Merge tag 'v5.15.57' into rpi-5.15.y
[platform/kernel/linux-rpi.git] / drivers / usb / host / xhci-mem.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/usb.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16
17 #include "xhci.h"
18 #include "xhci-trace.h"
19 #include "xhci-debugfs.h"
20
21 /*
22  * Allocates a generic ring segment from the ring pool, sets the dma address,
23  * initializes the segment to zero, and sets the private next pointer to NULL.
24  *
25  * Section 4.11.1.1:
26  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
27  */
28 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
29                                                unsigned int cycle_state,
30                                                unsigned int max_packet,
31                                                gfp_t flags)
32 {
33         struct xhci_segment *seg;
34         dma_addr_t      dma;
35         int             i;
36         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
37
38         seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
39         if (!seg)
40                 return NULL;
41
42         seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
43         if (!seg->trbs) {
44                 kfree(seg);
45                 return NULL;
46         }
47
48         if (max_packet) {
49                 seg->bounce_buf = kzalloc_node(max_packet, flags,
50                                         dev_to_node(dev));
51                 if (!seg->bounce_buf) {
52                         dma_pool_free(xhci->segment_pool, seg->trbs, dma);
53                         kfree(seg);
54                         return NULL;
55                 }
56         }
57         /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58         if (cycle_state == 0) {
59                 for (i = 0; i < TRBS_PER_SEGMENT; i++)
60                         seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
61         }
62         seg->dma = dma;
63         seg->next = NULL;
64
65         return seg;
66 }
67
68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69 {
70         if (seg->trbs) {
71                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72                 seg->trbs = NULL;
73         }
74         kfree(seg->bounce_buf);
75         kfree(seg);
76 }
77
78 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
79                                 struct xhci_segment *first)
80 {
81         struct xhci_segment *seg;
82
83         seg = first->next;
84         while (seg != first) {
85                 struct xhci_segment *next = seg->next;
86                 xhci_segment_free(xhci, seg);
87                 seg = next;
88         }
89         xhci_segment_free(xhci, first);
90 }
91
92 /*
93  * Make the prev segment point to the next segment.
94  *
95  * Change the last TRB in the prev segment to be a Link TRB which points to the
96  * DMA address of the next segment.  The caller needs to set any Link TRB
97  * related flags, such as End TRB, Toggle Cycle, and no snoop.
98  */
99 static void xhci_link_segments(struct xhci_segment *prev,
100                                struct xhci_segment *next,
101                                unsigned int trbs_per_seg,
102                                enum xhci_ring_type type, bool chain_links)
103 {
104         u32 val;
105
106         if (!prev || !next)
107                 return;
108         prev->next = next;
109         if (type != TYPE_EVENT) {
110                 prev->trbs[trbs_per_seg - 1].link.segment_ptr =
111                         cpu_to_le64(next->dma);
112
113                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
114                 val = le32_to_cpu(prev->trbs[trbs_per_seg - 1].link.control);
115                 val &= ~TRB_TYPE_BITMASK;
116                 val |= TRB_TYPE(TRB_LINK);
117                 if (chain_links)
118                         val |= TRB_CHAIN;
119                 prev->trbs[trbs_per_seg - 1].link.control = cpu_to_le32(val);
120         }
121 }
122
123 /*
124  * Link the ring to the new segments.
125  * Set Toggle Cycle for the new ring if needed.
126  */
127 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
128                 struct xhci_segment *first, struct xhci_segment *last,
129                 unsigned int num_segs)
130 {
131         struct xhci_segment *next;
132         bool chain_links;
133
134         if (!ring || !first || !last)
135                 return;
136
137         /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
138         chain_links = !!(xhci_link_trb_quirk(xhci) ||
139                          (ring->type == TYPE_ISOC &&
140                           (xhci->quirks & XHCI_AMD_0x96_HOST)));
141
142         next = ring->enq_seg->next;
143         xhci_link_segments(ring->enq_seg, first, ring->trbs_per_seg,
144                            ring->type, chain_links);
145         xhci_link_segments(last, next, ring->trbs_per_seg,
146                            ring->type, chain_links);
147         ring->num_segs += num_segs;
148         ring->num_trbs_free += (ring->trbs_per_seg - 1) * num_segs;
149
150         if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
151                 ring->last_seg->trbs[ring->trbs_per_seg - 1].link.control
152                         &= ~cpu_to_le32(LINK_TOGGLE);
153                 last->trbs[ring->trbs_per_seg - 1].link.control
154                         |= cpu_to_le32(LINK_TOGGLE);
155                 ring->last_seg = last;
156         }
157 }
158
159 /*
160  * We need a radix tree for mapping physical addresses of TRBs to which stream
161  * ID they belong to.  We need to do this because the host controller won't tell
162  * us which stream ring the TRB came from.  We could store the stream ID in an
163  * event data TRB, but that doesn't help us for the cancellation case, since the
164  * endpoint may stop before it reaches that event data TRB.
165  *
166  * The radix tree maps the upper portion of the TRB DMA address to a ring
167  * segment that has the same upper portion of DMA addresses.  For example, say I
168  * have segments of size 1KB, that are always 1KB aligned.  A segment may
169  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
170  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
171  * pass the radix tree a key to get the right stream ID:
172  *
173  *      0x10c90fff >> 10 = 0x43243
174  *      0x10c912c0 >> 10 = 0x43244
175  *      0x10c91400 >> 10 = 0x43245
176  *
177  * Obviously, only those TRBs with DMA addresses that are within the segment
178  * will make the radix tree return the stream ID for that ring.
179  *
180  * Caveats for the radix tree:
181  *
182  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
183  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
184  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
185  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
186  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
187  * extended systems (where the DMA address can be bigger than 32-bits),
188  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
189  */
190 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
191                 struct xhci_ring *ring,
192                 struct xhci_segment *seg,
193                 gfp_t mem_flags)
194 {
195         unsigned long key;
196         int ret;
197
198         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
199         /* Skip any segments that were already added. */
200         if (radix_tree_lookup(trb_address_map, key))
201                 return 0;
202
203         ret = radix_tree_maybe_preload(mem_flags);
204         if (ret)
205                 return ret;
206         ret = radix_tree_insert(trb_address_map,
207                         key, ring);
208         radix_tree_preload_end();
209         return ret;
210 }
211
212 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
213                 struct xhci_segment *seg)
214 {
215         unsigned long key;
216
217         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
218         if (radix_tree_lookup(trb_address_map, key))
219                 radix_tree_delete(trb_address_map, key);
220 }
221
222 static int xhci_update_stream_segment_mapping(
223                 struct radix_tree_root *trb_address_map,
224                 struct xhci_ring *ring,
225                 struct xhci_segment *first_seg,
226                 struct xhci_segment *last_seg,
227                 gfp_t mem_flags)
228 {
229         struct xhci_segment *seg;
230         struct xhci_segment *failed_seg;
231         int ret;
232
233         if (WARN_ON_ONCE(trb_address_map == NULL))
234                 return 0;
235
236         seg = first_seg;
237         do {
238                 ret = xhci_insert_segment_mapping(trb_address_map,
239                                 ring, seg, mem_flags);
240                 if (ret)
241                         goto remove_streams;
242                 if (seg == last_seg)
243                         return 0;
244                 seg = seg->next;
245         } while (seg != first_seg);
246
247         return 0;
248
249 remove_streams:
250         failed_seg = seg;
251         seg = first_seg;
252         do {
253                 xhci_remove_segment_mapping(trb_address_map, seg);
254                 if (seg == failed_seg)
255                         return ret;
256                 seg = seg->next;
257         } while (seg != first_seg);
258
259         return ret;
260 }
261
262 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
263 {
264         struct xhci_segment *seg;
265
266         if (WARN_ON_ONCE(ring->trb_address_map == NULL))
267                 return;
268
269         seg = ring->first_seg;
270         do {
271                 xhci_remove_segment_mapping(ring->trb_address_map, seg);
272                 seg = seg->next;
273         } while (seg != ring->first_seg);
274 }
275
276 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
277 {
278         return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
279                         ring->first_seg, ring->last_seg, mem_flags);
280 }
281
282 /* XXX: Do we need the hcd structure in all these functions? */
283 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
284 {
285         if (!ring)
286                 return;
287
288         trace_xhci_ring_free(ring);
289
290         if (ring->first_seg) {
291                 if (ring->type == TYPE_STREAM)
292                         xhci_remove_stream_mapping(ring);
293                 xhci_free_segments_for_ring(xhci, ring->first_seg);
294         }
295
296         kfree(ring);
297 }
298
299 void xhci_initialize_ring_info(struct xhci_ring *ring,
300                                unsigned int cycle_state)
301 {
302         /* The ring is empty, so the enqueue pointer == dequeue pointer */
303         ring->enqueue = ring->first_seg->trbs;
304         ring->enq_seg = ring->first_seg;
305         ring->dequeue = ring->enqueue;
306         ring->deq_seg = ring->first_seg;
307         /* The ring is initialized to 0. The producer must write 1 to the cycle
308          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
309          * compare CCS to the cycle bit to check ownership, so CCS = 1.
310          *
311          * New rings are initialized with cycle state equal to 1; if we are
312          * handling ring expansion, set the cycle state equal to the old ring.
313          */
314         ring->cycle_state = cycle_state;
315
316         /*
317          * Each segment has a link TRB, and leave an extra TRB for SW
318          * accounting purpose
319          */
320         ring->num_trbs_free = ring->num_segs * (ring->trbs_per_seg - 1) - 1;
321 }
322
323 /* Allocate segments and link them for a ring */
324 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
325                 struct xhci_segment **first, struct xhci_segment **last,
326                 unsigned int num_segs, unsigned int trbs_per_seg,
327                 unsigned int cycle_state, enum xhci_ring_type type,
328                 unsigned int max_packet, gfp_t flags)
329 {
330         struct xhci_segment *prev;
331         bool chain_links;
332
333         /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
334         chain_links = !!(xhci_link_trb_quirk(xhci) ||
335                          (type == TYPE_ISOC &&
336                           (xhci->quirks & XHCI_AMD_0x96_HOST)));
337
338         prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
339         if (!prev)
340                 return -ENOMEM;
341         num_segs--;
342
343         *first = prev;
344         while (num_segs > 0) {
345                 struct xhci_segment     *next;
346
347                 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
348                 if (!next) {
349                         prev = *first;
350                         while (prev) {
351                                 next = prev->next;
352                                 xhci_segment_free(xhci, prev);
353                                 prev = next;
354                         }
355                         return -ENOMEM;
356                 }
357                 xhci_link_segments(prev, next, trbs_per_seg, type, chain_links);
358
359                 prev = next;
360                 num_segs--;
361         }
362         xhci_link_segments(prev, *first, trbs_per_seg, type, chain_links);
363         *last = prev;
364
365         return 0;
366 }
367
368 /*
369  * Create a new ring with zero or more segments.
