Merge tag 'tty-5.10-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
[platform/kernel/linux-rpi.git] / drivers / usb / host / xhci-mem.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/usb.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16
17 #include "xhci.h"
18 #include "xhci-trace.h"
19 #include "xhci-debugfs.h"
20
21 /*
22  * Allocates a generic ring segment from the ring pool, sets the dma address,
23  * initializes the segment to zero, and sets the private next pointer to NULL.
24  *
25  * Section 4.11.1.1:
26  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
27  */
28 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
29                                                unsigned int cycle_state,
30                                                unsigned int max_packet,
31                                                gfp_t flags)
32 {
33         struct xhci_segment *seg;
34         dma_addr_t      dma;
35         int             i;
36         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
37
38         seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
39         if (!seg)
40                 return NULL;
41
42         seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
43         if (!seg->trbs) {
44                 kfree(seg);
45                 return NULL;
46         }
47
48         if (max_packet) {
49                 seg->bounce_buf = kzalloc_node(max_packet, flags,
50                                         dev_to_node(dev));
51                 if (!seg->bounce_buf) {
52                         dma_pool_free(xhci->segment_pool, seg->trbs, dma);
53                         kfree(seg);
54                         return NULL;
55                 }
56         }
57         /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58         if (cycle_state == 0) {
59                 for (i = 0; i < TRBS_PER_SEGMENT; i++)
60                         seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
61         }
62         seg->dma = dma;
63         seg->next = NULL;
64
65         return seg;
66 }
67
68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69 {
70         if (seg->trbs) {
71                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72                 seg->trbs = NULL;
73         }
74         kfree(seg->bounce_buf);
75         kfree(seg);
76 }
77
78 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
79                                 struct xhci_segment *first)
80 {
81         struct xhci_segment *seg;
82
83         seg = first->next;
84         while (seg != first) {
85                 struct xhci_segment *next = seg->next;
86                 xhci_segment_free(xhci, seg);
87                 seg = next;
88         }
89         xhci_segment_free(xhci, first);
90 }
91
92 /*
93  * Make the prev segment point to the next segment.
94  *
95  * Change the last TRB in the prev segment to be a Link TRB which points to the
96  * DMA address of the next segment.  The caller needs to set any Link TRB
97  * related flags, such as End TRB, Toggle Cycle, and no snoop.
98  */
99 static void xhci_link_segments(struct xhci_segment *prev,
100                                struct xhci_segment *next,
101                                enum xhci_ring_type type, bool chain_links)
102 {
103         u32 val;
104
105         if (!prev || !next)
106                 return;
107         prev->next = next;
108         if (type != TYPE_EVENT) {
109                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
110                         cpu_to_le64(next->dma);
111
112                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
113                 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
114                 val &= ~TRB_TYPE_BITMASK;
115                 val |= TRB_TYPE(TRB_LINK);
116                 if (chain_links)
117                         val |= TRB_CHAIN;
118                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
119         }
120 }
121
122 /*
123  * Link the ring to the new segments.
124  * Set Toggle Cycle for the new ring if needed.
125  */
126 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
127                 struct xhci_segment *first, struct xhci_segment *last,
128                 unsigned int num_segs)
129 {
130         struct xhci_segment *next;
131         bool chain_links;
132
133         if (!ring || !first || !last)
134                 return;
135
136         /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
137         chain_links = !!(xhci_link_trb_quirk(xhci) ||
138                          (ring->type == TYPE_ISOC &&
139                           (xhci->quirks & XHCI_AMD_0x96_HOST)));
140
141         next = ring->enq_seg->next;
142         xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
143         xhci_link_segments(last, next, ring->type, chain_links);
144         ring->num_segs += num_segs;
145         ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
146
147         if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
148                 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
149                         &= ~cpu_to_le32(LINK_TOGGLE);
150                 last->trbs[TRBS_PER_SEGMENT-1].link.control
151                         |= cpu_to_le32(LINK_TOGGLE);
152                 ring->last_seg = last;
153         }
154 }
155
156 /*
157  * We need a radix tree for mapping physical addresses of TRBs to which stream
158  * ID they belong to.  We need to do this because the host controller won't tell
159  * us which stream ring the TRB came from.  We could store the stream ID in an
160  * event data TRB, but that doesn't help us for the cancellation case, since the
161  * endpoint may stop before it reaches that event data TRB.
162  *
163  * The radix tree maps the upper portion of the TRB DMA address to a ring
164  * segment that has the same upper portion of DMA addresses.  For example, say I
165  * have segments of size 1KB, that are always 1KB aligned.  A segment may
166  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
167  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
168  * pass the radix tree a key to get the right stream ID:
169  *
170  *      0x10c90fff >> 10 = 0x43243
171  *      0x10c912c0 >> 10 = 0x43244
172  *      0x10c91400 >> 10 = 0x43245
173  *
174  * Obviously, only those TRBs with DMA addresses that are within the segment
175  * will make the radix tree return the stream ID for that ring.
176  *
177  * Caveats for the radix tree:
178  *
179  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
180  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
181  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
182  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
183  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
184  * extended systems (where the DMA address can be bigger than 32-bits),
185  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
186  */
187 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
188                 struct xhci_ring *ring,
189                 struct xhci_segment *seg,
190                 gfp_t mem_flags)
191 {
192         unsigned long key;
193         int ret;
194
195         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
196         /* Skip any segments that were already added. */
197         if (radix_tree_lookup(trb_address_map, key))
198                 return 0;
199
200         ret = radix_tree_maybe_preload(mem_flags);
201         if (ret)
202                 return ret;
203         ret = radix_tree_insert(trb_address_map,
204                         key, ring);
205         radix_tree_preload_end();
206         return ret;
207 }
208
209 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
210                 struct xhci_segment *seg)
211 {
212         unsigned long key;
213
214         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
215         if (radix_tree_lookup(trb_address_map, key))
216                 radix_tree_delete(trb_address_map, key);
217 }
218
219 static int xhci_update_stream_segment_mapping(
220                 struct radix_tree_root *trb_address_map,
221                 struct xhci_ring *ring,
222                 struct xhci_segment *first_seg,
223                 struct xhci_segment *last_seg,
224                 gfp_t mem_flags)
225 {
226         struct xhci_segment *seg;
227         struct xhci_segment *failed_seg;
228         int ret;
229
230         if (WARN_ON_ONCE(trb_address_map == NULL))
231                 return 0;
232
233         seg = first_seg;
234         do {
235                 ret = xhci_insert_segment_mapping(trb_address_map,
236                                 ring, seg, mem_flags);
237                 if (ret)
238                         goto remove_streams;
239                 if (seg == last_seg)
240                         return 0;
241                 seg = seg->next;
242         } while (seg != first_seg);
243
244         return 0;
245
246 remove_streams:
247         failed_seg = seg;
248         seg = first_seg;
249         do {
250                 xhci_remove_segment_mapping(trb_address_map, seg);
251                 if (seg == failed_seg)
252                         return ret;
253                 seg = seg->next;
254         } while (seg != first_seg);
255
256         return ret;
257 }
258
259 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
260 {
261         struct xhci_segment *seg;
262
263         if (WARN_ON_ONCE(ring->trb_address_map == NULL))
264                 return;
265
266         seg = ring->first_seg;
267         do {
268                 xhci_remove_segment_mapping(ring->trb_address_map, seg);
269                 seg = seg->next;
270         } while (seg != ring->first_seg);
271 }
272
273 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
274 {
275         return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
276                         ring->first_seg, ring->last_seg, mem_flags);
277 }
278
279 /* XXX: Do we need the hcd structure in all these functions? */
280 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
281 {
282         if (!ring)
283                 return;
284
285         trace_xhci_ring_free(ring);
286
287         if (ring->first_seg) {
288                 if (ring->type == TYPE_STREAM)
289                         xhci_remove_stream_mapping(ring);
290                 xhci_free_segments_for_ring(xhci, ring->first_seg);
291         }
292
293         kfree(ring);
294 }
295
296 void xhci_initialize_ring_info(struct xhci_ring *ring,
297                                unsigned int cycle_state)
298 {
299         /* The ring is empty, so the enqueue pointer == dequeue pointer */
300         ring->enqueue = ring->first_seg->trbs;
301         ring->enq_seg = ring->first_seg;
302         ring->dequeue = ring->enqueue;
303         ring->deq_seg = ring->first_seg;
304         /* The ring is initialized to 0. The producer must write 1 to the cycle
305          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
306          * compare CCS to the cycle bit to check ownership, so CCS = 1.
307          *
308          * New rings are initialized with cycle state equal to 1; if we are
309          * handling ring expansion, set the cycle state equal to the old ring.
310          */
311         ring->cycle_state = cycle_state;
312
313         /*
314          * Each segment has a link TRB, and leave an extra TRB for SW
315          * accounting purpose
316          */
317         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
318 }
319
320 /* Allocate segments and link them for a ring */
321 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
322                 struct xhci_segment **first, struct xhci_segment **last,
323                 unsigned int num_segs, unsigned int cycle_state,
324                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
325 {
326         struct xhci_segment *prev;
327         bool chain_links;
328
329         /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
330         chain_links = !!(xhci_link_trb_quirk(xhci) ||
331                          (type == TYPE_ISOC &&
332                           (xhci->quirks & XHCI_AMD_0x96_HOST)));
333
334         prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
335         if (!prev)
336                 return -ENOMEM;
337         num_segs--;
338
339         *first = prev;
340         while (num_segs > 0) {
341                 struct xhci_segment     *next;
342
343                 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
344                 if (!next) {
345                         prev = *first;
346                         while (prev) {
347                                 next = prev->next;
348                                 xhci_segment_free(xhci, prev);
349                                 prev = next;
350                         }
351                         return -ENOMEM;
352                 }
353                 xhci_link_segments(prev, next, type, chain_links);
354
355                 prev = next;
356                 num_segs--;
357         }
358         xhci_link_segments(prev, *first, type, chain_links);
359         *last = prev;
360
361         return 0;
362 }
363
364 /*
365  * Create a new ring with zero or more segments.
366  *
367  * Link each segment together into a ring.
368  * Set the end flag and the cycle toggle bit on the last segment.
369  * See section 4.9.1 and figures 15 and 16.
