1 // SPDX-License-Identifier: GPL-2.0+
2 /* Faraday FOTG210 EHCI-like driver
4 * Copyright (c) 2013 Faraday Technology Corporation
6 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
7 * Feng-Hsin Chiang <john453@faraday-tech.com>
8 * Po-Yu Chuang <ratbert.chuang@gmail.com>
10 * Most of code borrowed from the Linux-3.7 EHCI driver
12 #include <linux/module.h>
14 #include <linux/device.h>
15 #include <linux/dmapool.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/ioport.h>
19 #include <linux/sched.h>
20 #include <linux/vmalloc.h>
21 #include <linux/errno.h>
22 #include <linux/init.h>
23 #include <linux/hrtimer.h>
24 #include <linux/list.h>
25 #include <linux/interrupt.h>
26 #include <linux/usb.h>
27 #include <linux/usb/hcd.h>
28 #include <linux/moduleparam.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/debugfs.h>
31 #include <linux/slab.h>
32 #include <linux/uaccess.h>
33 #include <linux/platform_device.h>
35 #include <linux/clk.h>
37 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
41 #define DRIVER_AUTHOR "Yuan-Hsin Chen"
42 #define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
43 static const char hcd_name[] = "fotg210_hcd";
45 #undef FOTG210_URB_TRACE
48 /* magic numbers that can affect system performance */
49 #define FOTG210_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */
50 #define FOTG210_TUNE_RL_HS 4 /* nak throttle; see 4.9 */
51 #define FOTG210_TUNE_RL_TT 0
52 #define FOTG210_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */
53 #define FOTG210_TUNE_MULT_TT 1
55 /* Some drivers think it's safe to schedule isochronous transfers more than 256
56 * ms into the future (partly as a result of an old bug in the scheduling
57 * code). In an attempt to avoid trouble, we will use a minimum scheduling
58 * length of 512 frames instead of 256.
60 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
62 /* Initial IRQ latency: faster than hw default */
63 static int log2_irq_thresh; /* 0 to 6 */
64 module_param(log2_irq_thresh, int, S_IRUGO);
65 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
67 /* initial park setting: slower than hw default */
69 module_param(park, uint, S_IRUGO);
70 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
72 /* for link power management(LPM) feature */
73 static unsigned int hird;
74 module_param(hird, int, S_IRUGO);
75 MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
77 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
81 #define fotg210_dbg(fotg210, fmt, args...) \
82 dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
83 #define fotg210_err(fotg210, fmt, args...) \
84 dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
85 #define fotg210_info(fotg210, fmt, args...) \
86 dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
87 #define fotg210_warn(fotg210, fmt, args...) \
88 dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
90 /* check the values in the HCSPARAMS register (host controller _Structural_
91 * parameters) see EHCI spec, Table 2-4 for each value
93 static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
95 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
97 fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
101 /* check the values in the HCCPARAMS register (host controller _Capability_
102 * parameters) see EHCI Spec, Table 2-5 for each value
104 static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
106 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
108 fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
110 HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
111 HCC_CANPARK(params) ? " park" : "");
114 static void __maybe_unused
115 dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
117 fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
118 hc32_to_cpup(fotg210, &qtd->hw_next),
119 hc32_to_cpup(fotg210, &qtd->hw_alt_next),
120 hc32_to_cpup(fotg210, &qtd->hw_token),
121 hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
123 fotg210_dbg(fotg210, " p1=%08x p2=%08x p3=%08x p4=%08x\n",
124 hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
125 hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
126 hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
127 hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
130 static void __maybe_unused
131 dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
133 struct fotg210_qh_hw *hw = qh->hw;
135 fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
136 hw->hw_next, hw->hw_info1, hw->hw_info2,
139 dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
142 static void __maybe_unused
143 dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
145 fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
146 itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
150 " trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
151 hc32_to_cpu(fotg210, itd->hw_transaction[0]),
152 hc32_to_cpu(fotg210, itd->hw_transaction[1]),
153 hc32_to_cpu(fotg210, itd->hw_transaction[2]),
154 hc32_to_cpu(fotg210, itd->hw_transaction[3]),
155 hc32_to_cpu(fotg210, itd->hw_transaction[4]),
156 hc32_to_cpu(fotg210, itd->hw_transaction[5]),
157 hc32_to_cpu(fotg210, itd->hw_transaction[6]),
158 hc32_to_cpu(fotg210, itd->hw_transaction[7]));
161 " buf: %08x %08x %08x %08x %08x %08x %08x\n",
162 hc32_to_cpu(fotg210, itd->hw_bufp[0]),
163 hc32_to_cpu(fotg210, itd->hw_bufp[1]),
164 hc32_to_cpu(fotg210, itd->hw_bufp[2]),
165 hc32_to_cpu(fotg210, itd->hw_bufp[3]),
166 hc32_to_cpu(fotg210, itd->hw_bufp[4]),
167 hc32_to_cpu(fotg210, itd->hw_bufp[5]),
168 hc32_to_cpu(fotg210, itd->hw_bufp[6]));
170 fotg210_dbg(fotg210, " index: %d %d %d %d %d %d %d %d\n",
171 itd->index[0], itd->index[1], itd->index[2],
172 itd->index[3], itd->index[4], itd->index[5],
173 itd->index[6], itd->index[7]);
176 static int __maybe_unused
177 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
179 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
180 label, label[0] ? " " : "", status,
181 (status & STS_ASS) ? " Async" : "",
182 (status & STS_PSS) ? " Periodic" : "",
183 (status & STS_RECL) ? " Recl" : "",
184 (status & STS_HALT) ? " Halt" : "",
185 (status & STS_IAA) ? " IAA" : "",
186 (status & STS_FATAL) ? " FATAL" : "",
187 (status & STS_FLR) ? " FLR" : "",
188 (status & STS_PCD) ? " PCD" : "",
189 (status & STS_ERR) ? " ERR" : "",
190 (status & STS_INT) ? " INT" : "");
193 static int __maybe_unused
194 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
196 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
197 label, label[0] ? " " : "", enable,
198 (enable & STS_IAA) ? " IAA" : "",
199 (enable & STS_FATAL) ? " FATAL" : "",
200 (enable & STS_FLR) ? " FLR" : "",
201 (enable & STS_PCD) ? " PCD" : "",
202 (enable & STS_ERR) ? " ERR" : "",
203 (enable & STS_INT) ? " INT" : "");
206 static const char *const fls_strings[] = { "1024", "512", "256", "??" };
208 static int dbg_command_buf(char *buf, unsigned len, const char *label,
211 return scnprintf(buf, len,
212 "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
213 label, label[0] ? " " : "", command,
214 (command & CMD_PARK) ? " park" : "(park)",
215 CMD_PARK_CNT(command),
216 (command >> 16) & 0x3f,
217 (command & CMD_IAAD) ? " IAAD" : "",
218 (command & CMD_ASE) ? " Async" : "",
219 (command & CMD_PSE) ? " Periodic" : "",
220 fls_strings[(command >> 2) & 0x3],
221 (command & CMD_RESET) ? " Reset" : "",
222 (command & CMD_RUN) ? "RUN" : "HALT");
225 static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
230 /* signaling state */
231 switch (status & (3 << 10)) {
237 break; /* low speed */
246 scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
247 label, label[0] ? " " : "", port, status,
248 status >> 25, /*device address */
250 (status & PORT_RESET) ? " RESET" : "",
251 (status & PORT_SUSPEND) ? " SUSPEND" : "",
252 (status & PORT_RESUME) ? " RESUME" : "",
253 (status & PORT_PEC) ? " PEC" : "",
254 (status & PORT_PE) ? " PE" : "",
255 (status & PORT_CSC) ? " CSC" : "",
256 (status & PORT_CONNECT) ? " CONNECT" : "");
261 /* functions have the "wrong" filename when they're output... */
262 #define dbg_status(fotg210, label, status) { \
264 dbg_status_buf(_buf, sizeof(_buf), label, status); \
265 fotg210_dbg(fotg210, "%s\n", _buf); \
268 #define dbg_cmd(fotg210, label, command) { \
270 dbg_command_buf(_buf, sizeof(_buf), label, command); \
271 fotg210_dbg(fotg210, "%s\n", _buf); \
274 #define dbg_port(fotg210, label, port, status) { \
276 fotg210_dbg(fotg210, "%s\n", \
277 dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
280 /* troubleshooting help: expose state in debugfs */
281 static int debug_async_open(struct inode *, struct file *);
282 static int debug_periodic_open(struct inode *, struct file *);
283 static int debug_registers_open(struct inode *, struct file *);
284 static int debug_async_open(struct inode *, struct file *);
286 static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
287 static int debug_close(struct inode *, struct file *);
289 static const struct file_operations debug_async_fops = {
290 .owner = THIS_MODULE,
291 .open = debug_async_open,
292 .read = debug_output,
293 .release = debug_close,
294 .llseek = default_llseek,
296 static const struct file_operations debug_periodic_fops = {
297 .owner = THIS_MODULE,
298 .open = debug_periodic_open,
299 .read = debug_output,
300 .release = debug_close,
301 .llseek = default_llseek,
303 static const struct file_operations debug_registers_fops = {
304 .owner = THIS_MODULE,
305 .open = debug_registers_open,
306 .read = debug_output,
307 .release = debug_close,
308 .llseek = default_llseek,
311 static struct dentry *fotg210_debug_root;
313 struct debug_buffer {
314 ssize_t (*fill_func)(struct debug_buffer *); /* fill method */
316 struct mutex mutex; /* protect filling of buffer */
317 size_t count; /* number of characters filled into buffer */
322 static inline char speed_char(u32 scratch)
324 switch (scratch & (3 << 12)) {
339 static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
341 __u32 v = hc32_to_cpu(fotg210, token);
343 if (v & QTD_STS_ACTIVE)
345 if (v & QTD_STS_HALT)
347 if (!IS_SHORT_READ(v))
349 /* tries to advance through hw_alt_next */
353 static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
354 char **nextp, unsigned *sizep)
358 struct fotg210_qtd *td;
360 unsigned size = *sizep;
363 __le32 list_end = FOTG210_LIST_END(fotg210);
364 struct fotg210_qh_hw *hw = qh->hw;
366 if (hw->hw_qtd_next == list_end) /* NEC does this */
369 mark = token_mark(fotg210, hw->hw_token);
370 if (mark == '/') { /* qh_alt_next controls qh advance? */
371 if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
372 fotg210->async->hw->hw_alt_next)
373 mark = '#'; /* blocked */
374 else if (hw->hw_alt_next == list_end)
375 mark = '.'; /* use hw_qtd_next */
376 /* else alt_next points to some other qtd */
378 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
379 hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
380 temp = scnprintf(next, size,
381 "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
382 qh, scratch & 0x007f,
384 (scratch >> 8) & 0x000f,
385 scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
386 hc32_to_cpup(fotg210, &hw->hw_token), mark,
387 (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
389 (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
393 /* hc may be modifying the list as we read it ... */
394 list_for_each_entry(td, &qh->qtd_list, qtd_list) {
395 scratch = hc32_to_cpup(fotg210, &td->hw_token);
397 if (hw_curr == td->qtd_dma)
399 else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
401 else if (QTD_LENGTH(scratch)) {
402 if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
404 else if (td->hw_alt_next != list_end)
407 temp = snprintf(next, size,
408 "\n\t%p%c%s len=%d %08x urb %p",
409 td, mark, ({ char *tmp;
410 switch ((scratch>>8)&0x03) {
424 (scratch >> 16) & 0x7fff,
435 temp = snprintf(next, size, "\n");
447 static ssize_t fill_async_buffer(struct debug_buffer *buf)
450 struct fotg210_hcd *fotg210;
454 struct fotg210_qh *qh;
456 hcd = bus_to_hcd(buf->bus);
457 fotg210 = hcd_to_fotg210(hcd);
458 next = buf->output_buf;
459 size = buf->alloc_size;
463 /* dumps a snapshot of the async schedule.
464 * usually empty except for long-term bulk reads, or head.
465 * one QH per line, and TDs we know about
467 spin_lock_irqsave(&fotg210->lock, flags);
468 for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
470 qh_lines(fotg210, qh, &next, &size);
471 if (fotg210->async_unlink && size > 0) {
472 temp = scnprintf(next, size, "\nunlink =\n");
476 for (qh = fotg210->async_unlink; size > 0 && qh;
477 qh = qh->unlink_next)
478 qh_lines(fotg210, qh, &next, &size);
480 spin_unlock_irqrestore(&fotg210->lock, flags);
482 return strlen(buf->output_buf);
485 /* count tds, get ep direction */
486 static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
487 struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
489 u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
490 struct fotg210_qtd *qtd;
494 /* count tds, get ep direction */
495 list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
497 switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
507 return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
508 speed_char(scratch), scratch & 0x007f,
509 (scratch >> 8) & 0x000f, type, qh->usecs,
510 qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
513 #define DBG_SCHED_LIMIT 64
514 static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
517 struct fotg210_hcd *fotg210;
519 union fotg210_shadow p, *seen;
520 unsigned temp, size, seen_count;
525 seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
531 hcd = bus_to_hcd(buf->bus);
532 fotg210 = hcd_to_fotg210(hcd);
533 next = buf->output_buf;
534 size = buf->alloc_size;
536 temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
540 /* dump a snapshot of the periodic schedule.
541 * iso changes, interrupt usually doesn't.
543 spin_lock_irqsave(&fotg210->lock, flags);
544 for (i = 0; i < fotg210->periodic_size; i++) {
545 p = fotg210->pshadow[i];
549 tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
551 temp = scnprintf(next, size, "%4d: ", i);
556 struct fotg210_qh_hw *hw;
558 switch (hc32_to_cpu(fotg210, tag)) {
561 temp = scnprintf(next, size, " qh%d-%04x/%p",
563 hc32_to_cpup(fotg210,
566 & (QH_CMASK | QH_SMASK),
570 /* don't repeat what follows this qh */
571 for (temp = 0; temp < seen_count; temp++) {
572 if (seen[temp].ptr != p.ptr)
574 if (p.qh->qh_next.ptr) {
575 temp = scnprintf(next, size,
582 /* show more info the first time around */
583 if (temp == seen_count) {
584 temp = output_buf_tds_dir(next,
588 if (seen_count < DBG_SCHED_LIMIT)
589 seen[seen_count++].qh = p.qh;
592 tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
596 temp = scnprintf(next, size,
598 p.fstn->hw_prev, p.fstn);
599 tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
600 p = p.fstn->fstn_next;
603 temp = scnprintf(next, size,
605 tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
613 temp = scnprintf(next, size, "\n");
617 spin_unlock_irqrestore(&fotg210->lock, flags);
620 return buf->alloc_size - size;
622 #undef DBG_SCHED_LIMIT
624 static const char *rh_state_string(struct fotg210_hcd *fotg210)
626 switch (fotg210->rh_state) {
627 case FOTG210_RH_HALTED:
629 case FOTG210_RH_SUSPENDED:
631 case FOTG210_RH_RUNNING:
633 case FOTG210_RH_STOPPING:
639 static ssize_t fill_registers_buffer(struct debug_buffer *buf)
642 struct fotg210_hcd *fotg210;
644 unsigned temp, size, i;
645 char *next, scratch[80];
646 static const char fmt[] = "%*s\n";
647 static const char label[] = "";
649 hcd = bus_to_hcd(buf->bus);
650 fotg210 = hcd_to_fotg210(hcd);
651 next = buf->output_buf;
652 size = buf->alloc_size;
654 spin_lock_irqsave(&fotg210->lock, flags);
656 if (!HCD_HW_ACCESSIBLE(hcd)) {
657 size = scnprintf(next, size,
658 "bus %s, device %s\n"
660 "SUSPENDED(no register access)\n",
661 hcd->self.controller->bus->name,
662 dev_name(hcd->self.controller),
667 /* Capability Registers */
668 i = HC_VERSION(fotg210, fotg210_readl(fotg210,
669 &fotg210->caps->hc_capbase));
670 temp = scnprintf(next, size,
671 "bus %s, device %s\n"
673 "EHCI %x.%02x, rh state %s\n",
674 hcd->self.controller->bus->name,
675 dev_name(hcd->self.controller),
677 i >> 8, i & 0x0ff, rh_state_string(fotg210));
681 /* FIXME interpret both types of params */
682 i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
683 temp = scnprintf(next, size, "structural params 0x%08x\n", i);
687 i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
688 temp = scnprintf(next, size, "capability params 0x%08x\n", i);
692 /* Operational Registers */
693 temp = dbg_status_buf(scratch, sizeof(scratch), label,
694 fotg210_readl(fotg210, &fotg210->regs->status));
695 temp = scnprintf(next, size, fmt, temp, scratch);
699 temp = dbg_command_buf(scratch, sizeof(scratch), label,
700 fotg210_readl(fotg210, &fotg210->regs->command));
701 temp = scnprintf(next, size, fmt, temp, scratch);
705 temp = dbg_intr_buf(scratch, sizeof(scratch), label,
706 fotg210_readl(fotg210, &fotg210->regs->intr_enable));
707 temp = scnprintf(next, size, fmt, temp, scratch);
711 temp = scnprintf(next, size, "uframe %04x\n",
712 fotg210_read_frame_index(fotg210));
716 if (fotg210->async_unlink) {
717 temp = scnprintf(next, size, "async unlink qh %p\n",
718 fotg210->async_unlink);
724 temp = scnprintf(next, size,
725 "irq normal %ld err %ld iaa %ld(lost %ld)\n",
726 fotg210->stats.normal, fotg210->stats.error,
727 fotg210->stats.iaa, fotg210->stats.lost_iaa);
731 temp = scnprintf(next, size, "complete %ld unlink %ld\n",
732 fotg210->stats.complete, fotg210->stats.unlink);
738 spin_unlock_irqrestore(&fotg210->lock, flags);
740 return buf->alloc_size - size;
743 static struct debug_buffer
744 *alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
746 struct debug_buffer *buf;
748 buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
752 buf->fill_func = fill_func;
753 mutex_init(&buf->mutex);
754 buf->alloc_size = PAGE_SIZE;
760 static int fill_buffer(struct debug_buffer *buf)
764 if (!buf->output_buf)
765 buf->output_buf = vmalloc(buf->alloc_size);
767 if (!buf->output_buf) {
772 ret = buf->fill_func(buf);
783 static ssize_t debug_output(struct file *file, char __user *user_buf,
784 size_t len, loff_t *offset)
786 struct debug_buffer *buf = file->private_data;
789 mutex_lock(&buf->mutex);
790 if (buf->count == 0) {
791 ret = fill_buffer(buf);
793 mutex_unlock(&buf->mutex);
797 mutex_unlock(&buf->mutex);
799 ret = simple_read_from_buffer(user_buf, len, offset,
800 buf->output_buf, buf->count);
807 static int debug_close(struct inode *inode, struct file *file)
809 struct debug_buffer *buf = file->private_data;
812 vfree(buf->output_buf);
818 static int debug_async_open(struct inode *inode, struct file *file)
820 file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
822 return file->private_data ? 0 : -ENOMEM;
825 static int debug_periodic_open(struct inode *inode, struct file *file)
827 struct debug_buffer *buf;
829 buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
833 buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
834 file->private_data = buf;
838 static int debug_registers_open(struct inode *inode, struct file *file)
840 file->private_data = alloc_buffer(inode->i_private,
841 fill_registers_buffer);
843 return file->private_data ? 0 : -ENOMEM;
846 static inline void create_debug_files(struct fotg210_hcd *fotg210)
848 struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
851 root = debugfs_create_dir(bus->bus_name, fotg210_debug_root);
852 fotg210->debug_dir = root;
854 debugfs_create_file("async", S_IRUGO, root, bus, &debug_async_fops);
855 debugfs_create_file("periodic", S_IRUGO, root, bus,
856 &debug_periodic_fops);
857 debugfs_create_file("registers", S_IRUGO, root, bus,
858 &debug_registers_fops);
861 static inline void remove_debug_files(struct fotg210_hcd *fotg210)
863 debugfs_remove_recursive(fotg210->debug_dir);
866 /* handshake - spin reading hc until handshake completes or fails
867 * @ptr: address of hc register to be read
868 * @mask: bits to look at in result of read
869 * @done: value of those bits when handshake succeeds
870 * @usec: timeout in microseconds
872 * Returns negative errno, or zero on success
874 * Success happens when the "mask" bits have the specified value (hardware
875 * handshake done). There are two failure modes: "usec" have passed (major
876 * hardware flakeout), or the register reads as all-ones (hardware removed).
