sunxvr1000: Add missing FB=y depenency.
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / usb / host / xhci-mem.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/dmapool.h>
26
27 #include "xhci.h"
28
29 /*
30  * Allocates a generic ring segment from the ring pool, sets the dma address,
31  * initializes the segment to zero, and sets the private next pointer to NULL.
32  *
33  * Section 4.11.1.1:
34  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
35  */
36 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
37 {
38         struct xhci_segment *seg;
39         dma_addr_t      dma;
40
41         seg = kzalloc(sizeof *seg, flags);
42         if (!seg)
43                 return 0;
44         xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
45
46         seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
47         if (!seg->trbs) {
48                 kfree(seg);
49                 return 0;
50         }
51         xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
52                         seg->trbs, (unsigned long long)dma);
53
54         memset(seg->trbs, 0, SEGMENT_SIZE);
55         seg->dma = dma;
56         seg->next = NULL;
57
58         return seg;
59 }
60
61 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
62 {
63         if (!seg)
64                 return;
65         if (seg->trbs) {
66                 xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
67                                 seg->trbs, (unsigned long long)seg->dma);
68                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
69                 seg->trbs = NULL;
70         }
71         xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
72         kfree(seg);
73 }
74
75 /*
76  * Make the prev segment point to the next segment.
77  *
78  * Change the last TRB in the prev segment to be a Link TRB which points to the
79  * DMA address of the next segment.  The caller needs to set any Link TRB
80  * related flags, such as End TRB, Toggle Cycle, and no snoop.
81  */
82 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
83                 struct xhci_segment *next, bool link_trbs)
84 {
85         u32 val;
86
87         if (!prev || !next)
88                 return;
89         prev->next = next;
90         if (link_trbs) {
91                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = next->dma;
92
93                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
94                 val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
95                 val &= ~TRB_TYPE_BITMASK;
96                 val |= TRB_TYPE(TRB_LINK);
97                 /* Always set the chain bit with 0.95 hardware */
98                 if (xhci_link_trb_quirk(xhci))
99                         val |= TRB_CHAIN;
100                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
101         }
102         xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
103                         (unsigned long long)prev->dma,
104                         (unsigned long long)next->dma);
105 }
106
107 /* XXX: Do we need the hcd structure in all these functions? */
108 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
109 {
110         struct xhci_segment *seg;
111         struct xhci_segment *first_seg;
112
113         if (!ring || !ring->first_seg)
114                 return;
115         first_seg = ring->first_seg;
116         seg = first_seg->next;
117         xhci_dbg(xhci, "Freeing ring at %p\n", ring);
118         while (seg != first_seg) {
119                 struct xhci_segment *next = seg->next;
120                 xhci_segment_free(xhci, seg);
121                 seg = next;
122         }
123         xhci_segment_free(xhci, first_seg);
124         ring->first_seg = NULL;
125         kfree(ring);
126 }
127
128 static void xhci_initialize_ring_info(struct xhci_ring *ring)
129 {
130         /* The ring is empty, so the enqueue pointer == dequeue pointer */
131         ring->enqueue = ring->first_seg->trbs;
132         ring->enq_seg = ring->first_seg;
133         ring->dequeue = ring->enqueue;
134         ring->deq_seg = ring->first_seg;
135         /* The ring is initialized to 0. The producer must write 1 to the cycle
136          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
137          * compare CCS to the cycle bit to check ownership, so CCS = 1.
138          */
139         ring->cycle_state = 1;
140         /* Not necessary for new rings, but needed for re-initialized rings */
141         ring->enq_updates = 0;
142         ring->deq_updates = 0;
143 }
144
145 /**
146  * Create a new ring with zero or more segments.
147  *
148  * Link each segment together into a ring.
149  * Set the end flag and the cycle toggle bit on the last segment.
150  * See section 4.9.1 and figures 15 and 16.
151  */
152 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
153                 unsigned int num_segs, bool link_trbs, gfp_t flags)
154 {
155         struct xhci_ring        *ring;
156         struct xhci_segment     *prev;
157
158         ring = kzalloc(sizeof *(ring), flags);
159         xhci_dbg(xhci, "Allocating ring at %p\n", ring);
160         if (!ring)
161                 return 0;
162
163         INIT_LIST_HEAD(&ring->td_list);
164         if (num_segs == 0)
165                 return ring;
166
167         ring->first_seg = xhci_segment_alloc(xhci, flags);
168         if (!ring->first_seg)
169                 goto fail;
170         num_segs--;
171
172         prev = ring->first_seg;
173         while (num_segs > 0) {
174                 struct xhci_segment     *next;
175
176                 next = xhci_segment_alloc(xhci, flags);
177                 if (!next)
178                         goto fail;
179                 xhci_link_segments(xhci, prev, next, link_trbs);
180
181                 prev = next;
182                 num_segs--;
183         }
184         xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
185
186         if (link_trbs) {
187                 /* See section 4.9.2.1 and 6.4.4.1 */
188                 prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
189                 xhci_dbg(xhci, "Wrote link toggle flag to"
190                                 " segment %p (virtual), 0x%llx (DMA)\n",
191                                 prev, (unsigned long long)prev->dma);
192         }
193         xhci_initialize_ring_info(ring);
194         return ring;
195
196 fail:
197         xhci_ring_free(xhci, ring);
198         return 0;
199 }
200
201 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
202  * pointers to the beginning of the ring.
