for the Reset Device command to finish.  Remove all structures
3760  * associated with the endpoints that were disabled.  Clear the input device
3761  * structure? Reset the control endpoint 0 max packet size?
3762  *
3763  * If the virt_dev to be reset does not exist or does not match the udev,
3764  * it means the device is lost, possibly due to the xHC restore error and
3765  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3766  * re-allocate the device.
3767  */
3768 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3769                 struct usb_device *udev)
3770 {
3771         int ret, i;
3772         unsigned long flags;
3773         struct xhci_hcd *xhci;
3774         unsigned int slot_id;
3775         struct xhci_virt_device *virt_dev;
3776         struct xhci_command *reset_device_cmd;
3777         struct xhci_slot_ctx *slot_ctx;
3778         int old_active_eps = 0;
3779
3780         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3781         if (ret <= 0)
3782                 return ret;
3783         xhci = hcd_to_xhci(hcd);
3784         slot_id = udev->slot_id;
3785         virt_dev = xhci->devs[slot_id];
3786         if (!virt_dev) {
3787                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3788                                 "not exist. Re-allocate the device\n", slot_id);
3789                 ret = xhci_alloc_dev(hcd, udev);
3790                 if (ret == 1)
3791                         return 0;
3792                 else
3793                         return -EINVAL;
3794         }
3795
3796         if (virt_dev->tt_info)
3797                 old_active_eps = virt_dev->tt_info->active_eps;
3798
3799         if (virt_dev->udev != udev) {
3800                 /* If the virt_dev and the udev does not match, this virt_dev
3801                  * may belong to another udev.
3802                  * Re-allocate the device.
3803                  */
3804                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3805                                 "not match the udev. Re-allocate the device\n",
3806                                 slot_id);
3807                 ret = xhci_alloc_dev(hcd, udev);
3808                 if (ret == 1)
3809                         return 0;
3810                 else
3811                         return -EINVAL;
3812         }
3813
3814         /* If device is not setup, there is no point in resetting it */
3815         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3816         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3817                                                 SLOT_STATE_DISABLED)
3818                 return 0;
3819
3820         trace_xhci_discover_or_reset_device(slot_ctx);
3821
3822         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3823         /* Allocate the command structure that holds the struct completion.
3824          * Assume we're in process context, since the normal device reset
3825          * process has to wait for the device anyway.  Storage devices are
3826          * reset as part of error handling, so use GFP_NOIO instead of
3827          * GFP_KERNEL.
3828          */
3829         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3830         if (!reset_device_cmd) {
3831                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3832                 return -ENOMEM;
3833         }
3834
3835         /* Attempt to submit the Reset Device command to the command ring */
3836         spin_lock_irqsave(&xhci->lock, flags);
3837
3838         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3839         if (ret) {
3840                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3841                 spin_unlock_irqrestore(&xhci->lock, flags);
3842                 goto command_cleanup;
3843         }
3844         xhci_ring_cmd_db(xhci);
3845         spin_unlock_irqrestore(&xhci->lock, flags);
3846
3847         /* Wait for the Reset Device command to finish */
3848         wait_for_completion(reset_device_cmd->completion);
3849
3850         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3851          * unless we tried to reset a slot ID that wasn't enabled,
3852          * or the device wasn't in the addressed or configured state.
3853          */
3854         ret = reset_device_cmd->status;
3855         switch (ret) {
3856         case COMP_COMMAND_ABORTED:
3857         case COMP_COMMAND_RING_STOPPED:
3858                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3859                 ret = -ETIME;
3860                 goto command_cleanup;
3861         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3862         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3863                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3864                                 slot_id,
3865                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3866                 xhci_dbg(xhci, "Not freeing device rings.\n");
3867                 /* Don't treat this as an error.  May change my mind later. */
3868                 ret = 0;
3869                 goto command_cleanup;
3870         case COMP_SUCCESS:
3871                 xhci_dbg(xhci, "Successful reset device command.\n");
3872                 break;
3873         default:
3874                 if (xhci_is_vendor_info_code(xhci, ret))
3875                         break;
3876                 xhci_warn(xhci, "Unknown completion code %u for "
3877                                 "reset device command.\n", ret);
3878                 ret = -EINVAL;
3879                 goto command_cleanup;
3880         }
3881
3882         /* Free up host controller endpoint resources */
3883         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3884                 spin_lock_irqsave(&xhci->lock, flags);
3885                 /* Don't delete the default control endpoint resources */
3886                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3887                 spin_unlock_irqrestore(&xhci->lock, flags);
3888         }
3889
3890         /* Everything but endpoint 0 is disabled, so free the rings. */
3891         for (i = 1; i < 31; i++) {
3892                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3893
3894                 if (ep->ep_state & EP_HAS_STREAMS) {
3895                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3896                                         xhci_get_endpoint_address(i));
3897                         xhci_free_stream_info(xhci, ep->stream_info);
3898                         ep->stream_info = NULL;
3899                         ep->ep_state &= ~EP_HAS_STREAMS;
3900                 }
3901
3902                 if (ep->ring) {
3903                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3904                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3905                 }
3906                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3907                         xhci_drop_ep_from_interval_table(xhci,
3908                                         &virt_dev->eps[i].bw_info,
3909                                         virt_dev->bw_table,
3910                                         udev,
3911                                         &virt_dev->eps[i],
3912                                         virt_dev->tt_info);
3913                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3914         }
3915         /* If necessary, update the number of active TTs on this root port */
3916         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3917         virt_dev->flags = 0;
3918         ret = 0;
3919
3920 command_cleanup:
3921         xhci_free_command(xhci, reset_device_cmd);
3922         return ret;
3923 }
3924
3925 /*
3926  * At this point, the struct usb_device is about to go away, the device has
3927  * disconnected, and all traffic has been stopped and the endpoints have been
3928  * disabled.  Free any HC data structures associated with that device.
3929  */
3930 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3931 {
3932         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3933         struct xhci_virt_device *virt_dev;
3934         struct xhci_slot_ctx *slot_ctx;
3935         int i, ret;
3936
3937         /*
3938          * We called pm_runtime_get_noresume when the device was attached.
3939          * Decrement the counter here to allow controller to runtime suspend
3940          * if no devices remain.
3941          */
3942         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3943                 pm_runtime_put_noidle(hcd->self.controller);
3944
3945         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3946         /* If the host is halted due to driver unload, we still need to free the
3947          * device.