878 * That last failure should_only happen in cases like physical cardbus eject
879 * before driver shutdown. But it also seems to be caused by bugs in cardbus
880 * bridge shutdown: shutting down the bridge before the devices using it.
882 static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
883 u32 mask, u32 done, int usec)
888 result = fotg210_readl(fotg210, ptr);
889 if (result == ~(u32)0) /* card removed */
900 /* Force HC to halt state from unknown (EHCI spec section 2.3).
901 * Must be called with interrupts enabled and the lock not held.
903 static int fotg210_halt(struct fotg210_hcd *fotg210)
907 spin_lock_irq(&fotg210->lock);
909 /* disable any irqs left enabled by previous code */
910 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
913 * This routine gets called during probe before fotg210->command
914 * has been initialized, so we can't rely on its value.
916 fotg210->command &= ~CMD_RUN;
917 temp = fotg210_readl(fotg210, &fotg210->regs->command);
918 temp &= ~(CMD_RUN | CMD_IAAD);
919 fotg210_writel(fotg210, temp, &fotg210->regs->command);
921 spin_unlock_irq(&fotg210->lock);
922 synchronize_irq(fotg210_to_hcd(fotg210)->irq);
924 return handshake(fotg210, &fotg210->regs->status,
925 STS_HALT, STS_HALT, 16 * 125);
928 /* Reset a non-running (STS_HALT == 1) controller.
929 * Must be called with interrupts enabled and the lock not held.
931 static int fotg210_reset(struct fotg210_hcd *fotg210)
934 u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
936 /* If the EHCI debug controller is active, special care must be
937 * taken before and after a host controller reset
939 if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
940 fotg210->debug = NULL;
942 command |= CMD_RESET;
943 dbg_cmd(fotg210, "reset", command);
944 fotg210_writel(fotg210, command, &fotg210->regs->command);
945 fotg210->rh_state = FOTG210_RH_HALTED;
946 fotg210->next_statechange = jiffies;
947 retval = handshake(fotg210, &fotg210->regs->command,
948 CMD_RESET, 0, 250 * 1000);
954 dbgp_external_startup(fotg210_to_hcd(fotg210));
956 fotg210->port_c_suspend = fotg210->suspended_ports =
957 fotg210->resuming_ports = 0;
961 /* Idle the controller (turn off the schedules).
962 * Must be called with interrupts enabled and the lock not held.
964 static void fotg210_quiesce(struct fotg210_hcd *fotg210)
968 if (fotg210->rh_state != FOTG210_RH_RUNNING)
971 /* wait for any schedule enables/disables to take effect */
972 temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
973 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
976 /* then disable anything that's still active */
977 spin_lock_irq(&fotg210->lock);
978 fotg210->command &= ~(CMD_ASE | CMD_PSE);
979 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
980 spin_unlock_irq(&fotg210->lock);
982 /* hardware can take 16 microframes to turn off ... */
983 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
987 static void end_unlink_async(struct fotg210_hcd *fotg210);
988 static void unlink_empty_async(struct fotg210_hcd *fotg210);
989 static void fotg210_work(struct fotg210_hcd *fotg210);
990 static void start_unlink_intr(struct fotg210_hcd *fotg210,
991 struct fotg210_qh *qh);
992 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
994 /* Set a bit in the USBCMD register */
995 static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
997 fotg210->command |= bit;
998 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1000 /* unblock posted write */
1001 fotg210_readl(fotg210, &fotg210->regs->command);
1004 /* Clear a bit in the USBCMD register */
1005 static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1007 fotg210->command &= ~bit;
1008 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1010 /* unblock posted write */
1011 fotg210_readl(fotg210, &fotg210->regs->command);
1014 /* EHCI timer support... Now using hrtimers.
1016 * Lots of different events are triggered from fotg210->hrtimer. Whenever
1017 * the timer routine runs, it checks each possible event; events that are
1018 * currently enabled and whose expiration time has passed get handled.
1019 * The set of enabled events is stored as a collection of bitflags in
1020 * fotg210->enabled_hrtimer_events, and they are numbered in order of
1021 * increasing delay values (ranging between 1 ms and 100 ms).
1023 * Rather than implementing a sorted list or tree of all pending events,
1024 * we keep track only of the lowest-numbered pending event, in
1025 * fotg210->next_hrtimer_event. Whenever fotg210->hrtimer gets restarted, its
1026 * expiration time is set to the timeout value for this event.
1028 * As a result, events might not get handled right away; the actual delay
1029 * could be anywhere up to twice the requested delay. This doesn't
1030 * matter, because none of the events are especially time-critical. The
1031 * ones that matter most all have a delay of 1 ms, so they will be
1032 * handled after 2 ms at most, which is okay. In addition to this, we
1033 * allow for an expiration range of 1 ms.
1036 /* Delay lengths for the hrtimer event types.
1037 * Keep this list sorted by delay length, in the same order as
1038 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1040 static unsigned event_delays_ns[] = {
1041 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_ASS */
1042 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_PSS */
1043 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_DEAD */
1044 1125 * NSEC_PER_USEC, /* FOTG210_HRTIMER_UNLINK_INTR */
1045 2 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_FREE_ITDS */
1046 6 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1047 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1048 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1049 15 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1050 100 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IO_WATCHDOG */
1053 /* Enable a pending hrtimer event */
1054 static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1057 ktime_t *timeout = &fotg210->hr_timeouts[event];
1060 *timeout = ktime_add(ktime_get(), event_delays_ns[event]);
1061 fotg210->enabled_hrtimer_events |= (1 << event);
1063 /* Track only the lowest-numbered pending event */
1064 if (event < fotg210->next_hrtimer_event) {
1065 fotg210->next_hrtimer_event = event;
1066 hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1067 NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1072 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1073 static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1075 unsigned actual, want;
1077 /* Don't enable anything if the controller isn't running (e.g., died) */
1078 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1081 want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1082 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1084 if (want != actual) {
1086 /* Poll again later, but give up after about 20 ms */
1087 if (fotg210->ASS_poll_count++ < 20) {
1088 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1092 fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1095 fotg210->ASS_poll_count = 0;
1097 /* The status is up-to-date; restart or stop the schedule as needed */
1098 if (want == 0) { /* Stopped */
1099 if (fotg210->async_count > 0)
1100 fotg210_set_command_bit(fotg210, CMD_ASE);
1102 } else { /* Running */
1103 if (fotg210->async_count == 0) {
1105 /* Turn off the schedule after a while */
1106 fotg210_enable_event(fotg210,
1107 FOTG210_HRTIMER_DISABLE_ASYNC,
1113 /* Turn off the async schedule after a brief delay */
1114 static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1116 fotg210_clear_command_bit(fotg210, CMD_ASE);
1120 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1121 static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1123 unsigned actual, want;
1125 /* Don't do anything if the controller isn't running (e.g., died) */
1126 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1129 want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1130 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1132 if (want != actual) {
1134 /* Poll again later, but give up after about 20 ms */
1135 if (fotg210->PSS_poll_count++ < 20) {
1136 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1140 fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1143 fotg210->PSS_poll_count = 0;
1145 /* The status is up-to-date; restart or stop the schedule as needed */
1146 if (want == 0) { /* Stopped */
1147 if (fotg210->periodic_count > 0)
1148 fotg210_set_command_bit(fotg210, CMD_PSE);
1150 } else { /* Running */
1151 if (fotg210->periodic_count == 0) {
1153 /* Turn off the schedule after a while */
1154 fotg210_enable_event(fotg210,
1155 FOTG210_HRTIMER_DISABLE_PERIODIC,
1161 /* Turn off the periodic schedule after a brief delay */
1162 static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1164 fotg210_clear_command_bit(fotg210, CMD_PSE);
1168 /* Poll the STS_HALT status bit; see when a dead controller stops */
1169 static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1171 if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1173 /* Give up after a few milliseconds */
1174 if (fotg210->died_poll_count++ < 5) {
1175 /* Try again later */
1176 fotg210_enable_event(fotg210,
1177 FOTG210_HRTIMER_POLL_DEAD, true);
1180 fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1183 /* Clean up the mess */
1184 fotg210->rh_state = FOTG210_RH_HALTED;
1185 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1186 fotg210_work(fotg210);
1187 end_unlink_async(fotg210);
1189 /* Not in process context, so don't try to reset the controller */
1193 /* Handle unlinked interrupt QHs once they are gone from the hardware */
1194 static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1196 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1199 * Process all the QHs on the intr_unlink list that were added
1200 * before the current unlink cycle began. The list is in
1201 * temporal order, so stop when we reach the first entry in the
1202 * current cycle. But if the root hub isn't running then
1203 * process all the QHs on the list.
1205 fotg210->intr_unlinking = true;
1206 while (fotg210->intr_unlink) {
1207 struct fotg210_qh *qh = fotg210->intr_unlink;
1209 if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1211 fotg210->intr_unlink = qh->unlink_next;
1212 qh->unlink_next = NULL;
1213 end_unlink_intr(fotg210, qh);
1216 /* Handle remaining entries later */
1217 if (fotg210->intr_unlink) {
1218 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1220 ++fotg210->intr_unlink_cycle;
1222 fotg210->intr_unlinking = false;
1226 /* Start another free-iTDs/siTDs cycle */
1227 static void start_free_itds(struct fotg210_hcd *fotg210)
1229 if (!(fotg210->enabled_hrtimer_events &
1230 BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1231 fotg210->last_itd_to_free = list_entry(
1232 fotg210->cached_itd_list.prev,
1233 struct fotg210_itd, itd_list);
1234 fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1238 /* Wait for controller to stop using old iTDs and siTDs */
1239 static void end_free_itds(struct fotg210_hcd *fotg210)
1241 struct fotg210_itd *itd, *n;
1243 if (fotg210->rh_state < FOTG210_RH_RUNNING)
1244 fotg210->last_itd_to_free = NULL;
1246 list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1247 list_del(&itd->itd_list);
1248 dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1249 if (itd == fotg210->last_itd_to_free)
1253 if (!list_empty(&fotg210->cached_itd_list))
1254 start_free_itds(fotg210);
1258 /* Handle lost (or very late) IAA interrupts */
1259 static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1261 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1265 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1266 * So we need this watchdog, but must protect it against both
1267 * (a) SMP races against real IAA firing and retriggering, and
1268 * (b) clean HC shutdown, when IAA watchdog was pending.
1270 if (fotg210->async_iaa) {
1273 /* If we get here, IAA is *REALLY* late. It's barely
1274 * conceivable that the system is so busy that CMD_IAAD
1275 * is still legitimately set, so let's be sure it's
1276 * clear before we read STS_IAA. (The HC should clear
1277 * CMD_IAAD when it sets STS_IAA.)
1279 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1282 * If IAA is set here it either legitimately triggered
1283 * after the watchdog timer expired (_way_ late, so we'll
1284 * still count it as lost) ... or a silicon erratum:
1285 * - VIA seems to set IAA without triggering the IRQ;
1286 * - IAAD potentially cleared without setting IAA.
1288 status = fotg210_readl(fotg210, &fotg210->regs->status);
1289 if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1290 INCR(fotg210->stats.lost_iaa);
1291 fotg210_writel(fotg210, STS_IAA,
1292 &fotg210->regs->status);
1295 fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1297 end_unlink_async(fotg210);
1302 /* Enable the I/O watchdog, if appropriate */
1303 static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1305 /* Not needed if the controller isn't running or it's already enabled */
1306 if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1307 (fotg210->enabled_hrtimer_events &
1308 BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1312 * Isochronous transfers always need the watchdog.
1313 * For other sorts we use it only if the flag is set.
1315 if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1316 fotg210->async_count + fotg210->intr_count > 0))
1317 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1322 /* Handler functions for the hrtimer event types.
1323 * Keep this array in the same order as the event types indexed by
1324 * enum fotg210_hrtimer_event in fotg210.h.
1326 static void (*event_handlers[])(struct fotg210_hcd *) = {
1327 fotg210_poll_ASS, /* FOTG210_HRTIMER_POLL_ASS */
1328 fotg210_poll_PSS, /* FOTG210_HRTIMER_POLL_PSS */
1329 fotg210_handle_controller_death, /* FOTG210_HRTIMER_POLL_DEAD */
1330 fotg210_handle_intr_unlinks, /* FOTG210_HRTIMER_UNLINK_INTR */
1331 end_free_itds, /* FOTG210_HRTIMER_FREE_ITDS */
1332 unlink_empty_async, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1333 fotg210_iaa_watchdog, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1334 fotg210_disable_PSE, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1335 fotg210_disable_ASE, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1336 fotg210_work, /* FOTG210_HRTIMER_IO_WATCHDOG */
1339 static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1341 struct fotg210_hcd *fotg210 =
1342 container_of(t, struct fotg210_hcd, hrtimer);
1344 unsigned long events;
1345 unsigned long flags;
1348 spin_lock_irqsave(&fotg210->lock, flags);
1350 events = fotg210->enabled_hrtimer_events;
1351 fotg210->enabled_hrtimer_events = 0;
1352 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1355 * Check each pending event. If its time has expired, handle
1356 * the event; otherwise re-enable it.
1359 for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1360 if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0)
1361 event_handlers[e](fotg210);
1363 fotg210_enable_event(fotg210, e, false);
1366 spin_unlock_irqrestore(&fotg210->lock, flags);
1367 return HRTIMER_NORESTART;
1370 #define fotg210_bus_suspend NULL
1371 #define fotg210_bus_resume NULL
1373 static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1374 u32 __iomem *status_reg, int port_status)
1376 if (!(port_status & PORT_CONNECT))
1379 /* if reset finished and it's still not enabled -- handoff */
1380 if (!(port_status & PORT_PE))
1381 /* with integrated TT, there's nobody to hand it to! */
1382 fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1385 fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1392 /* build "status change" packet (one or two bytes) from HC registers */
1394 static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1396 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1400 unsigned long flags;
1402 /* init status to no-changes */
1405 /* Inform the core about resumes-in-progress by returning
1406 * a non-zero value even if there are no status changes.
1408 status = fotg210->resuming_ports;
1410 mask = PORT_CSC | PORT_PEC;
1411 /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1413 /* no hub change reports (bit 0) for now (power, ...) */
1415 /* port N changes (bit N)? */
1416 spin_lock_irqsave(&fotg210->lock, flags);
1418 temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1421 * Return status information even for ports with OWNER set.
1422 * Otherwise hub_wq wouldn't see the disconnect event when a
1423 * high-speed device is switched over to the companion
1424 * controller by the user.
1427 if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1428 (fotg210->reset_done[0] &&
1429 time_after_eq(jiffies, fotg210->reset_done[0]))) {
1433 /* FIXME autosuspend idle root hubs */
1434 spin_unlock_irqrestore(&fotg210->lock, flags);
1435 return status ? retval : 0;
1438 static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1439 struct usb_hub_descriptor *desc)
1441 int ports = HCS_N_PORTS(fotg210->hcs_params);
1444 desc->bDescriptorType = USB_DT_HUB;
1445 desc->bPwrOn2PwrGood = 10; /* fotg210 1.0, 2.3.9 says 20ms max */
1446 desc->bHubContrCurrent = 0;
1448 desc->bNbrPorts = ports;
1449 temp = 1 + (ports / 8);
1450 desc->bDescLength = 7 + 2 * temp;
1452 /* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1453 memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1454 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1456 temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
1457 temp |= HUB_CHAR_NO_LPSM; /* no power switching */
1458 desc->wHubCharacteristics = cpu_to_le16(temp);
1461 static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1462 u16 wIndex, char *buf, u16 wLength)
1464 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1465 int ports = HCS_N_PORTS(fotg210->hcs_params);
1466 u32 __iomem *status_reg = &fotg210->regs->port_status;
1467 u32 temp, temp1, status;
1468 unsigned long flags;
1473 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1474 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1475 * (track current state ourselves) ... blink for diagnostics,
1476 * power, "this is the one", etc. EHCI spec supports this.
1479 spin_lock_irqsave(&fotg210->lock, flags);
1481 case ClearHubFeature:
1483 case C_HUB_LOCAL_POWER:
1484 case C_HUB_OVER_CURRENT:
1485 /* no hub-wide feature/status flags */
1491 case ClearPortFeature:
1492 if (!wIndex || wIndex > ports)
1495 temp = fotg210_readl(fotg210, status_reg);
1496 temp &= ~PORT_RWC_BITS;
1499 * Even if OWNER is set, so the port is owned by the
1500 * companion controller, hub_wq needs to be able to clear
1501 * the port-change status bits (especially
1502 * USB_PORT_STAT_C_CONNECTION).