203  */
204 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
205                 struct xhci_ring *ring)
206 {
207         struct xhci_segment     *seg = ring->first_seg;
208         do {
209                 memset(seg->trbs, 0,
210                                 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
211                 /* All endpoint rings have link TRBs */
212                 xhci_link_segments(xhci, seg, seg->next, 1);
213                 seg = seg->next;
214         } while (seg != ring->first_seg);
215         xhci_initialize_ring_info(ring);
216         /* td list should be empty since all URBs have been cancelled,
217          * but just in case...
218          */
219         INIT_LIST_HEAD(&ring->td_list);
220 }
221
222 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
223
224 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
225                                                     int type, gfp_t flags)
226 {
227         struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
228         if (!ctx)
229                 return NULL;
230
231         BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
232         ctx->type = type;
233         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
234         if (type == XHCI_CTX_TYPE_INPUT)
235                 ctx->size += CTX_SIZE(xhci->hcc_params);
236
237         ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
238         memset(ctx->bytes, 0, ctx->size);
239         return ctx;
240 }
241
242 void xhci_free_container_ctx(struct xhci_hcd *xhci,
243                              struct xhci_container_ctx *ctx)
244 {
245         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
246         kfree(ctx);
247 }
248
249 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
250                                               struct xhci_container_ctx *ctx)
251 {
252         BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
253         return (struct xhci_input_control_ctx *)ctx->bytes;
254 }
255
256 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
257                                         struct xhci_container_ctx *ctx)
258 {
259         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
260                 return (struct xhci_slot_ctx *)ctx->bytes;
261
262         return (struct xhci_slot_ctx *)
263                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
264 }
265
266 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
267                                     struct xhci_container_ctx *ctx,
268                                     unsigned int ep_index)
269 {
270         /* increment ep index by offset of start of ep ctx array */
271         ep_index++;
272         if (ctx->type == XHCI_CTX_TYPE_INPUT)
273                 ep_index++;
274
275         return (struct xhci_ep_ctx *)
276                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
277 }
278
279 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
280                 struct xhci_virt_ep *ep)
281 {
282         init_timer(&ep->stop_cmd_timer);
283         ep->stop_cmd_timer.data = (unsigned long) ep;
284         ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
285         ep->xhci = xhci;
286 }
287
288 /* All the xhci_tds in the ring's TD list should be freed at this point */
289 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
290 {
291         struct xhci_virt_device *dev;
292         int i;
293
294         /* Slot ID 0 is reserved */
295         if (slot_id == 0 || !xhci->devs[slot_id])
296                 return;
297
298         dev = xhci->devs[slot_id];
299         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
300         if (!dev)
301                 return;
302
303         for (i = 0; i < 31; ++i)
304                 if (dev->eps[i].ring)
305                         xhci_ring_free(xhci, dev->eps[i].ring);
306
307         if (dev->ring_cache) {
308                 for (i = 0; i < dev->num_rings_cached; i++)
309                         xhci_ring_free(xhci, dev->ring_cache[i]);
310                 kfree(dev->ring_cache);
311         }
312
313         if (dev->in_ctx)
314                 xhci_free_container_ctx(xhci, dev->in_ctx);
315         if (dev->out_ctx)
316                 xhci_free_container_ctx(xhci, dev->out_ctx);
317
318         kfree(xhci->devs[slot_id]);
319         xhci->devs[slot_id] = 0;
320 }
321
322 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
323                 struct usb_device *udev, gfp_t flags)
324 {
325         struct xhci_virt_device *dev;
326         int i;
327
328         /* Slot ID 0 is reserved */
329         if (slot_id == 0 || xhci->devs[slot_id]) {
330                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
331                 return 0;
332         }
333
334         xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
335         if (!xhci->devs[slot_id])
336                 return 0;
337         dev = xhci->devs[slot_id];
338
339         /* Allocate the (output) device context that will be used in the HC. */
340         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
341         if (!dev->out_ctx)
342                 goto fail;
343
344         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
345                         (unsigned long long)dev->out_ctx->dma);
346
347         /* Allocate the (input) device context for address device command */
348         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
349         if (!dev->in_ctx)
350                 goto fail;
351
352         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
353                         (unsigned long long)dev->in_ctx->dma);
354
355         /* Initialize the cancellation list and watchdog timers for each ep */
356         for (i = 0; i < 31; i++) {
357                 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
