2 * USB HOST XHCI Controller stack
4 * Based on xHCI host controller driver in linux-kernel
7 * Copyright (C) 2008 Intel Corp.
10 * Copyright (C) 2013 Samsung Electronics Co.Ltd
11 * Authors: Vivek Gautam <gautam.vivek@samsung.com>
12 * Vikas Sajjan <vikas.sajjan@samsung.com>
14 * SPDX-License-Identifier: GPL-2.0+
18 #include <asm/byteorder.h>
21 #include <asm/cache.h>
22 #include <asm-generic/errno.h>
26 #define CACHELINE_SIZE CONFIG_SYS_CACHELINE_SIZE
28 * flushes the address passed till the length
30 * @param addr pointer to memory region to be flushed
31 * @param len the length of the cache line to be flushed
34 void xhci_flush_cache(uint32_t addr, u32 len)
36 BUG_ON((void *)addr == NULL || len == 0);
38 flush_dcache_range(addr & ~(CACHELINE_SIZE - 1),
39 ALIGN(addr + len, CACHELINE_SIZE));
43 * invalidates the address passed till the length
45 * @param addr pointer to memory region to be invalidates
46 * @param len the length of the cache line to be invalidated
49 void xhci_inval_cache(uint32_t addr, u32 len)
51 BUG_ON((void *)addr == NULL || len == 0);
53 invalidate_dcache_range(addr & ~(CACHELINE_SIZE - 1),
54 ALIGN(addr + len, CACHELINE_SIZE));
59 * frees the "segment" pointer passed
61 * @param ptr pointer to "segement" to be freed
64 static void xhci_segment_free(struct xhci_segment *seg)
73 * frees the "ring" pointer passed
75 * @param ptr pointer to "ring" to be freed
78 static void xhci_ring_free(struct xhci_ring *ring)
80 struct xhci_segment *seg;
81 struct xhci_segment *first_seg;
85 first_seg = ring->first_seg;
86 seg = first_seg->next;
87 while (seg != first_seg) {
88 struct xhci_segment *next = seg->next;
89 xhci_segment_free(seg);
92 xhci_segment_free(first_seg);
98 * frees the "xhci_container_ctx" pointer passed
100 * @param ptr pointer to "xhci_container_ctx" to be freed
103 static void xhci_free_container_ctx(struct xhci_container_ctx *ctx)
110 * frees the virtual devices for "xhci_ctrl" pointer passed
112 * @param ptr pointer to "xhci_ctrl" whose virtual devices are to be freed
115 static void xhci_free_virt_devices(struct xhci_ctrl *ctrl)
119 struct xhci_virt_device *virt_dev;
122 * refactored here to loop through all virt_dev
123 * Slot ID 0 is reserved
125 for (slot_id = 0; slot_id < MAX_HC_SLOTS; slot_id++) {
126 virt_dev = ctrl->devs[slot_id];
130 ctrl->dcbaa->dev_context_ptrs[slot_id] = 0;
132 for (i = 0; i < 31; ++i)
133 if (virt_dev->eps[i].ring)
134 xhci_ring_free(virt_dev->eps[i].ring);
136 if (virt_dev->in_ctx)
137 xhci_free_container_ctx(virt_dev->in_ctx);
138 if (virt_dev->out_ctx)
139 xhci_free_container_ctx(virt_dev->out_ctx);
142 /* make sure we are pointing to NULL */
143 ctrl->devs[slot_id] = NULL;
148 * frees all the memory allocated
150 * @param ptr pointer to "xhci_ctrl" to be cleaned up
153 void xhci_cleanup(struct xhci_ctrl *ctrl)
155 xhci_ring_free(ctrl->event_ring);
156 xhci_ring_free(ctrl->cmd_ring);
157 xhci_free_virt_devices(ctrl);
158 free(ctrl->erst.entries);
160 memset(ctrl, '\0', sizeof(struct xhci_ctrl));
164 * Malloc the aligned memory
166 * @param size size of memory to be allocated
167 * @return allocates the memory and returns the aligned pointer
169 static void *xhci_malloc(unsigned int size)
172 size_t cacheline_size = max(XHCI_ALIGNMENT, CACHELINE_SIZE);
174 ptr = memalign(cacheline_size, ALIGN(size, cacheline_size));
176 memset(ptr, '\0', size);
178 xhci_flush_cache((uint32_t)ptr, size);
184 * Make the prev segment point to the next segment.