1506 case USB_PORT_FEAT_ENABLE:
1507 fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1509 case USB_PORT_FEAT_C_ENABLE:
1510 fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1512 case USB_PORT_FEAT_SUSPEND:
1513 if (temp & PORT_RESET)
1515 if (!(temp & PORT_SUSPEND))
1517 if ((temp & PORT_PE) == 0)
1520 /* resume signaling for 20 msec */
1521 fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1522 fotg210->reset_done[wIndex] = jiffies
1523 + msecs_to_jiffies(USB_RESUME_TIMEOUT);
1525 case USB_PORT_FEAT_C_SUSPEND:
1526 clear_bit(wIndex, &fotg210->port_c_suspend);
1528 case USB_PORT_FEAT_C_CONNECTION:
1529 fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1531 case USB_PORT_FEAT_C_OVER_CURRENT:
1532 fotg210_writel(fotg210, temp | OTGISR_OVC,
1533 &fotg210->regs->otgisr);
1535 case USB_PORT_FEAT_C_RESET:
1536 /* GetPortStatus clears reset */
1541 fotg210_readl(fotg210, &fotg210->regs->command);
1543 case GetHubDescriptor:
1544 fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1548 /* no hub-wide feature/status flags */
1550 /*cpu_to_le32s ((u32 *) buf); */
1553 if (!wIndex || wIndex > ports)
1557 temp = fotg210_readl(fotg210, status_reg);
1559 /* wPortChange bits */
1560 if (temp & PORT_CSC)
1561 status |= USB_PORT_STAT_C_CONNECTION << 16;
1562 if (temp & PORT_PEC)
1563 status |= USB_PORT_STAT_C_ENABLE << 16;
1565 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1566 if (temp1 & OTGISR_OVC)
1567 status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1569 /* whoever resumes must GetPortStatus to complete it!! */
1570 if (temp & PORT_RESUME) {
1572 /* Remote Wakeup received? */
1573 if (!fotg210->reset_done[wIndex]) {
1574 /* resume signaling for 20 msec */
1575 fotg210->reset_done[wIndex] = jiffies
1576 + msecs_to_jiffies(20);
1577 /* check the port again */
1578 mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1579 fotg210->reset_done[wIndex]);
1582 /* resume completed? */
1583 else if (time_after_eq(jiffies,
1584 fotg210->reset_done[wIndex])) {
1585 clear_bit(wIndex, &fotg210->suspended_ports);
1586 set_bit(wIndex, &fotg210->port_c_suspend);
1587 fotg210->reset_done[wIndex] = 0;
1589 /* stop resume signaling */
1590 temp = fotg210_readl(fotg210, status_reg);
1591 fotg210_writel(fotg210, temp &
1592 ~(PORT_RWC_BITS | PORT_RESUME),
1594 clear_bit(wIndex, &fotg210->resuming_ports);
1595 retval = handshake(fotg210, status_reg,
1596 PORT_RESUME, 0, 2000);/* 2ms */
1598 fotg210_err(fotg210,
1599 "port %d resume error %d\n",
1600 wIndex + 1, retval);
1603 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1607 /* whoever resets must GetPortStatus to complete it!! */
1608 if ((temp & PORT_RESET) && time_after_eq(jiffies,
1609 fotg210->reset_done[wIndex])) {
1610 status |= USB_PORT_STAT_C_RESET << 16;
1611 fotg210->reset_done[wIndex] = 0;
1612 clear_bit(wIndex, &fotg210->resuming_ports);
1614 /* force reset to complete */
1615 fotg210_writel(fotg210,
1616 temp & ~(PORT_RWC_BITS | PORT_RESET),
1618 /* REVISIT: some hardware needs 550+ usec to clear
1619 * this bit; seems too long to spin routinely...
1621 retval = handshake(fotg210, status_reg,
1622 PORT_RESET, 0, 1000);
1624 fotg210_err(fotg210, "port %d reset error %d\n",
1625 wIndex + 1, retval);
1629 /* see what we found out */
1630 temp = check_reset_complete(fotg210, wIndex, status_reg,
1631 fotg210_readl(fotg210, status_reg));
1634 if (!(temp & (PORT_RESUME|PORT_RESET))) {
1635 fotg210->reset_done[wIndex] = 0;
1636 clear_bit(wIndex, &fotg210->resuming_ports);
1639 /* transfer dedicated ports to the companion hc */
1640 if ((temp & PORT_CONNECT) &&
1641 test_bit(wIndex, &fotg210->companion_ports)) {
1642 temp &= ~PORT_RWC_BITS;
1643 fotg210_writel(fotg210, temp, status_reg);
1644 fotg210_dbg(fotg210, "port %d --> companion\n",
1646 temp = fotg210_readl(fotg210, status_reg);
1650 * Even if OWNER is set, there's no harm letting hub_wq
1651 * see the wPortStatus values (they should all be 0 except
1652 * for PORT_POWER anyway).
1655 if (temp & PORT_CONNECT) {
1656 status |= USB_PORT_STAT_CONNECTION;
1657 status |= fotg210_port_speed(fotg210, temp);
1660 status |= USB_PORT_STAT_ENABLE;
1662 /* maybe the port was unsuspended without our knowledge */
1663 if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1664 status |= USB_PORT_STAT_SUSPEND;
1665 } else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1666 clear_bit(wIndex, &fotg210->suspended_ports);
1667 clear_bit(wIndex, &fotg210->resuming_ports);
1668 fotg210->reset_done[wIndex] = 0;
1670 set_bit(wIndex, &fotg210->port_c_suspend);
1673 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1674 if (temp1 & OTGISR_OVC)
1675 status |= USB_PORT_STAT_OVERCURRENT;
1676 if (temp & PORT_RESET)
1677 status |= USB_PORT_STAT_RESET;
1678 if (test_bit(wIndex, &fotg210->port_c_suspend))
1679 status |= USB_PORT_STAT_C_SUSPEND << 16;
1681 if (status & ~0xffff) /* only if wPortChange is interesting */
1682 dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1683 put_unaligned_le32(status, buf);
1687 case C_HUB_LOCAL_POWER:
1688 case C_HUB_OVER_CURRENT:
1689 /* no hub-wide feature/status flags */
1695 case SetPortFeature:
1696 selector = wIndex >> 8;
1699 if (!wIndex || wIndex > ports)
1702 temp = fotg210_readl(fotg210, status_reg);
1703 temp &= ~PORT_RWC_BITS;
1705 case USB_PORT_FEAT_SUSPEND:
1706 if ((temp & PORT_PE) == 0
1707 || (temp & PORT_RESET) != 0)
1710 /* After above check the port must be connected.
1711 * Set appropriate bit thus could put phy into low power
1712 * mode if we have hostpc feature
1714 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1716 set_bit(wIndex, &fotg210->suspended_ports);
1718 case USB_PORT_FEAT_RESET:
1719 if (temp & PORT_RESUME)
1721 /* line status bits may report this as low speed,
1722 * which can be fine if this root hub has a
1723 * transaction translator built in.
1725 fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1730 * caller must wait, then call GetPortStatus
1731 * usb 2.0 spec says 50 ms resets on root
1733 fotg210->reset_done[wIndex] = jiffies
1734 + msecs_to_jiffies(50);
1735 fotg210_writel(fotg210, temp, status_reg);
1738 /* For downstream facing ports (these): one hub port is put
1739 * into test mode according to USB2 11.24.2.13, then the hub
1740 * must be reset (which for root hub now means rmmod+modprobe,
1741 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
1742 * about the EHCI-specific stuff.
1744 case USB_PORT_FEAT_TEST:
1745 if (!selector || selector > 5)
1747 spin_unlock_irqrestore(&fotg210->lock, flags);
1748 fotg210_quiesce(fotg210);
1749 spin_lock_irqsave(&fotg210->lock, flags);
1751 /* Put all enabled ports into suspend */
1752 temp = fotg210_readl(fotg210, status_reg) &
1755 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1758 spin_unlock_irqrestore(&fotg210->lock, flags);
1759 fotg210_halt(fotg210);
1760 spin_lock_irqsave(&fotg210->lock, flags);
1762 temp = fotg210_readl(fotg210, status_reg);
1763 temp |= selector << 16;
1764 fotg210_writel(fotg210, temp, status_reg);
1770 fotg210_readl(fotg210, &fotg210->regs->command);
1775 /* "stall" on error */
1778 spin_unlock_irqrestore(&fotg210->lock, flags);
1782 static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1788 static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1794 /* There's basically three types of memory:
1795 * - data used only by the HCD ... kmalloc is fine
1796 * - async and periodic schedules, shared by HC and HCD ... these
1797 * need to use dma_pool or dma_alloc_coherent
1798 * - driver buffers, read/written by HC ... single shot DMA mapped
1800 * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1801 * No memory seen by this driver is pageable.
1804 /* Allocate the key transfer structures from the previously allocated pool */
1805 static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1806 struct fotg210_qtd *qtd, dma_addr_t dma)
1808 memset(qtd, 0, sizeof(*qtd));
1810 qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1811 qtd->hw_next = FOTG210_LIST_END(fotg210);
1812 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1813 INIT_LIST_HEAD(&qtd->qtd_list);
1816 static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1819 struct fotg210_qtd *qtd;
1822 qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1824 fotg210_qtd_init(fotg210, qtd, dma);
1829 static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1830 struct fotg210_qtd *qtd)
1832 dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1836 static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1838 /* clean qtds first, and know this is not linked */
1839 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1840 fotg210_dbg(fotg210, "unused qh not empty!\n");
1844 fotg210_qtd_free(fotg210, qh->dummy);
1845 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1849 static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1852 struct fotg210_qh *qh;
1855 qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1858 qh->hw = dma_pool_zalloc(fotg210->qh_pool, flags, &dma);
1862 INIT_LIST_HEAD(&qh->qtd_list);
1864 /* dummy td enables safe urb queuing */
1865 qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1866 if (qh->dummy == NULL) {
1867 fotg210_dbg(fotg210, "no dummy td\n");
1873 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1879 /* The queue heads and transfer descriptors are managed from pools tied
1880 * to each of the "per device" structures.
1881 * This is the initialisation and cleanup code.
1884 static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1887 qh_destroy(fotg210, fotg210->async);
1888 fotg210->async = NULL;
1891 qh_destroy(fotg210, fotg210->dummy);
1892 fotg210->dummy = NULL;
1894 /* DMA consistent memory and pools */
1895 dma_pool_destroy(fotg210->qtd_pool);
1896 fotg210->qtd_pool = NULL;
1898 dma_pool_destroy(fotg210->qh_pool);
1899 fotg210->qh_pool = NULL;
1901 dma_pool_destroy(fotg210->itd_pool);
1902 fotg210->itd_pool = NULL;
1904 if (fotg210->periodic)
1905 dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1906 fotg210->periodic_size * sizeof(u32),
1907 fotg210->periodic, fotg210->periodic_dma);
1908 fotg210->periodic = NULL;
1910 /* shadow periodic table */
1911 kfree(fotg210->pshadow);
1912 fotg210->pshadow = NULL;
1915 /* remember to add cleanup code (above) if you add anything here */
1916 static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1920 /* QTDs for control/bulk/intr transfers */
1921 fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1922 fotg210_to_hcd(fotg210)->self.controller,
1923 sizeof(struct fotg210_qtd),
1924 32 /* byte alignment (for hw parts) */,
1925 4096 /* can't cross 4K */);
1926 if (!fotg210->qtd_pool)
1929 /* QHs for control/bulk/intr transfers */
1930 fotg210->qh_pool = dma_pool_create("fotg210_qh",
1931 fotg210_to_hcd(fotg210)->self.controller,
1932 sizeof(struct fotg210_qh_hw),
1933 32 /* byte alignment (for hw parts) */,
1934 4096 /* can't cross 4K */);
1935 if (!fotg210->qh_pool)
1938 fotg210->async = fotg210_qh_alloc(fotg210, flags);
1939 if (!fotg210->async)
1942 /* ITD for high speed ISO transfers */
1943 fotg210->itd_pool = dma_pool_create("fotg210_itd",
1944 fotg210_to_hcd(fotg210)->self.controller,
1945 sizeof(struct fotg210_itd),
1946 64 /* byte alignment (for hw parts) */,
1947 4096 /* can't cross 4K */);
1948 if (!fotg210->itd_pool)
1951 /* Hardware periodic table */
1952 fotg210->periodic = (__le32 *)
1953 dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1954 fotg210->periodic_size * sizeof(__le32),
1955 &fotg210->periodic_dma, 0);
1956 if (fotg210->periodic == NULL)
1959 for (i = 0; i < fotg210->periodic_size; i++)
1960 fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1962 /* software shadow of hardware table */
1963 fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1965 if (fotg210->pshadow != NULL)
1969 fotg210_dbg(fotg210, "couldn't init memory\n");
1970 fotg210_mem_cleanup(fotg210);
1973 /* EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
1975 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
1976 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
1977 * buffers needed for the larger number). We use one QH per endpoint, queue
1978 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
1980 * ISO traffic uses "ISO TD" (itd) records, and (along with
1981 * interrupts) needs careful scheduling. Performance improvements can be
1982 * an ongoing challenge. That's in "ehci-sched.c".
1984 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
1985 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
1986 * (b) special fields in qh entries or (c) split iso entries. TTs will
1987 * buffer low/full speed data so the host collects it at high speed.
1990 /* fill a qtd, returning how much of the buffer we were able to queue up */
1991 static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
1992 dma_addr_t buf, size_t len, int token, int maxpacket)
1997 /* one buffer entry per 4K ... first might be short or unaligned */
1998 qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
1999 qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
2000 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
2001 if (likely(len < count)) /* ... iff needed */
2007 /* per-qtd limit: from 16K to 20K (best alignment) */
2008 for (i = 1; count < len && i < 5; i++) {
2010 qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2011 qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2014 if ((count + 0x1000) < len)
2020 /* short packets may only terminate transfers */
2022 count -= (count % maxpacket);
2024 qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2025 qtd->length = count;
2030 static inline void qh_update(struct fotg210_hcd *fotg210,
2031 struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2033 struct fotg210_qh_hw *hw = qh->hw;
2035 /* writes to an active overlay are unsafe */
2036 BUG_ON(qh->qh_state != QH_STATE_IDLE);
2038 hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2039 hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2041 /* Except for control endpoints, we make hardware maintain data
2042 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2043 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2046 if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2047 unsigned is_out, epnum;
2049 is_out = qh->is_out;
2050 epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2051 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2052 hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2053 usb_settoggle(qh->dev, epnum, is_out, 1);
2057 hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2060 /* if it weren't for a common silicon quirk (writing the dummy into the qh
2061 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2062 * recovery (including urb dequeue) would need software changes to a QH...
2064 static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2066 struct fotg210_qtd *qtd;
2068 if (list_empty(&qh->qtd_list))
2071 qtd = list_entry(qh->qtd_list.next,
2072 struct fotg210_qtd, qtd_list);
2074 * first qtd may already be partially processed.
2075 * If we come here during unlink, the QH overlay region
2076 * might have reference to the just unlinked qtd. The
2077 * qtd is updated in qh_completions(). Update the QH
2080 if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2081 qh->hw->hw_qtd_next = qtd->hw_next;
2087 qh_update(fotg210, qh, qtd);
2090 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2092 static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2093 struct usb_host_endpoint *ep)
2095 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2096 struct fotg210_qh *qh = ep->hcpriv;
2097 unsigned long flags;
2099 spin_lock_irqsave(&fotg210->lock, flags);
2100 qh->clearing_tt = 0;
2101 if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2102 && fotg210->rh_state == FOTG210_RH_RUNNING)
2103 qh_link_async(fotg210, qh);
2104 spin_unlock_irqrestore(&fotg210->lock, flags);
2107 static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2108 struct fotg210_qh *qh, struct urb *urb, u32 token)
2111 /* If an async split transaction gets an error or is unlinked,
2112 * the TT buffer may be left in an indeterminate state. We
2113 * have to clear the TT buffer.
2115 * Note: this routine is never called for Isochronous transfers.
2117 if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2118 struct usb_device *tt = urb->dev->tt->hub;
2121 "clear tt buffer port %d, a%d ep%d t%08x\n",
2122 urb->dev->ttport, urb->dev->devnum,
2123 usb_pipeendpoint(urb->pipe), token);
2125 if (urb->dev->tt->hub !=
2126 fotg210_to_hcd(fotg210)->self.root_hub) {
2127 if (usb_hub_clear_tt_buffer(urb) == 0)
2128 qh->clearing_tt = 1;
2133 static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2134 size_t length, u32 token)
2136 int status = -EINPROGRESS;
2138 /* count IN/OUT bytes, not SETUP (even short packets) */
2139 if (likely(QTD_PID(token) != 2))
2140 urb->actual_length += length - QTD_LENGTH(token);
2142 /* don't modify error codes */
2143 if (unlikely(urb->unlinked))
2146 /* force cleanup after short read; not always an error */
2147 if (unlikely(IS_SHORT_READ(token)))
2148 status = -EREMOTEIO;
2150 /* serious "can't proceed" faults reported by the hardware */
2151 if (token & QTD_STS_HALT) {
2152 if (token & QTD_STS_BABBLE) {
2153 /* FIXME "must" disable babbling device's port too */
2154 status = -EOVERFLOW;
2155 /* CERR nonzero + halt --> stall */
2156 } else if (QTD_CERR(token)) {
2159 /* In theory, more than one of the following bits can be set
2160 * since they are sticky and the transaction is retried.
2161 * Which to test first is rather arbitrary.
2163 } else if (token & QTD_STS_MMF) {
2164 /* fs/ls interrupt xfer missed the complete-split */
2166 } else if (token & QTD_STS_DBE) {
2167 status = (QTD_PID(token) == 1) /* IN ? */
2168 ? -ENOSR /* hc couldn't read data */
2169 : -ECOMM; /* hc couldn't write data */
2170 } else if (token & QTD_STS_XACT) {
2171 /* timeout, bad CRC, wrong PID, etc */
2172 fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2174 usb_pipeendpoint(urb->pipe),
2175 usb_pipein(urb->pipe) ? "in" : "out");
2177 } else { /* unknown */
2181 fotg210_dbg(fotg210,
2182 "dev%d ep%d%s qtd token %08x --> status %d\n",
2183 usb_pipedevice(urb->pipe),
2184 usb_pipeendpoint(urb->pipe),
2185 usb_pipein(urb->pipe) ? "in" : "out",
2192 static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2194 __releases(fotg210->lock)
2195 __acquires(fotg210->lock)
2197 if (likely(urb->hcpriv != NULL)) {
2198 struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2200 /* S-mask in a QH means it's an interrupt urb */
2201 if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2203 /* ... update hc-wide periodic stats (for usbfs) */
2204 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2208 if (unlikely(urb->unlinked)) {
2209 INCR(fotg210->stats.unlink);
2211 /* report non-error and short read status as zero */
2212 if (status == -EINPROGRESS || status == -EREMOTEIO)
2214 INCR(fotg210->stats.complete);
2217 #ifdef FOTG210_URB_TRACE
2218 fotg210_dbg(fotg210,
2219 "%s %s urb %p ep%d%s status %d len %d/%d\n",
2220 __func__, urb->dev->devpath, urb,
2221 usb_pipeendpoint(urb->pipe),
2222 usb_pipein(urb->pipe) ? "in" : "out",
2224 urb->actual_length, urb->transfer_buffer_length);
2227 /* complete() can reenter this HCD */
2228 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2229 spin_unlock(&fotg210->lock);
2230 usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2231 spin_lock(&fotg210->lock);
2234 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2236 /* Process and free completed qtds for a qh, returning URBs to drivers.