370  */
371 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
372                 unsigned int num_segs, unsigned int cycle_state,
373                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
374 {
375         struct xhci_ring        *ring;
376         int ret;
377         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
378
379         ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
380         if (!ring)
381                 return NULL;
382
383         ring->num_segs = num_segs;
384         ring->bounce_buf_len = max_packet;
385         INIT_LIST_HEAD(&ring->td_list);
386         ring->type = type;
387         if (num_segs == 0)
388                 return ring;
389
390         ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
391                         &ring->last_seg, num_segs, cycle_state, type,
392                         max_packet, flags);
393         if (ret)
394                 goto fail;
395
396         /* Only event ring does not use link TRB */
397         if (type != TYPE_EVENT) {
398                 /* See section 4.9.2.1 and 6.4.4.1 */
399                 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
400                         cpu_to_le32(LINK_TOGGLE);
401         }
402         xhci_initialize_ring_info(ring, cycle_state);
403         trace_xhci_ring_alloc(ring);
404         return ring;
405
406 fail:
407         kfree(ring);
408         return NULL;
409 }
410
411 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
412                 struct xhci_virt_device *virt_dev,
413                 unsigned int ep_index)
414 {
415         xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
416         virt_dev->eps[ep_index].ring = NULL;
417 }
418
419 /*
420  * Expand an existing ring.
421  * Allocate a new ring which has same segment numbers and link the two rings.
422  */
423 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
424                                 unsigned int num_trbs, gfp_t flags)
425 {
426         struct xhci_segment     *first;
427         struct xhci_segment     *last;
428         unsigned int            num_segs;
429         unsigned int            num_segs_needed;
430         int                     ret;
431
432         num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
433                                 (TRBS_PER_SEGMENT - 1);
434
435         /* Allocate number of segments we needed, or double the ring size */
436         num_segs = ring->num_segs > num_segs_needed ?
437                         ring->num_segs : num_segs_needed;
438
439         ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
440                         num_segs, ring->cycle_state, ring->type,
441                         ring->bounce_buf_len, flags);
442         if (ret)
443                 return -ENOMEM;
444
445         if (ring->type == TYPE_STREAM)
446                 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
447                                                 ring, first, last, flags);
448         if (ret) {
449                 struct xhci_segment *next;
450                 do {
451                         next = first->next;
452                         xhci_segment_free(xhci, first);
453                         if (first == last)
454                                 break;
455                         first = next;
456                 } while (true);
457                 return ret;
458         }
459
460         xhci_link_rings(xhci, ring, first, last, num_segs);
461         trace_xhci_ring_expansion(ring);
462         xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
463                         "ring expansion succeed, now has %d segments",
464                         ring->num_segs);
465
466         return 0;
467 }
468
469 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
470                                                     int type, gfp_t flags)
471 {
472         struct xhci_container_ctx *ctx;
473         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
474
475         if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
476                 return NULL;
477
478         ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
479         if (!ctx)
480                 return NULL;
481
482         ctx->type = type;
483         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
484         if (type == XHCI_CTX_TYPE_INPUT)
485                 ctx->size += CTX_SIZE(xhci->hcc_params);
486
487         ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
488         if (!ctx->bytes) {
489                 kfree(ctx);
490                 return NULL;
491         }
492         return ctx;
493 }
494
495 void xhci_free_container_ctx(struct xhci_hcd *xhci,
496                              struct xhci_container_ctx *ctx)
497 {
498         if (!ctx)
499                 return;
500         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
501         kfree(ctx);
502 }
503
504 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
505                                               struct xhci_container_ctx *ctx)
506 {
507         if (ctx->type != XHCI_CTX_TYPE_INPUT)
508                 return NULL;
509
510         return (struct xhci_input_control_ctx *)ctx->bytes;
511 }
512
513 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
514                                         struct xhci_container_ctx *ctx)
515 {
516         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
517                 return (struct xhci_slot_ctx *)ctx->bytes;
518
519         return (struct xhci_slot_ctx *)
520                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
521 }
522
523 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
524                                     struct xhci_container_ctx *ctx,
525                                     unsigned int ep_index)
526 {
527         /* increment ep index by offset of start of ep ctx array */
528         ep_index++;
529         if (ctx->type == XHCI_CTX_TYPE_INPUT)
530                 ep_index++;
531
532         return (struct xhci_ep_ctx *)
533                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
534 }
535
536
537 /***************** Streams structures manipulation *************************/
538
539 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
540                 unsigned int num_stream_ctxs,
541                 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
542 {
543         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
544         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
545
546         if (size > MEDIUM_STREAM_ARRAY_SIZE)
547                 dma_free_coherent(dev, size,
548                                 stream_ctx, dma);
549         else if (size <= SMALL_STREAM_ARRAY_SIZE)
550                 return dma_pool_free(xhci->small_streams_pool,
551                                 stream_ctx, dma);
552         else
553                 return dma_pool_free(xhci->medium_streams_pool,
554                                 stream_ctx, dma);
555 }
556
557 /*
558  * The stream context array for each endpoint with bulk streams enabled can
559  * vary in size, based on:
560  *  - how many streams the endpoint supports,
561  *  - the maximum primary stream array size the host controller supports,
562  *  - and how many streams the device driver asks for.
563  *
564  * The stream context array must be a power of 2, and can be as small as
565  * 64 bytes or as large as 1MB.
566  */
567 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
568                 unsigned int num_stream_ctxs, dma_addr_t *dma,
569                 gfp_t mem_flags)
570 {
571         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
572         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
573
574         if (size > MEDIUM_STREAM_ARRAY_SIZE)
575                 return dma_alloc_coherent(dev, size,
576                                 dma, mem_flags);
577         else if (size <= SMALL_STREAM_ARRAY_SIZE)
578                 return dma_pool_alloc(xhci->small_streams_pool,
579                                 mem_flags, dma);
580         else
581                 return dma_pool_alloc(xhci->medium_streams_pool,
582                                 mem_flags, dma);
583 }
584
585 struct xhci_ring *xhci_dma_to_transfer_ring(
586                 struct xhci_virt_ep *ep,
587                 u64 address)
588 {
589         if (ep->ep_state & EP_HAS_STREAMS)
590                 return radix_tree_lookup(&ep->stream_info->trb_address_map,
591                                 address >> TRB_SEGMENT_SHIFT);
592         return ep->ring;
593 }
594
595 struct xhci_ring *xhci_stream_id_to_ring(
596                 struct xhci_virt_device *dev,
597                 unsigned int ep_index,
598                 unsigned int stream_id)
599 {
600         struct xhci_virt_ep *ep = &dev->eps[ep_index];
601
602         if (stream_id == 0)
603                 return ep->ring;
604         if (!ep->stream_info)
605                 return NULL;
606
607         if (stream_id >= ep->stream_info->num_streams)
608                 return NULL;
609         return ep->stream_info->stream_rings[stream_id];
610 }
611
612 /*
613  * Change an endpoint's internal structure so it supports stream IDs.  The
614  * number of requested streams includes stream 0, which cannot be used by device
615  * drivers.
616  *
617  * The number of stream contexts in the stream context array may be bigger than
618  * the number of streams the driver wants to use.  This is because the number of
619  * stream context array entries must be a power of two.
620  */
621 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
622                 unsigned int num_stream_ctxs,
623                 unsigned int num_streams,
624                 unsigned int max_packet, gfp_t mem_flags)
625 {
626         struct xhci_stream_info *stream_info;
627         u32 cur_stream;
628         struct xhci_ring *cur_ring;
629         u64 addr;
630         int ret;
631         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
632
633         xhci_dbg(xhci, "Allocating %u streams and %u "
634                         "stream context array entries.\n",
635                         num_streams, num_stream_ctxs);
636         if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
637                 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
638                 return NULL;
639         }
640         xhci->cmd_ring_reserved_trbs++;
641
642         stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
643                         dev_to_node(dev));
644         if (!stream_info)
645                 goto cleanup_trbs;
646
647         stream_info->num_streams = num_streams;
648         stream_info->num_stream_ctxs = num_stream_ctxs;
649
650         /* Initialize the array of virtual pointers to stream rings. */
651         stream_info->stream_rings = kcalloc_node(
652                         num_streams, sizeof(struct xhci_ring *), mem_flags,
653                         dev_to_node(dev));
654         if (!stream_info->stream_rings)
655                 goto cleanup_info;
656
657         /* Initialize the array of DMA addresses for stream rings for the HW. */
658         stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
659                         num_stream_ctxs, &stream_info->ctx_array_dma,
660                         mem_flags);
661         if (!stream_info->stream_ctx_array)
662                 goto cleanup_ctx;
663         memset(stream_info->stream_ctx_array, 0,
664                         sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
665
666         /* Allocate everything needed to free the stream rings later */
667         stream_info->free_streams_command =
668                 xhci_alloc_command_with_ctx(xhci, true, mem_flags);
669         if (!stream_info->free_streams_command)
670                 goto cleanup_ctx;
671
672         INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
673
674         /* Allocate rings for all the streams that the driver will use,
675          * and add their segment DMA addresses to the radix tree.
676          * Stream 0 is reserved.
677          */
678
679         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
680                 stream_info->stream_rings[cur_stream] =
681                         xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
682                                         mem_flags);
683                 cur_ring = stream_info->stream_rings[cur_stream];
684                 if (!cur_ring)
685                         goto cleanup_rings;
686                 cur_ring->stream_id = cur_stream;
687                 cur_ring->trb_address_map = &stream_info->trb_address_map;
688                 /* Set deq ptr, cycle bit, and stream context type */
689                 addr = cur_ring->first_seg->dma |
690                         SCT_FOR_CTX(SCT_PRI_TR) |
691                         cur_ring->cycle_state;
692                 stream_info->stream_ctx_array[cur_stream].stream_ring =
693                         cpu_to_le64(addr);
694                 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
695                                 cur_stream, (unsigned long long) addr);
696
697                 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
698                 if (ret) {
699                         xhci_ring_free(xhci, cur_ring);
700                         stream_info->stream_rings[cur_stream] = NULL;
701                         goto cleanup_rings;
702                 }
703         }
704         /* Leave the other unused stream ring pointers in the stream context
705          * array initialized to zero.  This will cause the xHC to give us an
706          * error if the device asks for a stream ID we don't have setup (if it
707          * was any other way, the host controller would assume the ring is
708          * "empty" and wait forever for data to be queued to that stream ID).
