Merge tag 'powerpc-6.6-6' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[platform/kernel/linux-starfive.git] / drivers / usb / host / xhci-mem.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/usb.h>
12 #include <linux/overflow.h>
13 #include <linux/pci.h>
14 #include <linux/slab.h>
15 #include <linux/dmapool.h>
16 #include <linux/dma-mapping.h>
17
18 #include "xhci.h"
19 #include "xhci-trace.h"
20 #include "xhci-debugfs.h"
21
22 /*
23  * Allocates a generic ring segment from the ring pool, sets the dma address,
24  * initializes the segment to zero, and sets the private next pointer to NULL.
25  *
26  * Section 4.11.1.1:
27  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
28  */
29 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
30                                                unsigned int cycle_state,
31                                                unsigned int max_packet,
32                                                gfp_t flags)
33 {
34         struct xhci_segment *seg;
35         dma_addr_t      dma;
36         int             i;
37         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
38
39         seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
40         if (!seg)
41                 return NULL;
42
43         seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
44         if (!seg->trbs) {
45                 kfree(seg);
46                 return NULL;
47         }
48
49         if (max_packet) {
50                 seg->bounce_buf = kzalloc_node(max_packet, flags,
51                                         dev_to_node(dev));
52                 if (!seg->bounce_buf) {
53                         dma_pool_free(xhci->segment_pool, seg->trbs, dma);
54                         kfree(seg);
55                         return NULL;
56                 }
57         }
58         /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
59         if (cycle_state == 0) {
60                 for (i = 0; i < TRBS_PER_SEGMENT; i++)
61                         seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE);
62         }
63         seg->dma = dma;
64         seg->next = NULL;
65
66         return seg;
67 }
68
69 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
70 {
71         if (seg->trbs) {
72                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
73                 seg->trbs = NULL;
74         }
75         kfree(seg->bounce_buf);
76         kfree(seg);
77 }
78
79 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
80                                 struct xhci_segment *first)
81 {
82         struct xhci_segment *seg;
83
84         seg = first->next;
85         while (seg != first) {
86                 struct xhci_segment *next = seg->next;
87                 xhci_segment_free(xhci, seg);
88                 seg = next;
89         }
90         xhci_segment_free(xhci, first);
91 }
92
93 /*
94  * Make the prev segment point to the next segment.
95  *
96  * Change the last TRB in the prev segment to be a Link TRB which points to the
97  * DMA address of the next segment.  The caller needs to set any Link TRB
98  * related flags, such as End TRB, Toggle Cycle, and no snoop.
99  */
100 static void xhci_link_segments(struct xhci_segment *prev,
101                                struct xhci_segment *next,
102                                enum xhci_ring_type type, bool chain_links)
103 {
104         u32 val;
105
106         if (!prev || !next)
107                 return;
108         prev->next = next;
109         if (type != TYPE_EVENT) {
110                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
111                         cpu_to_le64(next->dma);
112
113                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
114                 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
115                 val &= ~TRB_TYPE_BITMASK;
116                 val |= TRB_TYPE(TRB_LINK);
117                 if (chain_links)
118                         val |= TRB_CHAIN;
119                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
120         }
121 }
122
123 /*
124  * Link the ring to the new segments.
125  * Set Toggle Cycle for the new ring if needed.
126  */
127 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
128                 struct xhci_segment *first, struct xhci_segment *last,
129                 unsigned int num_segs)
130 {
131         struct xhci_segment *next;
132         bool chain_links;
133
134         if (!ring || !first || !last)
135                 return;
136
137         /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
138         chain_links = !!(xhci_link_trb_quirk(xhci) ||
139                          (ring->type == TYPE_ISOC &&
140                           (xhci->quirks & XHCI_AMD_0x96_HOST)));
141
142         next = ring->enq_seg->next;
143         xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
144         xhci_link_segments(last, next, ring->type, chain_links);
145         ring->num_segs += num_segs;
146
147         if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
148                 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
149                         &= ~cpu_to_le32(LINK_TOGGLE);
150                 last->trbs[TRBS_PER_SEGMENT-1].link.control
151                         |= cpu_to_le32(LINK_TOGGLE);
152                 ring->last_seg = last;
153         }
154 }
155
156 /*
157  * We need a radix tree for mapping physical addresses of TRBs to which stream
158  * ID they belong to.  We need to do this because the host controller won't tell
159  * us which stream ring the TRB came from.  We could store the stream ID in an
160  * event data TRB, but that doesn't help us for the cancellation case, since the
161  * endpoint may stop before it reaches that event data TRB.
162  *
163  * The radix tree maps the upper portion of the TRB DMA address to a ring
164  * segment that has the same upper portion of DMA addresses.  For example, say I
165  * have segments of size 1KB, that are always 1KB aligned.  A segment may
166  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
167  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
168  * pass the radix tree a key to get the right stream ID:
169  *
170  *      0x10c90fff >> 10 = 0x43243
171  *      0x10c912c0 >> 10 = 0x43244
172  *      0x10c91400 >> 10 = 0x43245
173  *
174  * Obviously, only those TRBs with DMA addresses that are within the segment
175  * will make the radix tree return the stream ID for that ring.
176  *
177  * Caveats for the radix tree:
178  *
179  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
180  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
181  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
182  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
183  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
184  * extended systems (where the DMA address can be bigger than 32-bits),
185  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
186  */
187 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
188                 struct xhci_ring *ring,
189                 struct xhci_segment *seg,
190                 gfp_t mem_flags)
191 {
192         unsigned long key;
193         int ret;
194
195         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
196         /* Skip any segments that were already added. */
197         if (radix_tree_lookup(trb_address_map, key))
198                 return 0;
199
200         ret = radix_tree_maybe_preload(mem_flags);
201         if (ret)
202                 return ret;
203         ret = radix_tree_insert(trb_address_map,
204                         key, ring);
205         radix_tree_preload_end();
206         return ret;
207 }
208
209 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
210                 struct xhci_segment *seg)
211 {
212         unsigned long key;
213
214         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
215         if (radix_tree_lookup(trb_address_map, key))
216                 radix_tree_delete(trb_address_map, key);
217 }
218
219 static int xhci_update_stream_segment_mapping(
220                 struct radix_tree_root *trb_address_map,
221                 struct xhci_ring *ring,
222                 struct xhci_segment *first_seg,
223                 struct xhci_segment *last_seg,
224                 gfp_t mem_flags)
225 {
226         struct xhci_segment *seg;
227         struct xhci_segment *failed_seg;
228         int ret;
229
230         if (WARN_ON_ONCE(trb_address_map == NULL))
231                 return 0;
232
233         seg = first_seg;
234         do {
235                 ret = xhci_insert_segment_mapping(trb_address_map,
236                                 ring, seg, mem_flags);
237                 if (ret)
238                         goto remove_streams;
239                 if (seg == last_seg)
240                         return 0;
241                 seg = seg->next;
242         } while (seg != first_seg);
243
244         return 0;
245
246 remove_streams:
247         failed_seg = seg;
248         seg = first_seg;
249         do {
250                 xhci_remove_segment_mapping(trb_address_map, seg);
251                 if (seg == failed_seg)
252                         return ret;
253                 seg = seg->next;
254         } while (seg != first_seg);
255
256         return ret;
257 }
258
259 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
260 {
261         struct xhci_segment *seg;
262
263         if (WARN_ON_ONCE(ring->trb_address_map == NULL))
264                 return;
265
266         seg = ring->first_seg;
267         do {
268                 xhci_remove_segment_mapping(ring->trb_address_map, seg);
269                 seg = seg->next;
270         } while (seg != ring->first_seg);
271 }
272
273 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
274 {
275         return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
276                         ring->first_seg, ring->last_seg, mem_flags);
277 }
278
279 /* XXX: Do we need the hcd structure in all these functions? */
280 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
281 {
282         if (!ring)
283                 return;
284
285         trace_xhci_ring_free(ring);
286
287         if (ring->first_seg) {
288                 if (ring->type == TYPE_STREAM)
289                         xhci_remove_stream_mapping(ring);
290                 xhci_free_segments_for_ring(xhci, ring->first_seg);
291         }
292
293         kfree(ring);
294 }
295
296 void xhci_initialize_ring_info(struct xhci_ring *ring,
297                                unsigned int cycle_state)
298 {
299         /* The ring is empty, so the enqueue pointer == dequeue pointer */
300         ring->enqueue = ring->first_seg->trbs;
301         ring->enq_seg = ring->first_seg;
302         ring->dequeue = ring->enqueue;
303         ring->deq_seg = ring->first_seg;
304         /* The ring is initialized to 0. The producer must write 1 to the cycle
305          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
306          * compare CCS to the cycle bit to check ownership, so CCS = 1.
307          *
308          * New rings are initialized with cycle state equal to 1; if we are
309          * handling ring expansion, set the cycle state equal to the old ring.
310          */
311         ring->cycle_state = cycle_state;
312
313         /*
314          * Each segment has a link TRB, and leave an extra TRB for SW
315          * accounting purpose
316          */
317         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
318 }
319
320 /* Allocate segments and link them for a ring */
321 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
322                 struct xhci_segment **first, struct xhci_segment **last,
323                 unsigned int num_segs, unsigned int cycle_state,
324                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
325 {
326         struct xhci_segment *prev;
327         bool chain_links;
328
329         /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
330         chain_links = !!(xhci_link_trb_quirk(xhci) ||
331                          (type == TYPE_ISOC &&
332                           (xhci->quirks & XHCI_AMD_0x96_HOST)));
333
334         prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
335         if (!prev)
336                 return -ENOMEM;
337         num_segs--;
338
339         *first = prev;
340         while (num_segs > 0) {
341                 struct xhci_segment     *next;
342
343                 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
344                 if (!next) {
345                         prev = *first;
346                         while (prev) {
347                                 next = prev->next;
348                                 xhci_segment_free(xhci, prev);
349                                 prev = next;
350                         }
351                         return -ENOMEM;
352                 }
353                 xhci_link_segments(prev, next, type, chain_links);
354
355                 prev = next;
356                 num_segs--;
357         }
358         xhci_link_segments(prev, *first, type, chain_links);
359         *last = prev;
360
361         return 0;
362 }
363
364 /*
365  * Create a new ring with zero or more segments.
