usb: xhci: remove error messages for failed memory allocation
[platform/kernel/linux-starfive.git] / drivers / usb / host / xhci-mem.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 #include <linux/dma-mapping.h>
28
29 #include "xhci.h"
30 #include "xhci-trace.h"
31
32 /*
33  * Allocates a generic ring segment from the ring pool, sets the dma address,
34  * initializes the segment to zero, and sets the private next pointer to NULL.
35  *
36  * Section 4.11.1.1:
37  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
38  */
39 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
40                                                unsigned int cycle_state,
41                                                unsigned int max_packet,
42                                                gfp_t flags)
43 {
44         struct xhci_segment *seg;
45         dma_addr_t      dma;
46         int             i;
47
48         seg = kzalloc(sizeof *seg, flags);
49         if (!seg)
50                 return NULL;
51
52         seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
53         if (!seg->trbs) {
54                 kfree(seg);
55                 return NULL;
56         }
57
58         if (max_packet) {
59                 seg->bounce_buf = kzalloc(max_packet, flags | GFP_DMA);
60                 if (!seg->bounce_buf) {
61                         dma_pool_free(xhci->segment_pool, seg->trbs, dma);
62                         kfree(seg);
63                         return NULL;
64                 }
65         }
66         /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
67         if (cycle_state == 0) {
68                 for (i = 0; i < TRBS_PER_SEGMENT; i++)
69                         seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
70         }
71         seg->dma = dma;
72         seg->next = NULL;
73
74         return seg;
75 }
76
77 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
78 {
79         if (seg->trbs) {
80                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
81                 seg->trbs = NULL;
82         }
83         kfree(seg->bounce_buf);
84         kfree(seg);
85 }
86
87 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
88                                 struct xhci_segment *first)
89 {
90         struct xhci_segment *seg;
91
92         seg = first->next;
93         while (seg != first) {
94                 struct xhci_segment *next = seg->next;
95                 xhci_segment_free(xhci, seg);
96                 seg = next;
97         }
98         xhci_segment_free(xhci, first);
99 }
100
101 /*
102  * Make the prev segment point to the next segment.
103  *
104  * Change the last TRB in the prev segment to be a Link TRB which points to the
105  * DMA address of the next segment.  The caller needs to set any Link TRB
106  * related flags, such as End TRB, Toggle Cycle, and no snoop.
107  */
108 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
109                 struct xhci_segment *next, enum xhci_ring_type type)
110 {
111         u32 val;
112
113         if (!prev || !next)
114                 return;
115         prev->next = next;
116         if (type != TYPE_EVENT) {
117                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
118                         cpu_to_le64(next->dma);
119
120                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
121                 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
122                 val &= ~TRB_TYPE_BITMASK;
123                 val |= TRB_TYPE(TRB_LINK);
124                 /* Always set the chain bit with 0.95 hardware */
125                 /* Set chain bit for isoc rings on AMD 0.96 host */
126                 if (xhci_link_trb_quirk(xhci) ||
127                                 (type == TYPE_ISOC &&
128                                  (xhci->quirks & XHCI_AMD_0x96_HOST)))
129                         val |= TRB_CHAIN;
130                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
131         }
132 }
133
134 /*
135  * Link the ring to the new segments.
136  * Set Toggle Cycle for the new ring if needed.
137  */
138 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
139                 struct xhci_segment *first, struct xhci_segment *last,
140                 unsigned int num_segs)
141 {
142         struct xhci_segment *next;
143
144         if (!ring || !first || !last)
145                 return;
146
147         next = ring->enq_seg->next;
148         xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
149         xhci_link_segments(xhci, last, next, ring->type);
150         ring->num_segs += num_segs;
151         ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
152
153         if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
154                 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
155                         &= ~cpu_to_le32(LINK_TOGGLE);
156                 last->trbs[TRBS_PER_SEGMENT-1].link.control
157                         |= cpu_to_le32(LINK_TOGGLE);
158                 ring->last_seg = last;
159         }
160 }
161
162 /*
163  * We need a radix tree for mapping physical addresses of TRBs to which stream
164  * ID they belong to.  We need to do this because the host controller won't tell
165  * us which stream ring the TRB came from.  We could store the stream ID in an
166  * event data TRB, but that doesn't help us for the cancellation case, since the
167  * endpoint may stop before it reaches that event data TRB.
168  *
169  * The radix tree maps the upper portion of the TRB DMA address to a ring
170  * segment that has the same upper portion of DMA addresses.  For example, say I
171  * have segments of size 1KB, that are always 1KB aligned.  A segment may
172  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
173  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
174  * pass the radix tree a key to get the right stream ID:
175  *
176  *      0x10c90fff >> 10 = 0x43243
177  *      0x10c912c0 >> 10 = 0x43244
178  *      0x10c91400 >> 10 = 0x43245
179  *
180  * Obviously, only those TRBs with DMA addresses that are within the segment
181  * will make the radix tree return the stream ID for that ring.
182  *
183  * Caveats for the radix tree:
184  *
185  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
186  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
187  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
188  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
189  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
190  * extended systems (where the DMA address can be bigger than 32-bits),
191  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
192  */
193 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
194                 struct xhci_ring *ring,
195                 struct xhci_segment *seg,
196                 gfp_t mem_flags)
197 {
198         unsigned long key;
199         int ret;
200
201         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
202         /* Skip any segments that were already added. */
203         if (radix_tree_lookup(trb_address_map, key))
204                 return 0;
205
206         ret = radix_tree_maybe_preload(mem_flags);
207         if (ret)
208                 return ret;
209         ret = radix_tree_insert(trb_address_map,
210                         key, ring);
211         radix_tree_preload_end();
212         return ret;
213 }
214
215 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
216                 struct xhci_segment *seg)
217 {
218         unsigned long key;
219
220         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
221         if (radix_tree_lookup(trb_address_map, key))
222                 radix_tree_delete(trb_address_map, key);
223 }
224
225 static int xhci_update_stream_segment_mapping(
226                 struct radix_tree_root *trb_address_map,
227                 struct xhci_ring *ring,
228                 struct xhci_segment *first_seg,
229                 struct xhci_segment *last_seg,
230                 gfp_t mem_flags)
231 {
232         struct xhci_segment *seg;
233         struct xhci_segment *failed_seg;
234         int ret;
235
236         if (WARN_ON_ONCE(trb_address_map == NULL))
237                 return 0;
238
239         seg = first_seg;
240         do {
241                 ret = xhci_insert_segment_mapping(trb_address_map,
242                                 ring, seg, mem_flags);
243                 if (ret)
244                         goto remove_streams;
245                 if (seg == last_seg)
246                         return 0;
247                 seg = seg->next;
248         } while (seg != first_seg);
249
250         return 0;
251
252 remove_streams:
253         failed_seg = seg;
254         seg = first_seg;
255         do {
256                 xhci_remove_segment_mapping(trb_address_map, seg);
257                 if (seg == failed_seg)
258                         return ret;
259                 seg = seg->next;
260         } while (seg != first_seg);
261
262         return ret;
263 }
264
265 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
266 {
267         struct xhci_segment *seg;
268
269         if (WARN_ON_ONCE(ring->trb_address_map == NULL))
270                 return;
271
272         seg = ring->first_seg;
273         do {
274                 xhci_remove_segment_mapping(ring->trb_address_map, seg);
275                 seg = seg->next;
276         } while (seg != ring->first_seg);
277 }
278
279 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
280 {
281         return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
282                         ring->first_seg, ring->last_seg, mem_flags);
283 }
284
285 /* XXX: Do we need the hcd structure in all these functions? */
286 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
287 {
288         if (!ring)
289                 return;
290
291         trace_xhci_ring_free(ring);
292
293         if (ring->first_seg) {
294                 if (ring->type == TYPE_STREAM)
295                         xhci_remove_stream_mapping(ring);
296                 xhci_free_segments_for_ring(xhci, ring->first_seg);
297         }
298
299         kfree(ring);
300 }
301
302 static void xhci_initialize_ring_info(struct xhci_ring *ring,
303                                         unsigned int cycle_state)
304 {
305         /* The ring is empty, so the enqueue pointer == dequeue pointer */
306         ring->enqueue = ring->first_seg->trbs;
307         ring->enq_seg = ring->first_seg;
308         ring->dequeue = ring->enqueue;
309         ring->deq_seg = ring->first_seg;
310         /* The ring is initialized to 0. The producer must write 1 to the cycle
311          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
312          * compare CCS to the cycle bit to check ownership, so CCS = 1.
313          *
314          * New rings are initialized with cycle state equal to 1; if we are
315          * handling ring expansion, set the cycle state equal to the old ring.
316          */
317         ring->cycle_state = cycle_state;
318         /* Not necessary for new rings, but needed for re-initialized rings */
319         ring->enq_updates = 0;
320         ring->deq_updates = 0;
321
322         /*
323          * Each segment has a link TRB, and leave an extra TRB for SW
324          * accounting purpose
325          */
326         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
327 }
328
329 /* Allocate segments and link them for a ring */
330 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
331                 struct xhci_segment **first, struct xhci_segment **last,
332                 unsigned int num_segs, unsigned int cycle_state,
333                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
334 {
335         struct xhci_segment *prev;
336
337         prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
338         if (!prev)
339                 return -ENOMEM;
340         num_segs--;
341
342         *first = prev;
343         while (num_segs > 0) {
344                 struct xhci_segment     *next;
345
346                 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
347                 if (!next) {
348                         prev = *first;
349                         while (prev) {
350                                 next = prev->next;
351                                 xhci_segment_free(xhci, prev);
352                                 prev = next;
353                         }
354                         return -ENOMEM;
355                 }
356                 xhci_link_segments(xhci, prev, next, type);
357
358                 prev = next;
359                 num_segs--;
360         }
361         xhci_link_segments(xhci, prev, *first, type);
362         *last = prev;
363
364         return 0;
365 }
366
367 /**
368  * Create a new ring with zero or more segments.
369  *
370  * Link each segment together into a ring.
371  * Set the end flag and the cycle toggle bit on the last segment.
372  * See section 4.9.1 and figures 15 and 16.
