1 // SPDX-License-Identifier: GPL-2.0
3 * xHCI host controller driver
5 * Copyright (C) 2008 Intel Corp.
8 * Some code borrowed from the Linux EHCI driver.
11 #include <linux/usb.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
18 #include "xhci-trace.h"
19 #include "xhci-debugfs.h"
22 * Allocates a generic ring segment from the ring pool, sets the dma address,
23 * initializes the segment to zero, and sets the private next pointer to NULL.
26 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
28 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
29 unsigned int cycle_state,
30 unsigned int max_packet,
33 struct xhci_segment *seg;
36 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
38 seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
42 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
49 seg->bounce_buf = kzalloc_node(max_packet, flags,
51 if (!seg->bounce_buf) {
52 dma_pool_free(xhci->segment_pool, seg->trbs, dma);
57 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58 if (cycle_state == 0) {
59 for (i = 0; i < TRBS_PER_SEGMENT; i++)
60 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
71 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
74 kfree(seg->bounce_buf);
78 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
79 struct xhci_segment *first)
81 struct xhci_segment *seg;
84 while (seg != first) {
85 struct xhci_segment *next = seg->next;
86 xhci_segment_free(xhci, seg);
89 xhci_segment_free(xhci, first);
93 * Make the prev segment point to the next segment.
95 * Change the last TRB in the prev segment to be a Link TRB which points to the
96 * DMA address of the next segment. The caller needs to set any Link TRB
97 * related flags, such as End TRB, Toggle Cycle, and no snoop.
99 static void xhci_link_segments(struct xhci_segment *prev,
100 struct xhci_segment *next,
101 enum xhci_ring_type type, bool chain_links)
108 if (type != TYPE_EVENT) {
109 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
110 cpu_to_le64(next->dma);
112 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
113 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
114 val &= ~TRB_TYPE_BITMASK;
115 val |= TRB_TYPE(TRB_LINK);
118 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
123 * Link the ring to the new segments.
124 * Set Toggle Cycle for the new ring if needed.
126 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
127 struct xhci_segment *first, struct xhci_segment *last,
128 unsigned int num_segs)
130 struct xhci_segment *next;
133 if (!ring || !first || !last)
136 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
137 chain_links = !!(xhci_link_trb_quirk(xhci) ||
138 (ring->type == TYPE_ISOC &&
139 (xhci->quirks & XHCI_AMD_0x96_HOST)));
141 next = ring->enq_seg->next;
142 xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
143 xhci_link_segments(last, next, ring->type, chain_links);
144 ring->num_segs += num_segs;
145 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
147 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
148 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
149 &= ~cpu_to_le32(LINK_TOGGLE);
150 last->trbs[TRBS_PER_SEGMENT-1].link.control
151 |= cpu_to_le32(LINK_TOGGLE);
152 ring->last_seg = last;
157 * We need a radix tree for mapping physical addresses of TRBs to which stream
158 * ID they belong to. We need to do this because the host controller won't tell
159 * us which stream ring the TRB came from. We could store the stream ID in an
160 * event data TRB, but that doesn't help us for the cancellation case, since the
161 * endpoint may stop before it reaches that event data TRB.
163 * The radix tree maps the upper portion of the TRB DMA address to a ring
164 * segment that has the same upper portion of DMA addresses. For example, say I
165 * have segments of size 1KB, that are always 1KB aligned. A segment may
166 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
167 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
168 * pass the radix tree a key to get the right stream ID:
170 * 0x10c90fff >> 10 = 0x43243
171 * 0x10c912c0 >> 10 = 0x43244
172 * 0x10c91400 >> 10 = 0x43245
174 * Obviously, only those TRBs with DMA addresses that are within the segment
175 * will make the radix tree return the stream ID for that ring.
177 * Caveats for the radix tree:
179 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
180 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
181 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
182 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
183 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
184 * extended systems (where the DMA address can be bigger than 32-bits),
185 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
187 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
188 struct xhci_ring *ring,
189 struct xhci_segment *seg,
195 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
196 /* Skip any segments that were already added. */
197 if (radix_tree_lookup(trb_address_map, key))
200 ret = radix_tree_maybe_preload(mem_flags);
203 ret = radix_tree_insert(trb_address_map,
205 radix_tree_preload_end();
209 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
210 struct xhci_segment *seg)
214 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
215 if (radix_tree_lookup(trb_address_map, key))
216 radix_tree_delete(trb_address_map, key);
219 static int xhci_update_stream_segment_mapping(
220 struct radix_tree_root *trb_address_map,
221 struct xhci_ring *ring,
222 struct xhci_segment *first_seg,
223 struct xhci_segment *last_seg,
226 struct xhci_segment *seg;
227 struct xhci_segment *failed_seg;
230 if (WARN_ON_ONCE(trb_address_map == NULL))
235 ret = xhci_insert_segment_mapping(trb_address_map,
236 ring, seg, mem_flags);
242 } while (seg != first_seg);
250 xhci_remove_segment_mapping(trb_address_map, seg);
251 if (seg == failed_seg)
254 } while (seg != first_seg);
259 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
261 struct xhci_segment *seg;
263 if (WARN_ON_ONCE(ring->trb_address_map == NULL))
266 seg = ring->first_seg;
268 xhci_remove_segment_mapping(ring->trb_address_map, seg);
270 } while (seg != ring->first_seg);
273 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
275 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
276 ring->first_seg, ring->last_seg, mem_flags);
279 /* XXX: Do we need the hcd structure in all these functions? */
280 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
285 trace_xhci_ring_free(ring);
287 if (ring->first_seg) {
288 if (ring->type == TYPE_STREAM)
289 xhci_remove_stream_mapping(ring);
290 xhci_free_segments_for_ring(xhci, ring->first_seg);
296 void xhci_initialize_ring_info(struct xhci_ring *ring,
297 unsigned int cycle_state)
299 /* The ring is empty, so the enqueue pointer == dequeue pointer */
300 ring->enqueue = ring->first_seg->trbs;
301 ring->enq_seg = ring->first_seg;
302 ring->dequeue = ring->enqueue;
303 ring->deq_seg = ring->first_seg;
304 /* The ring is initialized to 0. The producer must write 1 to the cycle
305 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
306 * compare CCS to the cycle bit to check ownership, so CCS = 1.
308 * New rings are initialized with cycle state equal to 1; if we are
309 * handling ring expansion, set the cycle state equal to the old ring.
311 ring->cycle_state = cycle_state;
314 * Each segment has a link TRB, and leave an extra TRB for SW
317 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
320 /* Allocate segments and link them for a ring */
321 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
322 struct xhci_segment **first, struct xhci_segment **last,
323 unsigned int num_segs, unsigned int cycle_state,
324 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
326 struct xhci_segment *prev;
329 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
330 chain_links = !!(xhci_link_trb_quirk(xhci) ||
331 (type == TYPE_ISOC &&
332 (xhci->quirks & XHCI_AMD_0x96_HOST)));
334 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
340 while (num_segs > 0) {
341 struct xhci_segment *next;
343 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
348 xhci_segment_free(xhci, prev);
353 xhci_link_segments(prev, next, type, chain_links);
358 xhci_link_segments(prev, *first, type, chain_links);
365 * Create a new ring with zero or more segments.
367 * Link each segment together into a ring.
368 * Set the end flag and the cycle toggle bit on the last segment.
369 * See section 4.9.1 and figures 15 and 16.