366  *
367  * Link each segment together into a ring.
368  * Set the end flag and the cycle toggle bit on the last segment.
369  * See section 4.9.1 and figures 15 and 16.
370  */
371 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
372                 unsigned int num_segs, unsigned int cycle_state,
373                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
374 {
375         struct xhci_ring        *ring;
376         int ret;
377         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
378
379         ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
380         if (!ring)
381                 return NULL;
382
383         ring->num_segs = num_segs;
384         ring->bounce_buf_len = max_packet;
385         INIT_LIST_HEAD(&ring->td_list);
386         ring->type = type;
387         if (num_segs == 0)
388                 return ring;
389
390         ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
391                         &ring->last_seg, num_segs, cycle_state, type,
392                         max_packet, flags);
393         if (ret)
394                 goto fail;
395
396         /* Only event ring does not use link TRB */
397         if (type != TYPE_EVENT) {
398                 /* See section 4.9.2.1 and 6.4.4.1 */
399                 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
400                         cpu_to_le32(LINK_TOGGLE);
401         }
402         xhci_initialize_ring_info(ring, cycle_state);
403         trace_xhci_ring_alloc(ring);
404         return ring;
405
406 fail:
407         kfree(ring);
408         return NULL;
409 }
410
411 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
412                 struct xhci_virt_device *virt_dev,
413                 unsigned int ep_index)
414 {
415         xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
416         virt_dev->eps[ep_index].ring = NULL;
417 }
418
419 /*
420  * Expand an existing ring.
421  * Allocate a new ring which has same segment numbers and link the two rings.
422  */
423 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
424                                 unsigned int num_new_segs, gfp_t flags)
425 {
426         struct xhci_segment     *first;
427         struct xhci_segment     *last;
428         int                     ret;
429
430         ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
431                         num_new_segs, ring->cycle_state, ring->type,
432                         ring->bounce_buf_len, flags);
433         if (ret)
434                 return -ENOMEM;
435
436         if (ring->type == TYPE_STREAM)
437                 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
438                                                 ring, first, last, flags);
439         if (ret) {
440                 struct xhci_segment *next;
441                 do {
442                         next = first->next;
443                         xhci_segment_free(xhci, first);
444                         if (first == last)
445                                 break;
446                         first = next;
447                 } while (true);
448                 return ret;
449         }
450
451         xhci_link_rings(xhci, ring, first, last, num_new_segs);
452         trace_xhci_ring_expansion(ring);
453         xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
454                         "ring expansion succeed, now has %d segments",
455                         ring->num_segs);
456
457         return 0;
458 }
459
460 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
461                                                     int type, gfp_t flags)
462 {
463         struct xhci_container_ctx *ctx;
464         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
465
466         if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
467                 return NULL;
468
469         ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
470         if (!ctx)
471                 return NULL;
472
473         ctx->type = type;
474         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
475         if (type == XHCI_CTX_TYPE_INPUT)
476                 ctx->size += CTX_SIZE(xhci->hcc_params);
477
478         ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
479         if (!ctx->bytes) {
480                 kfree(ctx);
481                 return NULL;
482         }
483         return ctx;
484 }
485
486 void xhci_free_container_ctx(struct xhci_hcd *xhci,
487                              struct xhci_container_ctx *ctx)
488 {
489         if (!ctx)
490                 return;
491         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
492         kfree(ctx);
493 }
494
495 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
496                                               struct xhci_container_ctx *ctx)
497 {
498         if (ctx->type != XHCI_CTX_TYPE_INPUT)
499                 return NULL;
500
501         return (struct xhci_input_control_ctx *)ctx->bytes;
502 }
503
504 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
505                                         struct xhci_container_ctx *ctx)
506 {
507         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
508                 return (struct xhci_slot_ctx *)ctx->bytes;
509
510         return (struct xhci_slot_ctx *)
511                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
512 }
513
514 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
515                                     struct xhci_container_ctx *ctx,
516                                     unsigned int ep_index)
517 {
518         /* increment ep index by offset of start of ep ctx array */
519         ep_index++;
520         if (ctx->type == XHCI_CTX_TYPE_INPUT)
521                 ep_index++;
522
523         return (struct xhci_ep_ctx *)
524                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
525 }
526 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
527
528 /***************** Streams structures manipulation *************************/
529
530 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
531                 unsigned int num_stream_ctxs,
532                 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
533 {
534         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
535         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
536
537         if (size > MEDIUM_STREAM_ARRAY_SIZE)
538                 dma_free_coherent(dev, size, stream_ctx, dma);
539         else if (size > SMALL_STREAM_ARRAY_SIZE)
540                 dma_pool_free(xhci->medium_streams_pool, stream_ctx, dma);
541         else
542                 dma_pool_free(xhci->small_streams_pool, stream_ctx, dma);
543 }
544
545 /*
546  * The stream context array for each endpoint with bulk streams enabled can
547  * vary in size, based on:
548  *  - how many streams the endpoint supports,
549  *  - the maximum primary stream array size the host controller supports,
550  *  - and how many streams the device driver asks for.
551  *
552  * The stream context array must be a power of 2, and can be as small as
553  * 64 bytes or as large as 1MB.
554  */
555 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
556                 unsigned int num_stream_ctxs, dma_addr_t *dma,
557                 gfp_t mem_flags)
558 {
559         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
560         size_t size = size_mul(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
561
562         if (size > MEDIUM_STREAM_ARRAY_SIZE)
563                 return dma_alloc_coherent(dev, size, dma, mem_flags);
564         if (size > SMALL_STREAM_ARRAY_SIZE)
565                 return dma_pool_zalloc(xhci->medium_streams_pool, mem_flags, dma);
566         else
567                 return dma_pool_zalloc(xhci->small_streams_pool, mem_flags, dma);
568 }
569
570 struct xhci_ring *xhci_dma_to_transfer_ring(
571                 struct xhci_virt_ep *ep,
572                 u64 address)
573 {
574         if (ep->ep_state & EP_HAS_STREAMS)
575                 return radix_tree_lookup(&ep->stream_info->trb_address_map,
576                                 address >> TRB_SEGMENT_SHIFT);
577         return ep->ring;
578 }
579
580 /*
581  * Change an endpoint's internal structure so it supports stream IDs.  The
582  * number of requested streams includes stream 0, which cannot be used by device
583  * drivers.
584  *
585  * The number of stream contexts in the stream context array may be bigger than
586  * the number of streams the driver wants to use.  This is because the number of
587  * stream context array entries must be a power of two.
588  */
589 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
590                 unsigned int num_stream_ctxs,
591                 unsigned int num_streams,
592                 unsigned int max_packet, gfp_t mem_flags)
593 {
594         struct xhci_stream_info *stream_info;
595         u32 cur_stream;
596         struct xhci_ring *cur_ring;
597         u64 addr;
598         int ret;
599         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
600
601         xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n",
602                         num_streams, num_stream_ctxs);
603         if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
604                 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
605                 return NULL;
606         }
607         xhci->cmd_ring_reserved_trbs++;
608
609         stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
610                         dev_to_node(dev));
611         if (!stream_info)
612                 goto cleanup_trbs;
613
614         stream_info->num_streams = num_streams;
615         stream_info->num_stream_ctxs = num_stream_ctxs;
616
617         /* Initialize the array of virtual pointers to stream rings. */
618         stream_info->stream_rings = kcalloc_node(
619                         num_streams, sizeof(struct xhci_ring *), mem_flags,
620                         dev_to_node(dev));
621         if (!stream_info->stream_rings)
622                 goto cleanup_info;
623
624         /* Initialize the array of DMA addresses for stream rings for the HW. */
625         stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
626                         num_stream_ctxs, &stream_info->ctx_array_dma,
627                         mem_flags);
628         if (!stream_info->stream_ctx_array)
629                 goto cleanup_ring_array;
630
631         /* Allocate everything needed to free the stream rings later */
632         stream_info->free_streams_command =
633                 xhci_alloc_command_with_ctx(xhci, true, mem_flags);
634         if (!stream_info->free_streams_command)
635                 goto cleanup_ctx;
636
637         INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
638
639         /* Allocate rings for all the streams that the driver will use,
640          * and add their segment DMA addresses to the radix tree.
641          * Stream 0 is reserved.
642          */
643
644         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
645                 stream_info->stream_rings[cur_stream] =
646                         xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
647                                         mem_flags);
648                 cur_ring = stream_info->stream_rings[cur_stream];
649                 if (!cur_ring)
650                         goto cleanup_rings;
651                 cur_ring->stream_id = cur_stream;
652                 cur_ring->trb_address_map = &stream_info->trb_address_map;
653                 /* Set deq ptr, cycle bit, and stream context type */
654                 addr = cur_ring->first_seg->dma |
655                         SCT_FOR_CTX(SCT_PRI_TR) |
656                         cur_ring->cycle_state;
657                 stream_info->stream_ctx_array[cur_stream].stream_ring =
658                         cpu_to_le64(addr);
659                 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr);
660
661                 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
662                 if (ret) {
663                         xhci_ring_free(xhci, cur_ring);
664                         stream_info->stream_rings[cur_stream] = NULL;
665                         goto cleanup_rings;
666                 }
667         }
668         /* Leave the other unused stream ring pointers in the stream context
669          * array initialized to zero.  This will cause the xHC to give us an
670          * error if the device asks for a stream ID we don't have setup (if it
671          * was any other way, the host controller would assume the ring is
672          * "empty" and wait forever for data to be queued to that stream ID).