3948          */
3949         if (ret <= 0 && ret != -ENODEV)
3950                 return;
3951
3952         virt_dev = xhci->devs[udev->slot_id];
3953         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3954         trace_xhci_free_dev(slot_ctx);
3955
3956         /* Stop any wayward timer functions (which may grab the lock) */
3957         for (i = 0; i < 31; i++) {
3958                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3959                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3960         }
3961         virt_dev->udev = NULL;
3962         xhci_disable_slot(xhci, udev->slot_id);
3963         xhci_free_virt_device(xhci, udev->slot_id);
3964 }
3965
3966 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3967 {
3968         struct xhci_command *command;
3969         unsigned long flags;
3970         u32 state;
3971         int ret = 0;
3972
3973         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3974         if (!command)
3975                 return -ENOMEM;
3976
3977         xhci_debugfs_remove_slot(xhci, slot_id);
3978
3979         spin_lock_irqsave(&xhci->lock, flags);
3980         /* Don't disable the slot if the host controller is dead. */
3981         state = readl(&xhci->op_regs->status);
3982         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3983                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3984                 spin_unlock_irqrestore(&xhci->lock, flags);
3985                 kfree(command);
3986                 return -ENODEV;
3987         }
3988
3989         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3990                                 slot_id);
3991         if (ret) {
3992                 spin_unlock_irqrestore(&xhci->lock, flags);
3993                 kfree(command);
3994                 return ret;
3995         }
3996         xhci_ring_cmd_db(xhci);
3997         spin_unlock_irqrestore(&xhci->lock, flags);
3998
3999         wait_for_completion(command->completion);
4000
4001         if (command->status != COMP_SUCCESS)
4002                 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4003                           slot_id, command->status);
4004
4005         xhci_free_command(xhci, command);
4006
4007         return ret;
4008 }
4009
4010 /*
4011  * Checks if we have enough host controller resources for the default control
4012  * endpoint.
4013  *
4014  * Must be called with xhci->lock held.
4015  */
4016 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4017 {
4018         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4019                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4020                                 "Not enough ep ctxs: "
4021                                 "%u active, need to add 1, limit is %u.",
4022                                 xhci->num_active_eps, xhci->limit_active_eps);
4023                 return -ENOMEM;
4024         }
4025         xhci->num_active_eps += 1;
4026         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4027                         "Adding 1 ep ctx, %u now active.",
4028                         xhci->num_active_eps);
4029         return 0;
4030 }
4031
4032
4033 /*
4034  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4035  * timed out, or allocating memory failed.  Returns 1 on success.
4036  */
4037 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4038 {
4039         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4040         struct xhci_virt_device *vdev;
4041         struct xhci_slot_ctx *slot_ctx;
4042         unsigned long flags;
4043         int ret, slot_id;
4044         struct xhci_command *command;
4045
4046         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4047         if (!command)
4048                 return 0;
4049
4050         spin_lock_irqsave(&xhci->lock, flags);
4051         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4052         if (ret) {
4053                 spin_unlock_irqrestore(&xhci->lock, flags);
4054                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4055                 xhci_free_command(xhci, command);
4056                 return 0;
4057         }
4058         xhci_ring_cmd_db(xhci);
4059         spin_unlock_irqrestore(&xhci->lock, flags);
4060
4061         wait_for_completion(command->completion);
4062         slot_id = command->slot_id;
4063
4064         if (!slot_id || command->status != COMP_SUCCESS) {
4065                 xhci_err(xhci, "Error while assigning device slot ID\n");
4066                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4067                                 HCS_MAX_SLOTS(
4068                                         readl(&xhci->cap_regs->hcs_params1)));
4069                 xhci_free_command(xhci, command);
4070                 return 0;
4071         }
4072
4073         xhci_free_command(xhci, command);
4074
4075         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4076                 spin_lock_irqsave(&xhci->lock, flags);
4077                 ret = xhci_reserve_host_control_ep_resources(xhci);
4078                 if (ret) {
4079                         spin_unlock_irqrestore(&xhci->lock, flags);
4080                         xhci_warn(xhci, "Not enough host resources, "
4081                                         "active endpoint contexts = %u\n",
4082                                         xhci->num_active_eps);
4083                         goto disable_slot;
4084                 }
4085                 spin_unlock_irqrestore(&xhci->lock, flags);
4086         }
4087         /* Use GFP_NOIO, since this function can be called from
4088          * xhci_discover_or_reset_device(), which may be called as part of
4089          * mass storage driver error handling.
4090          */
4091         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4092                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4093                 goto disable_slot;
4094         }
4095         vdev = xhci->devs[slot_id];
4096         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4097         trace_xhci_alloc_dev(slot_ctx);
4098
4099         udev->slot_id = slot_id;
4100
4101         xhci_debugfs_create_slot(xhci, slot_id);
4102
4103         /*
4104          * If resetting upon resume, we can't put the controller into runtime
4105          * suspend if there is a device attached.
4106          */
4107         if (xhci->quirks & XHCI_RESET_ON_RESUME)
4108                 pm_runtime_get_noresume(hcd->self.controller);
4109
4110         /* Is this a LS or FS device under a HS hub? */
4111         /* Hub or peripherial? */
4112         return 1;
4113
4114 disable_slot:
4115         xhci_disable_slot(xhci, udev->slot_id);
4116         xhci_free_virt_device(xhci, udev->slot_id);
4117
4118         return 0;
4119 }
4120
4121 /*
4122  * Issue an Address Device command and optionally send a corresponding
4123  * SetAddress request to the device.
4124  */
4125 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4126                              enum xhci_setup_dev setup)
4127 {
4128         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4129         unsigned long flags;
4130         struct xhci_virt_device *virt_dev;
4131         int ret = 0;
4132         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4133         struct xhci_slot_ctx *slot_ctx;
4134         struct xhci_input_control_ctx *ctrl_ctx;
4135         u64 temp_64;
4136         struct xhci_command *command = NULL;
4137
4138         mutex_lock(&xhci->mutex);
4139
4140         if (xhci->xhc_state) {  /* dying, removing or halted */
4141                 ret = -ESHUTDOWN;
4142                 goto out;
4143         }
4144
4145         if (!udev->slot_id) {
4146                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4147                                 "Bad Slot ID %d", udev->slot_id);
4148                 ret = -EINVAL;
4149                 goto out;
4150         }
4151
4152         virt_dev = xhci->devs[udev->slot_id];
4153
4154         if (WARN_ON(!virt_dev)) {
4155                 /*
4156                  * In plug/unplug torture test with an NEC controller,
4157                  * a zero-dereference was observed once due to virt_dev = 0.
4158                  * Print useful debug rather than crash if it is observed again!
4159                  */
4160                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4161                         udev->slot_id);
4162                 ret = -EINVAL;
4163                 goto out;
4164         }
4165         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4166         trace_xhci_setup_device_slot(slot_ctx);
4167
4168         if (setup == SETUP_CONTEXT_ONLY) {
4169                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4170                     SLOT_STATE_DEFAULT) {
4171                         xhci_dbg(xhci, "Slot already in default state\n");
4172                         goto out;
4173                 }
4174         }
4175
4176         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4177         if (!command) {
4178                 ret = -ENOMEM;
4179                 goto out;
4180         }
4181
4182         command->in_ctx = virt_dev->in_ctx;
4183
4184         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4185         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4186         if (!ctrl_ctx) {
4187                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4188                                 __func__);
4189                 ret = -EINVAL;
4190                 goto out;
4191         }
4192         /*
4193          * If this is the first Set Address since device plug-in or
4194          * virt_device realloaction after a resume with an xHCI power loss,
4195          * then set up the slot context.
