net: rtl8192cu: change config name as vendor driver
[platform/kernel/linux-rpi.git] / drivers / usb / host / xhci-mem.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/usb.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16
17 #include "xhci.h"
18 #include "xhci-trace.h"
19 #include "xhci-debugfs.h"
20
21 /*
22  * Allocates a generic ring segment from the ring pool, sets the dma address,
23  * initializes the segment to zero, and sets the private next pointer to NULL.
24  *
25  * Section 4.11.1.1:
26  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
27  */
28 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
29                                                unsigned int cycle_state,
30                                                unsigned int max_packet,
31                                                gfp_t flags)
32 {
33         struct xhci_segment *seg;
34         dma_addr_t      dma;
35         int             i;
36         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
37
38         seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
39         if (!seg)
40                 return NULL;
41
42         seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
43         if (!seg->trbs) {
44                 kfree(seg);
45                 return NULL;
46         }
47
48         if (max_packet) {
49                 seg->bounce_buf = kzalloc_node(max_packet, flags,
50                                         dev_to_node(dev));
51                 if (!seg->bounce_buf) {
52                         dma_pool_free(xhci->segment_pool, seg->trbs, dma);
53                         kfree(seg);
54                         return NULL;
55                 }
56         }
57         /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58         if (cycle_state == 0) {
59                 for (i = 0; i < TRBS_PER_SEGMENT; i++)
60                         seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
61         }
62         seg->dma = dma;
63         seg->next = NULL;
64
65         return seg;
66 }
67
68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69 {
70         if (seg->trbs) {
71                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72                 seg->trbs = NULL;
73         }
74         kfree(seg->bounce_buf);
75         kfree(seg);
76 }
77
78 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
79                                 struct xhci_segment *first)
80 {
81         struct xhci_segment *seg;
82
83         seg = first->next;
84         while (seg != first) {
85                 struct xhci_segment *next = seg->next;
86                 xhci_segment_free(xhci, seg);
87                 seg = next;
88         }
89         xhci_segment_free(xhci, first);
90 }
91
92 /*
93  * Make the prev segment point to the next segment.
94  *
95  * Change the last TRB in the prev segment to be a Link TRB which points to the
96  * DMA address of the next segment.  The caller needs to set any Link TRB
97  * related flags, such as End TRB, Toggle Cycle, and no snoop.
98  */
99 static void xhci_link_segments(struct xhci_segment *prev,
100                                struct xhci_segment *next,
101                                unsigned int trbs_per_seg,
102                                enum xhci_ring_type type, bool chain_links)
103 {
104         u32 val;
105
106         if (!prev || !next)
107                 return;
108         prev->next = next;
109         if (type != TYPE_EVENT) {
110                 prev->trbs[trbs_per_seg - 1].link.segment_ptr =
111                         cpu_to_le64(next->dma);
112
113                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
114                 val = le32_to_cpu(prev->trbs[trbs_per_seg - 1].link.control);
115                 val &= ~TRB_TYPE_BITMASK;
116                 val |= TRB_TYPE(TRB_LINK);
117                 if (chain_links)
118                         val |= TRB_CHAIN;
119                 prev->trbs[trbs_per_seg - 1].link.control = cpu_to_le32(val);
120         }
121 }
122
123 /*
124  * Link the ring to the new segments.
125  * Set Toggle Cycle for the new ring if needed.
126  */
127 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
128                 struct xhci_segment *first, struct xhci_segment *last,
129                 unsigned int num_segs)
130 {
131         struct xhci_segment *next;
132         bool chain_links;
133
134         if (!ring || !first || !last)
135                 return;
136
137         /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
138         chain_links = !!(xhci_link_trb_quirk(xhci) ||
139                          (ring->type == TYPE_ISOC &&
140                           (xhci->quirks & XHCI_AMD_0x96_HOST)));
141
142         next = ring->enq_seg->next;
143         xhci_link_segments(ring->enq_seg, first, ring->trbs_per_seg,
144                            ring->type, chain_links);
145         xhci_link_segments(last, next, ring->trbs_per_seg,
146                            ring->type, chain_links);
147         ring->num_segs += num_segs;
148         ring->num_trbs_free += (ring->trbs_per_seg - 1) * num_segs;
149
150         if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
151                 ring->last_seg->trbs[ring->trbs_per_seg - 1].link.control
152                         &= ~cpu_to_le32(LINK_TOGGLE);
153                 last->trbs[ring->trbs_per_seg - 1].link.control
154                         |= cpu_to_le32(LINK_TOGGLE);
155                 ring->last_seg = last;
156         }
157 }
158
159 /*
160  * We need a radix tree for mapping physical addresses of TRBs to which stream
161  * ID they belong to.  We need to do this because the host controller won't tell
162  * us which stream ring the TRB came from.  We could store the stream ID in an
163  * event data TRB, but that doesn't help us for the cancellation case, since the
164  * endpoint may stop before it reaches that event data TRB.
165  *
166  * The radix tree maps the upper portion of the TRB DMA address to a ring
167  * segment that has the same upper portion of DMA addresses.  For example, say I
168  * have segments of size 1KB, that are always 1KB aligned.  A segment may
169  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
170  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
171  * pass the radix tree a key to get the right stream ID:
172  *
173  *      0x10c90fff >> 10 = 0x43243
174  *      0x10c912c0 >> 10 = 0x43244
175  *      0x10c91400 >> 10 = 0x43245
176  *
177  * Obviously, only those TRBs with DMA addresses that are within the segment
178  * will make the radix tree return the stream ID for that ring.
179  *
180  * Caveats for the radix tree:
181  *
182  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
183  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
184  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
185  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
186  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
187  * extended systems (where the DMA address can be bigger than 32-bits),
188  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
189  */
190 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
191                 struct xhci_ring *ring,
192                 struct xhci_segment *seg,
193                 gfp_t mem_flags)
194 {
195         unsigned long key;
196         int ret;
197
198         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
199         /* Skip any segments that were already added. */
200         if (radix_tree_lookup(trb_address_map, key))
201                 return 0;
202
203         ret = radix_tree_maybe_preload(mem_flags);
204         if (ret)
205                 return ret;
206         ret = radix_tree_insert(trb_address_map,
207                         key, ring);
208         radix_tree_preload_end();
209         return ret;
210 }
211
212 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
213                 struct xhci_segment *seg)
214 {
215         unsigned long key;
216
217         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
218         if (radix_tree_lookup(trb_address_map, key))
219                 radix_tree_delete(trb_address_map, key);
220 }
221
222 static int xhci_update_stream_segment_mapping(
223                 struct radix_tree_root *trb_address_map,
224                 struct xhci_ring *ring,
225                 struct xhci_segment *first_seg,
226                 struct xhci_segment *last_seg,
227                 gfp_t mem_flags)
228 {
229         struct xhci_segment *seg;
230         struct xhci_segment *failed_seg;
231         int ret;
232
233         if (WARN_ON_ONCE(trb_address_map == NULL))
234                 return 0;
235
236         seg = first_seg;
237         do {
238                 ret = xhci_insert_segment_mapping(trb_address_map,
239                                 ring, seg, mem_flags);
240                 if (ret)
241                         goto remove_streams;
242                 if (seg == last_seg)
243                         return 0;
244                 seg = seg->next;
245         } while (seg != first_seg);
246
247         return 0;
248
249 remove_streams:
250         failed_seg = seg;
251         seg = first_seg;
252         do {
253                 xhci_remove_segment_mapping(trb_address_map, seg);
254                 if (seg == failed_seg)
255                         return ret;
256                 seg = seg->next;
257         } while (seg != first_seg);
258
259         return ret;
260 }
261
262 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
263 {
264         struct xhci_segment *seg;
265
266         if (WARN_ON_ONCE(ring->trb_address_map == NULL))
267                 return;
268
269         seg = ring->first_seg;
270         do {
271                 xhci_remove_segment_mapping(ring->trb_address_map, seg);
272                 seg = seg->next;
273         } while (seg != ring->first_seg);
274 }
275
276 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
277 {
278         return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
279                         ring->first_seg, ring->last_seg, mem_flags);
280 }
281
282 /* XXX: Do we need the hcd structure in all these functions? */
283 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
284 {
285         if (!ring)
286                 return;
287
288         trace_xhci_ring_free(ring);
289
290         if (ring->first_seg) {
291                 if (ring->type == TYPE_STREAM)
292                         xhci_remove_stream_mapping(ring);
293                 xhci_free_segments_for_ring(xhci, ring->first_seg);
294         }
295
296         kfree(ring);
297 }
298
299 void xhci_initialize_ring_info(struct xhci_ring *ring,
300                                unsigned int cycle_state)
301 {
302         /* The ring is empty, so the enqueue pointer == dequeue pointer */
303         ring->enqueue = ring->first_seg->trbs;
304         ring->enq_seg = ring->first_seg;
305         ring->dequeue = ring->enqueue;
306         ring->deq_seg = ring->first_seg;
307         /* The ring is initialized to 0. The producer must write 1 to the cycle
308          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
309          * compare CCS to the cycle bit to check ownership, so CCS = 1.
310          *
311          * New rings are initialized with cycle state equal to 1; if we are
312          * handling ring expansion, set the cycle state equal to the old ring.
313          */
314         ring->cycle_state = cycle_state;
315
316         /*
317          * Each segment has a link TRB, and leave an extra TRB for SW
318          * accounting purpose
319          */
320         ring->num_trbs_free = ring->num_segs * (ring->trbs_per_seg - 1) - 1;
321 }
322
323 /* Allocate segments and link them for a ring */
324 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
325                 struct xhci_segment **first, struct xhci_segment **last,
326                 unsigned int num_segs, unsigned int trbs_per_seg,
327                 unsigned int cycle_state, enum xhci_ring_type type,
328                 unsigned int max_packet, gfp_t flags)
329 {
330         struct xhci_segment *prev;
331         bool chain_links;
332
333         /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
334         chain_links = !!(xhci_link_trb_quirk(xhci) ||
335                          (type == TYPE_ISOC &&
336                           (xhci->quirks & XHCI_AMD_0x96_HOST)));
337
338         prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
339         if (!prev)
340                 return -ENOMEM;
341         num_segs--;
342
343         *first = prev;
344         while (num_segs > 0) {
345                 struct xhci_segment     *next;
346
347                 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
348                 if (!next) {
349                         prev = *first;
350                         while (prev) {
351                                 next = prev->next;
352                                 xhci_segment_free(xhci, prev);
353                                 prev = next;
354                         }
355                         return -ENOMEM;
356                 }
357                 xhci_link_segments(prev, next, trbs_per_seg, type, chain_links);
358
359                 prev = next;
360                 num_segs--;
361         }
362         xhci_link_segments(prev, *first, trbs_per_seg, type, chain_links);
363         *last = prev;
364
365         return 0;
366 }
367
368 /*
369  * Create a new ring with zero or more segments.