673          */
674
675         return stream_info;
676
677 cleanup_rings:
678         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
679                 cur_ring = stream_info->stream_rings[cur_stream];
680                 if (cur_ring) {
681                         xhci_ring_free(xhci, cur_ring);
682                         stream_info->stream_rings[cur_stream] = NULL;
683                 }
684         }
685         xhci_free_command(xhci, stream_info->free_streams_command);
686 cleanup_ctx:
687         xhci_free_stream_ctx(xhci,
688                 stream_info->num_stream_ctxs,
689                 stream_info->stream_ctx_array,
690                 stream_info->ctx_array_dma);
691 cleanup_ring_array:
692         kfree(stream_info->stream_rings);
693 cleanup_info:
694         kfree(stream_info);
695 cleanup_trbs:
696         xhci->cmd_ring_reserved_trbs--;
697         return NULL;
698 }
699 /*
700  * Sets the MaxPStreams field and the Linear Stream Array field.
701  * Sets the dequeue pointer to the stream context array.
702  */
703 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
704                 struct xhci_ep_ctx *ep_ctx,
705                 struct xhci_stream_info *stream_info)
706 {
707         u32 max_primary_streams;
708         /* MaxPStreams is the number of stream context array entries, not the
709          * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
710          * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
711          */
712         max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
713         xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
714                         "Setting number of stream ctx array entries to %u",
715                         1 << (max_primary_streams + 1));
716         ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
717         ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
718                                        | EP_HAS_LSA);
719         ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
720 }
721
722 /*
723  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
724  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
725  * not at the beginning of the ring).
726  */
727 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
728                 struct xhci_virt_ep *ep)
729 {
730         dma_addr_t addr;
731         ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
732         addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
733         ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
734 }
735
736 /* Frees all stream contexts associated with the endpoint,
737  *
738  * Caller should fix the endpoint context streams fields.
739  */
740 void xhci_free_stream_info(struct xhci_hcd *xhci,
741                 struct xhci_stream_info *stream_info)
742 {
743         int cur_stream;
744         struct xhci_ring *cur_ring;
745
746         if (!stream_info)
747                 return;
748
749         for (cur_stream = 1; cur_stream < stream_info->num_streams;
750                         cur_stream++) {
751                 cur_ring = stream_info->stream_rings[cur_stream];
752                 if (cur_ring) {
753                         xhci_ring_free(xhci, cur_ring);
754                         stream_info->stream_rings[cur_stream] = NULL;
755                 }
756         }
757         xhci_free_command(xhci, stream_info->free_streams_command);
758         xhci->cmd_ring_reserved_trbs--;
759         if (stream_info->stream_ctx_array)
760                 xhci_free_stream_ctx(xhci,
761                                 stream_info->num_stream_ctxs,
762                                 stream_info->stream_ctx_array,
763                                 stream_info->ctx_array_dma);
764
765         kfree(stream_info->stream_rings);
766         kfree(stream_info);
767 }
768
769
770 /***************** Device context manipulation *************************/
771
772 static void xhci_free_tt_info(struct xhci_hcd *xhci,
773                 struct xhci_virt_device *virt_dev,
774                 int slot_id)
775 {
776         struct list_head *tt_list_head;
777         struct xhci_tt_bw_info *tt_info, *next;
778         bool slot_found = false;
779
780         /* If the device never made it past the Set Address stage,
781          * it may not have the real_port set correctly.
782          */
783         if (virt_dev->real_port == 0 ||
784                         virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
785                 xhci_dbg(xhci, "Bad real port.\n");
786                 return;
787         }
788
789         tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
790         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
791                 /* Multi-TT hubs will have more than one entry */
792                 if (tt_info->slot_id == slot_id) {
793                         slot_found = true;
794                         list_del(&tt_info->tt_list);
795                         kfree(tt_info);
796                 } else if (slot_found) {
797                         break;
798                 }
799         }
800 }
801
802 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
803                 struct xhci_virt_device *virt_dev,
804                 struct usb_device *hdev,
805                 struct usb_tt *tt, gfp_t mem_flags)
806 {
807         struct xhci_tt_bw_info          *tt_info;
808         unsigned int                    num_ports;
809         int                             i, j;
810         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
811
812         if (!tt->multi)
813                 num_ports = 1;
814         else
815                 num_ports = hdev->maxchild;
816
817         for (i = 0; i < num_ports; i++, tt_info++) {
818                 struct xhci_interval_bw_table *bw_table;
819
820                 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
821                                 dev_to_node(dev));
822                 if (!tt_info)
823                         goto free_tts;
824                 INIT_LIST_HEAD(&tt_info->tt_list);
825                 list_add(&tt_info->tt_list,
826                                 &xhci->rh_bw[virt_dev->real_port - 1].tts);
827                 tt_info->slot_id = virt_dev->udev->slot_id;
828                 if (tt->multi)
829                         tt_info->ttport = i+1;
830                 bw_table = &tt_info->bw_table;
831                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
832                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
833         }
834         return 0;
835
836 free_tts:
837         xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
838         return -ENOMEM;
839 }
840
841
842 /* All the xhci_tds in the ring's TD list should be freed at this point.
843  * Should be called with xhci->lock held if there is any chance the TT lists
844  * will be manipulated by the configure endpoint, allocate device, or update
845  * hub functions while this function is removing the TT entries from the list.
846  */
847 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
848 {
849         struct xhci_virt_device *dev;
850         int i;
851         int old_active_eps = 0;
852
853         /* Slot ID 0 is reserved */
854         if (slot_id == 0 || !xhci->devs[slot_id])
855                 return;
856
857         dev = xhci->devs[slot_id];
858
859         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
860         if (!dev)
861                 return;
862
863         trace_xhci_free_virt_device(dev);
864
865         if (dev->tt_info)
866                 old_active_eps = dev->tt_info->active_eps;
867
868         for (i = 0; i < 31; i++) {
869                 if (dev->eps[i].ring)
870                         xhci_ring_free(xhci, dev->eps[i].ring);
871                 if (dev->eps[i].stream_info)
872                         xhci_free_stream_info(xhci,
873                                         dev->eps[i].stream_info);
874                 /*
875                  * Endpoints are normally deleted from the bandwidth list when
876                  * endpoints are dropped, before device is freed.
877                  * If host is dying or being removed then endpoints aren't
878                  * dropped cleanly, so delete the endpoint from list here.
879                  * Only applicable for hosts with software bandwidth checking.
880                  */
881
882                 if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
883                         list_del_init(&dev->eps[i].bw_endpoint_list);
884                         xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
885                                  slot_id, i);
886                 }
887         }
888         /* If this is a hub, free the TT(s) from the TT list */
889         xhci_free_tt_info(xhci, dev, slot_id);
890         /* If necessary, update the number of active TTs on this root port */
891         xhci_update_tt_active_eps(xhci, dev, old_active_eps);
892
893         if (dev->in_ctx)
894                 xhci_free_container_ctx(xhci, dev->in_ctx);
895         if (dev->out_ctx)
896                 xhci_free_container_ctx(xhci, dev->out_ctx);
897
898         if (dev->udev && dev->udev->slot_id)
899                 dev->udev->slot_id = 0;
900         kfree(xhci->devs[slot_id]);
901         xhci->devs[slot_id] = NULL;
902 }
903
904 /*
905  * Free a virt_device structure.
906  * If the virt_device added a tt_info (a hub) and has children pointing to
907  * that tt_info, then free the child first. Recursive.
908  * We can't rely on udev at this point to find child-parent relationships.
909  */
910 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
911 {
912         struct xhci_virt_device *vdev;
913         struct list_head *tt_list_head;
914         struct xhci_tt_bw_info *tt_info, *next;
915         int i;
916
917         vdev = xhci->devs[slot_id];
918         if (!vdev)
919                 return;
920
921         if (vdev->real_port == 0 ||
922                         vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
923                 xhci_dbg(xhci, "Bad vdev->real_port.\n");
924                 goto out;
925         }
926
927         tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
928         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
929                 /* is this a hub device that added a tt_info to the tts list */
930                 if (tt_info->slot_id == slot_id) {
931                         /* are any devices using this tt_info? */
932                         for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
933                                 vdev = xhci->devs[i];
934                                 if (vdev && (vdev->tt_info == tt_info))
935                                         xhci_free_virt_devices_depth_first(
936                                                 xhci, i);
937                         }
938                 }
939         }
940 out:
941         /* we are now at a leaf device */
942         xhci_debugfs_remove_slot(xhci, slot_id);
943         xhci_free_virt_device(xhci, slot_id);
944 }
945
946 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
947                 struct usb_device *udev, gfp_t flags)
948 {
949         struct xhci_virt_device *dev;
950         int i;
951
952         /* Slot ID 0 is reserved */
953         if (slot_id == 0 || xhci->devs[slot_id]) {
954                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
955                 return 0;
956         }
957
958         dev = kzalloc(sizeof(*dev), flags);
959         if (!dev)
960                 return 0;
961
962         dev->slot_id = slot_id;
963
964         /* Allocate the (output) device context that will be used in the HC. */
965         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
966         if (!dev->out_ctx)
967                 goto fail;
968
969         xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma);
970
971         /* Allocate the (input) device context for address device command */
972         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
973         if (!dev->in_ctx)
974                 goto fail;
975
976         xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma);
977
978         /* Initialize the cancellation and bandwidth list for each ep */
979         for (i = 0; i < 31; i++) {
980                 dev->eps[i].ep_index = i;
981                 dev->eps[i].vdev = dev;
982                 dev->eps[i].xhci = xhci;
983                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
984                 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
985         }
986
987         /* Allocate endpoint 0 ring */
988         dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
989         if (!dev->eps[0].ring)
990                 goto fail;
991
992         dev->udev = udev;
993
994         /* Point to output device context in dcbaa. */
995         xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
996         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
997                  slot_id,
998                  &xhci->dcbaa->dev_context_ptrs[slot_id],
999                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1000
1001         trace_xhci_alloc_virt_device(dev);
1002
1003         xhci->devs[slot_id] = dev;
1004
1005         return 1;
1006 fail:
1007
1008         if (dev->in_ctx)
1009                 xhci_free_container_ctx(xhci, dev->in_ctx);
1010         if (dev->out_ctx)
1011                 xhci_free_container_ctx(xhci, dev->out_ctx);
1012         kfree(dev);
1013
1014         return 0;
1015 }
1016
1017 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1018                 struct usb_device *udev)
1019 {
1020         struct xhci_virt_device *virt_dev;
1021         struct xhci_ep_ctx      *ep0_ctx;
1022         struct xhci_ring        *ep_ring;
1023
1024         virt_dev = xhci->devs[udev->slot_id];
1025         ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1026         ep_ring = virt_dev->eps[0].ring;
1027         /*
1028          * FIXME we don't keep track of the dequeue pointer very well after a
1029          * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1030          * host to our enqueue pointer.  This should only be called after a
1031          * configured device has reset, so all control transfers should have
1032          * been completed or cancelled before the reset.