358                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
359         }
360
361         /* Allocate endpoint 0 ring */
362         dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
363         if (!dev->eps[0].ring)
364                 goto fail;
365
366         /* Allocate pointers to the ring cache */
367         dev->ring_cache = kzalloc(
368                         sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
369                         flags);
370         if (!dev->ring_cache)
371                 goto fail;
372         dev->num_rings_cached = 0;
373
374         init_completion(&dev->cmd_completion);
375         INIT_LIST_HEAD(&dev->cmd_list);
376
377         /* Point to output device context in dcbaa. */
378         xhci->dcbaa->dev_context_ptrs[slot_id] = dev->out_ctx->dma;
379         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
380                         slot_id,
381                         &xhci->dcbaa->dev_context_ptrs[slot_id],
382                         (unsigned long long) xhci->dcbaa->dev_context_ptrs[slot_id]);
383
384         return 1;
385 fail:
386         xhci_free_virt_device(xhci, slot_id);
387         return 0;
388 }
389
390 /* Setup an xHCI virtual device for a Set Address command */
391 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
392 {
393         struct xhci_virt_device *dev;
394         struct xhci_ep_ctx      *ep0_ctx;
395         struct usb_device       *top_dev;
396         struct xhci_slot_ctx    *slot_ctx;
397         struct xhci_input_control_ctx *ctrl_ctx;
398
399         dev = xhci->devs[udev->slot_id];
400         /* Slot ID 0 is reserved */
401         if (udev->slot_id == 0 || !dev) {
402                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
403                                 udev->slot_id);
404                 return -EINVAL;
405         }
406         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
407         ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
408         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
409
410         /* 2) New slot context and endpoint 0 context are valid*/
411         ctrl_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
412
413         /* 3) Only the control endpoint is valid - one endpoint context */
414         slot_ctx->dev_info |= LAST_CTX(1);
415
416         slot_ctx->dev_info |= (u32) udev->route;
417         switch (udev->speed) {
418         case USB_SPEED_SUPER:
419                 slot_ctx->dev_info |= (u32) SLOT_SPEED_SS;
420                 break;
421         case USB_SPEED_HIGH:
422                 slot_ctx->dev_info |= (u32) SLOT_SPEED_HS;
423                 break;
424         case USB_SPEED_FULL:
425                 slot_ctx->dev_info |= (u32) SLOT_SPEED_FS;
426                 break;
427         case USB_SPEED_LOW:
428                 slot_ctx->dev_info |= (u32) SLOT_SPEED_LS;
429                 break;
430         case USB_SPEED_VARIABLE:
431                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
432                 return -EINVAL;
433                 break;
434         default:
435                 /* Speed was set earlier, this shouldn't happen. */
436                 BUG();
437         }
438         /* Find the root hub port this device is under */
439         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
440                         top_dev = top_dev->parent)
441                 /* Found device below root hub */;
442         slot_ctx->dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum);
443         xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum);
444
445         /* Is this a LS/FS device under a HS hub? */
446         if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) &&
447                         udev->tt) {
448                 slot_ctx->tt_info = udev->tt->hub->slot_id;
449                 slot_ctx->tt_info |= udev->ttport << 8;
450                 if (udev->tt->multi)
451                         slot_ctx->dev_info |= DEV_MTT;
452         }
453         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
454         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
455
456         /* Step 4 - ring already allocated */
457         /* Step 5 */
458         ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
459         /*
460          * XXX: Not sure about wireless USB devices.
461          */
462         switch (udev->speed) {
463         case USB_SPEED_SUPER:
464                 ep0_ctx->ep_info2 |= MAX_PACKET(512);
465                 break;
466         case USB_SPEED_HIGH:
467         /* USB core guesses at a 64-byte max packet first for FS devices */
468         case USB_SPEED_FULL:
469                 ep0_ctx->ep_info2 |= MAX_PACKET(64);
470                 break;
471         case USB_SPEED_LOW:
472                 ep0_ctx->ep_info2 |= MAX_PACKET(8);
473                 break;
474         case USB_SPEED_VARIABLE:
475                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
476                 return -EINVAL;
477                 break;
478         default:
479                 /* New speed? */
480                 BUG();
481         }
482         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
483         ep0_ctx->ep_info2 |= MAX_BURST(0);
484         ep0_ctx->ep_info2 |= ERROR_COUNT(3);
485
486         ep0_ctx->deq =
487                 dev->eps[0].ring->first_seg->dma;
488         ep0_ctx->deq |= dev->eps[0].ring->cycle_state;
489
490         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
491
492         return 0;
493 }
494
495 /* Return the polling or NAK interval.
496  *
497  * The polling interval is expressed in "microframes".  If xHCI's Interval field
498  * is set to N, it will service the endpoint every 2^(Interval)*125us.
499  *
500  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
501  * is set to 0.