709          */
710
711         return stream_info;
712
713 cleanup_rings:
714         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
715                 cur_ring = stream_info->stream_rings[cur_stream];
716                 if (cur_ring) {
717                         xhci_ring_free(xhci, cur_ring);
718                         stream_info->stream_rings[cur_stream] = NULL;
719                 }
720         }
721         xhci_free_command(xhci, stream_info->free_streams_command);
722 cleanup_ctx:
723         kfree(stream_info->stream_rings);
724 cleanup_info:
725         kfree(stream_info);
726 cleanup_trbs:
727         xhci->cmd_ring_reserved_trbs--;
728         return NULL;
729 }
730 /*
731  * Sets the MaxPStreams field and the Linear Stream Array field.
732  * Sets the dequeue pointer to the stream context array.
733  */
734 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
735                 struct xhci_ep_ctx *ep_ctx,
736                 struct xhci_stream_info *stream_info)
737 {
738         u32 max_primary_streams;
739         /* MaxPStreams is the number of stream context array entries, not the
740          * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
741          * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
742          */
743         max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
744         xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
745                         "Setting number of stream ctx array entries to %u",
746                         1 << (max_primary_streams + 1));
747         ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
748         ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
749                                        | EP_HAS_LSA);
750         ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
751 }
752
753 /*
754  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
755  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
756  * not at the beginning of the ring).
757  */
758 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
759                 struct xhci_virt_ep *ep)
760 {
761         dma_addr_t addr;
762         ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
763         addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
764         ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
765 }
766
767 /* Frees all stream contexts associated with the endpoint,
768  *
769  * Caller should fix the endpoint context streams fields.
770  */
771 void xhci_free_stream_info(struct xhci_hcd *xhci,
772                 struct xhci_stream_info *stream_info)
773 {
774         int cur_stream;
775         struct xhci_ring *cur_ring;
776
777         if (!stream_info)
778                 return;
779
780         for (cur_stream = 1; cur_stream < stream_info->num_streams;
781                         cur_stream++) {
782                 cur_ring = stream_info->stream_rings[cur_stream];
783                 if (cur_ring) {
784                         xhci_ring_free(xhci, cur_ring);
785                         stream_info->stream_rings[cur_stream] = NULL;
786                 }
787         }
788         xhci_free_command(xhci, stream_info->free_streams_command);
789         xhci->cmd_ring_reserved_trbs--;
790         if (stream_info->stream_ctx_array)
791                 xhci_free_stream_ctx(xhci,
792                                 stream_info->num_stream_ctxs,
793                                 stream_info->stream_ctx_array,
794                                 stream_info->ctx_array_dma);
795
796         kfree(stream_info->stream_rings);
797         kfree(stream_info);
798 }
799
800
801 /***************** Device context manipulation *************************/
802
803 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
804                 struct xhci_virt_ep *ep)
805 {
806         timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
807                     0);
808         ep->xhci = xhci;
809 }
810
811 static void xhci_free_tt_info(struct xhci_hcd *xhci,
812                 struct xhci_virt_device *virt_dev,
813                 int slot_id)
814 {
815         struct list_head *tt_list_head;
816         struct xhci_tt_bw_info *tt_info, *next;
817         bool slot_found = false;
818
819         /* If the device never made it past the Set Address stage,
820          * it may not have the real_port set correctly.
821          */
822         if (virt_dev->real_port == 0 ||
823                         virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
824                 xhci_dbg(xhci, "Bad real port.\n");
825                 return;
826         }
827
828         tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
829         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
830                 /* Multi-TT hubs will have more than one entry */
831                 if (tt_info->slot_id == slot_id) {
832                         slot_found = true;
833                         list_del(&tt_info->tt_list);
834                         kfree(tt_info);
835                 } else if (slot_found) {
836                         break;
837                 }
838         }
839 }
840
841 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
842                 struct xhci_virt_device *virt_dev,
843                 struct usb_device *hdev,
844                 struct usb_tt *tt, gfp_t mem_flags)
845 {
846         struct xhci_tt_bw_info          *tt_info;
847         unsigned int                    num_ports;
848         int                             i, j;
849         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
850
851         if (!tt->multi)
852                 num_ports = 1;
853         else
854                 num_ports = hdev->maxchild;
855
856         for (i = 0; i < num_ports; i++, tt_info++) {
857                 struct xhci_interval_bw_table *bw_table;
858
859                 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
860                                 dev_to_node(dev));
861                 if (!tt_info)
862                         goto free_tts;
863                 INIT_LIST_HEAD(&tt_info->tt_list);
864                 list_add(&tt_info->tt_list,
865                                 &xhci->rh_bw[virt_dev->real_port - 1].tts);
866                 tt_info->slot_id = virt_dev->udev->slot_id;
867                 if (tt->multi)
868                         tt_info->ttport = i+1;
869                 bw_table = &tt_info->bw_table;
870                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
871                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
872         }
873         return 0;
874
875 free_tts:
876         xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
877         return -ENOMEM;
878 }
879
880
881 /* All the xhci_tds in the ring's TD list should be freed at this point.
882  * Should be called with xhci->lock held if there is any chance the TT lists
883  * will be manipulated by the configure endpoint, allocate device, or update
884  * hub functions while this function is removing the TT entries from the list.
885  */
886 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
887 {
888         struct xhci_virt_device *dev;
889         int i;
890         int old_active_eps = 0;
891
892         /* Slot ID 0 is reserved */
893         if (slot_id == 0 || !xhci->devs[slot_id])
894                 return;
895
896         dev = xhci->devs[slot_id];
897
898         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
899         if (!dev)
900                 return;
901
902         trace_xhci_free_virt_device(dev);
903
904         if (dev->tt_info)
905                 old_active_eps = dev->tt_info->active_eps;
906
907         for (i = 0; i < 31; i++) {
908                 if (dev->eps[i].ring)
909                         xhci_ring_free(xhci, dev->eps[i].ring);
910                 if (dev->eps[i].stream_info)
911                         xhci_free_stream_info(xhci,
912                                         dev->eps[i].stream_info);
913                 /* Endpoints on the TT/root port lists should have been removed
914                  * when usb_disable_device() was called for the device.
915                  * We can't drop them anyway, because the udev might have gone
916                  * away by this point, and we can't tell what speed it was.
917                  */
918                 if (!list_empty(&dev->eps[i].bw_endpoint_list))
919                         xhci_warn(xhci, "Slot %u endpoint %u "
920                                         "not removed from BW list!\n",
921                                         slot_id, i);
922         }
923         /* If this is a hub, free the TT(s) from the TT list */
924         xhci_free_tt_info(xhci, dev, slot_id);
925         /* If necessary, update the number of active TTs on this root port */
926         xhci_update_tt_active_eps(xhci, dev, old_active_eps);
927
928         if (dev->in_ctx)
929                 xhci_free_container_ctx(xhci, dev->in_ctx);
930         if (dev->out_ctx)
931                 xhci_free_container_ctx(xhci, dev->out_ctx);
932
933         if (dev->udev && dev->udev->slot_id)
934                 dev->udev->slot_id = 0;
935         kfree(xhci->devs[slot_id]);
936         xhci->devs[slot_id] = NULL;
937 }
938
939 /*
940  * Free a virt_device structure.
941  * If the virt_device added a tt_info (a hub) and has children pointing to
942  * that tt_info, then free the child first. Recursive.
943  * We can't rely on udev at this point to find child-parent relationships.
944  */
945 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
946 {
947         struct xhci_virt_device *vdev;
948         struct list_head *tt_list_head;
949         struct xhci_tt_bw_info *tt_info, *next;
950         int i;
951
952         vdev = xhci->devs[slot_id];
953         if (!vdev)
954                 return;
955
956         if (vdev->real_port == 0 ||
957                         vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
958                 xhci_dbg(xhci, "Bad vdev->real_port.\n");
959                 goto out;
960         }
961
962         tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
963         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
964                 /* is this a hub device that added a tt_info to the tts list */
965                 if (tt_info->slot_id == slot_id) {
966                         /* are any devices using this tt_info? */
967                         for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
968                                 vdev = xhci->devs[i];
969                                 if (vdev && (vdev->tt_info == tt_info))
970                                         xhci_free_virt_devices_depth_first(
971                                                 xhci, i);
972                         }
973                 }
974         }
975 out:
976         /* we are now at a leaf device */
977         xhci_debugfs_remove_slot(xhci, slot_id);
978         xhci_free_virt_device(xhci, slot_id);
979 }
980
981 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
982                 struct usb_device *udev, gfp_t flags)
983 {
984         struct xhci_virt_device *dev;
985         int i;
986
987         /* Slot ID 0 is reserved */
988         if (slot_id == 0 || xhci->devs[slot_id]) {
989                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
990                 return 0;
991         }
992
993         dev = kzalloc(sizeof(*dev), flags);
994         if (!dev)
995                 return 0;
996
997         /* Allocate the (output) device context that will be used in the HC. */
998         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
999         if (!dev->out_ctx)
1000                 goto fail;
1001
1002         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1003                         (unsigned long long)dev->out_ctx->dma);
1004
1005         /* Allocate the (input) device context for address device command */
1006         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1007         if (!dev->in_ctx)
1008                 goto fail;
1009
1010         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1011                         (unsigned long long)dev->in_ctx->dma);
1012
1013         /* Initialize the cancellation list and watchdog timers for each ep */
1014         for (i = 0; i < 31; i++) {
1015                 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1016                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1017                 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1018         }
1019
1020         /* Allocate endpoint 0 ring */
1021         dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1022         if (!dev->eps[0].ring)
1023                 goto fail;
1024
1025         dev->udev = udev;
1026
1027         /* Point to output device context in dcbaa. */
1028         xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1029         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1030                  slot_id,
1031                  &xhci->dcbaa->dev_context_ptrs[slot_id],
1032                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1033
1034         trace_xhci_alloc_virt_device(dev);
1035
1036         xhci->devs[slot_id] = dev;
1037
1038         return 1;
1039 fail:
1040
1041         if (dev->in_ctx)
1042                 xhci_free_container_ctx(xhci, dev->in_ctx);
1043         if (dev->out_ctx)
1044                 xhci_free_container_ctx(xhci, dev->out_ctx);
1045         kfree(dev);
1046
1047         return 0;
1048 }
1049
1050 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1051                 struct usb_device *udev)
1052 {
1053         struct xhci_virt_device *virt_dev;
1054         struct xhci_ep_ctx      *ep0_ctx;
1055         struct xhci_ring        *ep_ring;
1056
1057         virt_dev = xhci->devs[udev->slot_id];
1058         ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1059         ep_ring = virt_dev->eps[0].ring;
1060         /*
1061          * FIXME we don't keep track of the dequeue pointer very well after a
1062          * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1063          * host to our enqueue pointer.  This should only be called after a
1064          * configured device has reset, so all control transfers should have
1065          * been completed or cancelled before the reset.