1033          */
1034         ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1035                                                         ep_ring->enqueue)
1036                                    | ep_ring->cycle_state);
1037 }
1038
1039 /*
1040  * The xHCI roothub may have ports of differing speeds in any order in the port
1041  * status registers.
1042  *
1043  * The xHCI hardware wants to know the roothub port number that the USB device
1044  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1045  * know is the index of that port under either the USB 2.0 or the USB 3.0
1046  * roothub, but that doesn't give us the real index into the HW port status
1047  * registers. Call xhci_find_raw_port_number() to get real index.
1048  */
1049 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1050                 struct usb_device *udev)
1051 {
1052         struct usb_device *top_dev;
1053         struct usb_hcd *hcd;
1054
1055         if (udev->speed >= USB_SPEED_SUPER)
1056                 hcd = xhci_get_usb3_hcd(xhci);
1057         else
1058                 hcd = xhci->main_hcd;
1059
1060         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1061                         top_dev = top_dev->parent)
1062                 /* Found device below root hub */;
1063
1064         return  xhci_find_raw_port_number(hcd, top_dev->portnum);
1065 }
1066
1067 /* Setup an xHCI virtual device for a Set Address command */
1068 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1069 {
1070         struct xhci_virt_device *dev;
1071         struct xhci_ep_ctx      *ep0_ctx;
1072         struct xhci_slot_ctx    *slot_ctx;
1073         u32                     port_num;
1074         u32                     max_packets;
1075         struct usb_device *top_dev;
1076
1077         dev = xhci->devs[udev->slot_id];
1078         /* Slot ID 0 is reserved */
1079         if (udev->slot_id == 0 || !dev) {
1080                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1081                                 udev->slot_id);
1082                 return -EINVAL;
1083         }
1084         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1085         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1086
1087         /* 3) Only the control endpoint is valid - one endpoint context */
1088         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1089         switch (udev->speed) {
1090         case USB_SPEED_SUPER_PLUS:
1091                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1092                 max_packets = MAX_PACKET(512);
1093                 break;
1094         case USB_SPEED_SUPER:
1095                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1096                 max_packets = MAX_PACKET(512);
1097                 break;
1098         case USB_SPEED_HIGH:
1099                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1100                 max_packets = MAX_PACKET(64);
1101                 break;
1102         /* USB core guesses at a 64-byte max packet first for FS devices */
1103         case USB_SPEED_FULL:
1104                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1105                 max_packets = MAX_PACKET(64);
1106                 break;
1107         case USB_SPEED_LOW:
1108                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1109                 max_packets = MAX_PACKET(8);
1110                 break;
1111         default:
1112                 /* Speed was set earlier, this shouldn't happen. */
1113                 return -EINVAL;
1114         }
1115         /* Find the root hub port this device is under */
1116         port_num = xhci_find_real_port_number(xhci, udev);
1117         if (!port_num)
1118                 return -EINVAL;
1119         slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1120         /* Set the port number in the virtual_device to the faked port number */
1121         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1122                         top_dev = top_dev->parent)
1123                 /* Found device below root hub */;
1124         dev->fake_port = top_dev->portnum;
1125         dev->real_port = port_num;
1126         xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1127         xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1128
1129         /* Find the right bandwidth table that this device will be a part of.
1130          * If this is a full speed device attached directly to a root port (or a
1131          * decendent of one), it counts as a primary bandwidth domain, not a
1132          * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1133          * will never be created for the HS root hub.
1134          */
1135         if (!udev->tt || !udev->tt->hub->parent) {
1136                 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1137         } else {
1138                 struct xhci_root_port_bw_info *rh_bw;
1139                 struct xhci_tt_bw_info *tt_bw;
1140
1141                 rh_bw = &xhci->rh_bw[port_num - 1];
1142                 /* Find the right TT. */
1143                 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1144                         if (tt_bw->slot_id != udev->tt->hub->slot_id)
1145                                 continue;
1146
1147                         if (!dev->udev->tt->multi ||
1148                                         (udev->tt->multi &&
1149                                          tt_bw->ttport == dev->udev->ttport)) {
1150                                 dev->bw_table = &tt_bw->bw_table;
1151                                 dev->tt_info = tt_bw;
1152                                 break;
1153                         }
1154                 }
1155                 if (!dev->tt_info)
1156                         xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1157         }
1158
1159         /* Is this a LS/FS device under an external HS hub? */
1160         if (udev->tt && udev->tt->hub->parent) {
1161                 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1162                                                 (udev->ttport << 8));
1163                 if (udev->tt->multi)
1164                         slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1165         }
1166         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1167         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1168
1169         /* Step 4 - ring already allocated */
1170         /* Step 5 */
1171         ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1172
1173         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1174         ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1175                                          max_packets);
1176
1177         ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1178                                    dev->eps[0].ring->cycle_state);
1179
1180         trace_xhci_setup_addressable_virt_device(dev);
1181
1182         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1183
1184         return 0;
1185 }
1186
1187 /*
1188  * Convert interval expressed as 2^(bInterval - 1) == interval into
1189  * straight exponent value 2^n == interval.
1190  *
1191  */
1192 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1193                 struct usb_host_endpoint *ep)
1194 {
1195         unsigned int interval;
1196
1197         interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1198         if (interval != ep->desc.bInterval - 1)
1199                 dev_warn(&udev->dev,
1200                          "ep %#x - rounding interval to %d %sframes\n",
1201                          ep->desc.bEndpointAddress,
1202                          1 << interval,
1203                          udev->speed == USB_SPEED_FULL ? "" : "micro");
1204
1205         if (udev->speed == USB_SPEED_FULL) {
1206                 /*
1207                  * Full speed isoc endpoints specify interval in frames,
1208                  * not microframes. We are using microframes everywhere,
1209                  * so adjust accordingly.
1210                  */
1211                 interval += 3;  /* 1 frame = 2^3 uframes */
1212         }
1213
1214         return interval;
1215 }
1216
1217 /*
1218  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1219  * microframes, rounded down to nearest power of 2.
1220  */
1221 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1222                 struct usb_host_endpoint *ep, unsigned int desc_interval,
1223                 unsigned int min_exponent, unsigned int max_exponent)
1224 {
1225         unsigned int interval;
1226
1227         interval = fls(desc_interval) - 1;
1228         interval = clamp_val(interval, min_exponent, max_exponent);
1229         if ((1 << interval) != desc_interval)
1230                 dev_dbg(&udev->dev,
1231                          "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1232                          ep->desc.bEndpointAddress,
1233                          1 << interval,
1234                          desc_interval);
1235
1236         return interval;
1237 }
1238
1239 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1240                 struct usb_host_endpoint *ep)
1241 {
1242         if (ep->desc.bInterval == 0)
1243                 return 0;
1244         return xhci_microframes_to_exponent(udev, ep,
1245                         ep->desc.bInterval, 0, 15);
1246 }
1247
1248
1249 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1250                 struct usb_host_endpoint *ep)
1251 {
1252         return xhci_microframes_to_exponent(udev, ep,
1253                         ep->desc.bInterval * 8, 3, 10);
1254 }
1255
1256 /* Return the polling or NAK interval.
1257  *
1258  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1259  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1260  *
1261  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1262  * is set to 0.
1263  */
1264 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1265                 struct usb_host_endpoint *ep)
1266 {
1267         unsigned int interval = 0;
1268
1269         switch (udev->speed) {
1270         case USB_SPEED_HIGH:
1271                 /* Max NAK rate */
1272                 if (usb_endpoint_xfer_control(&ep->desc) ||
1273                     usb_endpoint_xfer_bulk(&ep->desc)) {
1274                         interval = xhci_parse_microframe_interval(udev, ep);
1275                         break;
1276                 }
1277                 fallthrough;    /* SS and HS isoc/int have same decoding */
1278
1279         case USB_SPEED_SUPER_PLUS:
1280         case USB_SPEED_SUPER:
1281                 if (usb_endpoint_xfer_int(&ep->desc) ||
1282                     usb_endpoint_xfer_isoc(&ep->desc)) {
1283                         interval = xhci_parse_exponent_interval(udev, ep);
1284                 }
1285                 break;
1286
1287         case USB_SPEED_FULL:
1288                 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1289                         interval = xhci_parse_exponent_interval(udev, ep);
1290                         break;
1291                 }
1292                 /*
1293                  * Fall through for interrupt endpoint interval decoding
1294                  * since it uses the same rules as low speed interrupt
1295                  * endpoints.