502  */
503 static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
504                 struct usb_host_endpoint *ep)
505 {
506         unsigned int interval = 0;
507
508         switch (udev->speed) {
509         case USB_SPEED_HIGH:
510                 /* Max NAK rate */
511                 if (usb_endpoint_xfer_control(&ep->desc) ||
512                                 usb_endpoint_xfer_bulk(&ep->desc))
513                         interval = ep->desc.bInterval;
514                 /* Fall through - SS and HS isoc/int have same decoding */
515         case USB_SPEED_SUPER:
516                 if (usb_endpoint_xfer_int(&ep->desc) ||
517                                 usb_endpoint_xfer_isoc(&ep->desc)) {
518                         if (ep->desc.bInterval == 0)
519                                 interval = 0;
520                         else
521                                 interval = ep->desc.bInterval - 1;
522                         if (interval > 15)
523                                 interval = 15;
524                         if (interval != ep->desc.bInterval + 1)
525                                 dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
526                                                 ep->desc.bEndpointAddress, 1 << interval);
527                 }
528                 break;
529         /* Convert bInterval (in 1-255 frames) to microframes and round down to
530          * nearest power of 2.
531          */
532         case USB_SPEED_FULL:
533         case USB_SPEED_LOW:
534                 if (usb_endpoint_xfer_int(&ep->desc) ||
535                                 usb_endpoint_xfer_isoc(&ep->desc)) {
536                         interval = fls(8*ep->desc.bInterval) - 1;
537                         if (interval > 10)
538                                 interval = 10;
539                         if (interval < 3)
540                                 interval = 3;
541                         if ((1 << interval) != 8*ep->desc.bInterval)
542                                 dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
543                                                 ep->desc.bEndpointAddress, 1 << interval);
544                 }
545                 break;
546         default:
547                 BUG();
548         }
549         return EP_INTERVAL(interval);
550 }
551
552 static inline u32 xhci_get_endpoint_type(struct usb_device *udev,
553                 struct usb_host_endpoint *ep)
554 {
555         int in;
556         u32 type;
557
558         in = usb_endpoint_dir_in(&ep->desc);
559         if (usb_endpoint_xfer_control(&ep->desc)) {
560                 type = EP_TYPE(CTRL_EP);
561         } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
562                 if (in)
563                         type = EP_TYPE(BULK_IN_EP);
564                 else
565                         type = EP_TYPE(BULK_OUT_EP);
566         } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
567                 if (in)
568                         type = EP_TYPE(ISOC_IN_EP);
569                 else
570                         type = EP_TYPE(ISOC_OUT_EP);
571         } else if (usb_endpoint_xfer_int(&ep->desc)) {
572                 if (in)
573                         type = EP_TYPE(INT_IN_EP);
574                 else
575                         type = EP_TYPE(INT_OUT_EP);
576         } else {
577                 BUG();
578         }
579         return type;
580 }
581
582 int xhci_endpoint_init(struct xhci_hcd *xhci,
583                 struct xhci_virt_device *virt_dev,
584                 struct usb_device *udev,
585                 struct usb_host_endpoint *ep,
586                 gfp_t mem_flags)
587 {
588         unsigned int ep_index;
589         struct xhci_ep_ctx *ep_ctx;
590         struct xhci_ring *ep_ring;
591         unsigned int max_packet;
592         unsigned int max_burst;
593
594         ep_index = xhci_get_endpoint_index(&ep->desc);
595         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
596
597         /* Set up the endpoint ring */
598         virt_dev->eps[ep_index].new_ring =
599                 xhci_ring_alloc(xhci, 1, true, mem_flags);
600         if (!virt_dev->eps[ep_index].new_ring) {
601                 /* Attempt to use the ring cache */
602                 if (virt_dev->num_rings_cached == 0)
603                         return -ENOMEM;
604                 virt_dev->eps[ep_index].new_ring =
605                         virt_dev->ring_cache[virt_dev->num_rings_cached];
606                 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
607                 virt_dev->num_rings_cached--;
608                 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
609         }
610         ep_ring = virt_dev->eps[ep_index].new_ring;
611         ep_ctx->deq = ep_ring->first_seg->dma | ep_ring->cycle_state;
612
613         ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep);
614
615         /* FIXME dig Mult and streams info out of ep companion desc */
616
617         /* Allow 3 retries for everything but isoc;
618          * error count = 0 means infinite retries.