373  */
374 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
375                 unsigned int num_segs, unsigned int cycle_state,
376                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
377 {
378         struct xhci_ring        *ring;
379         int ret;
380
381         ring = kzalloc(sizeof *(ring), flags);
382         if (!ring)
383                 return NULL;
384
385         ring->num_segs = num_segs;
386         ring->bounce_buf_len = max_packet;
387         INIT_LIST_HEAD(&ring->td_list);
388         ring->type = type;
389         if (num_segs == 0)
390                 return ring;
391
392         ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
393                         &ring->last_seg, num_segs, cycle_state, type,
394                         max_packet, flags);
395         if (ret)
396                 goto fail;
397
398         /* Only event ring does not use link TRB */
399         if (type != TYPE_EVENT) {
400                 /* See section 4.9.2.1 and 6.4.4.1 */
401                 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
402                         cpu_to_le32(LINK_TOGGLE);
403         }
404         xhci_initialize_ring_info(ring, cycle_state);
405         trace_xhci_ring_alloc(ring);
406         return ring;
407
408 fail:
409         kfree(ring);
410         return NULL;
411 }
412
413 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
414                 struct xhci_virt_device *virt_dev,
415                 unsigned int ep_index)
416 {
417         int rings_cached;
418
419         rings_cached = virt_dev->num_rings_cached;
420         if (rings_cached < XHCI_MAX_RINGS_CACHED) {
421                 virt_dev->ring_cache[rings_cached] =
422                         virt_dev->eps[ep_index].ring;
423                 virt_dev->num_rings_cached++;
424                 xhci_dbg(xhci, "Cached old ring, "
425                                 "%d ring%s cached\n",
426                                 virt_dev->num_rings_cached,
427                                 (virt_dev->num_rings_cached > 1) ? "s" : "");
428         } else {
429                 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
430                 xhci_dbg(xhci, "Ring cache full (%d rings), "
431                                 "freeing ring\n",
432                                 virt_dev->num_rings_cached);
433         }
434         virt_dev->eps[ep_index].ring = NULL;
435 }
436
437 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
438  * pointers to the beginning of the ring.
439  */
440 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
441                         struct xhci_ring *ring, unsigned int cycle_state,
442                         enum xhci_ring_type type)
443 {
444         struct xhci_segment     *seg = ring->first_seg;
445         int i;
446
447         do {
448                 memset(seg->trbs, 0,
449                                 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
450                 if (cycle_state == 0) {
451                         for (i = 0; i < TRBS_PER_SEGMENT; i++)
452                                 seg->trbs[i].link.control |=
453                                         cpu_to_le32(TRB_CYCLE);
454                 }
455                 /* All endpoint rings have link TRBs */
456                 xhci_link_segments(xhci, seg, seg->next, type);
457                 seg = seg->next;
458         } while (seg != ring->first_seg);
459         ring->type = type;
460         xhci_initialize_ring_info(ring, cycle_state);
461         /* td list should be empty since all URBs have been cancelled,
462          * but just in case...
463          */
464         INIT_LIST_HEAD(&ring->td_list);
465 }
466
467 /*
468  * Expand an existing ring.
469  * Look for a cached ring or allocate a new ring which has same segment numbers
470  * and link the two rings.
471  */
472 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
473                                 unsigned int num_trbs, gfp_t flags)
474 {
475         struct xhci_segment     *first;
476         struct xhci_segment     *last;
477         unsigned int            num_segs;
478         unsigned int            num_segs_needed;
479         int                     ret;
480
481         num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
482                                 (TRBS_PER_SEGMENT - 1);
483
484         /* Allocate number of segments we needed, or double the ring size */
485         num_segs = ring->num_segs > num_segs_needed ?
486                         ring->num_segs : num_segs_needed;
487
488         ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
489                         num_segs, ring->cycle_state, ring->type,
490                         ring->bounce_buf_len, flags);
491         if (ret)
492                 return -ENOMEM;
493
494         if (ring->type == TYPE_STREAM)
495                 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
496                                                 ring, first, last, flags);
497         if (ret) {
498                 struct xhci_segment *next;
499                 do {
500                         next = first->next;
501                         xhci_segment_free(xhci, first);
502                         if (first == last)
503                                 break;
504                         first = next;
505                 } while (true);
506                 return ret;
507         }
508
509         xhci_link_rings(xhci, ring, first, last, num_segs);
510         trace_xhci_ring_expansion(ring);
511         xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
512                         "ring expansion succeed, now has %d segments",
513                         ring->num_segs);
514
515         return 0;
516 }
517
518 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
519
520 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
521                                                     int type, gfp_t flags)
522 {
523         struct xhci_container_ctx *ctx;
524
525         if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
526                 return NULL;
527
528         ctx = kzalloc(sizeof(*ctx), flags);
529         if (!ctx)
530                 return NULL;
531
532         ctx->type = type;
533         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
534         if (type == XHCI_CTX_TYPE_INPUT)
535                 ctx->size += CTX_SIZE(xhci->hcc_params);
536
537         ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
538         if (!ctx->bytes) {
539                 kfree(ctx);
540                 return NULL;
541         }
542         return ctx;
543 }
544
545 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
546                              struct xhci_container_ctx *ctx)
547 {
548         if (!ctx)
549                 return;
550         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
551         kfree(ctx);
552 }
553
554 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
555                                               struct xhci_container_ctx *ctx)
556 {
557         if (ctx->type != XHCI_CTX_TYPE_INPUT)
558                 return NULL;
559
560         return (struct xhci_input_control_ctx *)ctx->bytes;
561 }
562
563 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
564                                         struct xhci_container_ctx *ctx)
565 {
566         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
567                 return (struct xhci_slot_ctx *)ctx->bytes;
568
569         return (struct xhci_slot_ctx *)
570                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
571 }
572
573 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
574                                     struct xhci_container_ctx *ctx,
575                                     unsigned int ep_index)
576 {
577         /* increment ep index by offset of start of ep ctx array */
578         ep_index++;
579         if (ctx->type == XHCI_CTX_TYPE_INPUT)
580                 ep_index++;
581
582         return (struct xhci_ep_ctx *)
583                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
584 }
585
586
587 /***************** Streams structures manipulation *************************/
588
589 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
590                 unsigned int num_stream_ctxs,
591                 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
592 {
593         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
594         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
595
596         if (size > MEDIUM_STREAM_ARRAY_SIZE)
597                 dma_free_coherent(dev, size,
598                                 stream_ctx, dma);
599         else if (size <= SMALL_STREAM_ARRAY_SIZE)
600                 return dma_pool_free(xhci->small_streams_pool,
601                                 stream_ctx, dma);
602         else
603                 return dma_pool_free(xhci->medium_streams_pool,
604                                 stream_ctx, dma);
605 }
606
607 /*
608  * The stream context array for each endpoint with bulk streams enabled can
609  * vary in size, based on:
610  *  - how many streams the endpoint supports,
611  *  - the maximum primary stream array size the host controller supports,
612  *  - and how many streams the device driver asks for.
613  *
614  * The stream context array must be a power of 2, and can be as small as
615  * 64 bytes or as large as 1MB.
616  */
617 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
618                 unsigned int num_stream_ctxs, dma_addr_t *dma,
619                 gfp_t mem_flags)
620 {
621         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
622         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
623
624         if (size > MEDIUM_STREAM_ARRAY_SIZE)
625                 return dma_alloc_coherent(dev, size,
626                                 dma, mem_flags);
627         else if (size <= SMALL_STREAM_ARRAY_SIZE)
628                 return dma_pool_alloc(xhci->small_streams_pool,
629                                 mem_flags, dma);
630         else
631                 return dma_pool_alloc(xhci->medium_streams_pool,
632                                 mem_flags, dma);
633 }
634
635 struct xhci_ring *xhci_dma_to_transfer_ring(
636                 struct xhci_virt_ep *ep,
637                 u64 address)
638 {
639         if (ep->ep_state & EP_HAS_STREAMS)
640                 return radix_tree_lookup(&ep->stream_info->trb_address_map,
641                                 address >> TRB_SEGMENT_SHIFT);
642         return ep->ring;
643 }
644
645 struct xhci_ring *xhci_stream_id_to_ring(
646                 struct xhci_virt_device *dev,
647                 unsigned int ep_index,
648                 unsigned int stream_id)
649 {
650         struct xhci_virt_ep *ep = &dev->eps[ep_index];
651
652         if (stream_id == 0)
653                 return ep->ring;
654         if (!ep->stream_info)
655                 return NULL;
656
657         if (stream_id > ep->stream_info->num_streams)
658                 return NULL;
659         return ep->stream_info->stream_rings[stream_id];
660 }
661
662 /*
663  * Change an endpoint's internal structure so it supports stream IDs.  The
664  * number of requested streams includes stream 0, which cannot be used by device
665  * drivers.
666  *
667  * The number of stream contexts in the stream context array may be bigger than
668  * the number of streams the driver wants to use.  This is because the number of
669  * stream context array entries must be a power of two.
670  */
671 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
672                 unsigned int num_stream_ctxs,
673                 unsigned int num_streams,
674                 unsigned int max_packet, gfp_t mem_flags)
675 {
676         struct xhci_stream_info *stream_info;
677         u32 cur_stream;
678         struct xhci_ring *cur_ring;
679         u64 addr;
680         int ret;
681
682         xhci_dbg(xhci, "Allocating %u streams and %u "
683                         "stream context array entries.\n",
684                         num_streams, num_stream_ctxs);
685         if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
686                 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
687                 return NULL;
688         }
689         xhci->cmd_ring_reserved_trbs++;
690
691         stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
692         if (!stream_info)
693                 goto cleanup_trbs;
694
695         stream_info->num_streams = num_streams;
696         stream_info->num_stream_ctxs = num_stream_ctxs;
697
698         /* Initialize the array of virtual pointers to stream rings. */
699         stream_info->stream_rings = kzalloc(
700                         sizeof(struct xhci_ring *)*num_streams,
701                         mem_flags);
702         if (!stream_info->stream_rings)
703                 goto cleanup_info;
704
705         /* Initialize the array of DMA addresses for stream rings for the HW. */
706         stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
707                         num_stream_ctxs, &stream_info->ctx_array_dma,
708                         mem_flags);
709         if (!stream_info->stream_ctx_array)
710                 goto cleanup_ctx;
711         memset(stream_info->stream_ctx_array, 0,
712                         sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
713
714         /* Allocate everything needed to free the stream rings later */
715         stream_info->free_streams_command =
716                 xhci_alloc_command(xhci, true, true, mem_flags);
717         if (!stream_info->free_streams_command)
718                 goto cleanup_ctx;
719
720         INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
721
722         /* Allocate rings for all the streams that the driver will use,
723          * and add their segment DMA addresses to the radix tree.
724          * Stream 0 is reserved.
