Merge branch 'pm-cpufreq'
[platform/kernel/linux-starfive.git] / drivers / usb / host / xhci-mem.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 #include <linux/dma-mapping.h>
28
29 #include "xhci.h"
30 #include "xhci-trace.h"
31
32 /*
33  * Allocates a generic ring segment from the ring pool, sets the dma address,
34  * initializes the segment to zero, and sets the private next pointer to NULL.
35  *
36  * Section 4.11.1.1:
37  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
38  */
39 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
40                                                unsigned int cycle_state,
41                                                unsigned int max_packet,
42                                                gfp_t flags)
43 {
44         struct xhci_segment *seg;
45         dma_addr_t      dma;
46         int             i;
47
48         seg = kzalloc(sizeof *seg, flags);
49         if (!seg)
50                 return NULL;
51
52         seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
53         if (!seg->trbs) {
54                 kfree(seg);
55                 return NULL;
56         }
57
58         if (max_packet) {
59                 seg->bounce_buf = kzalloc(max_packet, flags | GFP_DMA);
60                 if (!seg->bounce_buf) {
61                         dma_pool_free(xhci->segment_pool, seg->trbs, dma);
62                         kfree(seg);
63                         return NULL;
64                 }
65         }
66         /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
67         if (cycle_state == 0) {
68                 for (i = 0; i < TRBS_PER_SEGMENT; i++)
69                         seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
70         }
71         seg->dma = dma;
72         seg->next = NULL;
73
74         return seg;
75 }
76
77 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
78 {
79         if (seg->trbs) {
80                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
81                 seg->trbs = NULL;
82         }
83         kfree(seg->bounce_buf);
84         kfree(seg);
85 }
86
87 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
88                                 struct xhci_segment *first)
89 {
90         struct xhci_segment *seg;
91
92         seg = first->next;
93         while (seg != first) {
94                 struct xhci_segment *next = seg->next;
95                 xhci_segment_free(xhci, seg);
96                 seg = next;
97         }
98         xhci_segment_free(xhci, first);
99 }
100
101 /*
102  * Make the prev segment point to the next segment.
103  *
104  * Change the last TRB in the prev segment to be a Link TRB which points to the
105  * DMA address of the next segment.  The caller needs to set any Link TRB
106  * related flags, such as End TRB, Toggle Cycle, and no snoop.
107  */
108 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
109                 struct xhci_segment *next, enum xhci_ring_type type)
110 {
111         u32 val;
112
113         if (!prev || !next)
114                 return;
115         prev->next = next;
116         if (type != TYPE_EVENT) {
117                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
118                         cpu_to_le64(next->dma);
119
120                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
121                 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
122                 val &= ~TRB_TYPE_BITMASK;
123                 val |= TRB_TYPE(TRB_LINK);
124                 /* Always set the chain bit with 0.95 hardware */
125                 /* Set chain bit for isoc rings on AMD 0.96 host */
126                 if (xhci_link_trb_quirk(xhci) ||
127                                 (type == TYPE_ISOC &&
128                                  (xhci->quirks & XHCI_AMD_0x96_HOST)))
129                         val |= TRB_CHAIN;
130                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
131         }
132 }
133
134 /*
135  * Link the ring to the new segments.
136  * Set Toggle Cycle for the new ring if needed.
137  */
138 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
139                 struct xhci_segment *first, struct xhci_segment *last,
140                 unsigned int num_segs)
141 {
142         struct xhci_segment *next;
143
144         if (!ring || !first || !last)
145                 return;
146
147         next = ring->enq_seg->next;
148         xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
149         xhci_link_segments(xhci, last, next, ring->type);
150         ring->num_segs += num_segs;
151         ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
152
153         if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
154                 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
155                         &= ~cpu_to_le32(LINK_TOGGLE);
156                 last->trbs[TRBS_PER_SEGMENT-1].link.control
157                         |= cpu_to_le32(LINK_TOGGLE);
158                 ring->last_seg = last;
159         }
160 }
161
162 /*
163  * We need a radix tree for mapping physical addresses of TRBs to which stream
164  * ID they belong to.  We need to do this because the host controller won't tell
165  * us which stream ring the TRB came from.  We could store the stream ID in an
166  * event data TRB, but that doesn't help us for the cancellation case, since the
167  * endpoint may stop before it reaches that event data TRB.
168  *
169  * The radix tree maps the upper portion of the TRB DMA address to a ring
170  * segment that has the same upper portion of DMA addresses.  For example, say I
171  * have segments of size 1KB, that are always 1KB aligned.  A segment may
172  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
173  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
174  * pass the radix tree a key to get the right stream ID:
175  *
176  *      0x10c90fff >> 10 = 0x43243
177  *      0x10c912c0 >> 10 = 0x43244
178  *      0x10c91400 >> 10 = 0x43245
179  *
180  * Obviously, only those TRBs with DMA addresses that are within the segment
181  * will make the radix tree return the stream ID for that ring.
182  *
183  * Caveats for the radix tree:
184  *
185  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
186  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
187  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
188  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
189  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
190  * extended systems (where the DMA address can be bigger than 32-bits),
191  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
192  */
193 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
194                 struct xhci_ring *ring,
195                 struct xhci_segment *seg,
196                 gfp_t mem_flags)
197 {
198         unsigned long key;
199         int ret;
200
201         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
202         /* Skip any segments that were already added. */
203         if (radix_tree_lookup(trb_address_map, key))
204                 return 0;
205
206         ret = radix_tree_maybe_preload(mem_flags);
207         if (ret)
208                 return ret;
209         ret = radix_tree_insert(trb_address_map,
210                         key, ring);
211         radix_tree_preload_end();
212         return ret;
213 }
214
215 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
216                 struct xhci_segment *seg)
217 {
218         unsigned long key;
219
220         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
221         if (radix_tree_lookup(trb_address_map, key))
222                 radix_tree_delete(trb_address_map, key);
223 }
224
225 static int xhci_update_stream_segment_mapping(
226                 struct radix_tree_root *trb_address_map,
227                 struct xhci_ring *ring,
228                 struct xhci_segment *first_seg,
229                 struct xhci_segment *last_seg,
230                 gfp_t mem_flags)
231 {
232         struct xhci_segment *seg;
233         struct xhci_segment *failed_seg;
234         int ret;
235
236         if (WARN_ON_ONCE(trb_address_map == NULL))
237                 return 0;
238
239         seg = first_seg;
240         do {
241                 ret = xhci_insert_segment_mapping(trb_address_map,
242                                 ring, seg, mem_flags);
243                 if (ret)
244                         goto remove_streams;
245                 if (seg == last_seg)
246                         return 0;
247                 seg = seg->next;
248         } while (seg != first_seg);
249
250         return 0;
251
252 remove_streams:
253         failed_seg = seg;
254         seg = first_seg;
255         do {
256                 xhci_remove_segment_mapping(trb_address_map, seg);
257                 if (seg == failed_seg)
258                         return ret;
259                 seg = seg->next;
260         } while (seg != first_seg);
261
262         return ret;
263 }
264
265 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
266 {
267         struct xhci_segment *seg;
268
269         if (WARN_ON_ONCE(ring->trb_address_map == NULL))
270                 return;
271
272         seg = ring->first_seg;
273         do {
274                 xhci_remove_segment_mapping(ring->trb_address_map, seg);
275                 seg = seg->next;
276         } while (seg != ring->first_seg);
277 }
278
279 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
280 {
281         return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
282                         ring->first_seg, ring->last_seg, mem_flags);
283 }
284
285 /* XXX: Do we need the hcd structure in all these functions? */
286 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
287 {
288         if (!ring)
289                 return;
290
291         if (ring->first_seg) {
292                 if (ring->type == TYPE_STREAM)
293                         xhci_remove_stream_mapping(ring);
294                 xhci_free_segments_for_ring(xhci, ring->first_seg);
295         }
296
297         kfree(ring);
298 }
299
300 static void xhci_initialize_ring_info(struct xhci_ring *ring,
301                                         unsigned int cycle_state)
302 {
303         /* The ring is empty, so the enqueue pointer == dequeue pointer */
304         ring->enqueue = ring->first_seg->trbs;
305         ring->enq_seg = ring->first_seg;
306         ring->dequeue = ring->enqueue;
307         ring->deq_seg = ring->first_seg;
308         /* The ring is initialized to 0. The producer must write 1 to the cycle
309          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
310          * compare CCS to the cycle bit to check ownership, so CCS = 1.
311          *
312          * New rings are initialized with cycle state equal to 1; if we are
313          * handling ring expansion, set the cycle state equal to the old ring.
314          */
315         ring->cycle_state = cycle_state;
316         /* Not necessary for new rings, but needed for re-initialized rings */
317         ring->enq_updates = 0;
318         ring->deq_updates = 0;
319
320         /*
321          * Each segment has a link TRB, and leave an extra TRB for SW
322          * accounting purpose
323          */
324         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
325 }
326
327 /* Allocate segments and link them for a ring */
328 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
329                 struct xhci_segment **first, struct xhci_segment **last,
330                 unsigned int num_segs, unsigned int cycle_state,
331                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
332 {
333         struct xhci_segment *prev;
334
335         prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
336         if (!prev)
337                 return -ENOMEM;
338         num_segs--;
339
340         *first = prev;
341         while (num_segs > 0) {
342                 struct xhci_segment     *next;
343
344                 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
345                 if (!next) {
346                         prev = *first;
347                         while (prev) {
348                                 next = prev->next;
349                                 xhci_segment_free(xhci, prev);
350                                 prev = next;
351                         }
352                         return -ENOMEM;
353                 }
354                 xhci_link_segments(xhci, prev, next, type);
355
356                 prev = next;
357                 num_segs--;
358         }
359         xhci_link_segments(xhci, prev, *first, type);
360         *last = prev;
361
362         return 0;
363 }
364
365 /**
366  * Create a new ring with zero or more segments.
367  *
368  * Link each segment together into a ring.
369  * Set the end flag and the cycle toggle bit on the last segment.
370  * See section 4.9.1 and figures 15 and 16.