1296                  */
1297                 fallthrough;
1298
1299         case USB_SPEED_LOW:
1300                 if (usb_endpoint_xfer_int(&ep->desc) ||
1301                     usb_endpoint_xfer_isoc(&ep->desc)) {
1302
1303                         interval = xhci_parse_frame_interval(udev, ep);
1304                 }
1305                 break;
1306
1307         default:
1308                 BUG();
1309         }
1310         return interval;
1311 }
1312
1313 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1314  * High speed endpoint descriptors can define "the number of additional
1315  * transaction opportunities per microframe", but that goes in the Max Burst
1316  * endpoint context field.
1317  */
1318 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1319                 struct usb_host_endpoint *ep)
1320 {
1321         if (udev->speed < USB_SPEED_SUPER ||
1322                         !usb_endpoint_xfer_isoc(&ep->desc))
1323                 return 0;
1324         return ep->ss_ep_comp.bmAttributes;
1325 }
1326
1327 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1328                                        struct usb_host_endpoint *ep)
1329 {
1330         /* Super speed and Plus have max burst in ep companion desc */
1331         if (udev->speed >= USB_SPEED_SUPER)
1332                 return ep->ss_ep_comp.bMaxBurst;
1333
1334         if (udev->speed == USB_SPEED_HIGH &&
1335             (usb_endpoint_xfer_isoc(&ep->desc) ||
1336              usb_endpoint_xfer_int(&ep->desc)))
1337                 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1338
1339         return 0;
1340 }
1341
1342 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1343 {
1344         int in;
1345
1346         in = usb_endpoint_dir_in(&ep->desc);
1347
1348         switch (usb_endpoint_type(&ep->desc)) {
1349         case USB_ENDPOINT_XFER_CONTROL:
1350                 return CTRL_EP;
1351         case USB_ENDPOINT_XFER_BULK:
1352                 return in ? BULK_IN_EP : BULK_OUT_EP;
1353         case USB_ENDPOINT_XFER_ISOC:
1354                 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1355         case USB_ENDPOINT_XFER_INT:
1356                 return in ? INT_IN_EP : INT_OUT_EP;
1357         }
1358         return 0;
1359 }
1360
1361 /* Return the maximum endpoint service interval time (ESIT) payload.
1362  * Basically, this is the maxpacket size, multiplied by the burst size
1363  * and mult size.
1364  */
1365 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1366                 struct usb_host_endpoint *ep)
1367 {
1368         int max_burst;
1369         int max_packet;
1370
1371         /* Only applies for interrupt or isochronous endpoints */
1372         if (usb_endpoint_xfer_control(&ep->desc) ||
1373                         usb_endpoint_xfer_bulk(&ep->desc))
1374                 return 0;
1375
1376         /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1377         if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1378             USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1379                 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1380
1381         /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1382         if (udev->speed >= USB_SPEED_SUPER)
1383                 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1384
1385         max_packet = usb_endpoint_maxp(&ep->desc);
1386         max_burst = usb_endpoint_maxp_mult(&ep->desc);
1387         /* A 0 in max burst means 1 transfer per ESIT */
1388         return max_packet * max_burst;
1389 }
1390
1391 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1392  * Drivers will have to call usb_alloc_streams() to do that.
1393  */
1394 int xhci_endpoint_init(struct xhci_hcd *xhci,
1395                 struct xhci_virt_device *virt_dev,
1396                 struct usb_device *udev,
1397                 struct usb_host_endpoint *ep,
1398                 gfp_t mem_flags)
1399 {
1400         unsigned int ep_index;
1401         struct xhci_ep_ctx *ep_ctx;
1402         struct xhci_ring *ep_ring;
1403         unsigned int max_packet;
1404         enum xhci_ring_type ring_type;
1405         u32 max_esit_payload;
1406         u32 endpoint_type;
1407         unsigned int max_burst;
1408         unsigned int interval;
1409         unsigned int mult;
1410         unsigned int avg_trb_len;
1411         unsigned int err_count = 0;
1412
1413         ep_index = xhci_get_endpoint_index(&ep->desc);
1414         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1415
1416         endpoint_type = xhci_get_endpoint_type(ep);
1417         if (!endpoint_type)
1418                 return -EINVAL;
1419
1420         ring_type = usb_endpoint_type(&ep->desc);
1421
1422         /*
1423          * Get values to fill the endpoint context, mostly from ep descriptor.
1424          * The average TRB buffer lengt for bulk endpoints is unclear as we
1425          * have no clue on scatter gather list entry size. For Isoc and Int,
1426          * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1427          */
1428         max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1429         interval = xhci_get_endpoint_interval(udev, ep);
1430
1431         /* Periodic endpoint bInterval limit quirk */
1432         if (usb_endpoint_xfer_int(&ep->desc) ||
1433             usb_endpoint_xfer_isoc(&ep->desc)) {
1434                 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1435                     udev->speed >= USB_SPEED_HIGH &&
1436                     interval >= 7) {
1437                         interval = 6;
1438                 }
1439         }
1440
1441         mult = xhci_get_endpoint_mult(udev, ep);
1442         max_packet = usb_endpoint_maxp(&ep->desc);
1443         max_burst = xhci_get_endpoint_max_burst(udev, ep);
1444         avg_trb_len = max_esit_payload;
1445
1446         /* FIXME dig Mult and streams info out of ep companion desc */
1447
1448         /* Allow 3 retries for everything but isoc, set CErr = 3 */
1449         if (!usb_endpoint_xfer_isoc(&ep->desc))
1450                 err_count = 3;
1451         /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1452         if (usb_endpoint_xfer_bulk(&ep->desc)) {
1453                 if (udev->speed == USB_SPEED_HIGH)
1454                         max_packet = 512;
1455                 if (udev->speed == USB_SPEED_FULL) {
1456                         max_packet = rounddown_pow_of_two(max_packet);
1457                         max_packet = clamp_val(max_packet, 8, 64);
1458                 }
1459         }
1460         /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1461         if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1462                 avg_trb_len = 8;
1463         /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1464         if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1465                 mult = 0;
1466
1467         /* Set up the endpoint ring */
1468         virt_dev->eps[ep_index].new_ring =
1469                 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1470         if (!virt_dev->eps[ep_index].new_ring)
1471                 return -ENOMEM;
1472
1473         virt_dev->eps[ep_index].skip = false;
1474         ep_ring = virt_dev->eps[ep_index].new_ring;
1475
1476         /* Fill the endpoint context */
1477         ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1478                                       EP_INTERVAL(interval) |
1479                                       EP_MULT(mult));
1480         ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1481                                        MAX_PACKET(max_packet) |
1482                                        MAX_BURST(max_burst) |
1483                                        ERROR_COUNT(err_count));
1484         ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1485                                   ep_ring->cycle_state);
1486
1487         ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1488                                       EP_AVG_TRB_LENGTH(avg_trb_len));
1489
1490         return 0;
1491 }
1492
1493 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1494                 struct xhci_virt_device *virt_dev,
1495                 struct usb_host_endpoint *ep)
1496 {
1497         unsigned int ep_index;
1498         struct xhci_ep_ctx *ep_ctx;
1499
1500         ep_index = xhci_get_endpoint_index(&ep->desc);
1501         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1502
1503         ep_ctx->ep_info = 0;
1504         ep_ctx->ep_info2 = 0;
1505         ep_ctx->deq = 0;
1506         ep_ctx->tx_info = 0;
1507         /* Don't free the endpoint ring until the set interface or configuration
1508          * request succeeds.
1509          */
1510 }
1511
1512 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1513 {
1514         bw_info->ep_interval = 0;
1515         bw_info->mult = 0;
1516         bw_info->num_packets = 0;
1517         bw_info->max_packet_size = 0;
1518         bw_info->type = 0;
1519         bw_info->max_esit_payload = 0;
1520 }
1521
1522 void xhci_update_bw_info(struct xhci_hcd *xhci,
1523                 struct xhci_container_ctx *in_ctx,
1524                 struct xhci_input_control_ctx *ctrl_ctx,
1525                 struct xhci_virt_device *virt_dev)
1526 {
1527         struct xhci_bw_info *bw_info;
1528         struct xhci_ep_ctx *ep_ctx;
1529         unsigned int ep_type;
1530         int i;
1531
1532         for (i = 1; i < 31; i++) {
1533                 bw_info = &virt_dev->eps[i].bw_info;
1534
1535                 /* We can't tell what endpoint type is being dropped, but
1536                  * unconditionally clearing the bandwidth info for non-periodic
1537                  * endpoints should be harmless because the info will never be
1538                  * set in the first place.
1539                  */
1540                 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1541                         /* Dropped endpoint */
1542                         xhci_clear_endpoint_bw_info(bw_info);
1543                         continue;
1544                 }
1545
1546                 if (EP_IS_ADDED(ctrl_ctx, i)) {
1547                         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1548                         ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1549
1550                         /* Ignore non-periodic endpoints */
1551                         if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1552                                         ep_type != ISOC_IN_EP &&
1553                                         ep_type != INT_IN_EP)
1554                                 continue;
1555
1556                         /* Added or changed endpoint */
1557                         bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1558                                         le32_to_cpu(ep_ctx->ep_info));
1559                         /* Number of packets and mult are zero-based in the
1560                          * input context, but we want one-based for the
1561                          * interval table.