2237 * Chases up to qh->hw_current. Returns number of completions called,
2238 * indicating how much "real" work we did.
2240 static unsigned qh_completions(struct fotg210_hcd *fotg210,
2241 struct fotg210_qh *qh)
2243 struct fotg210_qtd *last, *end = qh->dummy;
2244 struct fotg210_qtd *qtd, *tmp;
2249 struct fotg210_qh_hw *hw = qh->hw;
2251 if (unlikely(list_empty(&qh->qtd_list)))
2254 /* completions (or tasks on other cpus) must never clobber HALT
2255 * till we've gone through and cleaned everything up, even when
2256 * they add urbs to this qh's queue or mark them for unlinking.
2258 * NOTE: unlinking expects to be done in queue order.
2260 * It's a bug for qh->qh_state to be anything other than
2261 * QH_STATE_IDLE, unless our caller is scan_async() or
2264 state = qh->qh_state;
2265 qh->qh_state = QH_STATE_COMPLETING;
2266 stopped = (state == QH_STATE_IDLE);
2270 last_status = -EINPROGRESS;
2271 qh->needs_rescan = 0;
2273 /* remove de-activated QTDs from front of queue.
2274 * after faults (including short reads), cleanup this urb
2275 * then let the queue advance.
2276 * if queue is stopped, handles unlinks.
2278 list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
2284 /* clean up any state from previous QTD ...*/
2286 if (likely(last->urb != urb)) {
2287 fotg210_urb_done(fotg210, last->urb,
2290 last_status = -EINPROGRESS;
2292 fotg210_qtd_free(fotg210, last);
2296 /* ignore urbs submitted during completions we reported */
2300 /* hardware copies qtd out of qh overlay */
2302 token = hc32_to_cpu(fotg210, qtd->hw_token);
2304 /* always clean up qtds the hc de-activated */
2306 if ((token & QTD_STS_ACTIVE) == 0) {
2308 /* Report Data Buffer Error: non-fatal but useful */
2309 if (token & QTD_STS_DBE)
2310 fotg210_dbg(fotg210,
2311 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2312 urb, usb_endpoint_num(&urb->ep->desc),
2313 usb_endpoint_dir_in(&urb->ep->desc)
2315 urb->transfer_buffer_length, qtd, qh);
2317 /* on STALL, error, and short reads this urb must
2318 * complete and all its qtds must be recycled.
2320 if ((token & QTD_STS_HALT) != 0) {
2322 /* retry transaction errors until we
2323 * reach the software xacterr limit
2325 if ((token & QTD_STS_XACT) &&
2326 QTD_CERR(token) == 0 &&
2327 ++qh->xacterrs < QH_XACTERR_MAX &&
2329 fotg210_dbg(fotg210,
2330 "detected XactErr len %zu/%zu retry %d\n",
2331 qtd->length - QTD_LENGTH(token),
2335 /* reset the token in the qtd and the
2336 * qh overlay (which still contains
2337 * the qtd) so that we pick up from
2340 token &= ~QTD_STS_HALT;
2341 token |= QTD_STS_ACTIVE |
2342 (FOTG210_TUNE_CERR << 10);
2343 qtd->hw_token = cpu_to_hc32(fotg210,
2346 hw->hw_token = cpu_to_hc32(fotg210,
2352 /* magic dummy for some short reads; qh won't advance.
2353 * that silicon quirk can kick in with this dummy too.
2355 * other short reads won't stop the queue, including
2356 * control transfers (status stage handles that) or
2357 * most other single-qtd reads ... the queue stops if
2358 * URB_SHORT_NOT_OK was set so the driver submitting
2359 * the urbs could clean it up.
2361 } else if (IS_SHORT_READ(token) &&
2362 !(qtd->hw_alt_next &
2363 FOTG210_LIST_END(fotg210))) {
2367 /* stop scanning when we reach qtds the hc is using */
2368 } else if (likely(!stopped
2369 && fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2372 /* scan the whole queue for unlinks whenever it stops */
2376 /* cancel everything if we halt, suspend, etc */
2377 if (fotg210->rh_state < FOTG210_RH_RUNNING)
2378 last_status = -ESHUTDOWN;
2380 /* this qtd is active; skip it unless a previous qtd
2381 * for its urb faulted, or its urb was canceled.
2383 else if (last_status == -EINPROGRESS && !urb->unlinked)
2386 /* qh unlinked; token in overlay may be most current */
2387 if (state == QH_STATE_IDLE &&
2388 cpu_to_hc32(fotg210, qtd->qtd_dma)
2389 == hw->hw_current) {
2390 token = hc32_to_cpu(fotg210, hw->hw_token);
2392 /* An unlink may leave an incomplete
2393 * async transaction in the TT buffer.
2394 * We have to clear it.
2396 fotg210_clear_tt_buffer(fotg210, qh, urb,
2401 /* unless we already know the urb's status, collect qtd status
2402 * and update count of bytes transferred. in common short read
2403 * cases with only one data qtd (including control transfers),
2404 * queue processing won't halt. but with two or more qtds (for
2405 * example, with a 32 KB transfer), when the first qtd gets a
2406 * short read the second must be removed by hand.
2408 if (last_status == -EINPROGRESS) {
2409 last_status = qtd_copy_status(fotg210, urb,
2410 qtd->length, token);
2411 if (last_status == -EREMOTEIO &&
2413 FOTG210_LIST_END(fotg210)))
2414 last_status = -EINPROGRESS;
2416 /* As part of low/full-speed endpoint-halt processing
2417 * we must clear the TT buffer (11.17.5).
2419 if (unlikely(last_status != -EINPROGRESS &&
2420 last_status != -EREMOTEIO)) {
2421 /* The TT's in some hubs malfunction when they
2422 * receive this request following a STALL (they
2423 * stop sending isochronous packets). Since a
2424 * STALL can't leave the TT buffer in a busy
2425 * state (if you believe Figures 11-48 - 11-51
2426 * in the USB 2.0 spec), we won't clear the TT
2427 * buffer in this case. Strictly speaking this
2428 * is a violation of the spec.
2430 if (last_status != -EPIPE)
2431 fotg210_clear_tt_buffer(fotg210, qh,
2436 /* if we're removing something not at the queue head,
2437 * patch the hardware queue pointer.
2439 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2440 last = list_entry(qtd->qtd_list.prev,
2441 struct fotg210_qtd, qtd_list);
2442 last->hw_next = qtd->hw_next;
2445 /* remove qtd; it's recycled after possible urb completion */
2446 list_del(&qtd->qtd_list);
2449 /* reinit the xacterr counter for the next qtd */
2453 /* last urb's completion might still need calling */
2454 if (likely(last != NULL)) {
2455 fotg210_urb_done(fotg210, last->urb, last_status);
2457 fotg210_qtd_free(fotg210, last);
2460 /* Do we need to rescan for URBs dequeued during a giveback? */
2461 if (unlikely(qh->needs_rescan)) {
2462 /* If the QH is already unlinked, do the rescan now. */
2463 if (state == QH_STATE_IDLE)
2466 /* Otherwise we have to wait until the QH is fully unlinked.
2467 * Our caller will start an unlink if qh->needs_rescan is
2468 * set. But if an unlink has already started, nothing needs
2471 if (state != QH_STATE_LINKED)
2472 qh->needs_rescan = 0;
2475 /* restore original state; caller must unlink or relink */
2476 qh->qh_state = state;
2478 /* be sure the hardware's done with the qh before refreshing
2479 * it after fault cleanup, or recovering from silicon wrongly
2480 * overlaying the dummy qtd (which reduces DMA chatter).
2482 if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2485 qh_refresh(fotg210, qh);
2487 case QH_STATE_LINKED:
2488 /* We won't refresh a QH that's linked (after the HC
2489 * stopped the queue). That avoids a race:
2490 * - HC reads first part of QH;
2491 * - CPU updates that first part and the token;
2492 * - HC reads rest of that QH, including token
2493 * Result: HC gets an inconsistent image, and then
2494 * DMAs to/from the wrong memory (corrupting it).
2496 * That should be rare for interrupt transfers,
2497 * except maybe high bandwidth ...
2500 /* Tell the caller to start an unlink */
2501 qh->needs_rescan = 1;
2503 /* otherwise, unlink already started */
2510 /* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2511 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2512 /* ... and packet size, for any kind of endpoint descriptor */
2513 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2515 /* reverse of qh_urb_transaction: free a list of TDs.
2516 * used for cleanup after errors, before HC sees an URB's TDs.
2518 static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2519 struct list_head *head)
2521 struct fotg210_qtd *qtd, *temp;
2523 list_for_each_entry_safe(qtd, temp, head, qtd_list) {
2524 list_del(&qtd->qtd_list);
2525 fotg210_qtd_free(fotg210, qtd);
2529 /* create a list of filled qtds for this URB; won't link into qh.
2531 static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2532 struct urb *urb, struct list_head *head, gfp_t flags)
2534 struct fotg210_qtd *qtd, *qtd_prev;
2536 int len, this_sg_len, maxpacket;
2540 struct scatterlist *sg;
2543 * URBs map to sequences of QTDs: one logical transaction
2545 qtd = fotg210_qtd_alloc(fotg210, flags);
2548 list_add_tail(&qtd->qtd_list, head);
2551 token = QTD_STS_ACTIVE;
2552 token |= (FOTG210_TUNE_CERR << 10);
2553 /* for split transactions, SplitXState initialized to zero */
2555 len = urb->transfer_buffer_length;
2556 is_input = usb_pipein(urb->pipe);
2557 if (usb_pipecontrol(urb->pipe)) {
2559 qtd_fill(fotg210, qtd, urb->setup_dma,
2560 sizeof(struct usb_ctrlrequest),
2561 token | (2 /* "setup" */ << 8), 8);
2563 /* ... and always at least one more pid */
2564 token ^= QTD_TOGGLE;
2566 qtd = fotg210_qtd_alloc(fotg210, flags);
2570 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2571 list_add_tail(&qtd->qtd_list, head);
2573 /* for zero length DATA stages, STATUS is always IN */
2575 token |= (1 /* "in" */ << 8);
2579 * data transfer stage: buffer setup
2581 i = urb->num_mapped_sgs;
2582 if (len > 0 && i > 0) {
2584 buf = sg_dma_address(sg);
2586 /* urb->transfer_buffer_length may be smaller than the
2587 * size of the scatterlist (or vice versa)
2589 this_sg_len = min_t(int, sg_dma_len(sg), len);
2592 buf = urb->transfer_dma;
2597 token |= (1 /* "in" */ << 8);
2598 /* else it's already initted to "out" pid (0 << 8) */
2600 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
2603 * buffer gets wrapped in one or more qtds;
2604 * last one may be "short" (including zero len)
2605 * and may serve as a control status ack
2610 this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2612 this_sg_len -= this_qtd_len;
2613 len -= this_qtd_len;
2614 buf += this_qtd_len;
2617 * short reads advance to a "magic" dummy instead of the next
2618 * qtd ... that forces the queue to stop, for manual cleanup.
2619 * (this will usually be overridden later.)
2622 qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2624 /* qh makes control packets use qtd toggle; maybe switch it */
2625 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2626 token ^= QTD_TOGGLE;
2628 if (likely(this_sg_len <= 0)) {
2629 if (--i <= 0 || len <= 0)
2632 buf = sg_dma_address(sg);
2633 this_sg_len = min_t(int, sg_dma_len(sg), len);
2637 qtd = fotg210_qtd_alloc(fotg210, flags);
2641 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2642 list_add_tail(&qtd->qtd_list, head);
2646 * unless the caller requires manual cleanup after short reads,
2647 * have the alt_next mechanism keep the queue running after the
2648 * last data qtd (the only one, for control and most other cases).
2650 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2651 usb_pipecontrol(urb->pipe)))
2652 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2655 * control requests may need a terminating data "status" ack;
2656 * other OUT ones may need a terminating short packet
2659 if (likely(urb->transfer_buffer_length != 0)) {
2662 if (usb_pipecontrol(urb->pipe)) {
2664 token ^= 0x0100; /* "in" <--> "out" */
2665 token |= QTD_TOGGLE; /* force DATA1 */
2666 } else if (usb_pipeout(urb->pipe)
2667 && (urb->transfer_flags & URB_ZERO_PACKET)
2668 && !(urb->transfer_buffer_length % maxpacket)) {
2673 qtd = fotg210_qtd_alloc(fotg210, flags);
2677 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2678 list_add_tail(&qtd->qtd_list, head);
2680 /* never any data in such packets */
2681 qtd_fill(fotg210, qtd, 0, 0, token, 0);
2685 /* by default, enable interrupt on urb completion */
2686 if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2687 qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2691 qtd_list_free(fotg210, urb, head);
2695 /* Would be best to create all qh's from config descriptors,
2696 * when each interface/altsetting is established. Unlink
2697 * any previous qh and cancel its urbs first; endpoints are
2698 * implicitly reset then (data toggle too).
2699 * That'd mean updating how usbcore talks to HCDs. (2.7?)
2703 /* Each QH holds a qtd list; a QH is used for everything except iso.
2705 * For interrupt urbs, the scheduler must set the microframe scheduling
2706 * mask(s) each time the QH gets scheduled. For highspeed, that's
2707 * just one microframe in the s-mask. For split interrupt transactions
2708 * there are additional complications: c-mask, maybe FSTNs.
2710 static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2713 struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2714 u32 info1 = 0, info2 = 0;
2717 struct usb_tt *tt = urb->dev->tt;
2718 struct fotg210_qh_hw *hw;
2724 * init endpoint/device data for this QH
2726 info1 |= usb_pipeendpoint(urb->pipe) << 8;
2727 info1 |= usb_pipedevice(urb->pipe) << 0;
2729 is_input = usb_pipein(urb->pipe);
2730 type = usb_pipetype(urb->pipe);
2731 maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2733 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
2734 * acts like up to 3KB, but is built from smaller packets.
2736 if (max_packet(maxp) > 1024) {
2737 fotg210_dbg(fotg210, "bogus qh maxpacket %d\n",
2742 /* Compute interrupt scheduling parameters just once, and save.
2743 * - allowing for high bandwidth, how many nsec/uframe are used?
2744 * - split transactions need a second CSPLIT uframe; same question
2745 * - splits also need a schedule gap (for full/low speed I/O)
2746 * - qh has a polling interval
2748 * For control/bulk requests, the HC or TT handles these.
2750 if (type == PIPE_INTERRUPT) {
2751 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2753 hb_mult(maxp) * max_packet(maxp)));
2754 qh->start = NO_FRAME;
2756 if (urb->dev->speed == USB_SPEED_HIGH) {
2760 qh->period = urb->interval >> 3;
2761 if (qh->period == 0 && urb->interval != 1) {
2762 /* NOTE interval 2 or 4 uframes could work.
2763 * But interval 1 scheduling is simpler, and
2764 * includes high bandwidth.
2767 } else if (qh->period > fotg210->periodic_size) {
2768 qh->period = fotg210->periodic_size;
2769 urb->interval = qh->period << 3;
2774 /* gap is f(FS/LS transfer times) */
2775 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2776 is_input, 0, maxp) / (125 * 1000);
2778 /* FIXME this just approximates SPLIT/CSPLIT times */
2779 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */
2780 qh->c_usecs = qh->usecs + HS_USECS(0);
2781 qh->usecs = HS_USECS(1);
2782 } else { /* SPLIT+DATA, gap, CSPLIT */
2783 qh->usecs += HS_USECS(1);
2784 qh->c_usecs = HS_USECS(0);
2787 think_time = tt ? tt->think_time : 0;
2788 qh->tt_usecs = NS_TO_US(think_time +
2789 usb_calc_bus_time(urb->dev->speed,
2790 is_input, 0, max_packet(maxp)));
2791 qh->period = urb->interval;
2792 if (qh->period > fotg210->periodic_size) {
2793 qh->period = fotg210->periodic_size;
2794 urb->interval = qh->period;
2799 /* support for tt scheduling, and access to toggles */
2803 switch (urb->dev->speed) {
2805 info1 |= QH_LOW_SPEED;
2808 case USB_SPEED_FULL:
2809 /* EPS 0 means "full" */
2810 if (type != PIPE_INTERRUPT)
2811 info1 |= (FOTG210_TUNE_RL_TT << 28);
2812 if (type == PIPE_CONTROL) {
2813 info1 |= QH_CONTROL_EP; /* for TT */
2814 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2816 info1 |= maxp << 16;
2818 info2 |= (FOTG210_TUNE_MULT_TT << 30);
2820 /* Some Freescale processors have an erratum in which the
2821 * port number in the queue head was 0..N-1 instead of 1..N.
2823 if (fotg210_has_fsl_portno_bug(fotg210))
2824 info2 |= (urb->dev->ttport-1) << 23;
2826 info2 |= urb->dev->ttport << 23;
2828 /* set the address of the TT; for TDI's integrated
2829 * root hub tt, leave it zeroed.
2831 if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2832 info2 |= tt->hub->devnum << 16;
2834 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2838 case USB_SPEED_HIGH: /* no TT involved */
2839 info1 |= QH_HIGH_SPEED;
2840 if (type == PIPE_CONTROL) {
2841 info1 |= (FOTG210_TUNE_RL_HS << 28);
2842 info1 |= 64 << 16; /* usb2 fixed maxpacket */
2843 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2844 info2 |= (FOTG210_TUNE_MULT_HS << 30);
2845 } else if (type == PIPE_BULK) {
2846 info1 |= (FOTG210_TUNE_RL_HS << 28);
2847 /* The USB spec says that high speed bulk endpoints
2848 * always use 512 byte maxpacket. But some device
2849 * vendors decided to ignore that, and MSFT is happy
2850 * to help them do so. So now people expect to use
2851 * such nonconformant devices with Linux too; sigh.