725          */
726
727         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
728                 stream_info->stream_rings[cur_stream] =
729                         xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
730                                         mem_flags);
731                 cur_ring = stream_info->stream_rings[cur_stream];
732                 if (!cur_ring)
733                         goto cleanup_rings;
734                 cur_ring->stream_id = cur_stream;
735                 cur_ring->trb_address_map = &stream_info->trb_address_map;
736                 /* Set deq ptr, cycle bit, and stream context type */
737                 addr = cur_ring->first_seg->dma |
738                         SCT_FOR_CTX(SCT_PRI_TR) |
739                         cur_ring->cycle_state;
740                 stream_info->stream_ctx_array[cur_stream].stream_ring =
741                         cpu_to_le64(addr);
742                 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
743                                 cur_stream, (unsigned long long) addr);
744
745                 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
746                 if (ret) {
747                         xhci_ring_free(xhci, cur_ring);
748                         stream_info->stream_rings[cur_stream] = NULL;
749                         goto cleanup_rings;
750                 }
751         }
752         /* Leave the other unused stream ring pointers in the stream context
753          * array initialized to zero.  This will cause the xHC to give us an
754          * error if the device asks for a stream ID we don't have setup (if it
755          * was any other way, the host controller would assume the ring is
756          * "empty" and wait forever for data to be queued to that stream ID).
757          */
758
759         return stream_info;
760
761 cleanup_rings:
762         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
763                 cur_ring = stream_info->stream_rings[cur_stream];
764                 if (cur_ring) {
765                         xhci_ring_free(xhci, cur_ring);
766                         stream_info->stream_rings[cur_stream] = NULL;
767                 }
768         }
769         xhci_free_command(xhci, stream_info->free_streams_command);
770 cleanup_ctx:
771         kfree(stream_info->stream_rings);
772 cleanup_info:
773         kfree(stream_info);
774 cleanup_trbs:
775         xhci->cmd_ring_reserved_trbs--;
776         return NULL;
777 }
778 /*
779  * Sets the MaxPStreams field and the Linear Stream Array field.
780  * Sets the dequeue pointer to the stream context array.
781  */
782 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
783                 struct xhci_ep_ctx *ep_ctx,
784                 struct xhci_stream_info *stream_info)
785 {
786         u32 max_primary_streams;
787         /* MaxPStreams is the number of stream context array entries, not the
788          * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
789          * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
790          */
791         max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
792         xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
793                         "Setting number of stream ctx array entries to %u",
794                         1 << (max_primary_streams + 1));
795         ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
796         ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
797                                        | EP_HAS_LSA);
798         ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
799 }
800
801 /*
802  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
803  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
804  * not at the beginning of the ring).
805  */
806 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
807                 struct xhci_virt_ep *ep)
808 {
809         dma_addr_t addr;
810         ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
811         addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
812         ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
813 }
814
815 /* Frees all stream contexts associated with the endpoint,
816  *
817  * Caller should fix the endpoint context streams fields.
818  */
819 void xhci_free_stream_info(struct xhci_hcd *xhci,
820                 struct xhci_stream_info *stream_info)
821 {
822         int cur_stream;
823         struct xhci_ring *cur_ring;
824
825         if (!stream_info)
826                 return;
827
828         for (cur_stream = 1; cur_stream < stream_info->num_streams;
829                         cur_stream++) {
830                 cur_ring = stream_info->stream_rings[cur_stream];
831                 if (cur_ring) {
832                         xhci_ring_free(xhci, cur_ring);
833                         stream_info->stream_rings[cur_stream] = NULL;
834                 }
835         }
836         xhci_free_command(xhci, stream_info->free_streams_command);
837         xhci->cmd_ring_reserved_trbs--;
838         if (stream_info->stream_ctx_array)
839                 xhci_free_stream_ctx(xhci,
840                                 stream_info->num_stream_ctxs,
841                                 stream_info->stream_ctx_array,
842                                 stream_info->ctx_array_dma);
843
844         kfree(stream_info->stream_rings);
845         kfree(stream_info);
846 }
847
848
849 /***************** Device context manipulation *************************/
850
851 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
852                 struct xhci_virt_ep *ep)
853 {
854         setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
855                     (unsigned long)ep);
856         ep->xhci = xhci;
857 }
858
859 static void xhci_free_tt_info(struct xhci_hcd *xhci,
860                 struct xhci_virt_device *virt_dev,
861                 int slot_id)
862 {
863         struct list_head *tt_list_head;
864         struct xhci_tt_bw_info *tt_info, *next;
865         bool slot_found = false;
866
867         /* If the device never made it past the Set Address stage,
868          * it may not have the real_port set correctly.
869          */
870         if (virt_dev->real_port == 0 ||
871                         virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
872                 xhci_dbg(xhci, "Bad real port.\n");
873                 return;
874         }
875
876         tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
877         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
878                 /* Multi-TT hubs will have more than one entry */
879                 if (tt_info->slot_id == slot_id) {
880                         slot_found = true;
881                         list_del(&tt_info->tt_list);
882                         kfree(tt_info);
883                 } else if (slot_found) {
884                         break;
885                 }
886         }
887 }
888
889 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
890                 struct xhci_virt_device *virt_dev,
891                 struct usb_device *hdev,
892                 struct usb_tt *tt, gfp_t mem_flags)
893 {
894         struct xhci_tt_bw_info          *tt_info;
895         unsigned int                    num_ports;
896         int                             i, j;
897
898         if (!tt->multi)
899                 num_ports = 1;
900         else
901                 num_ports = hdev->maxchild;
902
903         for (i = 0; i < num_ports; i++, tt_info++) {
904                 struct xhci_interval_bw_table *bw_table;
905
906                 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
907                 if (!tt_info)
908                         goto free_tts;
909                 INIT_LIST_HEAD(&tt_info->tt_list);
910                 list_add(&tt_info->tt_list,
911                                 &xhci->rh_bw[virt_dev->real_port - 1].tts);
912                 tt_info->slot_id = virt_dev->udev->slot_id;
913                 if (tt->multi)
914                         tt_info->ttport = i+1;
915                 bw_table = &tt_info->bw_table;
916                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
917                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
918         }
919         return 0;
920
921 free_tts:
922         xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
923         return -ENOMEM;
924 }
925
926
927 /* All the xhci_tds in the ring's TD list should be freed at this point.
928  * Should be called with xhci->lock held if there is any chance the TT lists
929  * will be manipulated by the configure endpoint, allocate device, or update
930  * hub functions while this function is removing the TT entries from the list.
931  */
932 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
933 {
934         struct xhci_virt_device *dev;
935         int i;
936         int old_active_eps = 0;
937
938         /* Slot ID 0 is reserved */
939         if (slot_id == 0 || !xhci->devs[slot_id])
940                 return;
941
942         dev = xhci->devs[slot_id];
943
944         trace_xhci_free_virt_device(dev);
945
946         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
947         if (!dev)
948                 return;
949
950         if (dev->tt_info)
951                 old_active_eps = dev->tt_info->active_eps;
952
953         for (i = 0; i < 31; i++) {
954                 if (dev->eps[i].ring)
955                         xhci_ring_free(xhci, dev->eps[i].ring);
956                 if (dev->eps[i].stream_info)
957                         xhci_free_stream_info(xhci,
958                                         dev->eps[i].stream_info);
959                 /* Endpoints on the TT/root port lists should have been removed
960                  * when usb_disable_device() was called for the device.
961                  * We can't drop them anyway, because the udev might have gone
962                  * away by this point, and we can't tell what speed it was.
963                  */
964                 if (!list_empty(&dev->eps[i].bw_endpoint_list))
965                         xhci_warn(xhci, "Slot %u endpoint %u "
966                                         "not removed from BW list!\n",
967                                         slot_id, i);
968         }
969         /* If this is a hub, free the TT(s) from the TT list */
970         xhci_free_tt_info(xhci, dev, slot_id);
971         /* If necessary, update the number of active TTs on this root port */
972         xhci_update_tt_active_eps(xhci, dev, old_active_eps);
973
974         if (dev->ring_cache) {
975                 for (i = 0; i < dev->num_rings_cached; i++)
976                         xhci_ring_free(xhci, dev->ring_cache[i]);
977                 kfree(dev->ring_cache);
978         }
979
980         if (dev->in_ctx)
981                 xhci_free_container_ctx(xhci, dev->in_ctx);
982         if (dev->out_ctx)
983                 xhci_free_container_ctx(xhci, dev->out_ctx);
984
985         kfree(xhci->devs[slot_id]);
986         xhci->devs[slot_id] = NULL;
987 }
988
989 /*
990  * Free a virt_device structure.
991  * If the virt_device added a tt_info (a hub) and has children pointing to
992  * that tt_info, then free the child first. Recursive.
993  * We can't rely on udev at this point to find child-parent relationships.
994  */
995 void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
996 {
997         struct xhci_virt_device *vdev;
998         struct list_head *tt_list_head;
999         struct xhci_tt_bw_info *tt_info, *next;
1000         int i;
1001
1002         vdev = xhci->devs[slot_id];
1003         if (!vdev)
1004                 return;
1005
1006         tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
1007         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
1008                 /* is this a hub device that added a tt_info to the tts list */
1009                 if (tt_info->slot_id == slot_id) {
1010                         /* are any devices using this tt_info? */
1011                         for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
1012                                 vdev = xhci->devs[i];
1013                                 if (vdev && (vdev->tt_info == tt_info))
1014                                         xhci_free_virt_devices_depth_first(
1015                                                 xhci, i);
1016                         }
1017                 }
1018         }
1019         /* we are now at a leaf device */
1020         xhci_free_virt_device(xhci, slot_id);
1021 }
1022
1023 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
1024                 struct usb_device *udev, gfp_t flags)
1025 {
1026         struct xhci_virt_device *dev;
1027         int i;
1028
1029         /* Slot ID 0 is reserved */
1030         if (slot_id == 0 || xhci->devs[slot_id]) {
1031                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
1032                 return 0;
1033         }
1034
1035         xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
1036         if (!xhci->devs[slot_id])
1037                 return 0;
1038         dev = xhci->devs[slot_id];
1039
1040         /* Allocate the (output) device context that will be used in the HC. */
1041         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
1042         if (!dev->out_ctx)
1043                 goto fail;
1044
1045         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1046                         (unsigned long long)dev->out_ctx->dma);
1047
1048         /* Allocate the (input) device context for address device command */
1049         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1050         if (!dev->in_ctx)
1051                 goto fail;
1052
1053         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1054                         (unsigned long long)dev->in_ctx->dma);
1055
1056         /* Initialize the cancellation list and watchdog timers for each ep */
1057         for (i = 0; i < 31; i++) {
1058                 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1059                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1060                 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1061         }
1062
1063         /* Allocate endpoint 0 ring */
1064         dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1065         if (!dev->eps[0].ring)
1066                 goto fail;
1067
1068         /* Allocate pointers to the ring cache */
1069         dev->ring_cache = kzalloc(
1070                         sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
1071                         flags);
1072         if (!dev->ring_cache)
1073                 goto fail;
1074         dev->num_rings_cached = 0;
1075
1076         dev->udev = udev;
1077
1078         /* Point to output device context in dcbaa. */
1079         xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1080         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1081                  slot_id,
1082                  &xhci->dcbaa->dev_context_ptrs[slot_id],
1083                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1084
1085         trace_xhci_alloc_virt_device(dev);
1086
1087         return 1;
1088 fail:
1089         xhci_free_virt_device(xhci, slot_id);
1090         return 0;
1091 }
1092
1093 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1094                 struct usb_device *udev)
1095 {
1096         struct xhci_virt_device *virt_dev;
1097         struct xhci_ep_ctx      *ep0_ctx;
1098         struct xhci_ring        *ep_ring;
1099
1100         virt_dev = xhci->devs[udev->slot_id];
1101         ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1102         ep_ring = virt_dev->eps[0].ring;
1103         /*
1104          * FIXME we don't keep track of the dequeue pointer very well after a
1105          * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1106          * host to our enqueue pointer.  This should only be called after a
1107          * configured device has reset, so all control transfers should have
1108          * been completed or cancelled before the reset.