1562                          */
1563                         bw_info->mult = CTX_TO_EP_MULT(
1564                                         le32_to_cpu(ep_ctx->ep_info)) + 1;
1565                         bw_info->num_packets = CTX_TO_MAX_BURST(
1566                                         le32_to_cpu(ep_ctx->ep_info2)) + 1;
1567                         bw_info->max_packet_size = MAX_PACKET_DECODED(
1568                                         le32_to_cpu(ep_ctx->ep_info2));
1569                         bw_info->type = ep_type;
1570                         bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1571                                         le32_to_cpu(ep_ctx->tx_info));
1572                 }
1573         }
1574 }
1575
1576 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1577  * Useful when you want to change one particular aspect of the endpoint and then
1578  * issue a configure endpoint command.
1579  */
1580 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1581                 struct xhci_container_ctx *in_ctx,
1582                 struct xhci_container_ctx *out_ctx,
1583                 unsigned int ep_index)
1584 {
1585         struct xhci_ep_ctx *out_ep_ctx;
1586         struct xhci_ep_ctx *in_ep_ctx;
1587
1588         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1589         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1590
1591         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1592         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1593         in_ep_ctx->deq = out_ep_ctx->deq;
1594         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1595         if (xhci->quirks & XHCI_MTK_HOST) {
1596                 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1597                 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1598         }
1599 }
1600
1601 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1602  * Useful when you want to change one particular aspect of the endpoint and then
1603  * issue a configure endpoint command.  Only the context entries field matters,
1604  * but we'll copy the whole thing anyway.
1605  */
1606 void xhci_slot_copy(struct xhci_hcd *xhci,
1607                 struct xhci_container_ctx *in_ctx,
1608                 struct xhci_container_ctx *out_ctx)
1609 {
1610         struct xhci_slot_ctx *in_slot_ctx;
1611         struct xhci_slot_ctx *out_slot_ctx;
1612
1613         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1614         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1615
1616         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1617         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1618         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1619         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1620 }
1621
1622 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1623 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1624 {
1625         int i;
1626         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1627         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1628
1629         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1630                         "Allocating %d scratchpad buffers", num_sp);
1631
1632         if (!num_sp)
1633                 return 0;
1634
1635         xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1636                                 dev_to_node(dev));
1637         if (!xhci->scratchpad)
1638                 goto fail_sp;
1639
1640         xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1641                                      size_mul(sizeof(u64), num_sp),
1642                                      &xhci->scratchpad->sp_dma, flags);
1643         if (!xhci->scratchpad->sp_array)
1644                 goto fail_sp2;
1645
1646         xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1647                                         flags, dev_to_node(dev));
1648         if (!xhci->scratchpad->sp_buffers)
1649                 goto fail_sp3;
1650
1651         xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1652         for (i = 0; i < num_sp; i++) {
1653                 dma_addr_t dma;
1654                 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1655                                                flags);
1656                 if (!buf)
1657                         goto fail_sp4;
1658
1659                 xhci->scratchpad->sp_array[i] = dma;
1660                 xhci->scratchpad->sp_buffers[i] = buf;
1661         }
1662
1663         return 0;
1664
1665  fail_sp4:
1666         while (i--)
1667                 dma_free_coherent(dev, xhci->page_size,
1668                                     xhci->scratchpad->sp_buffers[i],
1669                                     xhci->scratchpad->sp_array[i]);
1670
1671         kfree(xhci->scratchpad->sp_buffers);
1672
1673  fail_sp3:
1674         dma_free_coherent(dev, num_sp * sizeof(u64),
1675                             xhci->scratchpad->sp_array,
1676                             xhci->scratchpad->sp_dma);
1677
1678  fail_sp2:
1679         kfree(xhci->scratchpad);
1680         xhci->scratchpad = NULL;
1681
1682  fail_sp:
1683         return -ENOMEM;
1684 }
1685
1686 static void scratchpad_free(struct xhci_hcd *xhci)
1687 {
1688         int num_sp;
1689         int i;
1690         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1691
1692         if (!xhci->scratchpad)
1693                 return;
1694
1695         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1696
1697         for (i = 0; i < num_sp; i++) {
1698                 dma_free_coherent(dev, xhci->page_size,
1699                                     xhci->scratchpad->sp_buffers[i],
1700                                     xhci->scratchpad->sp_array[i]);
1701         }
1702         kfree(xhci->scratchpad->sp_buffers);
1703         dma_free_coherent(dev, num_sp * sizeof(u64),
1704                             xhci->scratchpad->sp_array,
1705                             xhci->scratchpad->sp_dma);
1706         kfree(xhci->scratchpad);
1707         xhci->scratchpad = NULL;
1708 }
1709
1710 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1711                 bool allocate_completion, gfp_t mem_flags)
1712 {
1713         struct xhci_command *command;
1714         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1715
1716         command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1717         if (!command)
1718                 return NULL;
1719
1720         if (allocate_completion) {
1721                 command->completion =
1722                         kzalloc_node(sizeof(struct completion), mem_flags,
1723                                 dev_to_node(dev));
1724                 if (!command->completion) {
1725                         kfree(command);
1726                         return NULL;
1727                 }
1728                 init_completion(command->completion);
1729         }
1730
1731         command->status = 0;
1732         INIT_LIST_HEAD(&command->cmd_list);
1733         return command;
1734 }
1735
1736 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1737                 bool allocate_completion, gfp_t mem_flags)
1738 {
1739         struct xhci_command *command;
1740
1741         command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1742         if (!command)
1743                 return NULL;
1744
1745         command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1746                                                    mem_flags);
1747         if (!command->in_ctx) {
1748                 kfree(command->completion);
1749                 kfree(command);
1750                 return NULL;
1751         }
1752         return command;
1753 }
1754
1755 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1756 {
1757         kfree(urb_priv);
1758 }
1759
1760 void xhci_free_command(struct xhci_hcd *xhci,
1761                 struct xhci_command *command)
1762 {
1763         xhci_free_container_ctx(xhci,
1764                         command->in_ctx);
1765         kfree(command->completion);
1766         kfree(command);
1767 }
1768
1769 int xhci_alloc_erst(struct xhci_hcd *xhci,
1770                     struct xhci_ring *evt_ring,
1771                     struct xhci_erst *erst,
1772                     gfp_t flags)
1773 {
1774         size_t size;
1775         unsigned int val;
1776         struct xhci_segment *seg;
1777         struct xhci_erst_entry *entry;
1778
1779         size = size_mul(sizeof(struct xhci_erst_entry), evt_ring->num_segs);
1780         erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1781                                            size, &erst->erst_dma_addr, flags);
1782         if (!erst->entries)
1783                 return -ENOMEM;
1784
1785         erst->num_entries = evt_ring->num_segs;
1786
1787         seg = evt_ring->first_seg;
1788         for (val = 0; val < evt_ring->num_segs; val++) {
1789                 entry = &erst->entries[val];
1790                 entry->seg_addr = cpu_to_le64(seg->dma);
1791                 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1792                 entry->rsvd = 0;
1793                 seg = seg->next;
1794         }
1795
1796         return 0;
1797 }
1798
1799 static void
1800 xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1801 {
1802         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1803         size_t erst_size;
1804         u64 tmp64;
1805         u32 tmp;
1806
1807         if (!ir)
1808                 return;
1809
1810         erst_size = sizeof(struct xhci_erst_entry) * ir->erst.num_entries;
1811         if (ir->erst.entries)
1812                 dma_free_coherent(dev, erst_size,
1813                                   ir->erst.entries,
1814                                   ir->erst.erst_dma_addr);
1815         ir->erst.entries = NULL;
1816
1817         /*
1818          * Clean out interrupter registers except ERSTBA. Clearing either the
1819          * low or high 32 bits of ERSTBA immediately causes the controller to
1820          * dereference the partially cleared 64 bit address, causing IOMMU error.
1821          */
1822         if (ir->ir_set) {
1823                 tmp = readl(&ir->ir_set->erst_size);
1824                 tmp &= ERST_SIZE_MASK;
1825                 writel(tmp, &ir->ir_set->erst_size);
1826
1827                 tmp64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
1828                 tmp64 &= (u64) ERST_PTR_MASK;
1829                 xhci_write_64(xhci, tmp64, &ir->ir_set->erst_dequeue);
1830         }
1831
1832         /* free interrrupter event ring */
1833         if (ir->event_ring)
1834                 xhci_ring_free(xhci, ir->event_ring);
1835         ir->event_ring = NULL;
1836
1837         kfree(ir);
1838 }
1839
1840 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1841 {
1842         struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
1843         int i, j, num_ports;
1844
1845         cancel_delayed_work_sync(&xhci->cmd_timer);
1846
1847         xhci_free_interrupter(xhci, xhci->interrupter);
1848         xhci->interrupter = NULL;
1849         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed primary event ring");
1850
1851         if (xhci->cmd_ring)
1852                 xhci_ring_free(xhci, xhci->cmd_ring);
1853         xhci->cmd_ring = NULL;
1854         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1855         xhci_cleanup_command_queue(xhci);
1856
1857         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1858         for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1859                 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1860                 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1861                         struct list_head *ep = &bwt->interval_bw[j].endpoints;
1862                         while (!list_empty(ep))
1863                                 list_del_init(ep->next);
1864                 }
1865         }
1866
1867         for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1868                 xhci_free_virt_devices_depth_first(xhci, i);
1869
1870         dma_pool_destroy(xhci->segment_pool);
1871         xhci->segment_pool = NULL;
1872         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1873
1874         dma_pool_destroy(xhci->device_pool);
1875         xhci->device_pool = NULL;
1876         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1877
1878         dma_pool_destroy(xhci->small_streams_pool);
1879         xhci->small_streams_pool = NULL;
1880         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1881                         "Freed small stream array pool");
1882
1883         dma_pool_destroy(xhci->medium_streams_pool);
1884         xhci->medium_streams_pool = NULL;
1885         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1886                         "Freed medium stream array pool");
1887
1888         if (xhci->dcbaa)
1889                 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1890                                 xhci->dcbaa, xhci->dcbaa->dma);
1891         xhci->dcbaa = NULL;
1892
1893         scratchpad_free(xhci);
1894
1895         if (!xhci->rh_bw)
1896                 goto no_bw;
1897
1898         for (i = 0; i < num_ports; i++) {
1899                 struct xhci_tt_bw_info *tt, *n;
1900                 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1901                         list_del(&tt->tt_list);
1902                         kfree(tt);
1903                 }
1904         }
1905
1906 no_bw:
1907         xhci->cmd_ring_reserved_trbs = 0;
1908         xhci->usb2_rhub.num_ports = 0;
1909         xhci->usb3_rhub.num_ports = 0;
1910         xhci->num_active_eps = 0;
1911         kfree(xhci->usb2_rhub.ports);
1912         kfree(xhci->usb3_rhub.ports);
1913         kfree(xhci->hw_ports);
1914         kfree(xhci->rh_bw);
1915         kfree(xhci->ext_caps);
1916         for (i = 0; i < xhci->num_port_caps; i++)
1917                 kfree(xhci->port_caps[i].psi);
1918         kfree(xhci->port_caps);
1919         xhci->num_port_caps = 0;
1920
1921         xhci->usb2_rhub.ports = NULL;
1922         xhci->usb3_rhub.ports = NULL;
1923         xhci->hw_ports = NULL;
1924         xhci->rh_bw = NULL;
1925         xhci->ext_caps = NULL;
1926         xhci->port_caps = NULL;
1927
1928         xhci->page_size = 0;
1929         xhci->page_shift = 0;
1930         xhci->usb2_rhub.bus_state.bus_suspended = 0;
1931         xhci->usb3_rhub.bus_state.bus_suspended = 0;
1932 }
1933
1934 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1935 {
1936         u64 temp;
1937         dma_addr_t deq;
1938
1939         deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg,
1940                         ir->event_ring->dequeue);
1941         if (!deq)
1942                 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n");
1943         /* Update HC event ring dequeue pointer */
1944         temp = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
1945         temp &= ERST_PTR_MASK;
1946         /* Don't clear the EHB bit (which is RW1C) because
1947          * there might be more events to service.