4196          */
4197         if (!slot_ctx->dev_info)
4198                 xhci_setup_addressable_virt_dev(xhci, udev);
4199         /* Otherwise, update the control endpoint ring enqueue pointer. */
4200         else
4201                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4202         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4203         ctrl_ctx->drop_flags = 0;
4204
4205         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4206                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4207
4208         trace_xhci_address_ctrl_ctx(ctrl_ctx);
4209         spin_lock_irqsave(&xhci->lock, flags);
4210         trace_xhci_setup_device(virt_dev);
4211         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4212                                         udev->slot_id, setup);
4213         if (ret) {
4214                 spin_unlock_irqrestore(&xhci->lock, flags);
4215                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4216                                 "FIXME: allocate a command ring segment");
4217                 goto out;
4218         }
4219         xhci_ring_cmd_db(xhci);
4220         spin_unlock_irqrestore(&xhci->lock, flags);
4221
4222         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4223         wait_for_completion(command->completion);
4224
4225         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4226          * the SetAddress() "recovery interval" required by USB and aborting the
4227          * command on a timeout.
4228          */
4229         switch (command->status) {
4230         case COMP_COMMAND_ABORTED:
4231         case COMP_COMMAND_RING_STOPPED:
4232                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4233                 ret = -ETIME;
4234                 break;
4235         case COMP_CONTEXT_STATE_ERROR:
4236         case COMP_SLOT_NOT_ENABLED_ERROR:
4237                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4238                          act, udev->slot_id);
4239                 ret = -EINVAL;
4240                 break;
4241         case COMP_USB_TRANSACTION_ERROR:
4242                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4243
4244                 mutex_unlock(&xhci->mutex);
4245                 ret = xhci_disable_slot(xhci, udev->slot_id);
4246                 xhci_free_virt_device(xhci, udev->slot_id);
4247                 if (!ret)
4248                         xhci_alloc_dev(hcd, udev);
4249                 kfree(command->completion);
4250                 kfree(command);
4251                 return -EPROTO;
4252         case COMP_INCOMPATIBLE_DEVICE_ERROR:
4253                 dev_warn(&udev->dev,
4254                          "ERROR: Incompatible device for setup %s command\n", act);
4255                 ret = -ENODEV;
4256                 break;
4257         case COMP_SUCCESS:
4258                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4259                                "Successful setup %s command", act);
4260                 break;
4261         default:
4262                 xhci_err(xhci,
4263                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
4264                          act, command->status);
4265                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4266                 ret = -EINVAL;
4267                 break;
4268         }
4269         if (ret)
4270                 goto out;
4271         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4272         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4273                         "Op regs DCBAA ptr = %#016llx", temp_64);
4274         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4275                 "Slot ID %d dcbaa entry @%p = %#016llx",
4276                 udev->slot_id,
4277                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4278                 (unsigned long long)
4279                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4280         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4281                         "Output Context DMA address = %#08llx",
4282                         (unsigned long long)virt_dev->out_ctx->dma);
4283         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4284                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4285         /*
4286          * USB core uses address 1 for the roothubs, so we add one to the
4287          * address given back to us by the HC.
4288          */
4289         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4290                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4291         /* Zero the input context control for later use */
4292         ctrl_ctx->add_flags = 0;
4293         ctrl_ctx->drop_flags = 0;
4294         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4295         udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4296
4297         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4298                        "Internal device address = %d",
4299                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4300 out:
4301         mutex_unlock(&xhci->mutex);
4302         if (command) {
4303                 kfree(command->completion);
4304                 kfree(command);
4305         }
4306         return ret;
4307 }
4308
4309 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4310 {
4311         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4312 }
4313
4314 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4315 {
4316         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4317 }
4318
4319 /*
4320  * Transfer the port index into real index in the HW port status
4321  * registers. Caculate offset between the port's PORTSC register
4322  * and port status base. Divide the number of per port register
4323  * to get the real index. The raw port number bases 1.
4324  */
4325 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4326 {
4327         struct xhci_hub *rhub;
4328
4329         rhub = xhci_get_rhub(hcd);
4330         return rhub->ports[port1 - 1]->hw_portnum + 1;
4331 }
4332
4333 /*
4334  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4335  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4336  */
4337 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4338                         struct usb_device *udev, u16 max_exit_latency)
4339 {
4340         struct xhci_virt_device *virt_dev;
4341         struct xhci_command *command;
4342         struct xhci_input_control_ctx *ctrl_ctx;
4343         struct xhci_slot_ctx *slot_ctx;
4344         unsigned long flags;
4345         int ret;
4346
4347         spin_lock_irqsave(&xhci->lock, flags);
4348
4349         virt_dev = xhci->devs[udev->slot_id];
4350
4351         /*
4352          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4353          * xHC was re-initialized. Exit latency will be set later after
4354          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4355          */
4356
4357         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4358                 spin_unlock_irqrestore(&xhci->lock, flags);
4359                 return 0;
4360         }
4361
4362         /* Attempt to issue an Evaluate Context command to change the MEL. */
4363         command = xhci->lpm_command;
4364         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4365         if (!ctrl_ctx) {
4366                 spin_unlock_irqrestore(&xhci->lock, flags);
4367                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4368                                 __func__);
4369                 return -ENOMEM;
4370         }
4371
4372         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4373         spin_unlock_irqrestore(&xhci->lock, flags);
4374
4375         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4376         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4377         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4378         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4379         slot_ctx->dev_state = 0;
4380