370  *
371  * Link each segment together into a ring.
372  * Set the end flag and the cycle toggle bit on the last segment.
373  * See section 4.9.1 and figures 15 and 16.
374  */
375 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
376                 unsigned int num_segs, unsigned int cycle_state,
377                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
378 {
379         struct xhci_ring        *ring;
380         int ret;
381         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
382
383         ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
384         if (!ring)
385                 return NULL;
386
387         ring->num_segs = num_segs;
388         ring->bounce_buf_len = max_packet;
389         INIT_LIST_HEAD(&ring->td_list);
390         ring->type = type;
391         if (num_segs == 0)
392                 return ring;
393
394         ring->trbs_per_seg = TRBS_PER_SEGMENT;
395         /*
396          * The Via VL805 has a bug where cache readahead will fetch off the end
397          * of a page if the Link TRB of a transfer ring is in the last 4 slots.
398          * Where there are consecutive physical pages containing ring segments,
399          * this can cause a desync between the controller's view of a ring
400          * and the host.
401          */
402         if (xhci->quirks & XHCI_VLI_TRB_CACHE_BUG &&
403             type != TYPE_EVENT && type != TYPE_COMMAND)
404                 ring->trbs_per_seg -= 4;
405
406         ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
407                         &ring->last_seg, num_segs, ring->trbs_per_seg,
408                         cycle_state, type, max_packet, flags);
409         if (ret)
410                 goto fail;
411
412         /* Only event ring does not use link TRB */
413         if (type != TYPE_EVENT) {
414                 /* See section 4.9.2.1 and 6.4.4.1 */
415                 ring->last_seg->trbs[ring->trbs_per_seg - 1].link.control |=
416                         cpu_to_le32(LINK_TOGGLE);
417         }
418         xhci_initialize_ring_info(ring, cycle_state);
419         trace_xhci_ring_alloc(ring);
420         return ring;
421
422 fail:
423         kfree(ring);
424         return NULL;
425 }
426
427 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
428                 struct xhci_virt_device *virt_dev,
429                 unsigned int ep_index)
430 {
431         xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
432         virt_dev->eps[ep_index].ring = NULL;
433 }
434
435 /*
436  * Expand an existing ring.
437  * Allocate a new ring which has same segment numbers and link the two rings.
438  */
439 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
440                                 unsigned int num_trbs, gfp_t flags)
441 {
442         struct xhci_segment     *first;
443         struct xhci_segment     *last;
444         unsigned int            num_segs;
445         unsigned int            num_segs_needed;
446         int                     ret;
447
448         num_segs_needed = (num_trbs + (ring->trbs_per_seg - 1) - 1) /
449                                 (ring->trbs_per_seg - 1);
450         /* Allocate number of segments we needed, or double the ring size */
451         num_segs = ring->num_segs > num_segs_needed ?
452                         ring->num_segs : num_segs_needed;
453
454         ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
455                         num_segs, ring->trbs_per_seg, ring->cycle_state,
456                         ring->type, ring->bounce_buf_len, flags);
457         if (ret)
458                 return -ENOMEM;
459
460         if (ring->type == TYPE_STREAM)
461                 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
462                                                 ring, first, last, flags);
463         if (ret) {
464                 struct xhci_segment *next;
465                 do {
466                         next = first->next;
467                         xhci_segment_free(xhci, first);
468                         if (first == last)
469                                 break;
470                         first = next;
471                 } while (true);
472                 return ret;
473         }
474
475         xhci_link_rings(xhci, ring, first, last, num_segs);
476         trace_xhci_ring_expansion(ring);
477         xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
478                         "ring expansion succeed, now has %d segments",
479                         ring->num_segs);
480
481         return 0;
482 }
483
484 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
485                                                     int type, gfp_t flags)
486 {
487         struct xhci_container_ctx *ctx;
488         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
489
490         if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
491                 return NULL;
492
493         ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
494         if (!ctx)
495                 return NULL;
496
497         ctx->type = type;
498         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
499         if (type == XHCI_CTX_TYPE_INPUT)
500                 ctx->size += CTX_SIZE(xhci->hcc_params);
501
502         ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
503         if (!ctx->bytes) {
504                 kfree(ctx);
505                 return NULL;
506         }
507         return ctx;
508 }
509
510 void xhci_free_container_ctx(struct xhci_hcd *xhci,
511                              struct xhci_container_ctx *ctx)
512 {
513         if (!ctx)
514                 return;
515         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
516         kfree(ctx);
517 }
518
519 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
520                                               struct xhci_container_ctx *ctx)
521 {
522         if (ctx->type != XHCI_CTX_TYPE_INPUT)
523                 return NULL;
524
525         return (struct xhci_input_control_ctx *)ctx->bytes;
526 }
527
528 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
529                                         struct xhci_container_ctx *ctx)
530 {
531         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
532                 return (struct xhci_slot_ctx *)ctx->bytes;
533
534         return (struct xhci_slot_ctx *)
535                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
536 }
537
538 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
539                                     struct xhci_container_ctx *ctx,
540                                     unsigned int ep_index)
541 {
542         /* increment ep index by offset of start of ep ctx array */
543         ep_index++;
544         if (ctx->type == XHCI_CTX_TYPE_INPUT)
545                 ep_index++;
546
547         return (struct xhci_ep_ctx *)
548                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
549 }
550 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
551
552 /***************** Streams structures manipulation *************************/
553
554 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
555                 unsigned int num_stream_ctxs,
556                 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
557 {
558         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
559         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
560
561         if (size > MEDIUM_STREAM_ARRAY_SIZE)
562                 dma_free_coherent(dev, size,
563                                 stream_ctx, dma);
564         else if (size <= SMALL_STREAM_ARRAY_SIZE)
565                 return dma_pool_free(xhci->small_streams_pool,
566                                 stream_ctx, dma);
567         else
568                 return dma_pool_free(xhci->medium_streams_pool,
569                                 stream_ctx, dma);
570 }
571
572 /*
573  * The stream context array for each endpoint with bulk streams enabled can
574  * vary in size, based on:
575  *  - how many streams the endpoint supports,
576  *  - the maximum primary stream array size the host controller supports,
577  *  - and how many streams the device driver asks for.
578  *
579  * The stream context array must be a power of 2, and can be as small as
580  * 64 bytes or as large as 1MB.
581  */
582 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
583                 unsigned int num_stream_ctxs, dma_addr_t *dma,
584                 gfp_t mem_flags)
585 {
586         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
587         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
588
589         if (size > MEDIUM_STREAM_ARRAY_SIZE)
590                 return dma_alloc_coherent(dev, size,
591                                 dma, mem_flags);
592         else if (size <= SMALL_STREAM_ARRAY_SIZE)
593                 return dma_pool_alloc(xhci->small_streams_pool,
594                                 mem_flags, dma);
595         else
596                 return dma_pool_alloc(xhci->medium_streams_pool,
597                                 mem_flags, dma);
598 }
599
600 struct xhci_ring *xhci_dma_to_transfer_ring(
601                 struct xhci_virt_ep *ep,
602                 u64 address)
603 {
604         if (ep->ep_state & EP_HAS_STREAMS)
605                 return radix_tree_lookup(&ep->stream_info->trb_address_map,
606                                 address >> TRB_SEGMENT_SHIFT);
607         return ep->ring;
608 }
609
610 /*
611  * Change an endpoint's internal structure so it supports stream IDs.  The
612  * number of requested streams includes stream 0, which cannot be used by device
613  * drivers.
614  *
615  * The number of stream contexts in the stream context array may be bigger than
616  * the number of streams the driver wants to use.  This is because the number of
617  * stream context array entries must be a power of two.
618  */
619 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
620                 unsigned int num_stream_ctxs,
621                 unsigned int num_streams,
622                 unsigned int max_packet, gfp_t mem_flags)
623 {
624         struct xhci_stream_info *stream_info;
625         u32 cur_stream;
626         struct xhci_ring *cur_ring;
627         u64 addr;
628         int ret;
629         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
630
631         xhci_dbg(xhci, "Allocating %u streams and %u "
632                         "stream context array entries.\n",
633                         num_streams, num_stream_ctxs);
634         if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
635                 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
636                 return NULL;
637         }
638         xhci->cmd_ring_reserved_trbs++;
639
640         stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
641                         dev_to_node(dev));
642         if (!stream_info)
643                 goto cleanup_trbs;
644
645         stream_info->num_streams = num_streams;
646         stream_info->num_stream_ctxs = num_stream_ctxs;
647
648         /* Initialize the array of virtual pointers to stream rings. */
649         stream_info->stream_rings = kcalloc_node(
650                         num_streams, sizeof(struct xhci_ring *), mem_flags,
651                         dev_to_node(dev));
652         if (!stream_info->stream_rings)
653                 goto cleanup_info;
654
655         /* Initialize the array of DMA addresses for stream rings for the HW. */
656         stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
657                         num_stream_ctxs, &stream_info->ctx_array_dma,
658                         mem_flags);
659         if (!stream_info->stream_ctx_array)
660                 goto cleanup_ctx;
661         memset(stream_info->stream_ctx_array, 0,
662                         sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
663
664         /* Allocate everything needed to free the stream rings later */
665         stream_info->free_streams_command =
666                 xhci_alloc_command_with_ctx(xhci, true, mem_flags);
667         if (!stream_info->free_streams_command)
668                 goto cleanup_ctx;
669
670         INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
671
672         /* Allocate rings for all the streams that the driver will use,
673          * and add their segment DMA addresses to the radix tree.
674          * Stream 0 is reserved.