1948          */
1949         temp &= ~ERST_EHB;
1950         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1951                        "// Write event ring dequeue pointer, preserving EHB bit");
1952         xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1953                         &ir->ir_set->erst_dequeue);
1954 }
1955
1956 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1957                 __le32 __iomem *addr, int max_caps)
1958 {
1959         u32 temp, port_offset, port_count;
1960         int i;
1961         u8 major_revision, minor_revision, tmp_minor_revision;
1962         struct xhci_hub *rhub;
1963         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1964         struct xhci_port_cap *port_cap;
1965
1966         temp = readl(addr);
1967         major_revision = XHCI_EXT_PORT_MAJOR(temp);
1968         minor_revision = XHCI_EXT_PORT_MINOR(temp);
1969
1970         if (major_revision == 0x03) {
1971                 rhub = &xhci->usb3_rhub;
1972                 /*
1973                  * Some hosts incorrectly use sub-minor version for minor
1974                  * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
1975                  * for bcdUSB 0x310). Since there is no USB release with sub
1976                  * minor version 0x301 to 0x309, we can assume that they are
1977                  * incorrect and fix it here.
1978                  */
1979                 if (minor_revision > 0x00 && minor_revision < 0x10)
1980                         minor_revision <<= 4;
1981                 /*
1982                  * Some zhaoxin's xHCI controller that follow usb3.1 spec
1983                  * but only support Gen1.
1984                  */
1985                 if (xhci->quirks & XHCI_ZHAOXIN_HOST) {
1986                         tmp_minor_revision = minor_revision;
1987                         minor_revision = 0;
1988                 }
1989
1990         } else if (major_revision <= 0x02) {
1991                 rhub = &xhci->usb2_rhub;
1992         } else {
1993                 xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n",
1994                                 addr, major_revision);
1995                 /* Ignoring port protocol we can't understand. FIXME */
1996                 return;
1997         }
1998
1999         /* Port offset and count in the third dword, see section 7.2 */
2000         temp = readl(addr + 2);
2001         port_offset = XHCI_EXT_PORT_OFF(temp);
2002         port_count = XHCI_EXT_PORT_COUNT(temp);
2003         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2004                        "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x",
2005                        addr, port_offset, port_count, major_revision);
2006         /* Port count includes the current port offset */
2007         if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2008                 /* WTF? "Valid values are â€˜1’ to MaxPorts" */
2009                 return;
2010
2011         port_cap = &xhci->port_caps[xhci->num_port_caps++];
2012         if (xhci->num_port_caps > max_caps)
2013                 return;
2014
2015         port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2016
2017         if (port_cap->psi_count) {
2018                 port_cap->psi = kcalloc_node(port_cap->psi_count,
2019                                              sizeof(*port_cap->psi),
2020                                              GFP_KERNEL, dev_to_node(dev));
2021                 if (!port_cap->psi)
2022                         port_cap->psi_count = 0;
2023
2024                 port_cap->psi_uid_count++;
2025                 for (i = 0; i < port_cap->psi_count; i++) {
2026                         port_cap->psi[i] = readl(addr + 4 + i);
2027
2028                         /* count unique ID values, two consecutive entries can
2029                          * have the same ID if link is assymetric
2030                          */
2031                         if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2032                                   XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2033                                 port_cap->psi_uid_count++;
2034
2035                         if (xhci->quirks & XHCI_ZHAOXIN_HOST &&
2036                             major_revision == 0x03 &&
2037                             XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5)
2038                                 minor_revision = tmp_minor_revision;
2039
2040                         xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2041                                   XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2042                                   XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2043                                   XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2044                                   XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2045                                   XHCI_EXT_PORT_LP(port_cap->psi[i]),
2046                                   XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2047                 }
2048         }
2049
2050         rhub->maj_rev = major_revision;
2051
2052         if (rhub->min_rev < minor_revision)
2053                 rhub->min_rev = minor_revision;
2054
2055         port_cap->maj_rev = major_revision;
2056         port_cap->min_rev = minor_revision;
2057
2058         /* cache usb2 port capabilities */
2059         if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2060                 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2061
2062         if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2063                  (temp & XHCI_HLC)) {
2064                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2065                                "xHCI 1.0: support USB2 hardware lpm");
2066                 xhci->hw_lpm_support = 1;
2067         }
2068
2069         port_offset--;
2070         for (i = port_offset; i < (port_offset + port_count); i++) {
2071                 struct xhci_port *hw_port = &xhci->hw_ports[i];
2072                 /* Duplicate entry.  Ignore the port if the revisions differ. */
2073                 if (hw_port->rhub) {
2074                         xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i);
2075                         xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n",
2076                                         hw_port->rhub->maj_rev, major_revision);
2077                         /* Only adjust the roothub port counts if we haven't
2078                          * found a similar duplicate.
2079                          */
2080                         if (hw_port->rhub != rhub &&
2081                                  hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2082                                 hw_port->rhub->num_ports--;
2083                                 hw_port->hcd_portnum = DUPLICATE_ENTRY;
2084                         }
2085                         continue;
2086                 }
2087                 hw_port->rhub = rhub;
2088                 hw_port->port_cap = port_cap;
2089                 rhub->num_ports++;
2090         }
2091         /* FIXME: Should we disable ports not in the Extended Capabilities? */
2092 }
2093
2094 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2095                                         struct xhci_hub *rhub, gfp_t flags)
2096 {
2097         int port_index = 0;
2098         int i;
2099         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2100
2101         if (!rhub->num_ports)
2102                 return;
2103         rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2104                         flags, dev_to_node(dev));
2105         if (!rhub->ports)
2106                 return;
2107
2108         for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2109                 if (xhci->hw_ports[i].rhub != rhub ||
2110                     xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2111                         continue;
2112                 xhci->hw_ports[i].hcd_portnum = port_index;
2113                 rhub->ports[port_index] = &xhci->hw_ports[i];
2114                 port_index++;
2115                 if (port_index == rhub->num_ports)
2116                         break;
2117         }
2118 }
2119
2120 /*
2121  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2122  * specify what speeds each port is supposed to be.  We can't count on the port
2123  * speed bits in the PORTSC register being correct until a device is connected,
2124  * but we need to set up the two fake roothubs with the correct number of USB
2125  * 3.0 and USB 2.0 ports at host controller initialization time.
2126  */
2127 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2128 {
2129         void __iomem *base;
2130         u32 offset;
2131         unsigned int num_ports;
2132         int i, j;
2133         int cap_count = 0;
2134         u32 cap_start;
2135         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2136
2137         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2138         xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2139                                 flags, dev_to_node(dev));
2140         if (!xhci->hw_ports)
2141                 return -ENOMEM;
2142
2143         for (i = 0; i < num_ports; i++) {
2144                 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2145                         NUM_PORT_REGS * i;
2146                 xhci->hw_ports[i].hw_portnum = i;
2147
2148                 init_completion(&xhci->hw_ports[i].rexit_done);
2149                 init_completion(&xhci->hw_ports[i].u3exit_done);
2150         }
2151
2152         xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2153                                    dev_to_node(dev));
2154         if (!xhci->rh_bw)
2155                 return -ENOMEM;
2156         for (i = 0; i < num_ports; i++) {
2157                 struct xhci_interval_bw_table *bw_table;
2158
2159                 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2160                 bw_table = &xhci->rh_bw[i].bw_table;
2161                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2162                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2163         }
2164         base = &xhci->cap_regs->hc_capbase;
2165
2166         cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2167         if (!cap_start) {
2168                 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2169                 return -ENODEV;
2170         }
2171
2172         offset = cap_start;
2173         /* count extended protocol capability entries for later caching */
2174         while (offset) {
2175                 cap_count++;
2176                 offset = xhci_find_next_ext_cap(base, offset,
2177                                                       XHCI_EXT_CAPS_PROTOCOL);
2178         }
2179
2180         xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2181                                 flags, dev_to_node(dev));
2182         if (!xhci->ext_caps)
2183                 return -ENOMEM;
2184
2185         xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2186                                 flags, dev_to_node(dev));
2187         if (!xhci->port_caps)
2188                 return -ENOMEM;
2189
2190         offset = cap_start;
2191
2192         while (offset) {
2193                 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2194                 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2195                     num_ports)
2196                         break;
2197                 offset = xhci_find_next_ext_cap(base, offset,
2198                                                 XHCI_EXT_CAPS_PROTOCOL);
2199         }
2200         if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2201                 xhci_warn(xhci, "No ports on the roothubs?\n");
2202                 return -ENODEV;
2203         }
2204         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2205                        "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2206                        xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2207
2208         /* Place limits on the number of roothub ports so that the hub
2209          * descriptors aren't longer than the USB core will allocate.