4381         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4382                         "Set up evaluate context for LPM MEL change.");
4383
4384         /* Issue and wait for the evaluate context command. */
4385         ret = xhci_configure_endpoint(xhci, udev, command,
4386                         true, true);
4387
4388         if (!ret) {
4389                 spin_lock_irqsave(&xhci->lock, flags);
4390                 virt_dev->current_mel = max_exit_latency;
4391                 spin_unlock_irqrestore(&xhci->lock, flags);
4392         }
4393         return ret;
4394 }
4395
4396 #ifdef CONFIG_PM
4397
4398 /* BESL to HIRD Encoding array for USB2 LPM */
4399 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4400         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4401
4402 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4403 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4404                                         struct usb_device *udev)
4405 {
4406         int u2del, besl, besl_host;
4407         int besl_device = 0;
4408         u32 field;
4409
4410         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4411         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4412
4413         if (field & USB_BESL_SUPPORT) {
4414                 for (besl_host = 0; besl_host < 16; besl_host++) {
4415                         if (xhci_besl_encoding[besl_host] >= u2del)
4416                                 break;
4417                 }
4418                 /* Use baseline BESL value as default */
4419                 if (field & USB_BESL_BASELINE_VALID)
4420                         besl_device = USB_GET_BESL_BASELINE(field);
4421                 else if (field & USB_BESL_DEEP_VALID)
4422                         besl_device = USB_GET_BESL_DEEP(field);
4423         } else {
4424                 if (u2del <= 50)
4425                         besl_host = 0;
4426                 else
4427                         besl_host = (u2del - 51) / 75 + 1;
4428         }
4429
4430         besl = besl_host + besl_device;
4431         if (besl > 15)
4432                 besl = 15;
4433
4434         return besl;
4435 }
4436
4437 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4438 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4439 {
4440         u32 field;
4441         int l1;
4442         int besld = 0;
4443         int hirdm = 0;
4444
4445         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4446
4447         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4448         l1 = udev->l1_params.timeout / 256;
4449
4450         /* device has preferred BESLD */
4451         if (field & USB_BESL_DEEP_VALID) {
4452                 besld = USB_GET_BESL_DEEP(field);
4453                 hirdm = 1;
4454         }
4455
4456         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4457 }
4458
4459 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4460                         struct usb_device *udev, int enable)
4461 {
4462         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4463         struct xhci_port **ports;
4464         __le32 __iomem  *pm_addr, *hlpm_addr;
4465         u32             pm_val, hlpm_val, field;
4466         unsigned int    port_num;
4467         unsigned long   flags;
4468         int             hird, exit_latency;
4469         int             ret;
4470
4471         if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4472                 return -EPERM;
4473
4474         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4475                         !udev->lpm_capable)
4476                 return -EPERM;
4477
4478         if (!udev->parent || udev->parent->parent ||
4479                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4480                 return -EPERM;
4481
4482         if (udev->usb2_hw_lpm_capable != 1)
4483                 return -EPERM;
4484
4485         spin_lock_irqsave(&xhci->lock, flags);
4486
4487         ports = xhci->usb2_rhub.ports;
4488         port_num = udev->portnum - 1;
4489         pm_addr = ports[port_num]->addr + PORTPMSC;
4490         pm_val = readl(pm_addr);
4491         hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4492
4493         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4494                         enable ? "enable" : "disable", port_num + 1);
4495
4496         if (enable) {
4497                 /* Host supports BESL timeout instead of HIRD */
4498                 if (udev->usb2_hw_lpm_besl_capable) {
4499                         /* if device doesn't have a preferred BESL value use a
4500                          * default one which works with mixed HIRD and BESL
4501                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4502                          */
4503                         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4504                         if ((field & USB_BESL_SUPPORT) &&
4505                             (field & USB_BESL_BASELINE_VALID))
4506                                 hird = USB_GET_BESL_BASELINE(field);
4507                         else
4508                                 hird = udev->l1_params.besl;
4509
4510                         exit_latency = xhci_besl_encoding[hird];
4511                         spin_unlock_irqrestore(&xhci->lock, flags);
4512
4513                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4514                          * input context for link powermanagement evaluate
4515                          * context commands. It is protected by hcd->bandwidth
4516                          * mutex and is shared by all devices. We need to set
4517                          * the max ext latency in USB 2 BESL LPM as well, so
4518                          * use the same mutex and xhci_change_max_exit_latency()
4519                          */
4520                         mutex_lock(hcd->bandwidth_mutex);
4521                         ret = xhci_change_max_exit_latency(xhci, udev,
4522                                                            exit_latency);
4523                         mutex_unlock(hcd->bandwidth_mutex);
4524
4525                         if (ret < 0)
4526                                 return ret;
4527                         spin_lock_irqsave(&xhci->lock, flags);
4528
4529                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4530                         writel(hlpm_val, hlpm_addr);
4531                         /* flush write */
4532                         readl(hlpm_addr);
4533                 } else {
4534                         hird = xhci_calculate_hird_besl(xhci, udev);
4535                 }
4536
4537                 pm_val &= ~PORT_HIRD_MASK;
4538                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4539                 writel(pm_val, pm_addr);
4540                 pm_val = readl(pm_addr);
4541                 pm_val |= PORT_HLE;
4542                 writel(pm_val, pm_addr);
4543                 /* flush write */
4544                 readl(pm_addr);
4545         } else {
4546                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4547                 writel(pm_val, pm_addr);
4548                 /* flush write */
4549                 readl(pm_addr);
4550                 if (udev->usb2_hw_lpm_besl_capable) {
4551                         spin_unlock_irqrestore(&xhci->lock, flags);
4552                         mutex_lock(hcd->bandwidth_mutex);
4553                         xhci_change_max_exit_latency(xhci, udev, 0);
4554                         mutex_unlock(hcd->bandwidth_mutex);
4555                         readl_poll_timeout(ports[port_num]->addr, pm_val,
4556                                            (pm_val & PORT_PLS_MASK) == XDEV_U0,
4557                                            100, 10000);
4558                         return 0;
4559                 }
4560         }
4561
4562         spin_unlock_irqrestore(&xhci->lock, flags);
4563         return 0;
4564 }
4565
4566 /* check if a usb2 port supports a given extened capability protocol
4567  * only USB2 ports extended protocol capability values are cached.