1109          */
1110         ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1111                                                         ep_ring->enqueue)
1112                                    | ep_ring->cycle_state);
1113 }
1114
1115 /*
1116  * The xHCI roothub may have ports of differing speeds in any order in the port
1117  * status registers.  xhci->port_array provides an array of the port speed for
1118  * each offset into the port status registers.
1119  *
1120  * The xHCI hardware wants to know the roothub port number that the USB device
1121  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1122  * know is the index of that port under either the USB 2.0 or the USB 3.0
1123  * roothub, but that doesn't give us the real index into the HW port status
1124  * registers. Call xhci_find_raw_port_number() to get real index.
1125  */
1126 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1127                 struct usb_device *udev)
1128 {
1129         struct usb_device *top_dev;
1130         struct usb_hcd *hcd;
1131
1132         if (udev->speed >= USB_SPEED_SUPER)
1133                 hcd = xhci->shared_hcd;
1134         else
1135                 hcd = xhci->main_hcd;
1136
1137         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1138                         top_dev = top_dev->parent)
1139                 /* Found device below root hub */;
1140
1141         return  xhci_find_raw_port_number(hcd, top_dev->portnum);
1142 }
1143
1144 /* Setup an xHCI virtual device for a Set Address command */
1145 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1146 {
1147         struct xhci_virt_device *dev;
1148         struct xhci_ep_ctx      *ep0_ctx;
1149         struct xhci_slot_ctx    *slot_ctx;
1150         u32                     port_num;
1151         u32                     max_packets;
1152         struct usb_device *top_dev;
1153
1154         dev = xhci->devs[udev->slot_id];
1155         /* Slot ID 0 is reserved */
1156         if (udev->slot_id == 0 || !dev) {
1157                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1158                                 udev->slot_id);
1159                 return -EINVAL;
1160         }
1161         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1162         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1163
1164         /* 3) Only the control endpoint is valid - one endpoint context */
1165         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1166         switch (udev->speed) {
1167         case USB_SPEED_SUPER_PLUS:
1168                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1169                 max_packets = MAX_PACKET(512);
1170                 break;
1171         case USB_SPEED_SUPER:
1172                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1173                 max_packets = MAX_PACKET(512);
1174                 break;
1175         case USB_SPEED_HIGH:
1176                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1177                 max_packets = MAX_PACKET(64);
1178                 break;
1179         /* USB core guesses at a 64-byte max packet first for FS devices */
1180         case USB_SPEED_FULL:
1181                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1182                 max_packets = MAX_PACKET(64);
1183                 break;
1184         case USB_SPEED_LOW:
1185                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1186                 max_packets = MAX_PACKET(8);
1187                 break;
1188         case USB_SPEED_WIRELESS:
1189                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1190                 return -EINVAL;
1191                 break;
1192         default:
1193                 /* Speed was set earlier, this shouldn't happen. */
1194                 return -EINVAL;
1195         }
1196         /* Find the root hub port this device is under */
1197         port_num = xhci_find_real_port_number(xhci, udev);
1198         if (!port_num)
1199                 return -EINVAL;
1200         slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1201         /* Set the port number in the virtual_device to the faked port number */
1202         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1203                         top_dev = top_dev->parent)
1204                 /* Found device below root hub */;
1205         dev->fake_port = top_dev->portnum;
1206         dev->real_port = port_num;
1207         xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1208         xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1209
1210         /* Find the right bandwidth table that this device will be a part of.
1211          * If this is a full speed device attached directly to a root port (or a
1212          * decendent of one), it counts as a primary bandwidth domain, not a
1213          * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1214          * will never be created for the HS root hub.
1215          */
1216         if (!udev->tt || !udev->tt->hub->parent) {
1217                 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1218         } else {
1219                 struct xhci_root_port_bw_info *rh_bw;
1220                 struct xhci_tt_bw_info *tt_bw;
1221
1222                 rh_bw = &xhci->rh_bw[port_num - 1];
1223                 /* Find the right TT. */
1224                 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1225                         if (tt_bw->slot_id != udev->tt->hub->slot_id)
1226                                 continue;
1227
1228                         if (!dev->udev->tt->multi ||
1229                                         (udev->tt->multi &&
1230                                          tt_bw->ttport == dev->udev->ttport)) {
1231                                 dev->bw_table = &tt_bw->bw_table;
1232                                 dev->tt_info = tt_bw;
1233                                 break;
1234                         }
1235                 }
1236                 if (!dev->tt_info)
1237                         xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1238         }
1239
1240         /* Is this a LS/FS device under an external HS hub? */
1241         if (udev->tt && udev->tt->hub->parent) {
1242                 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1243                                                 (udev->ttport << 8));
1244                 if (udev->tt->multi)
1245                         slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1246         }
1247         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1248         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1249
1250         /* Step 4 - ring already allocated */
1251         /* Step 5 */
1252         ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1253
1254         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1255         ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1256                                          max_packets);
1257
1258         ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1259                                    dev->eps[0].ring->cycle_state);
1260
1261         trace_xhci_setup_addressable_virt_device(dev);
1262
1263         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1264
1265         return 0;
1266 }
1267
1268 /*
1269  * Convert interval expressed as 2^(bInterval - 1) == interval into
1270  * straight exponent value 2^n == interval.
1271  *
1272  */
1273 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1274                 struct usb_host_endpoint *ep)
1275 {
1276         unsigned int interval;
1277
1278         interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1279         if (interval != ep->desc.bInterval - 1)
1280                 dev_warn(&udev->dev,
1281                          "ep %#x - rounding interval to %d %sframes\n",
1282                          ep->desc.bEndpointAddress,
1283                          1 << interval,
1284                          udev->speed == USB_SPEED_FULL ? "" : "micro");
1285
1286         if (udev->speed == USB_SPEED_FULL) {
1287                 /*
1288                  * Full speed isoc endpoints specify interval in frames,
1289                  * not microframes. We are using microframes everywhere,
1290                  * so adjust accordingly.
1291                  */
1292                 interval += 3;  /* 1 frame = 2^3 uframes */
1293         }
1294
1295         return interval;
1296 }
1297
1298 /*
1299  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1300  * microframes, rounded down to nearest power of 2.
1301  */
1302 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1303                 struct usb_host_endpoint *ep, unsigned int desc_interval,
1304                 unsigned int min_exponent, unsigned int max_exponent)
1305 {
1306         unsigned int interval;
1307
1308         interval = fls(desc_interval) - 1;
1309         interval = clamp_val(interval, min_exponent, max_exponent);
1310         if ((1 << interval) != desc_interval)
1311                 dev_dbg(&udev->dev,
1312                          "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1313                          ep->desc.bEndpointAddress,
1314                          1 << interval,
1315                          desc_interval);
1316
1317         return interval;
1318 }
1319
1320 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1321                 struct usb_host_endpoint *ep)
1322 {
1323         if (ep->desc.bInterval == 0)
1324                 return 0;
1325         return xhci_microframes_to_exponent(udev, ep,
1326                         ep->desc.bInterval, 0, 15);
1327 }
1328
1329
1330 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1331                 struct usb_host_endpoint *ep)
1332 {
1333         return xhci_microframes_to_exponent(udev, ep,
1334                         ep->desc.bInterval * 8, 3, 10);
1335 }
1336
1337 /* Return the polling or NAK interval.
1338  *
1339  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1340  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1341  *
1342  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1343  * is set to 0.
1344  */
1345 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1346                 struct usb_host_endpoint *ep)
1347 {
1348         unsigned int interval = 0;
1349
1350         switch (udev->speed) {
1351         case USB_SPEED_HIGH:
1352                 /* Max NAK rate */
1353                 if (usb_endpoint_xfer_control(&ep->desc) ||
1354                     usb_endpoint_xfer_bulk(&ep->desc)) {
1355                         interval = xhci_parse_microframe_interval(udev, ep);
1356                         break;
1357                 }
1358                 /* Fall through - SS and HS isoc/int have same decoding */
1359
1360         case USB_SPEED_SUPER_PLUS:
1361         case USB_SPEED_SUPER:
1362                 if (usb_endpoint_xfer_int(&ep->desc) ||
1363                     usb_endpoint_xfer_isoc(&ep->desc)) {
1364                         interval = xhci_parse_exponent_interval(udev, ep);
1365                 }
1366                 break;
1367
1368         case USB_SPEED_FULL:
1369                 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1370                         interval = xhci_parse_exponent_interval(udev, ep);
1371                         break;
1372                 }
1373                 /*
1374                  * Fall through for interrupt endpoint interval decoding
1375                  * since it uses the same rules as low speed interrupt
1376                  * endpoints.