371  */
372 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
373                 unsigned int num_segs, unsigned int cycle_state,
374                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
375 {
376         struct xhci_ring        *ring;
377         int ret;
378
379         ring = kzalloc(sizeof *(ring), flags);
380         if (!ring)
381                 return NULL;
382
383         ring->num_segs = num_segs;
384         ring->bounce_buf_len = max_packet;
385         INIT_LIST_HEAD(&ring->td_list);
386         ring->type = type;
387         if (num_segs == 0)
388                 return ring;
389
390         ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
391                         &ring->last_seg, num_segs, cycle_state, type,
392                         max_packet, flags);
393         if (ret)
394                 goto fail;
395
396         /* Only event ring does not use link TRB */
397         if (type != TYPE_EVENT) {
398                 /* See section 4.9.2.1 and 6.4.4.1 */
399                 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
400                         cpu_to_le32(LINK_TOGGLE);
401         }
402         xhci_initialize_ring_info(ring, cycle_state);
403         return ring;
404
405 fail:
406         kfree(ring);
407         return NULL;
408 }
409
410 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
411                 struct xhci_virt_device *virt_dev,
412                 unsigned int ep_index)
413 {
414         int rings_cached;
415
416         rings_cached = virt_dev->num_rings_cached;
417         if (rings_cached < XHCI_MAX_RINGS_CACHED) {
418                 virt_dev->ring_cache[rings_cached] =
419                         virt_dev->eps[ep_index].ring;
420                 virt_dev->num_rings_cached++;
421                 xhci_dbg(xhci, "Cached old ring, "
422                                 "%d ring%s cached\n",
423                                 virt_dev->num_rings_cached,
424                                 (virt_dev->num_rings_cached > 1) ? "s" : "");
425         } else {
426                 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
427                 xhci_dbg(xhci, "Ring cache full (%d rings), "
428                                 "freeing ring\n",
429                                 virt_dev->num_rings_cached);
430         }
431         virt_dev->eps[ep_index].ring = NULL;
432 }
433
434 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
435  * pointers to the beginning of the ring.
436  */
437 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
438                         struct xhci_ring *ring, unsigned int cycle_state,
439                         enum xhci_ring_type type)
440 {
441         struct xhci_segment     *seg = ring->first_seg;
442         int i;
443
444         do {
445                 memset(seg->trbs, 0,
446                                 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
447                 if (cycle_state == 0) {
448                         for (i = 0; i < TRBS_PER_SEGMENT; i++)
449                                 seg->trbs[i].link.control |=
450                                         cpu_to_le32(TRB_CYCLE);
451                 }
452                 /* All endpoint rings have link TRBs */
453                 xhci_link_segments(xhci, seg, seg->next, type);
454                 seg = seg->next;
455         } while (seg != ring->first_seg);
456         ring->type = type;
457         xhci_initialize_ring_info(ring, cycle_state);
458         /* td list should be empty since all URBs have been cancelled,
459          * but just in case...
460          */
461         INIT_LIST_HEAD(&ring->td_list);
462 }
463
464 /*
465  * Expand an existing ring.
466  * Look for a cached ring or allocate a new ring which has same segment numbers
467  * and link the two rings.
468  */
469 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
470                                 unsigned int num_trbs, gfp_t flags)
471 {
472         struct xhci_segment     *first;
473         struct xhci_segment     *last;
474         unsigned int            num_segs;
475         unsigned int            num_segs_needed;
476         int                     ret;
477
478         num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
479                                 (TRBS_PER_SEGMENT - 1);
480
481         /* Allocate number of segments we needed, or double the ring size */
482         num_segs = ring->num_segs > num_segs_needed ?
483                         ring->num_segs : num_segs_needed;
484
485         ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
486                         num_segs, ring->cycle_state, ring->type,
487                         ring->bounce_buf_len, flags);
488         if (ret)
489                 return -ENOMEM;
490
491         if (ring->type == TYPE_STREAM)
492                 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
493                                                 ring, first, last, flags);
494         if (ret) {
495                 struct xhci_segment *next;
496                 do {
497                         next = first->next;
498                         xhci_segment_free(xhci, first);
499                         if (first == last)
500                                 break;
501                         first = next;
502                 } while (true);
503                 return ret;
504         }
505
506         xhci_link_rings(xhci, ring, first, last, num_segs);
507         xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
508                         "ring expansion succeed, now has %d segments",
509                         ring->num_segs);
510
511         return 0;
512 }
513
514 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
515
516 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
517                                                     int type, gfp_t flags)
518 {
519         struct xhci_container_ctx *ctx;
520
521         if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
522                 return NULL;
523
524         ctx = kzalloc(sizeof(*ctx), flags);
525         if (!ctx)
526                 return NULL;
527
528         ctx->type = type;
529         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
530         if (type == XHCI_CTX_TYPE_INPUT)
531                 ctx->size += CTX_SIZE(xhci->hcc_params);
532
533         ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
534         if (!ctx->bytes) {
535                 kfree(ctx);
536                 return NULL;
537         }
538         return ctx;
539 }
540
541 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
542                              struct xhci_container_ctx *ctx)
543 {
544         if (!ctx)
545                 return;
546         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
547         kfree(ctx);
548 }
549
550 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
551                                               struct xhci_container_ctx *ctx)
552 {
553         if (ctx->type != XHCI_CTX_TYPE_INPUT)
554                 return NULL;
555
556         return (struct xhci_input_control_ctx *)ctx->bytes;
557 }
558
559 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
560                                         struct xhci_container_ctx *ctx)
561 {
562         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
563                 return (struct xhci_slot_ctx *)ctx->bytes;
564
565         return (struct xhci_slot_ctx *)
566                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
567 }
568
569 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
570                                     struct xhci_container_ctx *ctx,
571                                     unsigned int ep_index)
572 {
573         /* increment ep index by offset of start of ep ctx array */
574         ep_index++;
575         if (ctx->type == XHCI_CTX_TYPE_INPUT)
576                 ep_index++;
577
578         return (struct xhci_ep_ctx *)
579                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
580 }
581
582
583 /***************** Streams structures manipulation *************************/
584
585 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
586                 unsigned int num_stream_ctxs,
587                 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
588 {
589         struct device *dev = xhci_to_hcd(xhci)->self.controller;
590         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
591
592         if (size > MEDIUM_STREAM_ARRAY_SIZE)
593                 dma_free_coherent(dev, size,
594                                 stream_ctx, dma);
595         else if (size <= SMALL_STREAM_ARRAY_SIZE)
596                 return dma_pool_free(xhci->small_streams_pool,
597                                 stream_ctx, dma);
598         else
599                 return dma_pool_free(xhci->medium_streams_pool,
600                                 stream_ctx, dma);
601 }
602
603 /*
604  * The stream context array for each endpoint with bulk streams enabled can
605  * vary in size, based on:
606  *  - how many streams the endpoint supports,
607  *  - the maximum primary stream array size the host controller supports,
608  *  - and how many streams the device driver asks for.
609  *
610  * The stream context array must be a power of 2, and can be as small as
611  * 64 bytes or as large as 1MB.
612  */
613 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
614                 unsigned int num_stream_ctxs, dma_addr_t *dma,
615                 gfp_t mem_flags)
616 {
617         struct device *dev = xhci_to_hcd(xhci)->self.controller;
618         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
619
620         if (size > MEDIUM_STREAM_ARRAY_SIZE)
621                 return dma_alloc_coherent(dev, size,
622                                 dma, mem_flags);
623         else if (size <= SMALL_STREAM_ARRAY_SIZE)
624                 return dma_pool_alloc(xhci->small_streams_pool,
625                                 mem_flags, dma);
626         else
627                 return dma_pool_alloc(xhci->medium_streams_pool,
628                                 mem_flags, dma);
629 }
630
631 struct xhci_ring *xhci_dma_to_transfer_ring(
632                 struct xhci_virt_ep *ep,
633                 u64 address)
634 {
635         if (ep->ep_state & EP_HAS_STREAMS)
636                 return radix_tree_lookup(&ep->stream_info->trb_address_map,
637                                 address >> TRB_SEGMENT_SHIFT);
638         return ep->ring;
639 }
640
641 struct xhci_ring *xhci_stream_id_to_ring(
642                 struct xhci_virt_device *dev,
643                 unsigned int ep_index,
644                 unsigned int stream_id)
645 {
646         struct xhci_virt_ep *ep = &dev->eps[ep_index];
647
648         if (stream_id == 0)
649                 return ep->ring;
650         if (!ep->stream_info)
651                 return NULL;
652
653         if (stream_id > ep->stream_info->num_streams)
654                 return NULL;
655         return ep->stream_info->stream_rings[stream_id];
656 }
657
658 /*
659  * Change an endpoint's internal structure so it supports stream IDs.  The
660  * number of requested streams includes stream 0, which cannot be used by device
661  * drivers.
662  *
663  * The number of stream contexts in the stream context array may be bigger than
664  * the number of streams the driver wants to use.  This is because the number of
665  * stream context array entries must be a power of two.
666  */
667 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
668                 unsigned int num_stream_ctxs,
669                 unsigned int num_streams,
670                 unsigned int max_packet, gfp_t mem_flags)
671 {
672         struct xhci_stream_info *stream_info;
673         u32 cur_stream;
674         struct xhci_ring *cur_ring;
675         u64 addr;
676         int ret;
677
678         xhci_dbg(xhci, "Allocating %u streams and %u "
679                         "stream context array entries.\n",
680                         num_streams, num_stream_ctxs);
681         if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
682                 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
683                 return NULL;
684         }
685         xhci->cmd_ring_reserved_trbs++;
686
687         stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
688         if (!stream_info)
689                 goto cleanup_trbs;
690
691         stream_info->num_streams = num_streams;
692         stream_info->num_stream_ctxs = num_stream_ctxs;
693
694         /* Initialize the array of virtual pointers to stream rings. */
695         stream_info->stream_rings = kzalloc(
696                         sizeof(struct xhci_ring *)*num_streams,
697                         mem_flags);
698         if (!stream_info->stream_rings)
699                 goto cleanup_info;
700
701         /* Initialize the array of DMA addresses for stream rings for the HW. */
702         stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
703                         num_stream_ctxs, &stream_info->ctx_array_dma,
704                         mem_flags);
705         if (!stream_info->stream_ctx_array)
706                 goto cleanup_ctx;
707         memset(stream_info->stream_ctx_array, 0,
708                         sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
709
710         /* Allocate everything needed to free the stream rings later */
711         stream_info->free_streams_command =
712                 xhci_alloc_command(xhci, true, true, mem_flags);
713         if (!stream_info->free_streams_command)
714                 goto cleanup_ctx;
715
716         INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
717
718         /* Allocate rings for all the streams that the driver will use,
719          * and add their segment DMA addresses to the radix tree.
720          * Stream 0 is reserved.
