1 // SPDX-License-Identifier: GPL-2.0
3 * xHCI host controller driver
5 * Copyright (C) 2008 Intel Corp.
8 * Some code borrowed from the Linux EHCI driver.
11 #include <linux/usb.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
18 #include "xhci-trace.h"
19 #include "xhci-debugfs.h"
22 * Allocates a generic ring segment from the ring pool, sets the dma address,
23 * initializes the segment to zero, and sets the private next pointer to NULL.
26 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
28 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
29 unsigned int cycle_state,
30 unsigned int max_packet,
33 struct xhci_segment *seg;
36 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
38 seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
42 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
49 seg->bounce_buf = kzalloc_node(max_packet, flags,
51 if (!seg->bounce_buf) {
52 dma_pool_free(xhci->segment_pool, seg->trbs, dma);
57 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58 if (cycle_state == 0) {
59 for (i = 0; i < TRBS_PER_SEGMENT; i++)
60 seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE);
68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
71 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
74 kfree(seg->bounce_buf);
78 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
79 struct xhci_segment *first)
81 struct xhci_segment *seg;
84 while (seg != first) {
85 struct xhci_segment *next = seg->next;
86 xhci_segment_free(xhci, seg);
89 xhci_segment_free(xhci, first);
93 * Make the prev segment point to the next segment.
95 * Change the last TRB in the prev segment to be a Link TRB which points to the
96 * DMA address of the next segment. The caller needs to set any Link TRB
97 * related flags, such as End TRB, Toggle Cycle, and no snoop.
99 static void xhci_link_segments(struct xhci_segment *prev,
100 struct xhci_segment *next,
101 enum xhci_ring_type type, bool chain_links)
108 if (type != TYPE_EVENT) {
109 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
110 cpu_to_le64(next->dma);
112 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
113 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
114 val &= ~TRB_TYPE_BITMASK;
115 val |= TRB_TYPE(TRB_LINK);
118 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
123 * Link the ring to the new segments.
124 * Set Toggle Cycle for the new ring if needed.
126 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
127 struct xhci_segment *first, struct xhci_segment *last,
128 unsigned int num_segs)
130 struct xhci_segment *next;
133 if (!ring || !first || !last)
136 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
137 chain_links = !!(xhci_link_trb_quirk(xhci) ||
138 (ring->type == TYPE_ISOC &&
139 (xhci->quirks & XHCI_AMD_0x96_HOST)));
141 next = ring->enq_seg->next;
142 xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
143 xhci_link_segments(last, next, ring->type, chain_links);
144 ring->num_segs += num_segs;
145 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
147 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
148 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
149 &= ~cpu_to_le32(LINK_TOGGLE);
150 last->trbs[TRBS_PER_SEGMENT-1].link.control
151 |= cpu_to_le32(LINK_TOGGLE);
152 ring->last_seg = last;
157 * We need a radix tree for mapping physical addresses of TRBs to which stream
158 * ID they belong to. We need to do this because the host controller won't tell
159 * us which stream ring the TRB came from. We could store the stream ID in an
160 * event data TRB, but that doesn't help us for the cancellation case, since the
161 * endpoint may stop before it reaches that event data TRB.
163 * The radix tree maps the upper portion of the TRB DMA address to a ring
164 * segment that has the same upper portion of DMA addresses. For example, say I
165 * have segments of size 1KB, that are always 1KB aligned. A segment may
166 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
167 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
168 * pass the radix tree a key to get the right stream ID:
170 * 0x10c90fff >> 10 = 0x43243
171 * 0x10c912c0 >> 10 = 0x43244
172 * 0x10c91400 >> 10 = 0x43245
174 * Obviously, only those TRBs with DMA addresses that are within the segment
175 * will make the radix tree return the stream ID for that ring.
177 * Caveats for the radix tree:
179 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
180 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
181 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
182 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
183 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
184 * extended systems (where the DMA address can be bigger than 32-bits),
185 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
187 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
188 struct xhci_ring *ring,
189 struct xhci_segment *seg,
195 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
196 /* Skip any segments that were already added. */
197 if (radix_tree_lookup(trb_address_map, key))
200 ret = radix_tree_maybe_preload(mem_flags);
203 ret = radix_tree_insert(trb_address_map,
205 radix_tree_preload_end();
209 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
210 struct xhci_segment *seg)
214 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
215 if (radix_tree_lookup(trb_address_map, key))
216 radix_tree_delete(trb_address_map, key);
219 static int xhci_update_stream_segment_mapping(
220 struct radix_tree_root *trb_address_map,
221 struct xhci_ring *ring,
222 struct xhci_segment *first_seg,
223 struct xhci_segment *last_seg,
226 struct xhci_segment *seg;
227 struct xhci_segment *failed_seg;
230 if (WARN_ON_ONCE(trb_address_map == NULL))
235 ret = xhci_insert_segment_mapping(trb_address_map,
236 ring, seg, mem_flags);
242 } while (seg != first_seg);
250 xhci_remove_segment_mapping(trb_address_map, seg);
251 if (seg == failed_seg)
254 } while (seg != first_seg);
259 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
261 struct xhci_segment *seg;
263 if (WARN_ON_ONCE(ring->trb_address_map == NULL))
266 seg = ring->first_seg;
268 xhci_remove_segment_mapping(ring->trb_address_map, seg);
270 } while (seg != ring->first_seg);
273 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
275 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
276 ring->first_seg, ring->last_seg, mem_flags);
279 /* XXX: Do we need the hcd structure in all these functions? */
280 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
285 trace_xhci_ring_free(ring);
287 if (ring->first_seg) {
288 if (ring->type == TYPE_STREAM)
289 xhci_remove_stream_mapping(ring);
290 xhci_free_segments_for_ring(xhci, ring->first_seg);
296 void xhci_initialize_ring_info(struct xhci_ring *ring,
297 unsigned int cycle_state)
299 /* The ring is empty, so the enqueue pointer == dequeue pointer */
300 ring->enqueue = ring->first_seg->trbs;
301 ring->enq_seg = ring->first_seg;
302 ring->dequeue = ring->enqueue;
303 ring->deq_seg = ring->first_seg;
304 /* The ring is initialized to 0. The producer must write 1 to the cycle
305 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
306 * compare CCS to the cycle bit to check ownership, so CCS = 1.
308 * New rings are initialized with cycle state equal to 1; if we are
309 * handling ring expansion, set the cycle state equal to the old ring.
311 ring->cycle_state = cycle_state;
314 * Each segment has a link TRB, and leave an extra TRB for SW
317 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
320 /* Allocate segments and link them for a ring */
321 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
322 struct xhci_segment **first, struct xhci_segment **last,
323 unsigned int num_segs, unsigned int cycle_state,
324 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
326 struct xhci_segment *prev;
329 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
330 chain_links = !!(xhci_link_trb_quirk(xhci) ||
331 (type == TYPE_ISOC &&
332 (xhci->quirks & XHCI_AMD_0x96_HOST)));
334 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
340 while (num_segs > 0) {
341 struct xhci_segment *next;
343 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
348 xhci_segment_free(xhci, prev);
353 xhci_link_segments(prev, next, type, chain_links);
358 xhci_link_segments(prev, *first, type, chain_links);
365 * Create a new ring with zero or more segments.