371 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
372 unsigned int num_segs, unsigned int cycle_state,
373 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
375 struct xhci_ring *ring;
377 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
379 ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
383 ring->num_segs = num_segs;
384 ring->bounce_buf_len = max_packet;
385 INIT_LIST_HEAD(&ring->td_list);
390 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
391 &ring->last_seg, num_segs, cycle_state, type,
396 /* Only event ring does not use link TRB */
397 if (type != TYPE_EVENT) {
398 /* See section 4.9.2.1 and 6.4.4.1 */
399 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
400 cpu_to_le32(LINK_TOGGLE);
402 xhci_initialize_ring_info(ring, cycle_state);
403 trace_xhci_ring_alloc(ring);
411 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
412 struct xhci_virt_device *virt_dev,
413 unsigned int ep_index)
415 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
416 virt_dev->eps[ep_index].ring = NULL;
420 * Expand an existing ring.
421 * Allocate a new ring which has same segment numbers and link the two rings.
423 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
424 unsigned int num_trbs, gfp_t flags)
426 struct xhci_segment *first;
427 struct xhci_segment *last;
428 unsigned int num_segs;
429 unsigned int num_segs_needed;
432 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
433 (TRBS_PER_SEGMENT - 1);
435 /* Allocate number of segments we needed, or double the ring size */
436 num_segs = ring->num_segs > num_segs_needed ?
437 ring->num_segs : num_segs_needed;
439 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
440 num_segs, ring->cycle_state, ring->type,
441 ring->bounce_buf_len, flags);
445 if (ring->type == TYPE_STREAM)
446 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
447 ring, first, last, flags);
449 struct xhci_segment *next;
452 xhci_segment_free(xhci, first);
460 xhci_link_rings(xhci, ring, first, last, num_segs);
461 trace_xhci_ring_expansion(ring);
462 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
463 "ring expansion succeed, now has %d segments",
469 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
470 int type, gfp_t flags)
472 struct xhci_container_ctx *ctx;
473 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
475 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
478 ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
483 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
484 if (type == XHCI_CTX_TYPE_INPUT)
485 ctx->size += CTX_SIZE(xhci->hcc_params);
487 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
495 void xhci_free_container_ctx(struct xhci_hcd *xhci,
496 struct xhci_container_ctx *ctx)
500 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
504 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
505 struct xhci_container_ctx *ctx)
507 if (ctx->type != XHCI_CTX_TYPE_INPUT)
510 return (struct xhci_input_control_ctx *)ctx->bytes;
513 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
514 struct xhci_container_ctx *ctx)
516 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
517 return (struct xhci_slot_ctx *)ctx->bytes;
519 return (struct xhci_slot_ctx *)
520 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
523 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
524 struct xhci_container_ctx *ctx,
525 unsigned int ep_index)
527 /* increment ep index by offset of start of ep ctx array */
529 if (ctx->type == XHCI_CTX_TYPE_INPUT)
532 return (struct xhci_ep_ctx *)
533 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
537 /***************** Streams structures manipulation *************************/
539 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
540 unsigned int num_stream_ctxs,
541 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
543 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
544 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
546 if (size > MEDIUM_STREAM_ARRAY_SIZE)
547 dma_free_coherent(dev, size,
549 else if (size <= SMALL_STREAM_ARRAY_SIZE)
550 return dma_pool_free(xhci->small_streams_pool,
553 return dma_pool_free(xhci->medium_streams_pool,
558 * The stream context array for each endpoint with bulk streams enabled can
559 * vary in size, based on:
560 * - how many streams the endpoint supports,
561 * - the maximum primary stream array size the host controller supports,
562 * - and how many streams the device driver asks for.
564 * The stream context array must be a power of 2, and can be as small as
565 * 64 bytes or as large as 1MB.
567 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
568 unsigned int num_stream_ctxs, dma_addr_t *dma,
571 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
572 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
574 if (size > MEDIUM_STREAM_ARRAY_SIZE)
575 return dma_alloc_coherent(dev, size,
577 else if (size <= SMALL_STREAM_ARRAY_SIZE)
578 return dma_pool_alloc(xhci->small_streams_pool,
581 return dma_pool_alloc(xhci->medium_streams_pool,
585 struct xhci_ring *xhci_dma_to_transfer_ring(
586 struct xhci_virt_ep *ep,
589 if (ep->ep_state & EP_HAS_STREAMS)
590 return radix_tree_lookup(&ep->stream_info->trb_address_map,
591 address >> TRB_SEGMENT_SHIFT);
595 struct xhci_ring *xhci_stream_id_to_ring(
596 struct xhci_virt_device *dev,
597 unsigned int ep_index,
598 unsigned int stream_id)
600 struct xhci_virt_ep *ep = &dev->eps[ep_index];
604 if (!ep->stream_info)
607 if (stream_id >= ep->stream_info->num_streams)
609 return ep->stream_info->stream_rings[stream_id];
613 * Change an endpoint's internal structure so it supports stream IDs. The
614 * number of requested streams includes stream 0, which cannot be used by device
617 * The number of stream contexts in the stream context array may be bigger than
618 * the number of streams the driver wants to use. This is because the number of
619 * stream context array entries must be a power of two.
621 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
622 unsigned int num_stream_ctxs,
623 unsigned int num_streams,
624 unsigned int max_packet, gfp_t mem_flags)
626 struct xhci_stream_info *stream_info;
628 struct xhci_ring *cur_ring;
631 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
633 xhci_dbg(xhci, "Allocating %u streams and %u "
634 "stream context array entries.\n",
635 num_streams, num_stream_ctxs);
636 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
637 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
640 xhci->cmd_ring_reserved_trbs++;
642 stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
647 stream_info->num_streams = num_streams;
648 stream_info->num_stream_ctxs = num_stream_ctxs;
650 /* Initialize the array of virtual pointers to stream rings. */
651 stream_info->stream_rings = kcalloc_node(
652 num_streams, sizeof(struct xhci_ring *), mem_flags,
654 if (!stream_info->stream_rings)
657 /* Initialize the array of DMA addresses for stream rings for the HW. */
658 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
659 num_stream_ctxs, &stream_info->ctx_array_dma,
661 if (!stream_info->stream_ctx_array)
663 memset(stream_info->stream_ctx_array, 0,
664 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
666 /* Allocate everything needed to free the stream rings later */
667 stream_info->free_streams_command =
668 xhci_alloc_command_with_ctx(xhci, true, mem_flags);
669 if (!stream_info->free_streams_command)
672 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
674 /* Allocate rings for all the streams that the driver will use,
675 * and add their segment DMA addresses to the radix tree.
676 * Stream 0 is reserved.
679 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
680 stream_info->stream_rings[cur_stream] =
681 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
683 cur_ring = stream_info->stream_rings[cur_stream];
686 cur_ring->stream_id = cur_stream;
687 cur_ring->trb_address_map = &stream_info->trb_address_map;
688 /* Set deq ptr, cycle bit, and stream context type */
689 addr = cur_ring->first_seg->dma |
690 SCT_FOR_CTX(SCT_PRI_TR) |
691 cur_ring->cycle_state;
692 stream_info->stream_ctx_array[cur_stream].stream_ring =
694 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
695 cur_stream, (unsigned long long) addr);
697 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
699 xhci_ring_free(xhci, cur_ring);
700 stream_info->stream_rings[cur_stream] = NULL;
704 /* Leave the other unused stream ring pointers in the stream context
705 * array initialized to zero. This will cause the xHC to give us an
706 * error if the device asks for a stream ID we don't have setup (if it
707 * was any other way, the host controller would assume the ring is
708 * "empty" and wait forever for data to be queued to that stream ID).
714 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
715 cur_ring = stream_info->stream_rings[cur_stream];
717 xhci_ring_free(xhci, cur_ring);
718 stream_info->stream_rings[cur_stream] = NULL;
721 xhci_free_command(xhci, stream_info->free_streams_command);
723 kfree(stream_info->stream_rings);
727 xhci->cmd_ring_reserved_trbs--;
731 * Sets the MaxPStreams field and the Linear Stream Array field.