4568  * Return 1 if capability is supported
4569  */
4570 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4571                                            unsigned capability)
4572 {
4573         u32 port_offset, port_count;
4574         int i;
4575
4576         for (i = 0; i < xhci->num_ext_caps; i++) {
4577                 if (xhci->ext_caps[i] & capability) {
4578                         /* port offsets starts at 1 */
4579                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4580                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4581                         if (port >= port_offset &&
4582                             port < port_offset + port_count)
4583                                 return 1;
4584                 }
4585         }
4586         return 0;
4587 }
4588
4589 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4590 {
4591         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4592         int             portnum = udev->portnum - 1;
4593
4594         if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4595                 return 0;
4596
4597         /* we only support lpm for non-hub device connected to root hub yet */
4598         if (!udev->parent || udev->parent->parent ||
4599                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4600                 return 0;
4601
4602         if (xhci->hw_lpm_support == 1 &&
4603                         xhci_check_usb2_port_capability(
4604                                 xhci, portnum, XHCI_HLC)) {
4605                 udev->usb2_hw_lpm_capable = 1;
4606                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4607                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4608                 if (xhci_check_usb2_port_capability(xhci, portnum,
4609                                         XHCI_BLC))
4610                         udev->usb2_hw_lpm_besl_capable = 1;
4611         }
4612
4613         return 0;
4614 }
4615
4616 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4617
4618 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4619 static unsigned long long xhci_service_interval_to_ns(
4620                 struct usb_endpoint_descriptor *desc)
4621 {
4622         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4623 }
4624
4625 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4626                 enum usb3_link_state state)
4627 {
4628         unsigned long long sel;
4629         unsigned long long pel;
4630         unsigned int max_sel_pel;
4631         char *state_name;
4632
4633         switch (state) {
4634         case USB3_LPM_U1:
4635                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4636                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4637                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4638                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4639                 state_name = "U1";
4640                 break;
4641         case USB3_LPM_U2:
4642                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4643                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4644                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4645                 state_name = "U2";
4646                 break;
4647         default:
4648                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4649                                 __func__);
4650                 return USB3_LPM_DISABLED;
4651         }
4652
4653         if (sel <= max_sel_pel && pel <= max_sel_pel)
4654                 return USB3_LPM_DEVICE_INITIATED;
4655
4656         if (sel > max_sel_pel)
4657                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4658                                 "due to long SEL %llu ms\n",
4659                                 state_name, sel);
4660         else
4661                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4662                                 "due to long PEL %llu ms\n",
4663                                 state_name, pel);
4664         return USB3_LPM_DISABLED;
4665 }
4666
4667 /* The U1 timeout should be the maximum of the following values:
4668  *  - For control endpoints, U1 system exit latency (SEL) * 3
4669  *  - For bulk endpoints, U1 SEL * 5
4670  *  - For interrupt endpoints:
4671  *    - Notification EPs, U1 SEL * 3
4672  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4673  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4674  */
4675 static unsigned long long xhci_calculate_intel_u1_timeout(
4676                 struct usb_device *udev,
4677                 struct usb_endpoint_descriptor *desc)
4678 {
4679         unsigned long long timeout_ns;
4680         int ep_type;
4681         int intr_type;
4682
4683         ep_type = usb_endpoint_type(desc);
4684         switch (ep_type) {
4685         case USB_ENDPOINT_XFER_CONTROL:
4686                 timeout_ns = udev->u1_params.sel * 3;
4687                 break;
4688         case USB_ENDPOINT_XFER_BULK:
4689                 timeout_ns = udev->u1_params.sel * 5;
4690                 break;
4691         case USB_ENDPOINT_XFER_INT:
4692                 intr_type = usb_endpoint_interrupt_type(desc);
4693                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4694                         timeout_ns = udev->u1_params.sel * 3;
4695                         break;
4696                 }
4697                 /* Otherwise the calculation is the same as isoc eps */
4698                 fallthrough;
4699         case USB_ENDPOINT_XFER_ISOC:
4700                 timeout_ns = xhci_service_interval_to_ns(desc);
4701                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4702                 if (timeout_ns < udev->u1_params.sel * 2)
4703                         timeout_ns = udev->u1_params.sel * 2;
4704                 break;
4705         default:
4706                 return 0;
4707         }
4708
4709         return timeout_ns;
4710 }
4711
4712 /* Returns the hub-encoded U1 timeout value. */
4713 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4714                 struct usb_device *udev,
4715                 struct usb_endpoint_descriptor *desc)
4716 {
4717         unsigned long long timeout_ns;
4718
4719         /* Prevent U1 if service interval is shorter than U1 exit latency */
4720         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4721                 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4722                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4723                         return USB3_LPM_DISABLED;
4724                 }
4725         }
4726
4727         if (xhci->quirks & XHCI_INTEL_HOST)
4728                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4729         else
4730                 timeout_ns = udev->u1_params.sel;
4731
4732         /* The U1 timeout is encoded in 1us intervals.
4733          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4734          */
4735         if (timeout_ns == USB3_LPM_DISABLED)
4736                 timeout_ns = 1;
4737         else
4738                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4739
4740         /* If the necessary timeout value is bigger than what we can set in the
4741          * USB 3.0 hub, we have to disable hub-initiated U1.
4742          */
4743         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4744                 return timeout_ns;
4745         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4746                         "due to long timeout %llu ms\n", timeout_ns);
4747         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4748 }
4749
4750 /* The U2 timeout should be the maximum of:
4751  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4752  *  - largest bInterval of any active periodic endpoint (to avoid going
4753  *    into lower power link states between intervals).
4754  *  - the U2 Exit Latency of the device
4755  */
4756 static unsigned long long xhci_calculate_intel_u2_timeout(
4757                 struct usb_device *udev,
4758                 struct usb_endpoint_descriptor *desc)
4759 {
4760         unsigned long long timeout_ns;
4761         unsigned long long u2_del_ns;
4762
4763         timeout_ns = 10 * 1000 * 1000;
4764
4765         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4766                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4767                 timeout_ns = xhci_service_interval_to_ns(desc);
4768
4769         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4770         if (u2_del_ns > timeout_ns)
4771                 timeout_ns = u2_del_ns;
4772
4773         return timeout_ns;
4774 }
4775
4776 /* Returns the hub-encoded U2 timeout value. */
4777 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4778                 struct usb_device *udev,
4779                 struct usb_endpoint_descriptor *desc)
4780 {
4781         unsigned long long timeout_ns;
4782
4783         /* Prevent U2 if service interval is shorter than U2 exit latency */
4784         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4785                 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4786                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4787                         return USB3_LPM_DISABLED;
4788                 }
4789         }
4790
4791         if (xhci->quirks & XHCI_INTEL_HOST)
4792                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4793         else
4794                 timeout_ns = udev->u2_params.sel;
4795
4796         /* The U2 timeout is encoded in 256us intervals */
4797         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4798         /* If the necessary timeout value is bigger than what we can set in the
4799          * USB 3.0 hub, we have to disable hub-initiated U2.
4800          */
4801         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4802                 return timeout_ns;
4803         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4804                         "due to long timeout %llu ms\n", timeout_ns);
4805         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4806 }
4807
4808 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4809                 struct usb_device *udev,
4810                 struct usb_endpoint_descriptor *desc,
4811                 enum usb3_link_state state,
4812                 u16 *timeout)
4813 {
4814         if (state == USB3_LPM_U1)
4815                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4816         else if (state == USB3_LPM_U2)
4817                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4818
4819         return USB3_LPM_DISABLED;
4820 }
4821
4822 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4823                 struct usb_device *udev,
4824                 struct usb_endpoint_descriptor *desc,
4825                 enum usb3_link_state state,
4826                 u16 *timeout)
4827 {
4828         u16 alt_timeout;
4829
4830         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4831                 desc, state, timeout);
4832
4833         /* If we found we can't enable hub-initiated LPM, and
4834          * the U1 or U2 exit latency was too high to allow
4835          * device-initiated LPM as well, then we will disable LPM
4836          * for this device, so stop searching any further.
