Merge remote-tracking branches 'spi/fix/imx' and 'spi/fix/sh-msiof' into spi-linus
[platform/kernel/linux-starfive.git] / drivers / usb / host / xhci-mem.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/usb.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16
17 #include "xhci.h"
18 #include "xhci-trace.h"
19 #include "xhci-debugfs.h"
20
21 /*
22  * Allocates a generic ring segment from the ring pool, sets the dma address,
23  * initializes the segment to zero, and sets the private next pointer to NULL.
24  *
25  * Section 4.11.1.1:
26  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
27  */
28 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
29                                                unsigned int cycle_state,
30                                                unsigned int max_packet,
31                                                gfp_t flags)
32 {
33         struct xhci_segment *seg;
34         dma_addr_t      dma;
35         int             i;
36
37         seg = kzalloc(sizeof *seg, flags);
38         if (!seg)
39                 return NULL;
40
41         seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
42         if (!seg->trbs) {
43                 kfree(seg);
44                 return NULL;
45         }
46
47         if (max_packet) {
48                 seg->bounce_buf = kzalloc(max_packet, flags);
49                 if (!seg->bounce_buf) {
50                         dma_pool_free(xhci->segment_pool, seg->trbs, dma);
51                         kfree(seg);
52                         return NULL;
53                 }
54         }
55         /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
56         if (cycle_state == 0) {
57                 for (i = 0; i < TRBS_PER_SEGMENT; i++)
58                         seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
59         }
60         seg->dma = dma;
61         seg->next = NULL;
62
63         return seg;
64 }
65
66 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
67 {
68         if (seg->trbs) {
69                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70                 seg->trbs = NULL;
71         }
72         kfree(seg->bounce_buf);
73         kfree(seg);
74 }
75
76 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
77                                 struct xhci_segment *first)
78 {
79         struct xhci_segment *seg;
80
81         seg = first->next;
82         while (seg != first) {
83                 struct xhci_segment *next = seg->next;
84                 xhci_segment_free(xhci, seg);
85                 seg = next;
86         }
87         xhci_segment_free(xhci, first);
88 }
89
90 /*
91  * Make the prev segment point to the next segment.
92  *
93  * Change the last TRB in the prev segment to be a Link TRB which points to the
94  * DMA address of the next segment.  The caller needs to set any Link TRB
95  * related flags, such as End TRB, Toggle Cycle, and no snoop.
96  */
97 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
98                 struct xhci_segment *next, enum xhci_ring_type type)
99 {
100         u32 val;
101
102         if (!prev || !next)
103                 return;
104         prev->next = next;
105         if (type != TYPE_EVENT) {
106                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
107                         cpu_to_le64(next->dma);
108
109                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
110                 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
111                 val &= ~TRB_TYPE_BITMASK;
112                 val |= TRB_TYPE(TRB_LINK);
113                 /* Always set the chain bit with 0.95 hardware */
114                 /* Set chain bit for isoc rings on AMD 0.96 host */
115                 if (xhci_link_trb_quirk(xhci) ||
116                                 (type == TYPE_ISOC &&
117                                  (xhci->quirks & XHCI_AMD_0x96_HOST)))
118                         val |= TRB_CHAIN;
119                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
120         }
121 }
122
123 /*
124  * Link the ring to the new segments.
125  * Set Toggle Cycle for the new ring if needed.
126  */
127 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
128                 struct xhci_segment *first, struct xhci_segment *last,
129                 unsigned int num_segs)
130 {
131         struct xhci_segment *next;
132
133         if (!ring || !first || !last)
134                 return;
135
136         next = ring->enq_seg->next;
137         xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
138         xhci_link_segments(xhci, last, next, ring->type);
139         ring->num_segs += num_segs;
140         ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
141
142         if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
143                 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
144                         &= ~cpu_to_le32(LINK_TOGGLE);
145                 last->trbs[TRBS_PER_SEGMENT-1].link.control
146                         |= cpu_to_le32(LINK_TOGGLE);
147                 ring->last_seg = last;
148         }
149 }
150
151 /*
152  * We need a radix tree for mapping physical addresses of TRBs to which stream
153  * ID they belong to.  We need to do this because the host controller won't tell
154  * us which stream ring the TRB came from.  We could store the stream ID in an
155  * event data TRB, but that doesn't help us for the cancellation case, since the
156  * endpoint may stop before it reaches that event data TRB.
157  *
158  * The radix tree maps the upper portion of the TRB DMA address to a ring
159  * segment that has the same upper portion of DMA addresses.  For example, say I
160  * have segments of size 1KB, that are always 1KB aligned.  A segment may
161  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
162  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
163  * pass the radix tree a key to get the right stream ID:
164  *
165  *      0x10c90fff >> 10 = 0x43243
166  *      0x10c912c0 >> 10 = 0x43244
167  *      0x10c91400 >> 10 = 0x43245
168  *
169  * Obviously, only those TRBs with DMA addresses that are within the segment
170  * will make the radix tree return the stream ID for that ring.
171  *
172  * Caveats for the radix tree:
173  *
174  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
175  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
176  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
177  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
178  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
179  * extended systems (where the DMA address can be bigger than 32-bits),
180  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
181  */
182 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
183                 struct xhci_ring *ring,
184                 struct xhci_segment *seg,
185                 gfp_t mem_flags)
186 {
187         unsigned long key;
188         int ret;
189
190         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
191         /* Skip any segments that were already added. */
192         if (radix_tree_lookup(trb_address_map, key))
193                 return 0;
194
195         ret = radix_tree_maybe_preload(mem_flags);
196         if (ret)
197                 return ret;
198         ret = radix_tree_insert(trb_address_map,
199                         key, ring);
200         radix_tree_preload_end();
201         return ret;
202 }
203
204 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
205                 struct xhci_segment *seg)
206 {
207         unsigned long key;
208
209         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
210         if (radix_tree_lookup(trb_address_map, key))
211                 radix_tree_delete(trb_address_map, key);
212 }
213
214 static int xhci_update_stream_segment_mapping(
215                 struct radix_tree_root *trb_address_map,
216                 struct xhci_ring *ring,
217                 struct xhci_segment *first_seg,
218                 struct xhci_segment *last_seg,
219                 gfp_t mem_flags)
220 {
221         struct xhci_segment *seg;
222         struct xhci_segment *failed_seg;
223         int ret;
224
225         if (WARN_ON_ONCE(trb_address_map == NULL))
226                 return 0;
227
228         seg = first_seg;
229         do {
230                 ret = xhci_insert_segment_mapping(trb_address_map,
231                                 ring, seg, mem_flags);
232                 if (ret)
233                         goto remove_streams;
234                 if (seg == last_seg)
235                         return 0;
236                 seg = seg->next;
237         } while (seg != first_seg);
238
239         return 0;
240
241 remove_streams:
242         failed_seg = seg;
243         seg = first_seg;
244         do {
245                 xhci_remove_segment_mapping(trb_address_map, seg);
246                 if (seg == failed_seg)
247                         return ret;
248                 seg = seg->next;
249         } while (seg != first_seg);
250
251         return ret;
252 }
253
254 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
255 {
256         struct xhci_segment *seg;
257
258         if (WARN_ON_ONCE(ring->trb_address_map == NULL))
259                 return;
260
261         seg = ring->first_seg;
262         do {
263                 xhci_remove_segment_mapping(ring->trb_address_map, seg);
264                 seg = seg->next;
265         } while (seg != ring->first_seg);
266 }
267
268 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
269 {
270         return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
271                         ring->first_seg, ring->last_seg, mem_flags);
272 }
273
274 /* XXX: Do we need the hcd structure in all these functions? */
275 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
276 {
277         if (!ring)
278                 return;
279
280         trace_xhci_ring_free(ring);
281
282         if (ring->first_seg) {
283                 if (ring->type == TYPE_STREAM)
284                         xhci_remove_stream_mapping(ring);
285                 xhci_free_segments_for_ring(xhci, ring->first_seg);
286         }
287
288         kfree(ring);
289 }
290
291 static void xhci_initialize_ring_info(struct xhci_ring *ring,
292                                         unsigned int cycle_state)
293 {
294         /* The ring is empty, so the enqueue pointer == dequeue pointer */
295         ring->enqueue = ring->first_seg->trbs;
296         ring->enq_seg = ring->first_seg;
297         ring->dequeue = ring->enqueue;
298         ring->deq_seg = ring->first_seg;
299         /* The ring is initialized to 0. The producer must write 1 to the cycle
300          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
301          * compare CCS to the cycle bit to check ownership, so CCS = 1.
302          *
303          * New rings are initialized with cycle state equal to 1; if we are
304          * handling ring expansion, set the cycle state equal to the old ring.
305          */
306         ring->cycle_state = cycle_state;
307
308         /*
309          * Each segment has a link TRB, and leave an extra TRB for SW
310          * accounting purpose
311          */
312         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
313 }
314
315 /* Allocate segments and link them for a ring */
316 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
317                 struct xhci_segment **first, struct xhci_segment **last,
318                 unsigned int num_segs, unsigned int cycle_state,
319                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
320 {
321         struct xhci_segment *prev;
322
323         prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
324         if (!prev)
325                 return -ENOMEM;
326         num_segs--;
327
328         *first = prev;
329         while (num_segs > 0) {
330                 struct xhci_segment     *next;
331
332                 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
333                 if (!next) {
334                         prev = *first;
335                         while (prev) {
336                                 next = prev->next;
337                                 xhci_segment_free(xhci, prev);
338                                 prev = next;
339                         }
340                         return -ENOMEM;
341                 }
342                 xhci_link_segments(xhci, prev, next, type);
343
344                 prev = next;
345                 num_segs--;
346         }
347         xhci_link_segments(xhci, prev, *first, type);
348         *last = prev;
349
350         return 0;
351 }
352
353 /**
354  * Create a new ring with zero or more segments.
355  *
356  * Link each segment together into a ring.
357  * Set the end flag and the cycle toggle bit on the last segment.
358  * See section 4.9.1 and figures 15 and 16.