732 * Sets the dequeue pointer to the stream context array.
734 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
735 struct xhci_ep_ctx *ep_ctx,
736 struct xhci_stream_info *stream_info)
738 u32 max_primary_streams;
739 /* MaxPStreams is the number of stream context array entries, not the
740 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
741 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
743 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
744 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
745 "Setting number of stream ctx array entries to %u",
746 1 << (max_primary_streams + 1));
747 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
748 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
750 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
754 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
755 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
756 * not at the beginning of the ring).
758 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
759 struct xhci_virt_ep *ep)
762 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
763 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
764 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
767 /* Frees all stream contexts associated with the endpoint,
769 * Caller should fix the endpoint context streams fields.
771 void xhci_free_stream_info(struct xhci_hcd *xhci,
772 struct xhci_stream_info *stream_info)
775 struct xhci_ring *cur_ring;
780 for (cur_stream = 1; cur_stream < stream_info->num_streams;
782 cur_ring = stream_info->stream_rings[cur_stream];
784 xhci_ring_free(xhci, cur_ring);
785 stream_info->stream_rings[cur_stream] = NULL;
788 xhci_free_command(xhci, stream_info->free_streams_command);
789 xhci->cmd_ring_reserved_trbs--;
790 if (stream_info->stream_ctx_array)
791 xhci_free_stream_ctx(xhci,
792 stream_info->num_stream_ctxs,
793 stream_info->stream_ctx_array,
794 stream_info->ctx_array_dma);
796 kfree(stream_info->stream_rings);
801 /***************** Device context manipulation *************************/
803 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
804 struct xhci_virt_ep *ep)
806 timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
811 static void xhci_free_tt_info(struct xhci_hcd *xhci,
812 struct xhci_virt_device *virt_dev,
815 struct list_head *tt_list_head;
816 struct xhci_tt_bw_info *tt_info, *next;
817 bool slot_found = false;
819 /* If the device never made it past the Set Address stage,
820 * it may not have the real_port set correctly.
822 if (virt_dev->real_port == 0 ||
823 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
824 xhci_dbg(xhci, "Bad real port.\n");
828 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
829 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
830 /* Multi-TT hubs will have more than one entry */
831 if (tt_info->slot_id == slot_id) {
833 list_del(&tt_info->tt_list);
835 } else if (slot_found) {
841 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
842 struct xhci_virt_device *virt_dev,
843 struct usb_device *hdev,
844 struct usb_tt *tt, gfp_t mem_flags)
846 struct xhci_tt_bw_info *tt_info;
847 unsigned int num_ports;
849 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
854 num_ports = hdev->maxchild;
856 for (i = 0; i < num_ports; i++, tt_info++) {
857 struct xhci_interval_bw_table *bw_table;
859 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
863 INIT_LIST_HEAD(&tt_info->tt_list);
864 list_add(&tt_info->tt_list,
865 &xhci->rh_bw[virt_dev->real_port - 1].tts);
866 tt_info->slot_id = virt_dev->udev->slot_id;
868 tt_info->ttport = i+1;
869 bw_table = &tt_info->bw_table;
870 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
871 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
876 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
881 /* All the xhci_tds in the ring's TD list should be freed at this point.
882 * Should be called with xhci->lock held if there is any chance the TT lists
883 * will be manipulated by the configure endpoint, allocate device, or update
884 * hub functions while this function is removing the TT entries from the list.
886 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
888 struct xhci_virt_device *dev;
890 int old_active_eps = 0;
892 /* Slot ID 0 is reserved */
893 if (slot_id == 0 || !xhci->devs[slot_id])
896 dev = xhci->devs[slot_id];
898 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
902 trace_xhci_free_virt_device(dev);
905 old_active_eps = dev->tt_info->active_eps;
907 for (i = 0; i < 31; i++) {
908 if (dev->eps[i].ring)
909 xhci_ring_free(xhci, dev->eps[i].ring);
910 if (dev->eps[i].stream_info)
911 xhci_free_stream_info(xhci,
912 dev->eps[i].stream_info);
913 /* Endpoints on the TT/root port lists should have been removed
914 * when usb_disable_device() was called for the device.
915 * We can't drop them anyway, because the udev might have gone
916 * away by this point, and we can't tell what speed it was.
918 if (!list_empty(&dev->eps[i].bw_endpoint_list))
919 xhci_warn(xhci, "Slot %u endpoint %u "
920 "not removed from BW list!\n",
923 /* If this is a hub, free the TT(s) from the TT list */
924 xhci_free_tt_info(xhci, dev, slot_id);
925 /* If necessary, update the number of active TTs on this root port */
926 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
929 xhci_free_container_ctx(xhci, dev->in_ctx);
931 xhci_free_container_ctx(xhci, dev->out_ctx);
933 if (dev->udev && dev->udev->slot_id)
934 dev->udev->slot_id = 0;
935 kfree(xhci->devs[slot_id]);
936 xhci->devs[slot_id] = NULL;
940 * Free a virt_device structure.
941 * If the virt_device added a tt_info (a hub) and has children pointing to
942 * that tt_info, then free the child first. Recursive.
943 * We can't rely on udev at this point to find child-parent relationships.
945 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
947 struct xhci_virt_device *vdev;
948 struct list_head *tt_list_head;
949 struct xhci_tt_bw_info *tt_info, *next;
952 vdev = xhci->devs[slot_id];
956 if (vdev->real_port == 0 ||
957 vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
958 xhci_dbg(xhci, "Bad vdev->real_port.\n");
962 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
963 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
964 /* is this a hub device that added a tt_info to the tts list */
965 if (tt_info->slot_id == slot_id) {
966 /* are any devices using this tt_info? */
967 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
968 vdev = xhci->devs[i];
969 if (vdev && (vdev->tt_info == tt_info))
970 xhci_free_virt_devices_depth_first(
976 /* we are now at a leaf device */
977 xhci_debugfs_remove_slot(xhci, slot_id);
978 xhci_free_virt_device(xhci, slot_id);
981 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
982 struct usb_device *udev, gfp_t flags)
984 struct xhci_virt_device *dev;
987 /* Slot ID 0 is reserved */
988 if (slot_id == 0 || xhci->devs[slot_id]) {
989 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
993 dev = kzalloc(sizeof(*dev), flags);
997 /* Allocate the (output) device context that will be used in the HC. */
998 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
1002 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1003 (unsigned long long)dev->out_ctx->dma);
1005 /* Allocate the (input) device context for address device command */
1006 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1010 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1011 (unsigned long long)dev->in_ctx->dma);
1013 /* Initialize the cancellation list and watchdog timers for each ep */
1014 for (i = 0; i < 31; i++) {
1015 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1016 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1017 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1020 /* Allocate endpoint 0 ring */
1021 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1022 if (!dev->eps[0].ring)
1027 /* Point to output device context in dcbaa. */
1028 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1029 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1031 &xhci->dcbaa->dev_context_ptrs[slot_id],
1032 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1034 trace_xhci_alloc_virt_device(dev);
1036 xhci->devs[slot_id] = dev;
1042 xhci_free_container_ctx(xhci, dev->in_ctx);
1044 xhci_free_container_ctx(xhci, dev->out_ctx);
1050 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1051 struct usb_device *udev)
1053 struct xhci_virt_device *virt_dev;
1054 struct xhci_ep_ctx *ep0_ctx;
1055 struct xhci_ring *ep_ring;
1057 virt_dev = xhci->devs[udev->slot_id];
1058 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1059 ep_ring = virt_dev->eps[0].ring;
1061 * FIXME we don't keep track of the dequeue pointer very well after a
1062 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1063 * host to our enqueue pointer. This should only be called after a
1064 * configured device has reset, so all control transfers should have
1065 * been completed or cancelled before the reset.