721          */
722
723         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
724                 stream_info->stream_rings[cur_stream] =
725                         xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
726                                         mem_flags);
727                 cur_ring = stream_info->stream_rings[cur_stream];
728                 if (!cur_ring)
729                         goto cleanup_rings;
730                 cur_ring->stream_id = cur_stream;
731                 cur_ring->trb_address_map = &stream_info->trb_address_map;
732                 /* Set deq ptr, cycle bit, and stream context type */
733                 addr = cur_ring->first_seg->dma |
734                         SCT_FOR_CTX(SCT_PRI_TR) |
735                         cur_ring->cycle_state;
736                 stream_info->stream_ctx_array[cur_stream].stream_ring =
737                         cpu_to_le64(addr);
738                 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
739                                 cur_stream, (unsigned long long) addr);
740
741                 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
742                 if (ret) {
743                         xhci_ring_free(xhci, cur_ring);
744                         stream_info->stream_rings[cur_stream] = NULL;
745                         goto cleanup_rings;
746                 }
747         }
748         /* Leave the other unused stream ring pointers in the stream context
749          * array initialized to zero.  This will cause the xHC to give us an
750          * error if the device asks for a stream ID we don't have setup (if it
751          * was any other way, the host controller would assume the ring is
752          * "empty" and wait forever for data to be queued to that stream ID).
753          */
754
755         return stream_info;
756
757 cleanup_rings:
758         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
759                 cur_ring = stream_info->stream_rings[cur_stream];
760                 if (cur_ring) {
761                         xhci_ring_free(xhci, cur_ring);
762                         stream_info->stream_rings[cur_stream] = NULL;
763                 }
764         }
765         xhci_free_command(xhci, stream_info->free_streams_command);
766 cleanup_ctx:
767         kfree(stream_info->stream_rings);
768 cleanup_info:
769         kfree(stream_info);
770 cleanup_trbs:
771         xhci->cmd_ring_reserved_trbs--;
772         return NULL;
773 }
774 /*
775  * Sets the MaxPStreams field and the Linear Stream Array field.
776  * Sets the dequeue pointer to the stream context array.
777  */
778 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
779                 struct xhci_ep_ctx *ep_ctx,
780                 struct xhci_stream_info *stream_info)
781 {
782         u32 max_primary_streams;
783         /* MaxPStreams is the number of stream context array entries, not the
784          * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
785          * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
786          */
787         max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
788         xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
789                         "Setting number of stream ctx array entries to %u",
790                         1 << (max_primary_streams + 1));
791         ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
792         ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
793                                        | EP_HAS_LSA);
794         ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
795 }
796
797 /*
798  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
799  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
800  * not at the beginning of the ring).
801  */
802 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
803                 struct xhci_virt_ep *ep)
804 {
805         dma_addr_t addr;
806         ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
807         addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
808         ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
809 }
810
811 /* Frees all stream contexts associated with the endpoint,
812  *
813  * Caller should fix the endpoint context streams fields.
814  */
815 void xhci_free_stream_info(struct xhci_hcd *xhci,
816                 struct xhci_stream_info *stream_info)
817 {
818         int cur_stream;
819         struct xhci_ring *cur_ring;
820
821         if (!stream_info)
822                 return;
823
824         for (cur_stream = 1; cur_stream < stream_info->num_streams;
825                         cur_stream++) {
826                 cur_ring = stream_info->stream_rings[cur_stream];
827                 if (cur_ring) {
828                         xhci_ring_free(xhci, cur_ring);
829                         stream_info->stream_rings[cur_stream] = NULL;
830                 }
831         }
832         xhci_free_command(xhci, stream_info->free_streams_command);
833         xhci->cmd_ring_reserved_trbs--;
834         if (stream_info->stream_ctx_array)
835                 xhci_free_stream_ctx(xhci,
836                                 stream_info->num_stream_ctxs,
837                                 stream_info->stream_ctx_array,
838                                 stream_info->ctx_array_dma);
839
840         kfree(stream_info->stream_rings);
841         kfree(stream_info);
842 }
843
844
845 /***************** Device context manipulation *************************/
846
847 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
848                 struct xhci_virt_ep *ep)
849 {
850         setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
851                     (unsigned long)ep);
852         ep->xhci = xhci;
853 }
854
855 static void xhci_free_tt_info(struct xhci_hcd *xhci,
856                 struct xhci_virt_device *virt_dev,
857                 int slot_id)
858 {
859         struct list_head *tt_list_head;
860         struct xhci_tt_bw_info *tt_info, *next;
861         bool slot_found = false;
862
863         /* If the device never made it past the Set Address stage,
864          * it may not have the real_port set correctly.
865          */
866         if (virt_dev->real_port == 0 ||
867                         virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
868                 xhci_dbg(xhci, "Bad real port.\n");
869                 return;
870         }
871
872         tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
873         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
874                 /* Multi-TT hubs will have more than one entry */
875                 if (tt_info->slot_id == slot_id) {
876                         slot_found = true;
877                         list_del(&tt_info->tt_list);
878                         kfree(tt_info);
879                 } else if (slot_found) {
880                         break;
881                 }
882         }
883 }
884
885 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
886                 struct xhci_virt_device *virt_dev,
887                 struct usb_device *hdev,
888                 struct usb_tt *tt, gfp_t mem_flags)
889 {
890         struct xhci_tt_bw_info          *tt_info;
891         unsigned int                    num_ports;
892         int                             i, j;
893
894         if (!tt->multi)
895                 num_ports = 1;
896         else
897                 num_ports = hdev->maxchild;
898
899         for (i = 0; i < num_ports; i++, tt_info++) {
900                 struct xhci_interval_bw_table *bw_table;
901
902                 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
903                 if (!tt_info)
904                         goto free_tts;
905                 INIT_LIST_HEAD(&tt_info->tt_list);
906                 list_add(&tt_info->tt_list,
907                                 &xhci->rh_bw[virt_dev->real_port - 1].tts);
908                 tt_info->slot_id = virt_dev->udev->slot_id;
909                 if (tt->multi)
910                         tt_info->ttport = i+1;
911                 bw_table = &tt_info->bw_table;
912                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
913                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
914         }
915         return 0;
916
917 free_tts:
918         xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
919         return -ENOMEM;
920 }
921
922
923 /* All the xhci_tds in the ring's TD list should be freed at this point.
924  * Should be called with xhci->lock held if there is any chance the TT lists
925  * will be manipulated by the configure endpoint, allocate device, or update
926  * hub functions while this function is removing the TT entries from the list.
927  */
928 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
929 {
930         struct xhci_virt_device *dev;
931         int i;
932         int old_active_eps = 0;
933
934         /* Slot ID 0 is reserved */
935         if (slot_id == 0 || !xhci->devs[slot_id])
936                 return;
937
938         dev = xhci->devs[slot_id];
939
940         trace_xhci_free_virt_device(dev);
941
942         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
943         if (!dev)
944                 return;
945
946         if (dev->tt_info)
947                 old_active_eps = dev->tt_info->active_eps;
948
949         for (i = 0; i < 31; i++) {
950                 if (dev->eps[i].ring)
951                         xhci_ring_free(xhci, dev->eps[i].ring);
952                 if (dev->eps[i].stream_info)
953                         xhci_free_stream_info(xhci,
954                                         dev->eps[i].stream_info);
955                 /* Endpoints on the TT/root port lists should have been removed
956                  * when usb_disable_device() was called for the device.
957                  * We can't drop them anyway, because the udev might have gone
958                  * away by this point, and we can't tell what speed it was.
959                  */
960                 if (!list_empty(&dev->eps[i].bw_endpoint_list))
961                         xhci_warn(xhci, "Slot %u endpoint %u "
962                                         "not removed from BW list!\n",
963                                         slot_id, i);
964         }
965         /* If this is a hub, free the TT(s) from the TT list */
966         xhci_free_tt_info(xhci, dev, slot_id);
967         /* If necessary, update the number of active TTs on this root port */
968         xhci_update_tt_active_eps(xhci, dev, old_active_eps);
969
970         if (dev->ring_cache) {
971                 for (i = 0; i < dev->num_rings_cached; i++)
972                         xhci_ring_free(xhci, dev->ring_cache[i]);
973                 kfree(dev->ring_cache);
974         }
975
976         if (dev->in_ctx)
977                 xhci_free_container_ctx(xhci, dev->in_ctx);
978         if (dev->out_ctx)
979                 xhci_free_container_ctx(xhci, dev->out_ctx);
980
981         kfree(xhci->devs[slot_id]);
982         xhci->devs[slot_id] = NULL;
983 }
984
985 /*
986  * Free a virt_device structure.
987  * If the virt_device added a tt_info (a hub) and has children pointing to
988  * that tt_info, then free the child first. Recursive.
989  * We can't rely on udev at this point to find child-parent relationships.
990  */
991 void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
992 {
993         struct xhci_virt_device *vdev;
994         struct list_head *tt_list_head;
995         struct xhci_tt_bw_info *tt_info, *next;
996         int i;
997
998         vdev = xhci->devs[slot_id];
999         if (!vdev)
1000                 return;
1001
1002         tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
1003         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
1004                 /* is this a hub device that added a tt_info to the tts list */
1005                 if (tt_info->slot_id == slot_id) {
1006                         /* are any devices using this tt_info? */
1007                         for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
1008                                 vdev = xhci->devs[i];
1009                                 if (vdev && (vdev->tt_info == tt_info))
1010                                         xhci_free_virt_devices_depth_first(
1011                                                 xhci, i);
1012                         }
1013                 }
1014         }
1015         /* we are now at a leaf device */
1016         xhci_free_virt_device(xhci, slot_id);
1017 }
1018
1019 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
1020                 struct usb_device *udev, gfp_t flags)
1021 {
1022         struct xhci_virt_device *dev;
1023         int i;
1024
1025         /* Slot ID 0 is reserved */
1026         if (slot_id == 0 || xhci->devs[slot_id]) {
1027                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
1028                 return 0;
1029         }
1030
1031         xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
1032         if (!xhci->devs[slot_id])
1033                 return 0;
1034         dev = xhci->devs[slot_id];
1035
1036         /* Allocate the (output) device context that will be used in the HC. */
1037         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
1038         if (!dev->out_ctx)
1039                 goto fail;
1040
1041         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1042                         (unsigned long long)dev->out_ctx->dma);
1043
1044         /* Allocate the (input) device context for address device command */
1045         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1046         if (!dev->in_ctx)
1047                 goto fail;
1048
1049         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1050                         (unsigned long long)dev->in_ctx->dma);
1051
1052         /* Initialize the cancellation list and watchdog timers for each ep */
1053         for (i = 0; i < 31; i++) {
1054                 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1055                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1056                 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1057         }
1058
1059         /* Allocate endpoint 0 ring */
1060         dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1061         if (!dev->eps[0].ring)
1062                 goto fail;
1063
1064         /* Allocate pointers to the ring cache */
1065         dev->ring_cache = kzalloc(
1066                         sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
1067                         flags);
1068         if (!dev->ring_cache)
1069                 goto fail;
1070         dev->num_rings_cached = 0;
1071
1072         dev->udev = udev;
1073
1074         /* Point to output device context in dcbaa. */
1075         xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1076         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1077                  slot_id,
1078                  &xhci->dcbaa->dev_context_ptrs[slot_id],
1079                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1080
1081         trace_xhci_alloc_virt_device(dev);
1082
1083         return 1;
1084 fail:
1085         xhci_free_virt_device(xhci, slot_id);
1086         return 0;
1087 }
1088
1089 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1090                 struct usb_device *udev)
1091 {
1092         struct xhci_virt_device *virt_dev;
1093         struct xhci_ep_ctx      *ep0_ctx;
1094         struct xhci_ring        *ep_ring;
1095
1096         virt_dev = xhci->devs[udev->slot_id];
1097         ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1098         ep_ring = virt_dev->eps[0].ring;
1099         /*
1100          * FIXME we don't keep track of the dequeue pointer very well after a
1101          * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1102          * host to our enqueue pointer.  This should only be called after a
1103          * configured device has reset, so all control transfers should have
1104          * been completed or cancelled before the reset.