370  *
371  * Link each segment together into a ring.
372  * Set the end flag and the cycle toggle bit on the last segment.
373  * See section 4.9.1 and figures 15 and 16.
374  */
375 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
376                 unsigned int num_segs, unsigned int cycle_state,
377                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
378 {
379         struct xhci_ring        *ring;
380         int ret;
381         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
382
383         ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
384         if (!ring)
385                 return NULL;
386
387         ring->num_segs = num_segs;
388         ring->bounce_buf_len = max_packet;
389         INIT_LIST_HEAD(&ring->td_list);
390         ring->type = type;
391         if (num_segs == 0)
392                 return ring;
393
394         ring->trbs_per_seg = TRBS_PER_SEGMENT;
395         /*
396          * The Via VL805 has a bug where cache readahead will fetch off the end
397          * of a page if the Link TRB of a transfer ring is in the last 4 slots.
398          * Where there are consecutive physical pages containing ring segments,
399          * this can cause a desync between the controller's view of a ring
400          * and the host.
401          */
402         if (xhci->quirks & XHCI_VLI_TRB_CACHE_BUG &&
403             type != TYPE_EVENT && type != TYPE_COMMAND)
404                 ring->trbs_per_seg -= 4;
405
406         ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
407                         &ring->last_seg, num_segs, ring->trbs_per_seg,
408                         cycle_state, type, max_packet, flags);
409         if (ret)
410                 goto fail;
411
412         /* Only event ring does not use link TRB */
413         if (type != TYPE_EVENT) {
414                 /* See section 4.9.2.1 and 6.4.4.1 */
415                 ring->last_seg->trbs[ring->trbs_per_seg - 1].link.control |=
416                         cpu_to_le32(LINK_TOGGLE);
417         }
418         xhci_initialize_ring_info(ring, cycle_state);
419         trace_xhci_ring_alloc(ring);
420         return ring;
421
422 fail:
423         kfree(ring);
424         return NULL;
425 }
426
427 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
428                 struct xhci_virt_device *virt_dev,
429                 unsigned int ep_index)
430 {
431         xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
432         virt_dev->eps[ep_index].ring = NULL;
433 }
434
435 /*
436  * Expand an existing ring.
437  * Allocate a new ring which has same segment numbers and link the two rings.
438  */
439 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
440                                 unsigned int num_trbs, gfp_t flags)
441 {
442         struct xhci_segment     *first;
443         struct xhci_segment     *last;
444         unsigned int            num_segs;
445         unsigned int            num_segs_needed;
446         int                     ret;
447
448         num_segs_needed = (num_trbs + (ring->trbs_per_seg - 1) - 1) /
449                                 (ring->trbs_per_seg - 1);
450         /* Allocate number of segments we needed, or double the ring size */
451         num_segs = ring->num_segs > num_segs_needed ?
452                         ring->num_segs : num_segs_needed;
453
454         ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
455                         num_segs, ring->trbs_per_seg, ring->cycle_state,
456                         ring->type, ring->bounce_buf_len, flags);
457         if (ret)
458                 return -ENOMEM;
459
460         if (ring->type == TYPE_STREAM)
461                 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
462                                                 ring, first, last, flags);
463         if (ret) {
464                 struct xhci_segment *next;
465                 do {
466                         next = first->next;
467                         xhci_segment_free(xhci, first);
468                         if (first == last)
469                                 break;
470                         first = next;
471                 } while (true);
472                 return ret;
473         }
474
475         xhci_link_rings(xhci, ring, first, last, num_segs);
476         trace_xhci_ring_expansion(ring);
477         xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
478                         "ring expansion succeed, now has %d segments",
479                         ring->num_segs);
480
481         return 0;
482 }
483
484 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
485                                                     int type, gfp_t flags)
486 {
487         struct xhci_container_ctx *ctx;
488         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
489
490         if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
491                 return NULL;
492
493         ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
494         if (!ctx)
495                 return NULL;
496
497         ctx->type = type;
498         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
499         if (type == XHCI_CTX_TYPE_INPUT)
500                 ctx->size += CTX_SIZE(xhci->hcc_params);
501
502         ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
503         if (!ctx->bytes) {
504                 kfree(ctx);
505                 return NULL;
506         }
507         return ctx;
508 }
509
510 void xhci_free_container_ctx(struct xhci_hcd *xhci,
511                              struct xhci_container_ctx *ctx)
512 {
513         if (!ctx)
514                 return;
515         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
516         kfree(ctx);
517 }
518
519 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
520                                               struct xhci_container_ctx *ctx)
521 {
522         if (ctx->type != XHCI_CTX_TYPE_INPUT)
523                 return NULL;
524
525         return (struct xhci_input_control_ctx *)ctx->bytes;
526 }
527
528 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
529                                         struct xhci_container_ctx *ctx)
530 {
531         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
532                 return (struct xhci_slot_ctx *)ctx->bytes;
533
534         return (struct xhci_slot_ctx *)
535                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
536 }
537
538 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
539                                     struct xhci_container_ctx *ctx,
540                                     unsigned int ep_index)
541 {
542         /* increment ep index by offset of start of ep ctx array */
543         ep_index++;
544         if (ctx->type == XHCI_CTX_TYPE_INPUT)
545                 ep_index++;
546
547         return (struct xhci_ep_ctx *)
548                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
549 }
550 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
551
552 /***************** Streams structures manipulation *************************/
553
554 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
555                 unsigned int num_stream_ctxs,
556                 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
557 {
558         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
559         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
560
561         if (size > MEDIUM_STREAM_ARRAY_SIZE)
562                 dma_free_coherent(dev, size,
563                                 stream_ctx, dma);
564         else if (size <= SMALL_STREAM_ARRAY_SIZE)
565                 return dma_pool_free(xhci->small_streams_pool,
566                                 stream_ctx, dma);
567         else
568                 return dma_pool_free(xhci->medium_streams_pool,
569                                 stream_ctx, dma);
570 }
571
572 /*
573  * The stream context array for each endpoint with bulk streams enabled can
574  * vary in size, based on:
575  *  - how many streams the endpoint supports,
576  *  - the maximum primary stream array size the host controller supports,
577  *  - and how many streams the device driver asks for.
578  *
579  * The stream context array must be a power of 2, and can be as small as
580  * 64 bytes or as large as 1MB.
581  */
582 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
583                 unsigned int num_stream_ctxs, dma_addr_t *dma,
584                 gfp_t mem_flags)
585 {
586         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
587         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
588
589         if (size > MEDIUM_STREAM_ARRAY_SIZE)
590                 return dma_alloc_coherent(dev, size,
591                                 dma, mem_flags);
592         else if (size <= SMALL_STREAM_ARRAY_SIZE)
593                 return dma_pool_alloc(xhci->small_streams_pool,
594                                 mem_flags, dma);
595         else
596                 return dma_pool_alloc(xhci->medium_streams_pool,
597                                 mem_flags, dma);
598 }
599
600 struct xhci_ring *xhci_dma_to_transfer_ring(
601                 struct xhci_virt_ep *ep,
602                 u64 address)
603 {
604         if (ep->ep_state & EP_HAS_STREAMS)
605                 return radix_tree_lookup(&ep->stream_info->trb_address_map,
606                                 address >> TRB_SEGMENT_SHIFT);
607         return ep->ring;
608 }
609
610 /*
611  * Change an endpoint's internal structure so it supports stream IDs.  The
612  * number of requested streams includes stream 0, which cannot be used by device
613  * drivers.
614  *
615  * The number of stream contexts in the stream context array may be bigger than
616  * the number of streams the driver wants to use.  This is because the number of
617  * stream context array entries must be a power of two.
618  */
619 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
620                 unsigned int num_stream_ctxs,
621                 unsigned int num_streams,
622                 unsigned int max_packet, gfp_t mem_flags)
623 {
624         struct xhci_stream_info *stream_info;
625         u32 cur_stream;
626         struct xhci_ring *cur_ring;
627         u64 addr;
628         int ret;
629         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
630
631         xhci_dbg(xhci, "Allocating %u streams and %u "
632                         "stream context array entries.\n",
633                         num_streams, num_stream_ctxs);
634         if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
635                 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
636                 return NULL;
637         }
638         xhci->cmd_ring_reserved_trbs++;
639
640         stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
641                         dev_to_node(dev));
642         if (!stream_info)
643                 goto cleanup_trbs;
644
645         stream_info->num_streams = num_streams;
646         stream_info->num_stream_ctxs = num_stream_ctxs;
647
648         /* Initialize the array of virtual pointers to stream rings. */
649         stream_info->stream_rings = kcalloc_node(
650                         num_streams, sizeof(struct xhci_ring *), mem_flags,
651                         dev_to_node(dev));
652         if (!stream_info->stream_rings)
653                 goto cleanup_info;
654
655         /* Initialize the array of DMA addresses for stream rings for the HW. */
656         stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
657                         num_stream_ctxs, &stream_info->ctx_array_dma,
658                         mem_flags);
659         if (!stream_info->stream_ctx_array)
660                 goto cleanup_ring_array;
661         memset(stream_info->stream_ctx_array, 0,
662                         sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
663
664         /* Allocate everything needed to free the stream rings later */
665         stream_info->free_streams_command =
666                 xhci_alloc_command_with_ctx(xhci, true, mem_flags);
667         if (!stream_info->free_streams_command)
668                 goto cleanup_ctx;
669
670         INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
671
672         /* Allocate rings for all the streams that the driver will use,
673          * and add their segment DMA addresses to the radix tree.
674          * Stream 0 is reserved.
675          */
676
677         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
678                 stream_info->stream_rings[cur_stream] =
679                         xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
680                                         mem_flags);
681                 cur_ring = stream_info->stream_rings[cur_stream];
682                 if (!cur_ring)
683                         goto cleanup_rings;
684                 cur_ring->stream_id = cur_stream;
685                 cur_ring->trb_address_map = &stream_info->trb_address_map;
686                 /* Set deq ptr, cycle bit, and stream context type */
687                 addr = cur_ring->first_seg->dma |
688                         SCT_FOR_CTX(SCT_PRI_TR) |
689                         cur_ring->cycle_state;
690                 stream_info->stream_ctx_array[cur_stream].stream_ring =
691                         cpu_to_le64(addr);
692                 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
693                                 cur_stream, (unsigned long long) addr);
694
695                 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
696                 if (ret) {
697                         xhci_ring_free(xhci, cur_ring);
698                         stream_info->stream_rings[cur_stream] = NULL;
699                         goto cleanup_rings;
700                 }
701         }
702         /* Leave the other unused stream ring pointers in the stream context
703          * array initialized to zero.  This will cause the xHC to give us an
704          * error if the device asks for a stream ID we don't have setup (if it
705          * was any other way, the host controller would assume the ring is
706          * "empty" and wait forever for data to be queued to that stream ID).