4837          */
4838         if (alt_timeout == USB3_LPM_DISABLED) {
4839                 *timeout = alt_timeout;
4840                 return -E2BIG;
4841         }
4842         if (alt_timeout > *timeout)
4843                 *timeout = alt_timeout;
4844         return 0;
4845 }
4846
4847 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4848                 struct usb_device *udev,
4849                 struct usb_host_interface *alt,
4850                 enum usb3_link_state state,
4851                 u16 *timeout)
4852 {
4853         int j;
4854
4855         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4856                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4857                                         &alt->endpoint[j].desc, state, timeout))
4858                         return -E2BIG;
4859         }
4860         return 0;
4861 }
4862
4863 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4864                 enum usb3_link_state state)
4865 {
4866         struct usb_device *parent;
4867         unsigned int num_hubs;
4868
4869         if (state == USB3_LPM_U2)
4870                 return 0;
4871
4872         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4873         for (parent = udev->parent, num_hubs = 0; parent->parent;
4874                         parent = parent->parent)
4875                 num_hubs++;
4876
4877         if (num_hubs < 2)
4878                 return 0;
4879
4880         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4881                         " below second-tier hub.\n");
4882         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4883                         "to decrease power consumption.\n");
4884         return -E2BIG;
4885 }
4886
4887 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4888                 struct usb_device *udev,
4889                 enum usb3_link_state state)
4890 {
4891         if (xhci->quirks & XHCI_INTEL_HOST)
4892                 return xhci_check_intel_tier_policy(udev, state);
4893         else
4894                 return 0;
4895 }
4896
4897 /* Returns the U1 or U2 timeout that should be enabled.
4898  * If the tier check or timeout setting functions return with a non-zero exit
4899  * code, that means the timeout value has been finalized and we shouldn't look
4900  * at any more endpoints.
4901  */
4902 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4903                         struct usb_device *udev, enum usb3_link_state state)
4904 {
4905         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4906         struct usb_host_config *config;
4907         char *state_name;
4908         int i;
4909         u16 timeout = USB3_LPM_DISABLED;
4910
4911         if (state == USB3_LPM_U1)
4912                 state_name = "U1";
4913         else if (state == USB3_LPM_U2)
4914                 state_name = "U2";
4915         else {
4916                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4917                                 state);
4918                 return timeout;
4919         }
4920
4921         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4922                 return timeout;
4923
4924         /* Gather some information about the currently installed configuration
4925          * and alternate interface settings.
4926          */
4927         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4928                         state, &timeout))
4929                 return timeout;
4930
4931         config = udev->actconfig;
4932         if (!config)
4933                 return timeout;
4934
4935         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4936                 struct usb_driver *driver;
4937                 struct usb_interface *intf = config->interface[i];
4938
4939                 if (!intf)
4940                         continue;
4941
4942                 /* Check if any currently bound drivers want hub-initiated LPM
4943                  * disabled.
4944                  */
4945                 if (intf->dev.driver) {
4946                         driver = to_usb_driver(intf->dev.driver);
4947                         if (driver && driver->disable_hub_initiated_lpm) {
4948                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4949                                         state_name, driver->name);
4950                                 timeout = xhci_get_timeout_no_hub_lpm(udev,
4951                                                                       state);
4952                                 if (timeout == USB3_LPM_DISABLED)
4953                                         return timeout;
4954                         }
4955                 }
4956
4957                 /* Not sure how this could happen... */
4958                 if (!intf->cur_altsetting)
4959                         continue;
4960
4961                 if (xhci_update_timeout_for_interface(xhci, udev,
4962                                         intf->cur_altsetting,
4963                                         state, &timeout))
4964                         return timeout;
4965         }
4966         return timeout;
4967 }
4968
4969 static int calculate_max_exit_latency(struct usb_device *udev,
4970                 enum usb3_link_state state_changed,
4971                 u16 hub_encoded_timeout)
4972 {
4973         unsigned long long u1_mel_us = 0;
4974         unsigned long long u2_mel_us = 0;
4975         unsigned long long mel_us = 0;
4976         bool disabling_u1;
4977         bool disabling_u2;
4978         bool enabling_u1;
4979         bool enabling_u2;
4980
4981         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4982                         hub_encoded_timeout == USB3_LPM_DISABLED);
4983         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4984                         hub_encoded_timeout == USB3_LPM_DISABLED);
4985
4986         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4987                         hub_encoded_timeout != USB3_LPM_DISABLED);
4988         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4989                         hub_encoded_timeout != USB3_LPM_DISABLED);
4990
4991         /* If U1 was already enabled and we're not disabling it,
4992          * or we're going to enable U1, account for the U1 max exit latency.
4993          */
4994         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4995                         enabling_u1)
4996                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4997         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4998                         enabling_u2)
4999                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5000
5001         mel_us = max(u1_mel_us, u2_mel_us);
5002
5003         /* xHCI host controller max exit latency field is only 16 bits wide. */
5004         if (mel_us > MAX_EXIT) {
5005                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5006                                 "is too big.\n", mel_us);
5007                 return -E2BIG;
5008         }
5009         return mel_us;
5010 }
5011
5012 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5013 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5014                         struct usb_device *udev, enum usb3_link_state state)
5015 {
5016         struct xhci_hcd *xhci;
5017         u16 hub_encoded_timeout;
5018         int mel;
5019         int ret;
5020
5021         xhci = hcd_to_xhci(hcd);
5022         /* The LPM timeout values are pretty host-controller specific, so don't
5023          * enable hub-initiated timeouts unless the vendor has provided
5024          * information about their timeout algorithm.
5025          */
5026         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5027                         !xhci->devs[udev->slot_id])
5028                 return USB3_LPM_DISABLED;
5029
5030         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5031         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5032         if (mel < 0) {
5033                 /* Max Exit Latency is too big, disable LPM. */
5034                 hub_encoded_timeout = USB3_LPM_DISABLED;
5035                 mel = 0;
5036         }
5037
5038         ret = xhci_change_max_exit_latency(xhci, udev, mel);
5039         if (ret)
5040                 return ret;
5041         return hub_encoded_timeout;
5042 }
5043
5044 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5045                         struct usb_device *udev, enum usb3_link_state state)
5046 {
5047         struct xhci_hcd *xhci;
5048         u16 mel;
5049
5050         xhci = hcd_to_xhci(hcd);
5051         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5052                         !xhci->devs[udev->slot_id])
5053                 return 0;
5054
5055         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5056         return xhci_change_max_exit_latency(xhci, udev, mel);
5057 }
5058 #else /* CONFIG_PM */
5059
5060 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5061                                 struct usb_device *udev, int enable)
5062 {
5063         return 0;
5064 }
5065
5066 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5067 {
5068         return 0;
5069 }
5070
5071 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5072                         struct usb_device *udev, enum usb3_link_state state)
5073 {
5074         return USB3_LPM_DISABLED;
5075 }
5076
5077 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5078                         struct usb_device *udev, enum usb3_link_state state)
5079 {
5080         return 0;
5081 }
5082 #endif  /* CONFIG_PM */
5083
5084 /*-------------------------------------------------------------------------*/
5085
5086 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5087  * internal data structures for the device.