1066          */
1067         ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1068                                                         ep_ring->enqueue)
1069                                    | ep_ring->cycle_state);
1070 }
1071
1072 /*
1073  * The xHCI roothub may have ports of differing speeds in any order in the port
1074  * status registers.
1075  *
1076  * The xHCI hardware wants to know the roothub port number that the USB device
1077  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1078  * know is the index of that port under either the USB 2.0 or the USB 3.0
1079  * roothub, but that doesn't give us the real index into the HW port status
1080  * registers. Call xhci_find_raw_port_number() to get real index.
1081  */
1082 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1083                 struct usb_device *udev)
1084 {
1085         struct usb_device *top_dev;
1086         struct usb_hcd *hcd;
1087
1088         if (udev->speed >= USB_SPEED_SUPER)
1089                 hcd = xhci->shared_hcd;
1090         else
1091                 hcd = xhci->main_hcd;
1092
1093         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1094                         top_dev = top_dev->parent)
1095                 /* Found device below root hub */;
1096
1097         return  xhci_find_raw_port_number(hcd, top_dev->portnum);
1098 }
1099
1100 /* Setup an xHCI virtual device for a Set Address command */
1101 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1102 {
1103         struct xhci_virt_device *dev;
1104         struct xhci_ep_ctx      *ep0_ctx;
1105         struct xhci_slot_ctx    *slot_ctx;
1106         u32                     port_num;
1107         u32                     max_packets;
1108         struct usb_device *top_dev;
1109
1110         dev = xhci->devs[udev->slot_id];
1111         /* Slot ID 0 is reserved */
1112         if (udev->slot_id == 0 || !dev) {
1113                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1114                                 udev->slot_id);
1115                 return -EINVAL;
1116         }
1117         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1118         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1119
1120         /* 3) Only the control endpoint is valid - one endpoint context */
1121         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1122         switch (udev->speed) {
1123         case USB_SPEED_SUPER_PLUS:
1124                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1125                 max_packets = MAX_PACKET(512);
1126                 break;
1127         case USB_SPEED_SUPER:
1128                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1129                 max_packets = MAX_PACKET(512);
1130                 break;
1131         case USB_SPEED_HIGH:
1132                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1133                 max_packets = MAX_PACKET(64);
1134                 break;
1135         /* USB core guesses at a 64-byte max packet first for FS devices */
1136         case USB_SPEED_FULL:
1137                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1138                 max_packets = MAX_PACKET(64);
1139                 break;
1140         case USB_SPEED_LOW:
1141                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1142                 max_packets = MAX_PACKET(8);
1143                 break;
1144         case USB_SPEED_WIRELESS:
1145                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1146                 return -EINVAL;
1147                 break;
1148         default:
1149                 /* Speed was set earlier, this shouldn't happen. */
1150                 return -EINVAL;
1151         }
1152         /* Find the root hub port this device is under */
1153         port_num = xhci_find_real_port_number(xhci, udev);
1154         if (!port_num)
1155                 return -EINVAL;
1156         slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1157         /* Set the port number in the virtual_device to the faked port number */
1158         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1159                         top_dev = top_dev->parent)
1160                 /* Found device below root hub */;
1161         dev->fake_port = top_dev->portnum;
1162         dev->real_port = port_num;
1163         xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1164         xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1165
1166         /* Find the right bandwidth table that this device will be a part of.
1167          * If this is a full speed device attached directly to a root port (or a
1168          * decendent of one), it counts as a primary bandwidth domain, not a
1169          * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1170          * will never be created for the HS root hub.
1171          */
1172         if (!udev->tt || !udev->tt->hub->parent) {
1173                 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1174         } else {
1175                 struct xhci_root_port_bw_info *rh_bw;
1176                 struct xhci_tt_bw_info *tt_bw;
1177
1178                 rh_bw = &xhci->rh_bw[port_num - 1];
1179                 /* Find the right TT. */
1180                 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1181                         if (tt_bw->slot_id != udev->tt->hub->slot_id)
1182                                 continue;
1183
1184                         if (!dev->udev->tt->multi ||
1185                                         (udev->tt->multi &&
1186                                          tt_bw->ttport == dev->udev->ttport)) {
1187                                 dev->bw_table = &tt_bw->bw_table;
1188                                 dev->tt_info = tt_bw;
1189                                 break;
1190                         }
1191                 }
1192                 if (!dev->tt_info)
1193                         xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1194         }
1195
1196         /* Is this a LS/FS device under an external HS hub? */
1197         if (udev->tt && udev->tt->hub->parent) {
1198                 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1199                                                 (udev->ttport << 8));
1200                 if (udev->tt->multi)
1201                         slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1202         }
1203         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1204         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1205
1206         /* Step 4 - ring already allocated */
1207         /* Step 5 */
1208         ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1209
1210         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1211         ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1212                                          max_packets);
1213
1214         ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1215                                    dev->eps[0].ring->cycle_state);
1216
1217         trace_xhci_setup_addressable_virt_device(dev);
1218
1219         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1220
1221         return 0;
1222 }
1223
1224 /*
1225  * Convert interval expressed as 2^(bInterval - 1) == interval into
1226  * straight exponent value 2^n == interval.
1227  *
1228  */
1229 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1230                 struct usb_host_endpoint *ep)
1231 {
1232         unsigned int interval;
1233
1234         interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1235         if (interval != ep->desc.bInterval - 1)
1236                 dev_warn(&udev->dev,
1237                          "ep %#x - rounding interval to %d %sframes\n",
1238                          ep->desc.bEndpointAddress,
1239                          1 << interval,
1240                          udev->speed == USB_SPEED_FULL ? "" : "micro");
1241
1242         if (udev->speed == USB_SPEED_FULL) {
1243                 /*
1244                  * Full speed isoc endpoints specify interval in frames,
1245                  * not microframes. We are using microframes everywhere,
1246                  * so adjust accordingly.
1247                  */
1248                 interval += 3;  /* 1 frame = 2^3 uframes */
1249         }
1250
1251         return interval;
1252 }
1253
1254 /*
1255  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1256  * microframes, rounded down to nearest power of 2.
1257  */
1258 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1259                 struct usb_host_endpoint *ep, unsigned int desc_interval,
1260                 unsigned int min_exponent, unsigned int max_exponent)
1261 {
1262         unsigned int interval;
1263
1264         interval = fls(desc_interval) - 1;
1265         interval = clamp_val(interval, min_exponent, max_exponent);
1266         if ((1 << interval) != desc_interval)
1267                 dev_dbg(&udev->dev,
1268                          "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1269                          ep->desc.bEndpointAddress,
1270                          1 << interval,
1271                          desc_interval);
1272
1273         return interval;
1274 }
1275
1276 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1277                 struct usb_host_endpoint *ep)
1278 {
1279         if (ep->desc.bInterval == 0)
1280                 return 0;
1281         return xhci_microframes_to_exponent(udev, ep,
1282                         ep->desc.bInterval, 0, 15);
1283 }
1284
1285
1286 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1287                 struct usb_host_endpoint *ep)
1288 {
1289         return xhci_microframes_to_exponent(udev, ep,
1290                         ep->desc.bInterval * 8, 3, 10);
1291 }
1292
1293 /* Return the polling or NAK interval.
1294  *
1295  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1296  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1297  *
1298  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1299  * is set to 0.
1300  */
1301 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1302                 struct usb_host_endpoint *ep)
1303 {
1304         unsigned int interval = 0;
1305
1306         switch (udev->speed) {
1307         case USB_SPEED_HIGH:
1308                 /* Max NAK rate */
1309                 if (usb_endpoint_xfer_control(&ep->desc) ||
1310                     usb_endpoint_xfer_bulk(&ep->desc)) {
1311                         interval = xhci_parse_microframe_interval(udev, ep);
1312                         break;
1313                 }
1314                 fallthrough;    /* SS and HS isoc/int have same decoding */
1315
1316         case USB_SPEED_SUPER_PLUS:
1317         case USB_SPEED_SUPER:
1318                 if (usb_endpoint_xfer_int(&ep->desc) ||
1319                     usb_endpoint_xfer_isoc(&ep->desc)) {
1320                         interval = xhci_parse_exponent_interval(udev, ep);
1321                 }
1322                 break;
1323
1324         case USB_SPEED_FULL:
1325                 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1326                         interval = xhci_parse_exponent_interval(udev, ep);
1327                         break;
1328                 }
1329                 /*
1330                  * Fall through for interrupt endpoint interval decoding
1331                  * since it uses the same rules as low speed interrupt
1332                  * endpoints.
1333                  */
1334                 fallthrough;
1335
1336         case USB_SPEED_LOW:
1337                 if (usb_endpoint_xfer_int(&ep->desc) ||
1338                     usb_endpoint_xfer_isoc(&ep->desc)) {
1339
1340                         interval = xhci_parse_frame_interval(udev, ep);
1341                 }
1342                 break;
1343
1344         default:
1345                 BUG();
1346         }
1347         return interval;
1348 }
1349
1350 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1351  * High speed endpoint descriptors can define "the number of additional
1352  * transaction opportunities per microframe", but that goes in the Max Burst
1353  * endpoint context field.