359  */
360 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
361                 unsigned int num_segs, unsigned int cycle_state,
362                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
363 {
364         struct xhci_ring        *ring;
365         int ret;
366
367         ring = kzalloc(sizeof *(ring), flags);
368         if (!ring)
369                 return NULL;
370
371         ring->num_segs = num_segs;
372         ring->bounce_buf_len = max_packet;
373         INIT_LIST_HEAD(&ring->td_list);
374         ring->type = type;
375         if (num_segs == 0)
376                 return ring;
377
378         ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
379                         &ring->last_seg, num_segs, cycle_state, type,
380                         max_packet, flags);
381         if (ret)
382                 goto fail;
383
384         /* Only event ring does not use link TRB */
385         if (type != TYPE_EVENT) {
386                 /* See section 4.9.2.1 and 6.4.4.1 */
387                 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
388                         cpu_to_le32(LINK_TOGGLE);
389         }
390         xhci_initialize_ring_info(ring, cycle_state);
391         trace_xhci_ring_alloc(ring);
392         return ring;
393
394 fail:
395         kfree(ring);
396         return NULL;
397 }
398
399 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
400                 struct xhci_virt_device *virt_dev,
401                 unsigned int ep_index)
402 {
403         xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
404         virt_dev->eps[ep_index].ring = NULL;
405 }
406
407 /*
408  * Expand an existing ring.
409  * Allocate a new ring which has same segment numbers and link the two rings.
410  */
411 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
412                                 unsigned int num_trbs, gfp_t flags)
413 {
414         struct xhci_segment     *first;
415         struct xhci_segment     *last;
416         unsigned int            num_segs;
417         unsigned int            num_segs_needed;
418         int                     ret;
419
420         num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
421                                 (TRBS_PER_SEGMENT - 1);
422
423         /* Allocate number of segments we needed, or double the ring size */
424         num_segs = ring->num_segs > num_segs_needed ?
425                         ring->num_segs : num_segs_needed;
426
427         ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
428                         num_segs, ring->cycle_state, ring->type,
429                         ring->bounce_buf_len, flags);
430         if (ret)
431                 return -ENOMEM;
432
433         if (ring->type == TYPE_STREAM)
434                 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
435                                                 ring, first, last, flags);
436         if (ret) {
437                 struct xhci_segment *next;
438                 do {
439                         next = first->next;
440                         xhci_segment_free(xhci, first);
441                         if (first == last)
442                                 break;
443                         first = next;
444                 } while (true);
445                 return ret;
446         }
447
448         xhci_link_rings(xhci, ring, first, last, num_segs);
449         trace_xhci_ring_expansion(ring);
450         xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
451                         "ring expansion succeed, now has %d segments",
452                         ring->num_segs);
453
454         return 0;
455 }
456
457 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
458                                                     int type, gfp_t flags)
459 {
460         struct xhci_container_ctx *ctx;
461
462         if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
463                 return NULL;
464
465         ctx = kzalloc(sizeof(*ctx), flags);
466         if (!ctx)
467                 return NULL;
468
469         ctx->type = type;
470         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
471         if (type == XHCI_CTX_TYPE_INPUT)
472                 ctx->size += CTX_SIZE(xhci->hcc_params);
473
474         ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
475         if (!ctx->bytes) {
476                 kfree(ctx);
477                 return NULL;
478         }
479         return ctx;
480 }
481
482 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
483                              struct xhci_container_ctx *ctx)
484 {
485         if (!ctx)
486                 return;
487         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
488         kfree(ctx);
489 }
490
491 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
492                                               struct xhci_container_ctx *ctx)
493 {
494         if (ctx->type != XHCI_CTX_TYPE_INPUT)
495                 return NULL;
496
497         return (struct xhci_input_control_ctx *)ctx->bytes;
498 }
499
500 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
501                                         struct xhci_container_ctx *ctx)
502 {
503         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
504                 return (struct xhci_slot_ctx *)ctx->bytes;
505
506         return (struct xhci_slot_ctx *)
507                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
508 }
509
510 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
511                                     struct xhci_container_ctx *ctx,
512                                     unsigned int ep_index)
513 {
514         /* increment ep index by offset of start of ep ctx array */
515         ep_index++;
516         if (ctx->type == XHCI_CTX_TYPE_INPUT)
517                 ep_index++;
518
519         return (struct xhci_ep_ctx *)
520                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
521 }
522
523
524 /***************** Streams structures manipulation *************************/
525
526 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
527                 unsigned int num_stream_ctxs,
528                 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
529 {
530         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
531         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
532
533         if (size > MEDIUM_STREAM_ARRAY_SIZE)
534                 dma_free_coherent(dev, size,
535                                 stream_ctx, dma);
536         else if (size <= SMALL_STREAM_ARRAY_SIZE)
537                 return dma_pool_free(xhci->small_streams_pool,
538                                 stream_ctx, dma);
539         else
540                 return dma_pool_free(xhci->medium_streams_pool,
541                                 stream_ctx, dma);
542 }
543
544 /*
545  * The stream context array for each endpoint with bulk streams enabled can
546  * vary in size, based on:
547  *  - how many streams the endpoint supports,
548  *  - the maximum primary stream array size the host controller supports,
549  *  - and how many streams the device driver asks for.
550  *
551  * The stream context array must be a power of 2, and can be as small as
552  * 64 bytes or as large as 1MB.
553  */
554 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
555                 unsigned int num_stream_ctxs, dma_addr_t *dma,
556                 gfp_t mem_flags)
557 {
558         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
559         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
560
561         if (size > MEDIUM_STREAM_ARRAY_SIZE)
562                 return dma_alloc_coherent(dev, size,
563                                 dma, mem_flags);
564         else if (size <= SMALL_STREAM_ARRAY_SIZE)
565                 return dma_pool_alloc(xhci->small_streams_pool,
566                                 mem_flags, dma);
567         else
568                 return dma_pool_alloc(xhci->medium_streams_pool,
569                                 mem_flags, dma);
570 }
571
572 struct xhci_ring *xhci_dma_to_transfer_ring(
573                 struct xhci_virt_ep *ep,
574                 u64 address)
575 {
576         if (ep->ep_state & EP_HAS_STREAMS)
577                 return radix_tree_lookup(&ep->stream_info->trb_address_map,
578                                 address >> TRB_SEGMENT_SHIFT);
579         return ep->ring;
580 }
581
582 struct xhci_ring *xhci_stream_id_to_ring(
583                 struct xhci_virt_device *dev,
584                 unsigned int ep_index,
585                 unsigned int stream_id)
586 {
587         struct xhci_virt_ep *ep = &dev->eps[ep_index];
588
589         if (stream_id == 0)
590                 return ep->ring;
591         if (!ep->stream_info)
592                 return NULL;
593
594         if (stream_id > ep->stream_info->num_streams)
595                 return NULL;
596         return ep->stream_info->stream_rings[stream_id];
597 }
598
599 /*
600  * Change an endpoint's internal structure so it supports stream IDs.  The
601  * number of requested streams includes stream 0, which cannot be used by device
602  * drivers.
603  *
604  * The number of stream contexts in the stream context array may be bigger than
605  * the number of streams the driver wants to use.  This is because the number of
606  * stream context array entries must be a power of two.
607  */
608 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
609                 unsigned int num_stream_ctxs,
610                 unsigned int num_streams,
611                 unsigned int max_packet, gfp_t mem_flags)
612 {
613         struct xhci_stream_info *stream_info;
614         u32 cur_stream;
615         struct xhci_ring *cur_ring;
616         u64 addr;
617         int ret;
618
619         xhci_dbg(xhci, "Allocating %u streams and %u "
620                         "stream context array entries.\n",
621                         num_streams, num_stream_ctxs);
622         if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
623                 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
624                 return NULL;
625         }
626         xhci->cmd_ring_reserved_trbs++;
627
628         stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
629         if (!stream_info)
630                 goto cleanup_trbs;
631
632         stream_info->num_streams = num_streams;
633         stream_info->num_stream_ctxs = num_stream_ctxs;
634
635         /* Initialize the array of virtual pointers to stream rings. */
636         stream_info->stream_rings = kzalloc(
637                         sizeof(struct xhci_ring *)*num_streams,
638                         mem_flags);
639         if (!stream_info->stream_rings)
640                 goto cleanup_info;
641
642         /* Initialize the array of DMA addresses for stream rings for the HW. */
643         stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
644                         num_stream_ctxs, &stream_info->ctx_array_dma,
645                         mem_flags);
646         if (!stream_info->stream_ctx_array)
647                 goto cleanup_ctx;
648         memset(stream_info->stream_ctx_array, 0,
649                         sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
650
651         /* Allocate everything needed to free the stream rings later */
652         stream_info->free_streams_command =
653                 xhci_alloc_command(xhci, true, true, mem_flags);
654         if (!stream_info->free_streams_command)
655                 goto cleanup_ctx;
656
657         INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
658
659         /* Allocate rings for all the streams that the driver will use,
660          * and add their segment DMA addresses to the radix tree.
661          * Stream 0 is reserved.
662          */
663
664         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
665                 stream_info->stream_rings[cur_stream] =
666                         xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
667                                         mem_flags);
668                 cur_ring = stream_info->stream_rings[cur_stream];
669                 if (!cur_ring)
670                         goto cleanup_rings;
671                 cur_ring->stream_id = cur_stream;
672                 cur_ring->trb_address_map = &stream_info->trb_address_map;
673                 /* Set deq ptr, cycle bit, and stream context type */
674                 addr = cur_ring->first_seg->dma |
675                         SCT_FOR_CTX(SCT_PRI_TR) |
676                         cur_ring->cycle_state;
677                 stream_info->stream_ctx_array[cur_stream].stream_ring =
678                         cpu_to_le64(addr);
679                 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
680                                 cur_stream, (unsigned long long) addr);
681
682                 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
683                 if (ret) {
684                         xhci_ring_free(xhci, cur_ring);
685                         stream_info->stream_rings[cur_stream] = NULL;
686                         goto cleanup_rings;
687                 }
688         }
689         /* Leave the other unused stream ring pointers in the stream context
690          * array initialized to zero.  This will cause the xHC to give us an
691          * error if the device asks for a stream ID we don't have setup (if it
692          * was any other way, the host controller would assume the ring is
693          * "empty" and wait forever for data to be queued to that stream ID).