1067 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1069 | ep_ring->cycle_state);
1073 * The xHCI roothub may have ports of differing speeds in any order in the port
1076 * The xHCI hardware wants to know the roothub port number that the USB device
1077 * is attached to (or the roothub port its ancestor hub is attached to). All we
1078 * know is the index of that port under either the USB 2.0 or the USB 3.0
1079 * roothub, but that doesn't give us the real index into the HW port status
1080 * registers. Call xhci_find_raw_port_number() to get real index.
1082 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1083 struct usb_device *udev)
1085 struct usb_device *top_dev;
1086 struct usb_hcd *hcd;
1088 if (udev->speed >= USB_SPEED_SUPER)
1089 hcd = xhci->shared_hcd;
1091 hcd = xhci->main_hcd;
1093 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1094 top_dev = top_dev->parent)
1095 /* Found device below root hub */;
1097 return xhci_find_raw_port_number(hcd, top_dev->portnum);
1100 /* Setup an xHCI virtual device for a Set Address command */
1101 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1103 struct xhci_virt_device *dev;
1104 struct xhci_ep_ctx *ep0_ctx;
1105 struct xhci_slot_ctx *slot_ctx;
1108 struct usb_device *top_dev;
1110 dev = xhci->devs[udev->slot_id];
1111 /* Slot ID 0 is reserved */
1112 if (udev->slot_id == 0 || !dev) {
1113 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1117 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1118 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1120 /* 3) Only the control endpoint is valid - one endpoint context */
1121 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1122 switch (udev->speed) {
1123 case USB_SPEED_SUPER_PLUS:
1124 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1125 max_packets = MAX_PACKET(512);
1127 case USB_SPEED_SUPER:
1128 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1129 max_packets = MAX_PACKET(512);
1131 case USB_SPEED_HIGH:
1132 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1133 max_packets = MAX_PACKET(64);
1135 /* USB core guesses at a 64-byte max packet first for FS devices */
1136 case USB_SPEED_FULL:
1137 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1138 max_packets = MAX_PACKET(64);
1141 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1142 max_packets = MAX_PACKET(8);
1144 case USB_SPEED_WIRELESS:
1145 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1149 /* Speed was set earlier, this shouldn't happen. */
1152 /* Find the root hub port this device is under */
1153 port_num = xhci_find_real_port_number(xhci, udev);
1156 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1157 /* Set the port number in the virtual_device to the faked port number */
1158 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1159 top_dev = top_dev->parent)
1160 /* Found device below root hub */;
1161 dev->fake_port = top_dev->portnum;
1162 dev->real_port = port_num;
1163 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1164 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1166 /* Find the right bandwidth table that this device will be a part of.
1167 * If this is a full speed device attached directly to a root port (or a
1168 * decendent of one), it counts as a primary bandwidth domain, not a
1169 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1170 * will never be created for the HS root hub.
1172 if (!udev->tt || !udev->tt->hub->parent) {
1173 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1175 struct xhci_root_port_bw_info *rh_bw;
1176 struct xhci_tt_bw_info *tt_bw;
1178 rh_bw = &xhci->rh_bw[port_num - 1];
1179 /* Find the right TT. */
1180 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1181 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1184 if (!dev->udev->tt->multi ||
1186 tt_bw->ttport == dev->udev->ttport)) {
1187 dev->bw_table = &tt_bw->bw_table;
1188 dev->tt_info = tt_bw;
1193 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1196 /* Is this a LS/FS device under an external HS hub? */
1197 if (udev->tt && udev->tt->hub->parent) {
1198 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1199 (udev->ttport << 8));
1200 if (udev->tt->multi)
1201 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1203 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1204 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1206 /* Step 4 - ring already allocated */
1208 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1210 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1211 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1214 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1215 dev->eps[0].ring->cycle_state);
1217 trace_xhci_setup_addressable_virt_device(dev);
1219 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1225 * Convert interval expressed as 2^(bInterval - 1) == interval into
1226 * straight exponent value 2^n == interval.
1229 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1230 struct usb_host_endpoint *ep)
1232 unsigned int interval;
1234 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1235 if (interval != ep->desc.bInterval - 1)
1236 dev_warn(&udev->dev,
1237 "ep %#x - rounding interval to %d %sframes\n",
1238 ep->desc.bEndpointAddress,
1240 udev->speed == USB_SPEED_FULL ? "" : "micro");
1242 if (udev->speed == USB_SPEED_FULL) {
1244 * Full speed isoc endpoints specify interval in frames,
1245 * not microframes. We are using microframes everywhere,
1246 * so adjust accordingly.
1248 interval += 3; /* 1 frame = 2^3 uframes */
1255 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1256 * microframes, rounded down to nearest power of 2.
1258 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1259 struct usb_host_endpoint *ep, unsigned int desc_interval,
1260 unsigned int min_exponent, unsigned int max_exponent)
1262 unsigned int interval;
1264 interval = fls(desc_interval) - 1;
1265 interval = clamp_val(interval, min_exponent, max_exponent);
1266 if ((1 << interval) != desc_interval)
1268 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1269 ep->desc.bEndpointAddress,
1276 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1277 struct usb_host_endpoint *ep)
1279 if (ep->desc.bInterval == 0)
1281 return xhci_microframes_to_exponent(udev, ep,
1282 ep->desc.bInterval, 0, 15);
1286 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1287 struct usb_host_endpoint *ep)
1289 return xhci_microframes_to_exponent(udev, ep,
1290 ep->desc.bInterval * 8, 3, 10);
1293 /* Return the polling or NAK interval.
1295 * The polling interval is expressed in "microframes". If xHCI's Interval field
1296 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1298 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1301 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1302 struct usb_host_endpoint *ep)
1304 unsigned int interval = 0;
1306 switch (udev->speed) {
1307 case USB_SPEED_HIGH:
1309 if (usb_endpoint_xfer_control(&ep->desc) ||
1310 usb_endpoint_xfer_bulk(&ep->desc)) {
1311 interval = xhci_parse_microframe_interval(udev, ep);
1314 fallthrough; /* SS and HS isoc/int have same decoding */
1316 case USB_SPEED_SUPER_PLUS:
1317 case USB_SPEED_SUPER:
1318 if (usb_endpoint_xfer_int(&ep->desc) ||
1319 usb_endpoint_xfer_isoc(&ep->desc)) {
1320 interval = xhci_parse_exponent_interval(udev, ep);
1324 case USB_SPEED_FULL:
1325 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1326 interval = xhci_parse_exponent_interval(udev, ep);
1330 * Fall through for interrupt endpoint interval decoding
1331 * since it uses the same rules as low speed interrupt
1337 if (usb_endpoint_xfer_int(&ep->desc) ||
1338 usb_endpoint_xfer_isoc(&ep->desc)) {
1340 interval = xhci_parse_frame_interval(udev, ep);
1350 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1351 * High speed endpoint descriptors can define "the number of additional
1352 * transaction opportunities per microframe", but that goes in the Max Burst
1353 * endpoint context field.
1355 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1356 struct usb_host_endpoint *ep)
1358 if (udev->speed < USB_SPEED_SUPER ||
1359 !usb_endpoint_xfer_isoc(&ep->desc))
1361 return ep->ss_ep_comp.bmAttributes;
1364 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1365 struct usb_host_endpoint *ep)
1367 /* Super speed and Plus have max burst in ep companion desc */
1368 if (udev->speed >= USB_SPEED_SUPER)
1369 return ep->ss_ep_comp.bMaxBurst;
1371 if (udev->speed == USB_SPEED_HIGH &&
1372 (usb_endpoint_xfer_isoc(&ep->desc) ||
1373 usb_endpoint_xfer_int(&ep->desc)))
1374 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1379 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1383 in = usb_endpoint_dir_in(&ep->desc);
1385 switch (usb_endpoint_type(&ep->desc)) {
1386 case USB_ENDPOINT_XFER_CONTROL:
1388 case USB_ENDPOINT_XFER_BULK:
1389 return in ? BULK_IN_EP : BULK_OUT_EP;
1390 case USB_ENDPOINT_XFER_ISOC:
1391 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1392 case USB_ENDPOINT_XFER_INT:
1393 return in ? INT_IN_EP : INT_OUT_EP;
1398 /* Return the maximum endpoint service interval time (ESIT) payload.