1354  */
1355 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1356                 struct usb_host_endpoint *ep)
1357 {
1358         if (udev->speed < USB_SPEED_SUPER ||
1359                         !usb_endpoint_xfer_isoc(&ep->desc))
1360                 return 0;
1361         return ep->ss_ep_comp.bmAttributes;
1362 }
1363
1364 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1365                                        struct usb_host_endpoint *ep)
1366 {
1367         /* Super speed and Plus have max burst in ep companion desc */
1368         if (udev->speed >= USB_SPEED_SUPER)
1369                 return ep->ss_ep_comp.bMaxBurst;
1370
1371         if (udev->speed == USB_SPEED_HIGH &&
1372             (usb_endpoint_xfer_isoc(&ep->desc) ||
1373              usb_endpoint_xfer_int(&ep->desc)))
1374                 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1375
1376         return 0;
1377 }
1378
1379 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1380 {
1381         int in;
1382
1383         in = usb_endpoint_dir_in(&ep->desc);
1384
1385         switch (usb_endpoint_type(&ep->desc)) {
1386         case USB_ENDPOINT_XFER_CONTROL:
1387                 return CTRL_EP;
1388         case USB_ENDPOINT_XFER_BULK:
1389                 return in ? BULK_IN_EP : BULK_OUT_EP;
1390         case USB_ENDPOINT_XFER_ISOC:
1391                 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1392         case USB_ENDPOINT_XFER_INT:
1393                 return in ? INT_IN_EP : INT_OUT_EP;
1394         }
1395         return 0;
1396 }
1397
1398 /* Return the maximum endpoint service interval time (ESIT) payload.
1399  * Basically, this is the maxpacket size, multiplied by the burst size
1400  * and mult size.
1401  */
1402 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1403                 struct usb_host_endpoint *ep)
1404 {
1405         int max_burst;
1406         int max_packet;
1407
1408         /* Only applies for interrupt or isochronous endpoints */
1409         if (usb_endpoint_xfer_control(&ep->desc) ||
1410                         usb_endpoint_xfer_bulk(&ep->desc))
1411                 return 0;
1412
1413         /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1414         if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1415             USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1416                 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1417         /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1418         else if (udev->speed >= USB_SPEED_SUPER)
1419                 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1420
1421         max_packet = usb_endpoint_maxp(&ep->desc);
1422         max_burst = usb_endpoint_maxp_mult(&ep->desc);
1423         /* A 0 in max burst means 1 transfer per ESIT */
1424         return max_packet * max_burst;
1425 }
1426
1427 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1428  * Drivers will have to call usb_alloc_streams() to do that.
1429  */
1430 int xhci_endpoint_init(struct xhci_hcd *xhci,
1431                 struct xhci_virt_device *virt_dev,
1432                 struct usb_device *udev,
1433                 struct usb_host_endpoint *ep,
1434                 gfp_t mem_flags)
1435 {
1436         unsigned int ep_index;
1437         struct xhci_ep_ctx *ep_ctx;
1438         struct xhci_ring *ep_ring;
1439         unsigned int max_packet;
1440         enum xhci_ring_type ring_type;
1441         u32 max_esit_payload;
1442         u32 endpoint_type;
1443         unsigned int max_burst;
1444         unsigned int interval;
1445         unsigned int mult;
1446         unsigned int avg_trb_len;
1447         unsigned int err_count = 0;
1448
1449         ep_index = xhci_get_endpoint_index(&ep->desc);
1450         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1451
1452         endpoint_type = xhci_get_endpoint_type(ep);
1453         if (!endpoint_type)
1454                 return -EINVAL;
1455
1456         ring_type = usb_endpoint_type(&ep->desc);
1457
1458         /*
1459          * Get values to fill the endpoint context, mostly from ep descriptor.
1460          * The average TRB buffer lengt for bulk endpoints is unclear as we
1461          * have no clue on scatter gather list entry size. For Isoc and Int,
1462          * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1463          */
1464         max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1465         interval = xhci_get_endpoint_interval(udev, ep);
1466
1467         /* Periodic endpoint bInterval limit quirk */
1468         if (usb_endpoint_xfer_int(&ep->desc) ||
1469             usb_endpoint_xfer_isoc(&ep->desc)) {
1470                 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1471                     udev->speed >= USB_SPEED_HIGH &&
1472                     interval >= 7) {
1473                         interval = 6;
1474                 }
1475         }
1476
1477         mult = xhci_get_endpoint_mult(udev, ep);
1478         max_packet = usb_endpoint_maxp(&ep->desc);
1479         max_burst = xhci_get_endpoint_max_burst(udev, ep);
1480         avg_trb_len = max_esit_payload;
1481
1482         /* FIXME dig Mult and streams info out of ep companion desc */
1483
1484         /* Allow 3 retries for everything but isoc, set CErr = 3 */
1485         if (!usb_endpoint_xfer_isoc(&ep->desc))
1486                 err_count = 3;
1487         /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1488         if (usb_endpoint_xfer_bulk(&ep->desc)) {
1489                 if (udev->speed == USB_SPEED_HIGH)
1490                         max_packet = 512;
1491                 if (udev->speed == USB_SPEED_FULL) {
1492                         max_packet = rounddown_pow_of_two(max_packet);
1493                         max_packet = clamp_val(max_packet, 8, 64);
1494                 }
1495         }
1496         /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1497         if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1498                 avg_trb_len = 8;
1499         /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1500         if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1501                 mult = 0;
1502
1503         /* Set up the endpoint ring */
1504         virt_dev->eps[ep_index].new_ring =
1505                 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1506         if (!virt_dev->eps[ep_index].new_ring)
1507                 return -ENOMEM;
1508
1509         virt_dev->eps[ep_index].skip = false;
1510         ep_ring = virt_dev->eps[ep_index].new_ring;
1511
1512         /* Fill the endpoint context */
1513         ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1514                                       EP_INTERVAL(interval) |
1515                                       EP_MULT(mult));
1516         ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1517                                        MAX_PACKET(max_packet) |
1518                                        MAX_BURST(max_burst) |
1519                                        ERROR_COUNT(err_count));
1520         ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1521                                   ep_ring->cycle_state);
1522
1523         ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1524                                       EP_AVG_TRB_LENGTH(avg_trb_len));
1525
1526         return 0;
1527 }
1528
1529 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1530                 struct xhci_virt_device *virt_dev,
1531                 struct usb_host_endpoint *ep)
1532 {
1533         unsigned int ep_index;
1534         struct xhci_ep_ctx *ep_ctx;
1535
1536         ep_index = xhci_get_endpoint_index(&ep->desc);
1537         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1538
1539         ep_ctx->ep_info = 0;
1540         ep_ctx->ep_info2 = 0;
1541         ep_ctx->deq = 0;
1542         ep_ctx->tx_info = 0;
1543         /* Don't free the endpoint ring until the set interface or configuration
1544          * request succeeds.
1545          */
1546 }
1547
1548 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1549 {
1550         bw_info->ep_interval = 0;
1551         bw_info->mult = 0;
1552         bw_info->num_packets = 0;
1553         bw_info->max_packet_size = 0;
1554         bw_info->type = 0;
1555         bw_info->max_esit_payload = 0;
1556 }
1557
1558 void xhci_update_bw_info(struct xhci_hcd *xhci,
1559                 struct xhci_container_ctx *in_ctx,
1560                 struct xhci_input_control_ctx *ctrl_ctx,
1561                 struct xhci_virt_device *virt_dev)
1562 {
1563         struct xhci_bw_info *bw_info;
1564         struct xhci_ep_ctx *ep_ctx;
1565         unsigned int ep_type;
1566         int i;
1567
1568         for (i = 1; i < 31; i++) {
1569                 bw_info = &virt_dev->eps[i].bw_info;
1570
1571                 /* We can't tell what endpoint type is being dropped, but
1572                  * unconditionally clearing the bandwidth info for non-periodic
1573                  * endpoints should be harmless because the info will never be
1574                  * set in the first place.
1575                  */
1576                 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1577                         /* Dropped endpoint */
1578                         xhci_clear_endpoint_bw_info(bw_info);
1579                         continue;
1580                 }
1581
1582                 if (EP_IS_ADDED(ctrl_ctx, i)) {
1583                         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1584                         ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1585
1586                         /* Ignore non-periodic endpoints */
1587                         if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1588                                         ep_type != ISOC_IN_EP &&
1589                                         ep_type != INT_IN_EP)
1590                                 continue;
1591
1592                         /* Added or changed endpoint */
1593                         bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1594                                         le32_to_cpu(ep_ctx->ep_info));
1595                         /* Number of packets and mult are zero-based in the
1596                          * input context, but we want one-based for the
1597                          * interval table.
1598                          */
1599                         bw_info->mult = CTX_TO_EP_MULT(
1600                                         le32_to_cpu(ep_ctx->ep_info)) + 1;
1601                         bw_info->num_packets = CTX_TO_MAX_BURST(
1602                                         le32_to_cpu(ep_ctx->ep_info2)) + 1;
1603                         bw_info->max_packet_size = MAX_PACKET_DECODED(
1604                                         le32_to_cpu(ep_ctx->ep_info2));
1605                         bw_info->type = ep_type;
1606                         bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1607                                         le32_to_cpu(ep_ctx->tx_info));
1608                 }
1609         }
1610 }
1611
1612 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1613  * Useful when you want to change one particular aspect of the endpoint and then
1614  * issue a configure endpoint command.
1615  */
1616 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1617                 struct xhci_container_ctx *in_ctx,
1618                 struct xhci_container_ctx *out_ctx,
1619                 unsigned int ep_index)
1620 {
1621         struct xhci_ep_ctx *out_ep_ctx;
1622         struct xhci_ep_ctx *in_ep_ctx;
1623
1624         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1625         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1626
1627         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1628         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1629         in_ep_ctx->deq = out_ep_ctx->deq;
1630         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1631         if (xhci->quirks & XHCI_MTK_HOST) {
1632                 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1633                 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1634         }
1635 }
1636
1637 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1638  * Useful when you want to change one particular aspect of the endpoint and then
1639  * issue a configure endpoint command.  Only the context entries field matters,
1640  * but we'll copy the whole thing anyway.