694          */
695
696         return stream_info;
697
698 cleanup_rings:
699         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
700                 cur_ring = stream_info->stream_rings[cur_stream];
701                 if (cur_ring) {
702                         xhci_ring_free(xhci, cur_ring);
703                         stream_info->stream_rings[cur_stream] = NULL;
704                 }
705         }
706         xhci_free_command(xhci, stream_info->free_streams_command);
707 cleanup_ctx:
708         kfree(stream_info->stream_rings);
709 cleanup_info:
710         kfree(stream_info);
711 cleanup_trbs:
712         xhci->cmd_ring_reserved_trbs--;
713         return NULL;
714 }
715 /*
716  * Sets the MaxPStreams field and the Linear Stream Array field.
717  * Sets the dequeue pointer to the stream context array.
718  */
719 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
720                 struct xhci_ep_ctx *ep_ctx,
721                 struct xhci_stream_info *stream_info)
722 {
723         u32 max_primary_streams;
724         /* MaxPStreams is the number of stream context array entries, not the
725          * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
726          * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
727          */
728         max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
729         xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
730                         "Setting number of stream ctx array entries to %u",
731                         1 << (max_primary_streams + 1));
732         ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
733         ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
734                                        | EP_HAS_LSA);
735         ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
736 }
737
738 /*
739  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
740  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
741  * not at the beginning of the ring).
742  */
743 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
744                 struct xhci_virt_ep *ep)
745 {
746         dma_addr_t addr;
747         ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
748         addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
749         ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
750 }
751
752 /* Frees all stream contexts associated with the endpoint,
753  *
754  * Caller should fix the endpoint context streams fields.
755  */
756 void xhci_free_stream_info(struct xhci_hcd *xhci,
757                 struct xhci_stream_info *stream_info)
758 {
759         int cur_stream;
760         struct xhci_ring *cur_ring;
761
762         if (!stream_info)
763                 return;
764
765         for (cur_stream = 1; cur_stream < stream_info->num_streams;
766                         cur_stream++) {
767                 cur_ring = stream_info->stream_rings[cur_stream];
768                 if (cur_ring) {
769                         xhci_ring_free(xhci, cur_ring);
770                         stream_info->stream_rings[cur_stream] = NULL;
771                 }
772         }
773         xhci_free_command(xhci, stream_info->free_streams_command);
774         xhci->cmd_ring_reserved_trbs--;
775         if (stream_info->stream_ctx_array)
776                 xhci_free_stream_ctx(xhci,
777                                 stream_info->num_stream_ctxs,
778                                 stream_info->stream_ctx_array,
779                                 stream_info->ctx_array_dma);
780
781         kfree(stream_info->stream_rings);
782         kfree(stream_info);
783 }
784
785
786 /***************** Device context manipulation *************************/
787
788 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
789                 struct xhci_virt_ep *ep)
790 {
791         timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
792                     0);
793         ep->xhci = xhci;
794 }
795
796 static void xhci_free_tt_info(struct xhci_hcd *xhci,
797                 struct xhci_virt_device *virt_dev,
798                 int slot_id)
799 {
800         struct list_head *tt_list_head;
801         struct xhci_tt_bw_info *tt_info, *next;
802         bool slot_found = false;
803
804         /* If the device never made it past the Set Address stage,
805          * it may not have the real_port set correctly.
806          */
807         if (virt_dev->real_port == 0 ||
808                         virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
809                 xhci_dbg(xhci, "Bad real port.\n");
810                 return;
811         }
812
813         tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
814         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
815                 /* Multi-TT hubs will have more than one entry */
816                 if (tt_info->slot_id == slot_id) {
817                         slot_found = true;
818                         list_del(&tt_info->tt_list);
819                         kfree(tt_info);
820                 } else if (slot_found) {
821                         break;
822                 }
823         }
824 }
825
826 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
827                 struct xhci_virt_device *virt_dev,
828                 struct usb_device *hdev,
829                 struct usb_tt *tt, gfp_t mem_flags)
830 {
831         struct xhci_tt_bw_info          *tt_info;
832         unsigned int                    num_ports;
833         int                             i, j;
834
835         if (!tt->multi)
836                 num_ports = 1;
837         else
838                 num_ports = hdev->maxchild;
839
840         for (i = 0; i < num_ports; i++, tt_info++) {
841                 struct xhci_interval_bw_table *bw_table;
842
843                 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
844                 if (!tt_info)
845                         goto free_tts;
846                 INIT_LIST_HEAD(&tt_info->tt_list);
847                 list_add(&tt_info->tt_list,
848                                 &xhci->rh_bw[virt_dev->real_port - 1].tts);
849                 tt_info->slot_id = virt_dev->udev->slot_id;
850                 if (tt->multi)
851                         tt_info->ttport = i+1;
852                 bw_table = &tt_info->bw_table;
853                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
854                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
855         }
856         return 0;
857
858 free_tts:
859         xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
860         return -ENOMEM;
861 }
862
863
864 /* All the xhci_tds in the ring's TD list should be freed at this point.
865  * Should be called with xhci->lock held if there is any chance the TT lists
866  * will be manipulated by the configure endpoint, allocate device, or update
867  * hub functions while this function is removing the TT entries from the list.
868  */
869 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
870 {
871         struct xhci_virt_device *dev;
872         int i;
873         int old_active_eps = 0;
874
875         /* Slot ID 0 is reserved */
876         if (slot_id == 0 || !xhci->devs[slot_id])
877                 return;
878
879         dev = xhci->devs[slot_id];
880
881         trace_xhci_free_virt_device(dev);
882
883         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
884         if (!dev)
885                 return;
886
887         if (dev->tt_info)
888                 old_active_eps = dev->tt_info->active_eps;
889
890         for (i = 0; i < 31; i++) {
891                 if (dev->eps[i].ring)
892                         xhci_ring_free(xhci, dev->eps[i].ring);
893                 if (dev->eps[i].stream_info)
894                         xhci_free_stream_info(xhci,
895                                         dev->eps[i].stream_info);
896                 /* Endpoints on the TT/root port lists should have been removed
897                  * when usb_disable_device() was called for the device.
898                  * We can't drop them anyway, because the udev might have gone
899                  * away by this point, and we can't tell what speed it was.
900                  */
901                 if (!list_empty(&dev->eps[i].bw_endpoint_list))
902                         xhci_warn(xhci, "Slot %u endpoint %u "
903                                         "not removed from BW list!\n",
904                                         slot_id, i);
905         }
906         /* If this is a hub, free the TT(s) from the TT list */
907         xhci_free_tt_info(xhci, dev, slot_id);
908         /* If necessary, update the number of active TTs on this root port */
909         xhci_update_tt_active_eps(xhci, dev, old_active_eps);
910
911         if (dev->in_ctx)
912                 xhci_free_container_ctx(xhci, dev->in_ctx);
913         if (dev->out_ctx)
914                 xhci_free_container_ctx(xhci, dev->out_ctx);
915
916         kfree(xhci->devs[slot_id]);
917         xhci->devs[slot_id] = NULL;
918 }
919
920 /*
921  * Free a virt_device structure.
922  * If the virt_device added a tt_info (a hub) and has children pointing to
923  * that tt_info, then free the child first. Recursive.
924  * We can't rely on udev at this point to find child-parent relationships.
925  */
926 void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
927 {
928         struct xhci_virt_device *vdev;
929         struct list_head *tt_list_head;
930         struct xhci_tt_bw_info *tt_info, *next;
931         int i;
932
933         vdev = xhci->devs[slot_id];
934         if (!vdev)
935                 return;
936
937         if (vdev->real_port == 0 ||
938                         vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
939                 xhci_dbg(xhci, "Bad vdev->real_port.\n");
940                 goto out;
941         }
942
943         tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
944         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
945                 /* is this a hub device that added a tt_info to the tts list */
946                 if (tt_info->slot_id == slot_id) {
947                         /* are any devices using this tt_info? */
948                         for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
949                                 vdev = xhci->devs[i];
950                                 if (vdev && (vdev->tt_info == tt_info))
951                                         xhci_free_virt_devices_depth_first(
952                                                 xhci, i);
953                         }
954                 }
955         }
956 out:
957         /* we are now at a leaf device */
958         xhci_debugfs_remove_slot(xhci, slot_id);
959         xhci_free_virt_device(xhci, slot_id);
960 }
961
962 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
963                 struct usb_device *udev, gfp_t flags)
964 {
965         struct xhci_virt_device *dev;
966         int i;
967
968         /* Slot ID 0 is reserved */
969         if (slot_id == 0 || xhci->devs[slot_id]) {
970                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
971                 return 0;
972         }
973
974         dev = kzalloc(sizeof(*dev), flags);
975         if (!dev)
976                 return 0;
977
978         /* Allocate the (output) device context that will be used in the HC. */
979         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
980         if (!dev->out_ctx)
981                 goto fail;
982
983         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
984                         (unsigned long long)dev->out_ctx->dma);
985
986         /* Allocate the (input) device context for address device command */
987         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
988         if (!dev->in_ctx)
989                 goto fail;
990
991         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
992                         (unsigned long long)dev->in_ctx->dma);
993
994         /* Initialize the cancellation list and watchdog timers for each ep */
995         for (i = 0; i < 31; i++) {
996                 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
997                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
998                 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
999         }
1000
1001         /* Allocate endpoint 0 ring */
1002         dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1003         if (!dev->eps[0].ring)
1004                 goto fail;
1005
1006         dev->udev = udev;
1007
1008         /* Point to output device context in dcbaa. */
1009         xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1010         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1011                  slot_id,
1012                  &xhci->dcbaa->dev_context_ptrs[slot_id],
1013                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1014
1015         trace_xhci_alloc_virt_device(dev);
1016
1017         xhci->devs[slot_id] = dev;
1018
1019         return 1;
1020 fail:
1021
1022         if (dev->in_ctx)
1023                 xhci_free_container_ctx(xhci, dev->in_ctx);
1024         if (dev->out_ctx)
1025                 xhci_free_container_ctx(xhci, dev->out_ctx);
1026         kfree(dev);
1027
1028         return 0;
1029 }
1030
1031 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1032                 struct usb_device *udev)
1033 {
1034         struct xhci_virt_device *virt_dev;
1035         struct xhci_ep_ctx      *ep0_ctx;
1036         struct xhci_ring        *ep_ring;
1037
1038         virt_dev = xhci->devs[udev->slot_id];
1039         ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1040         ep_ring = virt_dev->eps[0].ring;
1041         /*
1042          * FIXME we don't keep track of the dequeue pointer very well after a
1043          * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1044          * host to our enqueue pointer.  This should only be called after a
1045          * configured device has reset, so all control transfers should have
1046          * been completed or cancelled before the reset.