707          */
708
709         return stream_info;
710
711 cleanup_rings:
712         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
713                 cur_ring = stream_info->stream_rings[cur_stream];
714                 if (cur_ring) {
715                         xhci_ring_free(xhci, cur_ring);
716                         stream_info->stream_rings[cur_stream] = NULL;
717                 }
718         }
719         xhci_free_command(xhci, stream_info->free_streams_command);
720 cleanup_ctx:
721         xhci_free_stream_ctx(xhci,
722                 stream_info->num_stream_ctxs,
723                 stream_info->stream_ctx_array,
724                 stream_info->ctx_array_dma);
725 cleanup_ring_array:
726         kfree(stream_info->stream_rings);
727 cleanup_info:
728         kfree(stream_info);
729 cleanup_trbs:
730         xhci->cmd_ring_reserved_trbs--;
731         return NULL;
732 }
733 /*
734  * Sets the MaxPStreams field and the Linear Stream Array field.
735  * Sets the dequeue pointer to the stream context array.
736  */
737 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
738                 struct xhci_ep_ctx *ep_ctx,
739                 struct xhci_stream_info *stream_info)
740 {
741         u32 max_primary_streams;
742         /* MaxPStreams is the number of stream context array entries, not the
743          * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
744          * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
745          */
746         max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
747         xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
748                         "Setting number of stream ctx array entries to %u",
749                         1 << (max_primary_streams + 1));
750         ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
751         ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
752                                        | EP_HAS_LSA);
753         ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
754 }
755
756 /*
757  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
758  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
759  * not at the beginning of the ring).
760  */
761 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
762                 struct xhci_virt_ep *ep)
763 {
764         dma_addr_t addr;
765         ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
766         addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
767         ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
768 }
769
770 /* Frees all stream contexts associated with the endpoint,
771  *
772  * Caller should fix the endpoint context streams fields.
773  */
774 void xhci_free_stream_info(struct xhci_hcd *xhci,
775                 struct xhci_stream_info *stream_info)
776 {
777         int cur_stream;
778         struct xhci_ring *cur_ring;
779
780         if (!stream_info)
781                 return;
782
783         for (cur_stream = 1; cur_stream < stream_info->num_streams;
784                         cur_stream++) {
785                 cur_ring = stream_info->stream_rings[cur_stream];
786                 if (cur_ring) {
787                         xhci_ring_free(xhci, cur_ring);
788                         stream_info->stream_rings[cur_stream] = NULL;
789                 }
790         }
791         xhci_free_command(xhci, stream_info->free_streams_command);
792         xhci->cmd_ring_reserved_trbs--;
793         if (stream_info->stream_ctx_array)
794                 xhci_free_stream_ctx(xhci,
795                                 stream_info->num_stream_ctxs,
796                                 stream_info->stream_ctx_array,
797                                 stream_info->ctx_array_dma);
798
799         kfree(stream_info->stream_rings);
800         kfree(stream_info);
801 }
802
803
804 /***************** Device context manipulation *************************/
805
806 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
807                 struct xhci_virt_ep *ep)
808 {
809         timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
810                     0);
811         ep->xhci = xhci;
812 }
813
814 static void xhci_free_tt_info(struct xhci_hcd *xhci,
815                 struct xhci_virt_device *virt_dev,
816                 int slot_id)
817 {
818         struct list_head *tt_list_head;
819         struct xhci_tt_bw_info *tt_info, *next;
820         bool slot_found = false;
821
822         /* If the device never made it past the Set Address stage,
823          * it may not have the real_port set correctly.
824          */
825         if (virt_dev->real_port == 0 ||
826                         virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
827                 xhci_dbg(xhci, "Bad real port.\n");
828                 return;
829         }
830
831         tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
832         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
833                 /* Multi-TT hubs will have more than one entry */
834                 if (tt_info->slot_id == slot_id) {
835                         slot_found = true;
836                         list_del(&tt_info->tt_list);
837                         kfree(tt_info);
838                 } else if (slot_found) {
839                         break;
840                 }
841         }
842 }
843
844 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
845                 struct xhci_virt_device *virt_dev,
846                 struct usb_device *hdev,
847                 struct usb_tt *tt, gfp_t mem_flags)
848 {
849         struct xhci_tt_bw_info          *tt_info;
850         unsigned int                    num_ports;
851         int                             i, j;
852         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
853
854         if (!tt->multi)
855                 num_ports = 1;
856         else
857                 num_ports = hdev->maxchild;
858
859         for (i = 0; i < num_ports; i++, tt_info++) {
860                 struct xhci_interval_bw_table *bw_table;
861
862                 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
863                                 dev_to_node(dev));
864                 if (!tt_info)
865                         goto free_tts;
866                 INIT_LIST_HEAD(&tt_info->tt_list);
867                 list_add(&tt_info->tt_list,
868                                 &xhci->rh_bw[virt_dev->real_port - 1].tts);
869                 tt_info->slot_id = virt_dev->udev->slot_id;
870                 if (tt->multi)
871                         tt_info->ttport = i+1;
872                 bw_table = &tt_info->bw_table;
873                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
874                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
875         }
876         return 0;
877
878 free_tts:
879         xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
880         return -ENOMEM;
881 }
882
883
884 /* All the xhci_tds in the ring's TD list should be freed at this point.
885  * Should be called with xhci->lock held if there is any chance the TT lists
886  * will be manipulated by the configure endpoint, allocate device, or update
887  * hub functions while this function is removing the TT entries from the list.
888  */
889 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
890 {
891         struct xhci_virt_device *dev;
892         int i;
893         int old_active_eps = 0;
894
895         /* Slot ID 0 is reserved */
896         if (slot_id == 0 || !xhci->devs[slot_id])
897                 return;
898
899         dev = xhci->devs[slot_id];
900
901         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
902         if (!dev)
903                 return;
904
905         trace_xhci_free_virt_device(dev);
906
907         if (dev->tt_info)
908                 old_active_eps = dev->tt_info->active_eps;
909
910         for (i = 0; i < 31; i++) {
911                 if (dev->eps[i].ring)
912                         xhci_ring_free(xhci, dev->eps[i].ring);
913                 if (dev->eps[i].stream_info)
914                         xhci_free_stream_info(xhci,
915                                         dev->eps[i].stream_info);
916                 /*
917                  * Endpoints are normally deleted from the bandwidth list when
918                  * endpoints are dropped, before device is freed.
919                  * If host is dying or being removed then endpoints aren't
920                  * dropped cleanly, so delete the endpoint from list here.
921                  * Only applicable for hosts with software bandwidth checking.
922                  */
923
924                 if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
925                         list_del_init(&dev->eps[i].bw_endpoint_list);
926                         xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
927                                  slot_id, i);
928                 }
929         }
930         /* If this is a hub, free the TT(s) from the TT list */
931         xhci_free_tt_info(xhci, dev, slot_id);
932         /* If necessary, update the number of active TTs on this root port */
933         xhci_update_tt_active_eps(xhci, dev, old_active_eps);
934
935         if (dev->in_ctx)
936                 xhci_free_container_ctx(xhci, dev->in_ctx);
937         if (dev->out_ctx)
938                 xhci_free_container_ctx(xhci, dev->out_ctx);
939
940         if (dev->udev && dev->udev->slot_id)
941                 dev->udev->slot_id = 0;
942         kfree(xhci->devs[slot_id]);
943         xhci->devs[slot_id] = NULL;
944 }
945
946 /*
947  * Free a virt_device structure.
948  * If the virt_device added a tt_info (a hub) and has children pointing to
949  * that tt_info, then free the child first. Recursive.
950  * We can't rely on udev at this point to find child-parent relationships.
951  */
952 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
953 {
954         struct xhci_virt_device *vdev;
955         struct list_head *tt_list_head;
956         struct xhci_tt_bw_info *tt_info, *next;
957         int i;
958
959         vdev = xhci->devs[slot_id];
960         if (!vdev)
961                 return;
962
963         if (vdev->real_port == 0 ||
964                         vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
965                 xhci_dbg(xhci, "Bad vdev->real_port.\n");
966                 goto out;
967         }
968
969         tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
970         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
971                 /* is this a hub device that added a tt_info to the tts list */
972                 if (tt_info->slot_id == slot_id) {
973                         /* are any devices using this tt_info? */
974                         for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
975                                 vdev = xhci->devs[i];
976                                 if (vdev && (vdev->tt_info == tt_info))
977                                         xhci_free_virt_devices_depth_first(
978                                                 xhci, i);
979                         }
980                 }
981         }
982 out:
983         /* we are now at a leaf device */
984         xhci_debugfs_remove_slot(xhci, slot_id);
985         xhci_free_virt_device(xhci, slot_id);
986 }
987
988 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
989                 struct usb_device *udev, gfp_t flags)
990 {
991         struct xhci_virt_device *dev;
992         int i;
993
994         /* Slot ID 0 is reserved */
995         if (slot_id == 0 || xhci->devs[slot_id]) {
996                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
997                 return 0;
998         }
999
1000         dev = kzalloc(sizeof(*dev), flags);
1001         if (!dev)
1002                 return 0;
1003
1004         dev->slot_id = slot_id;
1005
1006         /* Allocate the (output) device context that will be used in the HC. */
1007         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
1008         if (!dev->out_ctx)
1009                 goto fail;
1010
1011         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1012                         (unsigned long long)dev->out_ctx->dma);
1013
1014         /* Allocate the (input) device context for address device command */
1015         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1016         if (!dev->in_ctx)
1017                 goto fail;
1018
1019         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1020                         (unsigned long long)dev->in_ctx->dma);
1021
1022         /* Initialize the cancellation list and watchdog timers for each ep */
1023         for (i = 0; i < 31; i++) {
1024                 dev->eps[i].ep_index = i;
1025                 dev->eps[i].vdev = dev;
1026                 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1027                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1028                 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1029         }
1030
1031         /* Allocate endpoint 0 ring */
1032         dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1033         if (!dev->eps[0].ring)
1034                 goto fail;
1035
1036         dev->udev = udev;
1037
1038         /* Point to output device context in dcbaa. */
1039         xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1040         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1041                  slot_id,
1042                  &xhci->dcbaa->dev_context_ptrs[slot_id],
1043                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1044
1045         trace_xhci_alloc_virt_device(dev);
1046
1047         xhci->devs[slot_id] = dev;
1048
1049         return 1;
1050 fail:
1051
1052         if (dev->in_ctx)
1053                 xhci_free_container_ctx(xhci, dev->in_ctx);
1054         if (dev->out_ctx)
1055                 xhci_free_container_ctx(xhci, dev->out_ctx);
1056         kfree(dev);
1057
1058         return 0;
1059 }
1060
1061 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1062                 struct usb_device *udev)
1063 {
1064         struct xhci_virt_device *virt_dev;
1065         struct xhci_ep_ctx      *ep0_ctx;
1066         struct xhci_ring        *ep_ring;
1067
1068         virt_dev = xhci->devs[udev->slot_id];
1069         ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1070         ep_ring = virt_dev->eps[0].ring;
1071         /*
1072          * FIXME we don't keep track of the dequeue pointer very well after a
1073          * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1074          * host to our enqueue pointer.  This should only be called after a
1075          * configured device has reset, so all control transfers should have
1076          * been completed or cancelled before the reset.