675          */
676
677         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
678                 stream_info->stream_rings[cur_stream] =
679                         xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
680                                         mem_flags);
681                 cur_ring = stream_info->stream_rings[cur_stream];
682                 if (!cur_ring)
683                         goto cleanup_rings;
684                 cur_ring->stream_id = cur_stream;
685                 cur_ring->trb_address_map = &stream_info->trb_address_map;
686                 /* Set deq ptr, cycle bit, and stream context type */
687                 addr = cur_ring->first_seg->dma |
688                         SCT_FOR_CTX(SCT_PRI_TR) |
689                         cur_ring->cycle_state;
690                 stream_info->stream_ctx_array[cur_stream].stream_ring =
691                         cpu_to_le64(addr);
692                 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
693                                 cur_stream, (unsigned long long) addr);
694
695                 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
696                 if (ret) {
697                         xhci_ring_free(xhci, cur_ring);
698                         stream_info->stream_rings[cur_stream] = NULL;
699                         goto cleanup_rings;
700                 }
701         }
702         /* Leave the other unused stream ring pointers in the stream context
703          * array initialized to zero.  This will cause the xHC to give us an
704          * error if the device asks for a stream ID we don't have setup (if it
705          * was any other way, the host controller would assume the ring is
706          * "empty" and wait forever for data to be queued to that stream ID).
707          */
708
709         return stream_info;
710
711 cleanup_rings:
712         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
713                 cur_ring = stream_info->stream_rings[cur_stream];
714                 if (cur_ring) {
715                         xhci_ring_free(xhci, cur_ring);
716                         stream_info->stream_rings[cur_stream] = NULL;
717                 }
718         }
719         xhci_free_command(xhci, stream_info->free_streams_command);
720 cleanup_ctx:
721         kfree(stream_info->stream_rings);
722 cleanup_info:
723         kfree(stream_info);
724 cleanup_trbs:
725         xhci->cmd_ring_reserved_trbs--;
726         return NULL;
727 }
728 /*
729  * Sets the MaxPStreams field and the Linear Stream Array field.
730  * Sets the dequeue pointer to the stream context array.
731  */
732 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
733                 struct xhci_ep_ctx *ep_ctx,
734                 struct xhci_stream_info *stream_info)
735 {
736         u32 max_primary_streams;
737         /* MaxPStreams is the number of stream context array entries, not the
738          * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
739          * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
740          */
741         max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
742         xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
743                         "Setting number of stream ctx array entries to %u",
744                         1 << (max_primary_streams + 1));
745         ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
746         ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
747                                        | EP_HAS_LSA);
748         ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
749 }
750
751 /*
752  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
753  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
754  * not at the beginning of the ring).
755  */
756 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
757                 struct xhci_virt_ep *ep)
758 {
759         dma_addr_t addr;
760         ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
761         addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
762         ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
763 }
764
765 /* Frees all stream contexts associated with the endpoint,
766  *
767  * Caller should fix the endpoint context streams fields.
768  */
769 void xhci_free_stream_info(struct xhci_hcd *xhci,
770                 struct xhci_stream_info *stream_info)
771 {
772         int cur_stream;
773         struct xhci_ring *cur_ring;
774
775         if (!stream_info)
776                 return;
777
778         for (cur_stream = 1; cur_stream < stream_info->num_streams;
779                         cur_stream++) {
780                 cur_ring = stream_info->stream_rings[cur_stream];
781                 if (cur_ring) {
782                         xhci_ring_free(xhci, cur_ring);
783                         stream_info->stream_rings[cur_stream] = NULL;
784                 }
785         }
786         xhci_free_command(xhci, stream_info->free_streams_command);
787         xhci->cmd_ring_reserved_trbs--;
788         if (stream_info->stream_ctx_array)
789                 xhci_free_stream_ctx(xhci,
790                                 stream_info->num_stream_ctxs,
791                                 stream_info->stream_ctx_array,
792                                 stream_info->ctx_array_dma);
793
794         kfree(stream_info->stream_rings);
795         kfree(stream_info);
796 }
797
798
799 /***************** Device context manipulation *************************/
800
801 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
802                 struct xhci_virt_ep *ep)
803 {
804         timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
805                     0);
806         ep->xhci = xhci;
807 }
808
809 static void xhci_free_tt_info(struct xhci_hcd *xhci,
810                 struct xhci_virt_device *virt_dev,
811                 int slot_id)
812 {
813         struct list_head *tt_list_head;
814         struct xhci_tt_bw_info *tt_info, *next;
815         bool slot_found = false;
816
817         /* If the device never made it past the Set Address stage,
818          * it may not have the real_port set correctly.
819          */
820         if (virt_dev->real_port == 0 ||
821                         virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
822                 xhci_dbg(xhci, "Bad real port.\n");
823                 return;
824         }
825
826         tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
827         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
828                 /* Multi-TT hubs will have more than one entry */
829                 if (tt_info->slot_id == slot_id) {
830                         slot_found = true;
831                         list_del(&tt_info->tt_list);
832                         kfree(tt_info);
833                 } else if (slot_found) {
834                         break;
835                 }
836         }
837 }
838
839 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
840                 struct xhci_virt_device *virt_dev,
841                 struct usb_device *hdev,
842                 struct usb_tt *tt, gfp_t mem_flags)
843 {
844         struct xhci_tt_bw_info          *tt_info;
845         unsigned int                    num_ports;
846         int                             i, j;
847         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
848
849         if (!tt->multi)
850                 num_ports = 1;
851         else
852                 num_ports = hdev->maxchild;
853
854         for (i = 0; i < num_ports; i++, tt_info++) {
855                 struct xhci_interval_bw_table *bw_table;
856
857                 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
858                                 dev_to_node(dev));
859                 if (!tt_info)
860                         goto free_tts;
861                 INIT_LIST_HEAD(&tt_info->tt_list);
862                 list_add(&tt_info->tt_list,
863                                 &xhci->rh_bw[virt_dev->real_port - 1].tts);
864                 tt_info->slot_id = virt_dev->udev->slot_id;
865                 if (tt->multi)
866                         tt_info->ttport = i+1;
867                 bw_table = &tt_info->bw_table;
868                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
869                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
870         }
871         return 0;
872
873 free_tts:
874         xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
875         return -ENOMEM;
876 }
877
878
879 /* All the xhci_tds in the ring's TD list should be freed at this point.
880  * Should be called with xhci->lock held if there is any chance the TT lists
881  * will be manipulated by the configure endpoint, allocate device, or update
882  * hub functions while this function is removing the TT entries from the list.
883  */
884 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
885 {
886         struct xhci_virt_device *dev;
887         int i;
888         int old_active_eps = 0;
889
890         /* Slot ID 0 is reserved */
891         if (slot_id == 0 || !xhci->devs[slot_id])
892                 return;
893
894         dev = xhci->devs[slot_id];
895
896         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
897         if (!dev)
898                 return;
899
900         trace_xhci_free_virt_device(dev);
901
902         if (dev->tt_info)
903                 old_active_eps = dev->tt_info->active_eps;
904
905         for (i = 0; i < 31; i++) {
906                 if (dev->eps[i].ring)
907                         xhci_ring_free(xhci, dev->eps[i].ring);
908                 if (dev->eps[i].stream_info)
909                         xhci_free_stream_info(xhci,
910                                         dev->eps[i].stream_info);
911                 /* Endpoints on the TT/root port lists should have been removed
912                  * when usb_disable_device() was called for the device.
913                  * We can't drop them anyway, because the udev might have gone
914                  * away by this point, and we can't tell what speed it was.
915                  */
916                 if (!list_empty(&dev->eps[i].bw_endpoint_list))
917                         xhci_warn(xhci, "Slot %u endpoint %u "
918                                         "not removed from BW list!\n",
919                                         slot_id, i);
920         }
921         /* If this is a hub, free the TT(s) from the TT list */
922         xhci_free_tt_info(xhci, dev, slot_id);
923         /* If necessary, update the number of active TTs on this root port */
924         xhci_update_tt_active_eps(xhci, dev, old_active_eps);
925
926         if (dev->in_ctx)
927                 xhci_free_container_ctx(xhci, dev->in_ctx);
928         if (dev->out_ctx)
929                 xhci_free_container_ctx(xhci, dev->out_ctx);
930
931         if (dev->udev && dev->udev->slot_id)
932                 dev->udev->slot_id = 0;
933         kfree(xhci->devs[slot_id]);
934         xhci->devs[slot_id] = NULL;
935 }
936
937 /*
938  * Free a virt_device structure.
939  * If the virt_device added a tt_info (a hub) and has children pointing to
940  * that tt_info, then free the child first. Recursive.
941  * We can't rely on udev at this point to find child-parent relationships.
942  */
943 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
944 {
945         struct xhci_virt_device *vdev;
946         struct list_head *tt_list_head;
947         struct xhci_tt_bw_info *tt_info, *next;
948         int i;
949
950         vdev = xhci->devs[slot_id];
951         if (!vdev)
952                 return;
953
954         if (vdev->real_port == 0 ||
955                         vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
956                 xhci_dbg(xhci, "Bad vdev->real_port.\n");
957                 goto out;
958         }
959
960         tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
961         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
962                 /* is this a hub device that added a tt_info to the tts list */
963                 if (tt_info->slot_id == slot_id) {
964                         /* are any devices using this tt_info? */
965                         for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
966                                 vdev = xhci->devs[i];
967                                 if (vdev && (vdev->tt_info == tt_info))
968                                         xhci_free_virt_devices_depth_first(
969                                                 xhci, i);
970                         }
971                 }
972         }
973 out:
974         /* we are now at a leaf device */
975         xhci_debugfs_remove_slot(xhci, slot_id);
976         xhci_free_virt_device(xhci, slot_id);
977 }
978
979 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
980                 struct usb_device *udev, gfp_t flags)
981 {
982         struct xhci_virt_device *dev;
983         int i;
984
985         /* Slot ID 0 is reserved */
986         if (slot_id == 0 || xhci->devs[slot_id]) {
987                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
988                 return 0;
989         }
990
991         dev = kzalloc(sizeof(*dev), flags);
992         if (!dev)
993                 return 0;
994
995         dev->slot_id = slot_id;
996
997         /* Allocate the (output) device context that will be used in the HC. */
998         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
999         if (!dev->out_ctx)
1000                 goto fail;
1001
1002         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1003                         (unsigned long long)dev->out_ctx->dma);
1004
1005         /* Allocate the (input) device context for address device command */
1006         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1007         if (!dev->in_ctx)
1008                 goto fail;
1009
1010         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1011                         (unsigned long long)dev->in_ctx->dma);
1012
1013         /* Initialize the cancellation list and watchdog timers for each ep */
1014         for (i = 0; i < 31; i++) {
1015                 dev->eps[i].ep_index = i;
1016                 dev->eps[i].vdev = dev;
1017                 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1018                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1019                 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1020         }
1021
1022         /* Allocate endpoint 0 ring */
1023         dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1024         if (!dev->eps[0].ring)
1025                 goto fail;
1026
1027         dev->udev = udev;
1028
1029         /* Point to output device context in dcbaa. */
1030         xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1031         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1032                  slot_id,
1033                  &xhci->dcbaa->dev_context_ptrs[slot_id],
1034                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1035
1036         trace_xhci_alloc_virt_device(dev);
1037
1038         xhci->devs[slot_id] = dev;
1039
1040         return 1;
1041 fail:
1042
1043         if (dev->in_ctx)
1044                 xhci_free_container_ctx(xhci, dev->in_ctx);
1045         if (dev->out_ctx)
1046                 xhci_free_container_ctx(xhci, dev->out_ctx);
1047         kfree(dev);
1048
1049         return 0;
1050 }
1051
1052 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1053                 struct usb_device *udev)
1054 {
1055         struct xhci_virt_device *virt_dev;
1056         struct xhci_ep_ctx      *ep0_ctx;
1057         struct xhci_ring        *ep_ring;
1058
1059         virt_dev = xhci->devs[udev->slot_id];
1060         ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1061         ep_ring = virt_dev->eps[0].ring;
1062         /*
1063          * FIXME we don't keep track of the dequeue pointer very well after a
1064          * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1065          * host to our enqueue pointer.  This should only be called after a
1066          * configured device has reset, so all control transfers should have
1067          * been completed or cancelled before the reset.