1105          */
1106         ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1107                                                         ep_ring->enqueue)
1108                                    | ep_ring->cycle_state);
1109 }
1110
1111 /*
1112  * The xHCI roothub may have ports of differing speeds in any order in the port
1113  * status registers.  xhci->port_array provides an array of the port speed for
1114  * each offset into the port status registers.
1115  *
1116  * The xHCI hardware wants to know the roothub port number that the USB device
1117  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1118  * know is the index of that port under either the USB 2.0 or the USB 3.0
1119  * roothub, but that doesn't give us the real index into the HW port status
1120  * registers. Call xhci_find_raw_port_number() to get real index.
1121  */
1122 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1123                 struct usb_device *udev)
1124 {
1125         struct usb_device *top_dev;
1126         struct usb_hcd *hcd;
1127
1128         if (udev->speed >= USB_SPEED_SUPER)
1129                 hcd = xhci->shared_hcd;
1130         else
1131                 hcd = xhci->main_hcd;
1132
1133         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1134                         top_dev = top_dev->parent)
1135                 /* Found device below root hub */;
1136
1137         return  xhci_find_raw_port_number(hcd, top_dev->portnum);
1138 }
1139
1140 /* Setup an xHCI virtual device for a Set Address command */
1141 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1142 {
1143         struct xhci_virt_device *dev;
1144         struct xhci_ep_ctx      *ep0_ctx;
1145         struct xhci_slot_ctx    *slot_ctx;
1146         u32                     port_num;
1147         u32                     max_packets;
1148         struct usb_device *top_dev;
1149
1150         dev = xhci->devs[udev->slot_id];
1151         /* Slot ID 0 is reserved */
1152         if (udev->slot_id == 0 || !dev) {
1153                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1154                                 udev->slot_id);
1155                 return -EINVAL;
1156         }
1157         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1158         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1159
1160         /* 3) Only the control endpoint is valid - one endpoint context */
1161         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1162         switch (udev->speed) {
1163         case USB_SPEED_SUPER_PLUS:
1164                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1165                 max_packets = MAX_PACKET(512);
1166                 break;
1167         case USB_SPEED_SUPER:
1168                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1169                 max_packets = MAX_PACKET(512);
1170                 break;
1171         case USB_SPEED_HIGH:
1172                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1173                 max_packets = MAX_PACKET(64);
1174                 break;
1175         /* USB core guesses at a 64-byte max packet first for FS devices */
1176         case USB_SPEED_FULL:
1177                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1178                 max_packets = MAX_PACKET(64);
1179                 break;
1180         case USB_SPEED_LOW:
1181                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1182                 max_packets = MAX_PACKET(8);
1183                 break;
1184         case USB_SPEED_WIRELESS:
1185                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1186                 return -EINVAL;
1187                 break;
1188         default:
1189                 /* Speed was set earlier, this shouldn't happen. */
1190                 return -EINVAL;
1191         }
1192         /* Find the root hub port this device is under */
1193         port_num = xhci_find_real_port_number(xhci, udev);
1194         if (!port_num)
1195                 return -EINVAL;
1196         slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1197         /* Set the port number in the virtual_device to the faked port number */
1198         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1199                         top_dev = top_dev->parent)
1200                 /* Found device below root hub */;
1201         dev->fake_port = top_dev->portnum;
1202         dev->real_port = port_num;
1203         xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1204         xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1205
1206         /* Find the right bandwidth table that this device will be a part of.
1207          * If this is a full speed device attached directly to a root port (or a
1208          * decendent of one), it counts as a primary bandwidth domain, not a
1209          * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1210          * will never be created for the HS root hub.
1211          */
1212         if (!udev->tt || !udev->tt->hub->parent) {
1213                 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1214         } else {
1215                 struct xhci_root_port_bw_info *rh_bw;
1216                 struct xhci_tt_bw_info *tt_bw;
1217
1218                 rh_bw = &xhci->rh_bw[port_num - 1];
1219                 /* Find the right TT. */
1220                 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1221                         if (tt_bw->slot_id != udev->tt->hub->slot_id)
1222                                 continue;
1223
1224                         if (!dev->udev->tt->multi ||
1225                                         (udev->tt->multi &&
1226                                          tt_bw->ttport == dev->udev->ttport)) {
1227                                 dev->bw_table = &tt_bw->bw_table;
1228                                 dev->tt_info = tt_bw;
1229                                 break;
1230                         }
1231                 }
1232                 if (!dev->tt_info)
1233                         xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1234         }
1235
1236         /* Is this a LS/FS device under an external HS hub? */
1237         if (udev->tt && udev->tt->hub->parent) {
1238                 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1239                                                 (udev->ttport << 8));
1240                 if (udev->tt->multi)
1241                         slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1242         }
1243         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1244         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1245
1246         /* Step 4 - ring already allocated */
1247         /* Step 5 */
1248         ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1249
1250         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1251         ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1252                                          max_packets);
1253
1254         ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1255                                    dev->eps[0].ring->cycle_state);
1256
1257         trace_xhci_setup_addressable_virt_device(dev);
1258
1259         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1260
1261         return 0;
1262 }
1263
1264 /*
1265  * Convert interval expressed as 2^(bInterval - 1) == interval into
1266  * straight exponent value 2^n == interval.
1267  *
1268  */
1269 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1270                 struct usb_host_endpoint *ep)
1271 {
1272         unsigned int interval;
1273
1274         interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1275         if (interval != ep->desc.bInterval - 1)
1276                 dev_warn(&udev->dev,
1277                          "ep %#x - rounding interval to %d %sframes\n",
1278                          ep->desc.bEndpointAddress,
1279                          1 << interval,
1280                          udev->speed == USB_SPEED_FULL ? "" : "micro");
1281
1282         if (udev->speed == USB_SPEED_FULL) {
1283                 /*
1284                  * Full speed isoc endpoints specify interval in frames,
1285                  * not microframes. We are using microframes everywhere,
1286                  * so adjust accordingly.
1287                  */
1288                 interval += 3;  /* 1 frame = 2^3 uframes */
1289         }
1290
1291         return interval;
1292 }
1293
1294 /*
1295  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1296  * microframes, rounded down to nearest power of 2.
1297  */
1298 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1299                 struct usb_host_endpoint *ep, unsigned int desc_interval,
1300                 unsigned int min_exponent, unsigned int max_exponent)
1301 {
1302         unsigned int interval;
1303
1304         interval = fls(desc_interval) - 1;
1305         interval = clamp_val(interval, min_exponent, max_exponent);
1306         if ((1 << interval) != desc_interval)
1307                 dev_dbg(&udev->dev,
1308                          "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1309                          ep->desc.bEndpointAddress,
1310                          1 << interval,
1311                          desc_interval);
1312
1313         return interval;
1314 }
1315
1316 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1317                 struct usb_host_endpoint *ep)
1318 {
1319         if (ep->desc.bInterval == 0)
1320                 return 0;
1321         return xhci_microframes_to_exponent(udev, ep,
1322                         ep->desc.bInterval, 0, 15);
1323 }
1324
1325
1326 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1327                 struct usb_host_endpoint *ep)
1328 {
1329         return xhci_microframes_to_exponent(udev, ep,
1330                         ep->desc.bInterval * 8, 3, 10);
1331 }
1332
1333 /* Return the polling or NAK interval.
1334  *
1335  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1336  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1337  *
1338  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1339  * is set to 0.
1340  */
1341 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1342                 struct usb_host_endpoint *ep)
1343 {
1344         unsigned int interval = 0;
1345
1346         switch (udev->speed) {
1347         case USB_SPEED_HIGH:
1348                 /* Max NAK rate */
1349                 if (usb_endpoint_xfer_control(&ep->desc) ||
1350                     usb_endpoint_xfer_bulk(&ep->desc)) {
1351                         interval = xhci_parse_microframe_interval(udev, ep);
1352                         break;
1353                 }
1354                 /* Fall through - SS and HS isoc/int have same decoding */
1355
1356         case USB_SPEED_SUPER_PLUS:
1357         case USB_SPEED_SUPER:
1358                 if (usb_endpoint_xfer_int(&ep->desc) ||
1359                     usb_endpoint_xfer_isoc(&ep->desc)) {
1360                         interval = xhci_parse_exponent_interval(udev, ep);
1361                 }
1362                 break;
1363
1364         case USB_SPEED_FULL:
1365                 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1366                         interval = xhci_parse_exponent_interval(udev, ep);
1367                         break;
1368                 }
1369                 /*
1370                  * Fall through for interrupt endpoint interval decoding
1371                  * since it uses the same rules as low speed interrupt
1372                  * endpoints.
1373                  */
1374
1375         case USB_SPEED_LOW:
1376                 if (usb_endpoint_xfer_int(&ep->desc) ||
1377                     usb_endpoint_xfer_isoc(&ep->desc)) {
1378
1379                         interval = xhci_parse_frame_interval(udev, ep);
1380                 }
1381                 break;
1382
1383         default:
1384                 BUG();
1385         }
1386         return interval;
1387 }
1388
1389 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1390  * High speed endpoint descriptors can define "the number of additional
1391  * transaction opportunities per microframe", but that goes in the Max Burst
1392  * endpoint context field.