185 * Change the last TRB in the prev segment to be a Link TRB which points to the
186 * address of the next segment. The caller needs to set any Link TRB
187 * related flags, such as End TRB, Toggle Cycle, and no snoop.
189 * @param prev pointer to the previous segment
190 * @param next pointer to the next segment
191 * @param link_trbs flag to indicate whether to link the trbs or NOT
194 static void xhci_link_segments(struct xhci_segment *prev,
195 struct xhci_segment *next, bool link_trbs)
204 val_64 = (uintptr_t)next->trbs;
205 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = val_64;
208 * Set the last TRB in the segment to
209 * have a TRB type ID of Link TRB
211 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
212 val &= ~TRB_TYPE_BITMASK;
213 val |= (TRB_LINK << TRB_TYPE_SHIFT);
215 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
220 * Initialises the Ring's enqueue,dequeue,enq_seg pointers
222 * @param ring pointer to the RING to be intialised
225 static void xhci_initialize_ring_info(struct xhci_ring *ring)
228 * The ring is empty, so the enqueue pointer == dequeue pointer
230 ring->enqueue = ring->first_seg->trbs;
231 ring->enq_seg = ring->first_seg;
232 ring->dequeue = ring->enqueue;
233 ring->deq_seg = ring->first_seg;
236 * The ring is initialized to 0. The producer must write 1 to the
237 * cycle bit to handover ownership of the TRB, so PCS = 1.
238 * The consumer must compare CCS to the cycle bit to
239 * check ownership, so CCS = 1.
241 ring->cycle_state = 1;
245 * Allocates a generic ring segment from the ring pool, sets the dma address,
246 * initializes the segment to zero, and sets the private next pointer to NULL.
248 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
251 * @return pointer to the newly allocated SEGMENT
253 static struct xhci_segment *xhci_segment_alloc(void)
255 struct xhci_segment *seg;
257 seg = (struct xhci_segment *)malloc(sizeof(struct xhci_segment));
260 seg->trbs = (union xhci_trb *)xhci_malloc(SEGMENT_SIZE);
268 * Create a new ring with zero or more segments.
269 * TODO: current code only uses one-time-allocated single-segment rings
270 * of 1KB anyway, so we might as well get rid of all the segment and
271 * linking code (and maybe increase the size a bit, e.g. 4KB).
274 * Link each segment together into a ring.
275 * Set the end flag and the cycle toggle bit on the last segment.
276 * See section 4.9.2 and figures 15 and 16 of XHCI spec rev1.0.
278 * @param num_segs number of segments in the ring
279 * @param link_trbs flag to indicate whether to link the trbs or NOT
280 * @return pointer to the newly created RING
282 struct xhci_ring *xhci_ring_alloc(unsigned int num_segs, bool link_trbs)
284 struct xhci_ring *ring;
285 struct xhci_segment *prev;
287 ring = (struct xhci_ring *)malloc(sizeof(struct xhci_ring));
293 ring->first_seg = xhci_segment_alloc();
294 BUG_ON(!ring->first_seg);
298 prev = ring->first_seg;
299 while (num_segs > 0) {
300 struct xhci_segment *next;
302 next = xhci_segment_alloc();
305 xhci_link_segments(prev, next, link_trbs);
310 xhci_link_segments(prev, ring->first_seg, link_trbs);
312 /* See section 4.9.2.1 and 6.4.4.1 */
313 prev->trbs[TRBS_PER_SEGMENT-1].link.control |=
314 cpu_to_le32(LINK_TOGGLE);
316 xhci_initialize_ring_info(ring);
322 * Allocates the Container context
324 * @param ctrl Host controller data structure
325 * @param type type of XHCI Container Context
326 * @return NULL if failed else pointer to the context on success
328 static struct xhci_container_ctx
329 *xhci_alloc_container_ctx(struct xhci_ctrl *ctrl, int type)
331 struct xhci_container_ctx *ctx;
333 ctx = (struct xhci_container_ctx *)
334 malloc(sizeof(struct xhci_container_ctx));