1047          */
1048         ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1049                                                         ep_ring->enqueue)
1050                                    | ep_ring->cycle_state);
1051 }
1052
1053 /*
1054  * The xHCI roothub may have ports of differing speeds in any order in the port
1055  * status registers.  xhci->port_array provides an array of the port speed for
1056  * each offset into the port status registers.
1057  *
1058  * The xHCI hardware wants to know the roothub port number that the USB device
1059  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1060  * know is the index of that port under either the USB 2.0 or the USB 3.0
1061  * roothub, but that doesn't give us the real index into the HW port status
1062  * registers. Call xhci_find_raw_port_number() to get real index.
1063  */
1064 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1065                 struct usb_device *udev)
1066 {
1067         struct usb_device *top_dev;
1068         struct usb_hcd *hcd;
1069
1070         if (udev->speed >= USB_SPEED_SUPER)
1071                 hcd = xhci->shared_hcd;
1072         else
1073                 hcd = xhci->main_hcd;
1074
1075         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1076                         top_dev = top_dev->parent)
1077                 /* Found device below root hub */;
1078
1079         return  xhci_find_raw_port_number(hcd, top_dev->portnum);
1080 }
1081
1082 /* Setup an xHCI virtual device for a Set Address command */
1083 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1084 {
1085         struct xhci_virt_device *dev;
1086         struct xhci_ep_ctx      *ep0_ctx;
1087         struct xhci_slot_ctx    *slot_ctx;
1088         u32                     port_num;
1089         u32                     max_packets;
1090         struct usb_device *top_dev;
1091
1092         dev = xhci->devs[udev->slot_id];
1093         /* Slot ID 0 is reserved */
1094         if (udev->slot_id == 0 || !dev) {
1095                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1096                                 udev->slot_id);
1097                 return -EINVAL;
1098         }
1099         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1100         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1101
1102         /* 3) Only the control endpoint is valid - one endpoint context */
1103         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1104         switch (udev->speed) {
1105         case USB_SPEED_SUPER_PLUS:
1106                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1107                 max_packets = MAX_PACKET(512);
1108                 break;
1109         case USB_SPEED_SUPER:
1110                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1111                 max_packets = MAX_PACKET(512);
1112                 break;
1113         case USB_SPEED_HIGH:
1114                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1115                 max_packets = MAX_PACKET(64);
1116                 break;
1117         /* USB core guesses at a 64-byte max packet first for FS devices */
1118         case USB_SPEED_FULL:
1119                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1120                 max_packets = MAX_PACKET(64);
1121                 break;
1122         case USB_SPEED_LOW:
1123                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1124                 max_packets = MAX_PACKET(8);
1125                 break;
1126         case USB_SPEED_WIRELESS:
1127                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1128                 return -EINVAL;
1129                 break;
1130         default:
1131                 /* Speed was set earlier, this shouldn't happen. */
1132                 return -EINVAL;
1133         }
1134         /* Find the root hub port this device is under */
1135         port_num = xhci_find_real_port_number(xhci, udev);
1136         if (!port_num)
1137                 return -EINVAL;
1138         slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1139         /* Set the port number in the virtual_device to the faked port number */
1140         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1141                         top_dev = top_dev->parent)
1142                 /* Found device below root hub */;
1143         dev->fake_port = top_dev->portnum;
1144         dev->real_port = port_num;
1145         xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1146         xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1147
1148         /* Find the right bandwidth table that this device will be a part of.
1149          * If this is a full speed device attached directly to a root port (or a
1150          * decendent of one), it counts as a primary bandwidth domain, not a
1151          * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1152          * will never be created for the HS root hub.
1153          */
1154         if (!udev->tt || !udev->tt->hub->parent) {
1155                 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1156         } else {
1157                 struct xhci_root_port_bw_info *rh_bw;
1158                 struct xhci_tt_bw_info *tt_bw;
1159
1160                 rh_bw = &xhci->rh_bw[port_num - 1];
1161                 /* Find the right TT. */
1162                 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1163                         if (tt_bw->slot_id != udev->tt->hub->slot_id)
1164                                 continue;
1165
1166                         if (!dev->udev->tt->multi ||
1167                                         (udev->tt->multi &&
1168                                          tt_bw->ttport == dev->udev->ttport)) {
1169                                 dev->bw_table = &tt_bw->bw_table;
1170                                 dev->tt_info = tt_bw;
1171                                 break;
1172                         }
1173                 }
1174                 if (!dev->tt_info)
1175                         xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1176         }
1177
1178         /* Is this a LS/FS device under an external HS hub? */
1179         if (udev->tt && udev->tt->hub->parent) {
1180                 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1181                                                 (udev->ttport << 8));
1182                 if (udev->tt->multi)
1183                         slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1184         }
1185         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1186         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1187
1188         /* Step 4 - ring already allocated */
1189         /* Step 5 */
1190         ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1191
1192         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1193         ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1194                                          max_packets);
1195
1196         ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1197                                    dev->eps[0].ring->cycle_state);
1198
1199         trace_xhci_setup_addressable_virt_device(dev);
1200
1201         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1202
1203         return 0;
1204 }
1205
1206 /*
1207  * Convert interval expressed as 2^(bInterval - 1) == interval into
1208  * straight exponent value 2^n == interval.
1209  *
1210  */
1211 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1212                 struct usb_host_endpoint *ep)
1213 {
1214         unsigned int interval;
1215
1216         interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1217         if (interval != ep->desc.bInterval - 1)
1218                 dev_warn(&udev->dev,
1219                          "ep %#x - rounding interval to %d %sframes\n",
1220                          ep->desc.bEndpointAddress,
1221                          1 << interval,
1222                          udev->speed == USB_SPEED_FULL ? "" : "micro");
1223
1224         if (udev->speed == USB_SPEED_FULL) {
1225                 /*
1226                  * Full speed isoc endpoints specify interval in frames,
1227                  * not microframes. We are using microframes everywhere,
1228                  * so adjust accordingly.
1229                  */
1230                 interval += 3;  /* 1 frame = 2^3 uframes */
1231         }
1232
1233         return interval;
1234 }
1235
1236 /*
1237  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1238  * microframes, rounded down to nearest power of 2.
1239  */
1240 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1241                 struct usb_host_endpoint *ep, unsigned int desc_interval,
1242                 unsigned int min_exponent, unsigned int max_exponent)
1243 {
1244         unsigned int interval;
1245
1246         interval = fls(desc_interval) - 1;
1247         interval = clamp_val(interval, min_exponent, max_exponent);
1248         if ((1 << interval) != desc_interval)
1249                 dev_dbg(&udev->dev,
1250                          "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1251                          ep->desc.bEndpointAddress,
1252                          1 << interval,
1253                          desc_interval);
1254
1255         return interval;
1256 }
1257
1258 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1259                 struct usb_host_endpoint *ep)
1260 {
1261         if (ep->desc.bInterval == 0)
1262                 return 0;
1263         return xhci_microframes_to_exponent(udev, ep,
1264                         ep->desc.bInterval, 0, 15);
1265 }
1266
1267
1268 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1269                 struct usb_host_endpoint *ep)
1270 {
1271         return xhci_microframes_to_exponent(udev, ep,
1272                         ep->desc.bInterval * 8, 3, 10);
1273 }
1274
1275 /* Return the polling or NAK interval.
1276  *
1277  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1278  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1279  *
1280  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1281  * is set to 0.
1282  */
1283 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1284                 struct usb_host_endpoint *ep)
1285 {
1286         unsigned int interval = 0;
1287
1288         switch (udev->speed) {
1289         case USB_SPEED_HIGH:
1290                 /* Max NAK rate */
1291                 if (usb_endpoint_xfer_control(&ep->desc) ||
1292                     usb_endpoint_xfer_bulk(&ep->desc)) {
1293                         interval = xhci_parse_microframe_interval(udev, ep);
1294                         break;
1295                 }
1296                 /* Fall through - SS and HS isoc/int have same decoding */
1297
1298         case USB_SPEED_SUPER_PLUS:
1299         case USB_SPEED_SUPER:
1300                 if (usb_endpoint_xfer_int(&ep->desc) ||
1301                     usb_endpoint_xfer_isoc(&ep->desc)) {
1302                         interval = xhci_parse_exponent_interval(udev, ep);
1303                 }
1304                 break;
1305
1306         case USB_SPEED_FULL:
1307                 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1308                         interval = xhci_parse_exponent_interval(udev, ep);
1309                         break;
1310                 }
1311                 /*
1312                  * Fall through for interrupt endpoint interval decoding
1313                  * since it uses the same rules as low speed interrupt
1314                  * endpoints.
1315                  */
1316                 /* fall through */
1317
1318         case USB_SPEED_LOW:
1319                 if (usb_endpoint_xfer_int(&ep->desc) ||
1320                     usb_endpoint_xfer_isoc(&ep->desc)) {
1321
1322                         interval = xhci_parse_frame_interval(udev, ep);
1323                 }
1324                 break;
1325
1326         default:
1327                 BUG();
1328         }
1329         return interval;
1330 }
1331
1332 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1333  * High speed endpoint descriptors can define "the number of additional
1334  * transaction opportunities per microframe", but that goes in the Max Burst
1335  * endpoint context field.