1393  */
1394 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1395                 struct usb_host_endpoint *ep)
1396 {
1397         if (udev->speed < USB_SPEED_SUPER ||
1398                         !usb_endpoint_xfer_isoc(&ep->desc))
1399                 return 0;
1400         return ep->ss_ep_comp.bmAttributes;
1401 }
1402
1403 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1404                                        struct usb_host_endpoint *ep)
1405 {
1406         /* Super speed and Plus have max burst in ep companion desc */
1407         if (udev->speed >= USB_SPEED_SUPER)
1408                 return ep->ss_ep_comp.bMaxBurst;
1409
1410         if (udev->speed == USB_SPEED_HIGH &&
1411             (usb_endpoint_xfer_isoc(&ep->desc) ||
1412              usb_endpoint_xfer_int(&ep->desc)))
1413                 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1414
1415         return 0;
1416 }
1417
1418 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1419 {
1420         int in;
1421
1422         in = usb_endpoint_dir_in(&ep->desc);
1423
1424         switch (usb_endpoint_type(&ep->desc)) {
1425         case USB_ENDPOINT_XFER_CONTROL:
1426                 return CTRL_EP;
1427         case USB_ENDPOINT_XFER_BULK:
1428                 return in ? BULK_IN_EP : BULK_OUT_EP;
1429         case USB_ENDPOINT_XFER_ISOC:
1430                 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1431         case USB_ENDPOINT_XFER_INT:
1432                 return in ? INT_IN_EP : INT_OUT_EP;
1433         }
1434         return 0;
1435 }
1436
1437 /* Return the maximum endpoint service interval time (ESIT) payload.
1438  * Basically, this is the maxpacket size, multiplied by the burst size
1439  * and mult size.
1440  */
1441 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1442                 struct usb_host_endpoint *ep)
1443 {
1444         int max_burst;
1445         int max_packet;
1446
1447         /* Only applies for interrupt or isochronous endpoints */
1448         if (usb_endpoint_xfer_control(&ep->desc) ||
1449                         usb_endpoint_xfer_bulk(&ep->desc))
1450                 return 0;
1451
1452         /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1453         if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1454             USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1455                 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1456         /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1457         else if (udev->speed >= USB_SPEED_SUPER)
1458                 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1459
1460         max_packet = usb_endpoint_maxp(&ep->desc);
1461         max_burst = usb_endpoint_maxp_mult(&ep->desc);
1462         /* A 0 in max burst means 1 transfer per ESIT */
1463         return max_packet * max_burst;
1464 }
1465
1466 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1467  * Drivers will have to call usb_alloc_streams() to do that.
1468  */
1469 int xhci_endpoint_init(struct xhci_hcd *xhci,
1470                 struct xhci_virt_device *virt_dev,
1471                 struct usb_device *udev,
1472                 struct usb_host_endpoint *ep,
1473                 gfp_t mem_flags)
1474 {
1475         unsigned int ep_index;
1476         struct xhci_ep_ctx *ep_ctx;
1477         struct xhci_ring *ep_ring;
1478         unsigned int max_packet;
1479         enum xhci_ring_type ring_type;
1480         u32 max_esit_payload;
1481         u32 endpoint_type;
1482         unsigned int max_burst;
1483         unsigned int interval;
1484         unsigned int mult;
1485         unsigned int avg_trb_len;
1486         unsigned int err_count = 0;
1487
1488         ep_index = xhci_get_endpoint_index(&ep->desc);
1489         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1490
1491         endpoint_type = xhci_get_endpoint_type(ep);
1492         if (!endpoint_type)
1493                 return -EINVAL;
1494
1495         ring_type = usb_endpoint_type(&ep->desc);
1496
1497         /*
1498          * Get values to fill the endpoint context, mostly from ep descriptor.
1499          * The average TRB buffer lengt for bulk endpoints is unclear as we
1500          * have no clue on scatter gather list entry size. For Isoc and Int,
1501          * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1502          */
1503         max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1504         interval = xhci_get_endpoint_interval(udev, ep);
1505         mult = xhci_get_endpoint_mult(udev, ep);
1506         max_packet = usb_endpoint_maxp(&ep->desc);
1507         max_burst = xhci_get_endpoint_max_burst(udev, ep);
1508         avg_trb_len = max_esit_payload;
1509
1510         /* FIXME dig Mult and streams info out of ep companion desc */
1511
1512         /* Allow 3 retries for everything but isoc, set CErr = 3 */
1513         if (!usb_endpoint_xfer_isoc(&ep->desc))
1514                 err_count = 3;
1515         /* Some devices get this wrong */
1516         if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH)
1517                 max_packet = 512;
1518         /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1519         if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1520                 avg_trb_len = 8;
1521         /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1522         if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1523                 mult = 0;
1524
1525         /* Set up the endpoint ring */
1526         virt_dev->eps[ep_index].new_ring =
1527                 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1528         if (!virt_dev->eps[ep_index].new_ring) {
1529                 /* Attempt to use the ring cache */
1530                 if (virt_dev->num_rings_cached == 0)
1531                         return -ENOMEM;
1532                 virt_dev->num_rings_cached--;
1533                 virt_dev->eps[ep_index].new_ring =
1534                         virt_dev->ring_cache[virt_dev->num_rings_cached];
1535                 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1536                 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1537                                         1, ring_type);
1538         }
1539         virt_dev->eps[ep_index].skip = false;
1540         ep_ring = virt_dev->eps[ep_index].new_ring;
1541
1542         /* Fill the endpoint context */
1543         ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1544                                       EP_INTERVAL(interval) |
1545                                       EP_MULT(mult));
1546         ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1547                                        MAX_PACKET(max_packet) |
1548                                        MAX_BURST(max_burst) |
1549                                        ERROR_COUNT(err_count));
1550         ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1551                                   ep_ring->cycle_state);
1552
1553         ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1554                                       EP_AVG_TRB_LENGTH(avg_trb_len));
1555
1556         /* FIXME Debug endpoint context */
1557         return 0;
1558 }
1559
1560 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1561                 struct xhci_virt_device *virt_dev,
1562                 struct usb_host_endpoint *ep)
1563 {
1564         unsigned int ep_index;
1565         struct xhci_ep_ctx *ep_ctx;
1566
1567         ep_index = xhci_get_endpoint_index(&ep->desc);
1568         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1569
1570         ep_ctx->ep_info = 0;
1571         ep_ctx->ep_info2 = 0;
1572         ep_ctx->deq = 0;
1573         ep_ctx->tx_info = 0;
1574         /* Don't free the endpoint ring until the set interface or configuration
1575          * request succeeds.
1576          */
1577 }
1578
1579 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1580 {
1581         bw_info->ep_interval = 0;
1582         bw_info->mult = 0;
1583         bw_info->num_packets = 0;
1584         bw_info->max_packet_size = 0;
1585         bw_info->type = 0;
1586         bw_info->max_esit_payload = 0;
1587 }
1588
1589 void xhci_update_bw_info(struct xhci_hcd *xhci,
1590                 struct xhci_container_ctx *in_ctx,
1591                 struct xhci_input_control_ctx *ctrl_ctx,
1592                 struct xhci_virt_device *virt_dev)
1593 {
1594         struct xhci_bw_info *bw_info;
1595         struct xhci_ep_ctx *ep_ctx;
1596         unsigned int ep_type;
1597         int i;
1598
1599         for (i = 1; i < 31; i++) {
1600                 bw_info = &virt_dev->eps[i].bw_info;
1601
1602                 /* We can't tell what endpoint type is being dropped, but
1603                  * unconditionally clearing the bandwidth info for non-periodic
1604                  * endpoints should be harmless because the info will never be
1605                  * set in the first place.
1606                  */
1607                 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1608                         /* Dropped endpoint */
1609                         xhci_clear_endpoint_bw_info(bw_info);
1610                         continue;
1611                 }
1612
1613                 if (EP_IS_ADDED(ctrl_ctx, i)) {
1614                         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1615                         ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1616
1617                         /* Ignore non-periodic endpoints */
1618                         if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1619                                         ep_type != ISOC_IN_EP &&
1620                                         ep_type != INT_IN_EP)
1621                                 continue;
1622
1623                         /* Added or changed endpoint */
1624                         bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1625                                         le32_to_cpu(ep_ctx->ep_info));
1626                         /* Number of packets and mult are zero-based in the
1627                          * input context, but we want one-based for the
1628                          * interval table.
1629                          */
1630                         bw_info->mult = CTX_TO_EP_MULT(
1631                                         le32_to_cpu(ep_ctx->ep_info)) + 1;
1632                         bw_info->num_packets = CTX_TO_MAX_BURST(
1633                                         le32_to_cpu(ep_ctx->ep_info2)) + 1;
1634                         bw_info->max_packet_size = MAX_PACKET_DECODED(
1635                                         le32_to_cpu(ep_ctx->ep_info2));
1636                         bw_info->type = ep_type;
1637                         bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1638                                         le32_to_cpu(ep_ctx->tx_info));
1639                 }
1640         }
1641 }
1642
1643 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1644  * Useful when you want to change one particular aspect of the endpoint and then
1645  * issue a configure endpoint command.
1646  */
1647 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1648                 struct xhci_container_ctx *in_ctx,
1649                 struct xhci_container_ctx *out_ctx,
1650                 unsigned int ep_index)
1651 {
1652         struct xhci_ep_ctx *out_ep_ctx;
1653         struct xhci_ep_ctx *in_ep_ctx;
1654
1655         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1656         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1657
1658         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1659         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1660         in_ep_ctx->deq = out_ep_ctx->deq;
1661         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1662 }
1663
1664 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1665  * Useful when you want to change one particular aspect of the endpoint and then
1666  * issue a configure endpoint command.  Only the context entries field matters,
1667  * but we'll copy the whole thing anyway.