1377                  */
1378
1379         case USB_SPEED_LOW:
1380                 if (usb_endpoint_xfer_int(&ep->desc) ||
1381                     usb_endpoint_xfer_isoc(&ep->desc)) {
1382
1383                         interval = xhci_parse_frame_interval(udev, ep);
1384                 }
1385                 break;
1386
1387         default:
1388                 BUG();
1389         }
1390         return interval;
1391 }
1392
1393 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1394  * High speed endpoint descriptors can define "the number of additional
1395  * transaction opportunities per microframe", but that goes in the Max Burst
1396  * endpoint context field.
1397  */
1398 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1399                 struct usb_host_endpoint *ep)
1400 {
1401         if (udev->speed < USB_SPEED_SUPER ||
1402                         !usb_endpoint_xfer_isoc(&ep->desc))
1403                 return 0;
1404         return ep->ss_ep_comp.bmAttributes;
1405 }
1406
1407 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1408                                        struct usb_host_endpoint *ep)
1409 {
1410         /* Super speed and Plus have max burst in ep companion desc */
1411         if (udev->speed >= USB_SPEED_SUPER)
1412                 return ep->ss_ep_comp.bMaxBurst;
1413
1414         if (udev->speed == USB_SPEED_HIGH &&
1415             (usb_endpoint_xfer_isoc(&ep->desc) ||
1416              usb_endpoint_xfer_int(&ep->desc)))
1417                 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1418
1419         return 0;
1420 }
1421
1422 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1423 {
1424         int in;
1425
1426         in = usb_endpoint_dir_in(&ep->desc);
1427
1428         switch (usb_endpoint_type(&ep->desc)) {
1429         case USB_ENDPOINT_XFER_CONTROL:
1430                 return CTRL_EP;
1431         case USB_ENDPOINT_XFER_BULK:
1432                 return in ? BULK_IN_EP : BULK_OUT_EP;
1433         case USB_ENDPOINT_XFER_ISOC:
1434                 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1435         case USB_ENDPOINT_XFER_INT:
1436                 return in ? INT_IN_EP : INT_OUT_EP;
1437         }
1438         return 0;
1439 }
1440
1441 /* Return the maximum endpoint service interval time (ESIT) payload.
1442  * Basically, this is the maxpacket size, multiplied by the burst size
1443  * and mult size.
1444  */
1445 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1446                 struct usb_host_endpoint *ep)
1447 {
1448         int max_burst;
1449         int max_packet;
1450
1451         /* Only applies for interrupt or isochronous endpoints */
1452         if (usb_endpoint_xfer_control(&ep->desc) ||
1453                         usb_endpoint_xfer_bulk(&ep->desc))
1454                 return 0;
1455
1456         /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1457         if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1458             USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1459                 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1460         /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1461         else if (udev->speed >= USB_SPEED_SUPER)
1462                 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1463
1464         max_packet = usb_endpoint_maxp(&ep->desc);
1465         max_burst = usb_endpoint_maxp_mult(&ep->desc);
1466         /* A 0 in max burst means 1 transfer per ESIT */
1467         return max_packet * max_burst;
1468 }
1469
1470 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1471  * Drivers will have to call usb_alloc_streams() to do that.
1472  */
1473 int xhci_endpoint_init(struct xhci_hcd *xhci,
1474                 struct xhci_virt_device *virt_dev,
1475                 struct usb_device *udev,
1476                 struct usb_host_endpoint *ep,
1477                 gfp_t mem_flags)
1478 {
1479         unsigned int ep_index;
1480         struct xhci_ep_ctx *ep_ctx;
1481         struct xhci_ring *ep_ring;
1482         unsigned int max_packet;
1483         enum xhci_ring_type ring_type;
1484         u32 max_esit_payload;
1485         u32 endpoint_type;
1486         unsigned int max_burst;
1487         unsigned int interval;
1488         unsigned int mult;
1489         unsigned int avg_trb_len;
1490         unsigned int err_count = 0;
1491
1492         ep_index = xhci_get_endpoint_index(&ep->desc);
1493         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1494
1495         endpoint_type = xhci_get_endpoint_type(ep);
1496         if (!endpoint_type)
1497                 return -EINVAL;
1498
1499         ring_type = usb_endpoint_type(&ep->desc);
1500
1501         /*
1502          * Get values to fill the endpoint context, mostly from ep descriptor.
1503          * The average TRB buffer lengt for bulk endpoints is unclear as we
1504          * have no clue on scatter gather list entry size. For Isoc and Int,
1505          * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1506          */
1507         max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1508         interval = xhci_get_endpoint_interval(udev, ep);
1509         mult = xhci_get_endpoint_mult(udev, ep);
1510         max_packet = usb_endpoint_maxp(&ep->desc);
1511         max_burst = xhci_get_endpoint_max_burst(udev, ep);
1512         avg_trb_len = max_esit_payload;
1513
1514         /* FIXME dig Mult and streams info out of ep companion desc */
1515
1516         /* Allow 3 retries for everything but isoc, set CErr = 3 */
1517         if (!usb_endpoint_xfer_isoc(&ep->desc))
1518                 err_count = 3;
1519         /* Some devices get this wrong */
1520         if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH)
1521                 max_packet = 512;
1522         /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1523         if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1524                 avg_trb_len = 8;
1525         /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1526         if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1527                 mult = 0;
1528
1529         /* Set up the endpoint ring */
1530         virt_dev->eps[ep_index].new_ring =
1531                 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1532         if (!virt_dev->eps[ep_index].new_ring) {
1533                 /* Attempt to use the ring cache */
1534                 if (virt_dev->num_rings_cached == 0)
1535                         return -ENOMEM;
1536                 virt_dev->num_rings_cached--;
1537                 virt_dev->eps[ep_index].new_ring =
1538                         virt_dev->ring_cache[virt_dev->num_rings_cached];
1539                 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1540                 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1541                                         1, ring_type);
1542         }
1543         virt_dev->eps[ep_index].skip = false;
1544         ep_ring = virt_dev->eps[ep_index].new_ring;
1545
1546         /* Fill the endpoint context */
1547         ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1548                                       EP_INTERVAL(interval) |
1549                                       EP_MULT(mult));
1550         ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1551                                        MAX_PACKET(max_packet) |
1552                                        MAX_BURST(max_burst) |
1553                                        ERROR_COUNT(err_count));
1554         ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1555                                   ep_ring->cycle_state);
1556
1557         ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1558                                       EP_AVG_TRB_LENGTH(avg_trb_len));
1559
1560         /* FIXME Debug endpoint context */
1561         return 0;
1562 }
1563
1564 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1565                 struct xhci_virt_device *virt_dev,
1566                 struct usb_host_endpoint *ep)
1567 {
1568         unsigned int ep_index;
1569         struct xhci_ep_ctx *ep_ctx;
1570
1571         ep_index = xhci_get_endpoint_index(&ep->desc);
1572         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1573
1574         ep_ctx->ep_info = 0;
1575         ep_ctx->ep_info2 = 0;
1576         ep_ctx->deq = 0;
1577         ep_ctx->tx_info = 0;
1578         /* Don't free the endpoint ring until the set interface or configuration
1579          * request succeeds.
1580          */
1581 }
1582
1583 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1584 {
1585         bw_info->ep_interval = 0;
1586         bw_info->mult = 0;
1587         bw_info->num_packets = 0;
1588         bw_info->max_packet_size = 0;
1589         bw_info->type = 0;
1590         bw_info->max_esit_payload = 0;
1591 }
1592
1593 void xhci_update_bw_info(struct xhci_hcd *xhci,
1594                 struct xhci_container_ctx *in_ctx,
1595                 struct xhci_input_control_ctx *ctrl_ctx,
1596                 struct xhci_virt_device *virt_dev)
1597 {
1598         struct xhci_bw_info *bw_info;
1599         struct xhci_ep_ctx *ep_ctx;
1600         unsigned int ep_type;
1601         int i;
1602
1603         for (i = 1; i < 31; i++) {
1604                 bw_info = &virt_dev->eps[i].bw_info;
1605
1606                 /* We can't tell what endpoint type is being dropped, but
1607                  * unconditionally clearing the bandwidth info for non-periodic
1608                  * endpoints should be harmless because the info will never be
1609                  * set in the first place.
1610                  */
1611                 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1612                         /* Dropped endpoint */
1613                         xhci_clear_endpoint_bw_info(bw_info);
1614                         continue;
1615                 }
1616
1617                 if (EP_IS_ADDED(ctrl_ctx, i)) {
1618                         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1619                         ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1620
1621                         /* Ignore non-periodic endpoints */
1622                         if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1623                                         ep_type != ISOC_IN_EP &&
1624                                         ep_type != INT_IN_EP)
1625                                 continue;
1626
1627                         /* Added or changed endpoint */
1628                         bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1629                                         le32_to_cpu(ep_ctx->ep_info));
1630                         /* Number of packets and mult are zero-based in the
1631                          * input context, but we want one-based for the
1632                          * interval table.
1633                          */
1634                         bw_info->mult = CTX_TO_EP_MULT(
1635                                         le32_to_cpu(ep_ctx->ep_info)) + 1;
1636                         bw_info->num_packets = CTX_TO_MAX_BURST(
1637                                         le32_to_cpu(ep_ctx->ep_info2)) + 1;
1638                         bw_info->max_packet_size = MAX_PACKET_DECODED(
1639                                         le32_to_cpu(ep_ctx->ep_info2));
1640                         bw_info->type = ep_type;
1641                         bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1642                                         le32_to_cpu(ep_ctx->tx_info));
1643                 }
1644         }
1645 }
1646
1647 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1648  * Useful when you want to change one particular aspect of the endpoint and then
1649  * issue a configure endpoint command.
1650  */
1651 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1652                 struct xhci_container_ctx *in_ctx,
1653                 struct xhci_container_ctx *out_ctx,
1654                 unsigned int ep_index)
1655 {
1656         struct xhci_ep_ctx *out_ep_ctx;
1657         struct xhci_ep_ctx *in_ep_ctx;
1658
1659         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1660         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1661
1662         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1663         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1664         in_ep_ctx->deq = out_ep_ctx->deq;
1665         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1666 }
1667
1668 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1669  * Useful when you want to change one particular aspect of the endpoint and then
1670  * issue a configure endpoint command.  Only the context entries field matters,
1671  * but we'll copy the whole thing anyway.