1068          */
1069         ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1070                                                         ep_ring->enqueue)
1071                                    | ep_ring->cycle_state);
1072 }
1073
1074 /*
1075  * The xHCI roothub may have ports of differing speeds in any order in the port
1076  * status registers.
1077  *
1078  * The xHCI hardware wants to know the roothub port number that the USB device
1079  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1080  * know is the index of that port under either the USB 2.0 or the USB 3.0
1081  * roothub, but that doesn't give us the real index into the HW port status
1082  * registers. Call xhci_find_raw_port_number() to get real index.
1083  */
1084 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1085                 struct usb_device *udev)
1086 {
1087         struct usb_device *top_dev;
1088         struct usb_hcd *hcd;
1089
1090         if (udev->speed >= USB_SPEED_SUPER)
1091                 hcd = xhci->shared_hcd;
1092         else
1093                 hcd = xhci->main_hcd;
1094
1095         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1096                         top_dev = top_dev->parent)
1097                 /* Found device below root hub */;
1098
1099         return  xhci_find_raw_port_number(hcd, top_dev->portnum);
1100 }
1101
1102 /* Setup an xHCI virtual device for a Set Address command */
1103 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1104 {
1105         struct xhci_virt_device *dev;
1106         struct xhci_ep_ctx      *ep0_ctx;
1107         struct xhci_slot_ctx    *slot_ctx;
1108         u32                     port_num;
1109         u32                     max_packets;
1110         struct usb_device *top_dev;
1111
1112         dev = xhci->devs[udev->slot_id];
1113         /* Slot ID 0 is reserved */
1114         if (udev->slot_id == 0 || !dev) {
1115                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1116                                 udev->slot_id);
1117                 return -EINVAL;
1118         }
1119         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1120         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1121
1122         /* 3) Only the control endpoint is valid - one endpoint context */
1123         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1124         switch (udev->speed) {
1125         case USB_SPEED_SUPER_PLUS:
1126                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1127                 max_packets = MAX_PACKET(512);
1128                 break;
1129         case USB_SPEED_SUPER:
1130                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1131                 max_packets = MAX_PACKET(512);
1132                 break;
1133         case USB_SPEED_HIGH:
1134                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1135                 max_packets = MAX_PACKET(64);
1136                 break;
1137         /* USB core guesses at a 64-byte max packet first for FS devices */
1138         case USB_SPEED_FULL:
1139                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1140                 max_packets = MAX_PACKET(64);
1141                 break;
1142         case USB_SPEED_LOW:
1143                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1144                 max_packets = MAX_PACKET(8);
1145                 break;
1146         case USB_SPEED_WIRELESS:
1147                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1148                 return -EINVAL;
1149         default:
1150                 /* Speed was set earlier, this shouldn't happen. */
1151                 return -EINVAL;
1152         }
1153         /* Find the root hub port this device is under */
1154         port_num = xhci_find_real_port_number(xhci, udev);
1155         if (!port_num)
1156                 return -EINVAL;
1157         slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1158         /* Set the port number in the virtual_device to the faked port number */
1159         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1160                         top_dev = top_dev->parent)
1161                 /* Found device below root hub */;
1162         dev->fake_port = top_dev->portnum;
1163         dev->real_port = port_num;
1164         xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1165         xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1166
1167         /* Find the right bandwidth table that this device will be a part of.
1168          * If this is a full speed device attached directly to a root port (or a
1169          * decendent of one), it counts as a primary bandwidth domain, not a
1170          * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1171          * will never be created for the HS root hub.
1172          */
1173         if (!udev->tt || !udev->tt->hub->parent) {
1174                 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1175         } else {
1176                 struct xhci_root_port_bw_info *rh_bw;
1177                 struct xhci_tt_bw_info *tt_bw;
1178
1179                 rh_bw = &xhci->rh_bw[port_num - 1];
1180                 /* Find the right TT. */
1181                 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1182                         if (tt_bw->slot_id != udev->tt->hub->slot_id)
1183                                 continue;
1184
1185                         if (!dev->udev->tt->multi ||
1186                                         (udev->tt->multi &&
1187                                          tt_bw->ttport == dev->udev->ttport)) {
1188                                 dev->bw_table = &tt_bw->bw_table;
1189                                 dev->tt_info = tt_bw;
1190                                 break;
1191                         }
1192                 }
1193                 if (!dev->tt_info)
1194                         xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1195         }
1196
1197         /* Is this a LS/FS device under an external HS hub? */
1198         if (udev->tt && udev->tt->hub->parent) {
1199                 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1200                                                 (udev->ttport << 8));
1201                 if (udev->tt->multi)
1202                         slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1203         }
1204         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1205         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1206
1207         /* Step 4 - ring already allocated */
1208         /* Step 5 */
1209         ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1210
1211         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1212         ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1213                                          max_packets);
1214
1215         ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1216                                    dev->eps[0].ring->cycle_state);
1217
1218         trace_xhci_setup_addressable_virt_device(dev);
1219
1220         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1221
1222         return 0;
1223 }
1224
1225 /*
1226  * Convert interval expressed as 2^(bInterval - 1) == interval into
1227  * straight exponent value 2^n == interval.
1228  *
1229  */
1230 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1231                 struct usb_host_endpoint *ep)
1232 {
1233         unsigned int interval;
1234
1235         interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1236         if (interval != ep->desc.bInterval - 1)
1237                 dev_warn(&udev->dev,
1238                          "ep %#x - rounding interval to %d %sframes\n",
1239                          ep->desc.bEndpointAddress,
1240                          1 << interval,
1241                          udev->speed == USB_SPEED_FULL ? "" : "micro");
1242
1243         if (udev->speed == USB_SPEED_FULL) {
1244                 /*
1245                  * Full speed isoc endpoints specify interval in frames,
1246                  * not microframes. We are using microframes everywhere,
1247                  * so adjust accordingly.
1248                  */
1249                 interval += 3;  /* 1 frame = 2^3 uframes */
1250         }
1251
1252         return interval;
1253 }
1254
1255 /*
1256  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1257  * microframes, rounded down to nearest power of 2.
1258  */
1259 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1260                 struct usb_host_endpoint *ep, unsigned int desc_interval,
1261                 unsigned int min_exponent, unsigned int max_exponent)
1262 {
1263         unsigned int interval;
1264
1265         interval = fls(desc_interval) - 1;
1266         interval = clamp_val(interval, min_exponent, max_exponent);
1267         if ((1 << interval) != desc_interval)
1268                 dev_dbg(&udev->dev,
1269                          "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1270                          ep->desc.bEndpointAddress,
1271                          1 << interval,
1272                          desc_interval);
1273
1274         return interval;
1275 }
1276
1277 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1278                 struct usb_host_endpoint *ep)
1279 {
1280         if (ep->desc.bInterval == 0)
1281                 return 0;
1282         return xhci_microframes_to_exponent(udev, ep,
1283                         ep->desc.bInterval, 0, 15);
1284 }
1285
1286
1287 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1288                 struct usb_host_endpoint *ep)
1289 {
1290         return xhci_microframes_to_exponent(udev, ep,
1291                         ep->desc.bInterval * 8, 3, 10);
1292 }
1293
1294 /* Return the polling or NAK interval.
1295  *
1296  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1297  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1298  *
1299  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1300  * is set to 0.
1301  */
1302 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1303                 struct usb_host_endpoint *ep)
1304 {
1305         unsigned int interval = 0;
1306
1307         switch (udev->speed) {
1308         case USB_SPEED_HIGH:
1309                 /* Max NAK rate */
1310                 if (usb_endpoint_xfer_control(&ep->desc) ||
1311                     usb_endpoint_xfer_bulk(&ep->desc)) {
1312                         interval = xhci_parse_microframe_interval(udev, ep);
1313                         break;
1314                 }
1315                 fallthrough;    /* SS and HS isoc/int have same decoding */
1316
1317         case USB_SPEED_SUPER_PLUS:
1318         case USB_SPEED_SUPER:
1319                 if (usb_endpoint_xfer_int(&ep->desc) ||
1320                     usb_endpoint_xfer_isoc(&ep->desc)) {
1321                         interval = xhci_parse_exponent_interval(udev, ep);
1322                 }
1323                 break;
1324
1325         case USB_SPEED_FULL:
1326                 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1327                         interval = xhci_parse_exponent_interval(udev, ep);
1328                         break;
1329                 }
1330                 /*
1331                  * Fall through for interrupt endpoint interval decoding
1332                  * since it uses the same rules as low speed interrupt
1333                  * endpoints.
1334                  */
1335                 fallthrough;
1336
1337         case USB_SPEED_LOW:
1338                 if (usb_endpoint_xfer_int(&ep->desc) ||
1339                     usb_endpoint_xfer_isoc(&ep->desc)) {
1340
1341                         interval = xhci_parse_frame_interval(udev, ep);
1342                 }
1343                 break;
1344
1345         default:
1346                 BUG();
1347         }
1348         return interval;
1349 }
1350
1351 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1352  * High speed endpoint descriptors can define "the number of additional
1353  * transaction opportunities per microframe", but that goes in the Max Burst
1354  * endpoint context field.