1668  */
1669 void xhci_slot_copy(struct xhci_hcd *xhci,
1670                 struct xhci_container_ctx *in_ctx,
1671                 struct xhci_container_ctx *out_ctx)
1672 {
1673         struct xhci_slot_ctx *in_slot_ctx;
1674         struct xhci_slot_ctx *out_slot_ctx;
1675
1676         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1677         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1678
1679         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1680         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1681         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1682         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1683 }
1684
1685 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1686 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1687 {
1688         int i;
1689         struct device *dev = xhci_to_hcd(xhci)->self.controller;
1690         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1691
1692         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1693                         "Allocating %d scratchpad buffers", num_sp);
1694
1695         if (!num_sp)
1696                 return 0;
1697
1698         xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1699         if (!xhci->scratchpad)
1700                 goto fail_sp;
1701
1702         xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1703                                      num_sp * sizeof(u64),
1704                                      &xhci->scratchpad->sp_dma, flags);
1705         if (!xhci->scratchpad->sp_array)
1706                 goto fail_sp2;
1707
1708         xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1709         if (!xhci->scratchpad->sp_buffers)
1710                 goto fail_sp3;
1711
1712         xhci->scratchpad->sp_dma_buffers =
1713                 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1714
1715         if (!xhci->scratchpad->sp_dma_buffers)
1716                 goto fail_sp4;
1717
1718         xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1719         for (i = 0; i < num_sp; i++) {
1720                 dma_addr_t dma;
1721                 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1722                                 flags);
1723                 if (!buf)
1724                         goto fail_sp5;
1725
1726                 xhci->scratchpad->sp_array[i] = dma;
1727                 xhci->scratchpad->sp_buffers[i] = buf;
1728                 xhci->scratchpad->sp_dma_buffers[i] = dma;
1729         }
1730
1731         return 0;
1732
1733  fail_sp5:
1734         for (i = i - 1; i >= 0; i--) {
1735                 dma_free_coherent(dev, xhci->page_size,
1736                                     xhci->scratchpad->sp_buffers[i],
1737                                     xhci->scratchpad->sp_dma_buffers[i]);
1738         }
1739         kfree(xhci->scratchpad->sp_dma_buffers);
1740
1741  fail_sp4:
1742         kfree(xhci->scratchpad->sp_buffers);
1743
1744  fail_sp3:
1745         dma_free_coherent(dev, num_sp * sizeof(u64),
1746                             xhci->scratchpad->sp_array,
1747                             xhci->scratchpad->sp_dma);
1748
1749  fail_sp2:
1750         kfree(xhci->scratchpad);
1751         xhci->scratchpad = NULL;
1752
1753  fail_sp:
1754         return -ENOMEM;
1755 }
1756
1757 static void scratchpad_free(struct xhci_hcd *xhci)
1758 {
1759         int num_sp;
1760         int i;
1761         struct device *dev = xhci_to_hcd(xhci)->self.controller;
1762
1763         if (!xhci->scratchpad)
1764                 return;
1765
1766         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1767
1768         for (i = 0; i < num_sp; i++) {
1769                 dma_free_coherent(dev, xhci->page_size,
1770                                     xhci->scratchpad->sp_buffers[i],
1771                                     xhci->scratchpad->sp_dma_buffers[i]);
1772         }
1773         kfree(xhci->scratchpad->sp_dma_buffers);
1774         kfree(xhci->scratchpad->sp_buffers);
1775         dma_free_coherent(dev, num_sp * sizeof(u64),
1776                             xhci->scratchpad->sp_array,
1777                             xhci->scratchpad->sp_dma);
1778         kfree(xhci->scratchpad);
1779         xhci->scratchpad = NULL;
1780 }
1781
1782 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1783                 bool allocate_in_ctx, bool allocate_completion,
1784                 gfp_t mem_flags)
1785 {
1786         struct xhci_command *command;
1787
1788         command = kzalloc(sizeof(*command), mem_flags);
1789         if (!command)
1790                 return NULL;
1791
1792         if (allocate_in_ctx) {
1793                 command->in_ctx =
1794                         xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1795                                         mem_flags);
1796                 if (!command->in_ctx) {
1797                         kfree(command);
1798                         return NULL;
1799                 }
1800         }
1801
1802         if (allocate_completion) {
1803                 command->completion =
1804                         kzalloc(sizeof(struct completion), mem_flags);
1805                 if (!command->completion) {
1806                         xhci_free_container_ctx(xhci, command->in_ctx);
1807                         kfree(command);
1808                         return NULL;
1809                 }
1810                 init_completion(command->completion);
1811         }
1812
1813         command->status = 0;
1814         INIT_LIST_HEAD(&command->cmd_list);
1815         return command;
1816 }
1817
1818 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1819 {
1820         kfree(urb_priv);
1821 }
1822
1823 void xhci_free_command(struct xhci_hcd *xhci,
1824                 struct xhci_command *command)
1825 {
1826         xhci_free_container_ctx(xhci,
1827                         command->in_ctx);
1828         kfree(command->completion);
1829         kfree(command);
1830 }
1831
1832 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1833 {
1834         struct device   *dev = xhci_to_hcd(xhci)->self.controller;
1835         int size;
1836         int i, j, num_ports;
1837
1838         cancel_delayed_work_sync(&xhci->cmd_timer);
1839
1840         /* Free the Event Ring Segment Table and the actual Event Ring */
1841         size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1842         if (xhci->erst.entries)
1843                 dma_free_coherent(dev, size,
1844                                 xhci->erst.entries, xhci->erst.erst_dma_addr);
1845         xhci->erst.entries = NULL;
1846         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1847         if (xhci->event_ring)
1848                 xhci_ring_free(xhci, xhci->event_ring);
1849         xhci->event_ring = NULL;
1850         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1851
1852         if (xhci->lpm_command)
1853                 xhci_free_command(xhci, xhci->lpm_command);
1854         xhci->lpm_command = NULL;
1855         if (xhci->cmd_ring)
1856                 xhci_ring_free(xhci, xhci->cmd_ring);
1857         xhci->cmd_ring = NULL;
1858         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1859         xhci_cleanup_command_queue(xhci);
1860
1861         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1862         for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1863                 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1864                 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1865                         struct list_head *ep = &bwt->interval_bw[j].endpoints;
1866                         while (!list_empty(ep))
1867                                 list_del_init(ep->next);
1868                 }
1869         }
1870
1871         for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1872                 xhci_free_virt_devices_depth_first(xhci, i);
1873
1874         dma_pool_destroy(xhci->segment_pool);
1875         xhci->segment_pool = NULL;
1876         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1877
1878         dma_pool_destroy(xhci->device_pool);
1879         xhci->device_pool = NULL;
1880         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1881
1882         dma_pool_destroy(xhci->small_streams_pool);
1883         xhci->small_streams_pool = NULL;
1884         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1885                         "Freed small stream array pool");
1886
1887         dma_pool_destroy(xhci->medium_streams_pool);
1888         xhci->medium_streams_pool = NULL;
1889         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1890                         "Freed medium stream array pool");
1891
1892         if (xhci->dcbaa)
1893                 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1894                                 xhci->dcbaa, xhci->dcbaa->dma);
1895         xhci->dcbaa = NULL;
1896
1897         scratchpad_free(xhci);
1898
1899         if (!xhci->rh_bw)
1900                 goto no_bw;
1901
1902         for (i = 0; i < num_ports; i++) {
1903                 struct xhci_tt_bw_info *tt, *n;
1904                 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1905                         list_del(&tt->tt_list);
1906                         kfree(tt);
1907                 }
1908         }
1909
1910 no_bw:
1911         xhci->cmd_ring_reserved_trbs = 0;
1912         xhci->num_usb2_ports = 0;
1913         xhci->num_usb3_ports = 0;
1914         xhci->num_active_eps = 0;
1915         kfree(xhci->usb2_ports);
1916         kfree(xhci->usb3_ports);
1917         kfree(xhci->port_array);
1918         kfree(xhci->rh_bw);
1919         kfree(xhci->ext_caps);
1920
1921         xhci->usb2_ports = NULL;
1922         xhci->usb3_ports = NULL;
1923         xhci->port_array = NULL;
1924         xhci->rh_bw = NULL;
1925         xhci->ext_caps = NULL;
1926
1927         xhci->page_size = 0;
1928         xhci->page_shift = 0;
1929         xhci->bus_state[0].bus_suspended = 0;
1930         xhci->bus_state[1].bus_suspended = 0;
1931 }
1932
1933 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1934                 struct xhci_segment *input_seg,
1935                 union xhci_trb *start_trb,
1936                 union xhci_trb *end_trb,
1937                 dma_addr_t input_dma,
1938                 struct xhci_segment *result_seg,
1939                 char *test_name, int test_number)
1940 {
1941         unsigned long long start_dma;
1942         unsigned long long end_dma;
1943         struct xhci_segment *seg;
1944
1945         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1946         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1947
1948         seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1949         if (seg != result_seg) {
1950                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1951                                 test_name, test_number);
1952                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1953                                 "input DMA 0x%llx\n",
1954                                 input_seg,
1955                                 (unsigned long long) input_dma);
1956                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1957                                 "ending TRB %p (0x%llx DMA)\n",
1958                                 start_trb, start_dma,
1959                                 end_trb, end_dma);
1960                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1961                                 result_seg, seg);
1962                 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1963                           true);
1964                 return -1;
1965         }
1966         return 0;
1967 }
1968
1969 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1970 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1971 {
1972         struct {
1973                 dma_addr_t              input_dma;
1974                 struct xhci_segment     *result_seg;
1975         } simple_test_vector [] = {
1976                 /* A zeroed DMA field should fail */
1977                 { 0, NULL },
1978                 /* One TRB before the ring start should fail */
1979                 { xhci->event_ring->first_seg->dma - 16, NULL },
1980                 /* One byte before the ring start should fail */
1981                 { xhci->event_ring->first_seg->dma - 1, NULL },
1982                 /* Starting TRB should succeed */
1983                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1984                 /* Ending TRB should succeed */
1985                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1986                         xhci->event_ring->first_seg },
1987                 /* One byte after the ring end should fail */
1988                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1989                 /* One TRB after the ring end should fail */
1990                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1991                 /* An address of all ones should fail */
1992                 { (dma_addr_t) (~0), NULL },
1993         };
1994         struct {
1995                 struct xhci_segment     *input_seg;
1996                 union xhci_trb          *start_trb;
1997                 union xhci_trb          *end_trb;
1998                 dma_addr_t              input_dma;
1999                 struct xhci_segment     *result_seg;
2000         } complex_test_vector [] = {
2001                 /* Test feeding a valid DMA address from a different ring */
2002                 {       .input_seg = xhci->event_ring->first_seg,
2003                         .start_trb = xhci->event_ring->first_seg->trbs,
2004                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2005                         .input_dma = xhci->cmd_ring->first_seg->dma,
2006                         .result_seg = NULL,
2007                 },
2008                 /* Test feeding a valid end TRB from a different ring */
2009                 {       .input_seg = xhci->event_ring->first_seg,
2010                         .start_trb = xhci->event_ring->first_seg->trbs,
2011                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2012                         .input_dma = xhci->cmd_ring->first_seg->dma,
2013                         .result_seg = NULL,
2014                 },
2015                 /* Test feeding a valid start and end TRB from a different ring */