1672  */
1673 void xhci_slot_copy(struct xhci_hcd *xhci,
1674                 struct xhci_container_ctx *in_ctx,
1675                 struct xhci_container_ctx *out_ctx)
1676 {
1677         struct xhci_slot_ctx *in_slot_ctx;
1678         struct xhci_slot_ctx *out_slot_ctx;
1679
1680         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1681         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1682
1683         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1684         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1685         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1686         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1687 }
1688
1689 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1690 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1691 {
1692         int i;
1693         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1694         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1695
1696         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1697                         "Allocating %d scratchpad buffers", num_sp);
1698
1699         if (!num_sp)
1700                 return 0;
1701
1702         xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1703         if (!xhci->scratchpad)
1704                 goto fail_sp;
1705
1706         xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1707                                      num_sp * sizeof(u64),
1708                                      &xhci->scratchpad->sp_dma, flags);
1709         if (!xhci->scratchpad->sp_array)
1710                 goto fail_sp2;
1711
1712         xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1713         if (!xhci->scratchpad->sp_buffers)
1714                 goto fail_sp3;
1715
1716         xhci->scratchpad->sp_dma_buffers =
1717                 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1718
1719         if (!xhci->scratchpad->sp_dma_buffers)
1720                 goto fail_sp4;
1721
1722         xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1723         for (i = 0; i < num_sp; i++) {
1724                 dma_addr_t dma;
1725                 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1726                                 flags);
1727                 if (!buf)
1728                         goto fail_sp5;
1729
1730                 xhci->scratchpad->sp_array[i] = dma;
1731                 xhci->scratchpad->sp_buffers[i] = buf;
1732                 xhci->scratchpad->sp_dma_buffers[i] = dma;
1733         }
1734
1735         return 0;
1736
1737  fail_sp5:
1738         for (i = i - 1; i >= 0; i--) {
1739                 dma_free_coherent(dev, xhci->page_size,
1740                                     xhci->scratchpad->sp_buffers[i],
1741                                     xhci->scratchpad->sp_dma_buffers[i]);
1742         }
1743         kfree(xhci->scratchpad->sp_dma_buffers);
1744
1745  fail_sp4:
1746         kfree(xhci->scratchpad->sp_buffers);
1747
1748  fail_sp3:
1749         dma_free_coherent(dev, num_sp * sizeof(u64),
1750                             xhci->scratchpad->sp_array,
1751                             xhci->scratchpad->sp_dma);
1752
1753  fail_sp2:
1754         kfree(xhci->scratchpad);
1755         xhci->scratchpad = NULL;
1756
1757  fail_sp:
1758         return -ENOMEM;
1759 }
1760
1761 static void scratchpad_free(struct xhci_hcd *xhci)
1762 {
1763         int num_sp;
1764         int i;
1765         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1766
1767         if (!xhci->scratchpad)
1768                 return;
1769
1770         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1771
1772         for (i = 0; i < num_sp; i++) {
1773                 dma_free_coherent(dev, xhci->page_size,
1774                                     xhci->scratchpad->sp_buffers[i],
1775                                     xhci->scratchpad->sp_dma_buffers[i]);
1776         }
1777         kfree(xhci->scratchpad->sp_dma_buffers);
1778         kfree(xhci->scratchpad->sp_buffers);
1779         dma_free_coherent(dev, num_sp * sizeof(u64),
1780                             xhci->scratchpad->sp_array,
1781                             xhci->scratchpad->sp_dma);
1782         kfree(xhci->scratchpad);
1783         xhci->scratchpad = NULL;
1784 }
1785
1786 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1787                 bool allocate_in_ctx, bool allocate_completion,
1788                 gfp_t mem_flags)
1789 {
1790         struct xhci_command *command;
1791
1792         command = kzalloc(sizeof(*command), mem_flags);
1793         if (!command)
1794                 return NULL;
1795
1796         if (allocate_in_ctx) {
1797                 command->in_ctx =
1798                         xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1799                                         mem_flags);
1800                 if (!command->in_ctx) {
1801                         kfree(command);
1802                         return NULL;
1803                 }
1804         }
1805
1806         if (allocate_completion) {
1807                 command->completion =
1808                         kzalloc(sizeof(struct completion), mem_flags);
1809                 if (!command->completion) {
1810                         xhci_free_container_ctx(xhci, command->in_ctx);
1811                         kfree(command);
1812                         return NULL;
1813                 }
1814                 init_completion(command->completion);
1815         }
1816
1817         command->status = 0;
1818         INIT_LIST_HEAD(&command->cmd_list);
1819         return command;
1820 }
1821
1822 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1823 {
1824         kfree(urb_priv);
1825 }
1826
1827 void xhci_free_command(struct xhci_hcd *xhci,
1828                 struct xhci_command *command)
1829 {
1830         xhci_free_container_ctx(xhci,
1831                         command->in_ctx);
1832         kfree(command->completion);
1833         kfree(command);
1834 }
1835
1836 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1837 {
1838         struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
1839         int size;
1840         int i, j, num_ports;
1841
1842         cancel_delayed_work_sync(&xhci->cmd_timer);
1843
1844         /* Free the Event Ring Segment Table and the actual Event Ring */
1845         size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1846         if (xhci->erst.entries)
1847                 dma_free_coherent(dev, size,
1848                                 xhci->erst.entries, xhci->erst.erst_dma_addr);
1849         xhci->erst.entries = NULL;
1850         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1851         if (xhci->event_ring)
1852                 xhci_ring_free(xhci, xhci->event_ring);
1853         xhci->event_ring = NULL;
1854         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1855
1856         if (xhci->lpm_command)
1857                 xhci_free_command(xhci, xhci->lpm_command);
1858         xhci->lpm_command = NULL;
1859         if (xhci->cmd_ring)
1860                 xhci_ring_free(xhci, xhci->cmd_ring);
1861         xhci->cmd_ring = NULL;
1862         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1863         xhci_cleanup_command_queue(xhci);
1864
1865         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1866         for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1867                 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1868                 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1869                         struct list_head *ep = &bwt->interval_bw[j].endpoints;
1870                         while (!list_empty(ep))
1871                                 list_del_init(ep->next);
1872                 }
1873         }
1874
1875         for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1876                 xhci_free_virt_devices_depth_first(xhci, i);
1877
1878         dma_pool_destroy(xhci->segment_pool);
1879         xhci->segment_pool = NULL;
1880         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1881
1882         dma_pool_destroy(xhci->device_pool);
1883         xhci->device_pool = NULL;
1884         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1885
1886         dma_pool_destroy(xhci->small_streams_pool);
1887         xhci->small_streams_pool = NULL;
1888         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1889                         "Freed small stream array pool");
1890
1891         dma_pool_destroy(xhci->medium_streams_pool);
1892         xhci->medium_streams_pool = NULL;
1893         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1894                         "Freed medium stream array pool");
1895
1896         if (xhci->dcbaa)
1897                 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1898                                 xhci->dcbaa, xhci->dcbaa->dma);
1899         xhci->dcbaa = NULL;
1900
1901         scratchpad_free(xhci);
1902
1903         if (!xhci->rh_bw)
1904                 goto no_bw;
1905
1906         for (i = 0; i < num_ports; i++) {
1907                 struct xhci_tt_bw_info *tt, *n;
1908                 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1909                         list_del(&tt->tt_list);
1910                         kfree(tt);
1911                 }
1912         }
1913
1914 no_bw:
1915         xhci->cmd_ring_reserved_trbs = 0;
1916         xhci->num_usb2_ports = 0;
1917         xhci->num_usb3_ports = 0;
1918         xhci->num_active_eps = 0;
1919         kfree(xhci->usb2_ports);
1920         kfree(xhci->usb3_ports);
1921         kfree(xhci->port_array);
1922         kfree(xhci->rh_bw);
1923         kfree(xhci->ext_caps);
1924
1925         xhci->usb2_ports = NULL;
1926         xhci->usb3_ports = NULL;
1927         xhci->port_array = NULL;
1928         xhci->rh_bw = NULL;
1929         xhci->ext_caps = NULL;
1930
1931         xhci->page_size = 0;
1932         xhci->page_shift = 0;
1933         xhci->bus_state[0].bus_suspended = 0;
1934         xhci->bus_state[1].bus_suspended = 0;
1935 }
1936
1937 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1938                 struct xhci_segment *input_seg,
1939                 union xhci_trb *start_trb,
1940                 union xhci_trb *end_trb,
1941                 dma_addr_t input_dma,
1942                 struct xhci_segment *result_seg,
1943                 char *test_name, int test_number)
1944 {
1945         unsigned long long start_dma;
1946         unsigned long long end_dma;
1947         struct xhci_segment *seg;
1948
1949         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1950         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1951
1952         seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1953         if (seg != result_seg) {
1954                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1955                                 test_name, test_number);
1956                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1957                                 "input DMA 0x%llx\n",
1958                                 input_seg,
1959                                 (unsigned long long) input_dma);
1960                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1961                                 "ending TRB %p (0x%llx DMA)\n",
1962                                 start_trb, start_dma,
1963                                 end_trb, end_dma);
1964                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1965                                 result_seg, seg);
1966                 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1967                           true);
1968                 return -1;
1969         }
1970         return 0;
1971 }
1972
1973 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1974 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1975 {
1976         struct {
1977                 dma_addr_t              input_dma;
1978                 struct xhci_segment     *result_seg;
1979         } simple_test_vector [] = {
1980                 /* A zeroed DMA field should fail */
1981                 { 0, NULL },
1982                 /* One TRB before the ring start should fail */
1983                 { xhci->event_ring->first_seg->dma - 16, NULL },
1984                 /* One byte before the ring start should fail */
1985                 { xhci->event_ring->first_seg->dma - 1, NULL },
1986                 /* Starting TRB should succeed */
1987                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1988                 /* Ending TRB should succeed */
1989                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1990                         xhci->event_ring->first_seg },
1991                 /* One byte after the ring end should fail */
1992                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1993                 /* One TRB after the ring end should fail */
1994                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1995                 /* An address of all ones should fail */
1996                 { (dma_addr_t) (~0), NULL },
1997         };
1998         struct {
1999                 struct xhci_segment     *input_seg;
2000                 union xhci_trb          *start_trb;
2001                 union xhci_trb          *end_trb;
2002                 dma_addr_t              input_dma;
2003                 struct xhci_segment     *result_seg;
2004         } complex_test_vector [] = {
2005                 /* Test feeding a valid DMA address from a different ring */
2006                 {       .input_seg = xhci->event_ring->first_seg,
2007                         .start_trb = xhci->event_ring->first_seg->trbs,
2008                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2009                         .input_dma = xhci->cmd_ring->first_seg->dma,
2010                         .result_seg = NULL,
2011                 },
2012                 /* Test feeding a valid end TRB from a different ring */
2013                 {       .input_seg = xhci->event_ring->first_seg,
2014                         .start_trb = xhci->event_ring->first_seg->trbs,
2015                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2016                         .input_dma = xhci->cmd_ring->first_seg->dma,
2017                         .result_seg = NULL,
2018                 },
2019                 /* Test feeding a valid start and end TRB from a different ring */