2853 info1 |= max_packet(maxp) << 16;
2854 info2 |= (FOTG210_TUNE_MULT_HS << 30);
2855 } else { /* PIPE_INTERRUPT */
2856 info1 |= max_packet(maxp) << 16;
2857 info2 |= hb_mult(maxp) << 30;
2861 fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2864 qh_destroy(fotg210, qh);
2868 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2870 /* init as live, toggle clear, advance to dummy */
2871 qh->qh_state = QH_STATE_IDLE;
2873 hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2874 hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2875 qh->is_out = !is_input;
2876 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2877 qh_refresh(fotg210, qh);
2881 static void enable_async(struct fotg210_hcd *fotg210)
2883 if (fotg210->async_count++)
2886 /* Stop waiting to turn off the async schedule */
2887 fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2889 /* Don't start the schedule until ASS is 0 */
2890 fotg210_poll_ASS(fotg210);
2891 turn_on_io_watchdog(fotg210);
2894 static void disable_async(struct fotg210_hcd *fotg210)
2896 if (--fotg210->async_count)
2899 /* The async schedule and async_unlink list are supposed to be empty */
2900 WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2902 /* Don't turn off the schedule until ASS is 1 */
2903 fotg210_poll_ASS(fotg210);
2906 /* move qh (and its qtds) onto async queue; maybe enable queue. */
2908 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2910 __hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2911 struct fotg210_qh *head;
2913 /* Don't link a QH if there's a Clear-TT-Buffer pending */
2914 if (unlikely(qh->clearing_tt))
2917 WARN_ON(qh->qh_state != QH_STATE_IDLE);
2919 /* clear halt and/or toggle; and maybe recover from silicon quirk */
2920 qh_refresh(fotg210, qh);
2922 /* splice right after start */
2923 head = fotg210->async;
2924 qh->qh_next = head->qh_next;
2925 qh->hw->hw_next = head->hw->hw_next;
2928 head->qh_next.qh = qh;
2929 head->hw->hw_next = dma;
2932 qh->qh_state = QH_STATE_LINKED;
2933 /* qtd completions reported later by interrupt */
2935 enable_async(fotg210);
2938 /* For control/bulk/interrupt, return QH with these TDs appended.
2939 * Allocates and initializes the QH if necessary.
2940 * Returns null if it can't allocate a QH it needs to.
2941 * If the QH has TDs (urbs) already, that's great.
2943 static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2944 struct urb *urb, struct list_head *qtd_list,
2945 int epnum, void **ptr)
2947 struct fotg210_qh *qh = NULL;
2948 __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2950 qh = (struct fotg210_qh *) *ptr;
2951 if (unlikely(qh == NULL)) {
2952 /* can't sleep here, we have fotg210->lock... */
2953 qh = qh_make(fotg210, urb, GFP_ATOMIC);
2956 if (likely(qh != NULL)) {
2957 struct fotg210_qtd *qtd;
2959 if (unlikely(list_empty(qtd_list)))
2962 qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2965 /* control qh may need patching ... */
2966 if (unlikely(epnum == 0)) {
2967 /* usb_reset_device() briefly reverts to address 0 */
2968 if (usb_pipedevice(urb->pipe) == 0)
2969 qh->hw->hw_info1 &= ~qh_addr_mask;
2972 /* just one way to queue requests: swap with the dummy qtd.
2973 * only hc or qh_refresh() ever modify the overlay.
2975 if (likely(qtd != NULL)) {
2976 struct fotg210_qtd *dummy;
2980 /* to avoid racing the HC, use the dummy td instead of
2981 * the first td of our list (becomes new dummy). both
2982 * tds stay deactivated until we're done, when the
2983 * HC is allowed to fetch the old dummy (4.10.2).
2985 token = qtd->hw_token;
2986 qtd->hw_token = HALT_BIT(fotg210);
2990 dma = dummy->qtd_dma;
2992 dummy->qtd_dma = dma;
2994 list_del(&qtd->qtd_list);
2995 list_add(&dummy->qtd_list, qtd_list);
2996 list_splice_tail(qtd_list, &qh->qtd_list);
2998 fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
3001 /* hc must see the new dummy at list end */
3003 qtd = list_entry(qh->qtd_list.prev,
3004 struct fotg210_qtd, qtd_list);
3005 qtd->hw_next = QTD_NEXT(fotg210, dma);
3007 /* let the hc process these next qtds */
3009 dummy->hw_token = token;
3017 static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3018 struct list_head *qtd_list, gfp_t mem_flags)
3021 unsigned long flags;
3022 struct fotg210_qh *qh = NULL;
3025 epnum = urb->ep->desc.bEndpointAddress;
3027 #ifdef FOTG210_URB_TRACE
3029 struct fotg210_qtd *qtd;
3031 qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3032 fotg210_dbg(fotg210,
3033 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3034 __func__, urb->dev->devpath, urb,
3035 epnum & 0x0f, (epnum & USB_DIR_IN)
3037 urb->transfer_buffer_length,
3038 qtd, urb->ep->hcpriv);
3042 spin_lock_irqsave(&fotg210->lock, flags);
3043 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3047 rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3051 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3052 if (unlikely(qh == NULL)) {
3053 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3058 /* Control/bulk operations through TTs don't need scheduling,
3059 * the HC and TT handle it when the TT has a buffer ready.
3061 if (likely(qh->qh_state == QH_STATE_IDLE))
3062 qh_link_async(fotg210, qh);
3064 spin_unlock_irqrestore(&fotg210->lock, flags);
3065 if (unlikely(qh == NULL))
3066 qtd_list_free(fotg210, urb, qtd_list);
3070 static void single_unlink_async(struct fotg210_hcd *fotg210,
3071 struct fotg210_qh *qh)
3073 struct fotg210_qh *prev;
3075 /* Add to the end of the list of QHs waiting for the next IAAD */
3076 qh->qh_state = QH_STATE_UNLINK;
3077 if (fotg210->async_unlink)
3078 fotg210->async_unlink_last->unlink_next = qh;
3080 fotg210->async_unlink = qh;
3081 fotg210->async_unlink_last = qh;
3083 /* Unlink it from the schedule */
3084 prev = fotg210->async;
3085 while (prev->qh_next.qh != qh)
3086 prev = prev->qh_next.qh;
3088 prev->hw->hw_next = qh->hw->hw_next;
3089 prev->qh_next = qh->qh_next;
3090 if (fotg210->qh_scan_next == qh)
3091 fotg210->qh_scan_next = qh->qh_next.qh;
3094 static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3097 * Do nothing if an IAA cycle is already running or
3098 * if one will be started shortly.
3100 if (fotg210->async_iaa || fotg210->async_unlinking)
3103 /* Do all the waiting QHs at once */
3104 fotg210->async_iaa = fotg210->async_unlink;
3105 fotg210->async_unlink = NULL;
3107 /* If the controller isn't running, we don't have to wait for it */
3108 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3109 if (!nested) /* Avoid recursion */
3110 end_unlink_async(fotg210);
3112 /* Otherwise start a new IAA cycle */
3113 } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3114 /* Make sure the unlinks are all visible to the hardware */
3117 fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3118 &fotg210->regs->command);
3119 fotg210_readl(fotg210, &fotg210->regs->command);
3120 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3125 /* the async qh for the qtds being unlinked are now gone from the HC */
3127 static void end_unlink_async(struct fotg210_hcd *fotg210)
3129 struct fotg210_qh *qh;
3131 /* Process the idle QHs */
3133 fotg210->async_unlinking = true;
3134 while (fotg210->async_iaa) {
3135 qh = fotg210->async_iaa;
3136 fotg210->async_iaa = qh->unlink_next;
3137 qh->unlink_next = NULL;
3139 qh->qh_state = QH_STATE_IDLE;
3140 qh->qh_next.qh = NULL;
3142 qh_completions(fotg210, qh);
3143 if (!list_empty(&qh->qtd_list) &&
3144 fotg210->rh_state == FOTG210_RH_RUNNING)
3145 qh_link_async(fotg210, qh);
3146 disable_async(fotg210);
3148 fotg210->async_unlinking = false;
3150 /* Start a new IAA cycle if any QHs are waiting for it */
3151 if (fotg210->async_unlink) {
3152 start_iaa_cycle(fotg210, true);
3153 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3158 static void unlink_empty_async(struct fotg210_hcd *fotg210)
3160 struct fotg210_qh *qh, *next;
3161 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3162 bool check_unlinks_later = false;
3164 /* Unlink all the async QHs that have been empty for a timer cycle */
3165 next = fotg210->async->qh_next.qh;
3168 next = qh->qh_next.qh;
3170 if (list_empty(&qh->qtd_list) &&
3171 qh->qh_state == QH_STATE_LINKED) {
3172 if (!stopped && qh->unlink_cycle ==
3173 fotg210->async_unlink_cycle)
3174 check_unlinks_later = true;
3176 single_unlink_async(fotg210, qh);
3180 /* Start a new IAA cycle if any QHs are waiting for it */
3181 if (fotg210->async_unlink)
3182 start_iaa_cycle(fotg210, false);
3184 /* QHs that haven't been empty for long enough will be handled later */
3185 if (check_unlinks_later) {
3186 fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3188 ++fotg210->async_unlink_cycle;
3192 /* makes sure the async qh will become idle */
3193 /* caller must own fotg210->lock */
3195 static void start_unlink_async(struct fotg210_hcd *fotg210,
3196 struct fotg210_qh *qh)
3199 * If the QH isn't linked then there's nothing we can do
3200 * unless we were called during a giveback, in which case
3201 * qh_completions() has to deal with it.
3203 if (qh->qh_state != QH_STATE_LINKED) {
3204 if (qh->qh_state == QH_STATE_COMPLETING)
3205 qh->needs_rescan = 1;
3209 single_unlink_async(fotg210, qh);
3210 start_iaa_cycle(fotg210, false);
3213 static void scan_async(struct fotg210_hcd *fotg210)
3215 struct fotg210_qh *qh;
3216 bool check_unlinks_later = false;
3218 fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3219 while (fotg210->qh_scan_next) {
3220 qh = fotg210->qh_scan_next;
3221 fotg210->qh_scan_next = qh->qh_next.qh;
3223 /* clean any finished work for this qh */
3224 if (!list_empty(&qh->qtd_list)) {
3228 * Unlinks could happen here; completion reporting
3229 * drops the lock. That's why fotg210->qh_scan_next
3230 * always holds the next qh to scan; if the next qh
3231 * gets unlinked then fotg210->qh_scan_next is adjusted
3232 * in single_unlink_async().
3234 temp = qh_completions(fotg210, qh);
3235 if (qh->needs_rescan) {
3236 start_unlink_async(fotg210, qh);
3237 } else if (list_empty(&qh->qtd_list)
3238 && qh->qh_state == QH_STATE_LINKED) {
3239 qh->unlink_cycle = fotg210->async_unlink_cycle;
3240 check_unlinks_later = true;
3241 } else if (temp != 0)
3247 * Unlink empty entries, reducing DMA usage as well
3248 * as HCD schedule-scanning costs. Delay for any qh
3249 * we just scanned, there's a not-unusual case that it
3250 * doesn't stay idle for long.
3252 if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3253 !(fotg210->enabled_hrtimer_events &
3254 BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3255 fotg210_enable_event(fotg210,
3256 FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3257 ++fotg210->async_unlink_cycle;
3260 /* EHCI scheduled transaction support: interrupt, iso, split iso
3261 * These are called "periodic" transactions in the EHCI spec.
3263 * Note that for interrupt transfers, the QH/QTD manipulation is shared
3264 * with the "asynchronous" transaction support (control/bulk transfers).
3265 * The only real difference is in how interrupt transfers are scheduled.
3267 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3268 * It keeps track of every ITD (or SITD) that's linked, and holds enough
3269 * pre-calculated schedule data to make appending to the queue be quick.
3271 static int fotg210_get_frame(struct usb_hcd *hcd);
3273 /* periodic_next_shadow - return "next" pointer on shadow list
3274 * @periodic: host pointer to qh/itd
3275 * @tag: hardware tag for type of this record
3277 static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3278 union fotg210_shadow *periodic, __hc32 tag)
3280 switch (hc32_to_cpu(fotg210, tag)) {
3282 return &periodic->qh->qh_next;
3284 return &periodic->fstn->fstn_next;
3286 return &periodic->itd->itd_next;
3290 static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3291 union fotg210_shadow *periodic, __hc32 tag)
3293 switch (hc32_to_cpu(fotg210, tag)) {
3294 /* our fotg210_shadow.qh is actually software part */
3296 return &periodic->qh->hw->hw_next;
3297 /* others are hw parts */
3299 return periodic->hw_next;
3303 /* caller must hold fotg210->lock */
3304 static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3307 union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3308 __hc32 *hw_p = &fotg210->periodic[frame];
3309 union fotg210_shadow here = *prev_p;
3311 /* find predecessor of "ptr"; hw and shadow lists are in sync */
3312 while (here.ptr && here.ptr != ptr) {
3313 prev_p = periodic_next_shadow(fotg210, prev_p,
3314 Q_NEXT_TYPE(fotg210, *hw_p));
3315 hw_p = shadow_next_periodic(fotg210, &here,
3316 Q_NEXT_TYPE(fotg210, *hw_p));
3319 /* an interrupt entry (at list end) could have been shared */
3323 /* update shadow and hardware lists ... the old "next" pointers
3324 * from ptr may still be in use, the caller updates them.
3326 *prev_p = *periodic_next_shadow(fotg210, &here,
3327 Q_NEXT_TYPE(fotg210, *hw_p));
3329 *hw_p = *shadow_next_periodic(fotg210, &here,
3330 Q_NEXT_TYPE(fotg210, *hw_p));
3333 /* how many of the uframe's 125 usecs are allocated? */
3334 static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3335 unsigned frame, unsigned uframe)
3337 __hc32 *hw_p = &fotg210->periodic[frame];
3338 union fotg210_shadow *q = &fotg210->pshadow[frame];
3340 struct fotg210_qh_hw *hw;
3343 switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3346 /* is it in the S-mask? */
3347 if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3348 usecs += q->qh->usecs;
3349 /* ... or C-mask? */
3350 if (hw->hw_info2 & cpu_to_hc32(fotg210,
3352 usecs += q->qh->c_usecs;
3353 hw_p = &hw->hw_next;
3354 q = &q->qh->qh_next;
3356 /* case Q_TYPE_FSTN: */
3358 /* for "save place" FSTNs, count the relevant INTR
3359 * bandwidth from the previous frame
3361 if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3362 fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3364 hw_p = &q->fstn->hw_next;
3365 q = &q->fstn->fstn_next;
3368 if (q->itd->hw_transaction[uframe])
3369 usecs += q->itd->stream->usecs;
3370 hw_p = &q->itd->hw_next;
3371 q = &q->itd->itd_next;
3375 if (usecs > fotg210->uframe_periodic_max)
3376 fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3377 frame * 8 + uframe, usecs);
3381 static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3383 if (!dev1->tt || !dev2->tt)
3385 if (dev1->tt != dev2->tt)
3387 if (dev1->tt->multi)
3388 return dev1->ttport == dev2->ttport;
3393 /* return true iff the device's transaction translator is available
3394 * for a periodic transfer starting at the specified frame, using
3395 * all the uframes in the mask.
3397 static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3398 struct usb_device *dev, unsigned frame, u32 uf_mask)
3400 if (period == 0) /* error */
3403 /* note bandwidth wastage: split never follows csplit
3404 * (different dev or endpoint) until the next uframe.
3405 * calling convention doesn't make that distinction.
3407 for (; frame < fotg210->periodic_size; frame += period) {
3408 union fotg210_shadow here;
3410 struct fotg210_qh_hw *hw;
3412 here = fotg210->pshadow[frame];
3413 type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3415 switch (hc32_to_cpu(fotg210, type)) {
3417 type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3418 here = here.itd->itd_next;
3422 if (same_tt(dev, here.qh->dev)) {
3425 mask = hc32_to_cpu(fotg210,
3427 /* "knows" no gap is needed */
3432 type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3433 here = here.qh->qh_next;
3435 /* case Q_TYPE_FSTN: */
3437 fotg210_dbg(fotg210,
3438 "periodic frame %d bogus type %d\n",
3442 /* collision or error */
3451 static void enable_periodic(struct fotg210_hcd *fotg210)
3453 if (fotg210->periodic_count++)
3456 /* Stop waiting to turn off the periodic schedule */
3457 fotg210->enabled_hrtimer_events &=
3458 ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3460 /* Don't start the schedule until PSS is 0 */
3461 fotg210_poll_PSS(fotg210);
3462 turn_on_io_watchdog(fotg210);
3465 static void disable_periodic(struct fotg210_hcd *fotg210)
3467 if (--fotg210->periodic_count)
3470 /* Don't turn off the schedule until PSS is 1 */
3471 fotg210_poll_PSS(fotg210);
3474 /* periodic schedule slots have iso tds (normal or split) first, then a
3475 * sparse tree for active interrupt transfers.
3477 * this just links in a qh; caller guarantees uframe masks are set right.
3478 * no FSTN support (yet; fotg210 0.96+)
3480 static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3483 unsigned period = qh->period;
3485 dev_dbg(&qh->dev->dev,
3486 "link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3487 hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3488 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3491 /* high bandwidth, or otherwise every microframe */
3495 for (i = qh->start; i < fotg210->periodic_size; i += period) {
3496 union fotg210_shadow *prev = &fotg210->pshadow[i];
3497 __hc32 *hw_p = &fotg210->periodic[i];
3498 union fotg210_shadow here = *prev;
3501 /* skip the iso nodes at list head */
3503 type = Q_NEXT_TYPE(fotg210, *hw_p);
3504 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3506 prev = periodic_next_shadow(fotg210, prev, type);
3507 hw_p = shadow_next_periodic(fotg210, &here, type);
3511 /* sorting each branch by period (slow-->fast)
3512 * enables sharing interior tree nodes
3514 while (here.ptr && qh != here.qh) {
3515 if (qh->period > here.qh->period)
3517 prev = &here.qh->qh_next;
3518 hw_p = &here.qh->hw->hw_next;
3521 /* link in this qh, unless some earlier pass did that */
3522 if (qh != here.qh) {
3525 qh->hw->hw_next = *hw_p;
3528 *hw_p = QH_NEXT(fotg210, qh->qh_dma);
3531 qh->qh_state = QH_STATE_LINKED;
3534 /* update per-qh bandwidth for usbfs */
3535 fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3536 ? ((qh->usecs + qh->c_usecs) / qh->period)
3539 list_add(&qh->intr_node, &fotg210->intr_qh_list);
3541 /* maybe enable periodic schedule processing */
3542 ++fotg210->intr_count;
3543 enable_periodic(fotg210);
3546 static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3547 struct fotg210_qh *qh)
3553 * If qh is for a low/full-speed device, simply unlinking it
3554 * could interfere with an ongoing split transaction. To unlink
3555 * it safely would require setting the QH_INACTIVATE bit and
3556 * waiting at least one frame, as described in EHCI 4.12.2.5.