1399 * Basically, this is the maxpacket size, multiplied by the burst size
1402 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1403 struct usb_host_endpoint *ep)
1408 /* Only applies for interrupt or isochronous endpoints */
1409 if (usb_endpoint_xfer_control(&ep->desc) ||
1410 usb_endpoint_xfer_bulk(&ep->desc))
1413 /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1414 if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1415 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1416 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1417 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1418 else if (udev->speed >= USB_SPEED_SUPER)
1419 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1421 max_packet = usb_endpoint_maxp(&ep->desc);
1422 max_burst = usb_endpoint_maxp_mult(&ep->desc);
1423 /* A 0 in max burst means 1 transfer per ESIT */
1424 return max_packet * max_burst;
1427 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1428 * Drivers will have to call usb_alloc_streams() to do that.
1430 int xhci_endpoint_init(struct xhci_hcd *xhci,
1431 struct xhci_virt_device *virt_dev,
1432 struct usb_device *udev,
1433 struct usb_host_endpoint *ep,
1436 unsigned int ep_index;
1437 struct xhci_ep_ctx *ep_ctx;
1438 struct xhci_ring *ep_ring;
1439 unsigned int max_packet;
1440 enum xhci_ring_type ring_type;
1441 u32 max_esit_payload;
1443 unsigned int max_burst;
1444 unsigned int interval;
1446 unsigned int avg_trb_len;
1447 unsigned int err_count = 0;
1449 ep_index = xhci_get_endpoint_index(&ep->desc);
1450 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1452 endpoint_type = xhci_get_endpoint_type(ep);
1456 ring_type = usb_endpoint_type(&ep->desc);
1459 * Get values to fill the endpoint context, mostly from ep descriptor.
1460 * The average TRB buffer lengt for bulk endpoints is unclear as we
1461 * have no clue on scatter gather list entry size. For Isoc and Int,
1462 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1464 max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1465 interval = xhci_get_endpoint_interval(udev, ep);
1467 /* Periodic endpoint bInterval limit quirk */
1468 if (usb_endpoint_xfer_int(&ep->desc) ||
1469 usb_endpoint_xfer_isoc(&ep->desc)) {
1470 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1471 udev->speed >= USB_SPEED_HIGH &&
1477 mult = xhci_get_endpoint_mult(udev, ep);
1478 max_packet = usb_endpoint_maxp(&ep->desc);
1479 max_burst = xhci_get_endpoint_max_burst(udev, ep);
1480 avg_trb_len = max_esit_payload;
1482 /* FIXME dig Mult and streams info out of ep companion desc */
1484 /* Allow 3 retries for everything but isoc, set CErr = 3 */
1485 if (!usb_endpoint_xfer_isoc(&ep->desc))
1487 /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1488 if (usb_endpoint_xfer_bulk(&ep->desc)) {
1489 if (udev->speed == USB_SPEED_HIGH)
1491 if (udev->speed == USB_SPEED_FULL) {
1492 max_packet = rounddown_pow_of_two(max_packet);
1493 max_packet = clamp_val(max_packet, 8, 64);
1496 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1497 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1499 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1500 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1503 /* Set up the endpoint ring */
1504 virt_dev->eps[ep_index].new_ring =
1505 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1506 if (!virt_dev->eps[ep_index].new_ring)
1509 virt_dev->eps[ep_index].skip = false;
1510 ep_ring = virt_dev->eps[ep_index].new_ring;
1512 /* Fill the endpoint context */
1513 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1514 EP_INTERVAL(interval) |
1516 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1517 MAX_PACKET(max_packet) |
1518 MAX_BURST(max_burst) |
1519 ERROR_COUNT(err_count));
1520 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1521 ep_ring->cycle_state);
1523 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1524 EP_AVG_TRB_LENGTH(avg_trb_len));
1529 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1530 struct xhci_virt_device *virt_dev,
1531 struct usb_host_endpoint *ep)
1533 unsigned int ep_index;
1534 struct xhci_ep_ctx *ep_ctx;
1536 ep_index = xhci_get_endpoint_index(&ep->desc);
1537 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1539 ep_ctx->ep_info = 0;
1540 ep_ctx->ep_info2 = 0;
1542 ep_ctx->tx_info = 0;
1543 /* Don't free the endpoint ring until the set interface or configuration
1548 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1550 bw_info->ep_interval = 0;
1552 bw_info->num_packets = 0;
1553 bw_info->max_packet_size = 0;
1555 bw_info->max_esit_payload = 0;
1558 void xhci_update_bw_info(struct xhci_hcd *xhci,
1559 struct xhci_container_ctx *in_ctx,
1560 struct xhci_input_control_ctx *ctrl_ctx,
1561 struct xhci_virt_device *virt_dev)
1563 struct xhci_bw_info *bw_info;
1564 struct xhci_ep_ctx *ep_ctx;
1565 unsigned int ep_type;
1568 for (i = 1; i < 31; i++) {
1569 bw_info = &virt_dev->eps[i].bw_info;
1571 /* We can't tell what endpoint type is being dropped, but
1572 * unconditionally clearing the bandwidth info for non-periodic
1573 * endpoints should be harmless because the info will never be
1574 * set in the first place.
1576 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1577 /* Dropped endpoint */
1578 xhci_clear_endpoint_bw_info(bw_info);
1582 if (EP_IS_ADDED(ctrl_ctx, i)) {
1583 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1584 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1586 /* Ignore non-periodic endpoints */
1587 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1588 ep_type != ISOC_IN_EP &&
1589 ep_type != INT_IN_EP)
1592 /* Added or changed endpoint */
1593 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1594 le32_to_cpu(ep_ctx->ep_info));
1595 /* Number of packets and mult are zero-based in the
1596 * input context, but we want one-based for the
1599 bw_info->mult = CTX_TO_EP_MULT(
1600 le32_to_cpu(ep_ctx->ep_info)) + 1;
1601 bw_info->num_packets = CTX_TO_MAX_BURST(
1602 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1603 bw_info->max_packet_size = MAX_PACKET_DECODED(
1604 le32_to_cpu(ep_ctx->ep_info2));
1605 bw_info->type = ep_type;
1606 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1607 le32_to_cpu(ep_ctx->tx_info));
1612 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1613 * Useful when you want to change one particular aspect of the endpoint and then
1614 * issue a configure endpoint command.
1616 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1617 struct xhci_container_ctx *in_ctx,
1618 struct xhci_container_ctx *out_ctx,
1619 unsigned int ep_index)
1621 struct xhci_ep_ctx *out_ep_ctx;
1622 struct xhci_ep_ctx *in_ep_ctx;
1624 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1625 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1627 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1628 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1629 in_ep_ctx->deq = out_ep_ctx->deq;
1630 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1631 if (xhci->quirks & XHCI_MTK_HOST) {
1632 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1633 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1637 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1638 * Useful when you want to change one particular aspect of the endpoint and then
1639 * issue a configure endpoint command. Only the context entries field matters,
1640 * but we'll copy the whole thing anyway.