2016                 {       .input_seg = xhci->event_ring->first_seg,
2017                         .start_trb = xhci->cmd_ring->first_seg->trbs,
2018                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2019                         .input_dma = xhci->cmd_ring->first_seg->dma,
2020                         .result_seg = NULL,
2021                 },
2022                 /* TRB in this ring, but after this TD */
2023                 {       .input_seg = xhci->event_ring->first_seg,
2024                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
2025                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
2026                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2027                         .result_seg = NULL,
2028                 },
2029                 /* TRB in this ring, but before this TD */
2030                 {       .input_seg = xhci->event_ring->first_seg,
2031                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
2032                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
2033                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2034                         .result_seg = NULL,
2035                 },
2036                 /* TRB in this ring, but after this wrapped TD */
2037                 {       .input_seg = xhci->event_ring->first_seg,
2038                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2039                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2040                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2041                         .result_seg = NULL,
2042                 },
2043                 /* TRB in this ring, but before this wrapped TD */
2044                 {       .input_seg = xhci->event_ring->first_seg,
2045                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2046                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2047                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2048                         .result_seg = NULL,
2049                 },
2050                 /* TRB not in this ring, and we have a wrapped TD */
2051                 {       .input_seg = xhci->event_ring->first_seg,
2052                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2053                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2054                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2055                         .result_seg = NULL,
2056                 },
2057         };
2058
2059         unsigned int num_tests;
2060         int i, ret;
2061
2062         num_tests = ARRAY_SIZE(simple_test_vector);
2063         for (i = 0; i < num_tests; i++) {
2064                 ret = xhci_test_trb_in_td(xhci,
2065                                 xhci->event_ring->first_seg,
2066                                 xhci->event_ring->first_seg->trbs,
2067                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2068                                 simple_test_vector[i].input_dma,
2069                                 simple_test_vector[i].result_seg,
2070                                 "Simple", i);
2071                 if (ret < 0)
2072                         return ret;
2073         }
2074
2075         num_tests = ARRAY_SIZE(complex_test_vector);
2076         for (i = 0; i < num_tests; i++) {
2077                 ret = xhci_test_trb_in_td(xhci,
2078                                 complex_test_vector[i].input_seg,
2079                                 complex_test_vector[i].start_trb,
2080                                 complex_test_vector[i].end_trb,
2081                                 complex_test_vector[i].input_dma,
2082                                 complex_test_vector[i].result_seg,
2083                                 "Complex", i);
2084                 if (ret < 0)
2085                         return ret;
2086         }
2087         xhci_dbg(xhci, "TRB math tests passed.\n");
2088         return 0;
2089 }
2090
2091 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2092 {
2093         u64 temp;
2094         dma_addr_t deq;
2095
2096         deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2097                         xhci->event_ring->dequeue);
2098         if (deq == 0 && !in_interrupt())
2099                 xhci_warn(xhci, "WARN something wrong with SW event ring "
2100                                 "dequeue ptr.\n");
2101         /* Update HC event ring dequeue pointer */
2102         temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2103         temp &= ERST_PTR_MASK;
2104         /* Don't clear the EHB bit (which is RW1C) because
2105          * there might be more events to service.
2106          */
2107         temp &= ~ERST_EHB;
2108         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2109                         "// Write event ring dequeue pointer, "
2110                         "preserving EHB bit");
2111         xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2112                         &xhci->ir_set->erst_dequeue);
2113 }
2114
2115 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2116                 __le32 __iomem *addr, int max_caps)
2117 {
2118         u32 temp, port_offset, port_count;
2119         int i;
2120         u8 major_revision;
2121         struct xhci_hub *rhub;
2122
2123         temp = readl(addr);
2124         major_revision = XHCI_EXT_PORT_MAJOR(temp);
2125
2126         if (major_revision == 0x03) {
2127                 rhub = &xhci->usb3_rhub;
2128         } else if (major_revision <= 0x02) {
2129                 rhub = &xhci->usb2_rhub;
2130         } else {
2131                 xhci_warn(xhci, "Ignoring unknown port speed, "
2132                                 "Ext Cap %p, revision = 0x%x\n",
2133                                 addr, major_revision);
2134                 /* Ignoring port protocol we can't understand. FIXME */
2135                 return;
2136         }
2137         rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2138         rhub->min_rev = XHCI_EXT_PORT_MINOR(temp);
2139
2140         /* Port offset and count in the third dword, see section 7.2 */
2141         temp = readl(addr + 2);
2142         port_offset = XHCI_EXT_PORT_OFF(temp);
2143         port_count = XHCI_EXT_PORT_COUNT(temp);
2144         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2145                         "Ext Cap %p, port offset = %u, "
2146                         "count = %u, revision = 0x%x",
2147                         addr, port_offset, port_count, major_revision);
2148         /* Port count includes the current port offset */
2149         if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2150                 /* WTF? "Valid values are â€˜1’ to MaxPorts" */
2151                 return;
2152
2153         rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2154         if (rhub->psi_count) {
2155                 rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2156                                     GFP_KERNEL);
2157                 if (!rhub->psi)
2158                         rhub->psi_count = 0;
2159
2160                 rhub->psi_uid_count++;
2161                 for (i = 0; i < rhub->psi_count; i++) {
2162                         rhub->psi[i] = readl(addr + 4 + i);
2163
2164                         /* count unique ID values, two consecutive entries can
2165                          * have the same ID if link is assymetric
2166                          */
2167                         if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2168                                   XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2169                                 rhub->psi_uid_count++;
2170
2171                         xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2172                                   XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2173                                   XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2174                                   XHCI_EXT_PORT_PLT(rhub->psi[i]),
2175                                   XHCI_EXT_PORT_PFD(rhub->psi[i]),
2176                                   XHCI_EXT_PORT_LP(rhub->psi[i]),
2177                                   XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2178                 }
2179         }
2180         /* cache usb2 port capabilities */
2181         if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2182                 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2183
2184         /* Check the host's USB2 LPM capability */
2185         if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2186                         (temp & XHCI_L1C)) {
2187                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2188                                 "xHCI 0.96: support USB2 software lpm");
2189                 xhci->sw_lpm_support = 1;
2190         }
2191
2192         if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2193                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2194                                 "xHCI 1.0: support USB2 software lpm");
2195                 xhci->sw_lpm_support = 1;
2196                 if (temp & XHCI_HLC) {
2197                         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2198                                         "xHCI 1.0: support USB2 hardware lpm");
2199                         xhci->hw_lpm_support = 1;
2200                 }
2201         }
2202
2203         port_offset--;
2204         for (i = port_offset; i < (port_offset + port_count); i++) {
2205                 /* Duplicate entry.  Ignore the port if the revisions differ. */
2206                 if (xhci->port_array[i] != 0) {
2207                         xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2208                                         " port %u\n", addr, i);
2209                         xhci_warn(xhci, "Port was marked as USB %u, "
2210                                         "duplicated as USB %u\n",
2211                                         xhci->port_array[i], major_revision);
2212                         /* Only adjust the roothub port counts if we haven't
2213                          * found a similar duplicate.
2214                          */
2215                         if (xhci->port_array[i] != major_revision &&
2216                                 xhci->port_array[i] != DUPLICATE_ENTRY) {
2217                                 if (xhci->port_array[i] == 0x03)
2218                                         xhci->num_usb3_ports--;
2219                                 else
2220                                         xhci->num_usb2_ports--;
2221                                 xhci->port_array[i] = DUPLICATE_ENTRY;
2222                         }
2223                         /* FIXME: Should we disable the port? */
2224                         continue;
2225                 }
2226                 xhci->port_array[i] = major_revision;
2227                 if (major_revision == 0x03)
2228                         xhci->num_usb3_ports++;
2229                 else
2230                         xhci->num_usb2_ports++;
2231         }
2232         /* FIXME: Should we disable ports not in the Extended Capabilities? */
2233 }
2234
2235 /*
2236  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2237  * specify what speeds each port is supposed to be.  We can't count on the port
2238  * speed bits in the PORTSC register being correct until a device is connected,
2239  * but we need to set up the two fake roothubs with the correct number of USB
2240  * 3.0 and USB 2.0 ports at host controller initialization time.
2241  */
2242 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2243 {
2244         void __iomem *base;
2245         u32 offset;
2246         unsigned int num_ports;
2247         int i, j, port_index;
2248         int cap_count = 0;
2249         u32 cap_start;
2250
2251         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2252         xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2253         if (!xhci->port_array)
2254                 return -ENOMEM;
2255
2256         xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2257         if (!xhci->rh_bw)
2258                 return -ENOMEM;
2259         for (i = 0; i < num_ports; i++) {
2260                 struct xhci_interval_bw_table *bw_table;
2261
2262                 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2263                 bw_table = &xhci->rh_bw[i].bw_table;
2264                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2265                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2266         }
2267         base = &xhci->cap_regs->hc_capbase;
2268
2269         cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2270         if (!cap_start) {
2271                 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2272                 return -ENODEV;
2273         }
2274
2275         offset = cap_start;
2276         /* count extended protocol capability entries for later caching */
2277         while (offset) {
2278                 cap_count++;
2279                 offset = xhci_find_next_ext_cap(base, offset,
2280                                                       XHCI_EXT_CAPS_PROTOCOL);
2281         }
2282
2283         xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2284         if (!xhci->ext_caps)
2285                 return -ENOMEM;
2286
2287         offset = cap_start;
2288
2289         while (offset) {
2290                 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2291                 if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2292                         break;
2293                 offset = xhci_find_next_ext_cap(base, offset,
2294                                                 XHCI_EXT_CAPS_PROTOCOL);
2295         }
2296
2297         if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2298                 xhci_warn(xhci, "No ports on the roothubs?\n");
2299                 return -ENODEV;
2300         }
2301         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2302                         "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2303                         xhci->num_usb2_ports, xhci->num_usb3_ports);
2304
2305         /* Place limits on the number of roothub ports so that the hub
2306          * descriptors aren't longer than the USB core will allocate.