3558 * We won't bother with any of this. Instead, we assume that the
3559 * only reason for unlinking an interrupt QH while the current URB
3560 * is still active is to dequeue all the URBs (flush the whole
3563 * If rebalancing the periodic schedule is ever implemented, this
3564 * approach will no longer be valid.
3567 /* high bandwidth, or otherwise part of every microframe */
3568 period = qh->period;
3572 for (i = qh->start; i < fotg210->periodic_size; i += period)
3573 periodic_unlink(fotg210, i, qh);
3575 /* update per-qh bandwidth for usbfs */
3576 fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3577 ? ((qh->usecs + qh->c_usecs) / qh->period)
3580 dev_dbg(&qh->dev->dev,
3581 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3582 qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3583 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3586 /* qh->qh_next still "live" to HC */
3587 qh->qh_state = QH_STATE_UNLINK;
3588 qh->qh_next.ptr = NULL;
3590 if (fotg210->qh_scan_next == qh)
3591 fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3592 struct fotg210_qh, intr_node);
3593 list_del(&qh->intr_node);
3596 static void start_unlink_intr(struct fotg210_hcd *fotg210,
3597 struct fotg210_qh *qh)
3599 /* If the QH isn't linked then there's nothing we can do
3600 * unless we were called during a giveback, in which case
3601 * qh_completions() has to deal with it.
3603 if (qh->qh_state != QH_STATE_LINKED) {
3604 if (qh->qh_state == QH_STATE_COMPLETING)
3605 qh->needs_rescan = 1;
3609 qh_unlink_periodic(fotg210, qh);
3611 /* Make sure the unlinks are visible before starting the timer */
3615 * The EHCI spec doesn't say how long it takes the controller to
3616 * stop accessing an unlinked interrupt QH. The timer delay is
3617 * 9 uframes; presumably that will be long enough.
3619 qh->unlink_cycle = fotg210->intr_unlink_cycle;
3621 /* New entries go at the end of the intr_unlink list */
3622 if (fotg210->intr_unlink)
3623 fotg210->intr_unlink_last->unlink_next = qh;
3625 fotg210->intr_unlink = qh;
3626 fotg210->intr_unlink_last = qh;
3628 if (fotg210->intr_unlinking)
3629 ; /* Avoid recursive calls */
3630 else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3631 fotg210_handle_intr_unlinks(fotg210);
3632 else if (fotg210->intr_unlink == qh) {
3633 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3635 ++fotg210->intr_unlink_cycle;
3639 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3641 struct fotg210_qh_hw *hw = qh->hw;
3644 qh->qh_state = QH_STATE_IDLE;
3645 hw->hw_next = FOTG210_LIST_END(fotg210);
3647 qh_completions(fotg210, qh);
3649 /* reschedule QH iff another request is queued */
3650 if (!list_empty(&qh->qtd_list) &&
3651 fotg210->rh_state == FOTG210_RH_RUNNING) {
3652 rc = qh_schedule(fotg210, qh);
3654 /* An error here likely indicates handshake failure
3655 * or no space left in the schedule. Neither fault
3656 * should happen often ...
3658 * FIXME kill the now-dysfunctional queued urbs
3661 fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3665 /* maybe turn off periodic schedule */
3666 --fotg210->intr_count;
3667 disable_periodic(fotg210);
3670 static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3671 unsigned uframe, unsigned period, unsigned usecs)
3675 /* complete split running into next frame?
3676 * given FSTN support, we could sometimes check...
3681 /* convert "usecs we need" to "max already claimed" */
3682 usecs = fotg210->uframe_periodic_max - usecs;
3684 /* we "know" 2 and 4 uframe intervals were rejected; so
3685 * for period 0, check _every_ microframe in the schedule.
3687 if (unlikely(period == 0)) {
3689 for (uframe = 0; uframe < 7; uframe++) {
3690 claimed = periodic_usecs(fotg210, frame,
3692 if (claimed > usecs)
3695 } while ((frame += 1) < fotg210->periodic_size);
3697 /* just check the specified uframe, at that period */
3700 claimed = periodic_usecs(fotg210, frame, uframe);
3701 if (claimed > usecs)
3703 } while ((frame += period) < fotg210->periodic_size);
3710 static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3711 unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3713 int retval = -ENOSPC;
3716 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
3719 if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3727 /* Make sure this tt's buffer is also available for CSPLITs.
3728 * We pessimize a bit; probably the typical full speed case
3729 * doesn't need the second CSPLIT.
3731 * NOTE: both SPLIT and CSPLIT could be checked in just
3734 mask = 0x03 << (uframe + qh->gap_uf);
3735 *c_maskp = cpu_to_hc32(fotg210, mask << 8);
3737 mask |= 1 << uframe;
3738 if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3739 if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3740 qh->period, qh->c_usecs))
3742 if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3743 qh->period, qh->c_usecs))
3751 /* "first fit" scheduling policy used the first time through,
3752 * or when the previous schedule slot can't be re-used.
3754 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3759 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
3760 struct fotg210_qh_hw *hw = qh->hw;
3762 qh_refresh(fotg210, qh);
3763 hw->hw_next = FOTG210_LIST_END(fotg210);
3766 /* reuse the previous schedule slots, if we can */
3767 if (frame < qh->period) {
3768 uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3769 status = check_intr_schedule(fotg210, frame, --uframe,
3777 /* else scan the schedule to find a group of slots such that all
3778 * uframes have enough periodic bandwidth available.
3781 /* "normal" case, uframing flexible except with splits */
3785 for (i = qh->period; status && i > 0; --i) {
3786 frame = ++fotg210->random_frame % qh->period;
3787 for (uframe = 0; uframe < 8; uframe++) {
3788 status = check_intr_schedule(fotg210,
3796 /* qh->period == 0 means every uframe */
3799 status = check_intr_schedule(fotg210, 0, 0, qh,
3806 /* reset S-frame and (maybe) C-frame masks */
3807 hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3808 hw->hw_info2 |= qh->period
3809 ? cpu_to_hc32(fotg210, 1 << uframe)
3810 : cpu_to_hc32(fotg210, QH_SMASK);
3811 hw->hw_info2 |= c_mask;
3813 fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3815 /* stuff into the periodic schedule */
3816 qh_link_periodic(fotg210, qh);
3821 static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3822 struct list_head *qtd_list, gfp_t mem_flags)
3825 unsigned long flags;
3826 struct fotg210_qh *qh;
3828 struct list_head empty;
3830 /* get endpoint and transfer/schedule data */
3831 epnum = urb->ep->desc.bEndpointAddress;
3833 spin_lock_irqsave(&fotg210->lock, flags);
3835 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3836 status = -ESHUTDOWN;
3837 goto done_not_linked;
3839 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3840 if (unlikely(status))
3841 goto done_not_linked;
3843 /* get qh and force any scheduling errors */
3844 INIT_LIST_HEAD(&empty);
3845 qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3850 if (qh->qh_state == QH_STATE_IDLE) {
3851 status = qh_schedule(fotg210, qh);
3856 /* then queue the urb's tds to the qh */
3857 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3860 /* ... update usbfs periodic stats */
3861 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3864 if (unlikely(status))
3865 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3867 spin_unlock_irqrestore(&fotg210->lock, flags);
3869 qtd_list_free(fotg210, urb, qtd_list);
3874 static void scan_intr(struct fotg210_hcd *fotg210)
3876 struct fotg210_qh *qh;
3878 list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3879 &fotg210->intr_qh_list, intr_node) {
3881 /* clean any finished work for this qh */
3882 if (!list_empty(&qh->qtd_list)) {
3886 * Unlinks could happen here; completion reporting
3887 * drops the lock. That's why fotg210->qh_scan_next
3888 * always holds the next qh to scan; if the next qh
3889 * gets unlinked then fotg210->qh_scan_next is adjusted
3890 * in qh_unlink_periodic().
3892 temp = qh_completions(fotg210, qh);
3893 if (unlikely(qh->needs_rescan ||
3894 (list_empty(&qh->qtd_list) &&
3895 qh->qh_state == QH_STATE_LINKED)))
3896 start_unlink_intr(fotg210, qh);
3903 /* fotg210_iso_stream ops work with both ITD and SITD */
3905 static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3907 struct fotg210_iso_stream *stream;
3909 stream = kzalloc(sizeof(*stream), mem_flags);
3910 if (likely(stream != NULL)) {
3911 INIT_LIST_HEAD(&stream->td_list);
3912 INIT_LIST_HEAD(&stream->free_list);
3913 stream->next_uframe = -1;
3918 static void iso_stream_init(struct fotg210_hcd *fotg210,
3919 struct fotg210_iso_stream *stream, struct usb_device *dev,
3920 int pipe, unsigned interval)
3923 unsigned epnum, maxp;
3929 * this might be a "high bandwidth" highspeed endpoint,
3930 * as encoded in the ep descriptor's wMaxPacket field
3932 epnum = usb_pipeendpoint(pipe);
3933 is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3934 maxp = usb_maxpacket(dev, pipe, !is_input);
3940 maxp = max_packet(maxp);
3941 multi = hb_mult(maxp);
3945 stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3946 stream->buf1 = cpu_to_hc32(fotg210, buf1);
3947 stream->buf2 = cpu_to_hc32(fotg210, multi);
3949 /* usbfs wants to report the average usecs per frame tied up
3950 * when transfers on this endpoint are scheduled ...
3952 if (dev->speed == USB_SPEED_FULL) {
3954 stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3955 is_input, 1, maxp));
3958 stream->highspeed = 1;
3959 stream->usecs = HS_USECS_ISO(maxp);
3961 bandwidth = stream->usecs * 8;
3962 bandwidth /= interval;
3964 stream->bandwidth = bandwidth;
3966 stream->bEndpointAddress = is_input | epnum;
3967 stream->interval = interval;
3968 stream->maxp = maxp;
3971 static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
3975 struct fotg210_iso_stream *stream;
3976 struct usb_host_endpoint *ep;
3977 unsigned long flags;
3979 epnum = usb_pipeendpoint(urb->pipe);
3980 if (usb_pipein(urb->pipe))
3981 ep = urb->dev->ep_in[epnum];
3983 ep = urb->dev->ep_out[epnum];
3985 spin_lock_irqsave(&fotg210->lock, flags);
3986 stream = ep->hcpriv;
3988 if (unlikely(stream == NULL)) {
3989 stream = iso_stream_alloc(GFP_ATOMIC);
3990 if (likely(stream != NULL)) {
3991 ep->hcpriv = stream;
3993 iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
3997 /* if dev->ep[epnum] is a QH, hw is set */
3998 } else if (unlikely(stream->hw != NULL)) {
3999 fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
4000 urb->dev->devpath, epnum,
4001 usb_pipein(urb->pipe) ? "in" : "out");
4005 spin_unlock_irqrestore(&fotg210->lock, flags);
4009 /* fotg210_iso_sched ops can be ITD-only or SITD-only */
4011 static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4014 struct fotg210_iso_sched *iso_sched;
4015 int size = sizeof(*iso_sched);
4017 size += packets * sizeof(struct fotg210_iso_packet);
4018 iso_sched = kzalloc(size, mem_flags);
4019 if (likely(iso_sched != NULL))
4020 INIT_LIST_HEAD(&iso_sched->td_list);
4025 static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4026 struct fotg210_iso_sched *iso_sched,
4027 struct fotg210_iso_stream *stream, struct urb *urb)
4030 dma_addr_t dma = urb->transfer_dma;
4032 /* how many uframes are needed for these transfers */
4033 iso_sched->span = urb->number_of_packets * stream->interval;
4035 /* figure out per-uframe itd fields that we'll need later
4036 * when we fit new itds into the schedule.
4038 for (i = 0; i < urb->number_of_packets; i++) {
4039 struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4044 length = urb->iso_frame_desc[i].length;
4045 buf = dma + urb->iso_frame_desc[i].offset;
4047 trans = FOTG210_ISOC_ACTIVE;
4048 trans |= buf & 0x0fff;
4049 if (unlikely(((i + 1) == urb->number_of_packets))
4050 && !(urb->transfer_flags & URB_NO_INTERRUPT))
4051 trans |= FOTG210_ITD_IOC;
4052 trans |= length << 16;
4053 uframe->transaction = cpu_to_hc32(fotg210, trans);
4055 /* might need to cross a buffer page within a uframe */
4056 uframe->bufp = (buf & ~(u64)0x0fff);
4058 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4063 static void iso_sched_free(struct fotg210_iso_stream *stream,
4064 struct fotg210_iso_sched *iso_sched)
4068 /* caller must hold fotg210->lock!*/
4069 list_splice(&iso_sched->td_list, &stream->free_list);
4073 static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4074 struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4076 struct fotg210_itd *itd;
4080 struct fotg210_iso_sched *sched;
4081 unsigned long flags;
4083 sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4084 if (unlikely(sched == NULL))
4087 itd_sched_init(fotg210, sched, stream, urb);
4089 if (urb->interval < 8)
4090 num_itds = 1 + (sched->span + 7) / 8;
4092 num_itds = urb->number_of_packets;
4094 /* allocate/init ITDs */
4095 spin_lock_irqsave(&fotg210->lock, flags);
4096 for (i = 0; i < num_itds; i++) {
4099 * Use iTDs from the free list, but not iTDs that may
4100 * still be in use by the hardware.
4102 if (likely(!list_empty(&stream->free_list))) {
4103 itd = list_first_entry(&stream->free_list,
4104 struct fotg210_itd, itd_list);
4105 if (itd->frame == fotg210->now_frame)
4107 list_del(&itd->itd_list);
4108 itd_dma = itd->itd_dma;
4111 spin_unlock_irqrestore(&fotg210->lock, flags);
4112 itd = dma_pool_zalloc(fotg210->itd_pool, mem_flags,
4114 spin_lock_irqsave(&fotg210->lock, flags);
4116 iso_sched_free(stream, sched);
4117 spin_unlock_irqrestore(&fotg210->lock, flags);
4122 itd->itd_dma = itd_dma;
4123 list_add(&itd->itd_list, &sched->td_list);
4125 spin_unlock_irqrestore(&fotg210->lock, flags);
4127 /* temporarily store schedule info in hcpriv */
4128 urb->hcpriv = sched;
4129 urb->error_count = 0;
4133 static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4134 u8 usecs, u32 period)
4138 /* can't commit more than uframe_periodic_max usec */
4139 if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4140 > (fotg210->uframe_periodic_max - usecs))
4143 /* we know urb->interval is 2^N uframes */
4145 } while (uframe < mod);
4149 /* This scheduler plans almost as far into the future as it has actual
4150 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
4151 * "as small as possible" to be cache-friendlier.) That limits the size
4152 * transfers you can stream reliably; avoid more than 64 msec per urb.
4153 * Also avoid queue depths of less than fotg210's worst irq latency (affected
4154 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4155 * and other factors); or more than about 230 msec total (for portability,
4156 * given FOTG210_TUNE_FLS and the slop). Or, write a smarter scheduler!
4159 #define SCHEDULE_SLOP 80 /* microframes */
4161 static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4162 struct fotg210_iso_stream *stream)
4164 u32 now, next, start, period, span;
4166 unsigned mod = fotg210->periodic_size << 3;
4167 struct fotg210_iso_sched *sched = urb->hcpriv;
4169 period = urb->interval;
4172 if (span > mod - SCHEDULE_SLOP) {
4173 fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4178 now = fotg210_read_frame_index(fotg210) & (mod - 1);
4180 /* Typical case: reuse current schedule, stream is still active.
4181 * Hopefully there are no gaps from the host falling behind
4182 * (irq delays etc), but if there are we'll take the next
4183 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4185 if (likely(!list_empty(&stream->td_list))) {
4188 /* For high speed devices, allow scheduling within the
4189 * isochronous scheduling threshold. For full speed devices
4190 * and Intel PCI-based controllers, don't (work around for
4193 if (!stream->highspeed && fotg210->fs_i_thresh)
4194 next = now + fotg210->i_thresh;
4198 /* Fell behind (by up to twice the slop amount)?
4199 * We decide based on the time of the last currently-scheduled
4200 * slot, not the time of the next available slot.
4202 excess = (stream->next_uframe - period - next) & (mod - 1);
4203 if (excess >= mod - 2 * SCHEDULE_SLOP)
4204 start = next + excess - mod + period *
4205 DIV_ROUND_UP(mod - excess, period);
4207 start = next + excess + period;
4208 if (start - now >= mod) {
4209 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4210 urb, start - now - period, period,
4217 /* need to schedule; when's the next (u)frame we could start?
4218 * this is bigger than fotg210->i_thresh allows; scheduling itself
4219 * isn't free, the slop should handle reasonably slow cpus. it
4220 * can also help high bandwidth if the dma and irq loads don't
4221 * jump until after the queue is primed.
4226 start = SCHEDULE_SLOP + (now & ~0x07);
4228 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
4230 /* find a uframe slot with enough bandwidth.
4231 * Early uframes are more precious because full-speed
4232 * iso IN transfers can't use late uframes,
4233 * and therefore they should be allocated last.