2210          */
2211         if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2212                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2213                                 "Limiting USB 3.0 roothub ports to %u.",
2214                                 USB_SS_MAXPORTS);
2215                 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2216         }
2217         if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2218                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2219                                 "Limiting USB 2.0 roothub ports to %u.",
2220                                 USB_MAXCHILDREN);
2221                 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2222         }
2223
2224         if (!xhci->usb2_rhub.num_ports)
2225                 xhci_info(xhci, "USB2 root hub has no ports\n");
2226
2227         if (!xhci->usb3_rhub.num_ports)
2228                 xhci_info(xhci, "USB3 root hub has no ports\n");
2229
2230         xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2231         xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2232
2233         return 0;
2234 }
2235
2236 static struct xhci_interrupter *
2237 xhci_alloc_interrupter(struct xhci_hcd *xhci, gfp_t flags)
2238 {
2239         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2240         struct xhci_interrupter *ir;
2241         int ret;
2242
2243         ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev));
2244         if (!ir)
2245                 return NULL;
2246
2247         ir->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2248                                         0, flags);
2249         if (!ir->event_ring) {
2250                 xhci_warn(xhci, "Failed to allocate interrupter event ring\n");
2251                 kfree(ir);
2252                 return NULL;
2253         }
2254
2255         ret = xhci_alloc_erst(xhci, ir->event_ring, &ir->erst, flags);
2256         if (ret) {
2257                 xhci_warn(xhci, "Failed to allocate interrupter erst\n");
2258                 xhci_ring_free(xhci, ir->event_ring);
2259                 kfree(ir);
2260                 return NULL;
2261         }
2262
2263         return ir;
2264 }
2265
2266 static int
2267 xhci_add_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir,
2268                      unsigned int intr_num)
2269 {
2270         u64 erst_base;
2271         u32 erst_size;
2272
2273         if (intr_num > xhci->max_interrupters) {
2274                 xhci_warn(xhci, "Can't add interrupter %d, max interrupters %d\n",
2275                           intr_num, xhci->max_interrupters);
2276                 return -EINVAL;
2277         }
2278
2279         ir->ir_set = &xhci->run_regs->ir_set[intr_num];
2280
2281         /* set ERST count with the number of entries in the segment table */
2282         erst_size = readl(&ir->ir_set->erst_size);
2283         erst_size &= ERST_SIZE_MASK;
2284         erst_size |= ERST_NUM_SEGS;
2285         writel(erst_size, &ir->ir_set->erst_size);
2286
2287         erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
2288         erst_base &= ERST_BASE_RSVDP;
2289         erst_base |= ir->erst.erst_dma_addr & ~ERST_BASE_RSVDP;
2290         xhci_write_64(xhci, erst_base, &ir->ir_set->erst_base);
2291
2292         /* Set the event ring dequeue address of this interrupter */
2293         xhci_set_hc_event_deq(xhci, ir);
2294
2295         return 0;
2296 }
2297
2298 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2299 {
2300         dma_addr_t      dma;
2301         struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
2302         unsigned int    val, val2;
2303         u64             val_64;
2304         u32             page_size, temp;
2305         int             i;
2306
2307         INIT_LIST_HEAD(&xhci->cmd_list);
2308
2309         /* init command timeout work */
2310         INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2311         init_completion(&xhci->cmd_ring_stop_completion);
2312
2313         page_size = readl(&xhci->op_regs->page_size);
2314         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2315                         "Supported page size register = 0x%x", page_size);
2316         i = ffs(page_size);
2317         if (i < 16)
2318                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2319                         "Supported page size of %iK", (1 << (i+12)) / 1024);
2320         else
2321                 xhci_warn(xhci, "WARN: no supported page size\n");
2322         /* Use 4K pages, since that's common and the minimum the HC supports */
2323         xhci->page_shift = 12;
2324         xhci->page_size = 1 << xhci->page_shift;
2325         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2326                         "HCD page size set to %iK", xhci->page_size / 1024);
2327
2328         /*
2329          * Program the Number of Device Slots Enabled field in the CONFIG
2330          * register with the max value of slots the HC can handle.
2331          */
2332         val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2333         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2334                         "// xHC can handle at most %d device slots.", val);
2335         val2 = readl(&xhci->op_regs->config_reg);
2336         val |= (val2 & ~HCS_SLOTS_MASK);
2337         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2338                         "// Setting Max device slots reg = 0x%x.", val);
2339         writel(val, &xhci->op_regs->config_reg);
2340
2341         /*
2342          * xHCI section 5.4.6 - Device Context array must be
2343          * "physically contiguous and 64-byte (cache line) aligned".
2344          */
2345         xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2346                         flags);
2347         if (!xhci->dcbaa)
2348                 goto fail;
2349         xhci->dcbaa->dma = dma;
2350         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2351                         "// Device context base array address = 0x%pad (DMA), %p (virt)",
2352                         &xhci->dcbaa->dma, xhci->dcbaa);
2353         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2354
2355         /*
2356          * Initialize the ring segment pool.  The ring must be a contiguous
2357          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2358          * however, the command ring segment needs 64-byte aligned segments
2359          * and our use of dma addresses in the trb_address_map radix tree needs
2360          * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2361          */
2362         if (xhci->quirks & XHCI_ZHAOXIN_TRB_FETCH)
2363                 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2364                                 TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2);
2365         else
2366                 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2367                                 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2368
2369         /* See Table 46 and Note on Figure 55 */
2370         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2371                         2112, 64, xhci->page_size);
2372         if (!xhci->segment_pool || !xhci->device_pool)
2373                 goto fail;
2374
2375         /* Linear stream context arrays don't have any boundary restrictions,
2376          * and only need to be 16-byte aligned.
2377          */
2378         xhci->small_streams_pool =
2379                 dma_pool_create("xHCI 256 byte stream ctx arrays",
2380                         dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2381         xhci->medium_streams_pool =
2382                 dma_pool_create("xHCI 1KB stream ctx arrays",
2383                         dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2384         /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2385          * will be allocated with dma_alloc_coherent()
2386          */
2387
2388         if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2389                 goto fail;
2390
2391         /* Set up the command ring to have one segments for now. */
2392         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2393         if (!xhci->cmd_ring)
2394                 goto fail;
2395         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2396                         "Allocated command ring at %p", xhci->cmd_ring);
2397         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%pad",
2398                         &xhci->cmd_ring->first_seg->dma);
2399
2400         /* Set the address in the Command Ring Control register */
2401         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2402         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2403                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2404                 xhci->cmd_ring->cycle_state;
2405         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2406                         "// Setting command ring address to 0x%016llx", val_64);
2407         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2408
2409         /* Reserve one command ring TRB for disabling LPM.
2410          * Since the USB core grabs the shared usb_bus bandwidth mutex before
2411          * disabling LPM, we only need to reserve one TRB for all devices.
2412          */
2413         xhci->cmd_ring_reserved_trbs++;
2414
2415         val = readl(&xhci->cap_regs->db_off);
2416         val &= DBOFF_MASK;
2417         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2418                        "// Doorbell array is located at offset 0x%x from cap regs base addr",
2419                        val);
2420         xhci->dba = (void __iomem *) xhci->cap_regs + val;
2421
2422         /* Allocate and set up primary interrupter 0 with an event ring. */
2423         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2424                        "Allocating primary event ring");
2425         xhci->interrupter = xhci_alloc_interrupter(xhci, flags);
2426         if (!xhci->interrupter)
2427                 goto fail;
2428
2429         if (xhci_add_interrupter(xhci, xhci->interrupter, 0))
2430                 goto fail;
2431
2432         xhci->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2433
2434         /*
2435          * XXX: Might need to set the Interrupter Moderation Register to
2436          * something other than the default (~1ms minimum between interrupts).
2437          * See section 5.5.1.2.
2438          */
2439         for (i = 0; i < MAX_HC_SLOTS; i++)
2440                 xhci->devs[i] = NULL;
2441
2442         if (scratchpad_alloc(xhci, flags))
2443                 goto fail;
2444         if (xhci_setup_port_arrays(xhci, flags))
2445                 goto fail;
2446
2447         /* Enable USB 3.0 device notifications for function remote wake, which
2448          * is necessary for allowing USB 3.0 devices to do remote wakeup from
2449          * U3 (device suspend).
2450          */
2451         temp = readl(&xhci->op_regs->dev_notification);
2452         temp &= ~DEV_NOTE_MASK;
2453         temp |= DEV_NOTE_FWAKE;
2454         writel(temp, &xhci->op_regs->dev_notification);
2455
2456         return 0;
2457
2458 fail:
2459         xhci_halt(xhci);
2460         xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2461         xhci_mem_cleanup(xhci);
2462         return -ENOMEM;
2463 }