619          */
620         if (!usb_endpoint_xfer_isoc(&ep->desc))
621                 ep_ctx->ep_info2 = ERROR_COUNT(3);
622         else
623                 ep_ctx->ep_info2 = ERROR_COUNT(1);
624
625         ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep);
626
627         /* Set the max packet size and max burst */
628         switch (udev->speed) {
629         case USB_SPEED_SUPER:
630                 max_packet = ep->desc.wMaxPacketSize;
631                 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
632                 /* dig out max burst from ep companion desc */
633                 if (!ep->ss_ep_comp) {
634                         xhci_warn(xhci, "WARN no SS endpoint companion descriptor.\n");
635                         max_packet = 0;
636                 } else {
637                         max_packet = ep->ss_ep_comp->desc.bMaxBurst;
638                 }
639                 ep_ctx->ep_info2 |= MAX_BURST(max_packet);
640                 break;
641         case USB_SPEED_HIGH:
642                 /* bits 11:12 specify the number of additional transaction
643                  * opportunities per microframe (USB 2.0, section 9.6.6)
644                  */
645                 if (usb_endpoint_xfer_isoc(&ep->desc) ||
646                                 usb_endpoint_xfer_int(&ep->desc)) {
647                         max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
648                         ep_ctx->ep_info2 |= MAX_BURST(max_burst);
649                 }
650                 /* Fall through */
651         case USB_SPEED_FULL:
652         case USB_SPEED_LOW:
653                 max_packet = ep->desc.wMaxPacketSize & 0x3ff;
654                 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
655                 break;
656         default:
657                 BUG();
658         }
659         /* FIXME Debug endpoint context */
660         return 0;
661 }
662
663 void xhci_endpoint_zero(struct xhci_hcd *xhci,
664                 struct xhci_virt_device *virt_dev,
665                 struct usb_host_endpoint *ep)
666 {
667         unsigned int ep_index;
668         struct xhci_ep_ctx *ep_ctx;
669
670         ep_index = xhci_get_endpoint_index(&ep->desc);
671         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
672
673         ep_ctx->ep_info = 0;
674         ep_ctx->ep_info2 = 0;
675         ep_ctx->deq = 0;
676         ep_ctx->tx_info = 0;
677         /* Don't free the endpoint ring until the set interface or configuration
678          * request succeeds.
679          */
680 }
681
682 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
683  * Useful when you want to change one particular aspect of the endpoint and then
684  * issue a configure endpoint command.
685  */
686 void xhci_endpoint_copy(struct xhci_hcd *xhci,
687                 struct xhci_container_ctx *in_ctx,
688                 struct xhci_container_ctx *out_ctx,
689                 unsigned int ep_index)
690 {
691         struct xhci_ep_ctx *out_ep_ctx;
692         struct xhci_ep_ctx *in_ep_ctx;
693
694         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
695         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
696
697         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
698         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
699         in_ep_ctx->deq = out_ep_ctx->deq;
700         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
701 }
702
703 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
704  * Useful when you want to change one particular aspect of the endpoint and then
705  * issue a configure endpoint command.  Only the context entries field matters,
706  * but we'll copy the whole thing anyway.
707  */
708 void xhci_slot_copy(struct xhci_hcd *xhci,
709                 struct xhci_container_ctx *in_ctx,
710                 struct xhci_container_ctx *out_ctx)
711 {
712         struct xhci_slot_ctx *in_slot_ctx;
713         struct xhci_slot_ctx *out_slot_ctx;
714
715         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
716         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
717
718         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
719         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
720         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
721         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
722 }
723
724 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
725 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
726 {
727         int i;
728         struct device *dev = xhci_to_hcd(xhci)->self.controller;
729         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
730
731         xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
732
733         if (!num_sp)
734                 return 0;
735
736         xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
737         if (!xhci->scratchpad)
738                 goto fail_sp;
739
740         xhci->scratchpad->sp_array =
741                 pci_alloc_consistent(to_pci_dev(dev),
742                                      num_sp * sizeof(u64),
743                                      &xhci->scratchpad->sp_dma);
744         if (!xhci->scratchpad->sp_array)
745                 goto fail_sp2;
746
747         xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
748         if (!xhci->scratchpad->sp_buffers)
749                 goto fail_sp3;
750
751         xhci->scratchpad->sp_dma_buffers =
752                 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
753
754         if (!xhci->scratchpad->sp_dma_buffers)
755                 goto fail_sp4;
756
757         xhci->dcbaa->dev_context_ptrs[0] = xhci->scratchpad->sp_dma;
758         for (i = 0; i < num_sp; i++) {
759                 dma_addr_t dma;
760                 void *buf = pci_alloc_consistent(to_pci_dev(dev),
761                                                  xhci->page_size, &dma);
762                 if (!buf)
763                         goto fail_sp5;
764
765                 xhci->scratchpad->sp_array[i] = dma;
766                 xhci->scratchpad->sp_buffers[i] = buf;
767                 xhci->scratchpad->sp_dma_buffers[i] = dma;
768         }
769
770         return 0;
771
772  fail_sp5:
773         for (i = i - 1; i >= 0; i--) {
774                 pci_free_consistent(to_pci_dev(dev), xhci->page_size,
775                                     xhci->scratchpad->sp_buffers[i],
776                                     xhci->scratchpad->sp_dma_buffers[i]);
777         }
778         kfree(xhci->scratchpad->sp_dma_buffers);
779
780  fail_sp4:
781         kfree(xhci->scratchpad->sp_buffers);
782
783  fail_sp3:
784         pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
785                             xhci->scratchpad->sp_array,
786                             xhci->scratchpad->sp_dma);
787
788  fail_sp2:
789         kfree(xhci->scratchpad);
790         xhci->scratchpad = NULL;
791
792  fail_sp:
793         return -ENOMEM;
794 }
795