367 * Link each segment together into a ring.
368 * Set the end flag and the cycle toggle bit on the last segment.
369 * See section 4.9.1 and figures 15 and 16.
371 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
372 unsigned int num_segs, unsigned int cycle_state,
373 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
375 struct xhci_ring *ring;
377 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
379 ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
383 ring->num_segs = num_segs;
384 ring->bounce_buf_len = max_packet;
385 INIT_LIST_HEAD(&ring->td_list);
390 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
391 &ring->last_seg, num_segs, cycle_state, type,
396 /* Only event ring does not use link TRB */
397 if (type != TYPE_EVENT) {
398 /* See section 4.9.2.1 and 6.4.4.1 */
399 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
400 cpu_to_le32(LINK_TOGGLE);
402 xhci_initialize_ring_info(ring, cycle_state);
403 trace_xhci_ring_alloc(ring);
411 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
412 struct xhci_virt_device *virt_dev,
413 unsigned int ep_index)
415 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
416 virt_dev->eps[ep_index].ring = NULL;
420 * Expand an existing ring.
421 * Allocate a new ring which has same segment numbers and link the two rings.
423 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
424 unsigned int num_trbs, gfp_t flags)
426 struct xhci_segment *first;
427 struct xhci_segment *last;
428 unsigned int num_segs;
429 unsigned int num_segs_needed;
432 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
433 (TRBS_PER_SEGMENT - 1);
435 /* Allocate number of segments we needed, or double the ring size */
436 num_segs = max(ring->num_segs, num_segs_needed);
438 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
439 num_segs, ring->cycle_state, ring->type,
440 ring->bounce_buf_len, flags);
444 if (ring->type == TYPE_STREAM)
445 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
446 ring, first, last, flags);
448 struct xhci_segment *next;
451 xhci_segment_free(xhci, first);
459 xhci_link_rings(xhci, ring, first, last, num_segs);
460 trace_xhci_ring_expansion(ring);
461 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
462 "ring expansion succeed, now has %d segments",
468 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
469 int type, gfp_t flags)
471 struct xhci_container_ctx *ctx;
472 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
474 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
477 ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
482 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
483 if (type == XHCI_CTX_TYPE_INPUT)
484 ctx->size += CTX_SIZE(xhci->hcc_params);
486 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
494 void xhci_free_container_ctx(struct xhci_hcd *xhci,
495 struct xhci_container_ctx *ctx)
499 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
503 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
504 struct xhci_container_ctx *ctx)
506 if (ctx->type != XHCI_CTX_TYPE_INPUT)
509 return (struct xhci_input_control_ctx *)ctx->bytes;
512 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
513 struct xhci_container_ctx *ctx)
515 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
516 return (struct xhci_slot_ctx *)ctx->bytes;
518 return (struct xhci_slot_ctx *)
519 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
522 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
523 struct xhci_container_ctx *ctx,
524 unsigned int ep_index)
526 /* increment ep index by offset of start of ep ctx array */
528 if (ctx->type == XHCI_CTX_TYPE_INPUT)
531 return (struct xhci_ep_ctx *)
532 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
534 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
536 /***************** Streams structures manipulation *************************/
538 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
539 unsigned int num_stream_ctxs,
540 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
542 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
543 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
545 if (size > MEDIUM_STREAM_ARRAY_SIZE)
546 dma_free_coherent(dev, size,
548 else if (size <= SMALL_STREAM_ARRAY_SIZE)
549 return dma_pool_free(xhci->small_streams_pool,
552 return dma_pool_free(xhci->medium_streams_pool,
557 * The stream context array for each endpoint with bulk streams enabled can
558 * vary in size, based on:
559 * - how many streams the endpoint supports,
560 * - the maximum primary stream array size the host controller supports,
561 * - and how many streams the device driver asks for.
563 * The stream context array must be a power of 2, and can be as small as
564 * 64 bytes or as large as 1MB.
566 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
567 unsigned int num_stream_ctxs, dma_addr_t *dma,
570 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
571 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
573 if (size > MEDIUM_STREAM_ARRAY_SIZE)
574 return dma_alloc_coherent(dev, size,
576 else if (size <= SMALL_STREAM_ARRAY_SIZE)
577 return dma_pool_alloc(xhci->small_streams_pool,
580 return dma_pool_alloc(xhci->medium_streams_pool,
584 struct xhci_ring *xhci_dma_to_transfer_ring(
585 struct xhci_virt_ep *ep,
588 if (ep->ep_state & EP_HAS_STREAMS)
589 return radix_tree_lookup(&ep->stream_info->trb_address_map,
590 address >> TRB_SEGMENT_SHIFT);
595 * Change an endpoint's internal structure so it supports stream IDs. The
596 * number of requested streams includes stream 0, which cannot be used by device
599 * The number of stream contexts in the stream context array may be bigger than
600 * the number of streams the driver wants to use. This is because the number of
601 * stream context array entries must be a power of two.
603 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
604 unsigned int num_stream_ctxs,
605 unsigned int num_streams,
606 unsigned int max_packet, gfp_t mem_flags)
608 struct xhci_stream_info *stream_info;
610 struct xhci_ring *cur_ring;
613 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
615 xhci_dbg(xhci, "Allocating %u streams and %u "
616 "stream context array entries.\n",
617 num_streams, num_stream_ctxs);
618 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
619 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
622 xhci->cmd_ring_reserved_trbs++;
624 stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
629 stream_info->num_streams = num_streams;
630 stream_info->num_stream_ctxs = num_stream_ctxs;
632 /* Initialize the array of virtual pointers to stream rings. */
633 stream_info->stream_rings = kcalloc_node(
634 num_streams, sizeof(struct xhci_ring *), mem_flags,
636 if (!stream_info->stream_rings)
639 /* Initialize the array of DMA addresses for stream rings for the HW. */
640 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
641 num_stream_ctxs, &stream_info->ctx_array_dma,
643 if (!stream_info->stream_ctx_array)
644 goto cleanup_ring_array;
645 memset(stream_info->stream_ctx_array, 0,
646 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
648 /* Allocate everything needed to free the stream rings later */
649 stream_info->free_streams_command =
650 xhci_alloc_command_with_ctx(xhci, true, mem_flags);
651 if (!stream_info->free_streams_command)
654 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
656 /* Allocate rings for all the streams that the driver will use,
657 * and add their segment DMA addresses to the radix tree.
658 * Stream 0 is reserved.
661 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
662 stream_info->stream_rings[cur_stream] =
663 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
665 cur_ring = stream_info->stream_rings[cur_stream];
668 cur_ring->stream_id = cur_stream;
669 cur_ring->trb_address_map = &stream_info->trb_address_map;
670 /* Set deq ptr, cycle bit, and stream context type */
671 addr = cur_ring->first_seg->dma |
672 SCT_FOR_CTX(SCT_PRI_TR) |
673 cur_ring->cycle_state;
674 stream_info->stream_ctx_array[cur_stream].stream_ring =
676 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
677 cur_stream, (unsigned long long) addr);
679 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
681 xhci_ring_free(xhci, cur_ring);
682 stream_info->stream_rings[cur_stream] = NULL;
686 /* Leave the other unused stream ring pointers in the stream context
687 * array initialized to zero. This will cause the xHC to give us an
688 * error if the device asks for a stream ID we don't have setup (if it
689 * was any other way, the host controller would assume the ring is
690 * "empty" and wait forever for data to be queued to that stream ID).