337 BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
339 ctx->size = (MAX_EP_CTX_NUM + 1) *
340 CTX_SIZE(readl(&ctrl->hccr->cr_hccparams));
341 if (type == XHCI_CTX_TYPE_INPUT)
342 ctx->size += CTX_SIZE(readl(&ctrl->hccr->cr_hccparams));
344 ctx->bytes = (u8 *)xhci_malloc(ctx->size);
350 * Allocating virtual device
352 * @param udev pointer to USB deivce structure
353 * @return 0 on success else -1 on failure
355 int xhci_alloc_virt_device(struct usb_device *udev)
358 unsigned int slot_id = udev->slot_id;
359 struct xhci_virt_device *virt_dev;
360 struct xhci_ctrl *ctrl = udev->controller;
362 /* Slot ID 0 is reserved */
363 if (ctrl->devs[slot_id]) {
364 printf("Virt dev for slot[%d] already allocated\n", slot_id);
368 ctrl->devs[slot_id] = (struct xhci_virt_device *)
369 malloc(sizeof(struct xhci_virt_device));
371 if (!ctrl->devs[slot_id]) {
372 puts("Failed to allocate virtual device\n");
376 memset(ctrl->devs[slot_id], 0, sizeof(struct xhci_virt_device));
377 virt_dev = ctrl->devs[slot_id];
379 /* Allocate the (output) device context that will be used in the HC. */
380 virt_dev->out_ctx = xhci_alloc_container_ctx(ctrl,
381 XHCI_CTX_TYPE_DEVICE);
382 if (!virt_dev->out_ctx) {
383 puts("Failed to allocate out context for virt dev\n");
387 /* Allocate the (input) device context for address device command */
388 virt_dev->in_ctx = xhci_alloc_container_ctx(ctrl,
389 XHCI_CTX_TYPE_INPUT);
390 if (!virt_dev->in_ctx) {
391 puts("Failed to allocate in context for virt dev\n");
395 /* Allocate endpoint 0 ring */
396 virt_dev->eps[0].ring = xhci_ring_alloc(1, true);
398 byte_64 = (uintptr_t)(virt_dev->out_ctx->bytes);
400 /* Point to output device context in dcbaa. */
401 ctrl->dcbaa->dev_context_ptrs[slot_id] = byte_64;
403 xhci_flush_cache((uint32_t)&ctrl->dcbaa->dev_context_ptrs[slot_id],
409 * Allocates the necessary data structures
410 * for XHCI host controller
412 * @param ctrl Host controller data structure
413 * @param hccr pointer to HOST Controller Control Registers
414 * @param hcor pointer to HOST Controller Operational Registers
415 * @return 0 if successful else -1 on failure
417 int xhci_mem_init(struct xhci_ctrl *ctrl, struct xhci_hccr *hccr,
418 struct xhci_hcor *hcor)
425 struct xhci_segment *seg;
427 /* DCBAA initialization */
428 ctrl->dcbaa = (struct xhci_device_context_array *)
429 xhci_malloc(sizeof(struct xhci_device_context_array));
430 if (ctrl->dcbaa == NULL) {
431 puts("unable to allocate DCBA\n");
435 val_64 = (uintptr_t)ctrl->dcbaa;
436 /* Set the pointer in DCBAA register */
437 xhci_writeq(&hcor->or_dcbaap, val_64);
439 /* Command ring control pointer register initialization */
440 ctrl->cmd_ring = xhci_ring_alloc(1, true);
442 /* Set the address in the Command Ring Control register */
443 trb_64 = (uintptr_t)ctrl->cmd_ring->first_seg->trbs;
444 val_64 = xhci_readq(&hcor->or_crcr);
445 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
446 (trb_64 & (u64) ~CMD_RING_RSVD_BITS) |
447 ctrl->cmd_ring->cycle_state;
448 xhci_writeq(&hcor->or_crcr, val_64);
450 /* write the address of db register */
451 val = xhci_readl(&hccr->cr_dboff);
453 ctrl->dba = (struct xhci_doorbell_array *)((char *)hccr + val);
455 /* write the address of runtime register */
456 val = xhci_readl(&hccr->cr_rtsoff);
458 ctrl->run_regs = (struct xhci_run_regs *)((char *)hccr + val);
460 /* writting the address of ir_set structure */
461 ctrl->ir_set = &ctrl->run_regs->ir_set[0];
463 /* Event ring does not maintain link TRB */
464 ctrl->event_ring = xhci_ring_alloc(ERST_NUM_SEGS, false);
465 ctrl->erst.entries = (struct xhci_erst_entry *)
466 xhci_malloc(sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS);
468 ctrl->erst.num_entries = ERST_NUM_SEGS;