1336  */
1337 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1338                 struct usb_host_endpoint *ep)
1339 {
1340         if (udev->speed < USB_SPEED_SUPER ||
1341                         !usb_endpoint_xfer_isoc(&ep->desc))
1342                 return 0;
1343         return ep->ss_ep_comp.bmAttributes;
1344 }
1345
1346 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1347                                        struct usb_host_endpoint *ep)
1348 {
1349         /* Super speed and Plus have max burst in ep companion desc */
1350         if (udev->speed >= USB_SPEED_SUPER)
1351                 return ep->ss_ep_comp.bMaxBurst;
1352
1353         if (udev->speed == USB_SPEED_HIGH &&
1354             (usb_endpoint_xfer_isoc(&ep->desc) ||
1355              usb_endpoint_xfer_int(&ep->desc)))
1356                 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1357
1358         return 0;
1359 }
1360
1361 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1362 {
1363         int in;
1364
1365         in = usb_endpoint_dir_in(&ep->desc);
1366
1367         switch (usb_endpoint_type(&ep->desc)) {
1368         case USB_ENDPOINT_XFER_CONTROL:
1369                 return CTRL_EP;
1370         case USB_ENDPOINT_XFER_BULK:
1371                 return in ? BULK_IN_EP : BULK_OUT_EP;
1372         case USB_ENDPOINT_XFER_ISOC:
1373                 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1374         case USB_ENDPOINT_XFER_INT:
1375                 return in ? INT_IN_EP : INT_OUT_EP;
1376         }
1377         return 0;
1378 }
1379
1380 /* Return the maximum endpoint service interval time (ESIT) payload.
1381  * Basically, this is the maxpacket size, multiplied by the burst size
1382  * and mult size.
1383  */
1384 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1385                 struct usb_host_endpoint *ep)
1386 {
1387         int max_burst;
1388         int max_packet;
1389
1390         /* Only applies for interrupt or isochronous endpoints */
1391         if (usb_endpoint_xfer_control(&ep->desc) ||
1392                         usb_endpoint_xfer_bulk(&ep->desc))
1393                 return 0;
1394
1395         /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1396         if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1397             USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1398                 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1399         /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1400         else if (udev->speed >= USB_SPEED_SUPER)
1401                 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1402
1403         max_packet = usb_endpoint_maxp(&ep->desc);
1404         max_burst = usb_endpoint_maxp_mult(&ep->desc);
1405         /* A 0 in max burst means 1 transfer per ESIT */
1406         return max_packet * max_burst;
1407 }
1408
1409 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1410  * Drivers will have to call usb_alloc_streams() to do that.
1411  */
1412 int xhci_endpoint_init(struct xhci_hcd *xhci,
1413                 struct xhci_virt_device *virt_dev,
1414                 struct usb_device *udev,
1415                 struct usb_host_endpoint *ep,
1416                 gfp_t mem_flags)
1417 {
1418         unsigned int ep_index;
1419         struct xhci_ep_ctx *ep_ctx;
1420         struct xhci_ring *ep_ring;
1421         unsigned int max_packet;
1422         enum xhci_ring_type ring_type;
1423         u32 max_esit_payload;
1424         u32 endpoint_type;
1425         unsigned int max_burst;
1426         unsigned int interval;
1427         unsigned int mult;
1428         unsigned int avg_trb_len;
1429         unsigned int err_count = 0;
1430
1431         ep_index = xhci_get_endpoint_index(&ep->desc);
1432         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1433
1434         endpoint_type = xhci_get_endpoint_type(ep);
1435         if (!endpoint_type)
1436                 return -EINVAL;
1437
1438         ring_type = usb_endpoint_type(&ep->desc);
1439
1440         /*
1441          * Get values to fill the endpoint context, mostly from ep descriptor.
1442          * The average TRB buffer lengt for bulk endpoints is unclear as we
1443          * have no clue on scatter gather list entry size. For Isoc and Int,
1444          * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1445          */
1446         max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1447         interval = xhci_get_endpoint_interval(udev, ep);
1448
1449         /* Periodic endpoint bInterval limit quirk */
1450         if (usb_endpoint_xfer_int(&ep->desc) ||
1451             usb_endpoint_xfer_isoc(&ep->desc)) {
1452                 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1453                     udev->speed >= USB_SPEED_HIGH &&
1454                     interval >= 7) {
1455                         interval = 6;
1456                 }
1457         }
1458
1459         mult = xhci_get_endpoint_mult(udev, ep);
1460         max_packet = usb_endpoint_maxp(&ep->desc);
1461         max_burst = xhci_get_endpoint_max_burst(udev, ep);
1462         avg_trb_len = max_esit_payload;
1463
1464         /* FIXME dig Mult and streams info out of ep companion desc */
1465
1466         /* Allow 3 retries for everything but isoc, set CErr = 3 */
1467         if (!usb_endpoint_xfer_isoc(&ep->desc))
1468                 err_count = 3;
1469         /* Some devices get this wrong */
1470         if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH)
1471                 max_packet = 512;
1472         /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1473         if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1474                 avg_trb_len = 8;
1475         /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1476         if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1477                 mult = 0;
1478
1479         /* Set up the endpoint ring */
1480         virt_dev->eps[ep_index].new_ring =
1481                 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1482         if (!virt_dev->eps[ep_index].new_ring)
1483                 return -ENOMEM;
1484
1485         virt_dev->eps[ep_index].skip = false;
1486         ep_ring = virt_dev->eps[ep_index].new_ring;
1487
1488         /* Fill the endpoint context */
1489         ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1490                                       EP_INTERVAL(interval) |
1491                                       EP_MULT(mult));
1492         ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1493                                        MAX_PACKET(max_packet) |
1494                                        MAX_BURST(max_burst) |
1495                                        ERROR_COUNT(err_count));
1496         ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1497                                   ep_ring->cycle_state);
1498
1499         ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1500                                       EP_AVG_TRB_LENGTH(avg_trb_len));
1501
1502         return 0;
1503 }
1504
1505 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1506                 struct xhci_virt_device *virt_dev,
1507                 struct usb_host_endpoint *ep)
1508 {
1509         unsigned int ep_index;
1510         struct xhci_ep_ctx *ep_ctx;
1511
1512         ep_index = xhci_get_endpoint_index(&ep->desc);
1513         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1514
1515         ep_ctx->ep_info = 0;
1516         ep_ctx->ep_info2 = 0;
1517         ep_ctx->deq = 0;
1518         ep_ctx->tx_info = 0;
1519         /* Don't free the endpoint ring until the set interface or configuration
1520          * request succeeds.
1521          */
1522 }
1523
1524 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1525 {
1526         bw_info->ep_interval = 0;
1527         bw_info->mult = 0;
1528         bw_info->num_packets = 0;
1529         bw_info->max_packet_size = 0;
1530         bw_info->type = 0;
1531         bw_info->max_esit_payload = 0;
1532 }
1533
1534 void xhci_update_bw_info(struct xhci_hcd *xhci,
1535                 struct xhci_container_ctx *in_ctx,
1536                 struct xhci_input_control_ctx *ctrl_ctx,
1537                 struct xhci_virt_device *virt_dev)
1538 {
1539         struct xhci_bw_info *bw_info;
1540         struct xhci_ep_ctx *ep_ctx;
1541         unsigned int ep_type;
1542         int i;
1543
1544         for (i = 1; i < 31; i++) {
1545                 bw_info = &virt_dev->eps[i].bw_info;
1546
1547                 /* We can't tell what endpoint type is being dropped, but
1548                  * unconditionally clearing the bandwidth info for non-periodic
1549                  * endpoints should be harmless because the info will never be
1550                  * set in the first place.
1551                  */
1552                 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1553                         /* Dropped endpoint */
1554                         xhci_clear_endpoint_bw_info(bw_info);
1555                         continue;
1556                 }
1557
1558                 if (EP_IS_ADDED(ctrl_ctx, i)) {
1559                         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1560                         ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1561
1562                         /* Ignore non-periodic endpoints */
1563                         if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1564                                         ep_type != ISOC_IN_EP &&
1565                                         ep_type != INT_IN_EP)
1566                                 continue;
1567
1568                         /* Added or changed endpoint */
1569                         bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1570                                         le32_to_cpu(ep_ctx->ep_info));
1571                         /* Number of packets and mult are zero-based in the
1572                          * input context, but we want one-based for the
1573                          * interval table.
1574                          */
1575                         bw_info->mult = CTX_TO_EP_MULT(
1576                                         le32_to_cpu(ep_ctx->ep_info)) + 1;
1577                         bw_info->num_packets = CTX_TO_MAX_BURST(
1578                                         le32_to_cpu(ep_ctx->ep_info2)) + 1;
1579                         bw_info->max_packet_size = MAX_PACKET_DECODED(
1580                                         le32_to_cpu(ep_ctx->ep_info2));
1581                         bw_info->type = ep_type;
1582                         bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1583                                         le32_to_cpu(ep_ctx->tx_info));
1584                 }
1585         }
1586 }
1587
1588 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1589  * Useful when you want to change one particular aspect of the endpoint and then
1590  * issue a configure endpoint command.
1591  */
1592 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1593                 struct xhci_container_ctx *in_ctx,
1594                 struct xhci_container_ctx *out_ctx,
1595                 unsigned int ep_index)
1596 {
1597         struct xhci_ep_ctx *out_ep_ctx;
1598         struct xhci_ep_ctx *in_ep_ctx;
1599
1600         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1601         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1602
1603         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1604         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1605         in_ep_ctx->deq = out_ep_ctx->deq;
1606         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1607 }
1608
1609 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1610  * Useful when you want to change one particular aspect of the endpoint and then
1611  * issue a configure endpoint command.  Only the context entries field matters,
1612  * but we'll copy the whole thing anyway.