696 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
697 cur_ring = stream_info->stream_rings[cur_stream];
699 xhci_ring_free(xhci, cur_ring);
700 stream_info->stream_rings[cur_stream] = NULL;
703 xhci_free_command(xhci, stream_info->free_streams_command);
705 xhci_free_stream_ctx(xhci,
706 stream_info->num_stream_ctxs,
707 stream_info->stream_ctx_array,
708 stream_info->ctx_array_dma);
710 kfree(stream_info->stream_rings);
714 xhci->cmd_ring_reserved_trbs--;
718 * Sets the MaxPStreams field and the Linear Stream Array field.
719 * Sets the dequeue pointer to the stream context array.
721 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
722 struct xhci_ep_ctx *ep_ctx,
723 struct xhci_stream_info *stream_info)
725 u32 max_primary_streams;
726 /* MaxPStreams is the number of stream context array entries, not the
727 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
728 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
730 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
731 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
732 "Setting number of stream ctx array entries to %u",
733 1 << (max_primary_streams + 1));
734 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
735 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
737 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
741 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
742 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
743 * not at the beginning of the ring).
745 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
746 struct xhci_virt_ep *ep)
749 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
750 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
751 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
754 /* Frees all stream contexts associated with the endpoint,
756 * Caller should fix the endpoint context streams fields.
758 void xhci_free_stream_info(struct xhci_hcd *xhci,
759 struct xhci_stream_info *stream_info)
762 struct xhci_ring *cur_ring;
767 for (cur_stream = 1; cur_stream < stream_info->num_streams;
769 cur_ring = stream_info->stream_rings[cur_stream];
771 xhci_ring_free(xhci, cur_ring);
772 stream_info->stream_rings[cur_stream] = NULL;
775 xhci_free_command(xhci, stream_info->free_streams_command);
776 xhci->cmd_ring_reserved_trbs--;
777 if (stream_info->stream_ctx_array)
778 xhci_free_stream_ctx(xhci,
779 stream_info->num_stream_ctxs,
780 stream_info->stream_ctx_array,
781 stream_info->ctx_array_dma);
783 kfree(stream_info->stream_rings);
788 /***************** Device context manipulation *************************/
790 static void xhci_free_tt_info(struct xhci_hcd *xhci,
791 struct xhci_virt_device *virt_dev,
794 struct list_head *tt_list_head;
795 struct xhci_tt_bw_info *tt_info, *next;
796 bool slot_found = false;
798 /* If the device never made it past the Set Address stage,
799 * it may not have the real_port set correctly.
801 if (virt_dev->real_port == 0 ||
802 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
803 xhci_dbg(xhci, "Bad real port.\n");
807 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
808 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
809 /* Multi-TT hubs will have more than one entry */
810 if (tt_info->slot_id == slot_id) {
812 list_del(&tt_info->tt_list);
814 } else if (slot_found) {
820 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
821 struct xhci_virt_device *virt_dev,
822 struct usb_device *hdev,
823 struct usb_tt *tt, gfp_t mem_flags)
825 struct xhci_tt_bw_info *tt_info;
826 unsigned int num_ports;
828 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
833 num_ports = hdev->maxchild;
835 for (i = 0; i < num_ports; i++, tt_info++) {
836 struct xhci_interval_bw_table *bw_table;
838 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
842 INIT_LIST_HEAD(&tt_info->tt_list);
843 list_add(&tt_info->tt_list,
844 &xhci->rh_bw[virt_dev->real_port - 1].tts);
845 tt_info->slot_id = virt_dev->udev->slot_id;
847 tt_info->ttport = i+1;
848 bw_table = &tt_info->bw_table;
849 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
850 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
855 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
860 /* All the xhci_tds in the ring's TD list should be freed at this point.
861 * Should be called with xhci->lock held if there is any chance the TT lists
862 * will be manipulated by the configure endpoint, allocate device, or update
863 * hub functions while this function is removing the TT entries from the list.
865 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
867 struct xhci_virt_device *dev;
869 int old_active_eps = 0;
871 /* Slot ID 0 is reserved */
872 if (slot_id == 0 || !xhci->devs[slot_id])
875 dev = xhci->devs[slot_id];
877 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
881 trace_xhci_free_virt_device(dev);
884 old_active_eps = dev->tt_info->active_eps;
886 for (i = 0; i < 31; i++) {
887 if (dev->eps[i].ring)
888 xhci_ring_free(xhci, dev->eps[i].ring);
889 if (dev->eps[i].stream_info)
890 xhci_free_stream_info(xhci,
891 dev->eps[i].stream_info);
893 * Endpoints are normally deleted from the bandwidth list when
894 * endpoints are dropped, before device is freed.
895 * If host is dying or being removed then endpoints aren't
896 * dropped cleanly, so delete the endpoint from list here.
897 * Only applicable for hosts with software bandwidth checking.
900 if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
901 list_del_init(&dev->eps[i].bw_endpoint_list);
902 xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
906 /* If this is a hub, free the TT(s) from the TT list */
907 xhci_free_tt_info(xhci, dev, slot_id);
908 /* If necessary, update the number of active TTs on this root port */
909 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
912 xhci_free_container_ctx(xhci, dev->in_ctx);
914 xhci_free_container_ctx(xhci, dev->out_ctx);
916 if (dev->udev && dev->udev->slot_id)
917 dev->udev->slot_id = 0;
918 kfree(xhci->devs[slot_id]);
919 xhci->devs[slot_id] = NULL;
923 * Free a virt_device structure.
924 * If the virt_device added a tt_info (a hub) and has children pointing to
925 * that tt_info, then free the child first. Recursive.
926 * We can't rely on udev at this point to find child-parent relationships.