796 static void scratchpad_free(struct xhci_hcd *xhci)
797 {
798         int num_sp;
799         int i;
800         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
801
802         if (!xhci->scratchpad)
803                 return;
804
805         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
806
807         for (i = 0; i < num_sp; i++) {
808                 pci_free_consistent(pdev, xhci->page_size,
809                                     xhci->scratchpad->sp_buffers[i],
810                                     xhci->scratchpad->sp_dma_buffers[i]);
811         }
812         kfree(xhci->scratchpad->sp_dma_buffers);
813         kfree(xhci->scratchpad->sp_buffers);
814         pci_free_consistent(pdev, num_sp * sizeof(u64),
815                             xhci->scratchpad->sp_array,
816                             xhci->scratchpad->sp_dma);
817         kfree(xhci->scratchpad);
818         xhci->scratchpad = NULL;
819 }
820
821 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
822                 bool allocate_completion, gfp_t mem_flags)
823 {
824         struct xhci_command *command;
825
826         command = kzalloc(sizeof(*command), mem_flags);
827         if (!command)
828                 return NULL;
829
830         command->in_ctx =
831                 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, mem_flags);
832         if (!command->in_ctx) {
833                 kfree(command);
834                 return NULL;
835         }
836
837         if (allocate_completion) {
838                 command->completion =
839                         kzalloc(sizeof(struct completion), mem_flags);
840                 if (!command->completion) {
841                         xhci_free_container_ctx(xhci, command->in_ctx);
842                         kfree(command);
843                         return NULL;
844                 }
845                 init_completion(command->completion);
846         }
847
848         command->status = 0;
849         INIT_LIST_HEAD(&command->cmd_list);
850         return command;
851 }
852
853 void xhci_free_command(struct xhci_hcd *xhci,
854                 struct xhci_command *command)
855 {
856         xhci_free_container_ctx(xhci,
857                         command->in_ctx);
858         kfree(command->completion);
859         kfree(command);
860 }
861
862 void xhci_mem_cleanup(struct xhci_hcd *xhci)
863 {
864         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
865         int size;
866         int i;
867
868         /* Free the Event Ring Segment Table and the actual Event Ring */
869         if (xhci->ir_set) {
870                 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
871                 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
872                 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
873         }
874         size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
875         if (xhci->erst.entries)
876                 pci_free_consistent(pdev, size,
877                                 xhci->erst.entries, xhci->erst.erst_dma_addr);
878         xhci->erst.entries = NULL;
879         xhci_dbg(xhci, "Freed ERST\n");
880         if (xhci->event_ring)
881                 xhci_ring_free(xhci, xhci->event_ring);
882         xhci->event_ring = NULL;
883         xhci_dbg(xhci, "Freed event ring\n");
884
885         xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
886         if (xhci->cmd_ring)
887                 xhci_ring_free(xhci, xhci->cmd_ring);
888         xhci->cmd_ring = NULL;
889         xhci_dbg(xhci, "Freed command ring\n");
890
891         for (i = 1; i < MAX_HC_SLOTS; ++i)
892                 xhci_free_virt_device(xhci, i);
893
894         if (xhci->segment_pool)
895                 dma_pool_destroy(xhci->segment_pool);
896         xhci->segment_pool = NULL;
897         xhci_dbg(xhci, "Freed segment pool\n");
898
899         if (xhci->device_pool)
900                 dma_pool_destroy(xhci->device_pool);
901         xhci->device_pool = NULL;
902         xhci_dbg(xhci, "Freed device context pool\n");
903
904         xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
905         if (xhci->dcbaa)
906                 pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
907                                 xhci->dcbaa, xhci->dcbaa->dma);
908         xhci->dcbaa = NULL;
909
910         scratchpad_free(xhci);
911         xhci->page_size = 0;
912         xhci->page_shift = 0;
913 }
914
915 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
916                 struct xhci_segment *input_seg,
917                 union xhci_trb *start_trb,
918                 union xhci_trb *end_trb,
919                 dma_addr_t input_dma,
920                 struct xhci_segment *result_seg,
921                 char *test_name, int test_number)
922 {
923         unsigned long long start_dma;
924         unsigned long long end_dma;
925         struct xhci_segment *seg;
926
927         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
928         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
929
930         seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
931         if (seg != result_seg) {
932                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
933                                 test_name, test_number);
934                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
935                                 "input DMA 0x%llx\n",
936                                 input_seg,
937                                 (unsigned long long) input_dma);
938                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
939                                 "ending TRB %p (0x%llx DMA)\n",
940                                 start_trb, start_dma,
941                                 end_trb, end_dma);
942                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
943                                 result_seg, seg);
944                 return -1;
945         }
946         return 0;
947 }
948
949 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
950 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
951 {
952         struct {
953                 dma_addr_t              input_dma;
954                 struct xhci_segment     *result_seg;
955         } simple_test_vector [] = {
956                 /* A zeroed DMA field should fail */
957                 { 0, NULL },
958                 /* One TRB before the ring start should fail */
959                 { xhci->event_ring->first_seg->dma - 16, NULL },
960                 /* One byte before the ring start should fail */
961                 { xhci->event_ring->first_seg->dma - 1, NULL },
962                 /* Starting TRB should succeed */
963                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
964                 /* Ending TRB should succeed */
965                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
966                         xhci->event_ring->first_seg },
967                 /* One byte after the ring end should fail */