1077          */
1078         ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1079                                                         ep_ring->enqueue)
1080                                    | ep_ring->cycle_state);
1081 }
1082
1083 /*
1084  * The xHCI roothub may have ports of differing speeds in any order in the port
1085  * status registers.
1086  *
1087  * The xHCI hardware wants to know the roothub port number that the USB device
1088  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1089  * know is the index of that port under either the USB 2.0 or the USB 3.0
1090  * roothub, but that doesn't give us the real index into the HW port status
1091  * registers. Call xhci_find_raw_port_number() to get real index.
1092  */
1093 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1094                 struct usb_device *udev)
1095 {
1096         struct usb_device *top_dev;
1097         struct usb_hcd *hcd;
1098
1099         if (udev->speed >= USB_SPEED_SUPER)
1100                 hcd = xhci->shared_hcd;
1101         else
1102                 hcd = xhci->main_hcd;
1103
1104         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1105                         top_dev = top_dev->parent)
1106                 /* Found device below root hub */;
1107
1108         return  xhci_find_raw_port_number(hcd, top_dev->portnum);
1109 }
1110
1111 /* Setup an xHCI virtual device for a Set Address command */
1112 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1113 {
1114         struct xhci_virt_device *dev;
1115         struct xhci_ep_ctx      *ep0_ctx;
1116         struct xhci_slot_ctx    *slot_ctx;
1117         u32                     port_num;
1118         u32                     max_packets;
1119         struct usb_device *top_dev;
1120
1121         dev = xhci->devs[udev->slot_id];
1122         /* Slot ID 0 is reserved */
1123         if (udev->slot_id == 0 || !dev) {
1124                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1125                                 udev->slot_id);
1126                 return -EINVAL;
1127         }
1128         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1129         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1130
1131         /* 3) Only the control endpoint is valid - one endpoint context */
1132         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1133         switch (udev->speed) {
1134         case USB_SPEED_SUPER_PLUS:
1135                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1136                 max_packets = MAX_PACKET(512);
1137                 break;
1138         case USB_SPEED_SUPER:
1139                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1140                 max_packets = MAX_PACKET(512);
1141                 break;
1142         case USB_SPEED_HIGH:
1143                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1144                 max_packets = MAX_PACKET(64);
1145                 break;
1146         /* USB core guesses at a 64-byte max packet first for FS devices */
1147         case USB_SPEED_FULL:
1148                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1149                 max_packets = MAX_PACKET(64);
1150                 break;
1151         case USB_SPEED_LOW:
1152                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1153                 max_packets = MAX_PACKET(8);
1154                 break;
1155         case USB_SPEED_WIRELESS:
1156                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1157                 return -EINVAL;
1158         default:
1159                 /* Speed was set earlier, this shouldn't happen. */
1160                 return -EINVAL;
1161         }
1162         /* Find the root hub port this device is under */
1163         port_num = xhci_find_real_port_number(xhci, udev);
1164         if (!port_num)
1165                 return -EINVAL;
1166         slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1167         /* Set the port number in the virtual_device to the faked port number */
1168         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1169                         top_dev = top_dev->parent)
1170                 /* Found device below root hub */;
1171         dev->fake_port = top_dev->portnum;
1172         dev->real_port = port_num;
1173         xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1174         xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1175
1176         /* Find the right bandwidth table that this device will be a part of.
1177          * If this is a full speed device attached directly to a root port (or a
1178          * decendent of one), it counts as a primary bandwidth domain, not a
1179          * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1180          * will never be created for the HS root hub.
1181          */
1182         if (!udev->tt || !udev->tt->hub->parent) {
1183                 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1184         } else {
1185                 struct xhci_root_port_bw_info *rh_bw;
1186                 struct xhci_tt_bw_info *tt_bw;
1187
1188                 rh_bw = &xhci->rh_bw[port_num - 1];
1189                 /* Find the right TT. */
1190                 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1191                         if (tt_bw->slot_id != udev->tt->hub->slot_id)
1192                                 continue;
1193
1194                         if (!dev->udev->tt->multi ||
1195                                         (udev->tt->multi &&
1196                                          tt_bw->ttport == dev->udev->ttport)) {
1197                                 dev->bw_table = &tt_bw->bw_table;
1198                                 dev->tt_info = tt_bw;
1199                                 break;
1200                         }
1201                 }
1202                 if (!dev->tt_info)
1203                         xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1204         }
1205
1206         /* Is this a LS/FS device under an external HS hub? */
1207         if (udev->tt && udev->tt->hub->parent) {
1208                 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1209                                                 (udev->ttport << 8));
1210                 if (udev->tt->multi)
1211                         slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1212         }
1213         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1214         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1215
1216         /* Step 4 - ring already allocated */
1217         /* Step 5 */
1218         ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1219
1220         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1221         ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1222                                          max_packets);
1223
1224         ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1225                                    dev->eps[0].ring->cycle_state);
1226
1227         trace_xhci_setup_addressable_virt_device(dev);
1228
1229         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1230
1231         return 0;
1232 }
1233
1234 /*
1235  * Convert interval expressed as 2^(bInterval - 1) == interval into
1236  * straight exponent value 2^n == interval.
1237  *
1238  */
1239 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1240                 struct usb_host_endpoint *ep)
1241 {
1242         unsigned int interval;
1243
1244         interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1245         if (interval != ep->desc.bInterval - 1)
1246                 dev_warn(&udev->dev,
1247                          "ep %#x - rounding interval to %d %sframes\n",
1248                          ep->desc.bEndpointAddress,
1249                          1 << interval,
1250                          udev->speed == USB_SPEED_FULL ? "" : "micro");
1251
1252         if (udev->speed == USB_SPEED_FULL) {
1253                 /*
1254                  * Full speed isoc endpoints specify interval in frames,
1255                  * not microframes. We are using microframes everywhere,
1256                  * so adjust accordingly.
1257                  */
1258                 interval += 3;  /* 1 frame = 2^3 uframes */
1259         }
1260
1261         return interval;
1262 }
1263
1264 /*
1265  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1266  * microframes, rounded down to nearest power of 2.
1267  */
1268 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1269                 struct usb_host_endpoint *ep, unsigned int desc_interval,
1270                 unsigned int min_exponent, unsigned int max_exponent)
1271 {
1272         unsigned int interval;
1273
1274         interval = fls(desc_interval) - 1;
1275         interval = clamp_val(interval, min_exponent, max_exponent);
1276         if ((1 << interval) != desc_interval)
1277                 dev_dbg(&udev->dev,
1278                          "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1279                          ep->desc.bEndpointAddress,
1280                          1 << interval,
1281                          desc_interval);
1282
1283         return interval;
1284 }
1285
1286 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1287                 struct usb_host_endpoint *ep)
1288 {
1289         if (ep->desc.bInterval == 0)
1290                 return 0;
1291         return xhci_microframes_to_exponent(udev, ep,
1292                         ep->desc.bInterval, 0, 15);
1293 }
1294
1295
1296 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1297                 struct usb_host_endpoint *ep)
1298 {
1299         return xhci_microframes_to_exponent(udev, ep,
1300                         ep->desc.bInterval * 8, 3, 10);
1301 }
1302
1303 /* Return the polling or NAK interval.
1304  *
1305  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1306  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1307  *
1308  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1309  * is set to 0.
1310  */
1311 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1312                 struct usb_host_endpoint *ep)
1313 {
1314         unsigned int interval = 0;
1315
1316         switch (udev->speed) {
1317         case USB_SPEED_HIGH:
1318                 /* Max NAK rate */
1319                 if (usb_endpoint_xfer_control(&ep->desc) ||
1320                     usb_endpoint_xfer_bulk(&ep->desc)) {
1321                         interval = xhci_parse_microframe_interval(udev, ep);
1322                         break;
1323                 }
1324                 fallthrough;    /* SS and HS isoc/int have same decoding */
1325
1326         case USB_SPEED_SUPER_PLUS:
1327         case USB_SPEED_SUPER:
1328                 if (usb_endpoint_xfer_int(&ep->desc) ||
1329                     usb_endpoint_xfer_isoc(&ep->desc)) {
1330                         interval = xhci_parse_exponent_interval(udev, ep);
1331                 }
1332                 break;
1333
1334         case USB_SPEED_FULL:
1335                 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1336                         interval = xhci_parse_exponent_interval(udev, ep);
1337                         break;
1338                 }
1339                 /*
1340                  * Fall through for interrupt endpoint interval decoding
1341                  * since it uses the same rules as low speed interrupt
1342                  * endpoints.
1343                  */
1344                 fallthrough;
1345
1346         case USB_SPEED_LOW:
1347                 if (usb_endpoint_xfer_int(&ep->desc) ||
1348                     usb_endpoint_xfer_isoc(&ep->desc)) {
1349
1350                         interval = xhci_parse_frame_interval(udev, ep);
1351                 }
1352                 break;
1353
1354         default:
1355                 BUG();
1356         }
1357         return interval;
1358 }
1359
1360 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1361  * High speed endpoint descriptors can define "the number of additional
1362  * transaction opportunities per microframe", but that goes in the Max Burst
1363  * endpoint context field.