2020                 {       .input_seg = xhci->event_ring->first_seg,
2021                         .start_trb = xhci->cmd_ring->first_seg->trbs,
2022                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2023                         .input_dma = xhci->cmd_ring->first_seg->dma,
2024                         .result_seg = NULL,
2025                 },
2026                 /* TRB in this ring, but after this TD */
2027                 {       .input_seg = xhci->event_ring->first_seg,
2028                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
2029                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
2030                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2031                         .result_seg = NULL,
2032                 },
2033                 /* TRB in this ring, but before this TD */
2034                 {       .input_seg = xhci->event_ring->first_seg,
2035                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
2036                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
2037                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2038                         .result_seg = NULL,
2039                 },
2040                 /* TRB in this ring, but after this wrapped TD */
2041                 {       .input_seg = xhci->event_ring->first_seg,
2042                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2043                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2044                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2045                         .result_seg = NULL,
2046                 },
2047                 /* TRB in this ring, but before this wrapped TD */
2048                 {       .input_seg = xhci->event_ring->first_seg,
2049                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2050                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2051                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2052                         .result_seg = NULL,
2053                 },
2054                 /* TRB not in this ring, and we have a wrapped TD */
2055                 {       .input_seg = xhci->event_ring->first_seg,
2056                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2057                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2058                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2059                         .result_seg = NULL,
2060                 },
2061         };
2062
2063         unsigned int num_tests;
2064         int i, ret;
2065
2066         num_tests = ARRAY_SIZE(simple_test_vector);
2067         for (i = 0; i < num_tests; i++) {
2068                 ret = xhci_test_trb_in_td(xhci,
2069                                 xhci->event_ring->first_seg,
2070                                 xhci->event_ring->first_seg->trbs,
2071                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2072                                 simple_test_vector[i].input_dma,
2073                                 simple_test_vector[i].result_seg,
2074                                 "Simple", i);
2075                 if (ret < 0)
2076                         return ret;
2077         }
2078
2079         num_tests = ARRAY_SIZE(complex_test_vector);
2080         for (i = 0; i < num_tests; i++) {
2081                 ret = xhci_test_trb_in_td(xhci,
2082                                 complex_test_vector[i].input_seg,
2083                                 complex_test_vector[i].start_trb,
2084                                 complex_test_vector[i].end_trb,
2085                                 complex_test_vector[i].input_dma,
2086                                 complex_test_vector[i].result_seg,
2087                                 "Complex", i);
2088                 if (ret < 0)
2089                         return ret;
2090         }
2091         xhci_dbg(xhci, "TRB math tests passed.\n");
2092         return 0;
2093 }
2094
2095 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2096 {
2097         u64 temp;
2098         dma_addr_t deq;
2099
2100         deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2101                         xhci->event_ring->dequeue);
2102         if (deq == 0 && !in_interrupt())
2103                 xhci_warn(xhci, "WARN something wrong with SW event ring "
2104                                 "dequeue ptr.\n");
2105         /* Update HC event ring dequeue pointer */
2106         temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2107         temp &= ERST_PTR_MASK;
2108         /* Don't clear the EHB bit (which is RW1C) because
2109          * there might be more events to service.
2110          */
2111         temp &= ~ERST_EHB;
2112         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2113                         "// Write event ring dequeue pointer, "
2114                         "preserving EHB bit");
2115         xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2116                         &xhci->ir_set->erst_dequeue);
2117 }
2118
2119 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2120                 __le32 __iomem *addr, int max_caps)
2121 {
2122         u32 temp, port_offset, port_count;
2123         int i;
2124         u8 major_revision;
2125         struct xhci_hub *rhub;
2126
2127         temp = readl(addr);
2128         major_revision = XHCI_EXT_PORT_MAJOR(temp);
2129
2130         if (major_revision == 0x03) {
2131                 rhub = &xhci->usb3_rhub;
2132         } else if (major_revision <= 0x02) {
2133                 rhub = &xhci->usb2_rhub;
2134         } else {
2135                 xhci_warn(xhci, "Ignoring unknown port speed, "
2136                                 "Ext Cap %p, revision = 0x%x\n",
2137                                 addr, major_revision);
2138                 /* Ignoring port protocol we can't understand. FIXME */
2139                 return;
2140         }
2141         rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2142         rhub->min_rev = XHCI_EXT_PORT_MINOR(temp);
2143
2144         /* Port offset and count in the third dword, see section 7.2 */
2145         temp = readl(addr + 2);
2146         port_offset = XHCI_EXT_PORT_OFF(temp);
2147         port_count = XHCI_EXT_PORT_COUNT(temp);
2148         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2149                         "Ext Cap %p, port offset = %u, "
2150                         "count = %u, revision = 0x%x",
2151                         addr, port_offset, port_count, major_revision);
2152         /* Port count includes the current port offset */
2153         if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2154                 /* WTF? "Valid values are â€˜1’ to MaxPorts" */
2155                 return;
2156
2157         rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2158         if (rhub->psi_count) {
2159                 rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2160                                     GFP_KERNEL);
2161                 if (!rhub->psi)
2162                         rhub->psi_count = 0;
2163
2164                 rhub->psi_uid_count++;
2165                 for (i = 0; i < rhub->psi_count; i++) {
2166                         rhub->psi[i] = readl(addr + 4 + i);
2167
2168                         /* count unique ID values, two consecutive entries can
2169                          * have the same ID if link is assymetric
2170                          */
2171                         if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2172                                   XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2173                                 rhub->psi_uid_count++;
2174
2175                         xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2176                                   XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2177                                   XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2178                                   XHCI_EXT_PORT_PLT(rhub->psi[i]),
2179                                   XHCI_EXT_PORT_PFD(rhub->psi[i]),
2180                                   XHCI_EXT_PORT_LP(rhub->psi[i]),
2181                                   XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2182                 }
2183         }
2184         /* cache usb2 port capabilities */
2185         if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2186                 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2187
2188         /* Check the host's USB2 LPM capability */
2189         if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2190                         (temp & XHCI_L1C)) {
2191                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2192                                 "xHCI 0.96: support USB2 software lpm");
2193                 xhci->sw_lpm_support = 1;
2194         }
2195
2196         if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2197                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2198                                 "xHCI 1.0: support USB2 software lpm");
2199                 xhci->sw_lpm_support = 1;
2200                 if (temp & XHCI_HLC) {
2201                         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2202                                         "xHCI 1.0: support USB2 hardware lpm");
2203                         xhci->hw_lpm_support = 1;
2204                 }
2205         }
2206
2207         port_offset--;
2208         for (i = port_offset; i < (port_offset + port_count); i++) {
2209                 /* Duplicate entry.  Ignore the port if the revisions differ. */
2210                 if (xhci->port_array[i] != 0) {
2211                         xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2212                                         " port %u\n", addr, i);
2213                         xhci_warn(xhci, "Port was marked as USB %u, "
2214                                         "duplicated as USB %u\n",
2215                                         xhci->port_array[i], major_revision);
2216                         /* Only adjust the roothub port counts if we haven't
2217                          * found a similar duplicate.
2218                          */
2219                         if (xhci->port_array[i] != major_revision &&
2220                                 xhci->port_array[i] != DUPLICATE_ENTRY) {
2221                                 if (xhci->port_array[i] == 0x03)
2222                                         xhci->num_usb3_ports--;
2223                                 else
2224                                         xhci->num_usb2_ports--;
2225                                 xhci->port_array[i] = DUPLICATE_ENTRY;
2226                         }
2227                         /* FIXME: Should we disable the port? */
2228                         continue;
2229                 }
2230                 xhci->port_array[i] = major_revision;
2231                 if (major_revision == 0x03)
2232                         xhci->num_usb3_ports++;
2233                 else
2234                         xhci->num_usb2_ports++;
2235         }
2236         /* FIXME: Should we disable ports not in the Extended Capabilities? */
2237 }
2238
2239 /*
2240  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2241  * specify what speeds each port is supposed to be.  We can't count on the port
2242  * speed bits in the PORTSC register being correct until a device is connected,
2243  * but we need to set up the two fake roothubs with the correct number of USB
2244  * 3.0 and USB 2.0 ports at host controller initialization time.
2245  */
2246 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2247 {
2248         void __iomem *base;
2249         u32 offset;
2250         unsigned int num_ports;
2251         int i, j, port_index;
2252         int cap_count = 0;
2253         u32 cap_start;
2254
2255         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2256         xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2257         if (!xhci->port_array)
2258                 return -ENOMEM;
2259
2260         xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2261         if (!xhci->rh_bw)
2262                 return -ENOMEM;
2263         for (i = 0; i < num_ports; i++) {
2264                 struct xhci_interval_bw_table *bw_table;
2265
2266                 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2267                 bw_table = &xhci->rh_bw[i].bw_table;
2268                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2269                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2270         }
2271         base = &xhci->cap_regs->hc_capbase;
2272
2273         cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2274         if (!cap_start) {
2275                 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2276                 return -ENODEV;
2277         }
2278
2279         offset = cap_start;
2280         /* count extended protocol capability entries for later caching */
2281         while (offset) {
2282                 cap_count++;
2283                 offset = xhci_find_next_ext_cap(base, offset,
2284                                                       XHCI_EXT_CAPS_PROTOCOL);
2285         }
2286
2287         xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2288         if (!xhci->ext_caps)
2289                 return -ENOMEM;
2290
2291         offset = cap_start;
2292
2293         while (offset) {
2294                 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2295                 if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2296                         break;
2297                 offset = xhci_find_next_ext_cap(base, offset,
2298                                                 XHCI_EXT_CAPS_PROTOCOL);
2299         }
2300
2301         if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2302                 xhci_warn(xhci, "No ports on the roothubs?\n");
2303                 return -ENODEV;
2304         }
2305         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2306                         "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2307                         xhci->num_usb2_ports, xhci->num_usb3_ports);
2308
2309         /* Place limits on the number of roothub ports so that the hub
2310          * descriptors aren't longer than the USB core will allocate.