968                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
969                 /* One TRB after the ring end should fail */
970                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
971                 /* An address of all ones should fail */
972                 { (dma_addr_t) (~0), NULL },
973         };
974         struct {
975                 struct xhci_segment     *input_seg;
976                 union xhci_trb          *start_trb;
977                 union xhci_trb          *end_trb;
978                 dma_addr_t              input_dma;
979                 struct xhci_segment     *result_seg;
980         } complex_test_vector [] = {
981                 /* Test feeding a valid DMA address from a different ring */
982                 {       .input_seg = xhci->event_ring->first_seg,
983                         .start_trb = xhci->event_ring->first_seg->trbs,
984                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
985                         .input_dma = xhci->cmd_ring->first_seg->dma,
986                         .result_seg = NULL,
987                 },
988                 /* Test feeding a valid end TRB from a different ring */
989                 {       .input_seg = xhci->event_ring->first_seg,
990                         .start_trb = xhci->event_ring->first_seg->trbs,
991                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
992                         .input_dma = xhci->cmd_ring->first_seg->dma,
993                         .result_seg = NULL,
994                 },
995                 /* Test feeding a valid start and end TRB from a different ring */
996                 {       .input_seg = xhci->event_ring->first_seg,
997                         .start_trb = xhci->cmd_ring->first_seg->trbs,
998                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
999                         .input_dma = xhci->cmd_ring->first_seg->dma,
1000                         .result_seg = NULL,
1001                 },
1002                 /* TRB in this ring, but after this TD */
1003                 {       .input_seg = xhci->event_ring->first_seg,
1004                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
1005                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
1006                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1007                         .result_seg = NULL,
1008                 },
1009                 /* TRB in this ring, but before this TD */
1010                 {       .input_seg = xhci->event_ring->first_seg,
1011                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
1012                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
1013                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1014                         .result_seg = NULL,
1015                 },
1016                 /* TRB in this ring, but after this wrapped TD */
1017                 {       .input_seg = xhci->event_ring->first_seg,
1018                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1019                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1020                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1021                         .result_seg = NULL,
1022                 },
1023                 /* TRB in this ring, but before this wrapped TD */
1024                 {       .input_seg = xhci->event_ring->first_seg,
1025                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1026                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1027                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1028                         .result_seg = NULL,
1029                 },
1030                 /* TRB not in this ring, and we have a wrapped TD */
1031                 {       .input_seg = xhci->event_ring->first_seg,
1032                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1033                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1034                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1035                         .result_seg = NULL,
1036                 },
1037         };
1038
1039         unsigned int num_tests;
1040         int i, ret;
1041
1042         num_tests = sizeof(simple_test_vector) / sizeof(simple_test_vector[0]);
1043         for (i = 0; i < num_tests; i++) {
1044                 ret = xhci_test_trb_in_td(xhci,
1045                                 xhci->event_ring->first_seg,
1046                                 xhci->event_ring->first_seg->trbs,
1047                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1048                                 simple_test_vector[i].input_dma,
1049                                 simple_test_vector[i].result_seg,
1050                                 "Simple", i);
1051                 if (ret < 0)
1052                         return ret;
1053         }
1054
1055         num_tests = sizeof(complex_test_vector) / sizeof(complex_test_vector[0]);
1056         for (i = 0; i < num_tests; i++) {
1057                 ret = xhci_test_trb_in_td(xhci,
1058                                 complex_test_vector[i].input_seg,
1059                                 complex_test_vector[i].start_trb,
1060                                 complex_test_vector[i].end_trb,
1061                                 complex_test_vector[i].input_dma,
1062                                 complex_test_vector[i].result_seg,
1063                                 "Complex", i);
1064                 if (ret < 0)
1065                         return ret;
1066         }
1067         xhci_dbg(xhci, "TRB math tests passed.\n");
1068         return 0;
1069 }
1070
1071
1072 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
1073 {
1074         dma_addr_t      dma;
1075         struct device   *dev = xhci_to_hcd(xhci)->self.controller;
1076         unsigned int    val, val2;
1077         u64             val_64;
1078         struct xhci_segment     *seg;
1079         u32 page_size;
1080         int i;
1081
1082         page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
1083         xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
1084         for (i = 0; i < 16; i++) {
1085                 if ((0x1 & page_size) != 0)
1086                         break;
1087                 page_size = page_size >> 1;
1088         }
1089         if (i < 16)
1090                 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
1091         else
1092                 xhci_warn(xhci, "WARN: no supported page size\n");
1093         /* Use 4K pages, since that's common and the minimum the HC supports */
1094         xhci->page_shift = 12;
1095         xhci->page_size = 1 << xhci->page_shift;
1096         xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
1097
1098         /*
1099          * Program the Number of Device Slots Enabled field in the CONFIG
1100          * register with the max value of slots the HC can handle.