5088  */
5089 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5090                         struct usb_tt *tt, gfp_t mem_flags)
5091 {
5092         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5093         struct xhci_virt_device *vdev;
5094         struct xhci_command *config_cmd;
5095         struct xhci_input_control_ctx *ctrl_ctx;
5096         struct xhci_slot_ctx *slot_ctx;
5097         unsigned long flags;
5098         unsigned think_time;
5099         int ret;
5100
5101         /* Ignore root hubs */
5102         if (!hdev->parent)
5103                 return 0;
5104
5105         vdev = xhci->devs[hdev->slot_id];
5106         if (!vdev) {
5107                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5108                 return -EINVAL;
5109         }
5110
5111         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5112         if (!config_cmd)
5113                 return -ENOMEM;
5114
5115         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5116         if (!ctrl_ctx) {
5117                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5118                                 __func__);
5119                 xhci_free_command(xhci, config_cmd);
5120                 return -ENOMEM;
5121         }
5122
5123         spin_lock_irqsave(&xhci->lock, flags);
5124         if (hdev->speed == USB_SPEED_HIGH &&
5125                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5126                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5127                 xhci_free_command(xhci, config_cmd);
5128                 spin_unlock_irqrestore(&xhci->lock, flags);
5129                 return -ENOMEM;
5130         }
5131
5132         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5133         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5134         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5135         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5136         /*
5137          * refer to section 6.2.2: MTT should be 0 for full speed hub,
5138          * but it may be already set to 1 when setup an xHCI virtual
5139          * device, so clear it anyway.
5140          */
5141         if (tt->multi)
5142                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5143         else if (hdev->speed == USB_SPEED_FULL)
5144                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5145
5146         if (xhci->hci_version > 0x95) {
5147                 xhci_dbg(xhci, "xHCI version %x needs hub "
5148                                 "TT think time and number of ports\n",
5149                                 (unsigned int) xhci->hci_version);
5150                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5151                 /* Set TT think time - convert from ns to FS bit times.
5152                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
5153                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
5154                  *
5155                  * xHCI 1.0: this field shall be 0 if the device is not a
5156                  * High-spped hub.
5157                  */
5158                 think_time = tt->think_time;
5159                 if (think_time != 0)
5160                         think_time = (think_time / 666) - 1;
5161                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5162                         slot_ctx->tt_info |=
5163                                 cpu_to_le32(TT_THINK_TIME(think_time));
5164         } else {
5165                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5166                                 "TT think time or number of ports\n",
5167                                 (unsigned int) xhci->hci_version);
5168         }
5169         slot_ctx->dev_state = 0;
5170         spin_unlock_irqrestore(&xhci->lock, flags);
5171
5172         xhci_dbg(xhci, "Set up %s for hub device.\n",
5173                         (xhci->hci_version > 0x95) ?
5174                         "configure endpoint" : "evaluate context");
5175
5176         /* Issue and wait for the configure endpoint or
5177          * evaluate context command.
5178          */
5179         if (xhci->hci_version > 0x95)
5180                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5181                                 false, false);
5182         else
5183                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5184                                 true, false);
5185
5186         xhci_free_command(xhci, config_cmd);
5187         return ret;
5188 }
5189
5190 static int xhci_get_frame(struct usb_hcd *hcd)
5191 {
5192         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5193         /* EHCI mods by the periodic size.  Why? */
5194         return readl(&xhci->run_regs->microframe_index) >> 3;
5195 }
5196
5197 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5198 {
5199         struct xhci_hcd         *xhci;
5200         /*
5201          * TODO: Check with DWC3 clients for sysdev according to
5202          * quirks
5203          */
5204         struct device           *dev = hcd->self.sysdev;
5205         unsigned int            minor_rev;
5206         int                     retval;
5207
5208         /* Accept arbitrarily long scatter-gather lists */
5209         hcd->self.sg_tablesize = ~0;
5210
5211         /* support to build packet from discontinuous buffers */
5212         hcd->self.no_sg_constraint = 1;
5213
5214         /* XHCI controllers don't stop the ep queue on short packets :| */
5215         hcd->self.no_stop_on_short = 1;
5216
5217         xhci = hcd_to_xhci(hcd);
5218
5219         if (usb_hcd_is_primary_hcd(hcd)) {
5220                 xhci->main_hcd = hcd;
5221                 xhci->usb2_rhub.hcd = hcd;
5222                 /* Mark the first roothub as being USB 2.0.
5223                  * The xHCI driver will register the USB 3.0 roothub.
5224                  */
5225                 hcd->speed = HCD_USB2;
5226                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5227                 /*
5228                  * USB 2.0 roothub under xHCI has an integrated TT,
5229                  * (rate matching hub) as opposed to having an OHCI/UHCI
5230                  * companion controller.
5231                  */
5232                 hcd->has_tt = 1;
5233         } else {
5234                 /*
5235                  * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5236                  * should return 0x31 for sbrn, or that the minor revision
5237                  * is a two digit BCD containig minor and sub-minor numbers.
5238                  * This was later clarified in xHCI 1.2.
5239                  *
5240                  * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5241                  * minor revision set to 0x1 instead of 0x10.
5242                  */
5243                 if (xhci->usb3_rhub.min_rev == 0x1)
5244                         minor_rev = 1;
5245                 else
5246                         minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5247
5248                 switch (minor_rev) {
5249                 case 2:
5250                         hcd->speed = HCD_USB32;
5251                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5252                         hcd->self.root_hub->rx_lanes = 2;
5253                         hcd->self.root_hub->tx_lanes = 2;
5254                         hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5255                         break;
5256                 case 1:
5257                         hcd->speed = HCD_USB31;
5258                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5259                         hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5260                         break;
5261                 }
5262                 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5263                           minor_rev,
5264                           minor_rev ? "Enhanced " : "");
5265
5266                 xhci->usb3_rhub.hcd = hcd;
5267                 /* xHCI private pointer was set in xhci_pci_probe for the second
5268                  * registered roothub.
5269                  */
5270                 return 0;
5271         }
5272
5273         mutex_init(&xhci->mutex);
5274         xhci->cap_regs = hcd->regs;
5275         xhci->op_regs = hcd->regs +
5276                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5277         xhci->run_regs = hcd->regs +
5278                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5279         /* Cache read-only capability registers */
5280         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5281         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5282         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5283         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5284         xhci->hci_version = HC_VERSION(xhci->hcc_params);
5285         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5286         if (xhci->hci_version > 0x100)
5287                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5288
5289         xhci->quirks |= quirks;
5290
5291         get_quirks(dev, xhci);
5292
5293         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5294          * success event after a short transfer. This quirk will ignore such
5295          * spurious event.