1364  */
1365 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1366                 struct usb_host_endpoint *ep)
1367 {
1368         if (udev->speed < USB_SPEED_SUPER ||
1369                         !usb_endpoint_xfer_isoc(&ep->desc))
1370                 return 0;
1371         return ep->ss_ep_comp.bmAttributes;
1372 }
1373
1374 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1375                                        struct usb_host_endpoint *ep)
1376 {
1377         /* Super speed and Plus have max burst in ep companion desc */
1378         if (udev->speed >= USB_SPEED_SUPER)
1379                 return ep->ss_ep_comp.bMaxBurst;
1380
1381         if (udev->speed == USB_SPEED_HIGH &&
1382             (usb_endpoint_xfer_isoc(&ep->desc) ||
1383              usb_endpoint_xfer_int(&ep->desc)))
1384                 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1385
1386         return 0;
1387 }
1388
1389 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1390 {
1391         int in;
1392
1393         in = usb_endpoint_dir_in(&ep->desc);
1394
1395         switch (usb_endpoint_type(&ep->desc)) {
1396         case USB_ENDPOINT_XFER_CONTROL:
1397                 return CTRL_EP;
1398         case USB_ENDPOINT_XFER_BULK:
1399                 return in ? BULK_IN_EP : BULK_OUT_EP;
1400         case USB_ENDPOINT_XFER_ISOC:
1401                 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1402         case USB_ENDPOINT_XFER_INT:
1403                 return in ? INT_IN_EP : INT_OUT_EP;
1404         }
1405         return 0;
1406 }
1407
1408 /* Return the maximum endpoint service interval time (ESIT) payload.
1409  * Basically, this is the maxpacket size, multiplied by the burst size
1410  * and mult size.
1411  */
1412 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1413                 struct usb_host_endpoint *ep)
1414 {
1415         int max_burst;
1416         int max_packet;
1417
1418         /* Only applies for interrupt or isochronous endpoints */
1419         if (usb_endpoint_xfer_control(&ep->desc) ||
1420                         usb_endpoint_xfer_bulk(&ep->desc))
1421                 return 0;
1422
1423         /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1424         if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1425             USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1426                 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1427         /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1428         else if (udev->speed >= USB_SPEED_SUPER)
1429                 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1430
1431         max_packet = usb_endpoint_maxp(&ep->desc);
1432         max_burst = usb_endpoint_maxp_mult(&ep->desc);
1433         /* A 0 in max burst means 1 transfer per ESIT */
1434         return max_packet * max_burst;
1435 }
1436
1437 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1438  * Drivers will have to call usb_alloc_streams() to do that.
1439  */
1440 int xhci_endpoint_init(struct xhci_hcd *xhci,
1441                 struct xhci_virt_device *virt_dev,
1442                 struct usb_device *udev,
1443                 struct usb_host_endpoint *ep,
1444                 gfp_t mem_flags)
1445 {
1446         unsigned int ep_index;
1447         struct xhci_ep_ctx *ep_ctx;
1448         struct xhci_ring *ep_ring;
1449         struct usb_interface_cache *intfc;
1450         unsigned int max_packet;
1451         enum xhci_ring_type ring_type;
1452         u32 max_esit_payload;
1453         u32 endpoint_type;
1454         unsigned int max_burst;
1455         unsigned int interval;
1456         unsigned int mult;
1457         unsigned int avg_trb_len;
1458         unsigned int err_count = 0;
1459         unsigned int is_ums_dev = 0;
1460         unsigned int i;
1461
1462         ep_index = xhci_get_endpoint_index(&ep->desc);
1463         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1464
1465         endpoint_type = xhci_get_endpoint_type(ep);
1466         if (!endpoint_type)
1467                 return -EINVAL;
1468
1469         ring_type = usb_endpoint_type(&ep->desc);
1470
1471         /*
1472          * Get values to fill the endpoint context, mostly from ep descriptor.
1473          * The average TRB buffer lengt for bulk endpoints is unclear as we
1474          * have no clue on scatter gather list entry size. For Isoc and Int,
1475          * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1476          */
1477         max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1478         interval = xhci_get_endpoint_interval(udev, ep);
1479
1480         /* Periodic endpoint bInterval limit quirk */
1481         if (usb_endpoint_xfer_int(&ep->desc) ||
1482             usb_endpoint_xfer_isoc(&ep->desc)) {
1483                 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1484                     udev->speed >= USB_SPEED_HIGH &&
1485                     interval >= 7) {
1486                         interval = 6;
1487                 }
1488         }
1489
1490         mult = xhci_get_endpoint_mult(udev, ep);
1491         max_packet = usb_endpoint_maxp(&ep->desc);
1492         avg_trb_len = max_esit_payload;
1493
1494         /*
1495          * VL805 errata - Bulk OUT bursts to superspeed mass-storage
1496          * devices behind hub ports can cause data corruption with
1497          * non-wMaxPacket-multiple transfers.
1498          */
1499         for (i = 0; i < udev->config->desc.bNumInterfaces; i++) {
1500                 intfc = udev->config->intf_cache[i];
1501                 /*
1502                  * Slight hack - look at interface altsetting 0, which
1503                  * should be the UMS bulk-only interface. If the class
1504                  * matches, then we disable out bursts for all OUT
1505                  * endpoints because endpoint assignments may change
1506                  * between alternate settings.
1507                  */
1508                 if (intfc->altsetting[0].desc.bInterfaceClass ==
1509                     USB_CLASS_MASS_STORAGE) {
1510                         is_ums_dev = 1;
1511                         break;
1512                 }
1513         }
1514         if (xhci->quirks & XHCI_VLI_SS_BULK_OUT_BUG &&
1515             usb_endpoint_is_bulk_out(&ep->desc) && is_ums_dev &&
1516             udev->route)
1517                 max_burst = 0;
1518         else
1519                 max_burst = xhci_get_endpoint_max_burst(udev, ep);
1520
1521         /* FIXME dig Mult and streams info out of ep companion desc */
1522
1523         /* Allow 3 retries for everything but isoc, set CErr = 3 */
1524         if (!usb_endpoint_xfer_isoc(&ep->desc))
1525                 err_count = 3;
1526         /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1527         if (usb_endpoint_xfer_bulk(&ep->desc)) {
1528                 if (udev->speed == USB_SPEED_HIGH)
1529                         max_packet = 512;
1530                 if (udev->speed == USB_SPEED_FULL) {
1531                         max_packet = rounddown_pow_of_two(max_packet);
1532                         max_packet = clamp_val(max_packet, 8, 64);
1533                 }
1534         }
1535         /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1536         if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1537                 avg_trb_len = 8;
1538         /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1539         if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1540                 mult = 0;
1541
1542         /* Set up the endpoint ring */
1543         virt_dev->eps[ep_index].new_ring =
1544                 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1545         if (!virt_dev->eps[ep_index].new_ring)
1546                 return -ENOMEM;
1547
1548         virt_dev->eps[ep_index].skip = false;
1549         ep_ring = virt_dev->eps[ep_index].new_ring;
1550
1551         /* Fill the endpoint context */
1552         ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1553                                       EP_INTERVAL(interval) |
1554                                       EP_MULT(mult));
1555         ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1556                                        MAX_PACKET(max_packet) |
1557                                        MAX_BURST(max_burst) |
1558                                        ERROR_COUNT(err_count));
1559         ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1560                                   ep_ring->cycle_state);
1561
1562         ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1563                                       EP_AVG_TRB_LENGTH(avg_trb_len));
1564
1565         return 0;
1566 }
1567
1568 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1569                 struct xhci_virt_device *virt_dev,
1570                 struct usb_host_endpoint *ep)
1571 {
1572         unsigned int ep_index;
1573         struct xhci_ep_ctx *ep_ctx;
1574
1575         ep_index = xhci_get_endpoint_index(&ep->desc);
1576         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1577
1578         ep_ctx->ep_info = 0;
1579         ep_ctx->ep_info2 = 0;
1580         ep_ctx->deq = 0;
1581         ep_ctx->tx_info = 0;
1582         /* Don't free the endpoint ring until the set interface or configuration
1583          * request succeeds.
1584          */
1585 }
1586
1587 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1588 {
1589         bw_info->ep_interval = 0;
1590         bw_info->mult = 0;
1591         bw_info->num_packets = 0;
1592         bw_info->max_packet_size = 0;
1593         bw_info->type = 0;
1594         bw_info->max_esit_payload = 0;
1595 }
1596
1597 void xhci_update_bw_info(struct xhci_hcd *xhci,
1598                 struct xhci_container_ctx *in_ctx,
1599                 struct xhci_input_control_ctx *ctrl_ctx,
1600                 struct xhci_virt_device *virt_dev)
1601 {
1602         struct xhci_bw_info *bw_info;
1603         struct xhci_ep_ctx *ep_ctx;
1604         unsigned int ep_type;
1605         int i;
1606
1607         for (i = 1; i < 31; i++) {
1608                 bw_info = &virt_dev->eps[i].bw_info;
1609
1610                 /* We can't tell what endpoint type is being dropped, but
1611                  * unconditionally clearing the bandwidth info for non-periodic
1612                  * endpoints should be harmless because the info will never be
1613                  * set in the first place.
1614                  */
1615                 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1616                         /* Dropped endpoint */
1617                         xhci_clear_endpoint_bw_info(bw_info);
1618                         continue;
1619                 }
1620
1621                 if (EP_IS_ADDED(ctrl_ctx, i)) {
1622                         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1623                         ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1624
1625                         /* Ignore non-periodic endpoints */
1626                         if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1627                                         ep_type != ISOC_IN_EP &&
1628                                         ep_type != INT_IN_EP)
1629                                 continue;
1630
1631                         /* Added or changed endpoint */
1632                         bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1633                                         le32_to_cpu(ep_ctx->ep_info));
1634                         /* Number of packets and mult are zero-based in the
1635                          * input context, but we want one-based for the
1636                          * interval table.
1637                          */
1638                         bw_info->mult = CTX_TO_EP_MULT(
1639                                         le32_to_cpu(ep_ctx->ep_info)) + 1;
1640                         bw_info->num_packets = CTX_TO_MAX_BURST(
1641                                         le32_to_cpu(ep_ctx->ep_info2)) + 1;
1642                         bw_info->max_packet_size = MAX_PACKET_DECODED(
1643                                         le32_to_cpu(ep_ctx->ep_info2));
1644                         bw_info->type = ep_type;
1645                         bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1646                                         le32_to_cpu(ep_ctx->tx_info));
1647                 }
1648         }
1649 }
1650
1651 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1652  * Useful when you want to change one particular aspect of the endpoint and then
1653  * issue a configure endpoint command.
1654  */
1655 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1656                 struct xhci_container_ctx *in_ctx,
1657                 struct xhci_container_ctx *out_ctx,
1658                 unsigned int ep_index)
1659 {
1660         struct xhci_ep_ctx *out_ep_ctx;
1661         struct xhci_ep_ctx *in_ep_ctx;
1662
1663         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1664         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1665
1666         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1667         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1668         in_ep_ctx->deq = out_ep_ctx->deq;
1669         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1670         if (xhci->quirks & XHCI_MTK_HOST) {
1671                 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1672                 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1673         }
1674 }
1675
1676 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1677  * Useful when you want to change one particular aspect of the endpoint and then
1678  * issue a configure endpoint command.  Only the context entries field matters,
1679  * but we'll copy the whole thing anyway.