1101          */
1102         val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
1103         xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
1104                         (unsigned int) val);
1105         val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
1106         val |= (val2 & ~HCS_SLOTS_MASK);
1107         xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
1108                         (unsigned int) val);
1109         xhci_writel(xhci, val, &xhci->op_regs->config_reg);
1110
1111         /*
1112          * Section 5.4.8 - doorbell array must be
1113          * "physically contiguous and 64-byte (cache line) aligned".
1114          */
1115         xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
1116                         sizeof(*xhci->dcbaa), &dma);
1117         if (!xhci->dcbaa)
1118                 goto fail;
1119         memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
1120         xhci->dcbaa->dma = dma;
1121         xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
1122                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
1123         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
1124
1125         /*
1126          * Initialize the ring segment pool.  The ring must be a contiguous
1127          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
1128          * however, the command ring segment needs 64-byte aligned segments,
1129          * so we pick the greater alignment need.
1130          */
1131         xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
1132                         SEGMENT_SIZE, 64, xhci->page_size);
1133
1134         /* See Table 46 and Note on Figure 55 */
1135         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
1136                         2112, 64, xhci->page_size);
1137         if (!xhci->segment_pool || !xhci->device_pool)
1138                 goto fail;
1139
1140         /* Set up the command ring to have one segments for now. */
1141         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
1142         if (!xhci->cmd_ring)
1143                 goto fail;
1144         xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
1145         xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
1146                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
1147
1148         /* Set the address in the Command Ring Control register */
1149         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1150         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
1151                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
1152                 xhci->cmd_ring->cycle_state;
1153         xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
1154         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
1155         xhci_dbg_cmd_ptrs(xhci);
1156
1157         val = xhci_readl(xhci, &xhci->cap_regs->db_off);
1158         val &= DBOFF_MASK;
1159         xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
1160                         " from cap regs base addr\n", val);
1161         xhci->dba = (void *) xhci->cap_regs + val;
1162         xhci_dbg_regs(xhci);
1163         xhci_print_run_regs(xhci);
1164         /* Set ir_set to interrupt register set 0 */
1165         xhci->ir_set = (void *) xhci->run_regs->ir_set;
1166
1167         /*
1168          * Event ring setup: Allocate a normal ring, but also setup
1169          * the event ring segment table (ERST).  Section 4.9.3.
1170          */
1171         xhci_dbg(xhci, "// Allocating event ring\n");
1172         xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
1173         if (!xhci->event_ring)
1174                 goto fail;
1175         if (xhci_check_trb_in_td_math(xhci, flags) < 0)
1176                 goto fail;
1177
1178         xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
1179                         sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
1180         if (!xhci->erst.entries)
1181                 goto fail;
1182         xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
1183                         (unsigned long long)dma);
1184
1185         memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
1186         xhci->erst.num_entries = ERST_NUM_SEGS;
1187         xhci->erst.erst_dma_addr = dma;
1188         xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
1189                         xhci->erst.num_entries,
1190                         xhci->erst.entries,
1191                         (unsigned long long)xhci->erst.erst_dma_addr);
1192
1193         /* set ring base address and size for each segment table entry */
1194         for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
1195                 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
1196                 entry->seg_addr = seg->dma;
1197                 entry->seg_size = TRBS_PER_SEGMENT;
1198                 entry->rsvd = 0;
1199                 seg = seg->next;
1200         }
1201
1202         /* set ERST count with the number of entries in the segment table */
1203         val = xhci_readl(xhci, &xhci->ir_set->erst_size);
1204         val &= ERST_SIZE_MASK;
1205         val |= ERST_NUM_SEGS;
1206         xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
1207                         val);
1208         xhci_writel(xhci, val, &xhci->ir_set->erst_size);
1209
1210         xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
1211         /* set the segment table base address */
1212         xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
1213                         (unsigned long long)xhci->erst.erst_dma_addr);
1214         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
1215         val_64 &= ERST_PTR_MASK;
1216         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
1217         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
1218
1219         /* Set the event ring dequeue address */
1220         xhci_set_hc_event_deq(xhci);
1221         xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
1222         xhci_print_ir_set(xhci, xhci->ir_set, 0);
1223
1224         /*
1225          * XXX: Might need to set the Interrupter Moderation Register to
1226          * something other than the default (~1ms minimum between interrupts).
1227          * See section 5.5.1.2.
1228          */
1229         init_completion(&xhci->addr_dev);
1230         for (i = 0; i < MAX_HC_SLOTS; ++i)
1231                 xhci->devs[i] = 0;
1232
1233         if (scratchpad_alloc(xhci, flags))
1234                 goto fail;
1235
1236         return 0;
1237
1238 fail:
1239         xhci_warn(xhci, "Couldn't initialize memory\n");
1240         xhci_mem_cleanup(xhci);
1241         return -ENOMEM;
1242 }