928 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
930 struct xhci_virt_device *vdev;
931 struct list_head *tt_list_head;
932 struct xhci_tt_bw_info *tt_info, *next;
935 vdev = xhci->devs[slot_id];
939 if (vdev->real_port == 0 ||
940 vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
941 xhci_dbg(xhci, "Bad vdev->real_port.\n");
945 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
946 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
947 /* is this a hub device that added a tt_info to the tts list */
948 if (tt_info->slot_id == slot_id) {
949 /* are any devices using this tt_info? */
950 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
951 vdev = xhci->devs[i];
952 if (vdev && (vdev->tt_info == tt_info))
953 xhci_free_virt_devices_depth_first(
959 /* we are now at a leaf device */
960 xhci_debugfs_remove_slot(xhci, slot_id);
961 xhci_free_virt_device(xhci, slot_id);
964 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
965 struct usb_device *udev, gfp_t flags)
967 struct xhci_virt_device *dev;
970 /* Slot ID 0 is reserved */
971 if (slot_id == 0 || xhci->devs[slot_id]) {
972 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
976 dev = kzalloc(sizeof(*dev), flags);
980 dev->slot_id = slot_id;
982 /* Allocate the (output) device context that will be used in the HC. */
983 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
987 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
988 (unsigned long long)dev->out_ctx->dma);
990 /* Allocate the (input) device context for address device command */
991 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
995 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
996 (unsigned long long)dev->in_ctx->dma);
998 /* Initialize the cancellation and bandwidth list for each ep */
999 for (i = 0; i < 31; i++) {
1000 dev->eps[i].ep_index = i;
1001 dev->eps[i].vdev = dev;
1002 dev->eps[i].xhci = xhci;
1003 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1004 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1007 /* Allocate endpoint 0 ring */
1008 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1009 if (!dev->eps[0].ring)
1014 /* Point to output device context in dcbaa. */
1015 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1016 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1018 &xhci->dcbaa->dev_context_ptrs[slot_id],
1019 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1021 trace_xhci_alloc_virt_device(dev);
1023 xhci->devs[slot_id] = dev;
1029 xhci_free_container_ctx(xhci, dev->in_ctx);
1031 xhci_free_container_ctx(xhci, dev->out_ctx);
1037 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1038 struct usb_device *udev)
1040 struct xhci_virt_device *virt_dev;
1041 struct xhci_ep_ctx *ep0_ctx;
1042 struct xhci_ring *ep_ring;
1044 virt_dev = xhci->devs[udev->slot_id];
1045 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1046 ep_ring = virt_dev->eps[0].ring;
1048 * FIXME we don't keep track of the dequeue pointer very well after a
1049 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1050 * host to our enqueue pointer. This should only be called after a
1051 * configured device has reset, so all control transfers should have
1052 * been completed or cancelled before the reset.
1054 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1056 | ep_ring->cycle_state);
1060 * The xHCI roothub may have ports of differing speeds in any order in the port
1063 * The xHCI hardware wants to know the roothub port number that the USB device
1064 * is attached to (or the roothub port its ancestor hub is attached to). All we
1065 * know is the index of that port under either the USB 2.0 or the USB 3.0
1066 * roothub, but that doesn't give us the real index into the HW port status
1067 * registers. Call xhci_find_raw_port_number() to get real index.
1069 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1070 struct usb_device *udev)
1072 struct usb_device *top_dev;
1073 struct usb_hcd *hcd;
1075 if (udev->speed >= USB_SPEED_SUPER)
1076 hcd = xhci_get_usb3_hcd(xhci);
1078 hcd = xhci->main_hcd;
1080 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1081 top_dev = top_dev->parent)
1082 /* Found device below root hub */;
1084 return xhci_find_raw_port_number(hcd, top_dev->portnum);
1087 /* Setup an xHCI virtual device for a Set Address command */
1088 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1090 struct xhci_virt_device *dev;
1091 struct xhci_ep_ctx *ep0_ctx;
1092 struct xhci_slot_ctx *slot_ctx;
1095 struct usb_device *top_dev;
1097 dev = xhci->devs[udev->slot_id];
1098 /* Slot ID 0 is reserved */
1099 if (udev->slot_id == 0 || !dev) {
1100 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1104 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1105 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1107 /* 3) Only the control endpoint is valid - one endpoint context */
1108 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1109 switch (udev->speed) {
1110 case USB_SPEED_SUPER_PLUS:
1111 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1112 max_packets = MAX_PACKET(512);
1114 case USB_SPEED_SUPER:
1115 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1116 max_packets = MAX_PACKET(512);
1118 case USB_SPEED_HIGH:
1119 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1120 max_packets = MAX_PACKET(64);
1122 /* USB core guesses at a 64-byte max packet first for FS devices */
1123 case USB_SPEED_FULL:
1124 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1125 max_packets = MAX_PACKET(64);
1128 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1129 max_packets = MAX_PACKET(8);
1131 case USB_SPEED_WIRELESS:
1132 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1135 /* Speed was set earlier, this shouldn't happen. */
1138 /* Find the root hub port this device is under */
1139 port_num = xhci_find_real_port_number(xhci, udev);
1142 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1143 /* Set the port number in the virtual_device to the faked port number */
1144 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1145 top_dev = top_dev->parent)
1146 /* Found device below root hub */;
1147 dev->fake_port = top_dev->portnum;
1148 dev->real_port = port_num;
1149 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1150 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1152 /* Find the right bandwidth table that this device will be a part of.
1153 * If this is a full speed device attached directly to a root port (or a
1154 * decendent of one), it counts as a primary bandwidth domain, not a
1155 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1156 * will never be created for the HS root hub.
1158 if (!udev->tt || !udev->tt->hub->parent) {
1159 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1161 struct xhci_root_port_bw_info *rh_bw;
1162 struct xhci_tt_bw_info *tt_bw;
1164 rh_bw = &xhci->rh_bw[port_num - 1];
1165 /* Find the right TT. */
1166 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1167 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1170 if (!dev->udev->tt->multi ||
1172 tt_bw->ttport == dev->udev->ttport)) {
1173 dev->bw_table = &tt_bw->bw_table;
1174 dev->tt_info = tt_bw;
1179 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1182 /* Is this a LS/FS device under an external HS hub? */
1183 if (udev->tt && udev->tt->hub->parent) {
1184 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1185 (udev->ttport << 8));
1186 if (udev->tt->multi)
1187 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1189 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1190 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1192 /* Step 4 - ring already allocated */
1194 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1196 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1197 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1200 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1201 dev->eps[0].ring->cycle_state);
1203 trace_xhci_setup_addressable_virt_device(dev);
1205 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1211 * Convert interval expressed as 2^(bInterval - 1) == interval into
1212 * straight exponent value 2^n == interval.
1215 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1216 struct usb_host_endpoint *ep)
1218 unsigned int interval;
1220 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1221 if (interval != ep->desc.bInterval - 1)
1222 dev_warn(&udev->dev,
1223 "ep %#x - rounding interval to %d %sframes\n",
1224 ep->desc.bEndpointAddress,
1226 udev->speed == USB_SPEED_FULL ? "" : "micro");
1228 if (udev->speed == USB_SPEED_FULL) {
1230 * Full speed isoc endpoints specify interval in frames,
1231 * not microframes. We are using microframes everywhere,
1232 * so adjust accordingly.
1234 interval += 3; /* 1 frame = 2^3 uframes */
1241 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1242 * microframes, rounded down to nearest power of 2.
1244 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1245 struct usb_host_endpoint *ep, unsigned int desc_interval,
1246 unsigned int min_exponent, unsigned int max_exponent)
1248 unsigned int interval;
1250 interval = fls(desc_interval) - 1;
1251 interval = clamp_val(interval, min_exponent, max_exponent);
1252 if ((1 << interval) != desc_interval)
1254 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1255 ep->desc.bEndpointAddress,
1262 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1263 struct usb_host_endpoint *ep)
1265 if (ep->desc.bInterval == 0)
1267 return xhci_microframes_to_exponent(udev, ep,
1268 ep->desc.bInterval, 0, 15);
1272 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1273 struct usb_host_endpoint *ep)
1275 return xhci_microframes_to_exponent(udev, ep,
1276 ep->desc.bInterval * 8, 3, 10);
1279 /* Return the polling or NAK interval.