2307          */
2308         if (xhci->num_usb3_ports > 15) {
2309                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2310                                 "Limiting USB 3.0 roothub ports to 15.");
2311                 xhci->num_usb3_ports = 15;
2312         }
2313         if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2314                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2315                                 "Limiting USB 2.0 roothub ports to %u.",
2316                                 USB_MAXCHILDREN);
2317                 xhci->num_usb2_ports = USB_MAXCHILDREN;
2318         }
2319
2320         /*
2321          * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2322          * Not sure how the USB core will handle a hub with no ports...
2323          */
2324         if (xhci->num_usb2_ports) {
2325                 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2326                                 xhci->num_usb2_ports, flags);
2327                 if (!xhci->usb2_ports)
2328                         return -ENOMEM;
2329
2330                 port_index = 0;
2331                 for (i = 0; i < num_ports; i++) {
2332                         if (xhci->port_array[i] == 0x03 ||
2333                                         xhci->port_array[i] == 0 ||
2334                                         xhci->port_array[i] == DUPLICATE_ENTRY)
2335                                 continue;
2336
2337                         xhci->usb2_ports[port_index] =
2338                                 &xhci->op_regs->port_status_base +
2339                                 NUM_PORT_REGS*i;
2340                         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2341                                         "USB 2.0 port at index %u, "
2342                                         "addr = %p", i,
2343                                         xhci->usb2_ports[port_index]);
2344                         port_index++;
2345                         if (port_index == xhci->num_usb2_ports)
2346                                 break;
2347                 }
2348         }
2349         if (xhci->num_usb3_ports) {
2350                 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2351                                 xhci->num_usb3_ports, flags);
2352                 if (!xhci->usb3_ports)
2353                         return -ENOMEM;
2354
2355                 port_index = 0;
2356                 for (i = 0; i < num_ports; i++)
2357                         if (xhci->port_array[i] == 0x03) {
2358                                 xhci->usb3_ports[port_index] =
2359                                         &xhci->op_regs->port_status_base +
2360                                         NUM_PORT_REGS*i;
2361                                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2362                                                 "USB 3.0 port at index %u, "
2363                                                 "addr = %p", i,
2364                                                 xhci->usb3_ports[port_index]);
2365                                 port_index++;
2366                                 if (port_index == xhci->num_usb3_ports)
2367                                         break;
2368                         }
2369         }
2370         return 0;
2371 }
2372
2373 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2374 {
2375         dma_addr_t      dma;
2376         struct device   *dev = xhci_to_hcd(xhci)->self.controller;
2377         unsigned int    val, val2;
2378         u64             val_64;
2379         struct xhci_segment     *seg;
2380         u32 page_size, temp;
2381         int i;
2382
2383         INIT_LIST_HEAD(&xhci->cmd_list);
2384
2385         /* init command timeout work */
2386         INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2387         init_completion(&xhci->cmd_ring_stop_completion);
2388
2389         page_size = readl(&xhci->op_regs->page_size);
2390         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2391                         "Supported page size register = 0x%x", page_size);
2392         for (i = 0; i < 16; i++) {
2393                 if ((0x1 & page_size) != 0)
2394                         break;
2395                 page_size = page_size >> 1;
2396         }
2397         if (i < 16)
2398                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2399                         "Supported page size of %iK", (1 << (i+12)) / 1024);
2400         else
2401                 xhci_warn(xhci, "WARN: no supported page size\n");
2402         /* Use 4K pages, since that's common and the minimum the HC supports */
2403         xhci->page_shift = 12;
2404         xhci->page_size = 1 << xhci->page_shift;
2405         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2406                         "HCD page size set to %iK", xhci->page_size / 1024);
2407
2408         /*
2409          * Program the Number of Device Slots Enabled field in the CONFIG
2410          * register with the max value of slots the HC can handle.
2411          */
2412         val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2413         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2414                         "// xHC can handle at most %d device slots.", val);
2415         val2 = readl(&xhci->op_regs->config_reg);
2416         val |= (val2 & ~HCS_SLOTS_MASK);
2417         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2418                         "// Setting Max device slots reg = 0x%x.", val);
2419         writel(val, &xhci->op_regs->config_reg);
2420
2421         /*
2422          * Section 5.4.8 - doorbell array must be
2423          * "physically contiguous and 64-byte (cache line) aligned".
2424          */
2425         xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2426                         flags);
2427         if (!xhci->dcbaa)
2428                 goto fail;
2429         memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2430         xhci->dcbaa->dma = dma;
2431         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2432                         "// Device context base array address = 0x%llx (DMA), %p (virt)",
2433                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2434         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2435
2436         /*
2437          * Initialize the ring segment pool.  The ring must be a contiguous
2438          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2439          * however, the command ring segment needs 64-byte aligned segments
2440          * and our use of dma addresses in the trb_address_map radix tree needs
2441          * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2442          */
2443         xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2444                         TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2445
2446         /* See Table 46 and Note on Figure 55 */
2447         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2448                         2112, 64, xhci->page_size);
2449         if (!xhci->segment_pool || !xhci->device_pool)
2450                 goto fail;
2451
2452         /* Linear stream context arrays don't have any boundary restrictions,
2453          * and only need to be 16-byte aligned.
2454          */
2455         xhci->small_streams_pool =
2456                 dma_pool_create("xHCI 256 byte stream ctx arrays",
2457                         dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2458         xhci->medium_streams_pool =
2459                 dma_pool_create("xHCI 1KB stream ctx arrays",
2460                         dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2461         /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2462          * will be allocated with dma_alloc_coherent()
2463          */
2464
2465         if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2466                 goto fail;
2467
2468         /* Set up the command ring to have one segments for now. */
2469         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2470         if (!xhci->cmd_ring)
2471                 goto fail;
2472         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2473                         "Allocated command ring at %p", xhci->cmd_ring);
2474         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2475                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
2476
2477         /* Set the address in the Command Ring Control register */
2478         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2479         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2480                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2481                 xhci->cmd_ring->cycle_state;
2482         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2483                         "// Setting command ring address to 0x%x", val);
2484         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2485         xhci_dbg_cmd_ptrs(xhci);
2486
2487         xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2488         if (!xhci->lpm_command)
2489                 goto fail;
2490
2491         /* Reserve one command ring TRB for disabling LPM.
2492          * Since the USB core grabs the shared usb_bus bandwidth mutex before
2493          * disabling LPM, we only need to reserve one TRB for all devices.
2494          */
2495         xhci->cmd_ring_reserved_trbs++;
2496
2497         val = readl(&xhci->cap_regs->db_off);
2498         val &= DBOFF_MASK;
2499         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2500                         "// Doorbell array is located at offset 0x%x"
2501                         " from cap regs base addr", val);
2502         xhci->dba = (void __iomem *) xhci->cap_regs + val;
2503         xhci_dbg_regs(xhci);
2504         xhci_print_run_regs(xhci);
2505         /* Set ir_set to interrupt register set 0 */
2506         xhci->ir_set = &xhci->run_regs->ir_set[0];
2507
2508         /*
2509          * Event ring setup: Allocate a normal ring, but also setup
2510          * the event ring segment table (ERST).  Section 4.9.3.
2511          */
2512         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2513         xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2514                                         0, flags);
2515         if (!xhci->event_ring)
2516                 goto fail;
2517         if (xhci_check_trb_in_td_math(xhci) < 0)
2518                 goto fail;
2519
2520         xhci->erst.entries = dma_alloc_coherent(dev,
2521                         sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2522                         flags);
2523         if (!xhci->erst.entries)
2524                 goto fail;
2525         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2526                         "// Allocated event ring segment table at 0x%llx",
2527                         (unsigned long long)dma);
2528
2529         memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2530         xhci->erst.num_entries = ERST_NUM_SEGS;
2531         xhci->erst.erst_dma_addr = dma;
2532         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2533                         "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2534                         xhci->erst.num_entries,
2535                         xhci->erst.entries,
2536                         (unsigned long long)xhci->erst.erst_dma_addr);
2537
2538         /* set ring base address and size for each segment table entry */
2539         for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2540                 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2541                 entry->seg_addr = cpu_to_le64(seg->dma);
2542                 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2543                 entry->rsvd = 0;
2544                 seg = seg->next;
2545         }
2546
2547         /* set ERST count with the number of entries in the segment table */
2548         val = readl(&xhci->ir_set->erst_size);
2549         val &= ERST_SIZE_MASK;
2550         val |= ERST_NUM_SEGS;
2551         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2552                         "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2553                         val);
2554         writel(val, &xhci->ir_set->erst_size);
2555
2556         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2557                         "// Set ERST entries to point to event ring.");
2558         /* set the segment table base address */
2559         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2560                         "// Set ERST base address for ir_set 0 = 0x%llx",
2561                         (unsigned long long)xhci->erst.erst_dma_addr);
2562         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2563         val_64 &= ERST_PTR_MASK;
2564         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2565         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2566
2567         /* Set the event ring dequeue address */
2568         xhci_set_hc_event_deq(xhci);
2569         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2570                         "Wrote ERST address to ir_set 0.");
2571         xhci_print_ir_set(xhci, 0);
2572
2573         /*
2574          * XXX: Might need to set the Interrupter Moderation Register to
2575          * something other than the default (~1ms minimum between interrupts).
2576          * See section 5.5.1.2.
2577          */
2578         for (i = 0; i < MAX_HC_SLOTS; i++)
2579                 xhci->devs[i] = NULL;
2580         for (i = 0; i < USB_MAXCHILDREN; i++) {
2581                 xhci->bus_state[0].resume_done[i] = 0;
2582                 xhci->bus_state[1].resume_done[i] = 0;
2583                 /* Only the USB 2.0 completions will ever be used. */
2584                 init_completion(&xhci->bus_state[1].rexit_done[i]);
2585         }
2586
2587         if (scratchpad_alloc(xhci, flags))
2588                 goto fail;
2589         if (xhci_setup_port_arrays(xhci, flags))
2590                 goto fail;
2591
2592         /* Enable USB 3.0 device notifications for function remote wake, which
2593          * is necessary for allowing USB 3.0 devices to do remote wakeup from
2594          * U3 (device suspend).
2595          */
2596         temp = readl(&xhci->op_regs->dev_notification);
2597         temp &= ~DEV_NOTE_MASK;
2598         temp |= DEV_NOTE_FWAKE;
2599         writel(temp, &xhci->op_regs->dev_notification);
2600
2601         return 0;
2602
2603 fail:
2604         xhci_warn(xhci, "Couldn't initialize memory\n");
2605         xhci_halt(xhci);
2606         xhci_reset(xhci);
2607         xhci_mem_cleanup(xhci);
2608         return -ENOMEM;
2609 }