1355  */
1356 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1357                 struct usb_host_endpoint *ep)
1358 {
1359         if (udev->speed < USB_SPEED_SUPER ||
1360                         !usb_endpoint_xfer_isoc(&ep->desc))
1361                 return 0;
1362         return ep->ss_ep_comp.bmAttributes;
1363 }
1364
1365 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1366                                        struct usb_host_endpoint *ep)
1367 {
1368         /* Super speed and Plus have max burst in ep companion desc */
1369         if (udev->speed >= USB_SPEED_SUPER)
1370                 return ep->ss_ep_comp.bMaxBurst;
1371
1372         if (udev->speed == USB_SPEED_HIGH &&
1373             (usb_endpoint_xfer_isoc(&ep->desc) ||
1374              usb_endpoint_xfer_int(&ep->desc)))
1375                 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1376
1377         return 0;
1378 }
1379
1380 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1381 {
1382         int in;
1383
1384         in = usb_endpoint_dir_in(&ep->desc);
1385
1386         switch (usb_endpoint_type(&ep->desc)) {
1387         case USB_ENDPOINT_XFER_CONTROL:
1388                 return CTRL_EP;
1389         case USB_ENDPOINT_XFER_BULK:
1390                 return in ? BULK_IN_EP : BULK_OUT_EP;
1391         case USB_ENDPOINT_XFER_ISOC:
1392                 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1393         case USB_ENDPOINT_XFER_INT:
1394                 return in ? INT_IN_EP : INT_OUT_EP;
1395         }
1396         return 0;
1397 }
1398
1399 /* Return the maximum endpoint service interval time (ESIT) payload.
1400  * Basically, this is the maxpacket size, multiplied by the burst size
1401  * and mult size.
1402  */
1403 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1404                 struct usb_host_endpoint *ep)
1405 {
1406         int max_burst;
1407         int max_packet;
1408
1409         /* Only applies for interrupt or isochronous endpoints */
1410         if (usb_endpoint_xfer_control(&ep->desc) ||
1411                         usb_endpoint_xfer_bulk(&ep->desc))
1412                 return 0;
1413
1414         /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1415         if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1416             USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1417                 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1418         /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1419         else if (udev->speed >= USB_SPEED_SUPER)
1420                 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1421
1422         max_packet = usb_endpoint_maxp(&ep->desc);
1423         max_burst = usb_endpoint_maxp_mult(&ep->desc);
1424         /* A 0 in max burst means 1 transfer per ESIT */
1425         return max_packet * max_burst;
1426 }
1427
1428 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1429  * Drivers will have to call usb_alloc_streams() to do that.
1430  */
1431 int xhci_endpoint_init(struct xhci_hcd *xhci,
1432                 struct xhci_virt_device *virt_dev,
1433                 struct usb_device *udev,
1434                 struct usb_host_endpoint *ep,
1435                 gfp_t mem_flags)
1436 {
1437         unsigned int ep_index;
1438         struct xhci_ep_ctx *ep_ctx;
1439         struct xhci_ring *ep_ring;
1440         unsigned int max_packet;
1441         enum xhci_ring_type ring_type;
1442         u32 max_esit_payload;
1443         u32 endpoint_type;
1444         unsigned int max_burst;
1445         unsigned int interval;
1446         unsigned int mult;
1447         unsigned int avg_trb_len;
1448         unsigned int err_count = 0;
1449
1450         ep_index = xhci_get_endpoint_index(&ep->desc);
1451         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1452
1453         endpoint_type = xhci_get_endpoint_type(ep);
1454         if (!endpoint_type)
1455                 return -EINVAL;
1456
1457         ring_type = usb_endpoint_type(&ep->desc);
1458
1459         /*
1460          * Get values to fill the endpoint context, mostly from ep descriptor.
1461          * The average TRB buffer lengt for bulk endpoints is unclear as we
1462          * have no clue on scatter gather list entry size. For Isoc and Int,
1463          * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1464          */
1465         max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1466         interval = xhci_get_endpoint_interval(udev, ep);
1467
1468         /* Periodic endpoint bInterval limit quirk */
1469         if (usb_endpoint_xfer_int(&ep->desc) ||
1470             usb_endpoint_xfer_isoc(&ep->desc)) {
1471                 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1472                     udev->speed >= USB_SPEED_HIGH &&
1473                     interval >= 7) {
1474                         interval = 6;
1475                 }
1476         }
1477
1478         mult = xhci_get_endpoint_mult(udev, ep);
1479         max_packet = usb_endpoint_maxp(&ep->desc);
1480         max_burst = xhci_get_endpoint_max_burst(udev, ep);
1481         avg_trb_len = max_esit_payload;
1482
1483         /* FIXME dig Mult and streams info out of ep companion desc */
1484
1485         /* Allow 3 retries for everything but isoc, set CErr = 3 */
1486         if (!usb_endpoint_xfer_isoc(&ep->desc))
1487                 err_count = 3;
1488         /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1489         if (usb_endpoint_xfer_bulk(&ep->desc)) {
1490                 if (udev->speed == USB_SPEED_HIGH)
1491                         max_packet = 512;
1492                 if (udev->speed == USB_SPEED_FULL) {
1493                         max_packet = rounddown_pow_of_two(max_packet);
1494                         max_packet = clamp_val(max_packet, 8, 64);
1495                 }
1496         }
1497         /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1498         if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1499                 avg_trb_len = 8;
1500         /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1501         if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1502                 mult = 0;
1503
1504         /* Set up the endpoint ring */
1505         virt_dev->eps[ep_index].new_ring =
1506                 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1507         if (!virt_dev->eps[ep_index].new_ring)
1508                 return -ENOMEM;
1509
1510         virt_dev->eps[ep_index].skip = false;
1511         ep_ring = virt_dev->eps[ep_index].new_ring;
1512
1513         /* Fill the endpoint context */
1514         ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1515                                       EP_INTERVAL(interval) |
1516                                       EP_MULT(mult));
1517         ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1518                                        MAX_PACKET(max_packet) |
1519                                        MAX_BURST(max_burst) |
1520                                        ERROR_COUNT(err_count));
1521         ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1522                                   ep_ring->cycle_state);
1523
1524         ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1525                                       EP_AVG_TRB_LENGTH(avg_trb_len));
1526
1527         return 0;
1528 }
1529
1530 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1531                 struct xhci_virt_device *virt_dev,
1532                 struct usb_host_endpoint *ep)
1533 {
1534         unsigned int ep_index;
1535         struct xhci_ep_ctx *ep_ctx;
1536
1537         ep_index = xhci_get_endpoint_index(&ep->desc);
1538         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1539
1540         ep_ctx->ep_info = 0;
1541         ep_ctx->ep_info2 = 0;
1542         ep_ctx->deq = 0;
1543         ep_ctx->tx_info = 0;
1544         /* Don't free the endpoint ring until the set interface or configuration
1545          * request succeeds.
1546          */
1547 }
1548
1549 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1550 {
1551         bw_info->ep_interval = 0;
1552         bw_info->mult = 0;
1553         bw_info->num_packets = 0;
1554         bw_info->max_packet_size = 0;
1555         bw_info->type = 0;
1556         bw_info->max_esit_payload = 0;
1557 }
1558
1559 void xhci_update_bw_info(struct xhci_hcd *xhci,
1560                 struct xhci_container_ctx *in_ctx,
1561                 struct xhci_input_control_ctx *ctrl_ctx,
1562                 struct xhci_virt_device *virt_dev)
1563 {
1564         struct xhci_bw_info *bw_info;
1565         struct xhci_ep_ctx *ep_ctx;
1566         unsigned int ep_type;
1567         int i;
1568
1569         for (i = 1; i < 31; i++) {
1570                 bw_info = &virt_dev->eps[i].bw_info;
1571
1572                 /* We can't tell what endpoint type is being dropped, but
1573                  * unconditionally clearing the bandwidth info for non-periodic
1574                  * endpoints should be harmless because the info will never be
1575                  * set in the first place.
1576                  */
1577                 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1578                         /* Dropped endpoint */
1579                         xhci_clear_endpoint_bw_info(bw_info);
1580                         continue;
1581                 }
1582
1583                 if (EP_IS_ADDED(ctrl_ctx, i)) {
1584                         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1585                         ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1586
1587                         /* Ignore non-periodic endpoints */
1588                         if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1589                                         ep_type != ISOC_IN_EP &&
1590                                         ep_type != INT_IN_EP)
1591                                 continue;
1592
1593                         /* Added or changed endpoint */
1594                         bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1595                                         le32_to_cpu(ep_ctx->ep_info));
1596                         /* Number of packets and mult are zero-based in the
1597                          * input context, but we want one-based for the
1598                          * interval table.
1599                          */
1600                         bw_info->mult = CTX_TO_EP_MULT(
1601                                         le32_to_cpu(ep_ctx->ep_info)) + 1;
1602                         bw_info->num_packets = CTX_TO_MAX_BURST(
1603                                         le32_to_cpu(ep_ctx->ep_info2)) + 1;
1604                         bw_info->max_packet_size = MAX_PACKET_DECODED(
1605                                         le32_to_cpu(ep_ctx->ep_info2));
1606                         bw_info->type = ep_type;
1607                         bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1608                                         le32_to_cpu(ep_ctx->tx_info));
1609                 }
1610         }
1611 }
1612
1613 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1614  * Useful when you want to change one particular aspect of the endpoint and then
1615  * issue a configure endpoint command.
1616  */
1617 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1618                 struct xhci_container_ctx *in_ctx,
1619                 struct xhci_container_ctx *out_ctx,
1620                 unsigned int ep_index)
1621 {
1622         struct xhci_ep_ctx *out_ep_ctx;
1623         struct xhci_ep_ctx *in_ep_ctx;
1624
1625         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1626         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1627
1628         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1629         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1630         in_ep_ctx->deq = out_ep_ctx->deq;
1631         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1632         if (xhci->quirks & XHCI_MTK_HOST) {
1633                 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1634                 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1635         }
1636 }
1637
1638 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1639  * Useful when you want to change one particular aspect of the endpoint and then
1640  * issue a configure endpoint command.  Only the context entries field matters,
1641  * but we'll copy the whole thing anyway.