4239 /* check schedule: enough space? */
4240 if (itd_slot_ok(fotg210, mod, start,
4241 stream->usecs, period))
4243 } while (start > next && !done);
4245 /* no room in the schedule */
4247 fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4248 urb, now, now + mod);
4254 /* Tried to schedule too far into the future? */
4255 if (unlikely(start - now + span - period >=
4256 mod - 2 * SCHEDULE_SLOP)) {
4257 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4258 urb, start - now, span - period,
4259 mod - 2 * SCHEDULE_SLOP);
4264 stream->next_uframe = start & (mod - 1);
4266 /* report high speed start in uframes; full speed, in frames */
4267 urb->start_frame = stream->next_uframe;
4268 if (!stream->highspeed)
4269 urb->start_frame >>= 3;
4271 /* Make sure scan_isoc() sees these */
4272 if (fotg210->isoc_count == 0)
4273 fotg210->next_frame = now >> 3;
4277 iso_sched_free(stream, sched);
4282 static inline void itd_init(struct fotg210_hcd *fotg210,
4283 struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4287 /* it's been recently zeroed */
4288 itd->hw_next = FOTG210_LIST_END(fotg210);
4289 itd->hw_bufp[0] = stream->buf0;
4290 itd->hw_bufp[1] = stream->buf1;
4291 itd->hw_bufp[2] = stream->buf2;
4293 for (i = 0; i < 8; i++)
4296 /* All other fields are filled when scheduling */
4299 static inline void itd_patch(struct fotg210_hcd *fotg210,
4300 struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4301 unsigned index, u16 uframe)
4303 struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4304 unsigned pg = itd->pg;
4307 itd->index[uframe] = index;
4309 itd->hw_transaction[uframe] = uf->transaction;
4310 itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4311 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4312 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4314 /* iso_frame_desc[].offset must be strictly increasing */
4315 if (unlikely(uf->cross)) {
4316 u64 bufp = uf->bufp + 4096;
4319 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4320 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4324 static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4325 struct fotg210_itd *itd)
4327 union fotg210_shadow *prev = &fotg210->pshadow[frame];
4328 __hc32 *hw_p = &fotg210->periodic[frame];
4329 union fotg210_shadow here = *prev;
4332 /* skip any iso nodes which might belong to previous microframes */
4334 type = Q_NEXT_TYPE(fotg210, *hw_p);
4335 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4337 prev = periodic_next_shadow(fotg210, prev, type);
4338 hw_p = shadow_next_periodic(fotg210, &here, type);
4342 itd->itd_next = here;
4343 itd->hw_next = *hw_p;
4347 *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4350 /* fit urb's itds into the selected schedule slot; activate as needed */
4351 static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4352 unsigned mod, struct fotg210_iso_stream *stream)
4355 unsigned next_uframe, uframe, frame;
4356 struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4357 struct fotg210_itd *itd;
4359 next_uframe = stream->next_uframe & (mod - 1);
4361 if (unlikely(list_empty(&stream->td_list))) {
4362 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4363 += stream->bandwidth;
4364 fotg210_dbg(fotg210,
4365 "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4366 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4367 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4369 next_uframe >> 3, next_uframe & 0x7);
4372 /* fill iTDs uframe by uframe */
4373 for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4375 /* ASSERT: we have all necessary itds */
4377 /* ASSERT: no itds for this endpoint in this uframe */
4379 itd = list_entry(iso_sched->td_list.next,
4380 struct fotg210_itd, itd_list);
4381 list_move_tail(&itd->itd_list, &stream->td_list);
4382 itd->stream = stream;
4384 itd_init(fotg210, stream, itd);
4387 uframe = next_uframe & 0x07;
4388 frame = next_uframe >> 3;
4390 itd_patch(fotg210, itd, iso_sched, packet, uframe);
4392 next_uframe += stream->interval;
4393 next_uframe &= mod - 1;
4396 /* link completed itds into the schedule */
4397 if (((next_uframe >> 3) != frame)
4398 || packet == urb->number_of_packets) {
4399 itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4404 stream->next_uframe = next_uframe;
4406 /* don't need that schedule data any more */
4407 iso_sched_free(stream, iso_sched);
4410 ++fotg210->isoc_count;
4411 enable_periodic(fotg210);
4414 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4415 FOTG210_ISOC_XACTERR)
4417 /* Process and recycle a completed ITD. Return true iff its urb completed,
4418 * and hence its completion callback probably added things to the hardware
4421 * Note that we carefully avoid recycling this descriptor until after any
4422 * completion callback runs, so that it won't be reused quickly. That is,
4423 * assuming (a) no more than two urbs per frame on this endpoint, and also
4424 * (b) only this endpoint's completions submit URBs. It seems some silicon
4425 * corrupts things if you reuse completed descriptors very quickly...
4427 static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4429 struct urb *urb = itd->urb;
4430 struct usb_iso_packet_descriptor *desc;
4434 struct fotg210_iso_stream *stream = itd->stream;
4435 struct usb_device *dev;
4436 bool retval = false;
4438 /* for each uframe with a packet */
4439 for (uframe = 0; uframe < 8; uframe++) {
4440 if (likely(itd->index[uframe] == -1))
4442 urb_index = itd->index[uframe];
4443 desc = &urb->iso_frame_desc[urb_index];
4445 t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4446 itd->hw_transaction[uframe] = 0;
4448 /* report transfer status */
4449 if (unlikely(t & ISO_ERRS)) {
4451 if (t & FOTG210_ISOC_BUF_ERR)
4452 desc->status = usb_pipein(urb->pipe)
4453 ? -ENOSR /* hc couldn't read */
4454 : -ECOMM; /* hc couldn't write */
4455 else if (t & FOTG210_ISOC_BABBLE)
4456 desc->status = -EOVERFLOW;
4457 else /* (t & FOTG210_ISOC_XACTERR) */
4458 desc->status = -EPROTO;
4460 /* HC need not update length with this error */
4461 if (!(t & FOTG210_ISOC_BABBLE)) {
4462 desc->actual_length =
4463 fotg210_itdlen(urb, desc, t);
4464 urb->actual_length += desc->actual_length;
4466 } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4468 desc->actual_length = fotg210_itdlen(urb, desc, t);
4469 urb->actual_length += desc->actual_length;
4471 /* URB was too late */
4472 desc->status = -EXDEV;
4476 /* handle completion now? */
4477 if (likely((urb_index + 1) != urb->number_of_packets))
4480 /* ASSERT: it's really the last itd for this urb
4481 * list_for_each_entry (itd, &stream->td_list, itd_list)
4482 * BUG_ON (itd->urb == urb);
4485 /* give urb back to the driver; completion often (re)submits */
4487 fotg210_urb_done(fotg210, urb, 0);
4491 --fotg210->isoc_count;
4492 disable_periodic(fotg210);
4494 if (unlikely(list_is_singular(&stream->td_list))) {
4495 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4496 -= stream->bandwidth;
4497 fotg210_dbg(fotg210,
4498 "deschedule devp %s ep%d%s-iso\n",
4499 dev->devpath, stream->bEndpointAddress & 0x0f,
4500 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4506 /* Add to the end of the free list for later reuse */
4507 list_move_tail(&itd->itd_list, &stream->free_list);
4509 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4510 if (list_empty(&stream->td_list)) {
4511 list_splice_tail_init(&stream->free_list,
4512 &fotg210->cached_itd_list);
4513 start_free_itds(fotg210);
4519 static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4522 int status = -EINVAL;
4523 unsigned long flags;
4524 struct fotg210_iso_stream *stream;
4526 /* Get iso_stream head */
4527 stream = iso_stream_find(fotg210, urb);
4528 if (unlikely(stream == NULL)) {
4529 fotg210_dbg(fotg210, "can't get iso stream\n");
4532 if (unlikely(urb->interval != stream->interval &&
4533 fotg210_port_speed(fotg210, 0) ==
4534 USB_PORT_STAT_HIGH_SPEED)) {
4535 fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4536 stream->interval, urb->interval);
4540 #ifdef FOTG210_URB_TRACE
4541 fotg210_dbg(fotg210,
4542 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4543 __func__, urb->dev->devpath, urb,
4544 usb_pipeendpoint(urb->pipe),
4545 usb_pipein(urb->pipe) ? "in" : "out",
4546 urb->transfer_buffer_length,
4547 urb->number_of_packets, urb->interval,
4551 /* allocate ITDs w/o locking anything */
4552 status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4553 if (unlikely(status < 0)) {
4554 fotg210_dbg(fotg210, "can't init itds\n");
4558 /* schedule ... need to lock */
4559 spin_lock_irqsave(&fotg210->lock, flags);
4560 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4561 status = -ESHUTDOWN;
4562 goto done_not_linked;
4564 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4565 if (unlikely(status))
4566 goto done_not_linked;
4567 status = iso_stream_schedule(fotg210, urb, stream);
4568 if (likely(status == 0))
4569 itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4571 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4573 spin_unlock_irqrestore(&fotg210->lock, flags);
4578 static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4579 unsigned now_frame, bool live)
4583 union fotg210_shadow q, *q_p;
4586 /* scan each element in frame's queue for completions */
4587 q_p = &fotg210->pshadow[frame];
4588 hw_p = &fotg210->periodic[frame];
4590 type = Q_NEXT_TYPE(fotg210, *hw_p);
4594 switch (hc32_to_cpu(fotg210, type)) {
4596 /* If this ITD is still active, leave it for
4597 * later processing ... check the next entry.
4598 * No need to check for activity unless the
4601 if (frame == now_frame && live) {
4603 for (uf = 0; uf < 8; uf++) {
4604 if (q.itd->hw_transaction[uf] &
4605 ITD_ACTIVE(fotg210))
4609 q_p = &q.itd->itd_next;
4610 hw_p = &q.itd->hw_next;
4611 type = Q_NEXT_TYPE(fotg210,
4618 /* Take finished ITDs out of the schedule
4619 * and process them: recycle, maybe report
4620 * URB completion. HC won't cache the
4621 * pointer for much longer, if at all.
4623 *q_p = q.itd->itd_next;
4624 *hw_p = q.itd->hw_next;
4625 type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4627 modified = itd_complete(fotg210, q.itd);
4631 fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4632 type, frame, q.ptr);
4636 /* End of the iTDs and siTDs */
4641 /* assume completion callbacks modify the queue */
4642 if (unlikely(modified && fotg210->isoc_count > 0))
4648 static void scan_isoc(struct fotg210_hcd *fotg210)
4650 unsigned uf, now_frame, frame, ret;
4651 unsigned fmask = fotg210->periodic_size - 1;
4655 * When running, scan from last scan point up to "now"
4656 * else clean up by scanning everything that's left.
4657 * Touches as few pages as possible: cache-friendly.
4659 if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4660 uf = fotg210_read_frame_index(fotg210);
4661 now_frame = (uf >> 3) & fmask;
4664 now_frame = (fotg210->next_frame - 1) & fmask;
4667 fotg210->now_frame = now_frame;
4669 frame = fotg210->next_frame;
4673 ret = scan_frame_queue(fotg210, frame,
4676 /* Stop when we have reached the current frame */
4677 if (frame == now_frame)
4679 frame = (frame + 1) & fmask;
4681 fotg210->next_frame = now_frame;
4684 /* Display / Set uframe_periodic_max
4686 static ssize_t uframe_periodic_max_show(struct device *dev,
4687 struct device_attribute *attr, char *buf)
4689 struct fotg210_hcd *fotg210;
4692 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4693 n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4698 static ssize_t uframe_periodic_max_store(struct device *dev,
4699 struct device_attribute *attr, const char *buf, size_t count)
4701 struct fotg210_hcd *fotg210;
4702 unsigned uframe_periodic_max;
4703 unsigned frame, uframe;
4704 unsigned short allocated_max;
4705 unsigned long flags;
4708 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4709 if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4712 if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4713 fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4714 uframe_periodic_max);
4721 * lock, so that our checking does not race with possible periodic
4722 * bandwidth allocation through submitting new urbs.
4724 spin_lock_irqsave(&fotg210->lock, flags);
4727 * for request to decrease max periodic bandwidth, we have to check
4728 * every microframe in the schedule to see whether the decrease is
4731 if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4734 for (frame = 0; frame < fotg210->periodic_size; ++frame)
4735 for (uframe = 0; uframe < 7; ++uframe)
4736 allocated_max = max(allocated_max,
4737 periodic_usecs(fotg210, frame,
4740 if (allocated_max > uframe_periodic_max) {
4741 fotg210_info(fotg210,
4742 "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4743 allocated_max, uframe_periodic_max);
4748 /* increasing is always ok */
4750 fotg210_info(fotg210,
4751 "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4752 100 * uframe_periodic_max/125, uframe_periodic_max);
4754 if (uframe_periodic_max != 100)
4755 fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4757 fotg210->uframe_periodic_max = uframe_periodic_max;
4761 spin_unlock_irqrestore(&fotg210->lock, flags);
4765 static DEVICE_ATTR_RW(uframe_periodic_max);
4767 static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4769 struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4771 return device_create_file(controller, &dev_attr_uframe_periodic_max);
4774 static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4776 struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4778 device_remove_file(controller, &dev_attr_uframe_periodic_max);
4780 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
4781 * The firmware seems to think that powering off is a wakeup event!
4782 * This routine turns off remote wakeup and everything else, on all ports.
4784 static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4786 u32 __iomem *status_reg = &fotg210->regs->port_status;
4788 fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4791 /* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4792 * Must be called with interrupts enabled and the lock not held.
4794 static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4796 fotg210_halt(fotg210);
4798 spin_lock_irq(&fotg210->lock);
4799 fotg210->rh_state = FOTG210_RH_HALTED;
4800 fotg210_turn_off_all_ports(fotg210);
4801 spin_unlock_irq(&fotg210->lock);
4804 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4805 * This forcibly disables dma and IRQs, helping kexec and other cases
4806 * where the next system software may expect clean state.
4808 static void fotg210_shutdown(struct usb_hcd *hcd)
4810 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4812 spin_lock_irq(&fotg210->lock);
4813 fotg210->shutdown = true;
4814 fotg210->rh_state = FOTG210_RH_STOPPING;
4815 fotg210->enabled_hrtimer_events = 0;
4816 spin_unlock_irq(&fotg210->lock);
4818 fotg210_silence_controller(fotg210);
4820 hrtimer_cancel(&fotg210->hrtimer);
4823 /* fotg210_work is called from some interrupts, timers, and so on.
4824 * it calls driver completion functions, after dropping fotg210->lock.
4826 static void fotg210_work(struct fotg210_hcd *fotg210)
4828 /* another CPU may drop fotg210->lock during a schedule scan while
4829 * it reports urb completions. this flag guards against bogus
4830 * attempts at re-entrant schedule scanning.
4832 if (fotg210->scanning) {
4833 fotg210->need_rescan = true;
4836 fotg210->scanning = true;
4839 fotg210->need_rescan = false;
4840 if (fotg210->async_count)
4841 scan_async(fotg210);
4842 if (fotg210->intr_count > 0)
4844 if (fotg210->isoc_count > 0)
4846 if (fotg210->need_rescan)
4848 fotg210->scanning = false;
4850 /* the IO watchdog guards against hardware or driver bugs that
4851 * misplace IRQs, and should let us run completely without IRQs.
4852 * such lossage has been observed on both VT6202 and VT8235.
4854 turn_on_io_watchdog(fotg210);
4857 /* Called when the fotg210_hcd module is removed.
4859 static void fotg210_stop(struct usb_hcd *hcd)
4861 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4863 fotg210_dbg(fotg210, "stop\n");
4865 /* no more interrupts ... */
4867 spin_lock_irq(&fotg210->lock);
4868 fotg210->enabled_hrtimer_events = 0;
4869 spin_unlock_irq(&fotg210->lock);
4871 fotg210_quiesce(fotg210);
4872 fotg210_silence_controller(fotg210);
4873 fotg210_reset(fotg210);
4875 hrtimer_cancel(&fotg210->hrtimer);
4876 remove_sysfs_files(fotg210);
4877 remove_debug_files(fotg210);
4879 /* root hub is shut down separately (first, when possible) */
4880 spin_lock_irq(&fotg210->lock);
4881 end_free_itds(fotg210);
4882 spin_unlock_irq(&fotg210->lock);
4883 fotg210_mem_cleanup(fotg210);
4885 #ifdef FOTG210_STATS
4886 fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4887 fotg210->stats.normal, fotg210->stats.error,
4888 fotg210->stats.iaa, fotg210->stats.lost_iaa);
4889 fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4890 fotg210->stats.complete, fotg210->stats.unlink);
4893 dbg_status(fotg210, "fotg210_stop completed",
4894 fotg210_readl(fotg210, &fotg210->regs->status));
4897 /* one-time init, only for memory state */
4898 static int hcd_fotg210_init(struct usb_hcd *hcd)
4900 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4904 struct fotg210_qh_hw *hw;
4906 spin_lock_init(&fotg210->lock);
4909 * keep io watchdog by default, those good HCDs could turn off it later
4911 fotg210->need_io_watchdog = 1;
4913 hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4914 fotg210->hrtimer.function = fotg210_hrtimer_func;
4915 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4917 hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4920 * by default set standard 80% (== 100 usec/uframe) max periodic
4921 * bandwidth as required by USB 2.0
4923 fotg210->uframe_periodic_max = 100;
4926 * hw default: 1K periodic list heads, one per frame.
4927 * periodic_size can shrink by USBCMD update if hcc_params allows.
4929 fotg210->periodic_size = DEFAULT_I_TDPS;
4930 INIT_LIST_HEAD(&fotg210->intr_qh_list);
4931 INIT_LIST_HEAD(&fotg210->cached_itd_list);
4933 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4934 /* periodic schedule size can be smaller than default */
4935 switch (FOTG210_TUNE_FLS) {
4937 fotg210->periodic_size = 1024;
4940 fotg210->periodic_size = 512;
4943 fotg210->periodic_size = 256;
4949 retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4953 /* controllers may cache some of the periodic schedule ... */
4954 fotg210->i_thresh = 2;
4957 * dedicate a qh for the async ring head, since we couldn't unlink
4958 * a 'real' qh without stopping the async schedule [4.8]. use it
4959 * as the 'reclamation list head' too.
4960 * its dummy is used in hw_alt_next of many tds, to prevent the qh
4961 * from automatically advancing to the next td after short reads.
4963 fotg210->async->qh_next.qh = NULL;
4964 hw = fotg210->async->hw;
4965 hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
4966 hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
4967 hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
4968 hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
4969 fotg210->async->qh_state = QH_STATE_LINKED;
4970 hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
4972 /* clear interrupt enables, set irq latency */
4973 if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
4974 log2_irq_thresh = 0;
4975 temp = 1 << (16 + log2_irq_thresh);
4976 if (HCC_CANPARK(hcc_params)) {
4977 /* HW default park == 3, on hardware that supports it (like
4978 * NVidia and ALI silicon), maximizes throughput on the async
4979 * schedule by avoiding QH fetches between transfers.
4981 * With fast usb storage devices and NForce2, "park" seems to
4982 * make problems: throughput reduction (!), data errors...
4985 park = min_t(unsigned, park, 3);
4989 fotg210_dbg(fotg210, "park %d\n", park);
4991 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4992 /* periodic schedule size can be smaller than default */
4994 temp |= (FOTG210_TUNE_FLS << 2);
4996 fotg210->command = temp;
4998 /* Accept arbitrarily long scatter-gather lists */
4999 if (!hcd->localmem_pool)
5000 hcd->self.sg_tablesize = ~0;
5004 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5005 static int fotg210_run(struct usb_hcd *hcd)
5007 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5011 hcd->uses_new_polling = 1;
5013 /* EHCI spec section 4.1 */
5015 fotg210_writel(fotg210, fotg210->periodic_dma,
5016 &fotg210->regs->frame_list);
5017 fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5018 &fotg210->regs->async_next);
5021 * hcc_params controls whether fotg210->regs->segment must (!!!)