1642 void xhci_slot_copy(struct xhci_hcd *xhci,
1643 struct xhci_container_ctx *in_ctx,
1644 struct xhci_container_ctx *out_ctx)
1646 struct xhci_slot_ctx *in_slot_ctx;
1647 struct xhci_slot_ctx *out_slot_ctx;
1649 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1650 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1652 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1653 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1654 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1655 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1658 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1659 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1662 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1663 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1665 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1666 "Allocating %d scratchpad buffers", num_sp);
1671 xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1673 if (!xhci->scratchpad)
1676 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1677 num_sp * sizeof(u64),
1678 &xhci->scratchpad->sp_dma, flags);
1679 if (!xhci->scratchpad->sp_array)
1682 xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1683 flags, dev_to_node(dev));
1684 if (!xhci->scratchpad->sp_buffers)
1687 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1688 for (i = 0; i < num_sp; i++) {
1690 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1695 xhci->scratchpad->sp_array[i] = dma;
1696 xhci->scratchpad->sp_buffers[i] = buf;
1702 for (i = i - 1; i >= 0; i--) {
1703 dma_free_coherent(dev, xhci->page_size,
1704 xhci->scratchpad->sp_buffers[i],
1705 xhci->scratchpad->sp_array[i]);
1708 kfree(xhci->scratchpad->sp_buffers);
1711 dma_free_coherent(dev, num_sp * sizeof(u64),
1712 xhci->scratchpad->sp_array,
1713 xhci->scratchpad->sp_dma);
1716 kfree(xhci->scratchpad);
1717 xhci->scratchpad = NULL;
1723 static void scratchpad_free(struct xhci_hcd *xhci)
1727 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1729 if (!xhci->scratchpad)
1732 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1734 for (i = 0; i < num_sp; i++) {
1735 dma_free_coherent(dev, xhci->page_size,
1736 xhci->scratchpad->sp_buffers[i],
1737 xhci->scratchpad->sp_array[i]);
1739 kfree(xhci->scratchpad->sp_buffers);
1740 dma_free_coherent(dev, num_sp * sizeof(u64),
1741 xhci->scratchpad->sp_array,
1742 xhci->scratchpad->sp_dma);
1743 kfree(xhci->scratchpad);
1744 xhci->scratchpad = NULL;
1747 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1748 bool allocate_completion, gfp_t mem_flags)
1750 struct xhci_command *command;
1751 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1753 command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1757 if (allocate_completion) {
1758 command->completion =
1759 kzalloc_node(sizeof(struct completion), mem_flags,
1761 if (!command->completion) {
1765 init_completion(command->completion);
1768 command->status = 0;
1769 INIT_LIST_HEAD(&command->cmd_list);
1773 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1774 bool allocate_completion, gfp_t mem_flags)
1776 struct xhci_command *command;
1778 command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1782 command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1784 if (!command->in_ctx) {
1785 kfree(command->completion);
1792 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1797 void xhci_free_command(struct xhci_hcd *xhci,
1798 struct xhci_command *command)
1800 xhci_free_container_ctx(xhci,
1802 kfree(command->completion);
1806 int xhci_alloc_erst(struct xhci_hcd *xhci,
1807 struct xhci_ring *evt_ring,
1808 struct xhci_erst *erst,
1813 struct xhci_segment *seg;
1814 struct xhci_erst_entry *entry;
1816 size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1817 erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1818 size, &erst->erst_dma_addr, flags);
1822 erst->num_entries = evt_ring->num_segs;
1824 seg = evt_ring->first_seg;
1825 for (val = 0; val < evt_ring->num_segs; val++) {
1826 entry = &erst->entries[val];
1827 entry->seg_addr = cpu_to_le64(seg->dma);
1828 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1836 void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1839 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1841 size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1843 dma_free_coherent(dev, size,
1845 erst->erst_dma_addr);
1846 erst->entries = NULL;
1849 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1851 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1852 int i, j, num_ports;
1854 cancel_delayed_work_sync(&xhci->cmd_timer);
1856 xhci_free_erst(xhci, &xhci->erst);
1858 if (xhci->event_ring)
1859 xhci_ring_free(xhci, xhci->event_ring);
1860 xhci->event_ring = NULL;
1861 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1863 if (xhci->lpm_command)
1864 xhci_free_command(xhci, xhci->lpm_command);
1865 xhci->lpm_command = NULL;
1867 xhci_ring_free(xhci, xhci->cmd_ring);
1868 xhci->cmd_ring = NULL;
1869 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1870 xhci_cleanup_command_queue(xhci);
1872 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1873 for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1874 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1875 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1876 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1877 while (!list_empty(ep))
1878 list_del_init(ep->next);
1882 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1883 xhci_free_virt_devices_depth_first(xhci, i);
1885 dma_pool_destroy(xhci->segment_pool);
1886 xhci->segment_pool = NULL;
1887 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1889 dma_pool_destroy(xhci->device_pool);
1890 xhci->device_pool = NULL;
1891 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1893 dma_pool_destroy(xhci->small_streams_pool);
1894 xhci->small_streams_pool = NULL;
1895 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1896 "Freed small stream array pool");
1898 dma_pool_destroy(xhci->medium_streams_pool);
1899 xhci->medium_streams_pool = NULL;
1900 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1901 "Freed medium stream array pool");
1904 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1905 xhci->dcbaa, xhci->dcbaa->dma);
1908 scratchpad_free(xhci);
1913 for (i = 0; i < num_ports; i++) {
1914 struct xhci_tt_bw_info *tt, *n;
1915 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1916 list_del(&tt->tt_list);
1922 xhci->cmd_ring_reserved_trbs = 0;
1923 xhci->usb2_rhub.num_ports = 0;
1924 xhci->usb3_rhub.num_ports = 0;
1925 xhci->num_active_eps = 0;
1926 kfree(xhci->usb2_rhub.ports);
1927 kfree(xhci->usb3_rhub.ports);
1928 kfree(xhci->hw_ports);
1930 kfree(xhci->ext_caps);
1931 for (i = 0; i < xhci->num_port_caps; i++)
1932 kfree(xhci->port_caps[i].psi);
1933 kfree(xhci->port_caps);
1934 xhci->num_port_caps = 0;
1936 xhci->usb2_rhub.ports = NULL;
1937 xhci->usb3_rhub.ports = NULL;
1938 xhci->hw_ports = NULL;
1940 xhci->ext_caps = NULL;
1942 xhci->page_size = 0;
1943 xhci->page_shift = 0;
1944 xhci->usb2_rhub.bus_state.bus_suspended = 0;
1945 xhci->usb3_rhub.bus_state.bus_suspended = 0;
1948 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1949 struct xhci_segment *input_seg,
1950 union xhci_trb *start_trb,
1951 union xhci_trb *end_trb,
1952 dma_addr_t input_dma,
1953 struct xhci_segment *result_seg,
1954 char *test_name, int test_number)
1956 unsigned long long start_dma;
1957 unsigned long long end_dma;
1958 struct xhci_segment *seg;
1960 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1961 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1963 seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1964 if (seg != result_seg) {
1965 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1966 test_name, test_number);
1967 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1968 "input DMA 0x%llx\n",
1970 (unsigned long long) input_dma);
1971 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1972 "ending TRB %p (0x%llx DMA)\n",
1973 start_trb, start_dma,
1975 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1977 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1984 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1985 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1988 dma_addr_t input_dma;
1989 struct xhci_segment *result_seg;
1990 } simple_test_vector [] = {
1991 /* A zeroed DMA field should fail */
1993 /* One TRB before the ring start should fail */
1994 { xhci->event_ring->first_seg->dma - 16, NULL },
1995 /* One byte before the ring start should fail */
1996 { xhci->event_ring->first_seg->dma - 1, NULL },
1997 /* Starting TRB should succeed */
1998 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1999 /* Ending TRB should succeed */
2000 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
2001 xhci->event_ring->first_seg },