1642  */
1643 void xhci_slot_copy(struct xhci_hcd *xhci,
1644                 struct xhci_container_ctx *in_ctx,
1645                 struct xhci_container_ctx *out_ctx)
1646 {
1647         struct xhci_slot_ctx *in_slot_ctx;
1648         struct xhci_slot_ctx *out_slot_ctx;
1649
1650         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1651         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1652
1653         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1654         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1655         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1656         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1657 }
1658
1659 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1660 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1661 {
1662         int i;
1663         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1664         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1665
1666         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1667                         "Allocating %d scratchpad buffers", num_sp);
1668
1669         if (!num_sp)
1670                 return 0;
1671
1672         xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1673                                 dev_to_node(dev));
1674         if (!xhci->scratchpad)
1675                 goto fail_sp;
1676
1677         xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1678                                      num_sp * sizeof(u64),
1679                                      &xhci->scratchpad->sp_dma, flags);
1680         if (!xhci->scratchpad->sp_array)
1681                 goto fail_sp2;
1682
1683         xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1684                                         flags, dev_to_node(dev));
1685         if (!xhci->scratchpad->sp_buffers)
1686                 goto fail_sp3;
1687
1688         xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1689         for (i = 0; i < num_sp; i++) {
1690                 dma_addr_t dma;
1691                 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1692                                                flags);
1693                 if (!buf)
1694                         goto fail_sp4;
1695
1696                 xhci->scratchpad->sp_array[i] = dma;
1697                 xhci->scratchpad->sp_buffers[i] = buf;
1698         }
1699
1700         return 0;
1701
1702  fail_sp4:
1703         for (i = i - 1; i >= 0; i--) {
1704                 dma_free_coherent(dev, xhci->page_size,
1705                                     xhci->scratchpad->sp_buffers[i],
1706                                     xhci->scratchpad->sp_array[i]);
1707         }
1708
1709         kfree(xhci->scratchpad->sp_buffers);
1710
1711  fail_sp3:
1712         dma_free_coherent(dev, num_sp * sizeof(u64),
1713                             xhci->scratchpad->sp_array,
1714                             xhci->scratchpad->sp_dma);
1715
1716  fail_sp2:
1717         kfree(xhci->scratchpad);
1718         xhci->scratchpad = NULL;
1719
1720  fail_sp:
1721         return -ENOMEM;
1722 }
1723
1724 static void scratchpad_free(struct xhci_hcd *xhci)
1725 {
1726         int num_sp;
1727         int i;
1728         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1729
1730         if (!xhci->scratchpad)
1731                 return;
1732
1733         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1734
1735         for (i = 0; i < num_sp; i++) {
1736                 dma_free_coherent(dev, xhci->page_size,
1737                                     xhci->scratchpad->sp_buffers[i],
1738                                     xhci->scratchpad->sp_array[i]);
1739         }
1740         kfree(xhci->scratchpad->sp_buffers);
1741         dma_free_coherent(dev, num_sp * sizeof(u64),
1742                             xhci->scratchpad->sp_array,
1743                             xhci->scratchpad->sp_dma);
1744         kfree(xhci->scratchpad);
1745         xhci->scratchpad = NULL;
1746 }
1747
1748 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1749                 bool allocate_completion, gfp_t mem_flags)
1750 {
1751         struct xhci_command *command;
1752         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1753
1754         command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1755         if (!command)
1756                 return NULL;
1757
1758         if (allocate_completion) {
1759                 command->completion =
1760                         kzalloc_node(sizeof(struct completion), mem_flags,
1761                                 dev_to_node(dev));
1762                 if (!command->completion) {
1763                         kfree(command);
1764                         return NULL;
1765                 }
1766                 init_completion(command->completion);
1767         }
1768
1769         command->status = 0;
1770         INIT_LIST_HEAD(&command->cmd_list);
1771         return command;
1772 }
1773
1774 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1775                 bool allocate_completion, gfp_t mem_flags)
1776 {
1777         struct xhci_command *command;
1778
1779         command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1780         if (!command)
1781                 return NULL;
1782
1783         command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1784                                                    mem_flags);
1785         if (!command->in_ctx) {
1786                 kfree(command->completion);
1787                 kfree(command);
1788                 return NULL;
1789         }
1790         return command;
1791 }
1792
1793 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1794 {
1795         kfree(urb_priv);
1796 }
1797
1798 void xhci_free_command(struct xhci_hcd *xhci,
1799                 struct xhci_command *command)
1800 {
1801         xhci_free_container_ctx(xhci,
1802                         command->in_ctx);
1803         kfree(command->completion);
1804         kfree(command);
1805 }
1806
1807 int xhci_alloc_erst(struct xhci_hcd *xhci,
1808                     struct xhci_ring *evt_ring,
1809                     struct xhci_erst *erst,
1810                     gfp_t flags)
1811 {
1812         size_t size;
1813         unsigned int val;
1814         struct xhci_segment *seg;
1815         struct xhci_erst_entry *entry;
1816
1817         size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1818         erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1819                                            size, &erst->erst_dma_addr, flags);
1820         if (!erst->entries)
1821                 return -ENOMEM;
1822
1823         erst->num_entries = evt_ring->num_segs;
1824
1825         seg = evt_ring->first_seg;
1826         for (val = 0; val < evt_ring->num_segs; val++) {
1827                 entry = &erst->entries[val];
1828                 entry->seg_addr = cpu_to_le64(seg->dma);
1829                 entry->seg_size = cpu_to_le32(evt_ring->trbs_per_seg);
1830                 entry->rsvd = 0;
1831                 seg = seg->next;
1832         }
1833
1834         return 0;
1835 }
1836
1837 void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1838 {
1839         size_t size;
1840         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1841
1842         size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1843         if (erst->entries)
1844                 dma_free_coherent(dev, size,
1845                                 erst->entries,
1846                                 erst->erst_dma_addr);
1847         erst->entries = NULL;
1848 }
1849
1850 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1851 {
1852         struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
1853         int i, j, num_ports;
1854
1855         cancel_delayed_work_sync(&xhci->cmd_timer);
1856
1857         xhci_free_erst(xhci, &xhci->erst);
1858
1859         if (xhci->event_ring)
1860                 xhci_ring_free(xhci, xhci->event_ring);
1861         xhci->event_ring = NULL;
1862         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1863
1864         if (xhci->lpm_command)
1865                 xhci_free_command(xhci, xhci->lpm_command);
1866         xhci->lpm_command = NULL;
1867         if (xhci->cmd_ring)
1868                 xhci_ring_free(xhci, xhci->cmd_ring);
1869         xhci->cmd_ring = NULL;
1870         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1871         xhci_cleanup_command_queue(xhci);
1872
1873         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1874         for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1875                 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1876                 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1877                         struct list_head *ep = &bwt->interval_bw[j].endpoints;
1878                         while (!list_empty(ep))
1879                                 list_del_init(ep->next);
1880                 }
1881         }
1882
1883         for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1884                 xhci_free_virt_devices_depth_first(xhci, i);
1885
1886         dma_pool_destroy(xhci->segment_pool);
1887         xhci->segment_pool = NULL;
1888         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1889
1890         dma_pool_destroy(xhci->device_pool);
1891         xhci->device_pool = NULL;
1892         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1893
1894         dma_pool_destroy(xhci->small_streams_pool);
1895         xhci->small_streams_pool = NULL;
1896         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1897                         "Freed small stream array pool");
1898
1899         dma_pool_destroy(xhci->medium_streams_pool);
1900         xhci->medium_streams_pool = NULL;
1901         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1902                         "Freed medium stream array pool");
1903
1904         if (xhci->dcbaa)
1905                 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1906                                 xhci->dcbaa, xhci->dcbaa->dma);
1907         xhci->dcbaa = NULL;
1908
1909         scratchpad_free(xhci);
1910
1911         if (!xhci->rh_bw)
1912                 goto no_bw;
1913
1914         for (i = 0; i < num_ports; i++) {
1915                 struct xhci_tt_bw_info *tt, *n;
1916                 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1917                         list_del(&tt->tt_list);
1918                         kfree(tt);
1919                 }
1920         }
1921
1922 no_bw:
1923         xhci->cmd_ring_reserved_trbs = 0;
1924         xhci->usb2_rhub.num_ports = 0;
1925         xhci->usb3_rhub.num_ports = 0;
1926         xhci->num_active_eps = 0;
1927         kfree(xhci->usb2_rhub.ports);
1928         kfree(xhci->usb3_rhub.ports);
1929         kfree(xhci->hw_ports);
1930         kfree(xhci->rh_bw);
1931         kfree(xhci->ext_caps);
1932         for (i = 0; i < xhci->num_port_caps; i++)
1933                 kfree(xhci->port_caps[i].psi);
1934         kfree(xhci->port_caps);
1935         xhci->num_port_caps = 0;
1936
1937         xhci->usb2_rhub.ports = NULL;
1938         xhci->usb3_rhub.ports = NULL;
1939         xhci->hw_ports = NULL;
1940         xhci->rh_bw = NULL;
1941         xhci->ext_caps = NULL;
1942         xhci->port_caps = NULL;
1943
1944         xhci->page_size = 0;
1945         xhci->page_shift = 0;
1946         xhci->usb2_rhub.bus_state.bus_suspended = 0;
1947         xhci->usb3_rhub.bus_state.bus_suspended = 0;
1948 }
1949
1950 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1951                 struct xhci_segment *input_seg,
1952                 union xhci_trb *start_trb,
1953                 union xhci_trb *end_trb,
1954                 dma_addr_t input_dma,
1955                 struct xhci_segment *result_seg,
1956                 char *test_name, int test_number)
1957 {
1958         unsigned long long start_dma;
1959         unsigned long long end_dma;
1960         struct xhci_segment *seg;
1961
1962         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1963         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1964
1965         seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1966         if (seg != result_seg) {
1967                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1968                                 test_name, test_number);
1969                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1970                                 "input DMA 0x%llx\n",
1971                                 input_seg,
1972                                 (unsigned long long) input_dma);
1973                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1974                                 "ending TRB %p (0x%llx DMA)\n",
1975                                 start_trb, start_dma,
1976                                 end_trb, end_dma);
1977                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1978                                 result_seg, seg);
1979                 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1980                           true);
1981                 return -1;
1982         }
1983         return 0;
1984 }
1985
1986 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1987 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1988 {
1989         struct {
1990                 dma_addr_t              input_dma;
1991                 struct xhci_segment     *result_seg;
1992         } simple_test_vector [] = {
1993                 /* A zeroed DMA field should fail */
1994                 { 0, NULL },
1995                 /* One TRB before the ring start should fail */
1996                 { xhci->event_ring->first_seg->dma - 16, NULL },
1997                 /* One byte before the ring start should fail */
1998                 { xhci->event_ring->first_seg->dma - 1, NULL },
1999                 /* Starting TRB should succeed */
2000                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
2001                 /* Ending TRB should succeed */
2002                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
2003                         xhci->event_ring->first_seg },
2004                 /* One byte after the ring end should fail */
2005                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
2006                 /* One TRB after the ring end should fail */