5296          */
5297         if (xhci->hci_version > 0x96)
5298                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5299
5300         /* Make sure the HC is halted. */
5301         retval = xhci_halt(xhci);
5302         if (retval)
5303                 return retval;
5304
5305         xhci_zero_64b_regs(xhci);
5306
5307         xhci_dbg(xhci, "Resetting HCD\n");
5308         /* Reset the internal HC memory state and registers. */
5309         retval = xhci_reset(xhci);
5310         if (retval)
5311                 return retval;
5312         xhci_dbg(xhci, "Reset complete\n");
5313
5314         /*
5315          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5316          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5317          * address memory pointers actually. So, this driver clears the AC64
5318          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5319          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5320          */
5321         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5322                 xhci->hcc_params &= ~BIT(0);
5323
5324         /* Set dma_mask and coherent_dma_mask to 64-bits,
5325          * if xHC supports 64-bit addressing */
5326         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5327                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5328                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5329                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5330         } else {
5331                 /*
5332                  * This is to avoid error in cases where a 32-bit USB
5333                  * controller is used on a 64-bit capable system.
5334                  */
5335                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5336                 if (retval)
5337                         return retval;
5338                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5339                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5340         }
5341
5342         xhci_dbg(xhci, "Calling HCD init\n");
5343         /* Initialize HCD and host controller data structures. */
5344         retval = xhci_init(hcd);
5345         if (retval)
5346                 return retval;
5347         xhci_dbg(xhci, "Called HCD init\n");
5348
5349         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5350                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5351
5352         return 0;
5353 }
5354 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5355
5356 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5357                 struct usb_host_endpoint *ep)
5358 {
5359         struct xhci_hcd *xhci;
5360         struct usb_device *udev;
5361         unsigned int slot_id;
5362         unsigned int ep_index;
5363         unsigned long flags;
5364
5365         xhci = hcd_to_xhci(hcd);
5366
5367         spin_lock_irqsave(&xhci->lock, flags);
5368         udev = (struct usb_device *)ep->hcpriv;
5369         slot_id = udev->slot_id;
5370         ep_index = xhci_get_endpoint_index(&ep->desc);
5371
5372         xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5373         xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5374         spin_unlock_irqrestore(&xhci->lock, flags);
5375 }
5376
5377 static const struct hc_driver xhci_hc_driver = {
5378         .description =          "xhci-hcd",
5379         .product_desc =         "xHCI Host Controller",
5380         .hcd_priv_size =        sizeof(struct xhci_hcd),
5381
5382         /*
5383          * generic hardware linkage
5384          */
5385         .irq =                  xhci_irq,
5386         .flags =                HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5387                                 HCD_BH,
5388
5389         /*
5390          * basic lifecycle operations
5391          */
5392         .reset =                NULL, /* set in xhci_init_driver() */
5393         .start =                xhci_run,
5394         .stop =                 xhci_stop,
5395         .shutdown =             xhci_shutdown,
5396
5397         /*
5398          * managing i/o requests and associated device resources
5399          */
5400         .map_urb_for_dma =      xhci_map_urb_for_dma,
5401         .unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5402         .urb_enqueue =          xhci_urb_enqueue,
5403         .urb_dequeue =          xhci_urb_dequeue,
5404         .alloc_dev =            xhci_alloc_dev,
5405         .free_dev =             xhci_free_dev,
5406         .alloc_streams =        xhci_alloc_streams,
5407         .free_streams =         xhci_free_streams,
5408         .add_endpoint =         xhci_add_endpoint,
5409         .drop_endpoint =        xhci_drop_endpoint,
5410         .endpoint_disable =     xhci_endpoint_disable,
5411         .endpoint_reset =       xhci_endpoint_reset,
5412         .check_bandwidth =      xhci_check_bandwidth,
5413         .reset_bandwidth =      xhci_reset_bandwidth,
5414         .address_device =       xhci_address_device,
5415         .enable_device =        xhci_enable_device,
5416         .update_hub_device =    xhci_update_hub_device,
5417         .reset_device =         xhci_discover_or_reset_device,
5418
5419         /*
5420          * scheduling support
5421          */
5422         .get_frame_number =     xhci_get_frame,
5423
5424         /*
5425          * root hub support
5426          */
5427         .hub_control =          xhci_hub_control,
5428         .hub_status_data =      xhci_hub_status_data,
5429         .bus_suspend =          xhci_bus_suspend,
5430         .bus_resume =           xhci_bus_resume,
5431         .get_resuming_ports =   xhci_get_resuming_ports,
5432
5433         /*
5434          * call back when device connected and addressed
5435          */
5436         .update_device =        xhci_update_device,
5437         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5438         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5439         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5440         .find_raw_port_number = xhci_find_raw_port_number,
5441         .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5442 };
5443
5444 void xhci_init_driver(struct hc_driver *drv,
5445                       const struct xhci_driver_overrides *over)
5446 {
5447         BUG_ON(!over);
5448
5449         /* Copy the generic table to drv then apply the overrides */
5450         *drv = xhci_hc_driver;
5451
5452         if (over) {
5453                 drv->hcd_priv_size += over->extra_priv_size;
5454                 if (over->reset)
5455                         drv->reset = over->reset;
5456                 if (over->start)
5457                         drv->start = over->start;
5458                 if (over->add_endpoint)
5459                         drv->add_endpoint = over->add_endpoint;
5460                 if (over->drop_endpoint)
5461                         drv->drop_endpoint = over->drop_endpoint;
5462                 if (over->check_bandwidth)
5463                         drv->check_bandwidth = over->check_bandwidth;
5464                 if (over->reset_bandwidth)
5465                         drv->reset_bandwidth = over->reset_bandwidth;
5466         }
5467 }
5468 EXPORT_SYMBOL_GPL(xhci_init_driver);
5469
5470 MODULE_DESCRIPTION(DRIVER_DESC);
5471 MODULE_AUTHOR(DRIVER_AUTHOR);
5472 MODULE_LICENSE("GPL");
5473
5474 static int __init xhci_hcd_init(void)
5475 {
5476         /*
5477          * Check the compiler generated sizes of structures that must be laid
5478          * out in specific ways for hardware access.
5479          */
5480         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5481         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5482         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5483         /* xhci_device_control has eight fields, and also
5484          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5485          */
5486         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5487         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5488         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5489         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5490         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5491         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5492         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5493
5494         if (usb_disabled())
5495                 return -ENODEV;
5496
5497         xhci_debugfs_create_root();
5498         xhci_dbc_init();
5499
5500         return 0;
5501 }
5502
5503 /*
5504  * If an init function is provided, an exit function must also be provided
5505  * to allow module unload.
5506  */
5507 static void __exit xhci_hcd_fini(void)
5508 {
5509         xhci_debugfs_remove_root();
5510         xhci_dbc_exit();
5511 }
5512
5513 module_init(xhci_hcd_init);
5514 module_exit(xhci_hcd_fini);