2002 /* One byte after the ring end should fail */
2003 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
2004 /* One TRB after the ring end should fail */
2005 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
2006 /* An address of all ones should fail */
2007 { (dma_addr_t) (~0), NULL },
2010 struct xhci_segment *input_seg;
2011 union xhci_trb *start_trb;
2012 union xhci_trb *end_trb;
2013 dma_addr_t input_dma;
2014 struct xhci_segment *result_seg;
2015 } complex_test_vector [] = {
2016 /* Test feeding a valid DMA address from a different ring */
2017 { .input_seg = xhci->event_ring->first_seg,
2018 .start_trb = xhci->event_ring->first_seg->trbs,
2019 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2020 .input_dma = xhci->cmd_ring->first_seg->dma,
2023 /* Test feeding a valid end TRB from a different ring */
2024 { .input_seg = xhci->event_ring->first_seg,
2025 .start_trb = xhci->event_ring->first_seg->trbs,
2026 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2027 .input_dma = xhci->cmd_ring->first_seg->dma,
2030 /* Test feeding a valid start and end TRB from a different ring */
2031 { .input_seg = xhci->event_ring->first_seg,
2032 .start_trb = xhci->cmd_ring->first_seg->trbs,
2033 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2034 .input_dma = xhci->cmd_ring->first_seg->dma,
2037 /* TRB in this ring, but after this TD */
2038 { .input_seg = xhci->event_ring->first_seg,
2039 .start_trb = &xhci->event_ring->first_seg->trbs[0],
2040 .end_trb = &xhci->event_ring->first_seg->trbs[3],
2041 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2044 /* TRB in this ring, but before this TD */
2045 { .input_seg = xhci->event_ring->first_seg,
2046 .start_trb = &xhci->event_ring->first_seg->trbs[3],
2047 .end_trb = &xhci->event_ring->first_seg->trbs[6],
2048 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2051 /* TRB in this ring, but after this wrapped TD */
2052 { .input_seg = xhci->event_ring->first_seg,
2053 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2054 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2055 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2058 /* TRB in this ring, but before this wrapped TD */
2059 { .input_seg = xhci->event_ring->first_seg,
2060 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2061 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2062 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2065 /* TRB not in this ring, and we have a wrapped TD */
2066 { .input_seg = xhci->event_ring->first_seg,
2067 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2068 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2069 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2074 unsigned int num_tests;
2077 num_tests = ARRAY_SIZE(simple_test_vector);
2078 for (i = 0; i < num_tests; i++) {
2079 ret = xhci_test_trb_in_td(xhci,
2080 xhci->event_ring->first_seg,
2081 xhci->event_ring->first_seg->trbs,
2082 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2083 simple_test_vector[i].input_dma,
2084 simple_test_vector[i].result_seg,
2090 num_tests = ARRAY_SIZE(complex_test_vector);
2091 for (i = 0; i < num_tests; i++) {
2092 ret = xhci_test_trb_in_td(xhci,
2093 complex_test_vector[i].input_seg,
2094 complex_test_vector[i].start_trb,
2095 complex_test_vector[i].end_trb,
2096 complex_test_vector[i].input_dma,
2097 complex_test_vector[i].result_seg,
2102 xhci_dbg(xhci, "TRB math tests passed.\n");
2106 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2111 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2112 xhci->event_ring->dequeue);
2113 if (deq == 0 && !in_interrupt())
2114 xhci_warn(xhci, "WARN something wrong with SW event ring "
2116 /* Update HC event ring dequeue pointer */
2117 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2118 temp &= ERST_PTR_MASK;
2119 /* Don't clear the EHB bit (which is RW1C) because
2120 * there might be more events to service.
2123 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2124 "// Write event ring dequeue pointer, "
2125 "preserving EHB bit");
2126 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2127 &xhci->ir_set->erst_dequeue);
2130 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2131 __le32 __iomem *addr, int max_caps)
2133 u32 temp, port_offset, port_count;
2135 u8 major_revision, minor_revision;
2136 struct xhci_hub *rhub;
2137 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2138 struct xhci_port_cap *port_cap;
2141 major_revision = XHCI_EXT_PORT_MAJOR(temp);
2142 minor_revision = XHCI_EXT_PORT_MINOR(temp);
2144 if (major_revision == 0x03) {
2145 rhub = &xhci->usb3_rhub;
2146 } else if (major_revision <= 0x02) {
2147 rhub = &xhci->usb2_rhub;
2149 xhci_warn(xhci, "Ignoring unknown port speed, "
2150 "Ext Cap %p, revision = 0x%x\n",
2151 addr, major_revision);
2152 /* Ignoring port protocol we can't understand. FIXME */
2155 rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2157 if (rhub->min_rev < minor_revision)
2158 rhub->min_rev = minor_revision;
2160 /* Port offset and count in the third dword, see section 7.2 */
2161 temp = readl(addr + 2);
2162 port_offset = XHCI_EXT_PORT_OFF(temp);
2163 port_count = XHCI_EXT_PORT_COUNT(temp);
2164 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2165 "Ext Cap %p, port offset = %u, "
2166 "count = %u, revision = 0x%x",
2167 addr, port_offset, port_count, major_revision);
2168 /* Port count includes the current port offset */
2169 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2170 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2173 port_cap = &xhci->port_caps[xhci->num_port_caps++];
2174 if (xhci->num_port_caps > max_caps)
2177 port_cap->maj_rev = major_revision;
2178 port_cap->min_rev = minor_revision;
2179 port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2181 if (port_cap->psi_count) {
2182 port_cap->psi = kcalloc_node(port_cap->psi_count,
2183 sizeof(*port_cap->psi),
2184 GFP_KERNEL, dev_to_node(dev));
2186 port_cap->psi_count = 0;
2188 port_cap->psi_uid_count++;
2189 for (i = 0; i < port_cap->psi_count; i++) {
2190 port_cap->psi[i] = readl(addr + 4 + i);
2192 /* count unique ID values, two consecutive entries can
2193 * have the same ID if link is assymetric
2195 if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2196 XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2197 port_cap->psi_uid_count++;
2199 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2200 XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2201 XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2202 XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2203 XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2204 XHCI_EXT_PORT_LP(port_cap->psi[i]),
2205 XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2208 /* cache usb2 port capabilities */
2209 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2210 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2212 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2213 (temp & XHCI_HLC)) {
2214 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2215 "xHCI 1.0: support USB2 hardware lpm");
2216 xhci->hw_lpm_support = 1;
2220 for (i = port_offset; i < (port_offset + port_count); i++) {
2221 struct xhci_port *hw_port = &xhci->hw_ports[i];
2222 /* Duplicate entry. Ignore the port if the revisions differ. */
2223 if (hw_port->rhub) {
2224 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2225 " port %u\n", addr, i);
2226 xhci_warn(xhci, "Port was marked as USB %u, "
2227 "duplicated as USB %u\n",
2228 hw_port->rhub->maj_rev, major_revision);
2229 /* Only adjust the roothub port counts if we haven't
2230 * found a similar duplicate.
2232 if (hw_port->rhub != rhub &&
2233 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2234 hw_port->rhub->num_ports--;
2235 hw_port->hcd_portnum = DUPLICATE_ENTRY;
2239 hw_port->rhub = rhub;
2240 hw_port->port_cap = port_cap;
2243 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2246 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2247 struct xhci_hub *rhub, gfp_t flags)
2251 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2253 if (!rhub->num_ports)
2255 rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2256 flags, dev_to_node(dev));
2257 for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2258 if (xhci->hw_ports[i].rhub != rhub ||
2259 xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2261 xhci->hw_ports[i].hcd_portnum = port_index;
2262 rhub->ports[port_index] = &xhci->hw_ports[i];
2264 if (port_index == rhub->num_ports)
2270 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2271 * specify what speeds each port is supposed to be. We can't count on the port
2272 * speed bits in the PORTSC register being correct until a device is connected,
2273 * but we need to set up the two fake roothubs with the correct number of USB
2274 * 3.0 and USB 2.0 ports at host controller initialization time.