2007                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
2008                 /* An address of all ones should fail */
2009                 { (dma_addr_t) (~0), NULL },
2010         };
2011         struct {
2012                 struct xhci_segment     *input_seg;
2013                 union xhci_trb          *start_trb;
2014                 union xhci_trb          *end_trb;
2015                 dma_addr_t              input_dma;
2016                 struct xhci_segment     *result_seg;
2017         } complex_test_vector [] = {
2018                 /* Test feeding a valid DMA address from a different ring */
2019                 {       .input_seg = xhci->event_ring->first_seg,
2020                         .start_trb = xhci->event_ring->first_seg->trbs,
2021                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2022                         .input_dma = xhci->cmd_ring->first_seg->dma,
2023                         .result_seg = NULL,
2024                 },
2025                 /* Test feeding a valid end TRB from a different ring */
2026                 {       .input_seg = xhci->event_ring->first_seg,
2027                         .start_trb = xhci->event_ring->first_seg->trbs,
2028                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2029                         .input_dma = xhci->cmd_ring->first_seg->dma,
2030                         .result_seg = NULL,
2031                 },
2032                 /* Test feeding a valid start and end TRB from a different ring */
2033                 {       .input_seg = xhci->event_ring->first_seg,
2034                         .start_trb = xhci->cmd_ring->first_seg->trbs,
2035                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2036                         .input_dma = xhci->cmd_ring->first_seg->dma,
2037                         .result_seg = NULL,
2038                 },
2039                 /* TRB in this ring, but after this TD */
2040                 {       .input_seg = xhci->event_ring->first_seg,
2041                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
2042                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
2043                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2044                         .result_seg = NULL,
2045                 },
2046                 /* TRB in this ring, but before this TD */
2047                 {       .input_seg = xhci->event_ring->first_seg,
2048                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
2049                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
2050                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2051                         .result_seg = NULL,
2052                 },
2053                 /* TRB in this ring, but after this wrapped TD */
2054                 {       .input_seg = xhci->event_ring->first_seg,
2055                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2056                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2057                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2058                         .result_seg = NULL,
2059                 },
2060                 /* TRB in this ring, but before this wrapped TD */
2061                 {       .input_seg = xhci->event_ring->first_seg,
2062                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2063                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2064                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2065                         .result_seg = NULL,
2066                 },
2067                 /* TRB not in this ring, and we have a wrapped TD */
2068                 {       .input_seg = xhci->event_ring->first_seg,
2069                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2070                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2071                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2072                         .result_seg = NULL,
2073                 },
2074         };
2075
2076         unsigned int num_tests;
2077         int i, ret;
2078
2079         num_tests = ARRAY_SIZE(simple_test_vector);
2080         for (i = 0; i < num_tests; i++) {
2081                 ret = xhci_test_trb_in_td(xhci,
2082                                 xhci->event_ring->first_seg,
2083                                 xhci->event_ring->first_seg->trbs,
2084                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2085                                 simple_test_vector[i].input_dma,
2086                                 simple_test_vector[i].result_seg,
2087                                 "Simple", i);
2088                 if (ret < 0)
2089                         return ret;
2090         }
2091
2092         num_tests = ARRAY_SIZE(complex_test_vector);
2093         for (i = 0; i < num_tests; i++) {
2094                 ret = xhci_test_trb_in_td(xhci,
2095                                 complex_test_vector[i].input_seg,
2096                                 complex_test_vector[i].start_trb,
2097                                 complex_test_vector[i].end_trb,
2098                                 complex_test_vector[i].input_dma,
2099                                 complex_test_vector[i].result_seg,
2100                                 "Complex", i);
2101                 if (ret < 0)
2102                         return ret;
2103         }
2104         xhci_dbg(xhci, "TRB math tests passed.\n");
2105         return 0;
2106 }
2107
2108 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2109 {
2110         u64 temp;
2111         dma_addr_t deq;
2112
2113         deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2114                         xhci->event_ring->dequeue);
2115         if (!deq)
2116                 xhci_warn(xhci, "WARN something wrong with SW event ring "
2117                                 "dequeue ptr.\n");
2118         /* Update HC event ring dequeue pointer */
2119         temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2120         temp &= ERST_PTR_MASK;
2121         /* Don't clear the EHB bit (which is RW1C) because
2122          * there might be more events to service.
2123          */
2124         temp &= ~ERST_EHB;
2125         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2126                         "// Write event ring dequeue pointer, "
2127                         "preserving EHB bit");
2128         xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2129                         &xhci->ir_set->erst_dequeue);
2130 }
2131
2132 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2133                 __le32 __iomem *addr, int max_caps)
2134 {
2135         u32 temp, port_offset, port_count;
2136         int i;
2137         u8 major_revision, minor_revision;
2138         struct xhci_hub *rhub;
2139         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2140         struct xhci_port_cap *port_cap;
2141
2142         temp = readl(addr);
2143         major_revision = XHCI_EXT_PORT_MAJOR(temp);
2144         minor_revision = XHCI_EXT_PORT_MINOR(temp);
2145
2146         if (major_revision == 0x03) {
2147                 rhub = &xhci->usb3_rhub;
2148                 /*
2149                  * Some hosts incorrectly use sub-minor version for minor
2150                  * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2151                  * for bcdUSB 0x310). Since there is no USB release with sub
2152                  * minor version 0x301 to 0x309, we can assume that they are
2153                  * incorrect and fix it here.
2154                  */
2155                 if (minor_revision > 0x00 && minor_revision < 0x10)
2156                         minor_revision <<= 4;
2157         } else if (major_revision <= 0x02) {
2158                 rhub = &xhci->usb2_rhub;
2159         } else {
2160                 xhci_warn(xhci, "Ignoring unknown port speed, "
2161                                 "Ext Cap %p, revision = 0x%x\n",
2162                                 addr, major_revision);
2163                 /* Ignoring port protocol we can't understand. FIXME */
2164                 return;
2165         }
2166         rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2167
2168         if (rhub->min_rev < minor_revision)
2169                 rhub->min_rev = minor_revision;
2170
2171         /* Port offset and count in the third dword, see section 7.2 */
2172         temp = readl(addr + 2);
2173         port_offset = XHCI_EXT_PORT_OFF(temp);
2174         port_count = XHCI_EXT_PORT_COUNT(temp);
2175         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2176                         "Ext Cap %p, port offset = %u, "
2177                         "count = %u, revision = 0x%x",
2178                         addr, port_offset, port_count, major_revision);
2179         /* Port count includes the current port offset */
2180         if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2181                 /* WTF? "Valid values are â€˜1’ to MaxPorts" */
2182                 return;
2183
2184         port_cap = &xhci->port_caps[xhci->num_port_caps++];
2185         if (xhci->num_port_caps > max_caps)
2186                 return;
2187
2188         port_cap->maj_rev = major_revision;
2189         port_cap->min_rev = minor_revision;
2190         port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2191
2192         if (port_cap->psi_count) {
2193                 port_cap->psi = kcalloc_node(port_cap->psi_count,
2194                                              sizeof(*port_cap->psi),
2195                                              GFP_KERNEL, dev_to_node(dev));
2196                 if (!port_cap->psi)
2197                         port_cap->psi_count = 0;
2198
2199                 port_cap->psi_uid_count++;
2200                 for (i = 0; i < port_cap->psi_count; i++) {
2201                         port_cap->psi[i] = readl(addr + 4 + i);
2202
2203                         /* count unique ID values, two consecutive entries can
2204                          * have the same ID if link is assymetric
2205                          */
2206                         if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2207                                   XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2208                                 port_cap->psi_uid_count++;
2209
2210                         xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2211                                   XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2212                                   XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2213                                   XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2214                                   XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2215                                   XHCI_EXT_PORT_LP(port_cap->psi[i]),
2216                                   XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2217                 }
2218         }
2219         /* cache usb2 port capabilities */
2220         if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2221                 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2222
2223         if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2224                  (temp & XHCI_HLC)) {
2225                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2226                                "xHCI 1.0: support USB2 hardware lpm");
2227                 xhci->hw_lpm_support = 1;
2228         }
2229
2230         port_offset--;
2231         for (i = port_offset; i < (port_offset + port_count); i++) {
2232                 struct xhci_port *hw_port = &xhci->hw_ports[i];
2233                 /* Duplicate entry.  Ignore the port if the revisions differ. */
2234                 if (hw_port->rhub) {
2235                         xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2236                                         " port %u\n", addr, i);
2237                         xhci_warn(xhci, "Port was marked as USB %u, "
2238                                         "duplicated as USB %u\n",
2239                                         hw_port->rhub->maj_rev, major_revision);
2240                         /* Only adjust the roothub port counts if we haven't
2241                          * found a similar duplicate.
2242                          */
2243                         if (hw_port->rhub != rhub &&
2244                                  hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2245                                 hw_port->rhub->num_ports--;
2246                                 hw_port->hcd_portnum = DUPLICATE_ENTRY;
2247                         }
2248                         continue;
2249                 }
2250                 hw_port->rhub = rhub;
2251                 hw_port->port_cap = port_cap;
2252                 rhub->num_ports++;
2253         }
2254         /* FIXME: Should we disable ports not in the Extended Capabilities? */
2255 }
2256
2257 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2258                                         struct xhci_hub *rhub, gfp_t flags)
2259 {
2260         int port_index = 0;
2261         int i;
2262         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2263
2264         if (!rhub->num_ports)
2265                 return;
2266         rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2267                         flags, dev_to_node(dev));
2268         if (!rhub->ports)
2269                 return;
2270
2271         for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2272                 if (xhci->hw_ports[i].rhub != rhub ||
2273                     xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2274                         continue;
2275                 xhci->hw_ports[i].hcd_portnum = port_index;
2276                 rhub->ports[port_index] = &xhci->hw_ports[i];
2277                 port_index++;
2278                 if (port_index == rhub->num_ports)
2279                         break;
2280         }
2281 }
2282
2283 /*
2284  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2285  * specify what speeds each port is supposed to be.  We can't count on the port
2286  * speed bits in the PORTSC register being correct until a device is connected,
2287  * but we need to set up the two fake roothubs with the correct number of USB
2288  * 3.0 and USB 2.0 ports at host controller initialization time.