1680  */
1681 void xhci_slot_copy(struct xhci_hcd *xhci,
1682                 struct xhci_container_ctx *in_ctx,
1683                 struct xhci_container_ctx *out_ctx)
1684 {
1685         struct xhci_slot_ctx *in_slot_ctx;
1686         struct xhci_slot_ctx *out_slot_ctx;
1687
1688         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1689         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1690
1691         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1692         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1693         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1694         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1695 }
1696
1697 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1698 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1699 {
1700         int i;
1701         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1702         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1703
1704         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1705                         "Allocating %d scratchpad buffers", num_sp);
1706
1707         if (!num_sp)
1708                 return 0;
1709
1710         xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1711                                 dev_to_node(dev));
1712         if (!xhci->scratchpad)
1713                 goto fail_sp;
1714
1715         xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1716                                      num_sp * sizeof(u64),
1717                                      &xhci->scratchpad->sp_dma, flags);
1718         if (!xhci->scratchpad->sp_array)
1719                 goto fail_sp2;
1720
1721         xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1722                                         flags, dev_to_node(dev));
1723         if (!xhci->scratchpad->sp_buffers)
1724                 goto fail_sp3;
1725
1726         xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1727         for (i = 0; i < num_sp; i++) {
1728                 dma_addr_t dma;
1729                 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1730                                                flags);
1731                 if (!buf)
1732                         goto fail_sp4;
1733
1734                 xhci->scratchpad->sp_array[i] = dma;
1735                 xhci->scratchpad->sp_buffers[i] = buf;
1736         }
1737
1738         return 0;
1739
1740  fail_sp4:
1741         for (i = i - 1; i >= 0; i--) {
1742                 dma_free_coherent(dev, xhci->page_size,
1743                                     xhci->scratchpad->sp_buffers[i],
1744                                     xhci->scratchpad->sp_array[i]);
1745         }
1746
1747         kfree(xhci->scratchpad->sp_buffers);
1748
1749  fail_sp3:
1750         dma_free_coherent(dev, num_sp * sizeof(u64),
1751                             xhci->scratchpad->sp_array,
1752                             xhci->scratchpad->sp_dma);
1753
1754  fail_sp2:
1755         kfree(xhci->scratchpad);
1756         xhci->scratchpad = NULL;
1757
1758  fail_sp:
1759         return -ENOMEM;
1760 }
1761
1762 static void scratchpad_free(struct xhci_hcd *xhci)
1763 {
1764         int num_sp;
1765         int i;
1766         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1767
1768         if (!xhci->scratchpad)
1769                 return;
1770
1771         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1772
1773         for (i = 0; i < num_sp; i++) {
1774                 dma_free_coherent(dev, xhci->page_size,
1775                                     xhci->scratchpad->sp_buffers[i],
1776                                     xhci->scratchpad->sp_array[i]);
1777         }
1778         kfree(xhci->scratchpad->sp_buffers);
1779         dma_free_coherent(dev, num_sp * sizeof(u64),
1780                             xhci->scratchpad->sp_array,
1781                             xhci->scratchpad->sp_dma);
1782         kfree(xhci->scratchpad);
1783         xhci->scratchpad = NULL;
1784 }
1785
1786 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1787                 bool allocate_completion, gfp_t mem_flags)
1788 {
1789         struct xhci_command *command;
1790         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1791
1792         command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1793         if (!command)
1794                 return NULL;
1795
1796         if (allocate_completion) {
1797                 command->completion =
1798                         kzalloc_node(sizeof(struct completion), mem_flags,
1799                                 dev_to_node(dev));
1800                 if (!command->completion) {
1801                         kfree(command);
1802                         return NULL;
1803                 }
1804                 init_completion(command->completion);
1805         }
1806
1807         command->status = 0;
1808         INIT_LIST_HEAD(&command->cmd_list);
1809         return command;
1810 }
1811
1812 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1813                 bool allocate_completion, gfp_t mem_flags)
1814 {
1815         struct xhci_command *command;
1816
1817         command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1818         if (!command)
1819                 return NULL;
1820
1821         command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1822                                                    mem_flags);
1823         if (!command->in_ctx) {
1824                 kfree(command->completion);
1825                 kfree(command);
1826                 return NULL;
1827         }
1828         return command;
1829 }
1830
1831 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1832 {
1833         kfree(urb_priv);
1834 }
1835
1836 void xhci_free_command(struct xhci_hcd *xhci,
1837                 struct xhci_command *command)
1838 {
1839         xhci_free_container_ctx(xhci,
1840                         command->in_ctx);
1841         kfree(command->completion);
1842         kfree(command);
1843 }
1844
1845 int xhci_alloc_erst(struct xhci_hcd *xhci,
1846                     struct xhci_ring *evt_ring,
1847                     struct xhci_erst *erst,
1848                     gfp_t flags)
1849 {
1850         size_t size;
1851         unsigned int val;
1852         struct xhci_segment *seg;
1853         struct xhci_erst_entry *entry;
1854
1855         size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1856         erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1857                                            size, &erst->erst_dma_addr, flags);
1858         if (!erst->entries)
1859                 return -ENOMEM;
1860
1861         erst->num_entries = evt_ring->num_segs;
1862
1863         seg = evt_ring->first_seg;
1864         for (val = 0; val < evt_ring->num_segs; val++) {
1865                 entry = &erst->entries[val];
1866                 entry->seg_addr = cpu_to_le64(seg->dma);
1867                 entry->seg_size = cpu_to_le32(evt_ring->trbs_per_seg);
1868                 entry->rsvd = 0;
1869                 seg = seg->next;
1870         }
1871
1872         return 0;
1873 }
1874
1875 void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1876 {
1877         size_t size;
1878         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1879
1880         size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1881         if (erst->entries)
1882                 dma_free_coherent(dev, size,
1883                                 erst->entries,
1884                                 erst->erst_dma_addr);
1885         erst->entries = NULL;
1886 }
1887
1888 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1889 {
1890         struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
1891         int i, j, num_ports;
1892
1893         cancel_delayed_work_sync(&xhci->cmd_timer);
1894
1895         xhci_free_erst(xhci, &xhci->erst);
1896
1897         if (xhci->event_ring)
1898                 xhci_ring_free(xhci, xhci->event_ring);
1899         xhci->event_ring = NULL;
1900         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1901
1902         if (xhci->lpm_command)
1903                 xhci_free_command(xhci, xhci->lpm_command);
1904         xhci->lpm_command = NULL;
1905         if (xhci->cmd_ring)
1906                 xhci_ring_free(xhci, xhci->cmd_ring);
1907         xhci->cmd_ring = NULL;
1908         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1909         xhci_cleanup_command_queue(xhci);
1910
1911         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1912         for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1913                 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1914                 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1915                         struct list_head *ep = &bwt->interval_bw[j].endpoints;
1916                         while (!list_empty(ep))
1917                                 list_del_init(ep->next);
1918                 }
1919         }
1920
1921         for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1922                 xhci_free_virt_devices_depth_first(xhci, i);
1923
1924         dma_pool_destroy(xhci->segment_pool);
1925         xhci->segment_pool = NULL;
1926         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1927
1928         dma_pool_destroy(xhci->device_pool);
1929         xhci->device_pool = NULL;
1930         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1931
1932         dma_pool_destroy(xhci->small_streams_pool);
1933         xhci->small_streams_pool = NULL;
1934         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1935                         "Freed small stream array pool");
1936
1937         dma_pool_destroy(xhci->medium_streams_pool);
1938         xhci->medium_streams_pool = NULL;
1939         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1940                         "Freed medium stream array pool");
1941
1942         if (xhci->dcbaa)
1943                 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1944                                 xhci->dcbaa, xhci->dcbaa->dma);
1945         xhci->dcbaa = NULL;
1946
1947         scratchpad_free(xhci);
1948
1949         if (!xhci->rh_bw)
1950                 goto no_bw;
1951
1952         for (i = 0; i < num_ports; i++) {
1953                 struct xhci_tt_bw_info *tt, *n;
1954                 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1955                         list_del(&tt->tt_list);
1956                         kfree(tt);
1957                 }
1958         }
1959
1960 no_bw:
1961         xhci->cmd_ring_reserved_trbs = 0;
1962         xhci->usb2_rhub.num_ports = 0;
1963         xhci->usb3_rhub.num_ports = 0;
1964         xhci->num_active_eps = 0;
1965         kfree(xhci->usb2_rhub.ports);
1966         kfree(xhci->usb3_rhub.ports);
1967         kfree(xhci->hw_ports);
1968         kfree(xhci->rh_bw);
1969         kfree(xhci->ext_caps);
1970         for (i = 0; i < xhci->num_port_caps; i++)
1971                 kfree(xhci->port_caps[i].psi);
1972         kfree(xhci->port_caps);
1973         xhci->num_port_caps = 0;
1974
1975         xhci->usb2_rhub.ports = NULL;
1976         xhci->usb3_rhub.ports = NULL;
1977         xhci->hw_ports = NULL;
1978         xhci->rh_bw = NULL;
1979         xhci->ext_caps = NULL;
1980         xhci->port_caps = NULL;
1981
1982         xhci->page_size = 0;
1983         xhci->page_shift = 0;
1984         xhci->usb2_rhub.bus_state.bus_suspended = 0;
1985         xhci->usb3_rhub.bus_state.bus_suspended = 0;
1986 }
1987
1988 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1989                 struct xhci_segment *input_seg,
1990                 union xhci_trb *start_trb,
1991                 union xhci_trb *end_trb,
1992                 dma_addr_t input_dma,
1993                 struct xhci_segment *result_seg,
1994                 char *test_name, int test_number)
1995 {
1996         unsigned long long start_dma;
1997         unsigned long long end_dma;
1998         struct xhci_segment *seg;
1999
2000         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
2001         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
2002
2003         seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
2004         if (seg != result_seg) {
2005                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
2006                                 test_name, test_number);
2007                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
2008                                 "input DMA 0x%llx\n",
2009                                 input_seg,
2010                                 (unsigned long long) input_dma);
2011                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
2012                                 "ending TRB %p (0x%llx DMA)\n",
2013                                 start_trb, start_dma,
2014                                 end_trb, end_dma);
2015                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
2016                                 result_seg, seg);
2017                 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
2018                           true);
2019                 return -1;
2020         }
2021         return 0;
2022 }
2023
2024 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
2025 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
2026 {
2027         struct {
2028                 dma_addr_t              input_dma;
2029                 struct xhci_segment     *result_seg;
2030         } simple_test_vector [] = {
2031                 /* A zeroed DMA field should fail */
2032                 { 0, NULL },
2033                 /* One TRB before the ring start should fail */
2034                 { xhci->event_ring->first_seg->dma - 16, NULL },
2035                 /* One byte before the ring start should fail */
2036                 { xhci->event_ring->first_seg->dma - 1, NULL },
2037                 /* Starting TRB should succeed */
2038                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
2039                 /* Ending TRB should succeed */
2040                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
2041                         xhci->event_ring->first_seg },
2042                 /* One byte after the ring end should fail */
2043                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
2044                 /* One TRB after the ring end should fail */