2311          */
2312         if (xhci->num_usb3_ports > 15) {
2313                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2314                                 "Limiting USB 3.0 roothub ports to 15.");
2315                 xhci->num_usb3_ports = 15;
2316         }
2317         if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2318                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2319                                 "Limiting USB 2.0 roothub ports to %u.",
2320                                 USB_MAXCHILDREN);
2321                 xhci->num_usb2_ports = USB_MAXCHILDREN;
2322         }
2323
2324         /*
2325          * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2326          * Not sure how the USB core will handle a hub with no ports...
2327          */
2328         if (xhci->num_usb2_ports) {
2329                 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2330                                 xhci->num_usb2_ports, flags);
2331                 if (!xhci->usb2_ports)
2332                         return -ENOMEM;
2333
2334                 port_index = 0;
2335                 for (i = 0; i < num_ports; i++) {
2336                         if (xhci->port_array[i] == 0x03 ||
2337                                         xhci->port_array[i] == 0 ||
2338                                         xhci->port_array[i] == DUPLICATE_ENTRY)
2339                                 continue;
2340
2341                         xhci->usb2_ports[port_index] =
2342                                 &xhci->op_regs->port_status_base +
2343                                 NUM_PORT_REGS*i;
2344                         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2345                                         "USB 2.0 port at index %u, "
2346                                         "addr = %p", i,
2347                                         xhci->usb2_ports[port_index]);
2348                         port_index++;
2349                         if (port_index == xhci->num_usb2_ports)
2350                                 break;
2351                 }
2352         }
2353         if (xhci->num_usb3_ports) {
2354                 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2355                                 xhci->num_usb3_ports, flags);
2356                 if (!xhci->usb3_ports)
2357                         return -ENOMEM;
2358
2359                 port_index = 0;
2360                 for (i = 0; i < num_ports; i++)
2361                         if (xhci->port_array[i] == 0x03) {
2362                                 xhci->usb3_ports[port_index] =
2363                                         &xhci->op_regs->port_status_base +
2364                                         NUM_PORT_REGS*i;
2365                                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2366                                                 "USB 3.0 port at index %u, "
2367                                                 "addr = %p", i,
2368                                                 xhci->usb3_ports[port_index]);
2369                                 port_index++;
2370                                 if (port_index == xhci->num_usb3_ports)
2371                                         break;
2372                         }
2373         }
2374         return 0;
2375 }
2376
2377 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2378 {
2379         dma_addr_t      dma;
2380         struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
2381         unsigned int    val, val2;
2382         u64             val_64;
2383         struct xhci_segment     *seg;
2384         u32 page_size, temp;
2385         int i;
2386
2387         INIT_LIST_HEAD(&xhci->cmd_list);
2388
2389         /* init command timeout work */
2390         INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2391         init_completion(&xhci->cmd_ring_stop_completion);
2392
2393         page_size = readl(&xhci->op_regs->page_size);
2394         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2395                         "Supported page size register = 0x%x", page_size);
2396         for (i = 0; i < 16; i++) {
2397                 if ((0x1 & page_size) != 0)
2398                         break;
2399                 page_size = page_size >> 1;
2400         }
2401         if (i < 16)
2402                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2403                         "Supported page size of %iK", (1 << (i+12)) / 1024);
2404         else
2405                 xhci_warn(xhci, "WARN: no supported page size\n");
2406         /* Use 4K pages, since that's common and the minimum the HC supports */
2407         xhci->page_shift = 12;
2408         xhci->page_size = 1 << xhci->page_shift;
2409         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2410                         "HCD page size set to %iK", xhci->page_size / 1024);
2411
2412         /*
2413          * Program the Number of Device Slots Enabled field in the CONFIG
2414          * register with the max value of slots the HC can handle.
2415          */
2416         val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2417         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2418                         "// xHC can handle at most %d device slots.", val);
2419         val2 = readl(&xhci->op_regs->config_reg);
2420         val |= (val2 & ~HCS_SLOTS_MASK);
2421         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2422                         "// Setting Max device slots reg = 0x%x.", val);
2423         writel(val, &xhci->op_regs->config_reg);
2424
2425         /*
2426          * Section 5.4.8 - doorbell array must be
2427          * "physically contiguous and 64-byte (cache line) aligned".
2428          */
2429         xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2430                         flags);
2431         if (!xhci->dcbaa)
2432                 goto fail;
2433         memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2434         xhci->dcbaa->dma = dma;
2435         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2436                         "// Device context base array address = 0x%llx (DMA), %p (virt)",
2437                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2438         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2439
2440         /*
2441          * Initialize the ring segment pool.  The ring must be a contiguous
2442          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2443          * however, the command ring segment needs 64-byte aligned segments
2444          * and our use of dma addresses in the trb_address_map radix tree needs
2445          * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2446          */
2447         xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2448                         TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2449
2450         /* See Table 46 and Note on Figure 55 */
2451         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2452                         2112, 64, xhci->page_size);
2453         if (!xhci->segment_pool || !xhci->device_pool)
2454                 goto fail;
2455
2456         /* Linear stream context arrays don't have any boundary restrictions,
2457          * and only need to be 16-byte aligned.
2458          */
2459         xhci->small_streams_pool =
2460                 dma_pool_create("xHCI 256 byte stream ctx arrays",
2461                         dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2462         xhci->medium_streams_pool =
2463                 dma_pool_create("xHCI 1KB stream ctx arrays",
2464                         dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2465         /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2466          * will be allocated with dma_alloc_coherent()
2467          */
2468
2469         if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2470                 goto fail;
2471
2472         /* Set up the command ring to have one segments for now. */
2473         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2474         if (!xhci->cmd_ring)
2475                 goto fail;
2476         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2477                         "Allocated command ring at %p", xhci->cmd_ring);
2478         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2479                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
2480
2481         /* Set the address in the Command Ring Control register */
2482         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2483         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2484                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2485                 xhci->cmd_ring->cycle_state;
2486         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2487                         "// Setting command ring address to 0x%x", val);
2488         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2489         xhci_dbg_cmd_ptrs(xhci);
2490
2491         xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2492         if (!xhci->lpm_command)
2493                 goto fail;
2494
2495         /* Reserve one command ring TRB for disabling LPM.
2496          * Since the USB core grabs the shared usb_bus bandwidth mutex before
2497          * disabling LPM, we only need to reserve one TRB for all devices.
2498          */
2499         xhci->cmd_ring_reserved_trbs++;
2500
2501         val = readl(&xhci->cap_regs->db_off);
2502         val &= DBOFF_MASK;
2503         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2504                         "// Doorbell array is located at offset 0x%x"
2505                         " from cap regs base addr", val);
2506         xhci->dba = (void __iomem *) xhci->cap_regs + val;
2507         xhci_dbg_regs(xhci);
2508         xhci_print_run_regs(xhci);
2509         /* Set ir_set to interrupt register set 0 */
2510         xhci->ir_set = &xhci->run_regs->ir_set[0];
2511
2512         /*
2513          * Event ring setup: Allocate a normal ring, but also setup
2514          * the event ring segment table (ERST).  Section 4.9.3.
2515          */
2516         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2517         xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2518                                         0, flags);
2519         if (!xhci->event_ring)
2520                 goto fail;
2521         if (xhci_check_trb_in_td_math(xhci) < 0)
2522                 goto fail;
2523
2524         xhci->erst.entries = dma_alloc_coherent(dev,
2525                         sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2526                         flags);
2527         if (!xhci->erst.entries)
2528                 goto fail;
2529         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2530                         "// Allocated event ring segment table at 0x%llx",
2531                         (unsigned long long)dma);
2532
2533         memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2534         xhci->erst.num_entries = ERST_NUM_SEGS;
2535         xhci->erst.erst_dma_addr = dma;
2536         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2537                         "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2538                         xhci->erst.num_entries,
2539                         xhci->erst.entries,
2540                         (unsigned long long)xhci->erst.erst_dma_addr);
2541
2542         /* set ring base address and size for each segment table entry */
2543         for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2544                 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2545                 entry->seg_addr = cpu_to_le64(seg->dma);
2546                 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2547                 entry->rsvd = 0;
2548                 seg = seg->next;
2549         }
2550
2551         /* set ERST count with the number of entries in the segment table */
2552         val = readl(&xhci->ir_set->erst_size);
2553         val &= ERST_SIZE_MASK;
2554         val |= ERST_NUM_SEGS;
2555         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2556                         "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2557                         val);
2558         writel(val, &xhci->ir_set->erst_size);
2559
2560         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2561                         "// Set ERST entries to point to event ring.");
2562         /* set the segment table base address */
2563         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2564                         "// Set ERST base address for ir_set 0 = 0x%llx",
2565                         (unsigned long long)xhci->erst.erst_dma_addr);
2566         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2567         val_64 &= ERST_PTR_MASK;
2568         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2569         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2570
2571         /* Set the event ring dequeue address */
2572         xhci_set_hc_event_deq(xhci);
2573         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2574                         "Wrote ERST address to ir_set 0.");
2575         xhci_print_ir_set(xhci, 0);
2576
2577         /*
2578          * XXX: Might need to set the Interrupter Moderation Register to
2579          * something other than the default (~1ms minimum between interrupts).
2580          * See section 5.5.1.2.
2581          */
2582         for (i = 0; i < MAX_HC_SLOTS; i++)
2583                 xhci->devs[i] = NULL;
2584         for (i = 0; i < USB_MAXCHILDREN; i++) {
2585                 xhci->bus_state[0].resume_done[i] = 0;
2586                 xhci->bus_state[1].resume_done[i] = 0;
2587                 /* Only the USB 2.0 completions will ever be used. */
2588                 init_completion(&xhci->bus_state[1].rexit_done[i]);
2589         }
2590
2591         if (scratchpad_alloc(xhci, flags))
2592                 goto fail;
2593         if (xhci_setup_port_arrays(xhci, flags))
2594                 goto fail;
2595
2596         /* Enable USB 3.0 device notifications for function remote wake, which
2597          * is necessary for allowing USB 3.0 devices to do remote wakeup from
2598          * U3 (device suspend).
2599          */
2600         temp = readl(&xhci->op_regs->dev_notification);
2601         temp &= ~DEV_NOTE_MASK;
2602         temp |= DEV_NOTE_FWAKE;
2603         writel(temp, &xhci->op_regs->dev_notification);
2604
2605         return 0;
2606
2607 fail:
2608         xhci_halt(xhci);
2609         xhci_reset(xhci);
2610         xhci_mem_cleanup(xhci);
2611         return -ENOMEM;
2612 }