2289  */
2290 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2291 {
2292         void __iomem *base;
2293         u32 offset;
2294         unsigned int num_ports;
2295         int i, j;
2296         int cap_count = 0;
2297         u32 cap_start;
2298         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2299
2300         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2301         xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2302                                 flags, dev_to_node(dev));
2303         if (!xhci->hw_ports)
2304                 return -ENOMEM;
2305
2306         for (i = 0; i < num_ports; i++) {
2307                 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2308                         NUM_PORT_REGS * i;
2309                 xhci->hw_ports[i].hw_portnum = i;
2310         }
2311
2312         xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2313                                    dev_to_node(dev));
2314         if (!xhci->rh_bw)
2315                 return -ENOMEM;
2316         for (i = 0; i < num_ports; i++) {
2317                 struct xhci_interval_bw_table *bw_table;
2318
2319                 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2320                 bw_table = &xhci->rh_bw[i].bw_table;
2321                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2322                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2323         }
2324         base = &xhci->cap_regs->hc_capbase;
2325
2326         cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2327         if (!cap_start) {
2328                 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2329                 return -ENODEV;
2330         }
2331
2332         offset = cap_start;
2333         /* count extended protocol capability entries for later caching */
2334         while (offset) {
2335                 cap_count++;
2336                 offset = xhci_find_next_ext_cap(base, offset,
2337                                                       XHCI_EXT_CAPS_PROTOCOL);
2338         }
2339
2340         xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2341                                 flags, dev_to_node(dev));
2342         if (!xhci->ext_caps)
2343                 return -ENOMEM;
2344
2345         xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2346                                 flags, dev_to_node(dev));
2347         if (!xhci->port_caps)
2348                 return -ENOMEM;
2349
2350         offset = cap_start;
2351
2352         while (offset) {
2353                 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2354                 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2355                     num_ports)
2356                         break;
2357                 offset = xhci_find_next_ext_cap(base, offset,
2358                                                 XHCI_EXT_CAPS_PROTOCOL);
2359         }
2360         if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2361                 xhci_warn(xhci, "No ports on the roothubs?\n");
2362                 return -ENODEV;
2363         }
2364         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2365                        "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2366                        xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2367
2368         /* Place limits on the number of roothub ports so that the hub
2369          * descriptors aren't longer than the USB core will allocate.
2370          */
2371         if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2372                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2373                                 "Limiting USB 3.0 roothub ports to %u.",
2374                                 USB_SS_MAXPORTS);
2375                 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2376         }
2377         if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2378                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2379                                 "Limiting USB 2.0 roothub ports to %u.",
2380                                 USB_MAXCHILDREN);
2381                 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2382         }
2383
2384         /*
2385          * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2386          * Not sure how the USB core will handle a hub with no ports...
2387          */
2388
2389         xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2390         xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2391
2392         return 0;
2393 }
2394
2395 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2396 {
2397         dma_addr_t      dma;
2398         struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
2399         unsigned int    val, val2;
2400         u64             val_64;
2401         u32             page_size, temp;
2402         int             i, ret;
2403
2404         INIT_LIST_HEAD(&xhci->cmd_list);
2405
2406         /* init command timeout work */
2407         INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2408         init_completion(&xhci->cmd_ring_stop_completion);
2409
2410         page_size = readl(&xhci->op_regs->page_size);
2411         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2412                         "Supported page size register = 0x%x", page_size);
2413         for (i = 0; i < 16; i++) {
2414                 if ((0x1 & page_size) != 0)
2415                         break;
2416                 page_size = page_size >> 1;
2417         }
2418         if (i < 16)
2419                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2420                         "Supported page size of %iK", (1 << (i+12)) / 1024);
2421         else
2422                 xhci_warn(xhci, "WARN: no supported page size\n");
2423         /* Use 4K pages, since that's common and the minimum the HC supports */
2424         xhci->page_shift = 12;
2425         xhci->page_size = 1 << xhci->page_shift;
2426         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2427                         "HCD page size set to %iK", xhci->page_size / 1024);
2428
2429         /*
2430          * Program the Number of Device Slots Enabled field in the CONFIG
2431          * register with the max value of slots the HC can handle.
2432          */
2433         val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2434         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2435                         "// xHC can handle at most %d device slots.", val);
2436         val2 = readl(&xhci->op_regs->config_reg);
2437         val |= (val2 & ~HCS_SLOTS_MASK);
2438         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2439                         "// Setting Max device slots reg = 0x%x.", val);
2440         writel(val, &xhci->op_regs->config_reg);
2441
2442         /*
2443          * xHCI section 5.4.6 - doorbell array must be
2444          * "physically contiguous and 64-byte (cache line) aligned".
2445          */
2446         xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2447                         flags);
2448         if (!xhci->dcbaa)
2449                 goto fail;
2450         xhci->dcbaa->dma = dma;
2451         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2452                         "// Device context base array address = 0x%llx (DMA), %p (virt)",
2453                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2454         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2455
2456         /*
2457          * Initialize the ring segment pool.  The ring must be a contiguous
2458          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2459          * however, the command ring segment needs 64-byte aligned segments
2460          * and our use of dma addresses in the trb_address_map radix tree needs
2461          * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2462          */
2463         xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2464                         TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2465
2466         /* See Table 46 and Note on Figure 55 */
2467         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2468                         2112, 64, xhci->page_size);
2469         if (!xhci->segment_pool || !xhci->device_pool)
2470                 goto fail;
2471
2472         /* Linear stream context arrays don't have any boundary restrictions,
2473          * and only need to be 16-byte aligned.
2474          */
2475         xhci->small_streams_pool =
2476                 dma_pool_create("xHCI 256 byte stream ctx arrays",
2477                         dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2478         xhci->medium_streams_pool =
2479                 dma_pool_create("xHCI 1KB stream ctx arrays",
2480                         dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2481         /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2482          * will be allocated with dma_alloc_coherent()
2483          */
2484
2485         if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2486                 goto fail;
2487
2488         /* Set up the command ring to have one segments for now. */
2489         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2490         if (!xhci->cmd_ring)
2491                 goto fail;
2492         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2493                         "Allocated command ring at %p", xhci->cmd_ring);
2494         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2495                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
2496
2497         /* Set the address in the Command Ring Control register */
2498         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2499         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2500                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2501                 xhci->cmd_ring->cycle_state;
2502         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2503                         "// Setting command ring address to 0x%016llx", val_64);
2504         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2505
2506         xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags);
2507         if (!xhci->lpm_command)
2508                 goto fail;
2509
2510         /* Reserve one command ring TRB for disabling LPM.
2511          * Since the USB core grabs the shared usb_bus bandwidth mutex before
2512          * disabling LPM, we only need to reserve one TRB for all devices.
2513          */
2514         xhci->cmd_ring_reserved_trbs++;
2515
2516         val = readl(&xhci->cap_regs->db_off);
2517         val &= DBOFF_MASK;
2518         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2519                         "// Doorbell array is located at offset 0x%x"
2520                         " from cap regs base addr", val);
2521         xhci->dba = (void __iomem *) xhci->cap_regs + val;
2522         /* Set ir_set to interrupt register set 0 */
2523         xhci->ir_set = &xhci->run_regs->ir_set[0];
2524
2525         /*
2526          * Event ring setup: Allocate a normal ring, but also setup
2527          * the event ring segment table (ERST).  Section 4.9.3.
2528          */
2529         val2 = 1 << HCS_ERST_MAX(xhci->hcs_params2);
2530         val2 = min_t(unsigned int, ERST_MAX_SEGS, val2);
2531         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2532         xhci->event_ring = xhci_ring_alloc(xhci, val2, 1, TYPE_EVENT,
2533                                            0, flags);
2534         if (!xhci->event_ring)
2535                 goto fail;
2536         if (xhci_check_trb_in_td_math(xhci) < 0)
2537                 goto fail;
2538
2539         ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2540         if (ret)
2541                 goto fail;
2542
2543         /* set ERST count with the number of entries in the segment table */
2544         val = readl(&xhci->ir_set->erst_size);
2545         val &= ERST_SIZE_MASK;
2546         val |= val2;
2547         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2548                         "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2549                         val);
2550         writel(val, &xhci->ir_set->erst_size);
2551
2552         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2553                         "// Set ERST entries to point to event ring.");
2554         /* set the segment table base address */
2555         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2556                         "// Set ERST base address for ir_set 0 = 0x%llx",
2557                         (unsigned long long)xhci->erst.erst_dma_addr);
2558         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2559         val_64 &= ERST_PTR_MASK;
2560         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2561         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2562
2563         /* Set the event ring dequeue address */
2564         xhci_set_hc_event_deq(xhci);
2565         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2566                         "Wrote ERST address to ir_set 0.");
2567
2568         xhci->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2569
2570         /*
2571          * XXX: Might need to set the Interrupter Moderation Register to
2572          * something other than the default (~1ms minimum between interrupts).
2573          * See section 5.5.1.2.
2574          */
2575         for (i = 0; i < MAX_HC_SLOTS; i++)
2576                 xhci->devs[i] = NULL;
2577         for (i = 0; i < USB_MAXCHILDREN; i++) {
2578                 xhci->usb2_rhub.bus_state.resume_done[i] = 0;
2579                 xhci->usb3_rhub.bus_state.resume_done[i] = 0;
2580                 /* Only the USB 2.0 completions will ever be used. */
2581                 init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]);
2582                 init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]);
2583         }
2584
2585         if (scratchpad_alloc(xhci, flags))
2586                 goto fail;
2587         if (xhci_setup_port_arrays(xhci, flags))
2588                 goto fail;
2589
2590         /* Enable USB 3.0 device notifications for function remote wake, which
2591          * is necessary for allowing USB 3.0 devices to do remote wakeup from
2592          * U3 (device suspend).
2593          */
2594         temp = readl(&xhci->op_regs->dev_notification);
2595         temp &= ~DEV_NOTE_MASK;
2596         temp |= DEV_NOTE_FWAKE;
2597         writel(temp, &xhci->op_regs->dev_notification);
2598
2599         return 0;
2600
2601 fail:
2602         xhci_halt(xhci);
2603         xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2604         xhci_mem_cleanup(xhci);
2605         return -ENOMEM;
2606 }