1281 * The polling interval is expressed in "microframes". If xHCI's Interval field
1282 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1284 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1287 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1288 struct usb_host_endpoint *ep)
1290 unsigned int interval = 0;
1292 switch (udev->speed) {
1293 case USB_SPEED_HIGH:
1295 if (usb_endpoint_xfer_control(&ep->desc) ||
1296 usb_endpoint_xfer_bulk(&ep->desc)) {
1297 interval = xhci_parse_microframe_interval(udev, ep);
1300 fallthrough; /* SS and HS isoc/int have same decoding */
1302 case USB_SPEED_SUPER_PLUS:
1303 case USB_SPEED_SUPER:
1304 if (usb_endpoint_xfer_int(&ep->desc) ||
1305 usb_endpoint_xfer_isoc(&ep->desc)) {
1306 interval = xhci_parse_exponent_interval(udev, ep);
1310 case USB_SPEED_FULL:
1311 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1312 interval = xhci_parse_exponent_interval(udev, ep);
1316 * Fall through for interrupt endpoint interval decoding
1317 * since it uses the same rules as low speed interrupt
1323 if (usb_endpoint_xfer_int(&ep->desc) ||
1324 usb_endpoint_xfer_isoc(&ep->desc)) {
1326 interval = xhci_parse_frame_interval(udev, ep);
1336 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1337 * High speed endpoint descriptors can define "the number of additional
1338 * transaction opportunities per microframe", but that goes in the Max Burst
1339 * endpoint context field.
1341 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1342 struct usb_host_endpoint *ep)
1344 if (udev->speed < USB_SPEED_SUPER ||
1345 !usb_endpoint_xfer_isoc(&ep->desc))
1347 return ep->ss_ep_comp.bmAttributes;
1350 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1351 struct usb_host_endpoint *ep)
1353 /* Super speed and Plus have max burst in ep companion desc */
1354 if (udev->speed >= USB_SPEED_SUPER)
1355 return ep->ss_ep_comp.bMaxBurst;
1357 if (udev->speed == USB_SPEED_HIGH &&
1358 (usb_endpoint_xfer_isoc(&ep->desc) ||
1359 usb_endpoint_xfer_int(&ep->desc)))
1360 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1365 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1369 in = usb_endpoint_dir_in(&ep->desc);
1371 switch (usb_endpoint_type(&ep->desc)) {
1372 case USB_ENDPOINT_XFER_CONTROL:
1374 case USB_ENDPOINT_XFER_BULK:
1375 return in ? BULK_IN_EP : BULK_OUT_EP;
1376 case USB_ENDPOINT_XFER_ISOC:
1377 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1378 case USB_ENDPOINT_XFER_INT:
1379 return in ? INT_IN_EP : INT_OUT_EP;
1384 /* Return the maximum endpoint service interval time (ESIT) payload.
1385 * Basically, this is the maxpacket size, multiplied by the burst size
1388 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1389 struct usb_host_endpoint *ep)
1394 /* Only applies for interrupt or isochronous endpoints */
1395 if (usb_endpoint_xfer_control(&ep->desc) ||
1396 usb_endpoint_xfer_bulk(&ep->desc))
1399 /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1400 if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1401 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1402 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1403 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1404 else if (udev->speed >= USB_SPEED_SUPER)
1405 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1407 max_packet = usb_endpoint_maxp(&ep->desc);
1408 max_burst = usb_endpoint_maxp_mult(&ep->desc);
1409 /* A 0 in max burst means 1 transfer per ESIT */
1410 return max_packet * max_burst;
1413 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1414 * Drivers will have to call usb_alloc_streams() to do that.
1416 int xhci_endpoint_init(struct xhci_hcd *xhci,
1417 struct xhci_virt_device *virt_dev,
1418 struct usb_device *udev,
1419 struct usb_host_endpoint *ep,
1422 unsigned int ep_index;
1423 struct xhci_ep_ctx *ep_ctx;
1424 struct xhci_ring *ep_ring;
1425 unsigned int max_packet;
1426 enum xhci_ring_type ring_type;
1427 u32 max_esit_payload;
1429 unsigned int max_burst;
1430 unsigned int interval;
1432 unsigned int avg_trb_len;
1433 unsigned int err_count = 0;
1435 ep_index = xhci_get_endpoint_index(&ep->desc);
1436 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1438 endpoint_type = xhci_get_endpoint_type(ep);
1442 ring_type = usb_endpoint_type(&ep->desc);
1445 * Get values to fill the endpoint context, mostly from ep descriptor.
1446 * The average TRB buffer lengt for bulk endpoints is unclear as we
1447 * have no clue on scatter gather list entry size. For Isoc and Int,
1448 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1450 max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1451 interval = xhci_get_endpoint_interval(udev, ep);
1453 /* Periodic endpoint bInterval limit quirk */
1454 if (usb_endpoint_xfer_int(&ep->desc) ||
1455 usb_endpoint_xfer_isoc(&ep->desc)) {
1456 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1457 udev->speed >= USB_SPEED_HIGH &&
1463 mult = xhci_get_endpoint_mult(udev, ep);
1464 max_packet = usb_endpoint_maxp(&ep->desc);
1465 max_burst = xhci_get_endpoint_max_burst(udev, ep);
1466 avg_trb_len = max_esit_payload;
1468 /* FIXME dig Mult and streams info out of ep companion desc */
1470 /* Allow 3 retries for everything but isoc, set CErr = 3 */
1471 if (!usb_endpoint_xfer_isoc(&ep->desc))
1473 /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1474 if (usb_endpoint_xfer_bulk(&ep->desc)) {
1475 if (udev->speed == USB_SPEED_HIGH)
1477 if (udev->speed == USB_SPEED_FULL) {
1478 max_packet = rounddown_pow_of_two(max_packet);
1479 max_packet = clamp_val(max_packet, 8, 64);
1482 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1483 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1485 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1486 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1489 /* Set up the endpoint ring */
1490 virt_dev->eps[ep_index].new_ring =
1491 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1492 if (!virt_dev->eps[ep_index].new_ring)
1495 virt_dev->eps[ep_index].skip = false;
1496 ep_ring = virt_dev->eps[ep_index].new_ring;
1498 /* Fill the endpoint context */
1499 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1500 EP_INTERVAL(interval) |
1502 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1503 MAX_PACKET(max_packet) |
1504 MAX_BURST(max_burst) |
1505 ERROR_COUNT(err_count));
1506 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1507 ep_ring->cycle_state);
1509 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1510 EP_AVG_TRB_LENGTH(avg_trb_len));
1515 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1516 struct xhci_virt_device *virt_dev,
1517 struct usb_host_endpoint *ep)
1519 unsigned int ep_index;
1520 struct xhci_ep_ctx *ep_ctx;
1522 ep_index = xhci_get_endpoint_index(&ep->desc);
1523 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1525 ep_ctx->ep_info = 0;
1526 ep_ctx->ep_info2 = 0;
1528 ep_ctx->tx_info = 0;
1529 /* Don't free the endpoint ring until the set interface or configuration
1534 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1536 bw_info->ep_interval = 0;
1538 bw_info->num_packets = 0;
1539 bw_info->max_packet_size = 0;
1541 bw_info->max_esit_payload = 0;
1544 void xhci_update_bw_info(struct xhci_hcd *xhci,
1545 struct xhci_container_ctx *in_ctx,
1546 struct xhci_input_control_ctx *ctrl_ctx,
1547 struct xhci_virt_device *virt_dev)
1549 struct xhci_bw_info *bw_info;
1550 struct xhci_ep_ctx *ep_ctx;
1551 unsigned int ep_type;
1554 for (i = 1; i < 31; i++) {
1555 bw_info = &virt_dev->eps[i].bw_info;
1557 /* We can't tell what endpoint type is being dropped, but
1558 * unconditionally clearing the bandwidth info for non-periodic
1559 * endpoints should be harmless because the info will never be
1560 * set in the first place.