470 for (val = 0, seg = ctrl->event_ring->first_seg;
474 trb_64 = (uintptr_t)seg->trbs;
475 struct xhci_erst_entry *entry = &ctrl->erst.entries[val];
476 xhci_writeq(&entry->seg_addr, trb_64);
477 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
481 xhci_flush_cache((uint32_t)ctrl->erst.entries,
482 ERST_NUM_SEGS * sizeof(struct xhci_erst_entry));
484 deq = (unsigned long)ctrl->event_ring->dequeue;
486 /* Update HC event ring dequeue pointer */
487 xhci_writeq(&ctrl->ir_set->erst_dequeue,
488 (u64)deq & (u64)~ERST_PTR_MASK);
490 /* set ERST count with the number of entries in the segment table */
491 val = xhci_readl(&ctrl->ir_set->erst_size);
492 val &= ERST_SIZE_MASK;
493 val |= ERST_NUM_SEGS;
494 xhci_writel(&ctrl->ir_set->erst_size, val);
496 /* this is the event ring segment table pointer */
497 val_64 = xhci_readq(&ctrl->ir_set->erst_base);
498 val_64 &= ERST_PTR_MASK;
499 val_64 |= ((u32)(ctrl->erst.entries) & ~ERST_PTR_MASK);
501 xhci_writeq(&ctrl->ir_set->erst_base, val_64);
503 /* initializing the virtual devices to NULL */
504 for (i = 0; i < MAX_HC_SLOTS; ++i)
505 ctrl->devs[i] = NULL;
508 * Just Zero'ing this register completely,
509 * or some spurious Device Notification Events
510 * might screw things here.
512 xhci_writel(&hcor->or_dnctrl, 0x0);
518 * Give the input control context for the passed container context
520 * @param ctx pointer to the context
521 * @return pointer to the Input control context data
523 struct xhci_input_control_ctx
524 *xhci_get_input_control_ctx(struct xhci_container_ctx *ctx)
526 BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
527 return (struct xhci_input_control_ctx *)ctx->bytes;
531 * Give the slot context for the passed container context
533 * @param ctrl Host controller data structure
534 * @param ctx pointer to the context
535 * @return pointer to the slot control context data
537 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_ctrl *ctrl,
538 struct xhci_container_ctx *ctx)
540 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
541 return (struct xhci_slot_ctx *)ctx->bytes;
543 return (struct xhci_slot_ctx *)
544 (ctx->bytes + CTX_SIZE(readl(&ctrl->hccr->cr_hccparams)));
548 * Gets the EP context from based on the ep_index
550 * @param ctrl Host controller data structure
551 * @param ctx context container
552 * @param ep_index index of the endpoint
553 * @return pointer to the End point context
555 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_ctrl *ctrl,
556 struct xhci_container_ctx *ctx,
557 unsigned int ep_index)
559 /* increment ep index by offset of start of ep ctx array */
561 if (ctx->type == XHCI_CTX_TYPE_INPUT)
564 return (struct xhci_ep_ctx *)
566 (ep_index * CTX_SIZE(readl(&ctrl->hccr->cr_hccparams))));
570 * Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
571 * Useful when you want to change one particular aspect of the endpoint
572 * and then issue a configure endpoint command.
574 * @param ctrl Host controller data structure
575 * @param in_ctx contains the input context
576 * @param out_ctx contains the input context
577 * @param ep_index index of the end point
580 void xhci_endpoint_copy(struct xhci_ctrl *ctrl,
581 struct xhci_container_ctx *in_ctx,
582 struct xhci_container_ctx *out_ctx,
583 unsigned int ep_index)
585 struct xhci_ep_ctx *out_ep_ctx;
586 struct xhci_ep_ctx *in_ep_ctx;
588 out_ep_ctx = xhci_get_ep_ctx(ctrl, out_ctx, ep_index);
589 in_ep_ctx = xhci_get_ep_ctx(ctrl, in_ctx, ep_index);
591 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
592 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
593 in_ep_ctx->deq = out_ep_ctx->deq;
594 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
598 * Copy output xhci_slot_ctx to the input xhci_slot_ctx.