5022 * be used; it constrains QH/ITD/SITD and QTD locations.
5023 * dma_pool consistent memory always uses segment zero.
5024 * streaming mappings for I/O buffers, like pci_map_single(),
5025 * can return segments above 4GB, if the device allows.
5027 * NOTE: the dma mask is visible through dev->dma_mask, so
5028 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5029 * Scsi_Host.highmem_io, and so forth. It's readonly to all
5030 * host side drivers though.
5032 hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5035 * Philips, Intel, and maybe others need CMD_RUN before the
5036 * root hub will detect new devices (why?); NEC doesn't
5038 fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5039 fotg210->command |= CMD_RUN;
5040 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5041 dbg_cmd(fotg210, "init", fotg210->command);
5044 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5045 * are explicitly handed to companion controller(s), so no TT is
5046 * involved with the root hub. (Except where one is integrated,
5047 * and there's no companion controller unless maybe for USB OTG.)
5049 * Turning on the CF flag will transfer ownership of all ports
5050 * from the companions to the EHCI controller. If any of the
5051 * companions are in the middle of a port reset at the time, it
5052 * could cause trouble. Write-locking ehci_cf_port_reset_rwsem
5053 * guarantees that no resets are in progress. After we set CF,
5054 * a short delay lets the hardware catch up; new resets shouldn't
5055 * be started before the port switching actions could complete.
5057 down_write(&ehci_cf_port_reset_rwsem);
5058 fotg210->rh_state = FOTG210_RH_RUNNING;
5059 /* unblock posted writes */
5060 fotg210_readl(fotg210, &fotg210->regs->command);
5061 usleep_range(5000, 10000);
5062 up_write(&ehci_cf_port_reset_rwsem);
5063 fotg210->last_periodic_enable = ktime_get_real();
5065 temp = HC_VERSION(fotg210,
5066 fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5067 fotg210_info(fotg210,
5068 "USB %x.%x started, EHCI %x.%02x\n",
5069 ((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5070 temp >> 8, temp & 0xff);
5072 fotg210_writel(fotg210, INTR_MASK,
5073 &fotg210->regs->intr_enable); /* Turn On Interrupts */
5075 /* GRR this is run-once init(), being done every time the HC starts.
5076 * So long as they're part of class devices, we can't do it init()
5077 * since the class device isn't created that early.
5079 create_debug_files(fotg210);
5080 create_sysfs_files(fotg210);
5085 static int fotg210_setup(struct usb_hcd *hcd)
5087 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5090 fotg210->regs = (void __iomem *)fotg210->caps +
5092 fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5093 dbg_hcs_params(fotg210, "reset");
5094 dbg_hcc_params(fotg210, "reset");
5096 /* cache this readonly data; minimize chip reads */
5097 fotg210->hcs_params = fotg210_readl(fotg210,
5098 &fotg210->caps->hcs_params);
5100 fotg210->sbrn = HCD_USB2;
5102 /* data structure init */
5103 retval = hcd_fotg210_init(hcd);
5107 retval = fotg210_halt(fotg210);
5111 fotg210_reset(fotg210);
5116 static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5118 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5119 u32 status, masked_status, pcd_status = 0, cmd;
5122 spin_lock(&fotg210->lock);
5124 status = fotg210_readl(fotg210, &fotg210->regs->status);
5126 /* e.g. cardbus physical eject */
5127 if (status == ~(u32) 0) {
5128 fotg210_dbg(fotg210, "device removed\n");
5133 * We don't use STS_FLR, but some controllers don't like it to
5134 * remain on, so mask it out along with the other status bits.
5136 masked_status = status & (INTR_MASK | STS_FLR);
5139 if (!masked_status ||
5140 unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5141 spin_unlock(&fotg210->lock);
5145 /* clear (just) interrupts */
5146 fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5147 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5150 /* unrequested/ignored: Frame List Rollover */
5151 dbg_status(fotg210, "irq", status);
5153 /* INT, ERR, and IAA interrupt rates can be throttled */
5155 /* normal [4.15.1.2] or error [4.15.1.1] completion */
5156 if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5157 if (likely((status & STS_ERR) == 0))
5158 INCR(fotg210->stats.normal);
5160 INCR(fotg210->stats.error);
5164 /* complete the unlinking of some qh [4.15.2.3] */
5165 if (status & STS_IAA) {
5167 /* Turn off the IAA watchdog */
5168 fotg210->enabled_hrtimer_events &=
5169 ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5172 * Mild optimization: Allow another IAAD to reset the
5173 * hrtimer, if one occurs before the next expiration.
5174 * In theory we could always cancel the hrtimer, but
5175 * tests show that about half the time it will be reset
5176 * for some other event anyway.
5178 if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5179 ++fotg210->next_hrtimer_event;
5181 /* guard against (alleged) silicon errata */
5183 fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5184 if (fotg210->async_iaa) {
5185 INCR(fotg210->stats.iaa);
5186 end_unlink_async(fotg210);
5188 fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5191 /* remote wakeup [4.3.1] */
5192 if (status & STS_PCD) {
5194 u32 __iomem *status_reg = &fotg210->regs->port_status;
5196 /* kick root hub later */
5197 pcd_status = status;
5199 /* resume root hub? */
5200 if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5201 usb_hcd_resume_root_hub(hcd);
5203 pstatus = fotg210_readl(fotg210, status_reg);
5205 if (test_bit(0, &fotg210->suspended_ports) &&
5206 ((pstatus & PORT_RESUME) ||
5207 !(pstatus & PORT_SUSPEND)) &&
5208 (pstatus & PORT_PE) &&
5209 fotg210->reset_done[0] == 0) {
5211 /* start 20 msec resume signaling from this port,
5212 * and make hub_wq collect PORT_STAT_C_SUSPEND to
5213 * stop that signaling. Use 5 ms extra for safety,
5214 * like usb_port_resume() does.
5216 fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5217 set_bit(0, &fotg210->resuming_ports);
5218 fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5219 mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5223 /* PCI errors [4.15.2.4] */
5224 if (unlikely((status & STS_FATAL) != 0)) {
5225 fotg210_err(fotg210, "fatal error\n");
5226 dbg_cmd(fotg210, "fatal", cmd);
5227 dbg_status(fotg210, "fatal", status);
5231 /* Don't let the controller do anything more */
5232 fotg210->shutdown = true;
5233 fotg210->rh_state = FOTG210_RH_STOPPING;
5234 fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5235 fotg210_writel(fotg210, fotg210->command,
5236 &fotg210->regs->command);
5237 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5238 fotg210_handle_controller_death(fotg210);
5240 /* Handle completions when the controller stops */
5245 fotg210_work(fotg210);
5246 spin_unlock(&fotg210->lock);
5248 usb_hcd_poll_rh_status(hcd);
5252 /* non-error returns are a promise to giveback() the urb later
5253 * we drop ownership so next owner (or urb unlink) can get it
5255 * urb + dev is in hcd.self.controller.urb_list
5256 * we're queueing TDs onto software and hardware lists
5258 * hcd-specific init for hcpriv hasn't been done yet
5260 * NOTE: control, bulk, and interrupt share the same code to append TDs
5261 * to a (possibly active) QH, and the same QH scanning code.
5263 static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5266 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5267 struct list_head qtd_list;
5269 INIT_LIST_HEAD(&qtd_list);
5271 switch (usb_pipetype(urb->pipe)) {
5273 /* qh_completions() code doesn't handle all the fault cases
5274 * in multi-TD control transfers. Even 1KB is rare anyway.
5276 if (urb->transfer_buffer_length > (16 * 1024))
5279 /* case PIPE_BULK: */
5281 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5283 return submit_async(fotg210, urb, &qtd_list, mem_flags);
5285 case PIPE_INTERRUPT:
5286 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5288 return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5290 case PIPE_ISOCHRONOUS:
5291 return itd_submit(fotg210, urb, mem_flags);
5295 /* remove from hardware lists
5296 * completions normally happen asynchronously
5299 static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5301 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5302 struct fotg210_qh *qh;
5303 unsigned long flags;
5306 spin_lock_irqsave(&fotg210->lock, flags);
5307 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5311 switch (usb_pipetype(urb->pipe)) {
5312 /* case PIPE_CONTROL: */
5313 /* case PIPE_BULK:*/
5315 qh = (struct fotg210_qh *) urb->hcpriv;
5318 switch (qh->qh_state) {
5319 case QH_STATE_LINKED:
5320 case QH_STATE_COMPLETING:
5321 start_unlink_async(fotg210, qh);
5323 case QH_STATE_UNLINK:
5324 case QH_STATE_UNLINK_WAIT:
5325 /* already started */
5328 /* QH might be waiting for a Clear-TT-Buffer */
5329 qh_completions(fotg210, qh);
5334 case PIPE_INTERRUPT:
5335 qh = (struct fotg210_qh *) urb->hcpriv;
5338 switch (qh->qh_state) {
5339 case QH_STATE_LINKED:
5340 case QH_STATE_COMPLETING:
5341 start_unlink_intr(fotg210, qh);
5344 qh_completions(fotg210, qh);
5347 fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5353 case PIPE_ISOCHRONOUS:
5356 /* wait till next completion, do it then. */
5357 /* completion irqs can wait up to 1024 msec, */
5361 spin_unlock_irqrestore(&fotg210->lock, flags);
5365 /* bulk qh holds the data toggle */
5367 static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5368 struct usb_host_endpoint *ep)
5370 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5371 unsigned long flags;
5372 struct fotg210_qh *qh, *tmp;
5374 /* ASSERT: any requests/urbs are being unlinked */
5375 /* ASSERT: nobody can be submitting urbs for this any more */
5378 spin_lock_irqsave(&fotg210->lock, flags);
5383 /* endpoints can be iso streams. for now, we don't
5384 * accelerate iso completions ... so spin a while.
5386 if (qh->hw == NULL) {
5387 struct fotg210_iso_stream *stream = ep->hcpriv;
5389 if (!list_empty(&stream->td_list))
5392 /* BUG_ON(!list_empty(&stream->free_list)); */
5397 if (fotg210->rh_state < FOTG210_RH_RUNNING)
5398 qh->qh_state = QH_STATE_IDLE;
5399 switch (qh->qh_state) {
5400 case QH_STATE_LINKED:
5401 case QH_STATE_COMPLETING:
5402 for (tmp = fotg210->async->qh_next.qh;
5404 tmp = tmp->qh_next.qh)
5406 /* periodic qh self-unlinks on empty, and a COMPLETING qh
5407 * may already be unlinked.
5410 start_unlink_async(fotg210, qh);
5412 case QH_STATE_UNLINK: /* wait for hw to finish? */
5413 case QH_STATE_UNLINK_WAIT:
5415 spin_unlock_irqrestore(&fotg210->lock, flags);
5416 schedule_timeout_uninterruptible(1);
5418 case QH_STATE_IDLE: /* fully unlinked */
5419 if (qh->clearing_tt)
5421 if (list_empty(&qh->qtd_list)) {
5422 qh_destroy(fotg210, qh);
5427 /* caller was supposed to have unlinked any requests;
5428 * that's not our job. just leak this memory.
5430 fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5431 qh, ep->desc.bEndpointAddress, qh->qh_state,
5432 list_empty(&qh->qtd_list) ? "" : "(has tds)");
5437 spin_unlock_irqrestore(&fotg210->lock, flags);
5440 static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5441 struct usb_host_endpoint *ep)
5443 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5444 struct fotg210_qh *qh;
5445 int eptype = usb_endpoint_type(&ep->desc);
5446 int epnum = usb_endpoint_num(&ep->desc);
5447 int is_out = usb_endpoint_dir_out(&ep->desc);
5448 unsigned long flags;
5450 if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5453 spin_lock_irqsave(&fotg210->lock, flags);
5456 /* For Bulk and Interrupt endpoints we maintain the toggle state
5457 * in the hardware; the toggle bits in udev aren't used at all.
5458 * When an endpoint is reset by usb_clear_halt() we must reset
5459 * the toggle bit in the QH.
5462 usb_settoggle(qh->dev, epnum, is_out, 0);
5463 if (!list_empty(&qh->qtd_list)) {
5464 WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5465 } else if (qh->qh_state == QH_STATE_LINKED ||
5466 qh->qh_state == QH_STATE_COMPLETING) {
5468 /* The toggle value in the QH can't be updated
5469 * while the QH is active. Unlink it now;
5470 * re-linking will call qh_refresh().
5472 if (eptype == USB_ENDPOINT_XFER_BULK)
5473 start_unlink_async(fotg210, qh);
5475 start_unlink_intr(fotg210, qh);
5478 spin_unlock_irqrestore(&fotg210->lock, flags);
5481 static int fotg210_get_frame(struct usb_hcd *hcd)
5483 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5485 return (fotg210_read_frame_index(fotg210) >> 3) %
5486 fotg210->periodic_size;
5489 /* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5490 * because its registers (and irq) are shared between host/gadget/otg
5491 * functions and in order to facilitate role switching we cannot
5492 * give the fotg210 driver exclusive access to those.
5494 MODULE_DESCRIPTION(DRIVER_DESC);
5495 MODULE_AUTHOR(DRIVER_AUTHOR);
5496 MODULE_LICENSE("GPL");
5498 static const struct hc_driver fotg210_fotg210_hc_driver = {
5499 .description = hcd_name,
5500 .product_desc = "Faraday USB2.0 Host Controller",
5501 .hcd_priv_size = sizeof(struct fotg210_hcd),
5504 * generic hardware linkage
5507 .flags = HCD_MEMORY | HCD_USB2,
5510 * basic lifecycle operations
5512 .reset = hcd_fotg210_init,
5513 .start = fotg210_run,
5514 .stop = fotg210_stop,
5515 .shutdown = fotg210_shutdown,
5518 * managing i/o requests and associated device resources
5520 .urb_enqueue = fotg210_urb_enqueue,
5521 .urb_dequeue = fotg210_urb_dequeue,
5522 .endpoint_disable = fotg210_endpoint_disable,
5523 .endpoint_reset = fotg210_endpoint_reset,
5526 * scheduling support
5528 .get_frame_number = fotg210_get_frame,
5533 .hub_status_data = fotg210_hub_status_data,
5534 .hub_control = fotg210_hub_control,
5535 .bus_suspend = fotg210_bus_suspend,
5536 .bus_resume = fotg210_bus_resume,
5538 .relinquish_port = fotg210_relinquish_port,
5539 .port_handed_over = fotg210_port_handed_over,
5541 .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5544 static void fotg210_init(struct fotg210_hcd *fotg210)
5548 iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5549 &fotg210->regs->gmir);
5551 value = ioread32(&fotg210->regs->otgcsr);
5552 value &= ~OTGCSR_A_BUS_DROP;
5553 value |= OTGCSR_A_BUS_REQ;
5554 iowrite32(value, &fotg210->regs->otgcsr);
5558 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5560 * Allocates basic resources for this USB host controller, and
5561 * then invokes the start() method for the HCD associated with it
5562 * through the hotplug entry's driver_data.
5564 static int fotg210_hcd_probe(struct platform_device *pdev)
5566 struct device *dev = &pdev->dev;
5567 struct usb_hcd *hcd;
5568 struct resource *res;
5570 int retval = -ENODEV;
5571 struct fotg210_hcd *fotg210;
5576 pdev->dev.power.power_state = PMSG_ON;
5578 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
5580 dev_err(dev, "Found HC with no IRQ. Check %s setup!\n",
5587 hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5590 dev_err(dev, "failed to create hcd with err %d\n", retval);
5592 goto fail_create_hcd;
5597 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5598 hcd->regs = devm_ioremap_resource(&pdev->dev, res);
5599 if (IS_ERR(hcd->regs)) {
5600 retval = PTR_ERR(hcd->regs);
5601 goto failed_put_hcd;
5604 hcd->rsrc_start = res->start;
5605 hcd->rsrc_len = resource_size(res);
5607 fotg210 = hcd_to_fotg210(hcd);
5609 fotg210->caps = hcd->regs;
5611 /* It's OK not to supply this clock */
5612 fotg210->pclk = clk_get(dev, "PCLK");
5613 if (!IS_ERR(fotg210->pclk)) {
5614 retval = clk_prepare_enable(fotg210->pclk);
5616 dev_err(dev, "failed to enable PCLK\n");
5617 goto failed_put_hcd;
5619 } else if (PTR_ERR(fotg210->pclk) == -EPROBE_DEFER) {
5621 * Percolate deferrals, for anything else,
5622 * just live without the clocking.
5624 retval = PTR_ERR(fotg210->pclk);
5625 goto failed_dis_clk;
5628 retval = fotg210_setup(hcd);
5630 goto failed_dis_clk;
5632 fotg210_init(fotg210);
5634 retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5636 dev_err(dev, "failed to add hcd with err %d\n", retval);
5637 goto failed_dis_clk;
5639 device_wakeup_enable(hcd->self.controller);
5640 platform_set_drvdata(pdev, hcd);
5645 if (!IS_ERR(fotg210->pclk))
5646 clk_disable_unprepare(fotg210->pclk);
5650 dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5655 * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5656 * @dev: USB Host Controller being removed
5659 static int fotg210_hcd_remove(struct platform_device *pdev)
5661 struct usb_hcd *hcd = platform_get_drvdata(pdev);
5662 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5664 if (!IS_ERR(fotg210->pclk))
5665 clk_disable_unprepare(fotg210->pclk);
5667 usb_remove_hcd(hcd);
5674 static const struct of_device_id fotg210_of_match[] = {
5675 { .compatible = "faraday,fotg210" },
5678 MODULE_DEVICE_TABLE(of, fotg210_of_match);
5681 static struct platform_driver fotg210_hcd_driver = {
5683 .name = "fotg210-hcd",
5684 .of_match_table = of_match_ptr(fotg210_of_match),
5686 .probe = fotg210_hcd_probe,
5687 .remove = fotg210_hcd_remove,
5690 static int __init fotg210_hcd_init(void)
5697 pr_info("%s: " DRIVER_DESC "\n", hcd_name);
5698 set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5699 if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5700 test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5701 pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5703 pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
5704 hcd_name, sizeof(struct fotg210_qh),
5705 sizeof(struct fotg210_qtd),
5706 sizeof(struct fotg210_itd));
5708 fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5710 retval = platform_driver_register(&fotg210_hcd_driver);
5716 debugfs_remove(fotg210_debug_root);
5717 fotg210_debug_root = NULL;
5719 clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5722 module_init(fotg210_hcd_init);
5724 static void __exit fotg210_hcd_cleanup(void)
5726 platform_driver_unregister(&fotg210_hcd_driver);
5727 debugfs_remove(fotg210_debug_root);
5728 clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5730 module_exit(fotg210_hcd_cleanup);