1562 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1563 /* Dropped endpoint */
1564 xhci_clear_endpoint_bw_info(bw_info);
1568 if (EP_IS_ADDED(ctrl_ctx, i)) {
1569 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1570 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1572 /* Ignore non-periodic endpoints */
1573 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1574 ep_type != ISOC_IN_EP &&
1575 ep_type != INT_IN_EP)
1578 /* Added or changed endpoint */
1579 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1580 le32_to_cpu(ep_ctx->ep_info));
1581 /* Number of packets and mult are zero-based in the
1582 * input context, but we want one-based for the
1585 bw_info->mult = CTX_TO_EP_MULT(
1586 le32_to_cpu(ep_ctx->ep_info)) + 1;
1587 bw_info->num_packets = CTX_TO_MAX_BURST(
1588 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1589 bw_info->max_packet_size = MAX_PACKET_DECODED(
1590 le32_to_cpu(ep_ctx->ep_info2));
1591 bw_info->type = ep_type;
1592 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1593 le32_to_cpu(ep_ctx->tx_info));
1598 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1599 * Useful when you want to change one particular aspect of the endpoint and then
1600 * issue a configure endpoint command.
1602 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1603 struct xhci_container_ctx *in_ctx,
1604 struct xhci_container_ctx *out_ctx,
1605 unsigned int ep_index)
1607 struct xhci_ep_ctx *out_ep_ctx;
1608 struct xhci_ep_ctx *in_ep_ctx;
1610 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1611 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1613 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1614 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1615 in_ep_ctx->deq = out_ep_ctx->deq;
1616 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1617 if (xhci->quirks & XHCI_MTK_HOST) {
1618 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1619 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1623 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1624 * Useful when you want to change one particular aspect of the endpoint and then
1625 * issue a configure endpoint command. Only the context entries field matters,
1626 * but we'll copy the whole thing anyway.
1628 void xhci_slot_copy(struct xhci_hcd *xhci,
1629 struct xhci_container_ctx *in_ctx,
1630 struct xhci_container_ctx *out_ctx)
1632 struct xhci_slot_ctx *in_slot_ctx;
1633 struct xhci_slot_ctx *out_slot_ctx;
1635 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1636 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1638 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1639 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1640 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1641 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1644 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1645 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1648 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1649 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1651 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1652 "Allocating %d scratchpad buffers", num_sp);
1657 xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1659 if (!xhci->scratchpad)
1662 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1663 num_sp * sizeof(u64),
1664 &xhci->scratchpad->sp_dma, flags);
1665 if (!xhci->scratchpad->sp_array)
1668 xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1669 flags, dev_to_node(dev));
1670 if (!xhci->scratchpad->sp_buffers)
1673 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1674 for (i = 0; i < num_sp; i++) {
1676 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1681 xhci->scratchpad->sp_array[i] = dma;
1682 xhci->scratchpad->sp_buffers[i] = buf;
1688 for (i = i - 1; i >= 0; i--) {
1689 dma_free_coherent(dev, xhci->page_size,
1690 xhci->scratchpad->sp_buffers[i],
1691 xhci->scratchpad->sp_array[i]);
1694 kfree(xhci->scratchpad->sp_buffers);
1697 dma_free_coherent(dev, num_sp * sizeof(u64),
1698 xhci->scratchpad->sp_array,
1699 xhci->scratchpad->sp_dma);
1702 kfree(xhci->scratchpad);
1703 xhci->scratchpad = NULL;
1709 static void scratchpad_free(struct xhci_hcd *xhci)
1713 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1715 if (!xhci->scratchpad)
1718 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1720 for (i = 0; i < num_sp; i++) {
1721 dma_free_coherent(dev, xhci->page_size,
1722 xhci->scratchpad->sp_buffers[i],
1723 xhci->scratchpad->sp_array[i]);
1725 kfree(xhci->scratchpad->sp_buffers);
1726 dma_free_coherent(dev, num_sp * sizeof(u64),
1727 xhci->scratchpad->sp_array,
1728 xhci->scratchpad->sp_dma);
1729 kfree(xhci->scratchpad);
1730 xhci->scratchpad = NULL;
1733 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1734 bool allocate_completion, gfp_t mem_flags)
1736 struct xhci_command *command;
1737 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1739 command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1743 if (allocate_completion) {
1744 command->completion =
1745 kzalloc_node(sizeof(struct completion), mem_flags,
1747 if (!command->completion) {
1751 init_completion(command->completion);
1754 command->status = 0;
1755 INIT_LIST_HEAD(&command->cmd_list);
1759 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1760 bool allocate_completion, gfp_t mem_flags)
1762 struct xhci_command *command;
1764 command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1768 command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1770 if (!command->in_ctx) {
1771 kfree(command->completion);
1778 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1783 void xhci_free_command(struct xhci_hcd *xhci,
1784 struct xhci_command *command)
1786 xhci_free_container_ctx(xhci,
1788 kfree(command->completion);
1792 int xhci_alloc_erst(struct xhci_hcd *xhci,
1793 struct xhci_ring *evt_ring,
1794 struct xhci_erst *erst,
1799 struct xhci_segment *seg;
1800 struct xhci_erst_entry *entry;
1802 size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1803 erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1804 size, &erst->erst_dma_addr, flags);
1808 erst->num_entries = evt_ring->num_segs;
1810 seg = evt_ring->first_seg;
1811 for (val = 0; val < evt_ring->num_segs; val++) {
1812 entry = &erst->entries[val];
1813 entry->seg_addr = cpu_to_le64(seg->dma);
1814 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1822 void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1825 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1827 size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1829 dma_free_coherent(dev, size,
1831 erst->erst_dma_addr);
1832 erst->entries = NULL;
1835 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1837 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1838 int i, j, num_ports;
1840 cancel_delayed_work_sync(&xhci->cmd_timer);
1842 xhci_free_erst(xhci, &xhci->erst);
1844 if (xhci->event_ring)
1845 xhci_ring_free(xhci, xhci->event_ring);
1846 xhci->event_ring = NULL;
1847 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1850 xhci_ring_free(xhci, xhci->cmd_ring);
1851 xhci->cmd_ring = NULL;
1852 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1853 xhci_cleanup_command_queue(xhci);
1855 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1856 for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1857 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1858 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1859 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1860 while (!list_empty(ep))