1641  */
1642 void xhci_slot_copy(struct xhci_hcd *xhci,
1643                 struct xhci_container_ctx *in_ctx,
1644                 struct xhci_container_ctx *out_ctx)
1645 {
1646         struct xhci_slot_ctx *in_slot_ctx;
1647         struct xhci_slot_ctx *out_slot_ctx;
1648
1649         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1650         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1651
1652         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1653         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1654         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1655         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1656 }
1657
1658 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1659 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1660 {
1661         int i;
1662         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1663         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1664
1665         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1666                         "Allocating %d scratchpad buffers", num_sp);
1667
1668         if (!num_sp)
1669                 return 0;
1670
1671         xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1672                                 dev_to_node(dev));
1673         if (!xhci->scratchpad)
1674                 goto fail_sp;
1675
1676         xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1677                                      num_sp * sizeof(u64),
1678                                      &xhci->scratchpad->sp_dma, flags);
1679         if (!xhci->scratchpad->sp_array)
1680                 goto fail_sp2;
1681
1682         xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1683                                         flags, dev_to_node(dev));
1684         if (!xhci->scratchpad->sp_buffers)
1685                 goto fail_sp3;
1686
1687         xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1688         for (i = 0; i < num_sp; i++) {
1689                 dma_addr_t dma;
1690                 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1691                                                flags);
1692                 if (!buf)
1693                         goto fail_sp4;
1694
1695                 xhci->scratchpad->sp_array[i] = dma;
1696                 xhci->scratchpad->sp_buffers[i] = buf;
1697         }
1698
1699         return 0;
1700
1701  fail_sp4:
1702         for (i = i - 1; i >= 0; i--) {
1703                 dma_free_coherent(dev, xhci->page_size,
1704                                     xhci->scratchpad->sp_buffers[i],
1705                                     xhci->scratchpad->sp_array[i]);
1706         }
1707
1708         kfree(xhci->scratchpad->sp_buffers);
1709
1710  fail_sp3:
1711         dma_free_coherent(dev, num_sp * sizeof(u64),
1712                             xhci->scratchpad->sp_array,
1713                             xhci->scratchpad->sp_dma);
1714
1715  fail_sp2:
1716         kfree(xhci->scratchpad);
1717         xhci->scratchpad = NULL;
1718
1719  fail_sp:
1720         return -ENOMEM;
1721 }
1722
1723 static void scratchpad_free(struct xhci_hcd *xhci)
1724 {
1725         int num_sp;
1726         int i;
1727         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1728
1729         if (!xhci->scratchpad)
1730                 return;
1731
1732         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1733
1734         for (i = 0; i < num_sp; i++) {
1735                 dma_free_coherent(dev, xhci->page_size,
1736                                     xhci->scratchpad->sp_buffers[i],
1737                                     xhci->scratchpad->sp_array[i]);
1738         }
1739         kfree(xhci->scratchpad->sp_buffers);
1740         dma_free_coherent(dev, num_sp * sizeof(u64),
1741                             xhci->scratchpad->sp_array,
1742                             xhci->scratchpad->sp_dma);
1743         kfree(xhci->scratchpad);
1744         xhci->scratchpad = NULL;
1745 }
1746
1747 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1748                 bool allocate_completion, gfp_t mem_flags)
1749 {
1750         struct xhci_command *command;
1751         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1752
1753         command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1754         if (!command)
1755                 return NULL;
1756
1757         if (allocate_completion) {
1758                 command->completion =
1759                         kzalloc_node(sizeof(struct completion), mem_flags,
1760                                 dev_to_node(dev));
1761                 if (!command->completion) {
1762                         kfree(command);
1763                         return NULL;
1764                 }
1765                 init_completion(command->completion);
1766         }
1767
1768         command->status = 0;
1769         INIT_LIST_HEAD(&command->cmd_list);
1770         return command;
1771 }
1772
1773 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1774                 bool allocate_completion, gfp_t mem_flags)
1775 {
1776         struct xhci_command *command;
1777
1778         command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1779         if (!command)
1780                 return NULL;
1781
1782         command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1783                                                    mem_flags);
1784         if (!command->in_ctx) {
1785                 kfree(command->completion);
1786                 kfree(command);
1787                 return NULL;
1788         }
1789         return command;
1790 }
1791
1792 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1793 {
1794         kfree(urb_priv);
1795 }
1796
1797 void xhci_free_command(struct xhci_hcd *xhci,
1798                 struct xhci_command *command)
1799 {
1800         xhci_free_container_ctx(xhci,
1801                         command->in_ctx);
1802         kfree(command->completion);
1803         kfree(command);
1804 }
1805
1806 int xhci_alloc_erst(struct xhci_hcd *xhci,
1807                     struct xhci_ring *evt_ring,
1808                     struct xhci_erst *erst,
1809                     gfp_t flags)
1810 {
1811         size_t size;
1812         unsigned int val;
1813         struct xhci_segment *seg;
1814         struct xhci_erst_entry *entry;
1815
1816         size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1817         erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1818                                            size, &erst->erst_dma_addr, flags);
1819         if (!erst->entries)
1820                 return -ENOMEM;
1821
1822         erst->num_entries = evt_ring->num_segs;
1823
1824         seg = evt_ring->first_seg;
1825         for (val = 0; val < evt_ring->num_segs; val++) {
1826                 entry = &erst->entries[val];
1827                 entry->seg_addr = cpu_to_le64(seg->dma);
1828                 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1829                 entry->rsvd = 0;
1830                 seg = seg->next;
1831         }
1832
1833         return 0;
1834 }
1835
1836 void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1837 {
1838         size_t size;
1839         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1840
1841         size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1842         if (erst->entries)
1843                 dma_free_coherent(dev, size,
1844                                 erst->entries,
1845                                 erst->erst_dma_addr);
1846         erst->entries = NULL;
1847 }
1848
1849 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1850 {
1851         struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
1852         int i, j, num_ports;
1853
1854         cancel_delayed_work_sync(&xhci->cmd_timer);
1855
1856         xhci_free_erst(xhci, &xhci->erst);
1857
1858         if (xhci->event_ring)
1859                 xhci_ring_free(xhci, xhci->event_ring);
1860         xhci->event_ring = NULL;
1861         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1862
1863         if (xhci->lpm_command)
1864                 xhci_free_command(xhci, xhci->lpm_command);
1865         xhci->lpm_command = NULL;
1866         if (xhci->cmd_ring)
1867                 xhci_ring_free(xhci, xhci->cmd_ring);
1868         xhci->cmd_ring = NULL;
1869         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1870         xhci_cleanup_command_queue(xhci);
1871
1872         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1873         for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1874                 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1875                 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1876                         struct list_head *ep = &bwt->interval_bw[j].endpoints;
1877                         while (!list_empty(ep))
1878                                 list_del_init(ep->next);
1879                 }
1880         }
1881
1882         for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1883                 xhci_free_virt_devices_depth_first(xhci, i);
1884
1885         dma_pool_destroy(xhci->segment_pool);
1886         xhci->segment_pool = NULL;
1887         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1888
1889         dma_pool_destroy(xhci->device_pool);
1890         xhci->device_pool = NULL;
1891         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1892
1893         dma_pool_destroy(xhci->small_streams_pool);
1894         xhci->small_streams_pool = NULL;
1895         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1896                         "Freed small stream array pool");
1897
1898         dma_pool_destroy(xhci->medium_streams_pool);
1899         xhci->medium_streams_pool = NULL;
1900         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1901                         "Freed medium stream array pool");
1902
1903         if (xhci->dcbaa)
1904                 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1905                                 xhci->dcbaa, xhci->dcbaa->dma);
1906         xhci->dcbaa = NULL;
1907
1908         scratchpad_free(xhci);
1909
1910         if (!xhci->rh_bw)
1911                 goto no_bw;
1912
1913         for (i = 0; i < num_ports; i++) {
1914                 struct xhci_tt_bw_info *tt, *n;
1915                 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1916                         list_del(&tt->tt_list);
1917                         kfree(tt);
1918                 }
1919         }
1920
1921 no_bw:
1922         xhci->cmd_ring_reserved_trbs = 0;
1923         xhci->usb2_rhub.num_ports = 0;
1924         xhci->usb3_rhub.num_ports = 0;
1925         xhci->num_active_eps = 0;
1926         kfree(xhci->usb2_rhub.ports);
1927         kfree(xhci->usb3_rhub.ports);
1928         kfree(xhci->hw_ports);
1929         kfree(xhci->rh_bw);
1930         kfree(xhci->ext_caps);
1931         for (i = 0; i < xhci->num_port_caps; i++)
1932                 kfree(xhci->port_caps[i].psi);
1933         kfree(xhci->port_caps);
1934         xhci->num_port_caps = 0;
1935
1936         xhci->usb2_rhub.ports = NULL;
1937         xhci->usb3_rhub.ports = NULL;
1938         xhci->hw_ports = NULL;
1939         xhci->rh_bw = NULL;
1940         xhci->ext_caps = NULL;
1941
1942         xhci->page_size = 0;
1943         xhci->page_shift = 0;
1944         xhci->usb2_rhub.bus_state.bus_suspended = 0;
1945         xhci->usb3_rhub.bus_state.bus_suspended = 0;
1946 }
1947
1948 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1949                 struct xhci_segment *input_seg,
1950                 union xhci_trb *start_trb,
1951                 union xhci_trb *end_trb,
1952                 dma_addr_t input_dma,
1953                 struct xhci_segment *result_seg,
1954                 char *test_name, int test_number)
1955 {
1956         unsigned long long start_dma;
1957         unsigned long long end_dma;
1958         struct xhci_segment *seg;
1959
1960         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1961         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1962
1963         seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1964         if (seg != result_seg) {
1965                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1966                                 test_name, test_number);
1967                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1968                                 "input DMA 0x%llx\n",
1969                                 input_seg,
1970                                 (unsigned long long) input_dma);
1971                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1972                                 "ending TRB %p (0x%llx DMA)\n",
1973                                 start_trb, start_dma,
1974                                 end_trb, end_dma);
1975                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1976                                 result_seg, seg);
1977                 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1978                           true);
1979                 return -1;
1980         }
1981         return 0;
1982 }
1983
1984 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1985 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1986 {
1987         struct {
1988                 dma_addr_t              input_dma;
1989                 struct xhci_segment     *result_seg;
1990         } simple_test_vector [] = {
1991                 /* A zeroed DMA field should fail */
1992                 { 0, NULL },
1993                 /* One TRB before the ring start should fail */
1994                 { xhci->event_ring->first_seg->dma - 16, NULL },
1995                 /* One byte before the ring start should fail */
1996                 { xhci->event_ring->first_seg->dma - 1, NULL },
1997                 /* Starting TRB should succeed */
1998                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1999                 /* Ending TRB should succeed */
2000                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