599 * Useful when you want to change one particular aspect of the endpoint
600 * and then issue a configure endpoint command.
601 * Only the context entries field matters, but
602 * we'll copy the whole thing anyway.
604 * @param ctrl Host controller data structure
605 * @param in_ctx contains the inpout context
606 * @param out_ctx contains the inpout context
609 void xhci_slot_copy(struct xhci_ctrl *ctrl, struct xhci_container_ctx *in_ctx,
610 struct xhci_container_ctx *out_ctx)
612 struct xhci_slot_ctx *in_slot_ctx;
613 struct xhci_slot_ctx *out_slot_ctx;
615 in_slot_ctx = xhci_get_slot_ctx(ctrl, in_ctx);
616 out_slot_ctx = xhci_get_slot_ctx(ctrl, out_ctx);
618 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
619 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
620 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
621 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
625 * Setup an xHCI virtual device for a Set Address command
627 * @param udev pointer to the Device Data Structure
628 * @return returns negative value on failure else 0 on success
630 void xhci_setup_addressable_virt_dev(struct usb_device *udev)
632 struct usb_device *hop = udev;
633 struct xhci_virt_device *virt_dev;
634 struct xhci_ep_ctx *ep0_ctx;
635 struct xhci_slot_ctx *slot_ctx;
638 struct xhci_ctrl *ctrl = udev->controller;
640 virt_dev = ctrl->devs[udev->slot_id];
644 /* Extract the EP0 and Slot Ctrl */
645 ep0_ctx = xhci_get_ep_ctx(ctrl, virt_dev->in_ctx, 0);
646 slot_ctx = xhci_get_slot_ctx(ctrl, virt_dev->in_ctx);
648 /* Only the control endpoint is valid - one endpoint context */
649 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | 0);
651 switch (udev->speed) {
652 case USB_SPEED_SUPER:
653 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
656 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
659 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
662 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
665 /* Speed was set earlier, this shouldn't happen. */
669 /* Extract the root hub port number */
671 while (hop->parent->parent)
673 port_num = hop->portnr;
674 debug("port_num = %d\n", port_num);
676 slot_ctx->dev_info2 |=
677 cpu_to_le32(((port_num & ROOT_HUB_PORT_MASK) <<
678 ROOT_HUB_PORT_SHIFT));
680 /* Step 4 - ring already allocated */
682 ep0_ctx->ep_info2 = cpu_to_le32(CTRL_EP << EP_TYPE_SHIFT);
683 debug("SPEED = %d\n", udev->speed);
685 switch (udev->speed) {
686 case USB_SPEED_SUPER:
687 ep0_ctx->ep_info2 |= cpu_to_le32(((512 & MAX_PACKET_MASK) <<
689 debug("Setting Packet size = 512bytes\n");
692 /* USB core guesses at a 64-byte max packet first for FS devices */
694 ep0_ctx->ep_info2 |= cpu_to_le32(((64 & MAX_PACKET_MASK) <<
696 debug("Setting Packet size = 64bytes\n");
699 ep0_ctx->ep_info2 |= cpu_to_le32(((8 & MAX_PACKET_MASK) <<
701 debug("Setting Packet size = 8bytes\n");
708 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
710 cpu_to_le32(((0 & MAX_BURST_MASK) << MAX_BURST_SHIFT) |
711 ((3 & ERROR_COUNT_MASK) << ERROR_COUNT_SHIFT));
713 trb_64 = (uintptr_t)virt_dev->eps[0].ring->first_seg->trbs;
714 ep0_ctx->deq = cpu_to_le64(trb_64 | virt_dev->eps[0].ring->cycle_state);
716 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
718 xhci_flush_cache((uint32_t)ep0_ctx, sizeof(struct xhci_ep_ctx));
719 xhci_flush_cache((uint32_t)slot_ctx, sizeof(struct xhci_slot_ctx));