1861 list_del_init(ep->next);
1865 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1866 xhci_free_virt_devices_depth_first(xhci, i);
1868 dma_pool_destroy(xhci->segment_pool);
1869 xhci->segment_pool = NULL;
1870 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1872 dma_pool_destroy(xhci->device_pool);
1873 xhci->device_pool = NULL;
1874 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1876 dma_pool_destroy(xhci->small_streams_pool);
1877 xhci->small_streams_pool = NULL;
1878 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1879 "Freed small stream array pool");
1881 dma_pool_destroy(xhci->medium_streams_pool);
1882 xhci->medium_streams_pool = NULL;
1883 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1884 "Freed medium stream array pool");
1887 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1888 xhci->dcbaa, xhci->dcbaa->dma);
1891 scratchpad_free(xhci);
1896 for (i = 0; i < num_ports; i++) {
1897 struct xhci_tt_bw_info *tt, *n;
1898 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1899 list_del(&tt->tt_list);
1905 xhci->cmd_ring_reserved_trbs = 0;
1906 xhci->usb2_rhub.num_ports = 0;
1907 xhci->usb3_rhub.num_ports = 0;
1908 xhci->num_active_eps = 0;
1909 kfree(xhci->usb2_rhub.ports);
1910 kfree(xhci->usb3_rhub.ports);
1911 kfree(xhci->hw_ports);
1913 kfree(xhci->ext_caps);
1914 for (i = 0; i < xhci->num_port_caps; i++)
1915 kfree(xhci->port_caps[i].psi);
1916 kfree(xhci->port_caps);
1917 xhci->num_port_caps = 0;
1919 xhci->usb2_rhub.ports = NULL;
1920 xhci->usb3_rhub.ports = NULL;
1921 xhci->hw_ports = NULL;
1923 xhci->ext_caps = NULL;
1924 xhci->port_caps = NULL;
1926 xhci->page_size = 0;
1927 xhci->page_shift = 0;
1928 xhci->usb2_rhub.bus_state.bus_suspended = 0;
1929 xhci->usb3_rhub.bus_state.bus_suspended = 0;
1932 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1937 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1938 xhci->event_ring->dequeue);
1940 xhci_warn(xhci, "WARN something wrong with SW event ring "
1942 /* Update HC event ring dequeue pointer */
1943 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1944 temp &= ERST_PTR_MASK;
1945 /* Don't clear the EHB bit (which is RW1C) because
1946 * there might be more events to service.
1949 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1950 "// Write event ring dequeue pointer, "
1951 "preserving EHB bit");
1952 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1953 &xhci->ir_set->erst_dequeue);
1956 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1957 __le32 __iomem *addr, int max_caps)
1959 u32 temp, port_offset, port_count;
1961 u8 major_revision, minor_revision;
1962 struct xhci_hub *rhub;
1963 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1964 struct xhci_port_cap *port_cap;
1967 major_revision = XHCI_EXT_PORT_MAJOR(temp);
1968 minor_revision = XHCI_EXT_PORT_MINOR(temp);
1970 if (major_revision == 0x03) {
1971 rhub = &xhci->usb3_rhub;
1973 * Some hosts incorrectly use sub-minor version for minor
1974 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
1975 * for bcdUSB 0x310). Since there is no USB release with sub
1976 * minor version 0x301 to 0x309, we can assume that they are
1977 * incorrect and fix it here.
1979 if (minor_revision > 0x00 && minor_revision < 0x10)
1980 minor_revision <<= 4;
1981 } else if (major_revision <= 0x02) {
1982 rhub = &xhci->usb2_rhub;
1984 xhci_warn(xhci, "Ignoring unknown port speed, "
1985 "Ext Cap %p, revision = 0x%x\n",
1986 addr, major_revision);
1987 /* Ignoring port protocol we can't understand. FIXME */
1990 rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
1992 if (rhub->min_rev < minor_revision)
1993 rhub->min_rev = minor_revision;
1995 /* Port offset and count in the third dword, see section 7.2 */
1996 temp = readl(addr + 2);
1997 port_offset = XHCI_EXT_PORT_OFF(temp);
1998 port_count = XHCI_EXT_PORT_COUNT(temp);
1999 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2000 "Ext Cap %p, port offset = %u, "
2001 "count = %u, revision = 0x%x",
2002 addr, port_offset, port_count, major_revision);
2003 /* Port count includes the current port offset */
2004 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2005 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2008 port_cap = &xhci->port_caps[xhci->num_port_caps++];
2009 if (xhci->num_port_caps > max_caps)
2012 port_cap->maj_rev = major_revision;
2013 port_cap->min_rev = minor_revision;
2014 port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2016 if (port_cap->psi_count) {
2017 port_cap->psi = kcalloc_node(port_cap->psi_count,
2018 sizeof(*port_cap->psi),
2019 GFP_KERNEL, dev_to_node(dev));
2021 port_cap->psi_count = 0;
2023 port_cap->psi_uid_count++;
2024 for (i = 0; i < port_cap->psi_count; i++) {
2025 port_cap->psi[i] = readl(addr + 4 + i);
2027 /* count unique ID values, two consecutive entries can
2028 * have the same ID if link is assymetric
2030 if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2031 XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2032 port_cap->psi_uid_count++;
2034 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2035 XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2036 XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2037 XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2038 XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2039 XHCI_EXT_PORT_LP(port_cap->psi[i]),
2040 XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2043 /* cache usb2 port capabilities */
2044 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2045 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2047 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2048 (temp & XHCI_HLC)) {
2049 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2050 "xHCI 1.0: support USB2 hardware lpm");
2051 xhci->hw_lpm_support = 1;
2055 for (i = port_offset; i < (port_offset + port_count); i++) {
2056 struct xhci_port *hw_port = &xhci->hw_ports[i];
2057 /* Duplicate entry. Ignore the port if the revisions differ. */
2058 if (hw_port->rhub) {
2059 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2060 " port %u\n", addr, i);
2061 xhci_warn(xhci, "Port was marked as USB %u, "
2062 "duplicated as USB %u\n",
2063 hw_port->rhub->maj_rev, major_revision);
2064 /* Only adjust the roothub port counts if we haven't
2065 * found a similar duplicate.
2067 if (hw_port->rhub != rhub &&
2068 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2069 hw_port->rhub->num_ports--;
2070 hw_port->hcd_portnum = DUPLICATE_ENTRY;
2074 hw_port->rhub = rhub;
2075 hw_port->port_cap = port_cap;
2078 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2081 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2082 struct xhci_hub *rhub, gfp_t flags)
2086 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2088 if (!rhub->num_ports)
2090 rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2091 flags, dev_to_node(dev));
2095 for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2096 if (xhci->hw_ports[i].rhub != rhub ||
2097 xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2099 xhci->hw_ports[i].hcd_portnum = port_index;
2100 rhub->ports[port_index] = &xhci->hw_ports[i];
2102 if (port_index == rhub->num_ports)
2108 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2109 * specify what speeds each port is supposed to be. We can't count on the port
2110 * speed bits in the PORTSC register being correct until a device is connected,
2111 * but we need to set up the two fake roothubs with the correct number of USB
2112 * 3.0 and USB 2.0 ports at host controller initialization time.