2045                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
2046                 /* An address of all ones should fail */
2047                 { (dma_addr_t) (~0), NULL },
2048         };
2049         struct {
2050                 struct xhci_segment     *input_seg;
2051                 union xhci_trb          *start_trb;
2052                 union xhci_trb          *end_trb;
2053                 dma_addr_t              input_dma;
2054                 struct xhci_segment     *result_seg;
2055         } complex_test_vector [] = {
2056                 /* Test feeding a valid DMA address from a different ring */
2057                 {       .input_seg = xhci->event_ring->first_seg,
2058                         .start_trb = xhci->event_ring->first_seg->trbs,
2059                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2060                         .input_dma = xhci->cmd_ring->first_seg->dma,
2061                         .result_seg = NULL,
2062                 },
2063                 /* Test feeding a valid end TRB from a different ring */
2064                 {       .input_seg = xhci->event_ring->first_seg,
2065                         .start_trb = xhci->event_ring->first_seg->trbs,
2066                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2067                         .input_dma = xhci->cmd_ring->first_seg->dma,
2068                         .result_seg = NULL,
2069                 },
2070                 /* Test feeding a valid start and end TRB from a different ring */
2071                 {       .input_seg = xhci->event_ring->first_seg,
2072                         .start_trb = xhci->cmd_ring->first_seg->trbs,
2073                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2074                         .input_dma = xhci->cmd_ring->first_seg->dma,
2075                         .result_seg = NULL,
2076                 },
2077                 /* TRB in this ring, but after this TD */
2078                 {       .input_seg = xhci->event_ring->first_seg,
2079                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
2080                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
2081                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2082                         .result_seg = NULL,
2083                 },
2084                 /* TRB in this ring, but before this TD */
2085                 {       .input_seg = xhci->event_ring->first_seg,
2086                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
2087                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
2088                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2089                         .result_seg = NULL,
2090                 },
2091                 /* TRB in this ring, but after this wrapped TD */
2092                 {       .input_seg = xhci->event_ring->first_seg,
2093                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2094                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2095                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2096                         .result_seg = NULL,
2097                 },
2098                 /* TRB in this ring, but before this wrapped TD */
2099                 {       .input_seg = xhci->event_ring->first_seg,
2100                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2101                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2102                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2103                         .result_seg = NULL,
2104                 },
2105                 /* TRB not in this ring, and we have a wrapped TD */
2106                 {       .input_seg = xhci->event_ring->first_seg,
2107                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2108                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2109                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2110                         .result_seg = NULL,
2111                 },
2112         };
2113
2114         unsigned int num_tests;
2115         int i, ret;
2116
2117         num_tests = ARRAY_SIZE(simple_test_vector);
2118         for (i = 0; i < num_tests; i++) {
2119                 ret = xhci_test_trb_in_td(xhci,
2120                                 xhci->event_ring->first_seg,
2121                                 xhci->event_ring->first_seg->trbs,
2122                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2123                                 simple_test_vector[i].input_dma,
2124                                 simple_test_vector[i].result_seg,
2125                                 "Simple", i);
2126                 if (ret < 0)
2127                         return ret;
2128         }
2129
2130         num_tests = ARRAY_SIZE(complex_test_vector);
2131         for (i = 0; i < num_tests; i++) {
2132                 ret = xhci_test_trb_in_td(xhci,
2133                                 complex_test_vector[i].input_seg,
2134                                 complex_test_vector[i].start_trb,
2135                                 complex_test_vector[i].end_trb,
2136                                 complex_test_vector[i].input_dma,
2137                                 complex_test_vector[i].result_seg,
2138                                 "Complex", i);
2139                 if (ret < 0)
2140                         return ret;
2141         }
2142         xhci_dbg(xhci, "TRB math tests passed.\n");
2143         return 0;
2144 }
2145
2146 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2147 {
2148         u64 temp;
2149         dma_addr_t deq;
2150
2151         deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2152                         xhci->event_ring->dequeue);
2153         if (!deq)
2154                 xhci_warn(xhci, "WARN something wrong with SW event ring "
2155                                 "dequeue ptr.\n");
2156         /* Update HC event ring dequeue pointer */
2157         temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2158         temp &= ERST_PTR_MASK;
2159         /* Don't clear the EHB bit (which is RW1C) because
2160          * there might be more events to service.
2161          */
2162         temp &= ~ERST_EHB;
2163         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2164                         "// Write event ring dequeue pointer, "
2165                         "preserving EHB bit");
2166         xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2167                         &xhci->ir_set->erst_dequeue);
2168 }
2169
2170 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2171                 __le32 __iomem *addr, int max_caps)
2172 {
2173         u32 temp, port_offset, port_count;
2174         int i;
2175         u8 major_revision, minor_revision;
2176         struct xhci_hub *rhub;
2177         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2178         struct xhci_port_cap *port_cap;
2179
2180         temp = readl(addr);
2181         major_revision = XHCI_EXT_PORT_MAJOR(temp);
2182         minor_revision = XHCI_EXT_PORT_MINOR(temp);
2183
2184         if (major_revision == 0x03) {
2185                 rhub = &xhci->usb3_rhub;
2186                 /*
2187                  * Some hosts incorrectly use sub-minor version for minor
2188                  * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2189                  * for bcdUSB 0x310). Since there is no USB release with sub
2190                  * minor version 0x301 to 0x309, we can assume that they are
2191                  * incorrect and fix it here.
2192                  */
2193                 if (minor_revision > 0x00 && minor_revision < 0x10)
2194                         minor_revision <<= 4;
2195         } else if (major_revision <= 0x02) {
2196                 rhub = &xhci->usb2_rhub;
2197         } else {
2198                 xhci_warn(xhci, "Ignoring unknown port speed, "
2199                                 "Ext Cap %p, revision = 0x%x\n",
2200                                 addr, major_revision);
2201                 /* Ignoring port protocol we can't understand. FIXME */
2202                 return;
2203         }
2204         rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2205
2206         if (rhub->min_rev < minor_revision)
2207                 rhub->min_rev = minor_revision;
2208
2209         /* Port offset and count in the third dword, see section 7.2 */
2210         temp = readl(addr + 2);
2211         port_offset = XHCI_EXT_PORT_OFF(temp);
2212         port_count = XHCI_EXT_PORT_COUNT(temp);
2213         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2214                         "Ext Cap %p, port offset = %u, "
2215                         "count = %u, revision = 0x%x",
2216                         addr, port_offset, port_count, major_revision);
2217         /* Port count includes the current port offset */
2218         if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2219                 /* WTF? "Valid values are â€˜1’ to MaxPorts" */
2220                 return;
2221
2222         port_cap = &xhci->port_caps[xhci->num_port_caps++];
2223         if (xhci->num_port_caps > max_caps)
2224                 return;
2225
2226         port_cap->maj_rev = major_revision;
2227         port_cap->min_rev = minor_revision;
2228         port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2229
2230         if (port_cap->psi_count) {
2231                 port_cap->psi = kcalloc_node(port_cap->psi_count,
2232                                              sizeof(*port_cap->psi),
2233                                              GFP_KERNEL, dev_to_node(dev));
2234                 if (!port_cap->psi)
2235                         port_cap->psi_count = 0;
2236
2237                 port_cap->psi_uid_count++;
2238                 for (i = 0; i < port_cap->psi_count; i++) {
2239                         port_cap->psi[i] = readl(addr + 4 + i);
2240
2241                         /* count unique ID values, two consecutive entries can
2242                          * have the same ID if link is assymetric
2243                          */
2244                         if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2245                                   XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2246                                 port_cap->psi_uid_count++;
2247
2248                         xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2249                                   XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2250                                   XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2251                                   XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2252                                   XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2253                                   XHCI_EXT_PORT_LP(port_cap->psi[i]),
2254                                   XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2255                 }
2256         }
2257         /* cache usb2 port capabilities */
2258         if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2259                 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2260
2261         if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2262                  (temp & XHCI_HLC)) {
2263                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2264                                "xHCI 1.0: support USB2 hardware lpm");
2265                 xhci->hw_lpm_support = 1;
2266         }
2267
2268         port_offset--;
2269         for (i = port_offset; i < (port_offset + port_count); i++) {
2270                 struct xhci_port *hw_port = &xhci->hw_ports[i];
2271                 /* Duplicate entry.  Ignore the port if the revisions differ. */
2272                 if (hw_port->rhub) {
2273                         xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2274                                         " port %u\n", addr, i);
2275                         xhci_warn(xhci, "Port was marked as USB %u, "
2276                                         "duplicated as USB %u\n",
2277                                         hw_port->rhub->maj_rev, major_revision);
2278                         /* Only adjust the roothub port counts if we haven't
2279                          * found a similar duplicate.
2280                          */
2281                         if (hw_port->rhub != rhub &&
2282                                  hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2283                                 hw_port->rhub->num_ports--;
2284                                 hw_port->hcd_portnum = DUPLICATE_ENTRY;
2285                         }
2286                         continue;
2287                 }
2288                 hw_port->rhub = rhub;
2289                 hw_port->port_cap = port_cap;
2290                 rhub->num_ports++;
2291         }
2292         /* FIXME: Should we disable ports not in the Extended Capabilities? */
2293 }
2294
2295 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2296                                         struct xhci_hub *rhub, gfp_t flags)
2297 {
2298         int port_index = 0;
2299         int i;
2300         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2301
2302         if (!rhub->num_ports)
2303                 return;
2304         rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2305                         flags, dev_to_node(dev));
2306         if (!rhub->ports)
2307                 return;
2308
2309         for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2310                 if (xhci->hw_ports[i].rhub != rhub ||
2311                     xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2312                         continue;
2313                 xhci->hw_ports[i].hcd_portnum = port_index;
2314                 rhub->ports[port_index] = &xhci->hw_ports[i];
2315                 port_index++;
2316                 if (port_index == rhub->num_ports)
2317                         break;
2318         }
2319 }
2320
2321 /*
2322  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2323  * specify what speeds each port is supposed to be.  We can't count on the port
2324  * speed bits in the PORTSC register being correct until a device is connected,
2325  * but we need to set up the two fake roothubs with the correct number of USB
2326  * 3.0 and USB 2.0 ports at host controller initialization time.