2001                         xhci->event_ring->first_seg },
2002                 /* One byte after the ring end should fail */
2003                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
2004                 /* One TRB after the ring end should fail */
2005                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
2006                 /* An address of all ones should fail */
2007                 { (dma_addr_t) (~0), NULL },
2008         };
2009         struct {
2010                 struct xhci_segment     *input_seg;
2011                 union xhci_trb          *start_trb;
2012                 union xhci_trb          *end_trb;
2013                 dma_addr_t              input_dma;
2014                 struct xhci_segment     *result_seg;
2015         } complex_test_vector [] = {
2016                 /* Test feeding a valid DMA address from a different ring */
2017                 {       .input_seg = xhci->event_ring->first_seg,
2018                         .start_trb = xhci->event_ring->first_seg->trbs,
2019                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2020                         .input_dma = xhci->cmd_ring->first_seg->dma,
2021                         .result_seg = NULL,
2022                 },
2023                 /* Test feeding a valid end TRB from a different ring */
2024                 {       .input_seg = xhci->event_ring->first_seg,
2025                         .start_trb = xhci->event_ring->first_seg->trbs,
2026                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2027                         .input_dma = xhci->cmd_ring->first_seg->dma,
2028                         .result_seg = NULL,
2029                 },
2030                 /* Test feeding a valid start and end TRB from a different ring */
2031                 {       .input_seg = xhci->event_ring->first_seg,
2032                         .start_trb = xhci->cmd_ring->first_seg->trbs,
2033                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2034                         .input_dma = xhci->cmd_ring->first_seg->dma,
2035                         .result_seg = NULL,
2036                 },
2037                 /* TRB in this ring, but after this TD */
2038                 {       .input_seg = xhci->event_ring->first_seg,
2039                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
2040                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
2041                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2042                         .result_seg = NULL,
2043                 },
2044                 /* TRB in this ring, but before this TD */
2045                 {       .input_seg = xhci->event_ring->first_seg,
2046                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
2047                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
2048                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2049                         .result_seg = NULL,
2050                 },
2051                 /* TRB in this ring, but after this wrapped TD */
2052                 {       .input_seg = xhci->event_ring->first_seg,
2053                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2054                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2055                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2056                         .result_seg = NULL,
2057                 },
2058                 /* TRB in this ring, but before this wrapped TD */
2059                 {       .input_seg = xhci->event_ring->first_seg,
2060                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2061                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2062                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2063                         .result_seg = NULL,
2064                 },
2065                 /* TRB not in this ring, and we have a wrapped TD */
2066                 {       .input_seg = xhci->event_ring->first_seg,
2067                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2068                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2069                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2070                         .result_seg = NULL,
2071                 },
2072         };
2073
2074         unsigned int num_tests;
2075         int i, ret;
2076
2077         num_tests = ARRAY_SIZE(simple_test_vector);
2078         for (i = 0; i < num_tests; i++) {
2079                 ret = xhci_test_trb_in_td(xhci,
2080                                 xhci->event_ring->first_seg,
2081                                 xhci->event_ring->first_seg->trbs,
2082                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2083                                 simple_test_vector[i].input_dma,
2084                                 simple_test_vector[i].result_seg,
2085                                 "Simple", i);
2086                 if (ret < 0)
2087                         return ret;
2088         }
2089
2090         num_tests = ARRAY_SIZE(complex_test_vector);
2091         for (i = 0; i < num_tests; i++) {
2092                 ret = xhci_test_trb_in_td(xhci,
2093                                 complex_test_vector[i].input_seg,
2094                                 complex_test_vector[i].start_trb,
2095                                 complex_test_vector[i].end_trb,
2096                                 complex_test_vector[i].input_dma,
2097                                 complex_test_vector[i].result_seg,
2098                                 "Complex", i);
2099                 if (ret < 0)
2100                         return ret;
2101         }
2102         xhci_dbg(xhci, "TRB math tests passed.\n");
2103         return 0;
2104 }
2105
2106 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2107 {
2108         u64 temp;
2109         dma_addr_t deq;
2110
2111         deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2112                         xhci->event_ring->dequeue);
2113         if (deq == 0 && !in_interrupt())
2114                 xhci_warn(xhci, "WARN something wrong with SW event ring "
2115                                 "dequeue ptr.\n");
2116         /* Update HC event ring dequeue pointer */
2117         temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2118         temp &= ERST_PTR_MASK;
2119         /* Don't clear the EHB bit (which is RW1C) because
2120          * there might be more events to service.
2121          */
2122         temp &= ~ERST_EHB;
2123         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2124                         "// Write event ring dequeue pointer, "
2125                         "preserving EHB bit");
2126         xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2127                         &xhci->ir_set->erst_dequeue);
2128 }
2129
2130 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2131                 __le32 __iomem *addr, int max_caps)
2132 {
2133         u32 temp, port_offset, port_count;
2134         int i;
2135         u8 major_revision, minor_revision;
2136         struct xhci_hub *rhub;
2137         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2138         struct xhci_port_cap *port_cap;
2139
2140         temp = readl(addr);
2141         major_revision = XHCI_EXT_PORT_MAJOR(temp);
2142         minor_revision = XHCI_EXT_PORT_MINOR(temp);
2143
2144         if (major_revision == 0x03) {
2145                 rhub = &xhci->usb3_rhub;
2146         } else if (major_revision <= 0x02) {
2147                 rhub = &xhci->usb2_rhub;
2148         } else {
2149                 xhci_warn(xhci, "Ignoring unknown port speed, "
2150                                 "Ext Cap %p, revision = 0x%x\n",
2151                                 addr, major_revision);
2152                 /* Ignoring port protocol we can't understand. FIXME */
2153                 return;
2154         }
2155         rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2156
2157         if (rhub->min_rev < minor_revision)
2158                 rhub->min_rev = minor_revision;
2159
2160         /* Port offset and count in the third dword, see section 7.2 */
2161         temp = readl(addr + 2);
2162         port_offset = XHCI_EXT_PORT_OFF(temp);
2163         port_count = XHCI_EXT_PORT_COUNT(temp);
2164         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2165                         "Ext Cap %p, port offset = %u, "
2166                         "count = %u, revision = 0x%x",
2167                         addr, port_offset, port_count, major_revision);
2168         /* Port count includes the current port offset */
2169         if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2170                 /* WTF? "Valid values are â€˜1’ to MaxPorts" */
2171                 return;
2172
2173         port_cap = &xhci->port_caps[xhci->num_port_caps++];
2174         if (xhci->num_port_caps > max_caps)
2175                 return;
2176
2177         port_cap->maj_rev = major_revision;
2178         port_cap->min_rev = minor_revision;
2179         port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2180
2181         if (port_cap->psi_count) {
2182                 port_cap->psi = kcalloc_node(port_cap->psi_count,
2183                                              sizeof(*port_cap->psi),
2184                                              GFP_KERNEL, dev_to_node(dev));
2185                 if (!port_cap->psi)
2186                         port_cap->psi_count = 0;
2187
2188                 port_cap->psi_uid_count++;
2189                 for (i = 0; i < port_cap->psi_count; i++) {
2190                         port_cap->psi[i] = readl(addr + 4 + i);
2191
2192                         /* count unique ID values, two consecutive entries can
2193                          * have the same ID if link is assymetric
2194                          */
2195                         if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2196                                   XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2197                                 port_cap->psi_uid_count++;
2198
2199                         xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2200                                   XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2201                                   XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2202                                   XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2203                                   XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2204                                   XHCI_EXT_PORT_LP(port_cap->psi[i]),
2205                                   XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2206                 }
2207         }
2208         /* cache usb2 port capabilities */
2209         if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2210                 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2211
2212         if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2213                  (temp & XHCI_HLC)) {
2214                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2215                                "xHCI 1.0: support USB2 hardware lpm");
2216                 xhci->hw_lpm_support = 1;
2217         }
2218
2219         port_offset--;
2220         for (i = port_offset; i < (port_offset + port_count); i++) {
2221                 struct xhci_port *hw_port = &xhci->hw_ports[i];
2222                 /* Duplicate entry.  Ignore the port if the revisions differ. */
2223                 if (hw_port->rhub) {
2224                         xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2225                                         " port %u\n", addr, i);
2226                         xhci_warn(xhci, "Port was marked as USB %u, "
2227                                         "duplicated as USB %u\n",
2228                                         hw_port->rhub->maj_rev, major_revision);
2229                         /* Only adjust the roothub port counts if we haven't
2230                          * found a similar duplicate.
2231                          */
2232                         if (hw_port->rhub != rhub &&
2233                                  hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2234                                 hw_port->rhub->num_ports--;
2235                                 hw_port->hcd_portnum = DUPLICATE_ENTRY;
2236                         }
2237                         continue;
2238                 }
2239                 hw_port->rhub = rhub;
2240                 hw_port->port_cap = port_cap;
2241                 rhub->num_ports++;
2242         }
2243         /* FIXME: Should we disable ports not in the Extended Capabilities? */
2244 }
2245
2246 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2247                                         struct xhci_hub *rhub, gfp_t flags)
2248 {
2249         int port_index = 0;
2250         int i;
2251         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2252
2253         if (!rhub->num_ports)
2254                 return;
2255         rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2256                         flags, dev_to_node(dev));
2257         for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2258                 if (xhci->hw_ports[i].rhub != rhub ||
2259                     xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2260                         continue;
2261                 xhci->hw_ports[i].hcd_portnum = port_index;
2262                 rhub->ports[port_index] = &xhci->hw_ports[i];
2263                 port_index++;
2264                 if (port_index == rhub->num_ports)
2265                         break;
2266         }
2267 }
2268
2269 /*
2270  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2271  * specify what speeds each port is supposed to be.  We can't count on the port
2272  * speed bits in the PORTSC register being correct until a device is connected,
2273  * but we need to set up the two fake roothubs with the correct number of USB
2274  * 3.0 and USB 2.0 ports at host controller initialization time.