2276 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2280 unsigned int num_ports;
2284 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2286 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2287 xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2288 flags, dev_to_node(dev));
2289 if (!xhci->hw_ports)
2292 for (i = 0; i < num_ports; i++) {
2293 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2295 xhci->hw_ports[i].hw_portnum = i;
2298 xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2302 for (i = 0; i < num_ports; i++) {
2303 struct xhci_interval_bw_table *bw_table;
2305 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2306 bw_table = &xhci->rh_bw[i].bw_table;
2307 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2308 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2310 base = &xhci->cap_regs->hc_capbase;
2312 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2314 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2319 /* count extended protocol capability entries for later caching */
2322 offset = xhci_find_next_ext_cap(base, offset,
2323 XHCI_EXT_CAPS_PROTOCOL);
2326 xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2327 flags, dev_to_node(dev));
2328 if (!xhci->ext_caps)
2331 xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2332 flags, dev_to_node(dev));
2333 if (!xhci->port_caps)
2339 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2340 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2343 offset = xhci_find_next_ext_cap(base, offset,
2344 XHCI_EXT_CAPS_PROTOCOL);
2346 if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2347 xhci_warn(xhci, "No ports on the roothubs?\n");
2350 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2351 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2352 xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2354 /* Place limits on the number of roothub ports so that the hub
2355 * descriptors aren't longer than the USB core will allocate.
2357 if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2358 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2359 "Limiting USB 3.0 roothub ports to %u.",
2361 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2363 if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2364 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2365 "Limiting USB 2.0 roothub ports to %u.",
2367 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2371 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2372 * Not sure how the USB core will handle a hub with no ports...
2375 xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2376 xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2381 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2384 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2385 unsigned int val, val2;
2387 u32 page_size, temp;
2390 INIT_LIST_HEAD(&xhci->cmd_list);
2392 /* init command timeout work */
2393 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2394 init_completion(&xhci->cmd_ring_stop_completion);
2396 page_size = readl(&xhci->op_regs->page_size);
2397 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2398 "Supported page size register = 0x%x", page_size);
2399 for (i = 0; i < 16; i++) {
2400 if ((0x1 & page_size) != 0)
2402 page_size = page_size >> 1;
2405 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2406 "Supported page size of %iK", (1 << (i+12)) / 1024);
2408 xhci_warn(xhci, "WARN: no supported page size\n");
2409 /* Use 4K pages, since that's common and the minimum the HC supports */
2410 xhci->page_shift = 12;
2411 xhci->page_size = 1 << xhci->page_shift;
2412 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2413 "HCD page size set to %iK", xhci->page_size / 1024);
2416 * Program the Number of Device Slots Enabled field in the CONFIG
2417 * register with the max value of slots the HC can handle.
2419 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2420 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2421 "// xHC can handle at most %d device slots.", val);
2422 val2 = readl(&xhci->op_regs->config_reg);
2423 val |= (val2 & ~HCS_SLOTS_MASK);
2424 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2425 "// Setting Max device slots reg = 0x%x.", val);
2426 writel(val, &xhci->op_regs->config_reg);
2429 * xHCI section 5.4.6 - doorbell array must be
2430 * "physically contiguous and 64-byte (cache line) aligned".
2432 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2436 xhci->dcbaa->dma = dma;
2437 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2438 "// Device context base array address = 0x%llx (DMA), %p (virt)",
2439 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2440 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2443 * Initialize the ring segment pool. The ring must be a contiguous
2444 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2445 * however, the command ring segment needs 64-byte aligned segments
2446 * and our use of dma addresses in the trb_address_map radix tree needs
2447 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2449 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2450 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2452 /* See Table 46 and Note on Figure 55 */
2453 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2454 2112, 64, xhci->page_size);
2455 if (!xhci->segment_pool || !xhci->device_pool)
2458 /* Linear stream context arrays don't have any boundary restrictions,
2459 * and only need to be 16-byte aligned.
2461 xhci->small_streams_pool =
2462 dma_pool_create("xHCI 256 byte stream ctx arrays",
2463 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2464 xhci->medium_streams_pool =
2465 dma_pool_create("xHCI 1KB stream ctx arrays",
2466 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2467 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2468 * will be allocated with dma_alloc_coherent()
2471 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2474 /* Set up the command ring to have one segments for now. */
2475 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2476 if (!xhci->cmd_ring)
2478 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2479 "Allocated command ring at %p", xhci->cmd_ring);
2480 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2481 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2483 /* Set the address in the Command Ring Control register */
2484 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2485 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2486 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2487 xhci->cmd_ring->cycle_state;
2488 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2489 "// Setting command ring address to 0x%016llx", val_64);
2490 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2492 xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags);
2493 if (!xhci->lpm_command)
2496 /* Reserve one command ring TRB for disabling LPM.
2497 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2498 * disabling LPM, we only need to reserve one TRB for all devices.
2500 xhci->cmd_ring_reserved_trbs++;
2502 val = readl(&xhci->cap_regs->db_off);
2504 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2505 "// Doorbell array is located at offset 0x%x"
2506 " from cap regs base addr", val);
2507 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2508 /* Set ir_set to interrupt register set 0 */
2509 xhci->ir_set = &xhci->run_regs->ir_set[0];
2512 * Event ring setup: Allocate a normal ring, but also setup
2513 * the event ring segment table (ERST). Section 4.9.3.
2515 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2516 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2518 if (!xhci->event_ring)
2520 if (xhci_check_trb_in_td_math(xhci) < 0)
2523 ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2527 /* set ERST count with the number of entries in the segment table */
2528 val = readl(&xhci->ir_set->erst_size);
2529 val &= ERST_SIZE_MASK;
2530 val |= ERST_NUM_SEGS;
2531 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2532 "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2534 writel(val, &xhci->ir_set->erst_size);
2536 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2537 "// Set ERST entries to point to event ring.");
2538 /* set the segment table base address */
2539 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2540 "// Set ERST base address for ir_set 0 = 0x%llx",
2541 (unsigned long long)xhci->erst.erst_dma_addr);
2542 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2543 val_64 &= ERST_PTR_MASK;
2544 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2545 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2547 /* Set the event ring dequeue address */
2548 xhci_set_hc_event_deq(xhci);
2549 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2550 "Wrote ERST address to ir_set 0.");
2553 * XXX: Might need to set the Interrupter Moderation Register to
2554 * something other than the default (~1ms minimum between interrupts).
2555 * See section 5.5.1.2.
2557 for (i = 0; i < MAX_HC_SLOTS; i++)
2558 xhci->devs[i] = NULL;
2559 for (i = 0; i < USB_MAXCHILDREN; i++) {
2560 xhci->usb2_rhub.bus_state.resume_done[i] = 0;
2561 xhci->usb3_rhub.bus_state.resume_done[i] = 0;
2562 /* Only the USB 2.0 completions will ever be used. */
2563 init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]);
2564 init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]);
2567 if (scratchpad_alloc(xhci, flags))
2569 if (xhci_setup_port_arrays(xhci, flags))
2572 /* Enable USB 3.0 device notifications for function remote wake, which
2573 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2574 * U3 (device suspend).
2576 temp = readl(&xhci->op_regs->dev_notification);
2577 temp &= ~DEV_NOTE_MASK;
2578 temp |= DEV_NOTE_FWAKE;
2579 writel(temp, &xhci->op_regs->dev_notification);
2586 xhci_mem_cleanup(xhci);