2327  */
2328 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2329 {
2330         void __iomem *base;
2331         u32 offset;
2332         unsigned int num_ports;
2333         int i, j;
2334         int cap_count = 0;
2335         u32 cap_start;
2336         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2337
2338         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2339         xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2340                                 flags, dev_to_node(dev));
2341         if (!xhci->hw_ports)
2342                 return -ENOMEM;
2343
2344         for (i = 0; i < num_ports; i++) {
2345                 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2346                         NUM_PORT_REGS * i;
2347                 xhci->hw_ports[i].hw_portnum = i;
2348         }
2349
2350         xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2351                                    dev_to_node(dev));
2352         if (!xhci->rh_bw)
2353                 return -ENOMEM;
2354         for (i = 0; i < num_ports; i++) {
2355                 struct xhci_interval_bw_table *bw_table;
2356
2357                 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2358                 bw_table = &xhci->rh_bw[i].bw_table;
2359                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2360                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2361         }
2362         base = &xhci->cap_regs->hc_capbase;
2363
2364         cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2365         if (!cap_start) {
2366                 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2367                 return -ENODEV;
2368         }
2369
2370         offset = cap_start;
2371         /* count extended protocol capability entries for later caching */
2372         while (offset) {
2373                 cap_count++;
2374                 offset = xhci_find_next_ext_cap(base, offset,
2375                                                       XHCI_EXT_CAPS_PROTOCOL);
2376         }
2377
2378         xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2379                                 flags, dev_to_node(dev));
2380         if (!xhci->ext_caps)
2381                 return -ENOMEM;
2382
2383         xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2384                                 flags, dev_to_node(dev));
2385         if (!xhci->port_caps)
2386                 return -ENOMEM;
2387
2388         offset = cap_start;
2389
2390         while (offset) {
2391                 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2392                 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2393                     num_ports)
2394                         break;
2395                 offset = xhci_find_next_ext_cap(base, offset,
2396                                                 XHCI_EXT_CAPS_PROTOCOL);
2397         }
2398         if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2399                 xhci_warn(xhci, "No ports on the roothubs?\n");
2400                 return -ENODEV;
2401         }
2402         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2403                        "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2404                        xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2405
2406         /* Place limits on the number of roothub ports so that the hub
2407          * descriptors aren't longer than the USB core will allocate.
2408          */
2409         if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2410                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2411                                 "Limiting USB 3.0 roothub ports to %u.",
2412                                 USB_SS_MAXPORTS);
2413                 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2414         }
2415         if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2416                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2417                                 "Limiting USB 2.0 roothub ports to %u.",
2418                                 USB_MAXCHILDREN);
2419                 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2420         }
2421
2422         /*
2423          * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2424          * Not sure how the USB core will handle a hub with no ports...
2425          */
2426
2427         xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2428         xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2429
2430         return 0;
2431 }
2432
2433 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2434 {
2435         dma_addr_t      dma;
2436         struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
2437         unsigned int    val, val2;
2438         u64             val_64;
2439         u32             page_size, temp;
2440         int             i, ret;
2441
2442         INIT_LIST_HEAD(&xhci->cmd_list);
2443
2444         /* init command timeout work */
2445         INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2446         init_completion(&xhci->cmd_ring_stop_completion);
2447
2448         page_size = readl(&xhci->op_regs->page_size);
2449         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2450                         "Supported page size register = 0x%x", page_size);
2451         for (i = 0; i < 16; i++) {
2452                 if ((0x1 & page_size) != 0)
2453                         break;
2454                 page_size = page_size >> 1;
2455         }
2456         if (i < 16)
2457                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2458                         "Supported page size of %iK", (1 << (i+12)) / 1024);
2459         else
2460                 xhci_warn(xhci, "WARN: no supported page size\n");
2461         /* Use 4K pages, since that's common and the minimum the HC supports */
2462         xhci->page_shift = 12;
2463         xhci->page_size = 1 << xhci->page_shift;
2464         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2465                         "HCD page size set to %iK", xhci->page_size / 1024);
2466
2467         /*
2468          * Program the Number of Device Slots Enabled field in the CONFIG
2469          * register with the max value of slots the HC can handle.
2470          */
2471         val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2472         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2473                         "// xHC can handle at most %d device slots.", val);
2474         val2 = readl(&xhci->op_regs->config_reg);
2475         val |= (val2 & ~HCS_SLOTS_MASK);
2476         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2477                         "// Setting Max device slots reg = 0x%x.", val);
2478         writel(val, &xhci->op_regs->config_reg);
2479
2480         /*
2481          * xHCI section 5.4.6 - doorbell array must be
2482          * "physically contiguous and 64-byte (cache line) aligned".
2483          */
2484         xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2485                         flags);
2486         if (!xhci->dcbaa)
2487                 goto fail;
2488         xhci->dcbaa->dma = dma;
2489         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2490                         "// Device context base array address = 0x%llx (DMA), %p (virt)",
2491                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2492         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2493
2494         /*
2495          * Initialize the ring segment pool.  The ring must be a contiguous
2496          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2497          * however, the command ring segment needs 64-byte aligned segments
2498          * and our use of dma addresses in the trb_address_map radix tree needs
2499          * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2500          */
2501         xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2502                         TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2503
2504         /* See Table 46 and Note on Figure 55 */
2505         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2506                         2112, 64, xhci->page_size);
2507         if (!xhci->segment_pool || !xhci->device_pool)
2508                 goto fail;
2509
2510         /* Linear stream context arrays don't have any boundary restrictions,
2511          * and only need to be 16-byte aligned.
2512          */
2513         xhci->small_streams_pool =
2514                 dma_pool_create("xHCI 256 byte stream ctx arrays",
2515                         dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2516         xhci->medium_streams_pool =
2517                 dma_pool_create("xHCI 1KB stream ctx arrays",
2518                         dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2519         /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2520          * will be allocated with dma_alloc_coherent()
2521          */
2522
2523         if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2524                 goto fail;
2525
2526         /* Set up the command ring to have one segments for now. */
2527         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2528         if (!xhci->cmd_ring)
2529                 goto fail;
2530         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2531                         "Allocated command ring at %p", xhci->cmd_ring);
2532         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2533                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
2534
2535         /* Set the address in the Command Ring Control register */
2536         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2537         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2538                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2539                 xhci->cmd_ring->cycle_state;
2540         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2541                         "// Setting command ring address to 0x%016llx", val_64);
2542         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2543
2544         xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags);
2545         if (!xhci->lpm_command)
2546                 goto fail;
2547
2548         /* Reserve one command ring TRB for disabling LPM.
2549          * Since the USB core grabs the shared usb_bus bandwidth mutex before
2550          * disabling LPM, we only need to reserve one TRB for all devices.
2551          */
2552         xhci->cmd_ring_reserved_trbs++;
2553
2554         val = readl(&xhci->cap_regs->db_off);
2555         val &= DBOFF_MASK;
2556         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2557                         "// Doorbell array is located at offset 0x%x"
2558                         " from cap regs base addr", val);
2559         xhci->dba = (void __iomem *) xhci->cap_regs + val;
2560         /* Set ir_set to interrupt register set 0 */
2561         xhci->ir_set = &xhci->run_regs->ir_set[0];
2562
2563         /*
2564          * Event ring setup: Allocate a normal ring, but also setup
2565          * the event ring segment table (ERST).  Section 4.9.3.
2566          */
2567         val2 = 1 << HCS_ERST_MAX(xhci->hcs_params2);
2568         val2 = min_t(unsigned int, ERST_MAX_SEGS, val2);
2569         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2570         xhci->event_ring = xhci_ring_alloc(xhci, val2, 1, TYPE_EVENT,
2571                                            0, flags);
2572         if (!xhci->event_ring)
2573                 goto fail;
2574         if (xhci_check_trb_in_td_math(xhci) < 0)
2575                 goto fail;
2576
2577         ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2578         if (ret)
2579                 goto fail;
2580
2581         /* set ERST count with the number of entries in the segment table */
2582         val = readl(&xhci->ir_set->erst_size);
2583         val &= ERST_SIZE_MASK;
2584         val |= val2;
2585         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2586                         "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2587                         val);
2588         writel(val, &xhci->ir_set->erst_size);
2589
2590         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2591                         "// Set ERST entries to point to event ring.");
2592         /* set the segment table base address */
2593         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2594                         "// Set ERST base address for ir_set 0 = 0x%llx",
2595                         (unsigned long long)xhci->erst.erst_dma_addr);
2596         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2597         val_64 &= ERST_PTR_MASK;
2598         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2599         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2600
2601         /* Set the event ring dequeue address */
2602         xhci_set_hc_event_deq(xhci);
2603         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2604                         "Wrote ERST address to ir_set 0.");
2605
2606         xhci->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2607
2608         /*
2609          * XXX: Might need to set the Interrupter Moderation Register to
2610          * something other than the default (~1ms minimum between interrupts).
2611          * See section 5.5.1.2.
2612          */
2613         for (i = 0; i < MAX_HC_SLOTS; i++)
2614                 xhci->devs[i] = NULL;
2615         for (i = 0; i < USB_MAXCHILDREN; i++) {
2616                 xhci->usb2_rhub.bus_state.resume_done[i] = 0;
2617                 xhci->usb3_rhub.bus_state.resume_done[i] = 0;
2618                 /* Only the USB 2.0 completions will ever be used. */
2619                 init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]);
2620                 init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]);
2621         }
2622
2623         if (scratchpad_alloc(xhci, flags))
2624                 goto fail;
2625         if (xhci_setup_port_arrays(xhci, flags))
2626                 goto fail;
2627
2628         /* Enable USB 3.0 device notifications for function remote wake, which
2629          * is necessary for allowing USB 3.0 devices to do remote wakeup from
2630          * U3 (device suspend).
2631          */
2632         temp = readl(&xhci->op_regs->dev_notification);
2633         temp &= ~DEV_NOTE_MASK;
2634         temp |= DEV_NOTE_FWAKE;
2635         writel(temp, &xhci->op_regs->dev_notification);
2636
2637         return 0;
2638
2639 fail:
2640         xhci_halt(xhci);
2641         xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2642         xhci_mem_cleanup(xhci);
2643         return -ENOMEM;
2644 }