1613  */
1614 void xhci_slot_copy(struct xhci_hcd *xhci,
1615                 struct xhci_container_ctx *in_ctx,
1616                 struct xhci_container_ctx *out_ctx)
1617 {
1618         struct xhci_slot_ctx *in_slot_ctx;
1619         struct xhci_slot_ctx *out_slot_ctx;
1620
1621         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1622         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1623
1624         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1625         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1626         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1627         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1628 }
1629
1630 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1631 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1632 {
1633         int i;
1634         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1635         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1636
1637         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1638                         "Allocating %d scratchpad buffers", num_sp);
1639
1640         if (!num_sp)
1641                 return 0;
1642
1643         xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1644         if (!xhci->scratchpad)
1645                 goto fail_sp;
1646
1647         xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1648                                      num_sp * sizeof(u64),
1649                                      &xhci->scratchpad->sp_dma, flags);
1650         if (!xhci->scratchpad->sp_array)
1651                 goto fail_sp2;
1652
1653         xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1654         if (!xhci->scratchpad->sp_buffers)
1655                 goto fail_sp3;
1656
1657         xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1658         for (i = 0; i < num_sp; i++) {
1659                 dma_addr_t dma;
1660                 void *buf = dma_zalloc_coherent(dev, xhci->page_size, &dma,
1661                                 flags);
1662                 if (!buf)
1663                         goto fail_sp4;
1664
1665                 xhci->scratchpad->sp_array[i] = dma;
1666                 xhci->scratchpad->sp_buffers[i] = buf;
1667         }
1668
1669         return 0;
1670
1671  fail_sp4:
1672         for (i = i - 1; i >= 0; i--) {
1673                 dma_free_coherent(dev, xhci->page_size,
1674                                     xhci->scratchpad->sp_buffers[i],
1675                                     xhci->scratchpad->sp_array[i]);
1676         }
1677
1678         kfree(xhci->scratchpad->sp_buffers);
1679
1680  fail_sp3:
1681         dma_free_coherent(dev, num_sp * sizeof(u64),
1682                             xhci->scratchpad->sp_array,
1683                             xhci->scratchpad->sp_dma);
1684
1685  fail_sp2:
1686         kfree(xhci->scratchpad);
1687         xhci->scratchpad = NULL;
1688
1689  fail_sp:
1690         return -ENOMEM;
1691 }
1692
1693 static void scratchpad_free(struct xhci_hcd *xhci)
1694 {
1695         int num_sp;
1696         int i;
1697         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1698
1699         if (!xhci->scratchpad)
1700                 return;
1701
1702         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1703
1704         for (i = 0; i < num_sp; i++) {
1705                 dma_free_coherent(dev, xhci->page_size,
1706                                     xhci->scratchpad->sp_buffers[i],
1707                                     xhci->scratchpad->sp_array[i]);
1708         }
1709         kfree(xhci->scratchpad->sp_buffers);
1710         dma_free_coherent(dev, num_sp * sizeof(u64),
1711                             xhci->scratchpad->sp_array,
1712                             xhci->scratchpad->sp_dma);
1713         kfree(xhci->scratchpad);
1714         xhci->scratchpad = NULL;
1715 }
1716
1717 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1718                 bool allocate_in_ctx, bool allocate_completion,
1719                 gfp_t mem_flags)
1720 {
1721         struct xhci_command *command;
1722
1723         command = kzalloc(sizeof(*command), mem_flags);
1724         if (!command)
1725                 return NULL;
1726
1727         if (allocate_in_ctx) {
1728                 command->in_ctx =
1729                         xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1730                                         mem_flags);
1731                 if (!command->in_ctx) {
1732                         kfree(command);
1733                         return NULL;
1734                 }
1735         }
1736
1737         if (allocate_completion) {
1738                 command->completion =
1739                         kzalloc(sizeof(struct completion), mem_flags);
1740                 if (!command->completion) {
1741                         xhci_free_container_ctx(xhci, command->in_ctx);
1742                         kfree(command);
1743                         return NULL;
1744                 }
1745                 init_completion(command->completion);
1746         }
1747
1748         command->status = 0;
1749         INIT_LIST_HEAD(&command->cmd_list);
1750         return command;
1751 }
1752
1753 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1754 {
1755         kfree(urb_priv);
1756 }
1757
1758 void xhci_free_command(struct xhci_hcd *xhci,
1759                 struct xhci_command *command)
1760 {
1761         xhci_free_container_ctx(xhci,
1762                         command->in_ctx);
1763         kfree(command->completion);
1764         kfree(command);
1765 }
1766
1767 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1768 {
1769         struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
1770         int size;
1771         int i, j, num_ports;
1772
1773         cancel_delayed_work_sync(&xhci->cmd_timer);
1774
1775         /* Free the Event Ring Segment Table and the actual Event Ring */
1776         size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1777         if (xhci->erst.entries)
1778                 dma_free_coherent(dev, size,
1779                                 xhci->erst.entries, xhci->erst.erst_dma_addr);
1780         xhci->erst.entries = NULL;
1781         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1782         if (xhci->event_ring)
1783                 xhci_ring_free(xhci, xhci->event_ring);
1784         xhci->event_ring = NULL;
1785         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1786
1787         if (xhci->lpm_command)
1788                 xhci_free_command(xhci, xhci->lpm_command);
1789         xhci->lpm_command = NULL;
1790         if (xhci->cmd_ring)
1791                 xhci_ring_free(xhci, xhci->cmd_ring);
1792         xhci->cmd_ring = NULL;
1793         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1794         xhci_cleanup_command_queue(xhci);
1795
1796         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1797         for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1798                 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1799                 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1800                         struct list_head *ep = &bwt->interval_bw[j].endpoints;
1801                         while (!list_empty(ep))
1802                                 list_del_init(ep->next);
1803                 }
1804         }
1805
1806         for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1807                 xhci_free_virt_devices_depth_first(xhci, i);
1808
1809         dma_pool_destroy(xhci->segment_pool);
1810         xhci->segment_pool = NULL;
1811         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1812
1813         dma_pool_destroy(xhci->device_pool);
1814         xhci->device_pool = NULL;
1815         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1816
1817         dma_pool_destroy(xhci->small_streams_pool);
1818         xhci->small_streams_pool = NULL;
1819         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1820                         "Freed small stream array pool");
1821
1822         dma_pool_destroy(xhci->medium_streams_pool);
1823         xhci->medium_streams_pool = NULL;
1824         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1825                         "Freed medium stream array pool");
1826
1827         if (xhci->dcbaa)
1828                 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1829                                 xhci->dcbaa, xhci->dcbaa->dma);
1830         xhci->dcbaa = NULL;
1831
1832         scratchpad_free(xhci);
1833
1834         if (!xhci->rh_bw)
1835                 goto no_bw;
1836
1837         for (i = 0; i < num_ports; i++) {
1838                 struct xhci_tt_bw_info *tt, *n;
1839                 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1840                         list_del(&tt->tt_list);
1841                         kfree(tt);
1842                 }
1843         }
1844
1845 no_bw:
1846         xhci->cmd_ring_reserved_trbs = 0;
1847         xhci->num_usb2_ports = 0;
1848         xhci->num_usb3_ports = 0;
1849         xhci->num_active_eps = 0;
1850         kfree(xhci->usb2_ports);
1851         kfree(xhci->usb3_ports);
1852         kfree(xhci->port_array);
1853         kfree(xhci->rh_bw);
1854         kfree(xhci->ext_caps);
1855
1856         xhci->usb2_ports = NULL;
1857         xhci->usb3_ports = NULL;
1858         xhci->port_array = NULL;
1859         xhci->rh_bw = NULL;
1860         xhci->ext_caps = NULL;
1861
1862         xhci->page_size = 0;
1863         xhci->page_shift = 0;
1864         xhci->bus_state[0].bus_suspended = 0;
1865         xhci->bus_state[1].bus_suspended = 0;
1866 }
1867
1868 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1869                 struct xhci_segment *input_seg,
1870                 union xhci_trb *start_trb,
1871                 union xhci_trb *end_trb,
1872                 dma_addr_t input_dma,
1873                 struct xhci_segment *result_seg,
1874                 char *test_name, int test_number)
1875 {
1876         unsigned long long start_dma;
1877         unsigned long long end_dma;
1878         struct xhci_segment *seg;
1879
1880         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1881         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1882
1883         seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1884         if (seg != result_seg) {
1885                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1886                                 test_name, test_number);
1887                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1888                                 "input DMA 0x%llx\n",
1889                                 input_seg,
1890                                 (unsigned long long) input_dma);
1891                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1892                                 "ending TRB %p (0x%llx DMA)\n",
1893                                 start_trb, start_dma,
1894                                 end_trb, end_dma);
1895                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1896                                 result_seg, seg);
1897                 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1898                           true);
1899                 return -1;
1900         }
1901         return 0;
1902 }
1903
1904 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1905 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1906 {
1907         struct {
1908                 dma_addr_t              input_dma;
1909                 struct xhci_segment     *result_seg;
1910         } simple_test_vector [] = {
1911                 /* A zeroed DMA field should fail */
1912                 { 0, NULL },
1913                 /* One TRB before the ring start should fail */
1914                 { xhci->event_ring->first_seg->dma - 16, NULL },
1915                 /* One byte before the ring start should fail */
1916                 { xhci->event_ring->first_seg->dma - 1, NULL },
1917                 /* Starting TRB should succeed */
1918                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1919                 /* Ending TRB should succeed */
1920                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1921                         xhci->event_ring->first_seg },
1922                 /* One byte after the ring end should fail */
1923                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1924                 /* One TRB after the ring end should fail */
1925                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1926                 /* An address of all ones should fail */
1927                 { (dma_addr_t) (~0), NULL },
1928         };
1929         struct {
1930                 struct xhci_segment     *input_seg;
1931                 union xhci_trb          *start_trb;
1932                 union xhci_trb          *end_trb;
1933                 dma_addr_t              input_dma;
1934                 struct xhci_segment     *result_seg;
1935         } complex_test_vector [] = {
1936                 /* Test feeding a valid DMA address from a different ring */
1937                 {       .input_seg = xhci->event_ring->first_seg,
1938                         .start_trb = xhci->event_ring->first_seg->trbs,
1939                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1940                         .input_dma = xhci->cmd_ring->first_seg->dma,
1941                         .result_seg = NULL,
1942                 },
1943                 /* Test feeding a valid end TRB from a different ring */
1944                 {       .input_seg = xhci->event_ring->first_seg,
1945                         .start_trb = xhci->event_ring->first_seg->trbs,
1946                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1947                         .input_dma = xhci->cmd_ring->first_seg->dma,
1948                         .result_seg = NULL,
1949                 },
1950                 /* Test feeding a valid start and end TRB from a different ring */
1951                 {       .input_seg = xhci->event_ring->first_seg,
1952                         .start_trb = xhci->cmd_ring->first_seg->trbs,
1953                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1954                         .input_dma = xhci->cmd_ring->first_seg->dma,
1955                         .result_seg = NULL,
1956                 },
1957                 /* TRB in this ring, but after this TD */
1958                 {       .input_seg = xhci->event_ring->first_seg,
1959                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
1960                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
1961                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1962                         .result_seg = NULL,
1963                 },
1964                 /* TRB in this ring, but before this TD */
1965                 {       .input_seg = xhci->event_ring->first_seg,
1966                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
1967                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
1968                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1969                         .result_seg = NULL,
1970                 },
1971                 /* TRB in this ring, but after this wrapped TD */
1972                 {       .input_seg = xhci->event_ring->first_seg,
1973                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1974                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1975                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1976                         .result_seg = NULL,
1977                 },
1978                 /* TRB in this ring, but before this wrapped TD */
1979                 {       .input_seg = xhci->event_ring->first_seg,
1980                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1981                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1982                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1983                         .result_seg = NULL,
1984                 },
1985                 /* TRB not in this ring, and we have a wrapped TD */
1986                 {       .input_seg = xhci->event_ring->first_seg,
1987                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1988                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1989                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1990                         .result_seg = NULL,
1991                 },
1992         };
1993
1994         unsigned int num_tests;
1995         int i, ret;
1996
1997         num_tests = ARRAY_SIZE(simple_test_vector);
1998         for (i = 0; i < num_tests; i++) {
1999                 ret = xhci_test_trb_in_td(xhci,
2000                                 xhci->event_ring->first_seg,
2001                                 xhci->event_ring->first_seg->trbs,
2002                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2003                                 simple_test_vector[i].input_dma,
2004                                 simple_test_vector[i].result_seg,
2005                                 "Simple", i);
2006                 if (ret < 0)
2007                         return ret;
2008         }
2009
2010         num_tests = ARRAY_SIZE(complex_test_vector);
2011         for (i = 0; i < num_tests; i++) {
2012                 ret = xhci_test_trb_in_td(xhci,
2013                                 complex_test_vector[i].input_seg,
2014                                 complex_test_vector[i].start_trb,
2015                                 complex_test_vector[i].end_trb,
2016                                 complex_test_vector[i].input_dma,
2017                                 complex_test_vector[i].result_seg,
2018                                 "Complex", i);
2019                 if (ret < 0)
2020                         return ret;
2021         }
2022         xhci_dbg(xhci, "TRB math tests passed.\n");
2023         return 0;
2024 }
2025
2026 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2027 {
2028         u64 temp;
2029         dma_addr_t deq;
2030
2031         deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2032                         xhci->event_ring->dequeue);
2033         if (deq == 0 && !in_interrupt())
2034                 xhci_warn(xhci, "WARN something wrong with SW event ring "
2035                                 "dequeue ptr.\n");
2036         /* Update HC event ring dequeue pointer */
2037         temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2038         temp &= ERST_PTR_MASK;
2039         /* Don't clear the EHB bit (which is RW1C) because
2040          * there might be more events to service.