2275  */
2276 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2277 {
2278         void __iomem *base;
2279         u32 offset;
2280         unsigned int num_ports;
2281         int i, j;
2282         int cap_count = 0;
2283         u32 cap_start;
2284         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2285
2286         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2287         xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2288                                 flags, dev_to_node(dev));
2289         if (!xhci->hw_ports)
2290                 return -ENOMEM;
2291
2292         for (i = 0; i < num_ports; i++) {
2293                 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2294                         NUM_PORT_REGS * i;
2295                 xhci->hw_ports[i].hw_portnum = i;
2296         }
2297
2298         xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2299                                    dev_to_node(dev));
2300         if (!xhci->rh_bw)
2301                 return -ENOMEM;
2302         for (i = 0; i < num_ports; i++) {
2303                 struct xhci_interval_bw_table *bw_table;
2304
2305                 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2306                 bw_table = &xhci->rh_bw[i].bw_table;
2307                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2308                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2309         }
2310         base = &xhci->cap_regs->hc_capbase;
2311
2312         cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2313         if (!cap_start) {
2314                 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2315                 return -ENODEV;
2316         }
2317
2318         offset = cap_start;
2319         /* count extended protocol capability entries for later caching */
2320         while (offset) {
2321                 cap_count++;
2322                 offset = xhci_find_next_ext_cap(base, offset,
2323                                                       XHCI_EXT_CAPS_PROTOCOL);
2324         }
2325
2326         xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2327                                 flags, dev_to_node(dev));
2328         if (!xhci->ext_caps)
2329                 return -ENOMEM;
2330
2331         xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2332                                 flags, dev_to_node(dev));
2333         if (!xhci->port_caps)
2334                 return -ENOMEM;
2335
2336         offset = cap_start;
2337
2338         while (offset) {
2339                 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2340                 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2341                     num_ports)
2342                         break;
2343                 offset = xhci_find_next_ext_cap(base, offset,
2344                                                 XHCI_EXT_CAPS_PROTOCOL);
2345         }
2346         if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2347                 xhci_warn(xhci, "No ports on the roothubs?\n");
2348                 return -ENODEV;
2349         }
2350         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2351                        "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2352                        xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2353
2354         /* Place limits on the number of roothub ports so that the hub
2355          * descriptors aren't longer than the USB core will allocate.
2356          */
2357         if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2358                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2359                                 "Limiting USB 3.0 roothub ports to %u.",
2360                                 USB_SS_MAXPORTS);
2361                 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2362         }
2363         if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2364                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2365                                 "Limiting USB 2.0 roothub ports to %u.",
2366                                 USB_MAXCHILDREN);
2367                 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2368         }
2369
2370         /*
2371          * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2372          * Not sure how the USB core will handle a hub with no ports...
2373          */
2374
2375         xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2376         xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2377
2378         return 0;
2379 }
2380
2381 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2382 {
2383         dma_addr_t      dma;
2384         struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
2385         unsigned int    val, val2;
2386         u64             val_64;
2387         u32             page_size, temp;
2388         int             i, ret;
2389
2390         INIT_LIST_HEAD(&xhci->cmd_list);
2391
2392         /* init command timeout work */
2393         INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2394         init_completion(&xhci->cmd_ring_stop_completion);
2395
2396         page_size = readl(&xhci->op_regs->page_size);
2397         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2398                         "Supported page size register = 0x%x", page_size);
2399         for (i = 0; i < 16; i++) {
2400                 if ((0x1 & page_size) != 0)
2401                         break;
2402                 page_size = page_size >> 1;
2403         }
2404         if (i < 16)
2405                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2406                         "Supported page size of %iK", (1 << (i+12)) / 1024);
2407         else
2408                 xhci_warn(xhci, "WARN: no supported page size\n");
2409         /* Use 4K pages, since that's common and the minimum the HC supports */
2410         xhci->page_shift = 12;
2411         xhci->page_size = 1 << xhci->page_shift;
2412         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2413                         "HCD page size set to %iK", xhci->page_size / 1024);
2414
2415         /*
2416          * Program the Number of Device Slots Enabled field in the CONFIG
2417          * register with the max value of slots the HC can handle.
2418          */
2419         val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2420         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2421                         "// xHC can handle at most %d device slots.", val);
2422         val2 = readl(&xhci->op_regs->config_reg);
2423         val |= (val2 & ~HCS_SLOTS_MASK);
2424         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2425                         "// Setting Max device slots reg = 0x%x.", val);
2426         writel(val, &xhci->op_regs->config_reg);
2427
2428         /*
2429          * xHCI section 5.4.6 - doorbell array must be
2430          * "physically contiguous and 64-byte (cache line) aligned".
2431          */
2432         xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2433                         flags);
2434         if (!xhci->dcbaa)
2435                 goto fail;
2436         xhci->dcbaa->dma = dma;
2437         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2438                         "// Device context base array address = 0x%llx (DMA), %p (virt)",
2439                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2440         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2441
2442         /*
2443          * Initialize the ring segment pool.  The ring must be a contiguous
2444          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2445          * however, the command ring segment needs 64-byte aligned segments
2446          * and our use of dma addresses in the trb_address_map radix tree needs
2447          * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2448          */
2449         xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2450                         TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2451
2452         /* See Table 46 and Note on Figure 55 */
2453         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2454                         2112, 64, xhci->page_size);
2455         if (!xhci->segment_pool || !xhci->device_pool)
2456                 goto fail;
2457
2458         /* Linear stream context arrays don't have any boundary restrictions,
2459          * and only need to be 16-byte aligned.
2460          */
2461         xhci->small_streams_pool =
2462                 dma_pool_create("xHCI 256 byte stream ctx arrays",
2463                         dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2464         xhci->medium_streams_pool =
2465                 dma_pool_create("xHCI 1KB stream ctx arrays",
2466                         dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2467         /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2468          * will be allocated with dma_alloc_coherent()
2469          */
2470
2471         if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2472                 goto fail;
2473
2474         /* Set up the command ring to have one segments for now. */
2475         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2476         if (!xhci->cmd_ring)
2477                 goto fail;
2478         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2479                         "Allocated command ring at %p", xhci->cmd_ring);
2480         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2481                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
2482
2483         /* Set the address in the Command Ring Control register */
2484         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2485         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2486                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2487                 xhci->cmd_ring->cycle_state;
2488         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2489                         "// Setting command ring address to 0x%016llx", val_64);
2490         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2491
2492         xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags);
2493         if (!xhci->lpm_command)
2494                 goto fail;
2495
2496         /* Reserve one command ring TRB for disabling LPM.
2497          * Since the USB core grabs the shared usb_bus bandwidth mutex before
2498          * disabling LPM, we only need to reserve one TRB for all devices.
2499          */
2500         xhci->cmd_ring_reserved_trbs++;
2501
2502         val = readl(&xhci->cap_regs->db_off);
2503         val &= DBOFF_MASK;
2504         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2505                         "// Doorbell array is located at offset 0x%x"
2506                         " from cap regs base addr", val);
2507         xhci->dba = (void __iomem *) xhci->cap_regs + val;
2508         /* Set ir_set to interrupt register set 0 */
2509         xhci->ir_set = &xhci->run_regs->ir_set[0];
2510
2511         /*
2512          * Event ring setup: Allocate a normal ring, but also setup
2513          * the event ring segment table (ERST).  Section 4.9.3.
2514          */
2515         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2516         xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2517                                         0, flags);
2518         if (!xhci->event_ring)
2519                 goto fail;
2520         if (xhci_check_trb_in_td_math(xhci) < 0)
2521                 goto fail;
2522
2523         ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2524         if (ret)
2525                 goto fail;
2526
2527         /* set ERST count with the number of entries in the segment table */
2528         val = readl(&xhci->ir_set->erst_size);
2529         val &= ERST_SIZE_MASK;
2530         val |= ERST_NUM_SEGS;
2531         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2532                         "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2533                         val);
2534         writel(val, &xhci->ir_set->erst_size);
2535
2536         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2537                         "// Set ERST entries to point to event ring.");
2538         /* set the segment table base address */
2539         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2540                         "// Set ERST base address for ir_set 0 = 0x%llx",
2541                         (unsigned long long)xhci->erst.erst_dma_addr);
2542         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2543         val_64 &= ERST_PTR_MASK;
2544         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2545         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2546
2547         /* Set the event ring dequeue address */
2548         xhci_set_hc_event_deq(xhci);
2549         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2550                         "Wrote ERST address to ir_set 0.");
2551
2552         /*
2553          * XXX: Might need to set the Interrupter Moderation Register to
2554          * something other than the default (~1ms minimum between interrupts).
2555          * See section 5.5.1.2.
2556          */
2557         for (i = 0; i < MAX_HC_SLOTS; i++)
2558                 xhci->devs[i] = NULL;
2559         for (i = 0; i < USB_MAXCHILDREN; i++) {
2560                 xhci->usb2_rhub.bus_state.resume_done[i] = 0;
2561                 xhci->usb3_rhub.bus_state.resume_done[i] = 0;
2562                 /* Only the USB 2.0 completions will ever be used. */
2563                 init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]);
2564                 init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]);
2565         }
2566
2567         if (scratchpad_alloc(xhci, flags))
2568                 goto fail;
2569         if (xhci_setup_port_arrays(xhci, flags))
2570                 goto fail;
2571
2572         /* Enable USB 3.0 device notifications for function remote wake, which
2573          * is necessary for allowing USB 3.0 devices to do remote wakeup from
2574          * U3 (device suspend).
2575          */
2576         temp = readl(&xhci->op_regs->dev_notification);
2577         temp &= ~DEV_NOTE_MASK;
2578         temp |= DEV_NOTE_FWAKE;
2579         writel(temp, &xhci->op_regs->dev_notification);
2580
2581         return 0;
2582
2583 fail:
2584         xhci_halt(xhci);
2585         xhci_reset(xhci);
2586         xhci_mem_cleanup(xhci);
2587         return -ENOMEM;
2588 }