2114 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2118 unsigned int num_ports;
2122 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2124 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2125 xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2126 flags, dev_to_node(dev));
2127 if (!xhci->hw_ports)
2130 for (i = 0; i < num_ports; i++) {
2131 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2133 xhci->hw_ports[i].hw_portnum = i;
2136 xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2140 for (i = 0; i < num_ports; i++) {
2141 struct xhci_interval_bw_table *bw_table;
2143 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2144 bw_table = &xhci->rh_bw[i].bw_table;
2145 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2146 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2148 base = &xhci->cap_regs->hc_capbase;
2150 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2152 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2157 /* count extended protocol capability entries for later caching */
2160 offset = xhci_find_next_ext_cap(base, offset,
2161 XHCI_EXT_CAPS_PROTOCOL);
2164 xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2165 flags, dev_to_node(dev));
2166 if (!xhci->ext_caps)
2169 xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2170 flags, dev_to_node(dev));
2171 if (!xhci->port_caps)
2177 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2178 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2181 offset = xhci_find_next_ext_cap(base, offset,
2182 XHCI_EXT_CAPS_PROTOCOL);
2184 if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2185 xhci_warn(xhci, "No ports on the roothubs?\n");
2188 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2189 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2190 xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2192 /* Place limits on the number of roothub ports so that the hub
2193 * descriptors aren't longer than the USB core will allocate.
2195 if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2196 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2197 "Limiting USB 3.0 roothub ports to %u.",
2199 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2201 if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2202 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2203 "Limiting USB 2.0 roothub ports to %u.",
2205 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2208 if (!xhci->usb2_rhub.num_ports)
2209 xhci_info(xhci, "USB2 root hub has no ports\n");
2211 if (!xhci->usb3_rhub.num_ports)
2212 xhci_info(xhci, "USB3 root hub has no ports\n");
2214 xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2215 xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2220 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2223 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2224 unsigned int val, val2;
2226 u32 page_size, temp;
2229 INIT_LIST_HEAD(&xhci->cmd_list);
2231 /* init command timeout work */
2232 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2233 init_completion(&xhci->cmd_ring_stop_completion);
2235 page_size = readl(&xhci->op_regs->page_size);
2236 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2237 "Supported page size register = 0x%x", page_size);
2240 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2241 "Supported page size of %iK", (1 << (i+12)) / 1024);
2243 xhci_warn(xhci, "WARN: no supported page size\n");
2244 /* Use 4K pages, since that's common and the minimum the HC supports */
2245 xhci->page_shift = 12;
2246 xhci->page_size = 1 << xhci->page_shift;
2247 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2248 "HCD page size set to %iK", xhci->page_size / 1024);
2251 * Program the Number of Device Slots Enabled field in the CONFIG
2252 * register with the max value of slots the HC can handle.
2254 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2255 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2256 "// xHC can handle at most %d device slots.", val);
2257 val2 = readl(&xhci->op_regs->config_reg);
2258 val |= (val2 & ~HCS_SLOTS_MASK);
2259 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2260 "// Setting Max device slots reg = 0x%x.", val);
2261 writel(val, &xhci->op_regs->config_reg);
2264 * xHCI section 5.4.6 - Device Context array must be
2265 * "physically contiguous and 64-byte (cache line) aligned".
2267 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2271 xhci->dcbaa->dma = dma;
2272 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2273 "// Device context base array address = 0x%llx (DMA), %p (virt)",
2274 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2275 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2278 * Initialize the ring segment pool. The ring must be a contiguous
2279 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2280 * however, the command ring segment needs 64-byte aligned segments
2281 * and our use of dma addresses in the trb_address_map radix tree needs
2282 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2284 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2285 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2287 /* See Table 46 and Note on Figure 55 */
2288 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2289 2112, 64, xhci->page_size);
2290 if (!xhci->segment_pool || !xhci->device_pool)
2293 /* Linear stream context arrays don't have any boundary restrictions,
2294 * and only need to be 16-byte aligned.
2296 xhci->small_streams_pool =
2297 dma_pool_create("xHCI 256 byte stream ctx arrays",
2298 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2299 xhci->medium_streams_pool =
2300 dma_pool_create("xHCI 1KB stream ctx arrays",
2301 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2302 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2303 * will be allocated with dma_alloc_coherent()
2306 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2309 /* Set up the command ring to have one segments for now. */
2310 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2311 if (!xhci->cmd_ring)
2313 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2314 "Allocated command ring at %p", xhci->cmd_ring);
2315 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2316 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2318 /* Set the address in the Command Ring Control register */
2319 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2320 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2321 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2322 xhci->cmd_ring->cycle_state;
2323 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2324 "// Setting command ring address to 0x%016llx", val_64);
2325 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2327 /* Reserve one command ring TRB for disabling LPM.
2328 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2329 * disabling LPM, we only need to reserve one TRB for all devices.
2331 xhci->cmd_ring_reserved_trbs++;
2333 val = readl(&xhci->cap_regs->db_off);
2335 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2336 "// Doorbell array is located at offset 0x%x"
2337 " from cap regs base addr", val);
2338 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2339 /* Set ir_set to interrupt register set 0 */
2340 xhci->ir_set = &xhci->run_regs->ir_set[0];
2343 * Event ring setup: Allocate a normal ring, but also setup
2344 * the event ring segment table (ERST). Section 4.9.3.
2346 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2347 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2349 if (!xhci->event_ring)
2352 ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2356 /* set ERST count with the number of entries in the segment table */
2357 val = readl(&xhci->ir_set->erst_size);
2358 val &= ERST_SIZE_MASK;
2359 val |= ERST_NUM_SEGS;
2360 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2361 "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2363 writel(val, &xhci->ir_set->erst_size);
2365 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2366 "// Set ERST entries to point to event ring.");
2367 /* set the segment table base address */
2368 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2369 "// Set ERST base address for ir_set 0 = 0x%llx",
2370 (unsigned long long)xhci->erst.erst_dma_addr);
2371 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2372 val_64 &= ERST_BASE_RSVDP;
2373 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_BASE_RSVDP);
2374 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2376 /* Set the event ring dequeue address */
2377 xhci_set_hc_event_deq(xhci);
2378 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2379 "Wrote ERST address to ir_set 0.");
2381 xhci->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2384 * XXX: Might need to set the Interrupter Moderation Register to
2385 * something other than the default (~1ms minimum between interrupts).
2386 * See section 5.5.1.2.
2388 for (i = 0; i < MAX_HC_SLOTS; i++)
2389 xhci->devs[i] = NULL;
2390 for (i = 0; i < USB_MAXCHILDREN; i++) {
2391 xhci->usb2_rhub.bus_state.resume_done[i] = 0;
2392 xhci->usb3_rhub.bus_state.resume_done[i] = 0;
2393 /* Only the USB 2.0 completions will ever be used. */
2394 init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]);
2395 init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]);
2398 if (scratchpad_alloc(xhci, flags))
2400 if (xhci_setup_port_arrays(xhci, flags))
2403 /* Enable USB 3.0 device notifications for function remote wake, which
2404 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2405 * U3 (device suspend).
2407 temp = readl(&xhci->op_regs->dev_notification);
2408 temp &= ~DEV_NOTE_MASK;
2409 temp |= DEV_NOTE_FWAKE;
2410 writel(temp, &xhci->op_regs->dev_notification);
2416 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2417 xhci_mem_cleanup(xhci);