2041          */
2042         temp &= ~ERST_EHB;
2043         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2044                         "// Write event ring dequeue pointer, "
2045                         "preserving EHB bit");
2046         xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2047                         &xhci->ir_set->erst_dequeue);
2048 }
2049
2050 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2051                 __le32 __iomem *addr, int max_caps)
2052 {
2053         u32 temp, port_offset, port_count;
2054         int i;
2055         u8 major_revision, minor_revision;
2056         struct xhci_hub *rhub;
2057
2058         temp = readl(addr);
2059         major_revision = XHCI_EXT_PORT_MAJOR(temp);
2060         minor_revision = XHCI_EXT_PORT_MINOR(temp);
2061
2062         if (major_revision == 0x03) {
2063                 rhub = &xhci->usb3_rhub;
2064         } else if (major_revision <= 0x02) {
2065                 rhub = &xhci->usb2_rhub;
2066         } else {
2067                 xhci_warn(xhci, "Ignoring unknown port speed, "
2068                                 "Ext Cap %p, revision = 0x%x\n",
2069                                 addr, major_revision);
2070                 /* Ignoring port protocol we can't understand. FIXME */
2071                 return;
2072         }
2073         rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2074
2075         if (rhub->min_rev < minor_revision)
2076                 rhub->min_rev = minor_revision;
2077
2078         /* Port offset and count in the third dword, see section 7.2 */
2079         temp = readl(addr + 2);
2080         port_offset = XHCI_EXT_PORT_OFF(temp);
2081         port_count = XHCI_EXT_PORT_COUNT(temp);
2082         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2083                         "Ext Cap %p, port offset = %u, "
2084                         "count = %u, revision = 0x%x",
2085                         addr, port_offset, port_count, major_revision);
2086         /* Port count includes the current port offset */
2087         if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2088                 /* WTF? "Valid values are â€˜1’ to MaxPorts" */
2089                 return;
2090
2091         rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2092         if (rhub->psi_count) {
2093                 rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2094                                     GFP_KERNEL);
2095                 if (!rhub->psi)
2096                         rhub->psi_count = 0;
2097
2098                 rhub->psi_uid_count++;
2099                 for (i = 0; i < rhub->psi_count; i++) {
2100                         rhub->psi[i] = readl(addr + 4 + i);
2101
2102                         /* count unique ID values, two consecutive entries can
2103                          * have the same ID if link is assymetric
2104                          */
2105                         if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2106                                   XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2107                                 rhub->psi_uid_count++;
2108
2109                         xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2110                                   XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2111                                   XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2112                                   XHCI_EXT_PORT_PLT(rhub->psi[i]),
2113                                   XHCI_EXT_PORT_PFD(rhub->psi[i]),
2114                                   XHCI_EXT_PORT_LP(rhub->psi[i]),
2115                                   XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2116                 }
2117         }
2118         /* cache usb2 port capabilities */
2119         if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2120                 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2121
2122         /* Check the host's USB2 LPM capability */
2123         if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2124                         (temp & XHCI_L1C)) {
2125                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2126                                 "xHCI 0.96: support USB2 software lpm");
2127                 xhci->sw_lpm_support = 1;
2128         }
2129
2130         if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2131                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2132                                 "xHCI 1.0: support USB2 software lpm");
2133                 xhci->sw_lpm_support = 1;
2134                 if (temp & XHCI_HLC) {
2135                         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2136                                         "xHCI 1.0: support USB2 hardware lpm");
2137                         xhci->hw_lpm_support = 1;
2138                 }
2139         }
2140
2141         port_offset--;
2142         for (i = port_offset; i < (port_offset + port_count); i++) {
2143                 /* Duplicate entry.  Ignore the port if the revisions differ. */
2144                 if (xhci->port_array[i] != 0) {
2145                         xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2146                                         " port %u\n", addr, i);
2147                         xhci_warn(xhci, "Port was marked as USB %u, "
2148                                         "duplicated as USB %u\n",
2149                                         xhci->port_array[i], major_revision);
2150                         /* Only adjust the roothub port counts if we haven't
2151                          * found a similar duplicate.
2152                          */
2153                         if (xhci->port_array[i] != major_revision &&
2154                                 xhci->port_array[i] != DUPLICATE_ENTRY) {
2155                                 if (xhci->port_array[i] == 0x03)
2156                                         xhci->num_usb3_ports--;
2157                                 else
2158                                         xhci->num_usb2_ports--;
2159                                 xhci->port_array[i] = DUPLICATE_ENTRY;
2160                         }
2161                         /* FIXME: Should we disable the port? */
2162                         continue;
2163                 }
2164                 xhci->port_array[i] = major_revision;
2165                 if (major_revision == 0x03)
2166                         xhci->num_usb3_ports++;
2167                 else
2168                         xhci->num_usb2_ports++;
2169         }
2170         /* FIXME: Should we disable ports not in the Extended Capabilities? */
2171 }
2172
2173 /*
2174  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2175  * specify what speeds each port is supposed to be.  We can't count on the port
2176  * speed bits in the PORTSC register being correct until a device is connected,
2177  * but we need to set up the two fake roothubs with the correct number of USB
2178  * 3.0 and USB 2.0 ports at host controller initialization time.
2179  */
2180 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2181 {
2182         void __iomem *base;
2183         u32 offset;
2184         unsigned int num_ports;
2185         int i, j, port_index;
2186         int cap_count = 0;
2187         u32 cap_start;
2188
2189         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2190         xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2191         if (!xhci->port_array)
2192                 return -ENOMEM;
2193
2194         xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2195         if (!xhci->rh_bw)
2196                 return -ENOMEM;
2197         for (i = 0; i < num_ports; i++) {
2198                 struct xhci_interval_bw_table *bw_table;
2199
2200                 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2201                 bw_table = &xhci->rh_bw[i].bw_table;
2202                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2203                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2204         }
2205         base = &xhci->cap_regs->hc_capbase;
2206
2207         cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2208         if (!cap_start) {
2209                 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2210                 return -ENODEV;
2211         }
2212
2213         offset = cap_start;
2214         /* count extended protocol capability entries for later caching */
2215         while (offset) {
2216                 cap_count++;
2217                 offset = xhci_find_next_ext_cap(base, offset,
2218                                                       XHCI_EXT_CAPS_PROTOCOL);
2219         }
2220
2221         xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2222         if (!xhci->ext_caps)
2223                 return -ENOMEM;
2224
2225         offset = cap_start;
2226
2227         while (offset) {
2228                 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2229                 if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2230                         break;
2231                 offset = xhci_find_next_ext_cap(base, offset,
2232                                                 XHCI_EXT_CAPS_PROTOCOL);
2233         }
2234
2235         if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2236                 xhci_warn(xhci, "No ports on the roothubs?\n");
2237                 return -ENODEV;
2238         }
2239         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2240                         "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2241                         xhci->num_usb2_ports, xhci->num_usb3_ports);
2242
2243         /* Place limits on the number of roothub ports so that the hub
2244          * descriptors aren't longer than the USB core will allocate.
2245          */
2246         if (xhci->num_usb3_ports > USB_SS_MAXPORTS) {
2247                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2248                                 "Limiting USB 3.0 roothub ports to %u.",
2249                                 USB_SS_MAXPORTS);
2250                 xhci->num_usb3_ports = USB_SS_MAXPORTS;
2251         }
2252         if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2253                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2254                                 "Limiting USB 2.0 roothub ports to %u.",
2255                                 USB_MAXCHILDREN);
2256                 xhci->num_usb2_ports = USB_MAXCHILDREN;
2257         }
2258
2259         /*
2260          * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2261          * Not sure how the USB core will handle a hub with no ports...
2262          */
2263         if (xhci->num_usb2_ports) {
2264                 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2265                                 xhci->num_usb2_ports, flags);
2266                 if (!xhci->usb2_ports)
2267                         return -ENOMEM;
2268
2269                 port_index = 0;
2270                 for (i = 0; i < num_ports; i++) {
2271                         if (xhci->port_array[i] == 0x03 ||
2272                                         xhci->port_array[i] == 0 ||
2273                                         xhci->port_array[i] == DUPLICATE_ENTRY)
2274                                 continue;
2275
2276                         xhci->usb2_ports[port_index] =
2277                                 &xhci->op_regs->port_status_base +
2278                                 NUM_PORT_REGS*i;
2279                         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2280                                         "USB 2.0 port at index %u, "
2281                                         "addr = %p", i,
2282                                         xhci->usb2_ports[port_index]);
2283                         port_index++;
2284                         if (port_index == xhci->num_usb2_ports)
2285                                 break;
2286                 }
2287         }
2288         if (xhci->num_usb3_ports) {
2289                 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2290                                 xhci->num_usb3_ports, flags);
2291                 if (!xhci->usb3_ports)
2292                         return -ENOMEM;
2293
2294                 port_index = 0;
2295                 for (i = 0; i < num_ports; i++)
2296                         if (xhci->port_array[i] == 0x03) {
2297                                 xhci->usb3_ports[port_index] =
2298                                         &xhci->op_regs->port_status_base +
2299                                         NUM_PORT_REGS*i;
2300                                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2301                                                 "USB 3.0 port at index %u, "
2302                                                 "addr = %p", i,
2303                                                 xhci->usb3_ports[port_index]);
2304                                 port_index++;
2305                                 if (port_index == xhci->num_usb3_ports)
2306                                         break;
2307                         }
2308         }
2309         return 0;
2310 }
2311
2312 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2313 {
2314         dma_addr_t      dma;
2315         struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
2316         unsigned int    val, val2;
2317         u64             val_64;
2318         struct xhci_segment     *seg;
2319         u32 page_size, temp;
2320         int i;
2321
2322         INIT_LIST_HEAD(&xhci->cmd_list);
2323
2324         /* init command timeout work */
2325         INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2326         init_completion(&xhci->cmd_ring_stop_completion);
2327
2328         page_size = readl(&xhci->op_regs->page_size);
2329         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2330                         "Supported page size register = 0x%x", page_size);
2331         for (i = 0; i < 16; i++) {
2332                 if ((0x1 & page_size) != 0)
2333                         break;
2334                 page_size = page_size >> 1;
2335         }
2336         if (i < 16)
2337                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2338                         "Supported page size of %iK", (1 << (i+12)) / 1024);
2339         else
2340                 xhci_warn(xhci, "WARN: no supported page size\n");
2341         /* Use 4K pages, since that's common and the minimum the HC supports */
2342         xhci->page_shift = 12;
2343         xhci->page_size = 1 << xhci->page_shift;
2344         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2345                         "HCD page size set to %iK", xhci->page_size / 1024);
2346
2347         /*
2348          * Program the Number of Device Slots Enabled field in the CONFIG
2349          * register with the max value of slots the HC can handle.
2350          */
2351         val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2352         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2353                         "// xHC can handle at most %d device slots.", val);
2354         val2 = readl(&xhci->op_regs->config_reg);
2355         val |= (val2 & ~HCS_SLOTS_MASK);
2356         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2357                         "// Setting Max device slots reg = 0x%x.", val);
2358         writel(val, &xhci->op_regs->config_reg);
2359
2360         /*
2361          * xHCI section 5.4.6 - doorbell array must be
2362          * "physically contiguous and 64-byte (cache line) aligned".
2363          */
2364         xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2365                         flags);
2366         if (!xhci->dcbaa)
2367                 goto fail;
2368         memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2369         xhci->dcbaa->dma = dma;
2370         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2371                         "// Device context base array address = 0x%llx (DMA), %p (virt)",
2372                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2373         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2374
2375         /*
2376          * Initialize the ring segment pool.  The ring must be a contiguous
2377          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2378          * however, the command ring segment needs 64-byte aligned segments
2379          * and our use of dma addresses in the trb_address_map radix tree needs
2380          * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2381          */
2382         xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2383                         TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2384
2385         /* See Table 46 and Note on Figure 55 */
2386         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2387                         2112, 64, xhci->page_size);
2388         if (!xhci->segment_pool || !xhci->device_pool)
2389                 goto fail;
2390
2391         /* Linear stream context arrays don't have any boundary restrictions,
2392          * and only need to be 16-byte aligned.
2393          */
2394         xhci->small_streams_pool =
2395                 dma_pool_create("xHCI 256 byte stream ctx arrays",
2396                         dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2397         xhci->medium_streams_pool =
2398                 dma_pool_create("xHCI 1KB stream ctx arrays",
2399                         dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2400         /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2401          * will be allocated with dma_alloc_coherent()
2402          */
2403
2404         if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2405                 goto fail;
2406
2407         /* Set up the command ring to have one segments for now. */
2408         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2409         if (!xhci->cmd_ring)
2410                 goto fail;
2411         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2412                         "Allocated command ring at %p", xhci->cmd_ring);
2413         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2414                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
2415
2416         /* Set the address in the Command Ring Control register */
2417         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2418         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2419                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2420                 xhci->cmd_ring->cycle_state;
2421         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2422                         "// Setting command ring address to 0x%016llx", val_64);
2423         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2424         xhci_dbg_cmd_ptrs(xhci);
2425
2426         xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2427         if (!xhci->lpm_command)
2428                 goto fail;
2429
2430         /* Reserve one command ring TRB for disabling LPM.
2431          * Since the USB core grabs the shared usb_bus bandwidth mutex before
2432          * disabling LPM, we only need to reserve one TRB for all devices.
2433          */
2434         xhci->cmd_ring_reserved_trbs++;
2435
2436         val = readl(&xhci->cap_regs->db_off);
2437         val &= DBOFF_MASK;
2438         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2439                         "// Doorbell array is located at offset 0x%x"
2440                         " from cap regs base addr", val);
2441         xhci->dba = (void __iomem *) xhci->cap_regs + val;
2442         xhci_dbg_regs(xhci);
2443         xhci_print_run_regs(xhci);
2444         /* Set ir_set to interrupt register set 0 */
2445         xhci->ir_set = &xhci->run_regs->ir_set[0];
2446
2447         /*
2448          * Event ring setup: Allocate a normal ring, but also setup
2449          * the event ring segment table (ERST).  Section 4.9.3.
2450          */
2451         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2452         xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2453                                         0, flags);
2454         if (!xhci->event_ring)
2455                 goto fail;
2456         if (xhci_check_trb_in_td_math(xhci) < 0)
2457                 goto fail;
2458
2459         xhci->erst.entries = dma_alloc_coherent(dev,
2460                         sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2461                         flags);
2462         if (!xhci->erst.entries)
2463                 goto fail;
2464         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2465                         "// Allocated event ring segment table at 0x%llx",
2466                         (unsigned long long)dma);
2467
2468         memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2469         xhci->erst.num_entries = ERST_NUM_SEGS;
2470         xhci->erst.erst_dma_addr = dma;
2471         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2472                         "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2473                         xhci->erst.num_entries,
2474                         xhci->erst.entries,
2475                         (unsigned long long)xhci->erst.erst_dma_addr);
2476
2477         /* set ring base address and size for each segment table entry */
2478         for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2479                 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2480                 entry->seg_addr = cpu_to_le64(seg->dma);
2481                 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2482                 entry->rsvd = 0;
2483                 seg = seg->next;
2484         }
2485
2486         /* set ERST count with the number of entries in the segment table */
2487         val = readl(&xhci->ir_set->erst_size);
2488         val &= ERST_SIZE_MASK;
2489         val |= ERST_NUM_SEGS;
2490         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2491                         "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2492                         val);
2493         writel(val, &xhci->ir_set->erst_size);
2494
2495         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2496                         "// Set ERST entries to point to event ring.");
2497         /* set the segment table base address */
2498         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2499                         "// Set ERST base address for ir_set 0 = 0x%llx",
2500                         (unsigned long long)xhci->erst.erst_dma_addr);
2501         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2502         val_64 &= ERST_PTR_MASK;
2503         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2504         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2505
2506         /* Set the event ring dequeue address */
2507         xhci_set_hc_event_deq(xhci);
2508         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2509                         "Wrote ERST address to ir_set 0.");
2510         xhci_print_ir_set(xhci, 0);
2511
2512         /*
2513          * XXX: Might need to set the Interrupter Moderation Register to
2514          * something other than the default (~1ms minimum between interrupts).
2515          * See section 5.5.1.2.
2516          */
2517         for (i = 0; i < MAX_HC_SLOTS; i++)
2518                 xhci->devs[i] = NULL;
2519         for (i = 0; i < USB_MAXCHILDREN; i++) {
2520                 xhci->bus_state[0].resume_done[i] = 0;
2521                 xhci->bus_state[1].resume_done[i] = 0;
2522                 /* Only the USB 2.0 completions will ever be used. */
2523                 init_completion(&xhci->bus_state[1].rexit_done[i]);
2524         }
2525
2526         if (scratchpad_alloc(xhci, flags))
2527                 goto fail;
2528         if (xhci_setup_port_arrays(xhci, flags))
2529                 goto fail;
2530
2531         /* Enable USB 3.0 device notifications for function remote wake, which
2532          * is necessary for allowing USB 3.0 devices to do remote wakeup from
2533          * U3 (device suspend).
2534          */
2535         temp = readl(&xhci->op_regs->dev_notification);
2536         temp &= ~DEV_NOTE_MASK;
2537         temp |= DEV_NOTE_FWAKE;
2538         writel(temp, &xhci->op_regs->dev_notification);
2539
2540         return 0;
2541
2542 fail:
2543         xhci_halt(xhci);
2544         xhci_reset(xhci);
2545         xhci_mem_cleanup(xhci);
2546         return -ENOMEM;
2547 }